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quantum ring
Student: Chih-Wei Wu Advisor: Chon-Saar Chu
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National Chiao-Tung University
Abstract

The work of this thesis is to explore and to understand physical insights on the effects
of Dresselhaus spin-orbit interaction (DSOI) in a finite width mesoscopic ring, both with
and without a magnetic flux. The physical quantifies of interest are the spin density
and persistent current. Specifically, our insight is obtained from a detail analysis of the
eigenstates and the energy spectrum as the DSOI is turned on and, independently, when
the magnetic flux is turned on.

For the case of turning on of the DSOI strength, we demonstrate that all energy levels
are doubly degenerate, of the Kramer’s type, and the trend of the energy spectrum is
understood by level repulsions and the relative weighting between the constituent bases
state ket. The energy spectrum depends on the DSOI quadratically in the weak SOI field
regime, and this is consistent with our perturbation result.

For the case of increasing the magnetic flux, we show that the Kramer degenerate
states split and the physical reason for the subsequent order in the energy splitting is
identified. For the eigenstate in the presence of the DSOI and the magnetic flux, we have
developed a systematic way to produce its general form. We have calculated the spin
density and the net spin S, of an eigenstate. Summing these gives us the total when there

are N electrons in the system.
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Chapter 1

Introduction

Today, more and more new artificial technology is built upon charge-based electronics
where spin of an electron, however, was neglected in the technology application before.
This stream of neglecting spin in the application sector may have set a different schedule
in the past decades when spintronics were proposed and realized.

In order to control electrons on spin transport and spin accumulation in semiconduc-
tors, we should invoke the spin-orbit interaction (SOI). According to the physical origin
of the SOI, the SOI can be divided into intrinsic and extrinsic types, the more detail
will be discussed in the next section. In other way, the quantum ring is a popular device
which can be designed as calculation units, therefore, many scientists get into this area
and discover many interesting physical phenomenon.

Although persistent current with Rashba spin-orbit interaction [1] in one-dimensional
ring has been discussed generally, few researches focus on Dresselhaus spin-orbit interac-
tion [2] in finite width ring. We propose two important points of view about our motiva-
tion. First, one-dimensional ring is an ideal case which can not be performed by experi-
ment exactly, and it is impossible to discuss the spin density in r-direction,too. Therefore,
we suggest a finite width ring-shaped potential pattern to study the spin accumulation
and the persistent current realistically. Second, Dresselhaus effect is as important as the

Rashba effect in semiconductor, more and more research focus on the effect of Dresselhaus
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linear and cubic term but there are still some interesting issues worth to be studied. For
example, the energy spectrum of the DSO quantum ring has mixing degeneracy states
which was discussed first by G.E.Marques et al. in 2008 [3], but in their research, there
are still many physical origins should be made clear step by step. In order to concentrate
on the Dresselhaus spin-orbit interaction, we will not include other intrinsic and extrinsic
SOI. Neglecting Rashba-type SOI is justified in a symmetric quantum well. In our results,
we will present detail about solving coupling Hamiltonians to get degeneracy spectrum to
Dresselhaus strength and discuss the particle density, spin accumulation and persistent

charge current.

1.1 Spin-orbit coupling in solid state systems

Recently, more researches concentrate on the study of creating spintronic devices in semi-
conductor without magnetic materials which are designed by the interaction between
spin-orbit coupling and quantum confinement. It can be realized by the spin-orbit in-
teraction (SOI) to control electron spins. Datta and Das proposed an efficient model of
spin-transistor in which the electron spin can transport and precess via SOI from a ferro-
magnetic source injecting into semiconductor to reaching a ferromagnetic drain [4]. The
system is shown in Fig. 1.1. In this kind of spin-transistor, we can detect the polarization
of the electron spin which depends on the strength of spin-orbit coupling by tuning an
applying gate voltage. Besides, the spin polarization parallel to the polarization of the
drain can pass through the channel, therefore, one can tune the voltage to modulate the
current flow for ’on-" or 'off-” state.

