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摘要 

 

    若材料具有有序共存及強烈的鐵電-(反)鐵磁耦合，我們將此類材料稱

為「多鐵材料」，多鐵材料展現豐富的物理性質，因此近年來吸引了科學家

們爭先投入了磁電交互作用的尖端研究領域。在眾多的多鐵材料中，鉍鐵

氧為室溫多鐵材料，其有高鐵電居里溫度與高尼爾溫度之特性，擁有製作

成儲存元件之潛力。在本論文中，我們與朱英豪老師的團隊合作，委託他

們提供我們良好的鉍鐵氧薄膜，透過超快激發-探測實驗，我們在 ΔR/R 訊

號中發現一個週期為數十皮秒的振盪。此振盪的特性可透過由 Thomsen 研

究團隊所提出的「超快激發形變脈衝」理論模型來做解釋。最後，透過實

驗結果我們推算出鉍鐵氧薄膜不同溫度時的聲速。 

 I



 II
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Abstract 
 

  In recent years there has been an increasing interest in a new class of 

materials, in which both electrical and magnetic ordering can coexist. Such 

so-called multiferroic materials have many potential applications including a 

new type of memory device based on the combination of ferromagnetism and 

ferroelectricity. BiFeO3 is one such material and has attracted a wide attention. 

In the thesis, we cooperated with Y. H. Chu. They supplied BiFeO3 thin films to 

us. We have measured the transient reflectivity (ΔR/R) as a function of a pump 

probe delay at various temperatures. We found that a oscillation with a period of 

tens of tens of ps. The characterization of the oscillation can be elucidated by C. 

Thomsen [5]. Moreover, the sound velocity at various temperature has been 

calculated in the BiFeO3 thin films. 
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  第一章 緒論 

第一章 緒論 

  在強關聯電子系統中，電子、聲子、電子自旋等自由度間皆有著

複雜的關聯，也造就了這類材料有著豐富的物理現象，舉凡高溫超導

體(HTSC)的發現與研究[1]、龐磁阻(CMR)材料隨著不同參雜呈現多

樣的相變化[2]、多鐵材料同時具有鐵電與(反)鐵磁兩種以上的有序特

性等，都與這些自由度間強烈的關聯性息息相關，故了解強關聯電子

系統複雜的電子及晶格行為已成了日益重要的課題。 

  利用超快雷射激發－探測實驗( Pump-Probe experiment )能夠分

析載子的電荷、軌道、自旋、以及晶格等自由度間的耦合情形，例如

本實驗室在 La1-xCaxMnO3材料中，電子與聲子、電子自旋與晶格間

的耦合情形，都能夠利用超快雷射激發－探測實驗解析出來[3,4]。 

  而在近ㄧ、二十年來，許多固態材料如半導體材料、高溫超導或

者龐磁阻等材料，其超快激發－探測實驗結果，都發現了瞬時反射率

(ΔR)呈現週期性振盪的行為[5-12]，如圖 1-1 所示。 

 
 
 
 
 
 
 
 

圖 1-1 a-As2Se3的瞬時反射率(ΔR)週期性振盪[3] 

 1
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    造成薄膜瞬時反射率呈現週期性振盪的可能原因有「同調聲子

(Coherent Phonon)」、「電荷密度波(Charge-density wave)」、「磁振子

(magnon)」[13]等，其中同調聲子振盪形成機制又有「位移式同調聲

子激發 Displacive Excitation of Coherent Phonon (DECP)」[14]、「驅動

式激發拉曼散射 Impulsive Stimulated Raman Scattering (ISRS)」[15]

及「形變脈衝機制 Strain Pulse Mechanism」[5,6]。 

    在眾多的多鐵材料中，鉍鐵氧(BiFeO3)同時具有有序的磁性與相

當大的鐵電極化量。鉍鐵氧為室溫多鐵材料，其有高鐵電居里溫度

(Curie Temperature)與高尼爾溫度(Neel Temperature)之特性，擁有製作

成元件之潛力，於是我們用超快激發－探測系統量測，發現 ΔR/R 訊

號呈現一維持了數十週期的週期性振盪，此振盪的衰減時間比其他

CMR 材料長，不像 LCMO 的振盪訊號維持一到兩個週期後就會消

失。圖 1-2 是 BiFeO3薄膜室溫下的 ΔR/R 訊號。 
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圖 1-2 BiFeO3 薄膜的 ΔR/R 訊號 
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    由振盪的週期與衰減時間，我們初步判斷振盪機制應該是磁振子

或是同調聲頻聲子，利用本實驗室的超快激發－探測技術，我們設計

實驗去解析振盪的機制。如果是磁振子訊號，表示用超快激發－探測

系統觀測到 BiFeO3的磁光效應，磁光效應是目前非常熱門的研究方

向。如果振盪機制是同調聲頻聲子，根據 C. Thomsen 提出的形變脈

衝理論，在假設 BiFeO3的折射率為定值的情況下，我們由振盪週期

推得聲子速度，而聲速展現了 BiFeO3的彈性特性，所以由變溫實驗

我們可以觀察 BiFeO3在相變化時彈性特性是如何改變，甚而外加磁

場下是否有磁彈效應的產生。 

 

    本論文架構為第一章「緒論」，第二章「形變波理論與鉍鐵氧化

物基本特性介紹」，第三章「飛秒雷射激發探測量測系統」，第四章「實

驗結果與討論」，第五章「總結與未來工作」。 



第二章 「形變脈衝理論」與「鉍鐵氧基本特性」介紹 

第二章  「形變脈衝理論」與「鉍鐵氧基本特性」介紹 

2-1 形變脈衝傳遞「Strain Pulse Propagation」理論介紹 

  「形變脈衝的傳遞」模型則是在近幾年來於許多材料研究文獻中，最

常被認為是形成同調聲子的機制[5,6,8-10]；此理論是由 C. Thomsen 研究團

隊於 1984 及 1986 年發表兩篇文章[5,6]中所提出，以下對此理論模型做一

說明： 

  首先於 1984 年的文獻中，發現同調聲子振盪與薄膜的膜厚成正比，如

圖 2-1 所示： 

 

