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摘要 

 

  本論文的工作主要是去探究以及了解在有限寬的介觀環裡 Dresselhaus 自旋

軌道交互作用效應的物理意涵，包含有和沒有外加磁通量兩種情況。而自旋密度

和持續性電流是我們關注的物理量。特別地，我們藉由個別獨立打開 Dresselhaus

自旋軌道交互作用和磁通量，去仔細分析本徵態和能譜來得到物理意涵。 

在打開 Dresselhaus 自旋軌道交互作用強度的情況下，我們證明所有的能階

都是 Kramer’s type 的雙重簡併，以及藉由能階排斥原理和相對基底本徵態比重來

瞭解能譜的趨勢。在弱自旋軌道交互作用場的範疇下，能譜和 Dresselhaus 自旋

軌道交互作用強度成二次方關係，此結果與我們的微擾分析相同。 

在漸增磁通量的情況下，我們呈現了 Kramer 簡併態的分裂，以及確認分裂後

能譜的物理原因。對於在打開 Dresselhaus 自旋軌道交互作用或磁通量後的本徵

態，我們發展了一套有系統的方法去得到它的通式。我們也計算了一個本徵態所

對應的自旋密度和淨 z方向投影自旋量。當系統中有 N個電子時，總合每個本徵

態就能得到全部的總量。 
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Persistent current and spin density in a mesoscopic Dresselhaus-type

quantum ring

Student: Chih-Wei Wu Advisor: Chon-Saar Chu

Department of Electrophysics

National Chiao-Tung University

Abstract

The work of this thesis is to explore and to understand physical insights on the effects

of Dresselhaus spin-orbit interaction (DSOI) in a finite width mesoscopic ring, both with

and without a magnetic flux. The physical quantifies of interest are the spin density

and persistent current. Specifically, our insight is obtained from a detail analysis of the

eigenstates and the energy spectrum as the DSOI is turned on and, independently, when

the magnetic flux is turned on.

For the case of turning on of the DSOI strength, we demonstrate that all energy levels

are doubly degenerate, of the Kramer’s type, and the trend of the energy spectrum is

understood by level repulsions and the relative weighting between the constituent bases

state ket. The energy spectrum depends on the DSOI quadratically in the weak SOI field

regime, and this is consistent with our perturbation result.

For the case of increasing the magnetic flux, we show that the Kramer degenerate

states split and the physical reason for the subsequent order in the energy splitting is

identified. For the eigenstate in the presence of the DSOI and the magnetic flux, we have

developed a systematic way to produce its general form. We have calculated the spin

density and the net spin Sz of an eigenstate. Summing these gives us the total when there

are N electrons in the system.
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Chapter 1

Introduction

Today, more and more new artificial technology is built upon charge-based electronics

where spin of an electron, however, was neglected in the technology application before.

This stream of neglecting spin in the application sector may have set a different schedule

in the past decades when spintronics were proposed and realized.

In order to control electrons on spin transport and spin accumulation in semiconduc-

tors, we should invoke the spin-orbit interaction (SOI). According to the physical origin

of the SOI, the SOI can be divided into intrinsic and extrinsic types, the more detail

will be discussed in the next section. In other way, the quantum ring is a popular device

which can be designed as calculation units, therefore, many scientists get into this area

and discover many interesting physical phenomenon.

Although persistent current with Rashba spin-orbit interaction [1] in one-dimensional

ring has been discussed generally, few researches focus on Dresselhaus spin-orbit interac-

tion [2] in finite width ring. We propose two important points of view about our motiva-

tion. First, one-dimensional ring is an ideal case which can not be performed by experi-

ment exactly, and it is impossible to discuss the spin density in r-direction,too. Therefore,

we suggest a finite width ring-shaped potential pattern to study the spin accumulation

and the persistent current realistically. Second, Dresselhaus effect is as important as the

Rashba effect in semiconductor, more and more research focus on the effect of Dresselhaus

1



CHAPTER 1. INTRODUCTION

linear and cubic term but there are still some interesting issues worth to be studied. For

example, the energy spectrum of the DSO quantum ring has mixing degeneracy states

which was discussed first by G.E.Marques et al. in 2008 [3], but in their research, there

are still many physical origins should be made clear step by step. In order to concentrate

on the Dresselhaus spin-orbit interaction, we will not include other intrinsic and extrinsic

SOI. Neglecting Rashba-type SOI is justified in a symmetric quantum well. In our results,

we will present detail about solving coupling Hamiltonians to get degeneracy spectrum to

Dresselhaus strength and discuss the particle density, spin accumulation and persistent

charge current.

1.1 Spin-orbit coupling in solid state systems

Recently, more researches concentrate on the study of creating spintronic devices in semi-

conductor without magnetic materials which are designed by the interaction between

spin-orbit coupling and quantum confinement. It can be realized by the spin-orbit in-

teraction (SOI) to control electron spins. Datta and Das proposed an efficient model of

spin-transistor in which the electron spin can transport and precess via SOI from a ferro-

magnetic source injecting into semiconductor to reaching a ferromagnetic drain [4]. The

system is shown in Fig. 1.1. In this kind of spin-transistor, we can detect the polarization

of the electron spin which depends on the strength of spin-orbit coupling by tuning an

applying gate voltage. Besides, the spin polarization parallel to the polarization of the

drain can pass through the channel, therefore, one can tune the voltage to modulate the

current flow for ’on-’ or ’off-’ state.

Before we concentrate on the spintronics devices in semiconductor, we should under-

stand the physical phenomenon clearly in nanoscale especially. Electron spin, the only

internal degree of freedom of electrons, follows naturally from the Dirac equation when

Dirac tried to put wave function in a covariant form, when space and time appear on

equal footing. A nonrelativistic limit of the Dirac equation gives rise to the spin-orbit

2



CHAPTER 1. INTRODUCTION

Figure 1.1: (a) Electro-optic light modulator. The polarizer makes the input light polar-
ized at an angle of 45o with respect to the y axis; (b) Spin-polarized FET proposed by
Datta et al. [4] in 1990. The iron contacts playing the roles of polarizer and analyzer are
made of ferromagnetic materials. These figures were plotted by Datta et al. [4] in 1990.
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CHAPTER 1. INTRODUCTION

interaction term, a term that has found great success in atomic energy spectra. The form

of this spin-orbit interaction, in vacuum, is [5]

Hso = − e~
4m2

0c
2
σ · (E × p) =

~
4m2

0c
2
σ · (∇V × p) (1.1)

where m0 is the free electron mass, ~ is the Planck constant and c is the velocity of

light. The physical interpretation of Hso is given below. An electron moving in an electric

potential region sees, in its frame of reference, an effective magnetic field couples with the

electron spin through the magnetic moment of the electron spin. Therefore, the SOI is

established via this effective magnetic field which depends on the orbital motion of the

electron, and this physics holds in semiconductor too when V (r) becomes the periodic

potential of the host lattice and also the impurities.

The k · p model is the well-known method to describe electronic state calculations

in semiconductor, when we investigate physical effect in the vicinity of the band edges.

Furthermore, within the envelope function approximation (EFA), the energy band can

be characterized by effective masses. The SOI in semiconductors requires, first of all, an

effective electric field in the material. Such effective electric field can find contribution

from the build-in crystal field when the crystal has bulk inversion asymmetric (BIA)

the so-called Dresselhaus SOI [2], or structural inversion asymmetry (SIA), the so-called

Rashba SOI [1]. The BIA is found in zincblende structure and the SIA in asymmetric

quantum wells (QWs) or heterostructures.

However within the effective mass approximation, the effect of all the fast-varying

atomic potential has been incorporated into the effective mass. Slower varying V (r), with

variation length scale much greater than the lattice spacing, is found to contribute to SOI

with a much greater SO coupling constant λ. For a central potential V (r) depends on

only r without angular dependence in vacuum, the SO coupling is

4



CHAPTER 1. INTRODUCTION

~
4m2

0c
2
σ ·(∇V × p) =

~
4m2

0c
2

1

r

dV

dr
σ ·(r × p) =

~2

4m2
0c

2

1

r

dV

dr

L

~
·σ = −λvac

~
1

r

dV

dr
L ·σ (1.2)

where L is the orbital angular momentum,λvac = −~2/(4m2
0c

2) ≈ −3.72× 10−6Å2.

But in a semiconductor, also for a central potential, the SO coupling can be expressed

in the form of

Hso = −λ

~
1

r

dV

dr
L · σ (1.3)

, where λ ≈ p2

3

[
1

E2
g
− 1

(Eg+∆0)2

]
.

For a 2DEG, the SOI becomes Hso = −λ
~

1
ρ

dV (ρ)
dρ

Lz · σz . Here P is the momentum

matrix element between s- and p-orbital, Egis the energy band gap, and ∆0 represents

the SOI energy split to the spin split-off hole band [? ]. Of particular interest is that

λ = 120Å2 in InAs, which is seven order of magnitude greater than λvac [6].

Roughly speaking, this large enhancement of SO coupling constant can be understood

in the following. With λvac ∝ 1
m2

0c2
= 1

m0

1
m0c2

, we can see that λ
λvac

∼ m0

m∗
m0c2

Eg
. For

InAs, m0

m∗ ∼ 1
0.023

;m0c2

Eg
∼ 0.5MeV

0.418eV
;leading to λ

λvac
∼ 52 × 106. Comparing to, we see that

the above hand waving argument has captured the essential physical origin of the great

enhancement.

1.2 Introduction to persistent current

1.2.1 One-dimension ring with an external magnetic flux

In 1983, Buttiker et al. proposed a model [7] which is a one-dimensional normal mental

ring threaded by a flux with elastic scattering at zero temperature. In this case, the

single-electron states of this ring can be acquired from the band structure with the po-

tential V (x) = V (x + L), which the potential V (x) around the loop with perimeter L

5



CHAPTER 1. INTRODUCTION

Figure 1.2: Band structure of a linear lattice with lattice constant L. The figure was
obtained from Kronig-Penney model. [8]

corresponds to the time-varying vector potential of the system. The physical behavior of

an electron passing through is the same as an electron in a linear lattice with periodic

potential. The potential variation in one period is consistent with the change of the vector

potential in one route around the ring.

We can see a similar phenomenon in Kronig-Penney model.[8] The band structure of a

linear lattice with lattice constant L is shown in Fig. 1.2. The single-electron energy state

of the ring system is an analogy of the band structure through the rule Φ
Φ0

= − k
(2π/L)

,

where the electron flux quantum Φ0 = hc/e. The electronic energy states En (Φ) periodic

in flux Φ with period Φ0 are shown in Fig. 1.3. The same periodic behavior occurs in the

persistent current.

As we known, the current carried by each state En (Φ) for a time-independent flux at

zero temperature is in = − e
L

[
1
~

∂En

∂k

]
. According to the analogy between the wave vector

and magnetic flux, the current is obtained as in = −c∂En(Φ)
∂Φ

. Then the total persistent

charge current I =
∑
n

in = −c
∑
n

∂En(Φ)
∂Φ

can be obtained by summing over all occupied

6



CHAPTER 1. INTRODUCTION

Figure 1.3: The single-electron energy state En (Φ) of the normal mental one-dimensional
ring as a function of flux proposed by Buttiker et al.[9]

states up to the Fermi energy at zero temperature.

