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摘要 

 

我們研究分子接面的傳輸性質與熱電效應。以第一原理計算的方式，研究苯

環胺基取代以及硝基取代兩種系統的電子輸運性質與熱電效應。我們藉著源漏電

壓與閘極偏壓去調控其狀態密度，進而影響電子的輸運性質與熱電效應。我們發

現有著不同官能基取代的苯環分子，其電子輸運性質與熱電效應的表現也不盡相

同。官能基的取代可增加或減少 -orbital 的電子，導致導電性產生變化。胺基取

代後的苯環分子接面會使 -orbital 的電子減少，導致導電率下降。反之，硝基取

代後的苯環分子接面會提供電子，在費米面附近產生新的能態，導致導電率上升。

當我們觀察電子輸運性質與熱電效應時，因為相同原因，硝基系統易受源漏電壓

與閘極偏壓的影響，其可調性較胺基系統為佳。 
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Abstract 

We investigate the electron transport and thermoelectric properties in 

amino-substituted (-NH2) and nitro-substituted (-NO) 1,4-benzenedithiolates  

molecular junctions by using first-principles approaches. We compare the density of 

states (DOSs) in the above systems by applying the source-drain biases and the gate 

voltages, which provide a means to control the electron transport and the thermoelectric 

properties. We find that the functional substitutions of 1,4-benzenedithiolates may 

donate or retrieve electrons from the  -orbital, and thus have influence on the 

conductance of molecular junctions. The amino-substituted 1,4-benzenedithiolates 

molecular junctions withdraw electrons from -orbital, and suppresses the conductance. 

The nitro-substituted 1,4-benzenedithiolates  molecular junctions donate electrons to 

 -orbital and create states closer to the current-carrying window such that the 

conductance is enhanced. Consequently, the I-V characteristics and the Seebeck 

coefficients in NO-substituted 1,4-benzenedithiolates molecular junctions display richer 

features due to theses  -donating states. 
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Chapter 1  Introduction 

 

Building electronic circuits from molecules is an inspiring idea
1-4

. The system of 

metal-molecule-metal tunnel junctions has drawn much attention from theoretical, 

experimental, and technological studies. Much attention has been devoted to investigate 

the various transport properties that might be applicable in developing new forms of 

electronic and energy-conversion devices, such as electron transfer
5,6

, shot noise
7
, heat 

transport
8,9

, negative differential resistance
10

, and gate controlled effects
11

. It is 

well-known that these electron transport and thermoelectric characteristics are 

influenced by the intrinsic properties of the molecules, including their lengths, 

conformations, and the density of states. In the followings, I will briefly introduce 

several recent investigations on this subject. 

 

1-1 Theoretical and Experimental Researches 

M. Di Ventra and N. D. Lang have reported the first-principles calculations of the 

current-voltage characteristics in a 1,4-benzenedithiolates molecular junction
11,15

. They 

find that the shape of the I-V curve is largely determined by the electronic structure of 

the molecule, while the presence of single atoms at the molecule-electrode interface 

play a key role in determining the absolute value of the current (Fig.1). The results show 

that such simulations would be useful for the design of future microelectronic devices 

for which the Boltzmann-equation approach is no longer applicable. 

Moreover, Chao-Cheng Kaun, Brian Larade, and Hong Guo calculated charge 

transport properties of molecular wires from first principles
16

. The wires are made of 

oligophenylene molecules of three different lengths, in contact with atomic scale Au 

electrodes. (Fig. 2) Most surprising is the quantitative consistency between their theory 

and the experimental data on the exponential increase of resistance for longer wires. 
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Fig. 1.The results are that the groups of M. Di Ventra and N. D. Lang varied the source-drain bias and the 

gate voltage to obtain the I-V characteristics.[ Phys. Rev. Lett. 84, 5 (2000)] 

 

Fig. 2. I-V characteristics for planar molecules of I–III.[ Phys. Rev. B 67, 121411(2003)] 

J. Taylor and M. Brandbyge have considered the 1,4-benzenedithiolates system. 

They presented state of the art calculations of the electron transport through 

1,4-benzenedithiolates coupled to Au(1,1,1) surfaces using the code TRANSIESTA. The 

method is based on density functional theory (DFT) and determines the self-consistent 

electronic structure of a nanostructure coupled to 3-dimensional electrodes with 

different electrochemical potentials, using a full atomistic description of both the 

electrodes and the nanostructure
17

. Their result is as shown in Fig.3. 
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Fig. 3 The molecular junction of 1,4-benzenedithiolates system as the function of bias (steps of 0.1 V). [C. 

M. Science 27, 151(2003)] 

 

Simultaneously, J. Taylor and M. Brandbyge also investigated the transport 

properties in the mono layers of Tour wires functionalized with different side groups
18

. 

(Fig. 4) They found that functionalization of TW’s has a stronger effect on the 

energetics of the monolayers than on the orbitals responsible for current transport, and a 

better understanding of the intermolecular interactions in such monolayers could 

hopefully be exploited in order to design molecular electronic devices with specific 

properties. 

 

Fig. 4.(Color online) Geometry of monolayers A–C connected with two Au (111) surfaces. Color codes: 

C (dark gray or green), H (white), O (black or red), N (black or blue), S (light gray or yellow), and Au 

(light gray or gold). And I-Vb characteristics for monolayers A, B, and C. [Phys. Rev. B 68, 

121101(2003)] 

 

Lately, Mowbray, Jones, and Thygesen also have applied density functional theory 

(DFT) to analyze the influence of five classes of functional groups, as exemplified by 

NO2, OCH3, CH3, CCl3, and I, on the transport properties of a 1,4-benzenedithiolate 
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(BDT) and 1,4-benzenediamine (BDA) molecular junction sandwiched between gold 

electrodes
19

. They have found that functional substitutions have a weak influence on a 

molecule’s conductance (see Table I), and the reason for the weak influence is that 

charge neutrality pins the HOMO/LUMO molecular levels, making it difficult to shift 

them relative to EF. 

 

Table I. Conductance G of BDT and BDA species between a gold (111) surface and tip. 

[J. Chem. Phys. 128, 111103 (2008)] 

In contrast, Many scientists also began measuring the transport properties on 

experiments. Lortscher, Weber, and Riel 

presented a statistical approach that combines 

comprehensive current-voltage data 

acquisition during the controlled manipulation 

of a molecular junction with subsequent 

statistical analysis
20

. (Fig. 5) 

 

 

 

Fig. 5. Schematics of the junction with corresponding 

I-V curves (experimental data): I-V and GDiff -V 

characteristics of BDT measured at (a) 250 K and (b) 50 

K. The gray area in (a) shows the envelope of all curves 

measured. [Phys. Rev. Lett. 98, 176807 (2007)] 

 

 

The groups of Venkataraman, they observed the electronics and chemistry by 

varying single-molecule Junction conductance using chemical substituents. They still 

measure the low bias conductance of a series of substituted benzene diamine molecules 
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while breaking a gold point contact in a solution of the molecules
21

. Table II is their 

result. They have observed that the nature of molecular junction can be changed by 

different functional substitutions in the bridging molecule.  