圖 2-1 同調聲子振盪與厚度關係[6] 

推得週期與厚度關係為 

s

d
υ

τ 4
=                                              Eq. (2-1-1) 
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第二章 「形變脈衝理論」與「鉍鐵氧基本特性」介紹 

其中τ 為振盪週期，d 為薄膜膜厚度，υ s為薄膜中的聲速 

  另外作者於在 1986 所發表的文獻[5]中有系統的推導「形變脈衝的傳

遞」是如何造成此類週期性的振盪，並推導出週期與探測光波長成正比的

關係式 

snυ
λτ

2
=                                            Eq. (2-1-2) 

  其中λ為探測光的波長，n 為樣品的折射率。 

2-1-1 形變脈衝的產生 

首先，我們實驗的情形是ㄧ個脈衝時間小於一皮秒(~10-12 s)的短脈衝入

射至樣品表面，而假設脈衝具有的能量為 Q，則在距離樣品表面深度為 z

處每單位體積所獲得的能量為： 

ζ

ζ
/)1()( ze

A
QRzW −−=                               Eq.(2-1-3) 

其中 R 為反射率，ζ為吸收深度，因為光脈衝能量傳給了樣品，會造成樣

品溫度的上升 

CzWzT /)()( =Δ                                     Eq (2-1-4) 

C 為每單位體積的熱容，而因為溫度差會產生一個均向性的應力 stress  

)(3 zTB Δ− β                                         Eq (2-1-5) 

B 為 bulk modulus，而β為線性膨脹係數。我們假設膜的彈性性質為均向性，

應力只跟 z 方向有關，且彈性形變張量中只有η33不為零，去解方程式後可

 5
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得到 

⎥⎦
⎤

⎢⎣
⎡ −−−

−
+

−= ⋅−−⋅−− )sgn(
2
1)

2
11(

1
1)1(),( ///

33 tzeee
CA

QRtz tztz υ
ν
ν

ζ
βη ζυζυζ

 

Eq (2-1-6) 

其中ν為 Poisson’s ratio，υ為縱向的聲速(longitudinal sound velocity)。 

將 Eq (2-1-6)畫出來後則為 

 

圖 2-2 在不同時間時彈性形變脈衝的空間關係圖[5] 

換言之，即樣品吸收了激發光脈衝的能量後，因為溫度差產生了應力，最

後造成一個形變，如脈衝般以聲速的速度由表面向裡面傳遞；這種晶格的

振動的傳遞就是一種同調聲子產生的機制。 

  除了能量被晶格吸收後，因為熱會造成應力而產生聲子的傳遞之外，

C. Thomsen 研究團隊提出了更一般的情形，他提出光脈衝若是改變了電子

或著聲子的分布情形，也會產生應力，而造成同調聲子的傳遞： 

ij
p

ij
eij nEn

η
ϖδ

η
δσ

∂
∂

+
∂
∂

= ∑∑ k

k

k

k

)k()k(                    Eq (2-1-7) 
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σij為應力的 ij 分量，δne(k)、δnp(k)分別為在波向量為 k 時的電子及聲子

分布含數的改變量，Ek、 kϖ 分別為波向量為ｋ時電子的能量與聲子的頻率；

由 Eq (2-1-7)中我們得知，「電子與聲子」分布的改變都可能是產生形變脈

衝的因素。 
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2-1-2 同調聲子振盪週期與厚度關係 

  在 2-1 節中所推導出由雷射脈衝所引起的形變脈衝，會在薄膜內部來回

傳遞，而此形變脈衝的傳遞如何造成 Eq (2-1-1)式中所示週期正比於薄膜厚

度的震盪，C. Thomsen 研究團隊提出了以下的說明： 

  由於形變脈衝的傳遞會造成樣品的吸收係數α有所改變 

η
η

αα ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

=Δ g

g

E
E                                   Eq (2-1-8) 

η為形變量(類似於 2-1 節中的形變脈衝)，Eg為材料的能隙(energy gap)。而

穿透率的改變如下 

d
d
dE

dE
ddz

T
T g

g

d
⋅≅−⎟

⎠
⎞⎜

⎝
⎛ ⋅Δ−=

Δ
∫ η

η
αα 1exp

0               Eq (2-1-9) 

η 為樣品中形變量的平均，d 則為薄膜樣品的厚度。接著考慮樣品吸收了

雷射脈衝的能量後，所產生的溫度差為 

( )( TR
AC

Ex −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

=Δ 11
ζ

θ )                            Eq (2-1-10) 

其中 Ex為提供電子躍遷後剩餘能產生聲子的能量，A 為光點大小，C 為樣

品比熱，R、T分別為樣品的反射率與穿透率。最後，若是不考慮穿透或著

反射光間的干涉的話，則 η 會隨著時間而作振盪，使得穿透率或反射率的

變化（ΔT 或ΔR）跟著振盪，振盪強度正比於 

( ) ( )[ ] d/1/1 θζβνν Δ−+                                 Eq (2-1-11) 

  換言之，由於雷射脈衝引起的形變脈衝，於樣品中來回傳遞，造成吸
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收係數的改變，進而使得穿透率或著反射率的改變量，隨著時間做週期性

的振盪行為。 

  接著討論振盪週期與厚度的關係，首先，因為薄膜表面與空氣相接，

氣體密度遠小於固體，故表面端可視為自由沒有受拘束的；而另一面則是

與ㄧ個堅硬基板接合，則拘束力遠大於表面端，此端可視為固定端。而聲

波在此薄膜中傳遞，於固定端聲波的振幅一定為零，即為節點；而於自由

端，聲波的振幅不為零，即為波腹。行為則類似一端為開口的空氣柱，如

圖 2-3 所示： 

 