If the flux is time-dependent and increases linearly with time, there exists induced

electric field E = V
L

= − 1
cL

dΦ
dt

coercing the state through the Brillouin zone [9]. Under

this situation, we use the analogy between wave vector and magnetic flux again, and an

electron will perform Bloch oscillation by circulating around the ring. The time for the

electron to complete one cycle is T = ∆k
(eE/~) = 2π/L

(eE/~) = 2π~
eV

with V = EL. For one cycle,

the variation of flux is equal to one flux quantum Φ0 = hc/e corresponds to the change

of wave vector equal to the reciprocal wave vector G = 2π/L. The electromotive field

produces an oscillating current with frequency ν = eV/h, i.e., a Josephson frequency with

a single electronic charge. This persistent current will exist even when the field is turned

off or the vector potential is fixed, and the current will keep at the value of flux to which

it is fixed. [9]

7
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1.2.2 Persistent current in mesoscopic rings with spin-orbit cou-

pling

A mesoscopic ring system with spin-orbit coupling effect was discussed by Splettstosser et

al. in 2003 [10]. The model is a mesoscopic isolated quasi-one-dimension ring with Rashba

spin-orbit (RSO) coupling threaded by magnetic flux at low temperature. The external

magnetic field provides a z-direction flux and the effective magnetic field coming from

RSO coupling is in the radial r-direction. The tilt angle θ between z and r is presented

as the strength of the RSO coupling shown in Fig. 1.4.

If the particle number is not too large, the effect of RSO coupling on persistent charge

current with even number or odd number of electrons is quite different from each other.

In the other way, the prominent effect of RSO coupling on persistent spin current is the

existence of the spin current for even electron number in the ring which vanishes in the

absence of RSO coupling.

The energy spectrum for the ring with an idealized impurity was obtained by Splettstosser

et al. and shown in Fig. 1.5. The author expressed the impurity by a delta-function barrier

V0δ (φ) and the Zeeman energy is negligible in the local spin frame. They demonstrated

the energy spectrum from the Hamiltonian of electrons in x-y plane. The electrons are

assumed to move in a ring confined by a parabolic radial potential Vc (r) = 1
2
mω2 (r − a)2

in the Hamiltonian:

H =
(p− eA)2

x + (p− eA)2
y

2m
+ Vc (r) + Hso = H0 + Hso (1.4)

where Hso = α
~

[
σx (p− eA)y − σy (p− eA)x

]
is the Rashba spin-orbit coupling term.

Briefly speaking, the author obtained the approximated secular equation of the system

by projecting the Hamiltonian on the eigenstates of the Hamiltonian without RSO cou-

pling term and modeling the impurity by its energy-dependent transmission amplitude.

Then they solved the secular equation to get the energy spectrum. When comparing with

8



CHAPTER 1. INTRODUCTION

Figure 1.4: A mesoscopic ring with Rashba spin-orbit coupling threaded by magnetic flux.
The external magnetic flux is in z-direction and the angle θ between z and r parameterizes
the strength of the RSO coupling. This figure was plotted by Splettstosser et al. in 2003.
[10]

Figure 1.5: It is the energy spectrum for the ideal one-dimension ring with a delta-barrier
impurity. Parameters are impurity strength constant A = 0.1 and title angle cos θ = 2/5.
The energy levels are shifted in flux direction by 1/ cos θ. Solid lines correspond to spin-up
states in the local spin-frame basis while dashed line to spin-down states. This figure was
plotted by Splettstosser et al. in 2003. [10]
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the energy levels after calculation for the same ring without RSO coupling, we can find

that the energy levels for the system with RSO coupling are shifted in the flux direction

by 1/ cos θ. For the reason of the energy splitting coming from RSO coupling, 1/ cos θ

corresponds to the strength of the coupling. The shift in flux direction is different by the

electron spin polarization state. On the basis of local spin frame, spin-up states move to

the left (solid line) while spin-down state to the right (dash line).

At zero temperature, the persistent charge current carried by each state n is in =

−∂En(Φ)
∂Φ

, and n stands for a set of quantum numbers used to label the eigenstates including

the spin projection in the local spin frame. Therefore, the total persistent charge current

I is obtained by summing over all occupied states, i.e., I =
∑

n=occupied

in = −∂Egs

∂Φ
, where

Egs is the ground state energy of the system.

The flux dependence of the persistent charge current is individually different accord-

ing to the number of electrons Ne. Here three cases are discussed for Ne is not too

large:(i)Ne = 4N , (ii) Ne = 4N + 2, and (iii)Ne = 2N + 1 where N is a positive integer.

If Ne is large enough, the persistent charge current has a general behavior independent of

Ne.

In case (i), where Ne = 4N , the numbers of spin-up and spin-down electrons are both

even. The current flux characteristics are shown in Fig. 1.6. The solid line is for the

system in the absence of RSO coupling. The effect of RSO coupling on the charge current

is getting more obvious as 1/ cos θ increases. For each spin polarization, the current-

characteristics of even number spin electrons are shifted in flux by ±1/2 cos θ. The total

persistent charge current of the system is the superposition of the two shifted current flux

characteristics.

Case (ii), where Ne = 4N + 2, is obtained from the 4N case by shifting flux by Φ0/2

and corresponds to an odd number of spin-up and spin-down electrons. The current is the

analogous superposition of the two shifted current flux characteristics for odd number spin

electrons. In these two case (i) and (ii), the strength of RSO coupling corresponding to

1/ cos θ can be measured. Further more, we can observe the behavior that the minimum

10
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Figure 1.6: Persistent charge current-flux characteristics for a set of values for the spin-
orbit coupling strength. The total number of electrons is 4N in panel (a). 4N +2 in panel
(b), and 2N + 1 in panel (c) with the impurity strength constant A=0.1. These figures
were plotted by Splettstosser et al. in 2003. [10]
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distance between two jumps of the current within one period interval is related to 1/ cos θ.

For case (iii), Ne = 2N + 1. As strength of RSO coupling 1/ cos θ increases, the

coupling suppresses the rounding more. It is because that the rounding comes from the

impurity, RSO plays a role of decreasing the effect of impurity. This suppression makes

the current flux characteristics from sawtooth shapes with jumps. This jumps come from

the level crossing in the energy for the system with opposite spin in this odd number of

electrons.

The persistent spin current of each eigenstate (q, σ) in the quantization axis of local

spin frame is I
(qσ)
θ = −1

e

∂Eq,σ

∂Φ
, where Eq,σ is an eigenenergy of local spin frame. The

eigenstates of the system in the local spin frame are ei(q+1/2)φ |±〉 with |±〉 denoting the

eigenspinors of spin operator σ̂z and q being an integer. This spin current for each state

is the charge current for each state multiplied by the magnetization over charge e factor

where the total spin current is obtained by summing the contribution from each state

like the case in charge current Iθ =
∑
qσ

I
(qσ)
θ at zero temperature. This spin current is the

projection onto the quantization axis of local spin frame. The other projections of spin

current can be derived from Iθ through Iz = Iθ cos θ and Ir = Iθ sin θ, where Iz is for z

projection and Ir is for the radial r projection.

For even number electrons 4N + 2, the effect of RSO coupling on the persistent spin

current can be observed through comparison of the spin current with the charge current.

In this ring for even number of electrons, the spin current vanishes without RSO coupling.

However, with RSO coupling, the spin current of the ring with electrons 4N + 2 is shown

with dashed line in Fig. 1.7. by Splettstoesser et al. [10]. Evidently, the spin current

has nonzero value at zero temperature and its characteristic curve exhibits dramatically

different flux dependence from the charge characteristic curve (solid line) of the same ring.

It shows a clear signature of RSO coupling. The RSO coupling produces a relative shift

of energy band in flux direction and hence enables a finite persistent spin current for an

even number of electrons.

For odd number of electrons (2N +1), the spin current is supposed to be proportional

12
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Figure 1.7: In even number electrons 4N + 2 case, comparison of the persistent spin
current (dash line) with the charge current (solid line) of the ring. The spin current is
for spin projection onto the local spin frame and parameters are the impurity strength
constant A = 0.5, the tilt angle cos θ = 0.66. This figure was plotted by Splettstosser et
al. in 2003. [10]

Figure 1.8: Persistent spin currents of the ring with odd number electrons 2N +1 (dotted
line) and even number electrons 4N + 2 (dashed line). Parameters are impurity strength
constant A = 0.5 and tilt angle cos θ = 0.9 corresponding to a small spin-orbit coupling
strength. The figure was plotted by Splettstoesser et al. [10]
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the charge current in the absence RSO coupling. In this ring with RSO coupling, the spin

current of the ring with odd number electrons is shown with dotted curve in Fig. 1.8. The

spin current flux characteristic curve has different flux dependence from the charge char-

acteristic curve. According to the result, the proportion relation does not exist because

of the presence of RSO coupling.

The persistent spin current just like a magnetization current, could be detectable via

tuning an external electric field. By making a Lorentz transform to the rest frame of spin,

the electrostatic potential for a point at a distance z is obtained as ϕ (z) ≈ µ0

4π
gµBIθ sin θ a

z2 .

Where the distance z is the vertical length from the center of the ring and is summed to

be much smaller than the radius a of the ring. Besides, in the expression of potential, g

is the gyromagnetic ratio, µ0 is the vacuum permeability, and µB is the Bohr magneton.

This potential expression is the same as the one resulting from the persistent spin current

in Heisenberg rings derived by Kopietz et al. [11]. If it is possible to measure the spin

current through electric field generated by its transported magnetization, the existence

and magnitude of RSO coupling in conducting rings can be finally verified.

14



Chapter 2

Finite width mesoscopic Dresselhaus

spin-orbit (DSO) ring

Recently, it is possible to grow self-assembled annulus semiconductor structures in a large

range of inner and outer radii by using molecular beam epitaxy. Typical samples show

a circular cross section with an inner radius about 10 nm, and the outer radius ranges

between 30 and 70 nm [12–16]. This kind of structures has been studied by their potential

applications as spintronic and quantum computing. [14, 15, 17, 18]. In this chapter, we

will start the system from the Hamiltonian to get the energy spectrum and spin density.

2.1 Model of a mesoscopic ring with Dresselhaus spin-

orbit coupling

2.1.1 Hamiltonian

The geometric model is an isolated finite width mesoscopic ring with Dresselhaus spin-

orbit (DSO) coupling without any external electromagnetic field. The cross section of the

structure is shown in Fig. 2.1. Assuming r1 (r2) and d are the inner (outer) radii and

height, the center of the ring is at origin.
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Figure 2.1: The figure is the cross section of the finite width mesoscopic ring, where r1

and r2 are the inner and outer radii.