Table II. List of the Molecules Studied Showing the Number and Type of Substituents, 

Measured Conductance Histogram Peak Position, Calculated IP, and Calculated 

Relative Conductance 
a

 [Nano Lett. 7, 502(2007)]. 

 

In this study, we have investigated the effects of function substitutions in the 

1,4-benzenedithiolates molecular junctions on the I-V characteristics and the Seebeck 

coefficients with external biases and gate voltages
12,13,14

.  

Thermoelectric effects were observed long time ago. The macroscopic and 

microscopic models have been well developed and have been able to successfully 

explain the thermoelectric properties in the bulk materials. In the past few decades, 

thermoelectricity has gained renewal interests due to the progress in growing micro and 

nano structures, such as quantum well, super lattice, and quantum dot. Small structure 

can significantly alter the features of density of states by changing the dimensionality. 

Thus, it leads to novel thermoelectric properties beyond the bulk materials. The 

efficiency of energy conversion could be enhanced due to the enhancement of the 

Seebeck coefficient by small structures in materials.  

Although extensive researches have been made on electron transport in the 

nanoscale junctions, the thermoelectricity in molecular junctions has never been 

measured until very recent. In 2007, Prof. Majumdar’s
22

 group at UC, Berkeley has 

measured the Seebeck coefficients in a single-molecule junction. These experiments 

open a new era to study the thermoelectric effects at atomic level and demonstrated the 

capability to fabricate the thermoelectric molecular devices.  

Majumdar’s experimental setup is shown schematically in Fig. 6. 
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Fig. 6. Schematic description of the experimental set up 

based on an STM break junction. Molecules of BDT, 

DBDT, or TBDT are trapped between the Au STM tip kept 

at ambient temperature and a heated Au substrate kept at 

temperature ∆T above the ambient. When the tip 

approaches the substrate, a voltage bias is applied and the 

current is monitored to estimate the conductance. When the 

conductance reaches a threshold of 0.1 G0, the voltage bias 

and the current amplifier are disconnected. A voltage 

amplifier is then used to measure the induced 

thermoelectric voltage, ∆V, and the tip is gradually pulled 

away from the substrate. 

 

 

   The results they have obtained are: (i) the Seebeck coefficients is independent of the 

number of molecules as shown in Fig. 7; (ii) the length dependence of molecular 

junction on the Seebeck coefficients is shown in Fig. 8; and (iii) the Seebeck 

coefficients can reveal more detailed information about the electronic structures of the 

molecule sandwiched between the nanojunctions beyond what the conductance 

measurements can provide as shown in Fig. 9. 

 

Fig. 7.(A) A plot of the thermoelectric voltage 

measured as a function of the tip-sample distance 

when a temperature differential ∆T= 20 K is applied 

(Au tip at ambient and substrate at ambient + 20 K). 

The blue curve is obtained when a Au-BDT-Au 

junction is broken. The red curve shows a control 

experiment performed on a clean gold substrate. (B) 

Typical thermoelectric voltage traces for tip-substrate 

temperature differentials of 0, 10, 20, and 30 K for 

Au-BDT-Au junctions. 

 

In Fig. 7, blue curve, we observed a constant thermoelectric voltage of about ∆V= 

-200 μV, which lasted until all of the molecules trapped in the junction broken away, 

suggesting that the Seebeck coefficient is independent of the number of molecules. 
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Fig. 8.Plot of measured junction Seebeck coefficient as a function of molecular length for BDT, DBDT, 

and TBDT. 

 

Fig. 8 shows a weak linear dependence of the thermopower on the lengths of 

molecules sandwiched in the junctions. The Seebeck coefficients increase as the  

lengths of molecules increase. The Seebeck coefficient in Au-BDT-Au obtained from 

experiments is around +8.7 2.1 μV/K, which depends on the slope of DOSs as shown 

in Fig. 9(B). 

   The conductance in the Landauer formalism can be related to the transmission 

function at FE  as 

2

0

2
( ) ( ) ,

F

F

molecule E E

E E

e
G E E G

h
 





                                     (1.1) 

Fig. 9. Relating the measured Seebeck coefficient of Au-BDT-Au 

junction to the position of Fermi level. (A) theoretical prediction 

of the transmission function of a Au-BDT-Au junction plotted as a 

function of the relative position of the Fermi level of the Au 

electrodes with respect to the HOMO and LUMO levels. (B) The 

predicted Seebeck coefficient of a Au-BDT-Au junction as a 

function of the relative position of the Fermi level with respect to 

the HOMO and LUMO levels. When the measured value of 

SAu-BDT-Au = +8.7 2.1 μV/K (blue band) is shown, it is clear that 

the Fermi level is 1.2 eV above the HOMO level. At this energy 

level, the transmission function is ( ) 0.01E . 
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   Measurements of the Seebeck coefficient in nanojunctions can provide insight into 

the electronic structure of the heterojunction, but the results also bear on an as-yet 

unexplored field of thermoelectric energy conversion based on molecules. The 

efficiency in thermoelectric device can be optimized if resonant tunneling occurs 

through an energy level between the left and right Fermi levels. Metal-molecule-metal 

heterojunctions are ideal in this regard because they (i) the overwhelming joule heating 

may be absent for the bias smaller than the threshold voltage, where no heating is 

possible; (ii) Diversified atomic-sized junctions may be achieved by manipulating the 

species of nano-structured objects and the contact region. Such manipulations may lead 

to a significant change in the density of states, consequently varying the the Seebeck 

coefficients of nanojunctions. A full exploration of all the possibilities in such an 

unknown system may lead to observations of practical thermoelectric devices at atomic 

level. 

 

 

 

 

 

1-2 Our Systems 

In this work, we model two systems of molecular junctions: the amino-substituted 

(-NH2) and nitro-substituted (-NO) 1,4-benzenedithiolates sandwich between two gold 

electrodes. 

At first, we optimize a 1,4-benzenedithiolates molecule using the program, 

Gaussian, with the method of Hartree-Fock theory. We choose the basis set 3-21G. The 

optimized 1,4-benzenedithiolates molecule are taken out to reconstruct the 

amino-substituted (-NH2) and nitro-substituted (-NO) 1,4-benzenedithiolates molecule 

and optimize the structure of -NH2 and -NO 1,4-benzenedithiolates again. These 

relaxed molecules are put into the designed molecular junctions as shown in Fig. 10.  
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Fig. 10. The schemes of the three terminal junctions used in the present study. The left panel is the -NH2 

substituted 1,4-benzenedithiolates molecular junction and the right panel is the -NO substituted 

1,4-benzenedithiolates molecular junction. 

 

 

 

The benzene is a stable and symmetrical molecule, and it is also a fundamental 

module in the chemistry. The interesting thing is that we can make the different 

chemical substituents, and the molecular feature can be changed easily. Charge 

distributions determining the electrostatic potential in monosubstituted benzenes are 

investigated
23

. So we can use the characteristic to look for some applicable materials. 