圖 2-3 ㄧ端為開口的共振腔 

在我們的樣品中，d 為薄膜厚度。為了符合兩端的邊界條件，則可做以下的

近似 

444
τυ

υ
λ ×

=== s

s

s fd                                Eq (2-1-12) 

λs為聲波波長，υs為聲速，f 為聲波頻率，τ為聲波週期，將上式換算可

得 Eq (2-1-1)週期與厚度關係 
s

d
υ

τ 4
=  
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2-1-3 同調聲子振盪週期與探測光波長的關係 

  在上一節中，我們探討穿透率的改變或者反射率的改變時，並不考慮

光的干涉效應，只考慮形變脈衝對於樣品中的光學性質的影響，所造成週

期與厚度成正比的震盪。 

  在這一節中，我們考慮探測光入射至樣品內，遇到形變脈衝時會有部

分的光反射出樣品表面，而此自形變脈衝的部分反射光，與自表面直接反

射的光作干涉，會產生另一種週期較短，且與探測光波長成正比的週期性

振盪。 

  接著我們做理論上的推倒，首先考慮形變脈衝如何影響介電常數 

2)( κε in +=                                         Eq (2-1-13) 

ε為介電常數，ｎ為折射率實部，κ為折射率虛部。 

而因為形變造成介電常數的改變量為 

33
3333

)(2),( η
η
κ

η
κε ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+=Δ inintz                  Eq (2-1-14) 

接著考慮入射光電場為 

)(
0

)( 0 tzkii
x eEE ⋅−= ω

                                  Eq (2-1-15) 

反射及穿透光電場則為 

)(
00

)( 0 tzkir
x eErE ⋅−−= ω

                               Eq (2-1-16) 

)(
00

)( tkzit
x eEtE ⋅−= ω

                                 Eq (2-1-17) 

r0、t0分別為反射係數及穿透係數，k0、k 分別為真空中及薄膜中的波向量。
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因為形變脈衝改變了樣品內部的介電常數，故 Maxwell’s 方程式修正如下 

[ ] )(),(2

2

2

2

zEtz
cz

E
x

x εεϖ
Δ+−=

∂
∂

                         Eq (2-1-18) 

最後，探測光入射至形變脈衝時會有部分反射出膜面，此反射光與原先膜

面的反射光形成干涉，由此干射結果可推導出反射律率變化量週期性振盪

情形。如圖 2-4 所示 

 

圖 2-4 週期性振盪成因示意圖 

接著我們可以推導出 

)'(
0

'2
0100

)'( 0)~( tzkiikzr
x eEetrtrE ϖ−−+=                  Eq (2-1-19) 

0
~t 為從薄膜入射真空的穿透係數 

rr

tzedztt
k

ikrr ikz

Δ+≡

Δ+= ∫
∞

0

0

'2
00

2
0

0 ),'('~
2

ε
                Eq (2-1-20) 

所以反射率的改變為 
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2
0

2
0 rrrR −Δ+=Δ                                  Eq (2-1-21) 

將 Eq (2-1-14)帶入 Eq (2-1-21)並計算出結果如下 

∫
∞

=Δ
0 33 ),()()( dztzzftR η                              Eq (2-1-22) 

其中 

ζφ
λ
π

η
κφ

λ
π

η
/

3333
0

4cos4sin)( zenznznfzf −
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛ −

∂
∂

=    Eq (2-1-23) 

f0、φ為與形變無關之常數，λ為探測光波長。 

f(z)定義為 sensitivity function，意思上就是決定形變脈衝在行經不同深度時

對於反射率變化量的貢獻為何，且此函數為隨著深度增加而逐漸衰減的震

盪行為，如圖 2-5 所示，衰減常數與樣品的吸收深度ζ有關。 

 

圖 2-5 a-As2Te3的 sensitivity function 對深度的關係[5] 

  最後我們試著從 sensitivity function 推算出震盪週期與波長關係，從 Eq 

(2-1-23)中得知 f(z)為正弦或餘弦振盪，其中
λ
πnz4

中的 z 為形變脈衝的的位
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置， 

tz s ×=υ                                            Eq (2-1-24) 

( φϖφυ
λ
πφ

λ
π

−⋅=⎟
⎠
⎞

⎜
⎝
⎛ −×=⎟

⎠
⎞

⎜
⎝
⎛ − ttnnz

s 'sin4sin4sin )           Eq (2-1-25) 

s
s

nn υ
λ

υ
λ
π
π

ϖ
πτ

τ
πϖ

24
2

'
22' ===⇒=                      Eq (2-1-26) 

由上述推導，可得到 Eq (2-1-2)中所提到的關係式，此為同調聲子振盪週期

與探測光波長關係式的由來。 

   
 

 13



第二章 「形變脈衝理論」與「鉍鐵氧基本特性」介紹 

2-2 鉍鐵氧材料基本特性 

  鉍鐵氧為多鐵材料的一種，多鐵材料是指材料系統中同時擁有鐵電、

鐵磁或鐵彈性等兩種以上的有序特性，且磁電間存在耦合(coupling)作用，

也就是施加電場可影響磁性，而施加磁場又可影響其電性質。下面介紹鐵

電性、磁性以及鉍鐵氧的基本特性。 

2-2-1 鐵電性質 

    就一般的傳統晶體來說，像是石英或是鑽石等其電極化 (electric 

polarization)會隨著外加電場而改變，當外加電場消失時，其極化的現象也

會消失。但是有些晶體，在沒有外加電場的情形下卻依然有極化現象，稱

這類晶體具有自發極化(spontaneous polarization)[16,17]的特性。 

而就晶體的對稱型式來分類，在自然界中的材料裡，可分為 32 種點群

(point group)。其中有 11 種晶體具有中心對稱而不具有極性，因此也無壓

電性與鐵電性。其餘的 21 種非對稱的點群中，絕大部分都具有壓電特性。

而此壓電的點群中，只有 10 種具有單一旋轉軸，且無垂直於此軸的鏡面對

稱，因而有自發極化。因為材料為非中心對稱，而其內的陰陽離子不在中

心位置時即會產生偶極矩。而在某些溫度範圍，晶體中的陰陽離子各在其

具有最低自由能的平衡位置，此時若陰陽離子的中心位置不一致而造成自

發極化(spontaneous polarization)現象，然而此自發極化可隨外加電場改變其

方向的特性稱為鐵電性。以鈣鈦礦(Pervoskite)結構為例，正負電荷的相對位
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移，進而產生電偶極矩[17-19]。 