The total single-particle Hamiltonian in a mesoscopic ring that has bulk inversion

asymmetry (BIA) and formed out of a quantum well with the well thickness along z and

z along [001] has the form:

H = H0 + HDSO (2.1)

H0 =
p2

2m∗ + V (−→ρ , z) (2.2)

HDSO = −→σ · −→h −→
k
. (2.3)

Here
−→
h −→

k
denotes the effective magnetic field arising from the DSO coupling, m∗ is the

electron effective mass, V (−→ρ , z) is a hard-wall confinement potential, β is the Dresselhaus

SO coupling constant, and −→σ = (σx, σy, σz) is the vector of Pauli spin matrices. For the

case of a narrow quantum well, the electrons occupy only the lowest subband, we can

average
−→
h −→

k
over the well thickness d to give
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hx
k = βkx

(
k2

y −
〈
k2

z

〉)
, (2.4)

hy
k = βky

(〈
k2

z

〉− k2
x

)
, (2.5)

hz
k = β 〈kz〉

(
k2

x − k2
y

) ∼= 0, (2.6)

〈kz〉 = 0, (2.7)

〈
k2

z

〉 ∼=
(π

d

)2

. (2.8)

If we just consider the k-linear BIA contribution, the effective HDSO assumes the form

HDSO = H1D = β
〈
k2

z

〉
[σyky − σxkx] = −β

〈
k2

z

〉
[σ+k+ + σ−k−] , (2.9)

where σ± = 1
2
(σx ± iσy) and k± = kx ± iky. The effect of the operator σ± with subscript

+ (−) is to increase (decrease) the spin of the electron by unit of ~. The operator k± can

be expressed in the form k± = −ie±iϕ
[

∂
∂ρ
± i1

ρ
∂

∂ϕ

]
≡ −ie±iϕp±ρ,ϕ which effect is to change

the orbital angular momentum by ±~. This is evident by the factor e±iφ in k±.

In matrix form

H ∼=




p2

2m∗ + V −β < k2
z > k+

−β < k2
z > k−

p2

2m∗ + V


 =




p2

2m∗ + V iβ(π
d
)2eiϕp+

ρ,ϕ

iβ(π
d
)2e−iϕp−ρ,ϕ

p2

2m∗ + V


 . (2.10)

In the following, we will guess the form of the eigenstate of H with the choice of

quantum numbers parallel that of the unperturbed eigenstate
∣∣E0

n,m,σ

〉
. Here n, m, σ are,

respectively, the quantum numbers for the radial, azimuthal and spin degrees of freedom.

Hints for the form of the eigenstate of H can be obtained from applying HDSO repeatedly

upon
∣∣E0

n,m,σ

〉
.
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Consider, for example, applying HDSO to
∣∣E0

n,m,↑
〉
, we get, apart from a proportionality

constant −β 〈k2
z〉, the essence of HDSO is carried by the operator σ+k+ + σ−k−,

HDSO

∣∣E0
n,m,↑

〉 ∝ (σ+k+ + σ−k−)
∣∣E0

n,m,↑
〉

= σ−k−
∣∣E0

n,m,↑
〉

∝
∣∣∣E(1)

n,m−1,↓
〉

,

(2.11)

where the superscript (1) denotes the state
∣∣∣E(1)

n,m,σ

〉
to have a different radial dependence

from that of
∣∣E0

n,m,σ

〉
. Applying HDSO the second time gives

HDSO

∣∣∣E(1)
n,m−1,↓

〉
∝ (σ+k+ + σ−k−)

∣∣∣E(1)
n,m−1,↓

〉

= σ+k+

∣∣∣E(1)
n,m−1,↓

〉

∝
∣∣∣E(2)

n,m,↑
〉

.

(2.12)

From this we see that only |En,m,↑〉 and |En,m−1,↓〉 are coupled by the action of HDSO.

We no longer use the superscript in the states |En,m,σ〉 because the eigenstate of H should

include arbitrary number of times the HDSO is applied. This amounts to give the form

for the total eigenfunction where f1(ρ), f2(ρ) have to be solved explicitly.

Ψ =




f1(ρ)eimϕ

f2(ρ)ei(m−1)ϕ


 (2.13)

For a hard-wall confinement potential

V (−→ρ , z) =





0 for r1 < ρ < r2 and |z| < d
2

∞ otherwise
(2.14)

the Schrodinger equations inside the ring is given by




p2

2m∗ iβ(π
d
)2eiϕp+

ρ,ϕ

iβ(π
d
)2e−iϕp−ρ,ϕ

p2

2m∗







f1(ρ)eimϕ

f2(ρ)ei(m−1)ϕ


 = E




f1(ρ)eimϕ

f2(ρ)ei(m−1)ϕ


 . (2.15)
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2.1.2 Dimensionless

In order to get more clearly formula and prepare for the Numerical analysis, we set

some parameters to dimensionless the Hamiltonian: (a) Fermi wave length lf , (b) Fermi

wave vector kf = 1
lf

, (c) Fermi energy Ef =
~2k2

f

2m∗ , (d) Del operator in polar coordinates

∇ = kf∇̃, (e) p±ρ,ϕ = kf p̃
±
ρ,ϕ, (f) Ẽ = E

Ef
, (g) β̃ =

β(π
d )

2·kf

Ef
, (h) ρ̃r = ρ

r1
.

After calculation, we get the dimensionless couple equations ( The detail process is

shown in Appendix A ).





∇̃2 [f1(ρ̃r)e
imϕ]− iβ̃eimϕ

[
∂
∂ρ̃

f2(ρ̃r)− (m−1)
ρ̃

f2(ρ̃r)
]

= −Ẽf1(ρ̃r)e
imϕ

∇̃2
[
f2(ρ̃r)e

i(m−1)ϕ
]− iβ̃ei(m−1)ϕ

[
∂
∂ρ̃

f1(ρ̃r) + m
ρ̃
f1(ρ̃r)

]
= −Ẽf2(ρ̃r)e

i(m−1)ϕ
(2.16)

Since these differential equations have the forms of Bessel equation and the recurrence

relation, we can choose the Bessel functions as the spinor part eigenfunctions. Therefore,





−γ2AJm(γρ̃r)e
imϕ − iβ̃ [−γBJm(γρ̃r)] e

imϕ = −ẼAJm(γρ̃r)e
imϕ

−γ2BJm−1(γρ̃r)e
i(m−1)ϕ − iβ̃ [γAJm−1(γρ̃r)] e

i(m−1)ϕ = −ẼBJm−1(γρ̃r)e
i(m−1)ϕ

(2.17)

where A and B are the coefficients of the two eigenfunction components.

Comparing with above couple equations, we find that the ratio of the coefficients

R = B
A

= ±i, then we get two branches of wave functions

Ψ =




Jm(γρ̃r)e
imϕ

iJm−1(γρ̃r)e
i(m−1)ϕ


 , Ψ =




Jm(γρ̃r)e
imϕ

−iJm−1(γρ̃r)e
i(m−1)ϕ


 . (2.18)
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2.1.3 Eigenenergy and Eigenstate

We get two energy dispersion γ2+β̃γ−Ẽ = 0 and γ2−β̃γ−Ẽ = 0 when R is equal to +i and

−i respectively. Then, if we set γ1 = 1
2

(
β̃ +

√
β̃2 + 4Ẽ

)
and γ2 = 1

2

(
−β̃ +

√
β̃2 + 4Ẽ

)
,

we can obtain four-eigenstates ( first kind of Bessel function ):

(I)




Jm (γ1ρ̃r) eimϕ

−iJm−1 (γ1ρ̃r) ei(m−1)ϕ


 , (II)




Jm (−γ1ρ̃r) eimϕ

iJm−1 (−γ1ρ̃r) ei(m−1)ϕ


 ,

(III)




Jm (γ2ρ̃r) eimϕ

iJm−1 (γ2ρ̃r) ei(m−1)ϕ


 , (IV )




Jm (−γ2ρ̃r) eimϕ

−iJm−1 (−γ2ρ̃r) ei(m−1)ϕ


 .

(2.19)

But (I) (II) and (III) (IV ) have the same forms, there are just two independent

bases. Therefore, we chose (I) and (III) to be our eigenstates. Besides, the index of m

should be integers (including positive and negative), then we have to introduce the second

kind of Bessel function ”Neumann” to be eigenstates.

(I)




Nm (γ1ρ̃r) eimϕ

−iNm−1 (γ1ρ̃r) ei(m−1)ϕ


 , (II)




Nm (−γ1ρ̃r) eimϕ

iNm−1 (−γ1ρ̃r) ei(m−1)ϕ


 ,

(III)




Nm (γ2ρ̃r) eimϕ

iNm−1 (γ2ρ̃r) ei(m−1)ϕ


 , (IV )




Nm (−γ2ρ̃r) eimϕ

−iNm−1 (−γ2ρ̃r) ei(m−1)ϕ


 .

(2.20)

In order to get more clear physical meaning, we change Bessel functions to Hankel

functions: H
(1)
α (x) = Jα(x) + iNα(x), H

(2)
α (x) = Jα(x)− iNα(x). Thus, we get the total

eigenfunction:

Ψ = a




H
(1)
m (γ1ρ̃r) eimϕ

−iH
(1)
m−1 (γ1ρ̃r) ei(m−1)ϕ


 + b




H
(2)
m (γ1ρ̃r) eimϕ

−iH
(2)
m−1 (γ1ρ̃r) ei(m−1)ϕ




+ c




H
(1)
m (γ2ρ̃r) eimϕ

iH
(1)
m−1 (γ2ρ̃r) ei(m−1)ϕ


 + d




H
(2)
m (γ2ρ̃r) eimϕ

iH
(2)
m−1 (γ2ρ̃r) ei(m−1)ϕ


 ,

(2.21)
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where a, b, c and d are the coefficients which can be decided by confinement potential

and normalization.

Since the annulus is defined by the hard-wall confining potential Eq. (2.14), we can

apply the boundary conditions Ψ (ρ = r1) = 0, Ψ (ρ = r2) = 0. These conditions give the

equation set:




H
(1)
m (γ1r1) H

(2)
m (γ1r1) H

(1)
m (γ2r1) H

(2)
m (γ2r1)

−H
(1)
m−1 (γ1r1) −H

(2)
m−1 (γ1r1) H

(1)
m−1 (γ2r1) H

(2)
m−1 (γ2r1)

H
(1)
m (γ1r2) H

(2)
m (γ1r2) H

(1)
m (γ2r2) H

(2)
m (γ2r2)

−H
(1)
m−1 (γ1r2) −H

(2)
m−1 (γ1r2) H

(1)
m−1 (γ2r2) H

(2)
m−1 (γ2r2)







a

b

c

d




= 0 (2.22)

If there exists non-trivial solution for a, b, c and d, the determinant of the matrix M

must vanish, i.e.,

det (M) = 0, (2.23)

where

M =




H
(1)
m (γ1r1) H

(2)
m (γ1r1) H

(1)
m (γ2r1) H

(2)
m (γ2r1)

−H
(1)
m−1 (γ1r1) −H

(2)
m−1 (γ1r1) H

(1)
m−1 (γ2r1) H

(2)
m−1 (γ2r1)

H
(1)
m (γ1r2) H

(2)
m (γ1r2) H

(1)
m (γ2r2) H

(2)
m (γ2r2)

−H
(1)
m−1 (γ1r2) −H

(2)
m−1 (γ1r2) H

(1)
m−1 (γ2r2) H

(2)
m−1 (γ2r2)




. (2.24)

The more detail process is shown in Appendix A.
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2.2 Numerical results and discussion

2.2.1 Energy spectrum

Physical parameters used in the calculation are obtained for the case of GaAs: with

DSO coupling constant β = 25eV · o

A, effective mass m∗ ≈ 0.067me, Fermi wave length

λf = 40nm. Structures parameters are inner radius r1 = 10nm, outer radius r2 = 70nm

and the height of the ring d = 50
o

A. [3].

Fig. 2.2 presents the energy spectrum for the quantum ring which is determined from

the determinant equation Eq. (2.23) and Eq. (2.24), where γ1 and γ2 contain the energy E.