We investigate the dependence of conductance on the external biases and gate field 

in the two nanoscale junction. In the two terminal systems, the Fermi level in the 

right/left electrodes is determined by filling the conduction band with the valence 

electrons in the bulk metal electrode described by jellium model (Rs=3). The stationary 

scattering wave functions of the whole system are calculated by solving the 

Lippmann–Schwinger equation iteratively until self-consistency is obtained. Finally, we 

calculate the density of stat and wave functions to simulate the I-V quality. 

 After studying the electronic transport properties, we also propose using the 

external biases and gate field as means to modulate the Seebeck coefficients in our 

molecular junctions. The Seebeck coefficients are relevant not only to the magnitude 

but also to the slope of electronic transmission functions near the Fermi levels in the 

metal electrodes. Therefore, observing the probability of transmission makes us 

understand the trend of Seebeck coefficients.  
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Chapter 2  Theories 

We have investigated the electron transport properties and the thermoelectric 

efficiency in the amino-substituted (-NH2) and nitro-substituted (-NO) 

1,4-benzenedithiolates molecular junctions. Our calculations are based on ab initio 

self-consistent density functional theory. We have computed the I-V characteristics by 

using the N. D. Lang’s methods
24

. I will briefly introduce the density functional theory 

in section 2-1 and the method of appllying DFT to compute the electric current in 

section 2-2 and the Seebeck coefficient S in section 2-3. 

2-1 Density Functional Theory 

 The fundamental physical quantities in the ground state can be uniquely described 

from the electron density ( )n r  in many-particle system. All ground state properties of 

the many electron system are functional of ( )n r . In 1964 Hohenberg and Kohn prove 

that the ground state electron density uniquely determines the external potential. Kohn 

and Sham extended the theorem by separating the total energy into the kinetic energy of 

electron, the potential energy of attraction between electrons and nuclei, the coulomb 

potential energy of repulsion, and the exchange-correlation energy between electrons. 

 

2-1-1 Hohenberg and Kohn theorem 

The external potential is uniquely determined by the ground state electron density. 

The above theorem can be proved as follows： We assume that two different potential 

1V
 
and 2V  have the same ( )n r . Suppose 1 2 constantV V   and 1 2    where 

1  is the ground state wave function. The Schrodinger equation can be expressed as 

1 1 1 1H E    

2 2 2 2 ,H E    
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where 1E  and 2E  are eigen-energies of 1H  and 2H , respectively. With different 

external potentials, the Hamiltonian can be expressed as 

1 2 1 2.H H V V    

Because 1 1 1 1E H    is the ground energy, we can obtain 

1 1 1 2 1 2H H      

3

1 2 2 2 2 1 2 2 2 1 2( ) ( ),E H V V E d r V V n r              (2.1) 

and 

3

2 1 1 1 1 2 1 1 1 2 1( ) ( ).E H V V E d r V V n r              (2.2) 

Combine with Eq.(2.1) and Eq.(2.2), we obtain 

3

1 2 1 2 1 2( ) ( ) ,E E d r V V n r E E              
(2.3) 

which leads to a contradiction and means that the assumptions are wrong. Thus, two 

different external potentials cannot correspond to the same non-degenerate ground state 

density. The total energy can be expressed as a functional of ground state charge density 

( )n r  in many-electron system. 

[ ].tot TE E n  

 If the charge density ( )n r  is determined, all the ground state properties of the 

many-electron system will be determined. 
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2-1-2 Kohn-Sham equation 

From the Hohenberg and Kohn theorem, it is known that the ground state 

properties of many-particle system can be determined by the electron density ( )n r . The 

charge density in the ground state can be solved iteratively until the self-consistent is 

achieved.  

The ground state energy of a homogeneous interacting electron gas can be written 

as 

'

3 3 3 '

'

1 ( ) ( )
[ ] [ ] ( ) ( ) [ ].

2
T ext xc

n r n r
E n T n V r n r d r d rd r E n

r r
   


      (2.4) 

 In the right-hand side, the first term is the kinetic energy as a functional of 

non-interacting electrons with density ( )n r ; the second term is external potential 

energy relative to electrons; the third term is Coulomb energy between electrons; and 

the fourth term is the exchange-correlation energy functional of an interacting system 

with density ( )n r . By the variational principle with the total electron 
3( )N n r d r   

for the ground state, one has 

3

'

[ ] ( )
( ) ( ) ,ext xc

T n n r
V r d r V r

n r r





   


         (2.5) 

where 
[ ]

[ ] xc
xc

E n
V r

n




  ,  

3

'

( )
H

n r
V d r

r r



  , and   is Lagrange parameter. 

 In the absence of the exchange-correlation potential, it goes back to Hartree 

approximation. Comparing Eq.(2.5), it is regarded as an effective potential of the 

single-electron wave equation which is called Kohn-Sham Equation. 
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2
2 ( ) ( ) ( ) ( ) ( ),

2
ext H xc i i iV r V r V r r r

m
 

 
      
 

     (2.6) 

[ ]xcE n  is the exchange and correlation energy of an interacting system with 

density ( )n r . 

(A) Pseudopotential Method 

 The early calculations of first-principles pseudopotential are made within the 

scheme of orthogonalized-plane-wave (OPW) atomic calculation. The wave functions in 

this way exhibit the correct shape outside the core region; however, they differ from the 

real wave functions by a normalization factor. Hamann, Schluter and Chiang (HSC) 

propose a model pseudopotential to solve the problems that have four properties：(1) 

real and pseudo valence eigenvalues agree for a chosen atomic configuration; (2) real 

and pseudo wave functions agree beyond a chosen core radius cr ; (3) the integrals from 

0 to r of the real and pseudo charge densities agree for cr r  for each valence state, 

this is norm conservation condition; (4) The logarithmic derivatives of the real and 

pseudo wave function and their first energy derivates agree for cr r . 

 Because the lattice has the periodic characteristic, the wave functions must satisfy 

the Bloch theorem. It can be written as expansion of the following form: 

( )1
( ) .nk i k G r

nk G

G

r e   


            (2.7) 

 In the pseudopotential method, the pseudopotential psV  is constructed on the 

valence electrons and the core electrons have been transformed away. The 

pseudo-Hamiltonian of the valence electrons can be expressed as 

2

,
2

ps H xc

p
H V V V

m
               (2.8) 

where 
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( ).ps ion j

R

V V r r R    

 ( )ionV r  is non-local potential and it is relation to the angular momentum l . The 

angular momentums of the electron in the s, p and d orbitals are 0, 1 and 2, respectively. 