鐵電體內部分成若干個小區域，這些小區域稱之為疇域(domain)，其中

其中自發極化方向一致的區域稱為鐵電晶域。一般來說，但各個小區域間

的電偶極矩方向不同，使得使得淨極化量為零。當有適當的外加電場時，

域壁會隨之移動，造成電域方向平行於外加電場，使得晶體的淨極化量不

再為零。 

2-2-2 磁性質 

材料中的磁性質主要是來自原子的磁力矩，而磁力矩主要的形成原因

是電子的自旋，通常定義每個電子自旋而產生的磁矩稱為一波爾磁子(Bohr 

magnetron)。至於磁力矩的形成類型最主要有三種:(1)電子自旋所產生的磁

力矩(2)電子繞原子核所產生的磁力矩以及(3)外加磁場所產生的反磁力矩。

[17] 

    一般來說，磁性可以分成順磁性、反磁性、鐵磁性、反鐵磁性、亞鐵

磁性。以 2-2-1 式表示材料中的磁化強度 M  

                   M = χH                      Eq (2-2-1) 
χ : magnetism susceptibility 

H 為外加磁場，而鐵磁與亞鐵磁的χ值遠大於順磁和反磁。 

    圖 2-6[20]為磁性材料中幾種磁偶極矩的排列方式，由於磁偶極矩間交

互作用的不同，能將排列方式分為以下幾種[17-21]: 

(a) 反磁性: 

    當在外加磁場 H 作用時，物體本身所產生的弱磁化量方向與外加磁場
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相反。也就是，在反外加磁場的作用之後，必會產生一與外加磁場反向的

磁矩，此現象稱反磁現象，|χ|約為 10-5，且χ<0。 

(b) 順磁性: 

    順磁物質內每個原子具永久磁矩，此磁矩是由電子自旋或軌道運動所

提供。在外加磁場作用下，物體本身所產生的微弱磁化量方向與外加磁場

相同，而順磁的χ約為 10
-4
，且χ>0。 

(c) 鐵磁性: 

    鐵磁性在無外加磁場下也會有自發磁化，且其磁化量很大甚至具有永

久磁化的的特性。而自發磁矩的存在意味著電子自旋與磁矩有著規則的排

列，其χ為五種磁性中最大。 

(d) 反鐵磁性: 

    在反鐵磁體裡，其相鄰的兩原子的自旋方向為反平行，因此造成淨磁

矩為零。在反鐵磁體裡雖有磁矩的排列，但總體看來沒有並沒有磁性。而

MnO 是為人熟知的代表，它具有離子特性，是由 Mn2+與 O2-離子構成，由

於自旋是反平行排列，因此磁矩互相抵消，可視為整體無淨磁力。 

(e) 亞鐵磁性: 

    亞鐵磁性和鐵磁性其巨觀磁特性很類似，主要差異在於淨磁力矩的磁

源。它的微觀磁結構與反鐵磁的磁矩結構相似，但相反排列的磁矩不等量，

因此亞鐵磁是未抵銷完全的反鐵磁結構所形成之鐵磁性物質，χ較鐵磁性
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為小，其中最為人知的就是 Fe3O4鐵磁礦。 

 

 

 

 

 

 

 

 

圖 2-6 在不同磁性材料中磁偶極矩的排列方式[20] 

2-2-3 鉍鐵氧結構與物理性質 

    鉍鐵氧為類鈣鈦礦(Pervoskite-like)結構(ABO3)之氧化物，，其中A表示

鉍(Bi)原子，B表示鐵(Fe)原子，而O則表示氧(O)原子。但是，鉍鐵氧並不

是由立方體所構成的，它的結構是屬於菱面晶系(Rhombohedral System)，如

圖2-7[22]。可以把它想成變形的鈣鈦礦單位晶胞所構成的類立方結構。其

中鉍原子(Bi)與鐵原子(FeO6)構成的八面體造成正負電荷的相對位移，也是

鉍鐵氧鐵電性質的來源，其鐵電指向<111>，如圖2-8[23]。 

    除此之外，鉍鐵氧也具有反鐵磁性，其反鐵磁性主要來自於鐵原子沿

著(111)平面的自旋極化，而此結構有兩個重要的訊息:第一為因鉍原子與鐵
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氧原子優選之反鐵磁平面則與鐵電極化的方向互相垂直，在此一優選的反

鐵磁平面上有六種等量的易磁化軸，因此每個平面會有一種磁矩，如圖

2-8[23]。而因為鉍鐵氧反鐵磁平面與鐵電極化方向互相垂直，使得鉍鐵氧

的反鐵磁相相與鐵電相相之間有交互作用。此外，鉍鐵氧反鐵磁性為G-型

(G-Type)，指的是在<111>方向上的鐵原子，具有相反的極化方向，如圖

2-9(a)[24]。近來的研究指出，鉍鐵氧除具有相當大的鐵電極化量以外，反

鐵磁的次晶格會有D-M 型(Dzyaloshinskii-Moriya Type)的交互作用，亦即相

鄰的具有不同方向磁矩之平面，其相對的夾角並非180o 整，而是有些微角

度的差異。這使得靜磁場的總和不為零，並具有一微小的鐵磁矩分量，如

圖2-9(b)[24]。除此之外，鉍鐵氧為室溫多鐵材料，鐵電居里溫度(Curie 

Temperature)約為1100 K與尼爾溫度(Neel Temperature)約為640 K之特性，擁

有製作成元件之潛力[25-27]。 

 
 