We want to show the effects caused by the DSOI on the first seven quantum ring energy

levels in units of Ef , as a function of the dimensionless DSOI coupling constant β̃. Due to

the confinement potential and in the absence of the DSO interaction, we know that there

exist discrete energy levels in y-axis. And each of them have degenerate states, namely,
∣∣E0

n,±m,↑
〉

and
∣∣E0

n,±m,↓
〉

for a given eigenenergy E0
n,m,σ. When we introduce, however, the

DSOI strength, we can see that the unperturbed energy level splitting into two parts and

most of them decreasing as β̃ increasing monotically. Specially, some eigenenergies have

the trend which arise up first and then go down when β̃ increasing.

In this section, we will focus on the physical insight of the splitting energy in our

system. First, we propose a useful regulation to understand the development of the states.

If we just consider the confinement potential in the quantum ring without DSOI, we can

get the discrete quantum energy levels and each of them has different degeneracy states

respectively, for instance, there are four degeneracy states
∣∣E0

1,3,↑
〉
,
∣∣E0

1,3,↓
〉
,
∣∣E0

1,−3,↑
〉

and
∣∣E0

1,−3,↓
〉

in the same eigenenergy E0
1,±3. However, if we add the DSO interaction to our

system, we find that each original degeneracy energy level split into two groups of energy

levels, and the new energy level exists new degeneracy states which is the superposition

of the original eigenstates in H0. The phenomenon can be understood by the operator

form of the HDSO = −β 〈k2
z〉 (σ+k+ + σ−k−) which has been presented in Eq. (2.11) to

Eq. (2.12) in section 2.1. In HDSO, the operators k+ and k− are like the angular moment
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Figure 2.2: The energy spectrum for the quantum ring which is determined from the
determinant equation Eq. (2.23) and Eq. (2.24), and it is shown the effects caused by
the DSOI on the first seven quantum ring energy levels in units of Ef , as a function

of the dimensionless DSO coupling constant β̃. These doubly degeneracy states come
from the superposition of the different unperturbed eigenstates respectively. The physical

parameters are obtained for the case of GaAs: β = 25eV · o

A, m∗ ≈ 0.067me, λf = 40nm,

r1 = 10nm, r2 = 70nm, d = 50
o

A.
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operator, the operators σ+ and σ− are like spinor operator. Each of them can create

or destroy the quantum number m or ↑↓ respectively. Today, we use HDSO to operate

the unperturbed states repeatedly in the quantum ring, the angular moment quantum

number and the spin quantum number are created or destroyed respectively to become

new superposition states |ψa〉 = c1 |E1,3,↑〉 + c2 |E1,2,↑〉, |ψb〉 = c3 |E1,−2,↑〉 + c4 |E1,−3,↓〉,
|ψc〉 = c5 |E1,4,↑〉 + c6 |E1,3,↓〉 and |ψd〉 = c7 |E1,−3,↑〉 + c8 |E1,−4,↓〉. Therefore, we can use

this simple method to understand the development of states in DSOI systems.

Second, we find that the relative weighting between the constituent bases state ket

plays an important role to effect the trend of the energy spectrum when the DSOI strength

increases slowly. For example, we start from the unperturbed energy level in m = ±3. We

can understand that the probability of the states |E1,3,↑〉 and |E1,−3,↓〉 have more weight

in state |ψa〉 and |ψb〉 from Fig. 2.3 when β̃ is small. Physically, it is because that the

splitting energy levels start from E0
1,±3, and the effect coming from energy levels E0

1,2,↓,

E0
1,−2,↑ can be seen as the correction of the energy. Therefore, we can distinguish which

one of the elements of superposition states is domination in small β̃.

Third, we deduce that the level repulsion is the reason of the two splitting energy

levels arising up and going down respectively when β̃ is small. Because of the first and

second analysis, we know that the splitting energy level consists of the dominate energy

level and the upper (lower) energy level. The upper or lower energy level play a repulsive

role to effect the trend of the spectrum. For example, the original eigenstates in the

eigenenergy E0
1,±3 split into two new degeneracy state |ψa〉 = c1 |E1,3,↑〉 + c2 |E1,2,↑〉 and

|ψb〉 = c3 |E1,−2,↑〉+ c4 |E1,−3,↓〉. The lower energy E0
1,±2 repulses E0

1,±3 to arise up energy.

Fourth, in the next chapter, we will get the result about each of the perturbed states (

|ψa〉, |ψb〉, |ψc〉 and |ψd〉 ) is not mixing by considering external magnetic flux. Therefore,

we can use nondegenerate perturbation theory to analyze perturbation problems.

Fifth, in the small Dresselhaus strength region, we can get the trend of the energy

level which is represented in the quadratic form. The reason can be demonstrated by two

methods shown below. In nondegenerate perturbation theory, we can obtain the result,
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Figure 2.3: The relative weighting between the constituent bases state ket plays an im-
portant role to effect the trend of the energy spectrum. When the Dresselhaus strength
is small: (a) c1 |E1,3,↑〉 has more weight than c2 |E1,2,↑〉 in state |ψa〉, (b) c4 |E1,−3,↓〉 has
more weight than c3 |E1,−2,↑〉 in state |ψb〉, (c) c6 |E1,3,↓〉 has more weight than c5 |E1,4,↑〉
in state |ψc〉, (d) c7 |E1,−3,↑〉 has more weight than c8 |E1,−4,↓〉 in state |ψd〉.
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Figure 2.4: In the small Dresselhaus strength region, 0 ≤ β̃ ≤ 0.1, we can get the trend
of the energy level which is represented in the up (down) quadratic form. The physical
parameters are the same with Fig. 2.2.

〈n|H ′ |n〉+
∑
m

∣∣〈m|H ′ |n〉
∣∣2

ε0
n − ε0

m

∼= 0 +
∑
m

∣∣〈m|H ′ |n〉
∣∣2

ε0
n − ε0

m

(2.25)

where the first order perturbation is equal to zero 〈n|H ′ |n〉 ∼= 0 and the second order

perturbation is not. In other way, let us simplify the problem to a 2× 2 matrix, then the

Hamiltonian H0 + HDSO can be represented as




εn B

B εm


 , where B is denoted as off-

diagonal term proportional to DSO coupling strength. If we calculate the determination

of this matrix when β is small, we can get the approximate eigenenergies.

ε =
εn + εm

2
± εn − εm

2

(
1 +

1

2

(
2

εn − εm

)2

B2

)
(2.26)

This result is the same as our numerical analysis which is shown in Fig. 2.4

Finally, we also find that there are two degeneracy eigenstates which are cause of the

time-reversal symmetry in each new splitting energy level. If we use −(m− 1) to instead
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of m in our Schrodinger equation Eq. (2.16), we can get the same couple Schrodinger

equations which are meant to be Kramer degeneracy.

2.2.2 Spin density and net magnetic dipole moment

For a given eigenenergy En,m, a set coefficients of eigenfunction can be determined from

the equation set Eq. (2.22). With the normalization condition
∫ r2

r1
ψ+

mψmρdρ = 1, we can

obtain the uniquely determined eigenfunction Eq. (2.21).

If the general form of the eigenfunction is defined as ψm (ρ̃r, φ) =




fm (ρ̃r) eimφ

gm−1 (ρ̃r) ei(m−1)φ


,

the components of the spinor part eigenfunction are

fm (ρ̃r) = aH(1)
m (γ1ρ̃r) + bH(2)

m (γ1ρ̃r) + cH(1)
m (γ2ρ̃r) + dH(2)

m (γ2ρ̃r) (2.27)

gm−1 (ρ̃r) = i
(
−aH

(1)
m−1(γ1ρ̃r)− bH

(2)
m−1(γ1ρ̃r) + cH

(1)
m−1(γ2ρ̃r) + dH

(2)
m−1(γ2ρ̃r)

)
(2.28)

Then, the particle density of each state m is Nm (ρ̃r) = f 2
m (ρ̃r) + g2

m−1 (ρ̃r).

The spin density can be derived by the same method just like particle density. The

z-projection spin density for each m state is Sz
m (ρ̃r) = ψ+

mσzψm = f 2
m (ρ̃r) − g2

m−1 (ρ̃r).

By summing the contributions from ground state to the mth state, one can acquire the

total spin density at zero temperature Sz =
∑
m

Sz
m (ρ̃r). The spin density as a function of

dimensionless radial position ρ̃r = ρ/r1 of the ring with each state is shown in Fig. 2.5 at

DSO constant β = 25eV · o

A .

In Fig. 2.5, we can see that when we input single-electron in each state, the net z-

projection spin is not zero, which can be seen as a magnetic dipole moment. But, because

of the cancelation relation between states, there will left very few z-projection spins.

Therefore, if we input odd-number of electrons in our system, we can get finite net total
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Figure 2.5: It is the z-projection spin density for each states as a function of the dimen-
sionless radial length which the angular is fixed to zero.(a) |ψa,m〉 states, (b) |ψb,m〉 states,
(c) |ψc,m〉 states, (d) |ψd,m〉 states.
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as possible.
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z-projection spin.

In the other way, we change the inner and outer radii for different range to observe the

spin polarization phenomenon. Fig. 2.6 are the z-projection spin density as a function of

radial ratio ρ−r1

r2−r1
. We know that when the inner and outer radii become bigger in the same

time, the ring width are more like a horizontal channel in the ring system. Therefore, we

can see the effect of the different ring width between Fig. 2.6 (a) and Fig. 2.6 (b), then

we make a simple conclusion: When the ring width is big enough, the spin accumulation

phenomenon would be more observable.
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Chapter 3

Finite width mesoscopic Dresselhaus

spin-orbit (DSO) ring with a

magnetic flux

3.1 Theoretical model

3.1.1 Hamiltonian

In this chapter, we start the system from the single-particle Hamiltonian which describes

an electron in the mesoscopio ring piercing by a magnetic flux Φ with DSO coupling. The

geometric model is almost the same with Fig. 2.1 in chapter 2. Therefore, we can write

down the Hamiltonian quickly:

H '




p2

2m∗ + V −β < k2
z > k+

−β < k2
z > k−

p2

2m∗ + V


 . (3.1)

In order to consider adding the magnetic flux in our system, we should correct the

momentum: (a) p → p − eA; (b) k → k − eA
~ , where A is the vector potential chosen as
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the axial gauge. And the corresponding magnetic flux is Φ
Φ0

= 2πeAϕρ

h
= eAϕρ

~ in units of

flux quantum Φ0 = h
e
.