Before we concentrate on the spintronics devices in semiconductor, we should under-
stand the physical phenomenon clearly in nanoscale especially. Electron spin, the only
internal degree of freedom of electrons, follows naturally from the Dirac equation when
Dirac tried to put wave function in a covariant form, when space and time appear on

equal footing. A nonrelativistic limit of the Dirac equation gives rise to the spin-orbit
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Figure 1.1: (a) Electro-optic light modulator. The polarizer makes the input light polar-
ized at an angle of 450 with respect to the y axis; (b) Spin-polarized FET proposed by
Datta et al. [4] in 1990. The iron contacts playing the roles of polarizer and analyzer are
made of ferromagnetic materials. These figures were plotted by Datta et al. [4] in 1990.
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interaction term, a term that has found great success in atomic energy spectra. The form

of this spin-orbit interaction, in vacuum, is [5]

eh

h
 4m2c? 250 (VV xp) (1.1)

Hso =
dmic

o-(E xp)=

where mg is the free electron mass, h is the Planck constant and c is the velocity of
light. The physical interpretation of Hy, is given below. An electron moving in an electric
potential region sees, in its frame of reference, an effective magnetic field couples with the
electron spin through the magnetic moment of the electron spin. Therefore, the SOI is
established via this effective magnetic field which depends on the orbital motion of the
electron, and this physics holds in semiconductor too when V'(r) becomes the periodic
potential of the host lattice and also the impurities.

The k£ - p model is the well-known method to describe electronic state calculations
in semiconductor, when we investigate physical effect in the vicinity of the band edges.
Furthermore, within the envelope function approximation (EFA), the energy band can
be characterized by effective masses. The SOI in semiconductors requires, first of all, an
effective electric field in the material. Such effective electric field can find contribution
from the build-in crystal field when the crystal has bulk inversion asymmetric (BIA)
the so-called Dresselhaus SOI [2], or structural inversion asymmetry (SIA), the so-called
Rashba SOI [1]. The BIA is found in zincblende structure and the SIA in asymmetric
quantum wells (QWSs) or heterostructures.

However within the effective mass approximation, the effect of all the fast-varying
atomic potential has been incorporated into the effective mass. Slower varying V' (r), with
variation length scale much greater than the lattice spacing, is found to contribute to SOI
with a much greater SO coupling constant A. For a central potential V' (r) depends on

only r without angular dependence in vacuum, the SO coupling is



CHAPTER 1. INTRODUCTION

h h 1dV h* 1dV L Apac 1 dV
——0-(VV =——-——0-" =——-——0=———-—L-0 (1.2
4m(2)020 (VVxp) 4m3c? r dr o (rxp) 4m3c2r dr h ? hordr (1.2)

where L is the orbital angular momentum,\q. = —h?/(4mc?) ~ —3.72 x 1076 A2,

But in a semiconductor, also for a central potential, the SO coupling can be expressed

in the form of

H,=————L- 1.3
hr dr ? (1.3)
~P L1
, where A &~ [E2 <E9+Ao)2]
For a 2DEG, the SOI becomes H,, = —%%d‘gﬁp) L, -0, . Here P is the momentum

matrix element between s- and p-orbital, Eyis the energy band gap, and A represents
the SOI energy split to the spin split-off hole band [? ]. Of particular interest is that
A = 120A2? in InAs, which is seven order of magnitude greater than Ay, [6].

Roughly speaking, this large enhancement of SO coupling constant can be understood

: : : 1 _ 1 1 A mg moc?
in the following. With A4 TEE T g mec?s We Cal see that Soor ™ mt B, For

2

mo 1 .moc 0.5MeV . : A 6 :
InAs, % ~ 55535 B oatearsleading to ==~ 52:x 10°. Comparing to, we see that

the above hand waving argument has captured the essential physical origin of the great

enhancement.

1.2 Introduction to persistent current

1.2.1 One-dimension ring with an external magnetic flux

In 1983, Buttiker et al. proposed a model [7] which is a one-dimensional normal mental
ring threaded by a flux with elastic scattering at zero temperature. In this case, the
single-electron states of this ring can be acquired from the band structure with the po-

tential V (x) = V (z + L), which the potential V' (z) around the loop with perimeter L
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Figure 1.2: Band structure of a linear lattice with lattice constant L. The figure was
obtained from Kronig-Penney model. [8]

corresponds to the time-varying vector potential of the system. The physical behavior of
an electron passing through is the same as an electron in a linear lattice with periodic
potential. The potential variation in one period is consistent with the change of the vector
potential in one route around the ring.