The potential can be expressed as 

2

0

( ) ( ) .ion l l

i

V r V r P



             

(2.9) 

 
lP  is the projection operator of the angular momentum . The Hartree potential 

satisfies the Poisson equation and it can be written as 

2 ( ) 8 ( ).HV r n r  
            

(2.10) 

 ( )n r  is the density of the pseudo valence electrons and the xcV  can be regarded 

as functional of ( )n r  from LDA. We define the elements of the matrix S that 

' '

'

, ,
.k

G G G G
S k G k G    

           
(2.11) 

 The pseudopotentials of the ion ionV  can be separated into local and non-local 

potential ( loc nl

ion ion ionV V V  ). The HV  and xcV  are functional of ( )n r  that are also 

local potential. The Hamiltonian can be rewritten as 

loc nlH T V V     
2

,
2

p
T

m
           (2.12) 

'

2'

,
,

G G
k G T k G k G               (2.13) 

' '

( ),loc lock G V k G V G G              (2.14) 
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' '

( , ).nl nlk G V k G V k G k G              (2.15) 

(B) Pseudopotential 

 Pseudopotentials are introduced to simplify electronic structure calculations by 

eliminating the need to atomic core states and the strong potentials responsible for 

binding them. 

 To construct atomic pseudopotential lm  at a given energy which are identical to 

atomic eigenfunctions. The lm
 
are continued inside cr  with the condition that 

l

lm r   for 0r   and with the norm-conserving condition, one has 

2 3 2 3

0 0
,

c cr r

lm lmd r d r                    (2.16) 

 The pseudopotentials are obtained by inverting the Schrodinger equation 

2

2

( 1)
( ) [ ] / .l r l l

l l
V r E

r
 


   

            
(2.17) 

The complete pseudopotential is then written as 

( ) ( ) ( ) ,PS loc non loc lm l lm

lm

V V V V r Y Y                (2.18) 

where 0l   for cr r  and locV  is the local potential and is an arbitrary function 

for cr r . The semilocal form (i.e. nonlocal in angular coordinates but local in radial 

coordinate) of the Hamman-Schluter-Chiang (HSC) pseudopotential which used in an 

expansion of N plane waves requires the evaluation of 
( 1)

2

N N 
 integral for each l . 

The nonlocal form can be introduced, 

1( ) ( ) ( ) ( ) ,ps loc lm l l lm l

lm

V V r r B r r                (2.19) 

where 
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.l lm l lmB     

 Vanderbilt generalized Eq.(2.19) with ( )i r  and ( )i r  where the i  subsumes 

the ,l m  and also includes two or more energies at which the ( )lm r  are evaluated. 

This result in lB  becoming a matrix 

,ij i j jB     

which is not Hermitian and the generalized norm-conservation requirement, 

3 * * 3

0 0
( ) ( ) ( ) ( ) ( ) 0,

c cr r

ij ij i j i jQ Q r d r r r r r d r                (2.20) 

and Vanderbilt defines 

1( ) ,i ji j j

j

B  
             

(2.21) 

which is substituted into the Eq.(2.24) and one can obtain the pseudopotential 

,

.ps loc i ij j

i j

V V B  
            

(2.22) 

In general, it is difficult to apply Eq.(2.20), results in lm  whose plane-wave 

expansions are extremely slowly converging. To avoid applying Eq.(2.20), Chou 

constructed norm-conserving nlm  at two energies nE  and inverted the Schrodinger 

equation to obtain their nl  which she averaged to obtain l , yielding 

1( ) ( ) ( ) ( ) ( ) ,l lrlm rlmps loc nl

nlm

V V r r r A r r           (2.23) 

where 

.nnlm nlmnlA     
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 The nlA  is Hermitian and the ( )nlm r  are solutions of the pseudo Schrodinger 

equation at nE  with nl  replaced by l . 

(C) Local Density Functional Approximation 

 The exchange-correlation energy is relation to the electronic distribution in the 

system. It is difficult to give an exact expression for xcE  because of its complexity. In 

order to simplify this complexity, Kohn and Sham suggested using the homogeneous 

electron gas system to approximate the energy contribution from [ ]xcE n  in 1965. If the 

electronic density varies slowly, the exchange-correlation functional can be written as 

3[ ] [ ] ( ) ,xc xcE n n n r d r              
(2.24) 

where the exchange-correlation potential can be expressed as 

[ ]
( ) { ( )},xc

xc xc

E n d
V r n n

n dn





 

          
(2.25) 

where [ ]xc n  is the exchange-correlation energy density of the homogeneous electron 

gas. ( )xcV n  is the exchange and correlation contribution to the chemical potential of a 

homogeneous gas of density n . 

 The exchange-correlation energy density can be separated into [( )]x n  and 

[( )]c n . [( )]x n  is the exchange energy of a homogeneous electron gas and [( )]c n  is 

the correlation energy of a homogenous electron gas. 

 Within Hartree-Fock approximation the exchange energy density can be obtained 

by solving the Schrodinger equation of the non-interacting homogenous electron gas. 

0.458
( )x

s

r
r




  sr  is Wigner-Seitz radius, 
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where 
1

3 1 3
4 4

( ) ( ) ( ) 0.458( ( )) .
3 3

s xn r r r n r            (2.26) 

From the Eq.(2.26), we can know that the exchange energy density ( )x r  is proportion 

to the electron density ( )n r  to the power of one third. 

 An approximation of the correlation energy is based on Quantum Monte Carlo 

calculations by Ceperley and Alder. The wave function for electrons in a finite volume 

subject to periodic boundary conditions and extrapolated the energy per electron to 

infinite volume. The Ceperley’s parameterization of the correlation energy for 1sr   is  

1 2

0.1423
( ) ,

1 1 1.0529 0.3334

s
c

s s s s

r
r

r r r r


 


 

   
      (2.27) 

the high-density form of c  ( 1sr  ) is 

( ) 0.0311ln 0.048 0.002 ln 0.0116c s s s sr r r r r      

 Substituting Eq.(2.26) into Eq.(2.25), the relation between exchange-correlation 

potential and electronic density can be expressed as 

[1 ] .
3

s
xc xc

s

r d
V

dr
               (2.28) 

 In many-electron system, we give the initial data of the electronic density to 

calculate the potential each term, and get the effective potential effV  to solve the 

solution of the Kohn-Sham equation. The wave function is obtained by Kohn-Sham 

equation and the new electronic density is calculated from the wave function. If the 

difference in value between the new electronic density and the initial electronic density 

is too big, they will be mixed to generate another electronic density, and repeat the 

above procedures until the difference in value between the new density and last density 

is very small. The above procedures are called self-consistent procedure. 
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The convergence of the flow chart： 

 

2-2 Current of atomic wires24 

We start with a brief introduction of how to calculate the electric current carried by 

the electron transport in the DFT framework. We picture a nanoscale junction as formed 

by two semi-infinite electrodes held a fixed distance apart, with a nano-structured object 

bridging the gap between them. The full Hamiltonian of the system is H = H0 +V, 

wherein H0 is the Hamiltonian due to the bare electrodes, and V is the scattering 

potential of the nano-structured object. The nano-structured object could be a single 

atom, a chain of atoms, a molecule, or any system with nanoscale dimension. The 

effective single-particle wave functions of the whole system in the continuum states are 

calculated in scattering approach by solving the Lippmann-Schwinger equation with 

exchange and correlation energy included within the local density approximation. Two 

planar metallic electrodes, represented as a uniform-background (jellium) model. 