 

 

 

 

圖 2-7 鉍鐵氧的鉍原子(Bi)與鐵氧原子(FeO6)構成的六面體沿軸向具有一相

對伸縮之位移[22] 
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圖 2-8 鉍鐵氧之鐵電極化方向與反鐵磁平面關係圖。圖中只以代表性之鐵

電極化方向呈現，鉍鐵氧含八種極化異變體，共對應至四個結構異

變體，其中反鐵磁平面之法向量與鐵電極化方向平行[23] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

圖 2-9 (a)G 型反鐵磁當相鄰平面磁矩水平分量在同一直線上時，其淨磁矩

為零(b)鐵原子之磁矩分量有一小夾角，使得其有一靜磁矩不為零之

鐵磁磁矩[24] 
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第三章  飛秒雷射激發－探測 (Pump-Probe)量測系統 

3-1 激發－探測量測原理 

 

圖 3-1 激發-探測實驗原理示意圖 

  在激發－探測實驗中，由雷射所產生的飛秒級脈衝雷射光，先經由分

光鏡依 80％：20％比率分成兩道光，較強的為激發光(Pump)，較弱的為探

測光(Probe)。一開始，控制兩道光的光程為相同，使得兩道光同時到達樣

品表面；當激發光照射在樣品表面時，會引發某個事件 n(t)隨著時間做弛緩
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行為(relaxation)，如激發電子、聲子、準粒子等，這個事件 n(t)可以跟樣品

反射率做關聯，而雷射的重複率約 80 MHz，即每 12.5 ns 會產生一個脈衝，

故這個事件會每 12.5 ns 重覆一次；接著，藉著精準的改變探測光的光程，

使得探測光可以領先或者延後激發光到達樣品表面，而由於激發光所引發

的事件已經造成樣品的反射率有所改變，所以藉由光電偵測器量取探測光

自樣品的反射率會跟著有所改變。但這個改變量非常的小約 10-5~10-7，於是

我們運用鎖相放大器(Lock-in Amplifier)，來去除背景雜訊及放大訊號，於

是我們也在激發光的光路上，加上一個與鎖相放大器相同的調制頻率 311 

KHz。所以，再探測光與激發光入射樣品的時間差為 t 時，由鎖相放大器測

得的電壓訊號如圖 3-1 的第三部份所示，I0(t)為 DC 電壓訊號，代表反射率

強度 R，而 ΔI(t)為代表反射率的變化量 ΔR，最後將 )(
)(

0 tI
tIΔ 就會得到一個

沒有單位的 )(
)(

tR
tRΔ 。最後只要控制探測光的光程從小於激發光，開始移動

至與激發光相同，接著大於激發光，就可以量測出在事件被激發前後

)(
)(

tR
tRΔ 的變化情形。 
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Eq (3-1) 
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  其中 ( ) ( ) ( ) 0IIII
closed
pumprclosed

pumpiopen
pumpi ≡==  [28] 

  另外，如上述中提到，雷射的重複率為80 MHz，及脈衝間的間隔為12.5 

ns，如果樣品中的弛緩時間大於脈衝間的間隔12.5 ns的話，我們會看不到樣

品全部的弛緩行為。 
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3-2 激發－探測量測系統 
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圖 3-2 激發－探測量測系統 

  激發－探測量測系統如圖3-2所示，我們的雷射源為鈦藍寶石雷射

(Ti:Sapphire laser)，鎖模後出光中心波長為800 nm，脈衝寬度50 fs，脈衝重

複率為80 MHz。 

  當光進入系統前，會先經過一組稜鏡對，作為色散補償(Dispersion 

compensation)，雖然我們的出光時的脈衝寬度為50 fs，但因為經過了許多光

學元件，例如透鏡、反射鏡、聲光調制器(AO modulator)、真空腔體的玻璃

等，這些都會產生色散效應(positive group velocity dispersion)，使

得脈衝變寬成數百個ps。所以我們運用稜鏡對作negative group velocity 
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dispersion，透過調整光在稜鏡對中所走的光程，來抵銷眾多光學元件所

引起的色散效應，理論上可以完全抵銷而恢復原始的脈衝寬度。 

  接著，雷射光依8:2的比率分成強弱兩道光，較強的為激發光，較弱的

為探測光。 

  激發光會經過一個聲光調制器，這個地方用的聲光調制器與傳統的截

波器相同作用，目的是為了對激發光作調制，激發光被聲光晶體中所形成

的光柵散射，控制聲光調頻率可以使得被調制後的激發光，產生固定頻率

的亮暗調制，而我們調制頻率為311 KHz，同時也給鎖相放大器相同的調制

頻率。雖然聲光調制器可以達到比截波器更高的頻率，但是因為聲光晶體

的厚度相當厚，所以會產生很嚴重的色散效應。 

  接著激發光會經過非線性晶體BBO(β相偏硼酸鋇晶體, β−BaB2O4)。此

二階非線性晶體的特性為，讓激發光以符合產生二倍頻的偏振方向和入射

角度穿過BBO晶體，會產生二倍頻的藍光(400 nm)，光子能量由1.55 eV提

升到3.1 eV。 

    然後激發光經過時間延遲裝置(Time delay stage)，這個延遲裝置是由高

精密平移台與平行反射鏡組成，透過控制精密平移台的移動位置與距離，

可以控制激發光與探測光到達樣品表面的相對時間，以達時間解析的功

能。我們所使用的精密平移台為Newprot PM500 series。 

  在進入變溫系統前，激發光會通過半波片(Half wave plate)、偏振片
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(Polarizer)、最後再經由聚焦鏡聚焦至樣品表面。其中半波片與偏振片的組