In the following, just like in chapter 2, we guess the form of the eigenstate of H with

the choice of quantum numbers parallel that of the unperturbed eigenstate
∣∣E0

n,m,σ

〉
. Hints

for the form of the eigenstate of H can be obtained from applying HDSO repeatedly upon
∣∣E0

n,m,σ

〉
. This amounts to give the form for the total eigenfunction where f1(ρ), f2(ρ)

have to be solved explicitly.

Ψ =




f1(ρ)eimϕ

f2(ρ)ei(m−1)ϕ


 . (3.2)

By rewriting the Hamiltonian in polar coordinates and a hard-wall confinement po-

tential defining the annulus is

V (−→ρ , z) =





0 for r1 < ρ < r2 and |z| < d
2

∞ otherwise
(3.3)

we can get the coupling Schrodinger equations





~2
2m∗

[
k2 − 2

(
Φ

ρΦ0

)
kϕ +

(
Φ

ρΦ0

)2
]

f1 (ρ) eimϕ + iβ
(

π
d

)
2eiϕ

(
∂
∂ρ

+ i
ρ

∂
∂ϕ

+ Φ
ρΦ0

)
f2 (ρ) ei(m−1)ϕ

= Ef1(ρ)eimϕ

~2
2m∗

[
k2 − 2

(
Φ

ρΦ0

)
kϕ +

(
Φ

ρΦ0

)2
]

f2 (ρ) ei(m−1)ϕ + iβ
(

π
d

)
2e−iϕ

(
∂
∂ρ
− i

ρ
∂

∂ϕ
− Φ

ρΦ0

)
f1 (ρ) eimϕ

= Ef2(ρ)ei(m−1)ϕ

(3.4)
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3.1.2 Dimensionless

In order to get more clearly formula and prepare for the Numerical analysis, we set

some parameters to dimensionless the Hamiltonian: (a) Fermi wave length lf , (b) Fermi

wave vector kf = 1
lf

, (c) Fermi energy Ef =
~2k2

f

2m∗ , (d) Del operator in polar coordinates

∇ = kf∇̃, (e) p±ρ,ϕ = kf p̃
±
ρ,ϕ, (f) Ẽ = E

Ef
, (g) β̃ =

β(π
d )

2·kf

Ef
, (h) ρ̃r = ρ

r1
.

After calculation, we get the dimensionless couple equations (The detail process is

shown in Appendix B.)





{
1
ρ̃

∂
∂ρ̃

(
ρ̃ ∂

∂ρ̃

)
− 1

ρ̃2

(
m− Φ

Φ0

)2
}

f1 (ρ̃r) eimϕ − iβ̃
(

∂
∂ρ̃
− 1

ρ̃
(m− Φ

Φ0
− 1)

)
f2 (ρ̃r) eimϕ

= −Ẽf1(ρ̃r)e
imϕ

{
1
ρ̃

∂
∂ρ̃

(
ρ̃ ∂

∂ρ̃

)
− 1

ρ̃2

(
m− 1− Φ

Φ0

)2
}

f2 (ρ̃r) ei(m−1)ϕ − iβ̃
(

∂
∂ρ̃

+ 1
ρ̃

(
m− Φ

Φ0

))
f1 (ρ̃r) ei(m−1)ϕ

= −Ẽf2(ρ̃r)e
i(m−1)ϕ

(3.5)

Let q = m− Φ
Φ0

, Eq. (3.5) become





{
1
ρ̃

∂
∂ρ̃

(
ρ̃ ∂

∂ρ̃

)
− q2

ρ̃2

}
f1 (ρ̃r) eimϕ − iβ̃

(
∂
∂ρ̃
− 1

ρ̃
(q − 1)

)
f2 (ρ̃r) eimϕ = −Ẽf1(ρ̃r)e

imϕ

{
1
ρ̃

∂
∂ρ̃

(
ρ̃ ∂

∂ρ̃

)
− (q−1)2

ρ̃2

}
f2 (ρ̃r) ei(m−1)ϕ − iβ̃

(
∂
∂ρ̃

+ q
ρ̃

)
f1 (ρ̃r) ei(m−1)ϕ = −Ẽf2(ρ̃r)e

i(m−1)ϕ

(3.6)

Since these differential equations have the forms of Bessel equation and the recurrence

relation, we can choose the Bessel functions as the spinor part eigenfunctions. Therefore,





−γ2AJq(γρ̃r)− iβ̃ [−γBJq(γρ̃r)] = −ẼAJq(γρ̃r)

−γ2BJq−1(γρ̃r)− iβ̃ [γAJq−1(γρ̃r)] = −ẼBJq−1(γρ̃r)
(3.7)

where A and B are the coefficients of the two eigenfunction components.
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Comparing with above couple equations, we find that the ratio of the coefficients

R = B
A

= ±i, then we get two branches of wave functions

Ψ =




Jq(γρ̃r)e
imϕ

iJq−1(γρ̃r)e
i(m−1)ϕ


 , Ψ =




Jq(γρ̃r)e
imϕ

−iJq−1(γρ̃r)e
i(m−1)ϕ


 . (3.8)

3.1.3 Eigenenergy and Eigenstate

We get two energy dispersion γ2+β̃γ−Ẽ = 0 and γ2−β̃γ−Ẽ = 0 when R is equal to +i and

−i respectively. Then, if we set γ1 = 1
2

(
β̃ +

√
β̃2 + 4Ẽ

)
and γ2 = 1

2

(
−β̃ +

√
β̃2 + 4Ẽ

)
,

we can obtain the total eigenfunction

Ψ = a




H
(1)
q (γ1ρ̃r) eimϕ

−iH
(1)
q−1 (γ1ρ̃r) ei(m−1)ϕ


 + b




H
(2)
q (γ1ρ̃r) eimϕ

−iH
(2)
q−1 (γ1ρ̃r) ei(m−1)ϕ




+c




H
(1)
q (γ2ρ̃r) eimϕ

iH
(1)
q−1 (γ2ρ̃r) ei(m−1)ϕ


 + d




H
(2)
q (γ2ρ̃r) eimϕ

iH
(2)
q−1 (γ2ρ̃r) ei(m−1)ϕ




, (3.9)

where a, b, c and d are the coefficients.

Since the annulus is defined by the hard-wall confinement potential, we can apply the

boundary conditions Ψ (ρ = r1) = 0, Ψ (ρ = r2) = 0. These conditions give the equation

set:




H
(1)
q (γ1r1) H

(2)
q (γ1r1) H

(1)
q (γ2r1) H

(2)
q (γ2r1)

−H
(1)
q−1 (γ1r1) −H

(2)
q−1 (γ1r1) H

(1)
q−1 (γ2r1) H

(2)
q−1 (γ2r1)

H
(1)
q (γ1r2) H

(2)
q (γ1r2) H

(1)
q (γ2r2) H

(2)
q (γ2r2)

−H
(1)
q−1 (γ1r2) −H

(2)
q−1 (γ1r2) H

(1)
q−1 (γ2r2) H

(2)
q−1 (γ2r2)







a

b

c

d




= 0 (3.10)

If there exists non-trivial solution for a, b, c and d, the determinant of the matrix M

must vanish, i.e.,

det (M) = 0, (3.11)
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where

M =




H
(1)
q (γ1r1) H

(2)
q (γ1r1) H

(1)
q (γ2r1) H

(2)
q (γ2r1)

−H
(1)
q−1 (γ1r1) −H

(2)
q−1 (γ1r1) H

(1)
q−1 (γ2r1) H

(2)
q−1 (γ2r1)

H
(1)
q (γ1r2) H

(2)
q (γ1r2) H

(1)
q (γ2r2) H

(2)
q (γ2r2)

−H
(1)
q−1 (γ1r2) −H

(2)
q−1 (γ1r2) H

(1)
q−1 (γ2r2) H

(2)
q−1 (γ2r2)




(3.12)

The more detail process is shown in Appendix B.

3.2 Expression for charge current density

The Hamiltonian of the system including magnetic flux in polar coordinate is

H = − ~2
2m∗

{
∂2

∂ρ2 + 1
ρ

∂
∂ρ
− 1

ρ2

[
− ∂2

∂ϕ2 + 2i
(

Φ
Φ0

)
∂

∂ϕ
+

(
Φ
Φ0

)2
]}

+iβ 〈k2
z〉

[
(eiϕσ+ + e−iϕσ−) ∂

∂ρ
+ (eiϕσ+ − e−iϕσ−) 1

ρ

(
i ∂
∂ϕ

+ Φ
Φ0

)] . (3.13)

We start from time-dependent Schrodinger equation

Hψ = i~
∂ψ

∂t
. (3.14)

Then, we put the complex conjugate wave function to operator Eq. (3.14):

ψ+i~∂ψ
∂t

= − ~2
2m∗ψ

+

{
∂2

∂ρ2 + 1
ρ

∂
∂ρ
− 1

ρ2

[
− ∂2

∂ϕ2 + 2i
(

Φ
Φ0

)
∂

∂ϕ
+

(
Φ
Φ0

)2
]}

ψ

+iβ 〈k2
z〉ψ+

[
(eiϕσ+ + e−iϕσ−) ∂

∂ρ
+ (eiϕσ+ − e−iϕσ−) 1

ρ

(
i ∂
∂ϕ

+ Φ
Φ0

)]
ψ

(3.15)

At the same time, we change the wave function in Eq. (3.15) to become opposite

complex conjugate form:

−ψi~∂ψ+

∂t
= − ~2

2m∗ψ

{
∂2

∂ρ2 + 1
ρ

∂
∂ρ
− 1

ρ2

[
− ∂2

∂ϕ2 − 2i
(

Φ
Φ0

)
∂

∂ϕ
+

(
Φ
Φ0

)2
]}

ψ+

−iβ 〈k2
z〉ψ

[
(e−iϕσ− + eiϕσ+) ∂

∂ρ
+ (e−iϕσ− − eiϕσ+) 1

ρ

(
−i ∂

∂ϕ
+ Φ

Φ0

)]
ψ+

(3.16)
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By combining Eq. (3.15) and Eq. (3.16), we can obtain the azimuthal component of

the current density comparing with the continuity equation.

Jϕ =
−i~
2m∗ρ

[
ψ+∂ψ

∂ϕ
− ψ

∂ψ+

∂ϕ
− 2i

(
Φ

Φ0

)
ψ+ψ

]
− i

~
β

〈
k2

z

〉 [
eiϕψ+σ+ψ − e−iϕψ+σ−ψ

]
.