 The applied bias is given by FR FL
BV

e

 
 , where L(R) is the chemical potential 

deep in the left (right) electrode. The single-particle wave functions and self-consistent 

density distribution are obtained by solving the coupled Poisson equation and 

Shrödinger equation for the pair of bare metallic electrodes in the presence of the bias 

voltage. Next, corresponding to each of these wave functions, a Lippmann-Schwinger 

equation involving a Green’s function for the biased bimetallic junction is solved to 

obtain an effective single-particle wave function for the total system, consisting of the 

two electrodes plus a group of atoms. From these wave functions, the charge density for 

the total system is obtained, and the problem is solved self-consistently using a 

modified iterative procedure. Atomic units are used here, with 1e m   . 
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2-2-1 Bimetal junction 

 

Fig. 11. The schematic of bimetal junction with external source-drain bias. 

 

Two bulk electrodes are modeled as two semi-infinite bulk metals described by 

Jellium model. The wavefunction of the bare electrodes can be obtained by solving the 

Shrödinger equation and Poisson equation until the self consistency is achieved. 

Electrons incident from the left hand side can be partial transmitted and partially 

reflected. The unperturbed wavefunctions ( )M

EK r 
 of the electrons satisfy the 

boundary condition as shown in Eq. (2.30), i.e., 

( ) ( ),
i K RM

EK EKr e u z                                              (2.29) 

where 

1/2

3/2

,1
( ) ,

(2 ) ,

R R

L

ik z ik z

EK R ik z

e Re z
u z k

Te z





 

  
 


                   (2.30) 

We first note that ( )M r , the superscripts M refer to the pair of bare biased metal 

electrodes, has the form ( )
i K R

EKe u z , where R is the coordinate parallel to the surfaces 

and z the coordinate normal to them. Deep in the positively biased electrode (which we 
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will take henceforth to be the left electrode), ( )EKu z  has the form of a linear 

combination of left-moving and right-moving plane waves with wave vector Lk . Here, 

the energies of electrons are conservative as described by  

2
21 1

( )
2 2

M

L effk E K U    , where E is the energy eigenvalue in the single-particle 

equations for the pair of biased electrodes and ( )M

effU z  is the total effective potential 

(electrostatic plus exchange correlation).  

Next we will specify the character of ( )EKu z  by an additional subscript : 

( )EKu z . For propagating states, we will replace either by “+,” which will correspond 

to a wave incident from the left (together with its reflected and transmitted parts) or by 

“ ,” which will correspond to a wave incident from the right and thus Rk  is as defined 

as 
2

21 1
( )

2 2

M

R effk E K U    . The coefficient has been chosen to accord with the 

continuum normalization which we impose on the wave functions M , specified by  

*
3

' ' ( ) ( ) ( ') ( ' )M M

E K EKd r r r E E K K        
  .                 (2.31) 

 

2-2-2 Metal-molecule-metal junction 

 

We investigate the electron transport and thermoelectricity of molecules wire and 

atomic wires sandwiched between two bulk electrodes with finite external source-drain 

bias and finite temperature difference as shown in Fig. 11, where the bias is given by 

FR FL
SDV

e

 
 . 

The continuum wave functions 
MA , the superscripts MA refer to the complete 
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system consisting of the metal electrodes and the group of atoms between them, are 

solved in scattering approaches. The continuum wave functions MA  are solved by the 

Lippmann-Schwinger equation, where M  will have the same labeling ( , , )E K  , 

even though K  no longer refers to a conserved quantity. These solutions will also 

have the same normalization as the M , a fact that facilitates the calculation of the 

electron density distribution and the current. For FL FRE E E  , where FLE  is the 

Fermi level in the left electrode and FR FL BE E eV   is the Fermi level in the right 

electrode (bias BV  taken positive), we occupy only states corresponding to a wave 

incident from the right, i.e., only MA

EK 
 and not MA

EK 
. 

 

 

Fig. 12. The installed system on the source-drain bias and gate voltage in the -NH2  and –NO 

1,4-benzenedithiolates molecular junction: the atomic size conductors where both chemical potential and 

temperature gradients are present. 
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The Hamilton of complete system can be put into Lippmann-Schwinger form : 

3 3( ) ( ) ' " ( , ') ( ', ") ( "),MA M M MAr r d r d r G r r V r r r                          (2.32) 

this equation embodies the motion that electrons in states of the electrodes impinge on 

and are scattered elastically by the potential ( , ')V r r , which describes the difference 

in potential between the complete system and the bare electrodes. It can be written  

3 ( ")
( , ') ( , ') ( ( )) ( ( )) " ( '),

"

MA M

ps xc xc

n r
V r r U r r U n r U n r d r r r

r r


 

 
     

 
      (2.33) 

the term ( , ')psU r r  is the sum of the (nonlocal) pseudopotentials representing the 

atomic cores, ( ( ))xcU n r  is the exchange-correlation potential, ( )Mn r is the electron 

number density for the pair of biased metal electrodes, ( )MAn r  is the density for the 

complete system, and ( ) ( ) ( )MA Mn r n r n r   . We will use the atomic pseudopotentials 

introduced by Hamann
25

.  

 

2-1-3 Current in nanojunction 

 

   First, we calculate the current with left/right electrode temperature at 0 K, 

Fermi-Dirac distribution equal to 1. The electron number density is given by the sum of 

squares of the occupied states MA

EK  , with a factor 2 included for spin degeneracy (we 

take the system to be unpolarized) the electric current density in the full system is given 

by  
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 2 *( ) 2 Im [ ( )] ( ) ,
FR

FL

E

MA MA MA

EK EK

E

j r dE d K r r                              (2.34) 

where the integral over K  is restricted by 2 ( )M

effK E U     . Now let Mj  be 

the current density for the pair of biased electrodes in the absence of the group of atoms. 

Then the quantity of interest to us is  

2 ,MA MI d Rz j j                                                   (2.35) 

which is independent of z since our system has no current sources or sinks. Here z  is 

the unit vector point to the right and perpendicular to the surfaces of the electrodes. If 

we write MA M    , then 

2 2 *

* *

2 Im [ ( )] ( )

( ) ( ) ( ) ( ) ,

FR

FL

E

M

EK EK

E

M

EK EK EK EK

d
I dE d K d R r r

dz

d d
r r r r

dz dz

 

   

 

   


  




  



  
                       (2.36) 

where the integration range for  is the same as in Eq. (2.34). 

   Next, we calculate the current trough the tunnel junction where the temperatures and 

chemical potentials in source and drain electrodes can be different, Fermi-Dirac 

distribution not equal to 1.  