合，可以控制我們要的偏振方向及光能量的強度。 

    探測光一開始也會經過一個與激發光路上完全相同的聲光調制器，但

在這個調制器上，我們並不會加上調制頻率，只是為了使激發及探測光的

色散情形相同，如此一來，我們運用稜鏡對作色散補償才能夠達到相同的

效果。接著與激發光相同，透過半波片、偏振片，控制偏振方向與光強度。 

  探測光經由樣品表面的反射光(此訊號稱為樣品訊號Signal)，導入光

偵測器(Photo Detector)，另外透過調整偏振片可控制參考訊號強度，將光訊

號轉成電壓訊號，電壓訊號再經由鎖相放大器(Lock-in Amplifier)及多功能

電表(Multimeter)，透過電腦Labview軟體控制，就可以達到自動化量測與初

步數據處理。 

  在本實驗中的BiFeO3薄膜樣品，並沒有軸向上的各向異性，所以我們

運用半波片和偏振片，調整激發光與探測光的偏振方向為互相垂直，可避

免干涉效應影響實驗數據。 

 

3-3 變溫系統 

  為了量測樣品在不同溫度時的行為，我們需要一個變溫系統，我們將

樣品放在真空腔中，再透過機械幫浦抽真空，真空度可達10-6 torr；而降溫

方式則是透過內循還式液氦冷卻系統；升溫和溫控方面則是運用Lake Shore 

331溫控器，來達到溫度控制，溫度變化範圍可由18 K到800 K。 
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3-4 時間延遲零點與脈衝寬度 

  本實驗中除了精準的控制兩道光路間的光程差，當兩道光的光程差為

零時，激發、探測光脈衝於時間上同時到達樣品表面，我們定義此時間點

為時間延遲零點；另外到達樣品時的脈衝寬度也會影響我們的解析度，脈

衝寬度越小，我們能夠解析出更快的弛緩行為。 

  首先介紹如何決定時間延遲零點。在圖3-2中，我們架設了具有放

大鏡頭的CCD與監視器，可以直接觀測激發及探測光點在樣品表面的空間

重合情形，以求良好的重合狀況。為了尋求時間上的延遲零點，我們也可

以使用BBO晶體。當符合產生二倍頻的角度及偏振下，會吸收兩道頻率相

同的激發光與探測光，產生二倍頻的藍光(400 nm)。運用此種特性，於原本

要放樣品的位置，換上BBO晶體，接著掃描完整的時間延遲，於偵測到最

強的藍光訊號時的位置，就是兩道脈衝再時間上最為重合的位置，所以我

們就定義此未致為時間延遲零點。 

  另外我們還可以透過BBO晶體估測入射樣品前的脈衝寬度，當我們移

動時間延遲裝置時，兩道脈衝重合最好時，將得到最強的二倍頻藍光，而

若兩道脈衝在時間上略為不重合時，所測得的藍光訊號將變弱。我們透過

光電倍增管(PMT)，量測藍光訊號對時間延遲的變化關係，可以估算出脈衝

寬度。同時可透過調整稜鏡對的位置，作色散補償，將脈衝寬度補償至最

小。實驗上所得到壓縮後的脈衝寬度約為90 fs，如圖3-3所示 
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圖 3-3 雷射脈衝寬度 

 

3-5 激發－探測量測方法與步驟： 

  在系統架設完成後，我們就可以開始激發探測光譜量測，實驗步驟如

下： 

1. 雷射開機： 

  雷射開機後，確認雷射為鎖模狀態，紀錄開機時間、雷射出光功

率、光點狀況及位置。確認雷射的已達穩定後，可降低實驗時的雜訊

與誤差。 

2. 黏貼樣品： 
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由於須進行變溫量測，所以我們將樣品黏貼於變溫系統中的銅座，

我們採用雙面碳膠帶將樣品黏貼至銅座上，因為碳膠帶有一定的厚

度，所以在黏貼樣品時必須盡量將樣品壓緊、貼平，以避免樣品與銅

座接觸不良，導致控溫上的誤差。 

3. 對光： 

將樣品貼好後，置入真空腔內。接著調整系統光路，確保激發光與

探測光皆能準確入射樣品表面，並調整反射鏡，使得探測光經由樣品

表面的反射光，能完全入射至光偵測器中，並避免激發光進入偵測器

中，影響實驗量測結果。待光路確認無誤後，開啟真空幫浦，將真空

腔抽真空至 10-6 torr。 

4. 室溫光譜量測：                                                       

     於實驗進行中，我們透過光功率計量測激發與探測光的功率，並透

過偏振片與半波片調整兩道光的偏振方向及功率，在本實驗中，所採

用的功率為 15 mW 與 2 mW，而兩道光的偏振方向調成互相垂直，並

於偵測器前加上一偏振片，避免激發光進入光偵測器。至於光的重合

我們則是利用 CCD 做觀測，但是為了避免時間延遲裝置在移動過程

中，因為光路無法達到完全的精準無誤，所造成光點有所偏移，所造

成的誤差，一般實驗時調整光點大小，使得激發光點大於探測光點，

如此一來，即使再時間延遲過程中光點有所細微偏移，都可確保探測
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光點仍與激發光點重合，而不會移出激發光點外。 

5. 變溫光譜量測： 

做變溫實驗時，開通內循環系統的冷卻水，注意冷卻水溫度及流

量避免內循還系統過熱跳機。透過內循還降溫系統降溫，與設定溫控

器來達成控溫，待達到所要的溫度後，重複步驟四，即可做變溫的光

譜量測。 



第四章 實驗結果與討論 

第四章 實驗結果與討論 

  如前面章節所述，為了探討 BiFeO3薄膜的超快動力行為，我們委託朱

英豪老師提供直接長在 STO 基板上的 BiFeO3薄膜，而不要在之間加上底電

極層(SrRuO3, SRO)，此底電極層可以控制 BiFeO3鐵電極化的方向，少了

SRO 層會使 BiFeO3在<111>的鐵電極化方向有八種極化異變體的可能，但

可以簡化我們對量測訊號的分析。 

 