(3.17)

In other way, the general form of the wave function can be expressed briefly by defining

its two components:

Ψ ≡




fq (ρ̃r) eimϕ

gq−1 (ρ̃r) ei(m−1)ϕ


 (3.18)

where

fq (ρ̃r) = aH(1)
q (γ1ρ̃r) + bH(2)

q (γ1ρ̃r) + cH(1)
q (γ2ρ̃r) + dH(2)

q (γ2ρ̃r) (3.19)

gq−1 (ρ̃r) = i
[
−aH

(1)
q−1 (γ1ρ̃r)− bH

(2)
q−1 (γ1ρ̃r) + cH

(1)
q−1 (γ2ρ̃r) + dH

(2)
q−1 (γ2ρ̃r)

]
(3.20)

They give the terms in azimuthal component of current density :

ψ+∂ψ

∂ϕ
− ψ

∂ψ+

∂ϕ
= 2imf ∗q fq + 2i (m− 1) g∗q−1gq−1 (3.21)

ψ+ψ = f ∗q fq + g∗q−1gq−1 (3.22)

ψ+σ+ψ =

(
f ∗q e−imϕ g∗q−1e

−i(m−1)ϕ

)



0 1

0 0







fqe
imϕ

gq−1e
i(m−1)ϕ


 = f ∗q gq−1e

−iϕ (3.23)

ψ+σ−ψ =

(
f ∗q e−imϕ g∗q−1e

−i(m−1)ϕ

)



0 0

1 0







fqe
imϕ

gq−1e
i(m−1)ϕ


 = g∗q−1fqe

iϕ (3.24)
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If we set ṽβ =
β〈k2

z〉·m∗r1

~2 , we can get the azimuthal component of the current density:

Jϕ =
~

m∗r1

{
1

ρ̃

[
qf ∗q fq + (q − 1) g∗q−1gq−1

]− iṽβ

[
f ∗q gq−1 − g∗q−1fq

]}
(3.25)

The total charge current density at zero temperature is the sum of the contribution

from ground state to the Nth state where N is the total electron number. In the absence

of magnetic flux, the distribution of the total charge current density is zero even in the

presence of DSO coupling.

3.3 Numerical results and discussion

3.3.1 Energy spectrum - Removal of degeneracy

Physical parameters used in the below calculation are obtained for the case of GaAs: with

DSO coupling constant β = 25eV · o

A, effective mass m∗ ≈ 0.067me. Structures parameters

are inner radius r1 = 10nm and outer radius r2 = 70nm. The energy spectrum which is

plotted in the range of −0.6 < Φ
Φ0

< 0.6 adopted the same parameters in chapter 2 before.

Fig. 3.1 is the energy spectrum displayed as a function of the magnetic flux Φ
Φ0

in our

system which is obtained from the determinant equation det (M) = 0, and β̃ is turned off

in (a) turned on in (b). The dimensionless energy E is eigenenergy in units of Ef =
~2k2

f

2m
.

In Fig. 3.1 (b), we see that each of the discrete eigenenergy splits into two parts (arising

up and going down) when we turn on external magnetic flux, and it is interesting that

the bigger m become, the wider energy splitting would be.

In order to observe the development of the energy levels and eigenstates easily, we

combined Fig. 2.2 and Fig. 3.1 (b) artificial. In x-axis, left hand side is the dimensionless

DSO coupling strength β̃ from 0 to 1, and right hand side is magnetic flux Φ/Φ0 from

0 to 0.6 ( keep β̃ = 1). Then, we will discuss some issue about the eigenstates and the

effect of the external magnetic flux in this section.
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Figure 3.1: (a) Several lowest dimensionless eigenenergies E as a function of the magnetic
flux Φ/Φ0 for the quantum ring without DSOI, (b) with DSO coupling constant β =

25eV · o

A. Where the legend denotes the state in the form of ( η , m ), η is a, b, c or
d and m is the dominated magnetic quantum number. The other physical parameters
are obtained for the case of GaAs: m∗ ≈ 0.067me, λf = 40nm, r1 = 10nm, r2 = 70nm,

d = 50
o

A.
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Figure 3.2: Left hand side is the the several lowest dimensionless eigenenergies E as a
function of the dimensionless DSO coupling strength β̃ from 0 to 1, right hand side is
the eigenenergies as a function of the magnetic flux Φ/Φ0 from 0 to 0.6. The physical
parameters are the same with Fig. 3.1.
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First, we found a simple rule for the removal of the degeneracy when Φ is turned on.

This analysis should be demonstrated by the operator form:

HΦ =

(
1

ρ

Φ

Φ0

)[
i
(
e−iϕk+ − eiϕk−

)
+

(
1

ρ

Φ

Φ0

)
+ iβ

(
eiϕσ+ − e−iϕσ−

)]
. (3.26)

In Eq. (3.26), we find that there are no correction about the orbit-angular moment and

spin-angular moment in the first several terms, but yes in the last two terms. For example,

there are two degeneracy states |ψa〉 = c1

∣∣E1,3,↑
〉

+ c2

∣∣E1,2,↓
〉

and |ψb〉 = c3

∣∣E1,−2,↑
〉

+

c4

∣∣E1,−3,↓
〉

in the same eigenenergy. If we add, however, the magnetic flux to our system,

we find that original degeneracy energy level split into two new energy levels, c
′
3

∣∣E1,−2,↑
〉
+

c
′
4

∣∣E1,−3,↓
〉

and c
′
1

∣∣E1,3,↑
〉

+ c
′
2

∣∣E1,2,↓
〉
. The analysis is the same as the HDSO repeatedly

operating on original states in section 2.2.1. Therefore, HΦ can not create new states by

magnetic flux but just recombined original states.

Second, the external magnetic flux will split energy level again without mixing. As-

suming m′ > 0, then we can redefine |ψa〉 = c1 |En,m′,↑〉 + c2 |En,m′−1,↓〉 and |ψb〉 =

c3

∣∣En,−(m′−1),↑
〉

+ c4 |En,−m′,↓〉. After considering magnetic flux, the effective correctional

Hamiltonian in matrix form is

HΦ =

(
1

ρ

Φ

Φ0

)



2i
ρ

∂
∂ϕ

+ 1
ρ

Φ
Φ0

iβeiϕ

−iβe−iϕ 2i
ρ

∂
∂ϕ

+ 1
ρ

Φ
Φ0


 . (3.27)

Then, we calculate the expectative value 〈ψa|HΦ |ψb〉 which is equal to zero and un-

derstand that the original degeneracy states which exist in H0 + HDSO just split again

without mixing respectively after considering external magnetic flux (The detail is shown

in appendix. C).

Third, we demonstrated that states with mz < 0 have higher energy than states with

mz > 0. If Φ is small, HΦ can be redefine as first order perturbation:
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H
(1)
Φ =

(
1

ρ

Φ

Φ0

)



2i
ρ

∂
∂ϕ

iβeiϕ

−iβe−iϕ 2i
ρ

∂
∂ϕ


 . (3.28)

Then, we get the expectative value of H
(1)
Φ by using state |ψa〉 and state |ψb〉 respectively.

(The detail is shown in appendix. D)

〈ψa|H(1)
Φ |ψa〉 = 〈ψb|H(1)

Φ |ψb〉 = −
(

Φ

Φ0

) ∫ {
1

ρ2
[(2m− 1) Nm + Sz] +

(
1

ρ

)
βSy(ϕ=0)

}
dv,

(3.29)

where Nm = ψ+ψ = f ∗q fq + g∗q−1gq−1, Sz = ψ+σzψ = f ∗q fq − g∗q−1gq−1, and Sy =

i
[−f ∗n,m (ρ) gn,m−1 (ρ) e−iϕ + g∗n,m−1 (ρ) fn,m (ρ) eiϕ

]
. It is reasonable for us to understand

that when m > 0, the correction of the energy goes down, when m < 0, the correction of

the energy goes up. The trend is shown in Fig. 3.2.

Finally, we also got a reasonable explanation for the phenomenon that the higher the

state becomes, the wider energy splitting would be. Base on the third discussion, we can

tell that the scaler of the energy splitting is proportional to 〈ψb|H(1)
Φ |ψb〉−〈ψa|H(1)

Φ |ψa〉 ∝
2 (2m− 1)

(
Φ
Φ0

) ∫
Nm

ρ2 dv. Thus, the energy splitting range is dependent of m, in other

words, the bigger m becomes, the wider energy splitting would be.

3.3.2 Persistent charge current

The total persistent charge current at zero temperature can be obtained from the charge

current density of each state through summing the contributions from all occupied states,

i.e., I =
∫ r2

r1

[∑
m

Jm

]
dρ = −∂E

∂Φ
. The total persistent charge current and the angular

momentum Sz, Lz, Sz + Lz, Lz(β̃ = 0.01) with even number electrons N = 8 as a

function of magnetic flux Φ
Φ0

are shown in the Fig. 3.3 and Fig. 3.4.
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Figure 3.3: Electron numbers from N = 1 to N = 4, left hand side is the total persistent
charge current of the quantum ring as a function of magnetic flux Φ/Φ0, right hand side
is Sz, Lz, Sz + Lz and Lz(β̃ = 0.01) as a function of magnetic flux Φ/Φ0.
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Figure 3.4: Electron numbers from N = 5 to N = 8, left hand side is the total persistent
charge current of the quantum ring as a function of magnetic flux Φ/Φ0, right hand side
is Sz, Lz, Sz + Lz and Lz(β̃ = 0.01) as a function of magnetic flux Φ/Φ0.
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It is well-known that the persistent charge current has a universal behavior indepen-

dent of N when N is large enough. But, when N is small, the total number of electrons

is important. Base on above reasons, we are careful about details in Fig. 3.3 and Fig. 3.4.

We found that the characteristic features of persistent charge current depends on the

parity of the total number of electrons N . At the point of the magnetic flux Φ = 0,

there is an abrupt jump when N is odd and continuous when N is even. Therefore, these

characteristic features can be distinguished by two groups with N odd and N even. This

is attributed to the different occupation patterns of the highest occupied single parti-

cle energy level. The same with the persistent current, the total z-projection magnetic

moment including spin Sz and angular moment Lz have similar features, too. Near the

magnetic flux Φ = 0, there is an abrupt jump when N is odd and flat when N is even.

These results can be a hint for us to distinguish the electron numbers which are even or

odd. And it is a useful method to double check the experimental results by electrical and

magnetic measurements.
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Chapter 4

Conclusion and future work

4.1 Conclusion

In Chapter1, we survey some journal papers to understand the background of the spin-

orbital interaction (SOI) and the persistent current. According to the physical origin

of the SOI, the SOI can be divided into intrinsic and extrinsic types, the extrinsic type

SOI comes from the effective field of the impurity and the intrinsic type SOI comes from

the structural effect. In intrinsic regime, the SOI in semiconductors requires an effective

electric field in the material. Such effective electric field can find contribution from the

build-in crystal field when the crystal has bulk inversion asymmetric (BIA) the so-called

Dresselhaus SOI, or structural inversion asymmetry (SIA), the so-called Rashba SOI.

In other way, the persistent current can be trace from the AB effect, and the first one

who proposed a model in a one-dimensional mental ring threaded by a flux to discuss

band structure was Buttiker et al. in 1983. Until now, the persistent current is still

an interesting issue for scientists to focus on, like Splettstosser et al., they proposed

a mesoscopic isolated quasi-one-dimension ring with Rashba SOI threaded by magnetic

flux at low temperature. They found some regulations about the persistent current and

persistent spin current.