( ),L LL R RR

E EE E EEI i dE dR dK f I f I                                        (2.37) 

where 

* *

' '( , ) ( , ) ( , ) ( , ),ij i i i i

EE E E E EI r K r K r K r K                               (2.38) 
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where , ,i j L R .  
( ) ( , )L R

E r K  is the single-particle wave function incident from the 

left (right) electrode with energy E and component of the momentum K  parallel to the 

electrode surface
11,26

, and dR represents an element of the electrode surface. We assume 

that the left/right electrode serves as the electron and thermal reservoir with the electron 

population described by the Fermi-Dirac distribution function 

( )

( ) ( )

( ) ( )

1
( , ) ,

exp[( ) / ] 1

L R

E L R L R

L R B L R

f T
E k T





 

                          (2.39) 

where 
( )L R  and 

( )L RT  are the chemical potential and the temperature in the left (right) 

electrode, respectively, and Bk  is the Boltzmann constant. For simplicity, we define the 

transmission probability of electron with energy E incident from the left (right) 

electrode as 

( ) ( , )( ) ( , ).L R LL R R

EEE i dR dK I r K                                        (2.40) 

By using the relation ( ) ( ) ( )R LE E E    , a direct consequence of the time-reversal 

symmetry, the current in Eq. (2.37) can be rewritten as 

1
( , , , ) ( , ) ( , ) ( ),R L R

L L R R E R R E L LI T T dE f T f T E    


                       (2.41) 

where the left and right electrode have different chemical potentials given by the bias 

(the source-drain bias is FR FL
SDV

e

 
  ) . We also assume that the left/right 

electrode can be connected to its own heat bath such that LT  can be different from RT .  
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2-3 Seebeck coefficient 

Consider a tunnel junction that may have different temperatures in the source and 

drain electrodes, a small thermoelectric voltage (∆V) in the junctions can be induced by 

an additional temperature difference (∆T) applied in the electrodes. The ratio of the 

thermoelectric voltage to the temperature difference is defined as the Seebeck 

coefficient.  

.
V

S
T





                                                          (2.42) 

When we calculate the self-consistently on density functional theory (DFT) by 

using the second-quantization field-operator method with the effective single-particle 

wave functions, we presented the form of current. 

1
[ ( , ) ( ) ( , ) ( )].R R L L

E R R E L LI dE f T E f T E   


                             (2.43) 

The current is described by the Fermi-Dirac distribution function Eq. (2.44) and the 

transmission function Eq. (2.45). Moreover, the parameters, μL(R) and TL(R), are the 

chemical potential and the temperature in the left (right) electrode, respectively. 

( )

( ) ( )

1
,

exp[( ) / ] 1

L R

E

L R B L R

f
E k T


 

                                    (2.44) 

( ) ( )( ) ( , ),L R LL RR

EEE i dR dK I r K                                        (2.45) 

where * *

' ' '[ ] [ ]ij i j i j

EE E E E EI        and , ,i j L R . 
( ) ( , )L R

E r K  is the 

single-particle wave function incident from the left(right) electrode with energy E and 

component of the momentum K∥ parallel to the electrode surface and dR represents an 

element of the electrode surface. The stationary wave function ( ) ( , )L R

E r K  can be 

calculated by solving the Lippmann-Schwinger equation iteratively to self-consistency. 

The exchange-correlation potential is included in density-functional formalism by using 
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the local-density approximation. Once the single-particle wave functions are calculated 

self-consistently, the transmission function of electron with energy E can be calculated 

using Eq. (2.45). We had completely explained at the section 2-2. 

When the system comes to equilibrium, the electric current generated by an 

additional infinitesimal temperature ∆T across the electrodes is compensated by an 

induced small voltage ∆V across the junction. For simplicity, we assume that the 

additional temperature and the induced voltage are distributed symmetrically in the 

left/right electrodes, that is,  

2 ( , ; , ) ( , ; , ) ( , ; , ).
2 2 2 2

L L R R L L R R L L R R

T T e V e V
I T T I T T I T T     

   
       (2.46) 

We make the differences of extra current from the changed temperatures and voltages be 

zero to control the relation between T and V . The next step, we expand the 

Fermi-Dirac distribution function to the first order in T and V . So we can obtain the 

Eq. (2.47) 

1 1

0 0

1
( , , , ) ,

L R

L R
L R L R L R

K K

T T
S T T

e K K
 



 


                                       (2.47) 

where 

( )
( )

( )( ) ( ).
L R

L R n E
n L R

f
K dE E E

E
 


  

                                    (2.48) 

And ( ) ( ) ( )R LE E E    , a direct consequence of the time reversal symmetry.  

We can simplify the Eq.(2.47) by using the Sommerfeld expansion
27

.  

2 2

( ) ( )

.
3 ( ) ( )

L R

L R

E EB

L R

E E
T T

E Ek
S

e

 

 



   

 

 


 
 


                               (2.49) 

From Eq. (2.49), the Seebeck coefficient relates closely to the transmission function in 

the vicinity of the left and right Fermi levels. 
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In the first step for our analysis, we study the Seebeck coefficient in a 

three-terminal geometry in the linear response regime ( 0.01SDV V and )L R FE   , 

where both electrodes have the same temperatures ( )L RT T T  . In this case, the 

Seebeck coefficient can be simplified as 

( ) ( )
1

.

( )

E
F

E

f
E E E dE

ES
feT

E dE
E








 







                                       (2.50) 

When we consider the case of low-temperature regime, the Seebeck coefficient can 

be also further simplified by using the Sommerfeld expansion as  

2 2 ln ( )
,

3
F

B

E E

k T E
S

e E

 




 


                                           (2.51) 

which implies that the Seebeck coefficient is closely related to the slope of the 

transmission probability at Fermi level. When S>0, the carriers are p type. In this case 

the direction of electric current is the same as the direction of thermal current. When 

S<0, the carriers are n type. In this case, the direction of electric current is opposite to 

the direction of thermal current. The final Eq. (2.51) has been applied to several atomic 

and molecular systems.
27 

The investigation explores the dependence of the Seebeck 

coefficient on the gate voltages, temperatures of the electrodes, and the source-drain 

biases in both the linear and nonlinear response regimes. 
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Chapter 3  Results and Discussions 

We have performed first-principles calculations to investigate the electron 

transport and the thermoelectric properties in the amino-substituted (-NH2) and 

nitro-substituted (-NO) 1,4-benzenedithiolates based on the density functional theory 

(DFT) as described in the previous chapter. In this work, we have applied the 

source-drain biases and the gate voltages to explore I-V characteristics in the 

amino-substituted (-NH2) and the nitro-substituted (-NO) 1,4-benzenedithiolates 

molecular junctions.   

Following the study of electronic transport properties, we proceed a step further to 

investigate the thermoelectric properties in the amino-substituted (-NH2) and the 

nitro-substituted (-NO) 1,4-benzenedithiolates molecular junctions. We perform 

comparative study on the Seebeck coefficient as a function of source-drain biases and 

gate voltages for various temperatures in the amino-substituted and the nitro-substituted 

1,4-benzenedithiolates molecular junctions.  

We find that the functional substitution of 1,4-benzenedithiolates molecular 

junctions may donate or retrieve electrons from the  -orbital, and thus it may have 

influence on the conductance. For example, the amino-substituted 

1,4-benzenedithiolates molecular junctions withdraw electrons from the  -orbital and 

suppresses the conductance. In contrast to -NH2 substituted 1,4-benzenedithiolates 

molecule which retrieve electrons, the nitro-substituted 1,4-benzenedithiolates  

molecular junctions donate electrons to  -orbital and create states closer to the 

current-carrying window such that the conductance is enhanced. Consequently, the I-V 

characteristics and the Seebeck coefficients in -NO substituted 1,4-benzenedithiolates 

molecular junctions display richer features in the I-V characteristics and the Seebeck 

coefficients due to theses  -donating states. 