We can see a similar phenomenon in Kronig-Penney model.[8] The band structure of a
linear lattice with lattice constant L is shown in Fig. 1.2. The single-electron energy state
of the ring system is an analogy of the band structure through the rule q% = —ﬁ,
where the electron flux quantum ®, = hc/e. The electronic energy states F,, (®) periodic
in flux ® with period ®, are shown in Fig. 1.3. The same periodic behavior occurs in the

persistent current.

As we known, the current carried by each state FE,, (®) for a time-independent flux at

zero temperature is i, = —¢ [%aa%} According to the analogy between the wave vector
and magnetic flux, the current is obtained as ,, = —c%. Then the total persistent

charge current I = Y i, = —c>_ aqugé) can be obtained by summing over all occupied
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Figure 1.3: The single-electron energy state £, (®) of the normal mental one-dimensional
ring as a function of flux proposed by Buttiker et al.[9]

states up to the Fermi energy at zero temperature.
If the flux is time-dependent and increases linearly with time, there exists induced
electric field £ = ¥ = =192 coercing the state through the Brillouin zone [9]. Under

this situation, we use the analogy between wave vector and magnetic flux again, and an

electron will perform Bloch oscillation by circulating around the ring. The time for the

electron to complete one cycle is T = (Eéljh) = (ig—% = ? with V' = E'L. For one cycle,
the variation of flux is equal to one flux quantum ®, = hc/e corresponds to the change
of wave vector equal to the reciprocal wave vector G = 2w /L. The electromotive field
produces an oscillating current with frequency v = eV/h, i.e., a Josephson frequency with

a single electronic charge. This persistent current will exist even when the field is turned

off or the vector potential is fixed, and the current will keep at the value of flux to which

it is fixed. [9]
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1.2.2 Persistent current in mesoscopic rings with spin-orbit cou-
pling

A mesoscopic ring system with spin-orbit coupling effect was discussed by Splettstosser et
al. in 2003 [10]. The model is a mesoscopic isolated quasi-one-dimension ring with Rashba
spin-orbit (RSO) coupling threaded by magnetic flux at low temperature. The external
magnetic field provides a z-direction flux and the effective magnetic field coming from
RSO coupling is in the radial r-direction. The tilt angle 6 between z and r is presented
as the strength of the RSO coupling shown in Fig. 1.4.

If the particle number is not too large, the effect of RSO coupling on persistent charge
current with even number or odd number of electrons is quite different from each other.
In the other way, the prominent effect of RSO coupling on persistent spin current is the
existence of the spin current for even electron number in the ring which vanishes in the
absence of RSO coupling.

The energy spectrum for the ring with an idealized impurity was obtained by Splettstosser
et al. and shown in Fig. 1.5. The author expressed the impurity by a delta-function barrier
Vod (¢) and the Zeeman energy is negligible in the local spin frame. They demonstrated
the energy spectrum from the Hamiltonian of electrons in x-y plane. The electrons are

1

assumed to move in a ring confined by a parabolic radial potential V; (r) = smw? (r — a)’

in the Hamiltonian:

(p—eA)>+(p— eA)i

2m

H =

+V.(r)+ Hyo = Hy + Hg, (1.4)

where Hy, = § |0, (p —€eA), — oy (p— eA)x] is the Rashba spin-orbit coupling term.
Briefly speaking, the author obtained the approximated secular equation of the system

by projecting the Hamiltonian on the eigenstates of the Hamiltonian without RSO cou-

pling term and modeling the impurity by its energy-dependent transmission amplitude.

Then they solved the secular equation to get the energy spectrum. When comparing with
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flux @
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Figure 1.4: A mesoscopic ring with Rashba spin-orbit coupling threaded by magnetic flux.
The external magnetic flux is in z-direction and the angle # between z and r parameterizes

the strength of the RSO coupling. This figure was plotted by Splettstosser et al. in 2003.
[10]

a
B
T r

Energy/(h ®_)

Figure 1.5: It is the energy spectrum for the ideal one-dimension ring with a delta-barrier
impurity. Parameters are impurity strength constant A = 0.1 and title angle cos = 2/5.
The energy levels are shifted in flux direction by 1/ cos . Solid lines correspond to spin-up
states in the local spin-frame basis while dashed line to spin-down states. This figure was
plotted by Splettstosser et al. in 2003. [10]
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the energy levels after calculation for the same ring without RSO coupling, we can find
that the energy levels for the system with RSO coupling are shifted in the flux direction
by 1/cos@. For the reason of the energy splitting coming from RSO coupling, 1/cos6
corresponds to the strength of the coupling. The shift in flux direction is different by the
electron spin polarization state. On the basis of local spin frame, spin-up states move to
the left (solid line) while spin-down state to the right (dash line).