In Chapter2, we propose a geometric model which is an isolated finite width mesoscopic
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ring with Dresselhaus spin-orbit (DSO) coupling without any external electromagnetic

field to discuss eigenstates, energy spectrum and spin density. Moreover, we make some

limiting case and perturbation to discuss the physical insight between the eigenstates,

energy levels, and spin density. In our case, if we just consider the effect of the confinement

potential in the quantum ring, we can get the discrete quantum energy levels and each of

them has different degeneracy states respectively. But, if we add the DSO interaction to

our system, we find that each unperturbed degeneracy energy level split into two groups

of energy levels, and the new one exists new degeneracy states which is the superposition

of the unperturbed eigenstates in H0.

After some detail analysis, we propose a systematic method to understand the develop-

ment of the states, and the trend of the energy spectrum is understood by level repulsions

and the relative weighting between the constituent bases state ket. The energy spectrum

depends on the DSOI quadratically in the weak SOI field regime, which is consistent with

our perturbation result. Finally, we demonstrate that all energy levels are doubly degen-

erate, of the Kramer’s type. In other way, we obtain same results about the z-projection

spin density. When we input single-electron in each state, the net z-projection spin is not

zero, which can be seen as a magnetic dipole moment. But, because of the cancelation

relation between states, there will left finite z-projection spins.

In Chapter3, we start our research from the same system as chapter 2 but threaded by

an external magnetic flux Φ to discuss the physical insight of the eigenstates and energy

levels. After many analysis, we find a simple way using HΦ to understand the perturbed

statesas as the same meyhod as HDSO shown in chapter 2, and demonstrate that the

energy level will split into higher and lower energy levels after considering magnetic flux.

Besides, we also got a reasonable explanation for the phenomenon that the higher the

state becomes, the wider energy splitting would be. The most important is that we show

the Kramer degenerate states splitting and the physical reason for the subsequent order

in the energy splitting is identified.
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4.2 Future works

Although we spend much time focusing on the physical insight about the eigenstates and

energy spectrum in DSOI mesoscopic ring, there are still some problems need us to solve.

First, we still don’t know which is the domination between level repulsion effect and the

relative weighting in the constituent bases state ket when DSOI strength is increasing.

Second, the spin hall effect may be seen in finite width mesoscopic ring when the width is

big enough. Third, there should be some relationships between the persistent currents and

angular moment when we input different number electrons, furthermore, we can propose

an experimental model to check it’s realistic in the future.

In the future, we will study those topics which we have not finished, and try to solve

our problem in different method like using tight-binding model.
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Appendix A

Solve the finite width mesoscopic

ring Hamiltonian with DSO coupling

The finite width mesoscopic ring Hamiltonian with DSO coupling:

H ∼=




p2

2m∗ + V −β < k2
z > k+

−β < k2
z > k−

p2

2m∗ + V


 =




p2

2m∗ + V iβ(π
d
)2eiϕp+

ρ,ϕ

iβ(π
d
)2e−iϕp−ρ,ϕ

p2

2m∗ + V


 . (A.1)

Because of the analysis in chapter 2, we guess the form of the total eigenfunction is

Ψ =




f1(ρ)eimϕ

f2(ρ)ei(m−1)ϕ


 , (A.2)

where f1(ρ) and f2(ρ) have to be solved explicitly.

For a hard-wall confinement potential

V (−→ρ , z) =





0 for r1 < ρ < r2 and |z| < d
2

∞ otherwise
(A.3)
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the Schrodinger equations inside the ring is given by




p2

2m∗ iβ(π
d
)2eiϕp+

ρ,ϕ

iβ(π
d
)2e−iϕp−ρ,ϕ

p2

2m∗







f1(ρ)eimϕ

f2(ρ)ei(m−1)ϕ


 = E




f1(ρ)eimϕ

f2(ρ)ei(m−1)ϕ


 . (A.4)

In order to get more clearly formula and prepare for the Numerical analysis, we set

some parameters to dimensionless the Hamiltonian: (a) Fermi wave length lf , (b) Fermi

wave vector kf = 1
lf

, (c) Fermi energy Ef =
~2k2

f

2m∗ , (d) Del operator in polar coordinates

∇ = kf∇̃, (e) p±ρ,ϕ = kf p̃
±
ρ,ϕ, (f) Ẽ = E

Ef
, (g) β̃ =

β(π
d )

2·kf

Ef
, (h) ρ̃r = ρ

r1
.





−~2k2
f

2m∗ ∇̃2 [f1(ρ̃r)e
imϕ] + iβ(π

d
)2eiϕkf p̃

+
ρ,ϕ

[
f2(ρ̃r)e

i(m−1)ϕ
]

= Ef1(ρ̃r)e
imϕ

−~2k2
f

2m∗ ∇̃2
[
f2(ρ̃r)e

i(m−1)ϕ
]
+ iβ(π

d
)2e−iϕkf p̃

−
ρ,ϕ [f1(ρ̃r)e

imϕ] = Ef2(ρ̃r)e
i(m−1)ϕ

(A.5)





−∇̃2 [f1(ρ̃r)e
imϕ] + iβ̃eiϕ

[
∂
∂ρ̃

+ i1
ρ̃

∂
∂ϕ

] [
f2(ρ̃r)e

i(m−1)ϕ
]

= Ẽf1(ρ̃r)e
imϕ

−∇̃2
[
f2(ρ̃r)e

i(m−1)ϕ
]
+ iβ̃e−iϕ

[
∂
∂ρ̃
− i1

ρ̃
∂

∂ϕ

]
[f1(ρ̃r)e

imϕ] = Ẽf2(ρ̃r)e
i(m−1)ϕ

(A.6)





∇̃2 [f1(ρ̃r)e
imϕ]− iβ̃eimϕ

[
∂
∂ρ̃

f2(ρ̃r)− (m−1)
ρ̃

f2(ρ̃r)
]

= −Ẽf1(ρ̃r)e
imϕ

∇̃2
[
f2(ρ̃r)e

i(m−1)ϕ
]− iβ̃ei(m−1)ϕ

[
∂
∂ρ̃

f1(ρ̃r) + m
ρ̃
f1(ρ̃r)

]
= −Ẽf2(ρ̃r)e

i(m−1)ϕ
(A.7)

We compare the second term of above equations with the properties of Bessel func-

tion:(a) ∂
∂ρ

Jm−1−m−1
ρ

Jm−1 = −γJm, (b) ∂
∂ρ

Jm+m
ρ
Jm = γJm−1, (c)

[
1
ρ

∂
∂ρ

(ρ ∂
∂ρ

)− m2

ρ2

]
Jm(γρ) =

−γ2Jm(γρ), therefore,





−γ2AJm(γρ̃r)e
imϕ − iβ̃ [−γBJm(γρ̃r)] e

imϕ = −ẼAJm(γρ̃r)e
imϕ

−γ2BJm−1(γρ̃r)e
i(m−1)ϕ − iβ̃ [γAJm−1(γρ̃r)] e

i(m−1)ϕ = −ẼBJm−1(γρ̃r)e
i(m−1)ϕ

(A.8)
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



γ2A− iβ̃γB = ẼA

γ2B + iβ̃γA = ẼB
(A.9)

let R = B
A

as the ratio of the coefficient A,B





γ2 − iβ̃γR = Ẽ

γ2 + iβ̃γR−1 = Ẽ
(A.10)

Comparing above equations, we get the ratio R = ±i, but there are two branches of

wave functions. When R = +i, wave function is

Ψ =




Jm(γρ̃r)e
imϕ

iJm−1(γρ̃r)e
i(m−1)ϕ


 , (A.11)

when R = −i, wave function is

Ψ =




Jm(γρ̃r)e
imϕ

−iJm−1(γρ̃r)e
i(m−1)ϕ


 . (A.12)

After setting γ1 = 1
2

(
β̃ +

√
β̃2 + 4Ẽ

)
and γ2 = 1

2

(
−β̃ +

√
β̃2 + 4Ẽ

)
, we get 4-

eigenstates ( first kind of Bessel function ).

(I)




Jm (γ1ρ̃r) eimϕ

−iJm−1 (γ1ρ̃r) ei(m−1)ϕ


 , (II)




Jm (−γ1ρ̃r) eimϕ

iJm−1 (−γ1ρ̃r) ei(m−1)ϕ


 ,

(III)




Jm (γ2ρ̃r) eimϕ

iJm−1 (γ2ρ̃r) ei(m−1)ϕ


 , (IV )




Jm (−γ2ρ̃r) eimϕ

−iJm−1 (−γ2ρ̃r) ei(m−1)ϕ




(A.13)
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But (I) (II) and (III) (IV) have the same form, therefore we have just 2 independent

bases. Besides, the index of m should be integers (including positive and negative), then

we have to introduce the second kind of Bessel function ”Neumann” to be eigenstates.

(I)




Nm (γ1ρ̃r) eimϕ

−iNm−1 (γ1ρ̃r) ei(m−1)ϕ


 , (II)




Nm (−γ1ρ̃r) eimϕ

iNm−1 (−γ1ρ̃r) ei(m−1)ϕ


 ,

(III)




Nm (γ2ρ̃r) eimϕ

iNm−1 (γ2ρ̃r) ei(m−1)ϕ


 , (IV )




Nm (−γ2ρ̃r) eimϕ

−iNm−1 (−γ2ρ̃r) ei(m−1)ϕ




(A.14)

In order to get more clearly physical meaning, we change Bessel functions to Henkel

functions: H
(1)
α (x) = Jα(x) + iNα(x) and H

(2)
α (x) = Jα(x)− iNα(x).

Finally, we get total eigenfunction

Ψ = a




H
(1)
m (γ1ρ̃r) eimϕ

−iH
(1)
m−1 (γ1ρ̃r) ei(m−1)ϕ


 + b




H
(2)
m (γ1ρ̃r) eimϕ

−iH
(2)
m−1 (γ1ρ̃r) ei(m−1)ϕ




+c




H
(1)
m (γ2ρ̃r) eimϕ

iH
(1)
m−1 (γ2ρ̃r) ei(m−1)ϕ


 + d




H
(2)
m (γ2ρ̃r) eimϕ

iH
(2)
m−1 (γ2ρ̃r) ei(m−1)ϕ




(A.15)
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Appendix B

Solve the finite width mesoscopic

ring Hamiltonian with DSO coupling

after considering magnetic flux

In order to consider adding the magnetic flux in our system, we should correct the mo-

mentum: (a) p → p− eA; (b) k → k − eA
~ , where A is the vector potential chosen as the

axial gauge. And the corresponding magnetic flux is Φ
Φ0

= 2πeAϕρ

h
= eAϕρ

~ in units of flux

quantum Φ0 = h
e
. ( The magnetic flux Φ =

∫ −→
B · −→n da =

∫ (−→∇ ×−→A
)
da =

∮
c

−→
A · d−→l =

∮
c

Aϕρdϕ = 2πAϕρ )

Three main expression about the corrections are:

(a) (p− eA)2 = p2 − e
(
p̂Â + Âp̂

)
+ e2A2

ϕ = p2 − 2eAϕpϕ + e2A2
ϕ

= ~2
(
k2 − 2eAϕkϕ

~ +
e2A2

ϕ

~2

)
= ~2

[
k2 − 2

(
Φ

ρΦ0

)
kϕ +

(
Φ

ρΦ0

)2
] (B.1)

(b)k+ = (kx − eAx

~ ) + i(ky − eAy

~ ) = (kx + iky)− e
~(Ax + iAy)

= −ieiϕ
(

∂
∂ρ

+ i
ρ

∂
∂ϕ

+ eAϕ

~

)
= −ieiϕ

(
∂
∂ρ

+ i
ρ

∂
∂ϕ

+ Φ
ρΦ0

) (B.2)

(c)k− = (kx − eAx

~ )− i(ky − eAy

~ ) = (kx − iky)− e
~(Ax − iAy)

= −ie−iϕ
(

∂
∂ρ
− i

ρ
∂

∂ϕ
− eAϕ

~

)
= −ie−iϕ

(
∂
∂ρ
− i

ρ
∂

∂ϕ
− Φ

ρΦ0

) (B.3)
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Note: p̂Â = −i~
−→∇

(
−A0

ρ
ϕ̂
)

+ Âp̂ = Aϕpϕ

In the following, just like in chapter 2, we guess the form of the total eigenfunction:

Ψ =




f1(ρ)eimϕ

f2(ρ)ei(m−1)ϕ,


 . (B.4)

where f1(ρ), f2(ρ) have to be solved explicitly.