We will discuss the electron transport and the Seebeck coefficients in section 3-1 

and 3-2, respectively. 
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3-1 Electronic transport of single-molecule junctions 

3-1-1 The effect of finite source-drain biases  

Firstly, we investigate the current (I) and the differential conductance (dI/dVSD) as a 

function of source-drain biases (VSD) for the amino-substituted (-NH2) and the 

nitro-substituted (-NO) 1,4-benzenedithiolates junctions as shown in Fig.13. As shown 

in Fig.14, the density of states is very different according to the electron-retrieving and 

electron-donating natures of the amino-substituted and nitro-substituted systems. 

In the -NH2 substituted system, the withdrawal of electrons does not contribute 

new state around the Fermi levels as shown in the left panel of Fig. 14. The Fermi levels 

remain sitting between the HOMO-LUMO gap.  As a result, the conductance is small 

in the small bias regime with a value around 0.07 G0 ( 01 77 G S ), which is 

comparable with the case without functional substitution ( 0/ 0.12 GSDdI dV  ). The 

functional substitution breaks the symmetry of the molecular junction and leads to 

asymmetric I-V curve. We find two peaks (34.7μS and 22.5μS) in the differential 

conductance at the biases 0.85V and -0.75V, respectively. 

In contrast, the -NO substituted system donates electrons to the  -orbital and 

create new states near the current-carrying energy window, formed between the left and 

the right Fermi levels. Consequently, the differential conductance in the small bias 

regime is greatly enhanced to 0.71 G0 due to more electrons with the energy within the 

current-carrying energy window. As shown in the right panel of Fig. 14, there are more 

electron states created near the current-carrying energy window. As the bias increases, 

these states may gradually enter the current-carrying energy window and cause richer 

features in the I-V characteristics. We observe two peaks (63.8μS and 70.2μS) in the 

differential conductance at the bias 0.05V and 1.0V, respectively. 
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Fig. 13. The current (left axis) and differential conductance (right) as a function of VSD in 

amino-substituted (-NH2) and nitro-substituted (-NO) 1,4-benzenedithiolates junctions. 
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Fig. 14. The density of states for various source-drain biases (VSD=-1.0,-0.4,-0.1, 0.01, 0.1, 0.4, 0.7, and 

1.0) in amino-substituted and nitro-substituted junction. The left Fermi level μL (red lines) is set to be the 

zero of energy, and the right Fermi level μR (blue lines) defines VSD=(μR -μL)/e 

 

The above calculations provide evidence that the resonant tunneling may exist in 

the nitro-substituted benzenedithiolates junction, in contrast to the non-resonant 

tunneling in the amino-substituted system. Our calculations show that the substitutions 

of valence orbital have the influence on the molecular conductance and the I-V 

characteristics. The conductance of withdrawal (-NH2) is lower than the conductance 

of donation (-NO) in the 1,4-benzenedithiolates molecular junctions. 

 

3-1-2 The effect of gate voltages 

As three-terminal field-effect transistor like devices are highly desirable, we also 

investigate source-drain conductance as a function of gate voltage when a small 

source-drain bias is applied. In Fig. 15, we compare the conductance of the -NH2 

substituted and the -NO substituted 1,4-benzenedithiolates molecule junctions. In the 

-NH2 substituted system, the response of the conductance to the gate voltage is mild. 

The small and featureless conductance stems from nonresonant tunneling, realizing that 
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the Fermi levels lie between the HOMO and LUMO gap. However, in the -NO 

substituted system, as the gate voltage varies from -1.18 to 1.18 V, the conductance 

decreases from 1.18 to 0.73 G0.  

To explain why gate voltage can significantly modulate the source-drain 

conductance, we examine the DOSs for the various gate voltages, as shown in the inset 

of Fig. 16. At zero gate voltage, the energies between two Fermi levels open a 

current-carrying window. The -NH2 substitution withdraws electrons from -orbital and 

produces a large HOMO-LUMO gap. Conversely, the -NO substitution donates 

electrons to the  -orbital and create new states around the Fermi levels. When we 

strengthen the resonant tunneling by shifting the position of the state peak toward the 

current-carrying window, we find that the change of donating system is obvious.  

Considering the density of states for an -NH2 substituted 1,4-benzenedithiolates 

molecule junctions as shown in Fig.16, we observe that Fermi levels lie between the 

HOMO-LUMO gap. Thus, the dependence of the conductance on the gate voltage is 

weak. In contrast, we observe new states introduced by the -NO substitution in the  

1,4-benzenedithiolates molecule junction. These states significantly enhance the 

conductance and improve the ability to modulate the conductance by the gate voltage. 

At a gate voltage of −0.57 V, the central peak of state is between the left and right 

Fermi levels, and the conductance reaches a maximum. Conversely, a positive gate 

voltage shifts the position of the state peak away from the current-carrying window, and 

therefore, the source-drain conductance decreases.  

 

 

Fig. 15. The source-drain conductance as a function of gate voltage in three-terminal geometry for 

NH2-substituted and NO-substituted 1,4-benzenedithiolates. 
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Fig. 16. The density of states for NH2-substituted (left) and NO-substituted (right) 1,4-benzenedithiolates 

in different gate-voltages. 
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3-2 Seebeck coefficient of single-molecule junctions 

3-2-1 The effect of finite source-drain biases 

In this subsection, we calculate the Seebeck coefficients as a function of finite 

biases, FR FL
BV

e

 
 . The Seebeck coefficient closely relates to the transmission 

function in the vicinity of the left and right chemical potential. According to Eq.(2.49), 

we have shown that the Seebeck coefficients depend on the magnitude and the slope of 

the transmission function at the left and right Fermi levels. 

As shown in Fig.17 and 18, we plot the Seebeck coefficients and transmission 

functions as a function of biases for -NH2 and -NO systems. To observe these results 

finds several interesting phenomena that the transmission functions are influenced by 

the DOSs between the left and right Fermi levels. Especially, when significant states 

appear around the current-carrying window, the transmission function has significant 

change. The sign and value of Seebeck coefficients are influenced by the transmission 

probability around the Fermi levels. 

However, the functional substitutions of 1,4-benzenedithiolates may donate or 

retrieve electrons from the -orbital, and thus have influence on the transmission 

function of molecular junctions. We explain the Seebeck coefficient of -NH2 and -NO 

systems as shown in Fig.17 and 18 for TL=TR=T by varying the source-drain biases VSD.  

The contribution to the Seebeck coefficient is dominated by the transmission 

function in the vicinity of both the left and right Fermi levels from Eq. (2.49). In the 

-NH2 system, the Seebeck coefficient is (negative; positive; zero) at VSD = (0.4; 1.0; 

1.15) V because the ( ) /
LE

E E





  are around zero, and the ( ) /
RE

E E





  is 

( , , )    0. In the -NO system, the Seebeck coefficient is (negative; zero; negative) at 

VSD = (0.1; 0.5; 1.0) V because ( ) /
LE

E E





  is ( , , )    0 and the ( ) /
RE

E E





  is 

( , , )    0. 