4-1 激發－探測實驗 

首先，圖 4-1 為 BiFeO3(001)的ΔR/R 訊號，我們發現ΔR/R 訊號有一個

週期為數十皮秒的振盪行為。根據文獻[9]，造成此振盪行為可能的機制有

同調聲子、電荷密度波和磁振子等。 
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圖 4-1  BFO(001)薄膜的ΔR/R 訊號 
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    其中電荷密度波是如果一個系統電子能量的降低(費米能量附近形成能

隙)可以彌補因晶格形變(電荷以遠-近-遠-近交替分布)而提高的靜電位能，

那這個系統就可以藉由電荷密度波的形成來降低系統的總能量。因此電荷

密度波多發現在低維度材料之中，因為低維度材料擁有特殊異向的晶體結

構和電子能帶結構。BiFeO3薄膜的晶體結構不具有上述特性，故排除電荷

密度波的可能。 

    接著同調聲子中有位移式同調聲子激發 (DECP)、驅動式激發拉曼散射 

(ISRS)及形變脈衝機制，然而本實驗中所發現的振盪其週期約為數十皮秒，

換算成頻率在 GHz 的範圍，而 DECP 和 ISRS 機制所產生的同調聲子振盪頻

率為 THz 範圍，故再排除這兩種可能。所以以下的實驗以同調聲頻聲子與

磁振子為方向進行。 
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4-2 不同厚度樣品量測 

同調聲子振盪可能與薄膜厚度及探測光波長有關，為了量測振盪週期

與薄膜厚度的關係，我們請朱英豪老師提供四種不同厚度的薄膜樣品，作

了一系列的量測，結果如圖 4-2 所示: 
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圖 4-2  BFO(001)薄膜不同膜厚的ΔR/R 訊號 

由「形變脈衝傳遞」理論模型中提到，同調聲子振盪形式上為「阻尼

振盪(Damped harmonic oscillation)」，為了分析這些週期性振盪行為，我們

試著用數學式來配適(fitting)實驗結果: 
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3
2

2
1

1 cosexpexpexp φωτττ +×⎟
⎠
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⎝
⎛−×+⎟

⎠
⎞⎜

⎝
⎛−×+⎟

⎠
⎞⎜

⎝
⎛−×=

Δ ttAtAtA
R
R

 

於章節 2-1-3 所提及，週期振盪的衰減常數與樣品的吸收深度有關，根據文
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獻[29]得知波長 800 nm 的探測光對 BiFeO3的穿透深度高達 10 μm，所以振

盪衰減時間很長，振盪持續到 300 ps 都還未消失，這跟之前東煌學長量測

LCMO 樣品只能看到一至兩個週期的情況相當不同，如此一來用上述數學

式去配適(fitting)，在阻尼振盪項的部分會有極大的誤差。因此後來我們使

用傅利葉轉換的方式去得到振盪頻率，圖 4-3 是將實驗數據扣除非振盪項後

傅利葉轉換的圖形，可以發現峰值約在 45 GHz，符合 20 ps 左右的振盪週

期。 

 
 

20 40 60 80 100 120

 

Frequency (GHz)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

圖 4-3 BFO(001)薄膜ΔR/R 訊號的傅利葉轉換圖形 
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圖 4-4  BFO(001)薄膜的振盪週期與薄膜厚度關係圖 

 

從上面分析結果，可以得知薄膜厚度與振盪週期是沒有相關性的，薄

膜厚度已從 50 nm 變化至 500 nm，振盪週期皆為 22 ps 左右，因此排除此

振盪是由與薄膜厚度相關的同調聲子所造成。 
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4-3 外加磁場下量測 

根據文獻[30]，有研究團隊以 Ba0.6 Sr1.4 Zn2 Fe12 O22樣品作激發-探測實

驗，當外加一個 0.1T 的磁場時可以發現一個明顯的振盪行為出現，接著他

們試著改變不同的探測光波長量測，發現需要在有外加磁場的情況下才出

現的這個振盪訊號其週期不隨探測光波長改變，所以排除了同調聲子的可

能而推測是由磁振子造成，他們的實驗結果如下圖所示:  

圖 4-5  BSZFO 在不同外加磁場下的ΔR/R 訊號 

     

我們在無外加磁場時就已量測到振盪訊號，不過還是試著在外加一個

約為 0.12T 的磁場下作激發-探測實驗，如果振盪訊號因外加磁場的影響而

改變，那振盪的機制就必定跟電子自旋有關。圖 4-5 是外加磁場的實驗結

果，表 4-1 是數據分析的結果。 
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圖 4-6 BFO(001)薄膜在外加 0.12 T 磁場與無外加磁場下的ΔR/R 訊號 

 
Magnetic field (T) Period (ps) Error (ps) 

0 22.10 0.07 
0.12 22.08 0.09 

 

表 4-1  BFO(001)薄膜的振盪週期與外加磁場的關係 

 

    從分析結果得知，外加 0.12 T 的磁場對振盪行為沒有影響，無外加磁

場與外加 0.12 T 磁場情況下的振盪週期幾乎相同，振盪的衰減時間也沒有

明顯的變化。由於磁光柯爾系統還在架設中，在無法外加更大磁場的情況

下，我們排除磁振子的可能性。 
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4-4 不同探測光波長量測 

    由第二章同調聲子中的形變脈衝傳遞理論，我們知道如果是形變脈衝

造成的週期振盪，其振盪週期會跟探測光波長成正比關係，所以改變波長

從 780 nm 至 835 nm，作了五種不同探測光波長的量測，實驗結果和分析結

果如下圖所示： 
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圖 4-7  (a) BFO(001)薄膜用不同探測光波長量測的ΔR/R 訊號  

    (b) BFO(001)薄膜的振盪週期與探測光波長關係圖 

 