Considering Eq. (B.1), Eq. (B.2), Eq. (B.3) and rewriting the Hamiltonian in polar

coordinates with a hard-wall confinement potential:

V (−→ρ , z) =





0 for r1 < ρ < r2 and |z| < d
2

∞ otherwise
(B.5)

the Schrodinger equation HΨ = EΨ becomes Eq. (B.6)





~2
2m∗

[
k2 − 2

(
Φ

ρΦ0

)
kϕ +

(
Φ

ρΦ0

)2
]

f1 (ρ) eimϕ + iβ
(

π
d

)
2eiϕ

(
∂
∂ρ

+ i
ρ

∂
∂ϕ

+ Φ
ρΦ0

)
f2 (ρ) ei(m−1)ϕ

= Ef1(ρ)eimϕ

~2
2m∗

[
k2 − 2

(
Φ

ρΦ0

)
kϕ +

(
Φ

ρΦ0

)2
]

f2 (ρ) ei(m−1)ϕ + iβ
(

π
d

)
2e−iϕ

(
∂
∂ρ
− i

ρ
∂

∂ϕ
− Φ

ρΦ0

)
f1 (ρ) eimϕ

= Ef2(ρ)ei(m−1)ϕ

(B.6)

In order to get more clearly formula and prepare for the Numerical analysis, we set

some parameters to dimensionless the Hamiltonian: (a) Fermi wave length lf , (b) Fermi

wave vector kf = 1
lf

, (c) Fermi energy Ef =
~2k2

f

2m∗ , (d)Del operator in polar coordinates

∇ = kf∇̃, (e) p±ρ,ϕ = kf p̃
±
ρ,ϕ, (f) Ẽ = E

Ef
, (g) β̃ =

β(π
d )

2·kf

Ef
, (h) ρ̃r = ρ

r1
.
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



{
1
ρ̃

∂
∂ρ̃

(
ρ̃ ∂

∂ρ̃

)
− 1

ρ̃2

(
m− Φ

Φ0

)2
}

f1 (ρ̃r) eimϕ − iβ̃
(

∂
∂ρ̃
− 1

ρ̃
(m− Φ

Φ0
− 1)

)
f2 (ρ̃r) eimϕ

= −Ẽf1(ρ̃r)e
imϕ

{
1
ρ̃

∂
∂ρ̃

(
ρ̃ ∂

∂ρ̃

)
− 1

ρ̃2

(
m− 1− Φ

Φ0

)2
}

f2 (ρ̃r) ei(m−1)ϕ − iβ̃
(

∂
∂ρ̃

+ 1
ρ̃

(
m− Φ

Φ0

))
f1 (ρ̃r) ei(m−1)ϕ

= −Ẽf2(ρ̃r)e
i(m−1)ϕ

(B.7)

Let q = m− Φ
Φ0

, Eq. (B.7) become





{
1
ρ̃

∂
∂ρ̃

(
ρ̃ ∂

∂ρ̃

)
− q2

ρ̃2

}
f1 (ρ̃r) eimϕ − iβ̃

(
∂
∂ρ̃
− 1

ρ̃
(q − 1)

)
f2 (ρ̃r) eimϕ = −Ẽf1(ρ̃r)e

imϕ

{
1
ρ̃

∂
∂ρ̃

(
ρ̃ ∂

∂ρ̃

)
− (q−1)2

ρ̃2

}
f2 (ρ̃r) ei(m−1)ϕ − iβ̃

(
∂
∂ρ̃

+ q
ρ̃

)
f1 (ρ̃r) ei(m−1)ϕ = −Ẽf2(ρ̃r)e

i(m−1)ϕ

(B.8)

Since these differential equations have the forms of Bessel equation and the recurrence

relation, we can choose the Bessel functions as the spinor part eigenfunctions. Therefore,





−γ2AJq(γρ̃r)− iβ̃ [−γBJq(γρ̃r)] = −ẼAJq(γρ̃r)

−γ2BJq−1(γρ̃r)− iβ̃ [γAJq−1(γρ̃r)] = −ẼBJq−1(γρ̃r)
(B.9)

where A and B are the coefficients of the two eigenfunction components.

Comparing with above couple equations, we find that the ratio of the coefficients

R = B
A

= ±i, then we get two branches of wave functions

Ψ =




Jq(γρ̃r)e
imϕ

iJq−1(γρ̃r)e
i(m−1)ϕ


 , Ψ =




Jq(γρ̃r)e
imϕ

−iJq−1(γρ̃r)e
i(m−1)ϕ


 . (B.10)
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Prove state |ψa〉 and |ψb〉 do not

mixing

Assuming m′ > 0, then we can define |ψa〉 and |ψb〉:

|ψa〉 = c1 |En,m′,↑〉+ c2 |En,m′−1,↓〉 (C.1)

|ψb〉 = c3

∣∣En,−(m′−1),↑
〉

+ c4 |En,−m′,↓〉 . (C.2)

After considering external magnetic flux, the effective correctional Hamiltonian can

be defined:

HΦ =

(
1

ρ

Φ

Φ0

)



2i
ρ

∂
∂ϕ

+ 1
ρ

Φ
Φ0

iβeiϕ

−iβe−iϕ 2i
ρ

∂
∂ϕ

+ 1
ρ

Φ
Φ0


 (C.3)

If we integrate the sandwich-matrix, we get the angular-part result is zero:

〈ψa|HΦ |ψb〉 =

∫ (
1

ρ

Φ

Φ0

)
F (ρ, ϕ)dv = 0, (C.4)
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where

F (ρ, ϕ)

=

(
f ∗n,m′e−im′ϕ g∗n,m′−1e

−i(m′−1)ϕ

)



2i
ρ

∂
∂ϕ

+ 1
ρ

Φ
Φ0

iβeiϕ

−iβe−iϕ 2i
ρ

∂
∂ϕ

+ 1
ρ

Φ
Φ0







fn,−(m′−1)e
−i(m′−1)ϕ

gn,−m′e−im′ϕ




=

(
f ∗n,m′e−im′ϕ g∗n,m′−1e

−i(m′−1)ϕ

)



[(
2(m′−1)

ρ
+ 1

ρ
Φ
Φ0

)
fn,−(m′−1) + iβgn,−m′

]
e−i(m′−1)ϕ

[(
2m′
ρ

+ 1
ρ

Φ
Φ0

)
gn,−m′ − iβfn,−(m′−1)

]
e−im′ϕ




=





[(
2(m′−1)

ρ
+ 1

ρ
Φ
Φ0

)
f ∗n,m′fn,−(m′−1) + iβf ∗n,m′gn,−m′

]

+
[(

2m′
ρ

+ 1
ρ

Φ
Φ0

)
g∗n,m′−1gn,−m′ − iβg∗n,m′−1fn,−(m′−1)

]





e−i(2m′−1)ϕ.
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Demonstrate that the energy level

split into the higher energy part and

the lower energy part

If Φ
Φ0

is small, HΦ can be redefine as H
(1)
Φ =

(
1
ρ

Φ
Φ0

)



2i
ρ

∂
∂ϕ

iβeiϕ

−iβe−iϕ 2i
ρ

∂
∂ϕ


 . The expected

value of H
(1)
Φ with state |ψa〉 is 〈ψa|H(1)

Φ |ψa〉 =
∫

Fm (ρ, ϕ)dv,

Fm (ρ, ϕ)

=

(
f ∗n,m (ρ) e−imϕ g∗n,m−1 (ρ) e−i(m−1)ϕ

) (
1
ρ

Φ
Φ0

)



2i
ρ

∂
∂ϕ

iβeiϕ

−iβe−iϕ 2i
ρ

∂
∂ϕ







fn,m (ρ) eimϕ

gn,m−1 (ρ) ei(m−1)ϕ




=
(

1
ρ

Φ
Φ0

) (
f ∗n,m (ρ) e−imϕ g∗n,m−1 (ρ) e−i(m−1)ϕ

)



[
−2m

ρ
fn,m (ρ) + iβgn,m−1 (ρ)

]
eimϕ

[
−2(m−1)

ρ
gn,m−1 (ρ)− iβfn,m (ρ)

]
ei(m−1)ϕ




=
(

1
ρ

Φ
Φ0

)



−2

ρ

[
mf ∗n,m (ρ) fn,m (ρ) + (m− 1) g∗n,m−1 (ρ) gn,m−1 (ρ)

]

+iβ
[
f ∗n,m (ρ) gn,m−1 (ρ)− g∗n,m−1 (ρ) fn,m (ρ)

]





= − 1
ρ2

(
Φ
Φ0

)
[(2m− 1) Nm + Sz]−

(
1
ρ

Φ
Φ0

)
βSy(ϕ=0)

Where
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APPENDIX D. DEMONSTRATE THAT THE ENERGY LEVEL SPLIT INTO THE
HIGHER ENERGY PART AND THE LOWER ENERGY PART

Nm = f ∗n,m (ρ) fn,m (ρ) + g∗n,m−1 (ρ) gn,m−1 (ρ) (D.1)

Sz = f ∗n,m (ρ) fn,m (ρ)− g∗n,m−1 (ρ) gn,m−1 (ρ) (D.2)

Sy = i
[−f ∗n,m (ρ) gn,m−1 (ρ) e−iϕ + g∗n,m−1 (ρ) fn,m (ρ) eiϕ

]
(D.3)

〈ψa|H(1)
Φ |ψa〉 =

∫
Fm (ρ, ϕ)dv = −

(
Φ

Φ0

) ∫ {
1

ρ2
[(2m− 1) Nm + Sz] +

(
1

ρ

)
βSy(ϕ=0)

}
dv

(D.4)

If we use |ψb〉 instead of |ψa〉 repeating the same process, we will get the same result:

〈ψa|H(1)
Φ |ψa〉 = 〈ψb|H(1)

Φ |ψb〉 = −
(

Φ

Φ0

) ∫ {
1

ρ2
[(2m− 1) Nm + Sz] +

(
1

ρ

)
βSy(ϕ=0)

}
dv

(D.5)
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Appendix E

The table of the eigenstates
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