We can obtain some special points that for –NH2 system the Seebeck coefficients 

are close to zero at VSD=0.75V and 1.15V around. For example, at VSD=1.15V the peak 

position of the transmission function is located in the middle of the left and right Fermi 
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levels such that ( ) / ( ) /
L RE E

E E E E
 

 
 

     (from Eq.2.49), so the Seebeck 

coefficients are close to zero. Similarly, for -NO system we find the points such as 

VSD=0.4V and 0.6V around, and their Seebeck coefficients is close to zero. 

 

Fig. 17. The Seebeck coefficient as a function of source-drain biases for the system of NH2-substituted 
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1,4-benzenedithiolates. The other graph expresses the probability of transmission under the distinct 

biases. 

 

Fig. 18. The Seebeck coefficient as a function of source-drain biases for the system of NO-substituted 

1,4-benzenedithiolates. The other graphs expresses the probability of transmission under the distinct 

biases. 
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3-2-2 The effect of finite gate voltages 

Finally, we investigate the Seebeck coefficient as a function of gate voltages at 

small bias regime (VSD=0.01 V, where L R    ). According to Eq.(2.51), we have 

shown that the Seebeck coefficients depend on the magnitude and the slope of the 

transmission function at the Fermi levels as shown in Fig 19 and 20. 

 For the amino-substituted (-NH2) system, the Seebeck coefficients vary in a small 

range when the gate voltage varies from -1.0 to 1.0 V. The influence of gate voltage on 

the Seebeck coefficients is weak as shown in Fig. 19. Although the transmission 

probability (as shown in Fig. 19) is not obviously affected by gate voltage, it can still 

modulate the Seebeck coefficients. We note the probability of transmission for 

VG=-0.4V and VG=1.02V. They have the bigger positive slopes ln ( ) / 0
FE EE E    . 

According to the Eq.19, we obtain the smaller negative Seebeck coefficient.  

 The nitro-substituted system is interesting to compare with the amino-substituted 

system. In contrast to the amino-substituted system, new states appear near the Fermi 

levels in the nitro-substituted (-NO) 1,4-benzenedithiolate system. These states can be 

modulated by the gate voltages, thus the change of Seebeck coefficientsas wshown in 

Fig. 20. The value of the Seebeck coefficient is determined by the slope and the 

magnitude of transmission probability. We illustrate this point by the following cases.  

In this case there are some special points, and their Seebeck coefficients are close 

to zero. Such as around VG=0.25 V. At VG=0.25 V, the Fermi level align with the 

LUMO peak. It signifies ln ( ) / 0
FE EE E    . When the gate voltage is decreased to 

VG=-0.41V, the Seebeck coefficient is negative because ln ( ) / 0
FE EE E    . Also, the 

Seebeck coefficient is positive because ln ( ) / 0
FE EE E     at VG=-0.82V. 

Therefore, the Seebeck coefficients of molecular junction could change sign from 

positive value (p-type) to negative value (n-type) by applying the gate voltages and the 

source-drain biases. The electric current can carry the thermal energy. The direction of 

thermal current is opposite (along) the direction of thermal current for n-type (p-type) 

junction. 
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Fig. 19. The Seebeck coefficient in a three terminal geometry with VSD=0.01V for the system of 

molecular junction, NH2-substituted 1,4-benzenedithiolates. The gate field is applied in a direction 

perpendicular to direction of charge transport. The other graph expresses the probability of transmission 

under the distinct gate voltages 
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Fig. 20. The Seebeck coefficient in a three terminal geometry with VSD=0.01V for the system of 

molecular junction NO-substituted 1,4-benzenedithiolates. The other graph expresses the probability of 

transmission under the distinct gate voltages 
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Chapter 4  Conclusions 

In this thesis, we investigate the electronic transport properties and the Seebeck 

coefficients in molecular junctions based on first-principles approaches in the 

framework of density functional theory (DFT) calculated self-consistently. The transport 

properties are influenced by the intrinsic properties of the molecular junctions, 

including their length, the gap between HOMO and LUMO, and the conformation. 

Particularly, we consider the effects of functional substitutions for two systems: the 

amino-substituted (-NH2) and the nitro-substituted (-NO) 1,4-benzenedithiolates 

sandwiched between two gold electrodes. 

We find that the functional substitutions of may donate or retrieve electrons from 

the  -orbital, and thus have influence on the conductance of molecular junctions. The 

amino-substituted 1,4-benzenedithiolates molecular junctions withdraw electrons from 

 -orbital, and suppresses the conductance. The nitro-substituted 1,4-benzenedithiolates  

molecular junctions donate electrons to  -orbital and create states closer to the 

current-carrying window such that the conductance is enhanced. These states can be 

modulated efficiently by the biases and the gate voltages. Consequently, the I-V 

characteristics and the Seebeck coefficients in NO-substituted 1,4-benzenedithiolates 

molecular junctions display richer features due to theses  -donating states. 

In the first part the thesis, we study the effects of external biases and gate fields on 

the I-V characteristics. According to our results (see 3-1), the I-V characteristics is 

relatively inert to the -NH2 substitution due to retrieval of electrons. Conversely, the I-V 

characteristics of the -NO substituted system are relatively more sensitive in response to 

the applied biases and gate voltages. We calculate the density of states (DOSs) of both 

systems and explain the reason of the above findings using the DOSs. We observe that 

the -NO substituted system creates new states near the chemical potentials F  and R . 

The conductance is enhanced due to theses states which can be modulated by the 

external biases or the gate fields. 

In the second part of the thesis, we investigate the effects of functional substation 

on the thermoelectricity in the molecular junctions in both linear and nonlinear regimes. 

The Seebeck coefficients have been studied using first principles calculations. The 

general properties of the Seebeck effects can be very different for the amino-substituted 

(-NH2) and nitro-substituted (-NO) 1,4-benzenedithiolates junctions in the two-terminal 

and three-terminal molecular geometries. The reason the due to new states near the 

Fermi levels introduced by the nitro-substituted system, while no obvious states 
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introduced by the amino-substituted system. We also investigate the effect of gate 

voltage on the Seebeck coefficient. The research illustrates that the gate field is able to 

modulate and optimize the Seebeck coefficient. Another interesting phenomenon is the 

possibility to change the signs of the Seebeck coefficient by applying the gate voltages 

and biases in the nitro-substituted (-NO) 1,4-benzenedithiolates junctions. It is observed 

that the Seebeck coefficient is relevant to the temperatures of the electrodes that may be 

applied to the design of a molecular thermometer and its sensibility can be controlled by 

gate voltages. We also extend the investigation of the Seebeck coefficient to molecular 

tunnel junction at finite biases. As the biases increase, richer features in the Seebeck 

coefficient are observed, which are closely related to the transmission functions in the 

vicinity of the left and right Fermi levels. 
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