At zero temperature, the persistent charge current carried by each state n is i, =

OB (®)
B

, and n stands for a set of quantum numbers used to label the eigenstates including

the spin projection in the local spin frame. Therefore, the total persistent charge current

[ is obtained by summing over all occupied states; i.e., I = > i, = —afqﬁs, where
n=occupied
E, is the ground state energy of the system.

The flux dependence of the persistent charge current is individually different accord-
ing to the number of electrons /N.. Here three cases are discussed for N, is not too
large:(1)N, = 4N, (ii) N, = 4N + 2, and (iii)N. = 2N + 1 where N is a positive integer.
If N, is large enough, the persistent charge current has a general behavior independent of
N..

In case (i), where N, = 4N, the numbers of spin-up and spin-down electrons are both
even. The current flux characteristics are shown in Fig. 1.6. The solid line is for the
system in the absence of RSO coupling. The effect of RSO coupling on the charge current
is getting more obvious as 1/cosf increases. For each spin polarization, the current-
characteristics of even number spin electrons are shifted in flux by £1/2cosé. The total
persistent charge current of the system is the superposition of the two shifted current flux
characteristics.

Case (ii), where N, = 4N + 2, is obtained from the 4N case by shifting flux by ®,/2
and corresponds to an odd number of spin-up and spin-down electrons. The current is the
analogous superposition of the two shifted current flux characteristics for odd number spin
electrons. In these two case (i) and (ii), the strength of RSO coupling corresponding to

1/ cos® can be measured. Further more, we can observe the behavior that the minimum

10
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distance between two jumps of the current within one period interval is related to 1/ cos 6.

For case (iii), N. = 2N + 1. As strength of RSO coupling 1/cos@ increases, the
coupling suppresses the rounding more. It is because that the rounding comes from the
impurity, RSO plays a role of decreasing the effect of impurity. This suppression makes
the current flux characteristics from sawtooth shapes with jumps. This jumps come from
the level crossing in the energy for the system with opposite spin in this odd number of
electrons.

The persistent spin current of each eigenstate (¢,0) in the quantization axis of local

_19Eqq

spin frame is Ie(qa) = — 1k,

where E,, is an eigenenergy of local spin frame. The
cigenstates of the system in the local spin frame are €'?*1/2?|4) with |+) denoting the
eigenspinors of spin operator o, and ¢ being an integer. This spin current for each state
is the charge current for each state multiplied by the magnetization over charge e factor
where the total spin current is obtained by summing the contribution from each state
like the case in charge current [p = ) Ie(qa) at zero temperature. This spin current is the
projection onto the quantization axfsc.f of local spin frame. The other projections of spin
current can be derived from [y through I, = Iycos6 and I, = Iysinf, where I, is for z
projection and I, is for the radial r projection.

For even number electrons 4N + 2, the effect of RSO coupling on the persistent spin
current can be observed through comparison of the spin current with the charge current.
In this ring for even number of electrons, the spin current vanishes without RSO coupling.
However, with RSO coupling, the spin current of the ring with electrons 4N + 2 is shown
with dashed line in Fig. 1.7. by Splettstoesser et al. [10]. Evidently, the spin current
has nonzero value at zero temperature and its characteristic curve exhibits dramatically
different flux dependence from the charge characteristic curve (solid line) of the same ring.
It shows a clear signature of RSO coupling. The RSO coupling produces a relative shift
of energy band in flux direction and hence enables a finite persistent spin current for an
even number of electrons.