    由分析結果得知，振盪週期與探測光波長成正比，符合形變脈衝理論。

到目前為止的實驗結果，我們推測ΔR/R 訊號產生振盪的機制為同調聲頻聲

子振盪。樣品的彈性特性決定了聲速，而聲速的改變影響聲子振盪的傳遞，

根據一些文獻提及 BiFeO3在 140 K 附近有一個自旋再排列的相轉變，所以

我們接下來量測了一系列不同探測光波長降溫的實驗，實驗結果與分析結

果如下面各圖所示， 
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圖 4-8  BFO(001)薄膜用 780 nm 波長探測光量測在不同溫度的ΔR/R 訊號 
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圖 4-9  BFO(001)薄膜用 790 nm 波長探測光量測在不同溫度的ΔR/R 訊號 
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圖 4-10  BFO(001)薄膜用 820 nm 波長探測光量測在不同溫度的ΔR/R 訊號 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

圖 4-11  BFO(001)薄膜用 835 nm 波長探測光量測在不同溫度的ΔR/R 訊號 
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圖 4-12 BFO(001)薄膜的振盪週期與探測光波長關係圖在溫度(a)290 K、 

        (b)200 K、(c)155 K 和(d)110 K 時 

 

    由分析結果發現，溫度從 200 K 降至 110 K 過相變溫度，振盪週期都

是與探測波長成線性正比關係。形變脈衝理論告訴我們振盪週期
snυ

λτ
2

= ，

利用此式，可以由量測的 τ和折射率 n，得到聲速的資訊。從文獻[31]得知

介電系數隨溫度的變化不大，我們假設折射率 n 不隨溫度變化，這樣可以

從分析振盪週期隨溫度的變化，得知聲速與溫度關係。根據文獻[32]，BiFeO3

對應 800 nm 波長的光折射率為 2.84，如圖 4-13 所示。 
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    固定探測光波長為 800 nm，我們從 20 K 到 700 K 作了一系列激發-探

測實驗量測，圖 4-12(a)、(b)為所有溫度的ΔR/R 訊號。用傅利葉轉換分析

所有溫度的振盪數據得到振幅(圖 4-14)與週期(圖 4-17)對溫度的關係圖，最

後，圖 4-18 是由振盪週期推得的聲速對溫度作圖。 

 
 

0 100 200 300 400 500 600

Δ
R

/R
 (×

10
-5
)

Time Delay (ps)

35 K

  

20 K

50 K

80 K

110 K
140 K
155 K
170 K
185 K
215 K
245 K
275 K
290 K
300 K

2.5

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

圖 4-13(a)  BFO(001)薄膜 20 K 到 300 K 的ΔR/R 訊號 

 
 
 
 
 
 
 



第四章 實驗結果與討論 

42 

 
 

0 100 200 300 400 500 600

Δ
R

/R
 (×

10
-5
)

  
Time Delay (ps)

340 K
380 K
400 K
420 K
460 K
500 K
530 K
560 K
600 K
620 K
630 K
640 K
650 K
660 K
680 K
700 K

2.5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

圖 4-13(b)  BFO(001)薄膜 340 K 到 700 K 的ΔR/R 訊號 

 
 
 
 
 
 
 
 
 
 
 
 
 

圖 4-14  BFO(001)薄膜不同波長的折射率(n) 和 extinction coefficient (k) 
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圖 4-15  振盪訊號傅利葉轉換後的振幅對溫度關係圖 

     

從上面結果得知在溫度超過 420 K 之後振盪幾乎消失，將變溫過的

BiFeO3薄膜拿去量測原子力顯微鏡，比較加溫前後的薄膜表面變化，見圖

4-15 和圖 4-16，發現加熱過後的 BiFeO3薄膜表面平整度較差，故我們推測

是膜面平整度變差，使得同調聲子不易產生而造成振盪消失。  
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RMS 1.08nm  

圖 4-16 BFO(001)薄膜升溫前的原子力顯微鏡圖形 

 
 
 

  
 
 
 
 
 
 
 
 
 
 
 RMS 1.93nm 

圖 4-17 BFO(001)薄膜升溫後的原子力顯微鏡圖形 
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圖 4-18  振盪週期對溫度關係圖 
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圖 4-19  由振盪推得 BFO(001)薄膜的聲速對溫度關係圖 

 

由上面結果發現聲速在140 K時呈現出局部的最大值，此溫度是BiFeO3

的一個自旋再排列的相轉變溫度。而目前沒有找尋到有相關的文獻討論

BiFeO3的聲速，所以無法比較。自旋再排列的機制也鮮少有人討論，這部

分還需要更進一部的研究與理論來解釋。 
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第五章  總結與未來工作 

5-1 總結 

  綜合以上章節，我們利用超快激發－探測系統量測了 BiFeO3薄

膜樣品，觀察到量測訊號有明顯的振盪行為，透過不同的實驗來了解

造成振盪的機制，在此將前面章節的結果與討論做總結： 

1. 根據實驗結果，振盪週期為二十多皮秒，在外加 0.12 T 磁場下，

振盪週期沒有變化，故振盪機制暫時排除磁振子的可能。 

2. 改變探測光波長與薄膜厚度做一系列量測，振盪週期與探測光波

長成正比而與薄膜厚度無關，因此我們採用「形變脈衝」理論來

解釋形成振盪的原因。 

3. 測量了 BiFeO3薄膜的折射率後，透過「形變脈衝」理論可以推算

出聲速與溫度的關係，可以觀察在相變時其彈性特性的變化。 

 

5-2 未來工作 

1. 在外加磁場的激發－探測實驗中，我們是使用永久磁鐵當磁場

源，因此有最大外加磁場約 0.12 T 的限制。這使我們可能會因為

外加磁場不夠而無法量測到磁振子的行為。在時間解析磁光柯爾

系統完成後，利用其來量測 BiFeO3薄膜對我們了解鉍鐵氧的磁動

力行為有很大的幫助。 
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2. 雖然目前的超快激發－探測系統已可調變探測光波長，但因為雷

射能量的限制，可調變的範圍非常小。目前在架設以白光為探測

光的激發－探測系統可以解決這個問題，探測光波長的變化量增

加可以提高數據的可信度。 
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