For odd number of electrons (2N + 1), the spin current is supposed to be proportional
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Figure 1.7: In even number electrons 4N + 2 case, comparison of the persistent spin
current (dash line) with the charge current (solid line) of the ring. The spin current is
for spin projection onto the local spin frame and parameters are the impurity strength

constant A = 0.5, the tilt angle cosf = 0.66. This figure was plotted by Splettstosser et
al. in 2003. [10]
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Figure 1.8: Persistent spin currents of the ring with odd number electrons 2NV + 1 (dotted
line) and even number electrons 4N + 2 (dashed line). Parameters are impurity strength

constant A = 0.5 and tilt angle cosf = 0.9 corresponding to a small spin-orbit coupling
strength. The figure was plotted by Splettstoesser et al. [10]
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CHAPTER 1. INTRODUCTION

the charge current in the absence RSO coupling. In this ring with RSO coupling, the spin
current of the ring with odd number electrons is shown with dotted curve in Fig. 1.8. The
spin current flux characteristic curve has different flux dependence from the charge char-
acteristic curve. According to the result, the proportion relation does not exist because
of the presence of RSO coupling.

The persistent spin current just like a magnetization current, could be detectable via
tuning an external electric field. By making a Lorentz transform to the rest frame of spin,
the electrostatic potential for a point at a distance z is obtained as ¢ (2) ~ {2 guplysin 0 5.
Where the distance z is the vertical length from the center of the ring and is summed to
be much smaller than the radius a of the ring. Besides, in the expression of potential, g
is the gyromagnetic ratio, g is the vacuum permeability, and pp is the Bohr magneton.
This potential expression is the same as the one resulting from the persistent spin current
in Heisenberg rings derived by Kopietz et al. [11]. If it is possible to measure the spin
current through electric field generated by its transported magnetization, the existence

and magnitude of RSO coupling in conducting rings can be finally verified.
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Chapter 2

Finite width mesoscopic Dresselhaus

spin-orbit (DSO) ring

Recently, it is possible to grow self-assembled annulus semiconductor structures in a large
range of inner and outer radii by using molecular beam epitaxy. Typical samples show
a circular cross section with an inner radius about 10 nm, and the outer radius ranges
between 30 and 70 nm [12-16]. This kind of structures has been studied by their potential
applications as spintronic and quantum computing. [14, 15, 17, 18]. In this chapter, we

will start the system from the Hamiltonian to get the energy spectrum and spin density.

2.1 Model of a mesoscopic ring with Dresselhaus spin-

orbit coupling

2.1.1 Hamiltonian

The geometric model is an isolated finite width mesoscopic ring with Dresselhaus spin-
orbit (DSO) coupling without any external electromagnetic field. The cross section of the
structure is shown in Fig. 2.1. Assuming 7 (r3) and d are the inner (outer) radii and

height, the center of the ring is at origin.

15



CHAPTER 2. FINITE WIDTH MESOSCOPIC DRESSELHAUS SPIN-ORBIT (DSO)
RING

e

Figure 2.1: The figure is the cross section of the finite width mesoscopic ring, where r;
and 7o are the inner and outer radii.

The total single-particle Hamiltonian in a mesoscopic ring that has bulk inversion
asymmetry (BIA) and formed out of a quantum well with the well thickness along z and

z along [001] has the form:

H = Hy+ Hpso (2.1)
p2 —

=L V(7. (22)

Hpso =7 - h+. (2.3)

Here W? denotes the effective magnetic field arising from the DSO coupling, m* is the
electron effective mass, V (7, 2) is a hard-wall confinement potential, 3 is the Dresselhaus
SO coupling constant, and & = (o, 0y, 0-) is the vector of Pauli spin matrices. For the
case of a narrow quantum well, the electrons occupy only the lowest subband, we can

average E}? over the well thickness d to give
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i =Bk, (k] — (K2)), (2.4)
hi, = Bky ((k2) — k3) , (2.5)
hi, = B (k.) (k7 — k) =0, (2.6)
(k.) =0, (2.7)

wy(5) (28)

If we just consider the k-linear BIA contribution, the effective Hpgo assumes the form

Hpso = Hip =0 <kr§> [Uyky - kax] = -0 <k,§> [0+k:+ + U—k'—] ) (2-9)

where 04 = % (0, £i0y) and ky = k, £ ik,. The effect of the operator o, with subscript
+ (—) is to increase (decrease) the spin of the electron by unit of 4. The operator ki can

be expressed in the form k. = —iet™® | L 4412
Op p Op

} = —ieiz“"p;w which effect is to change
the orbital angular momentum by 4A. This is evident by the factor ¥ in k..

In matrix form

p2 2 p2 . T\2 1P+
-+ V. —B<ki>k ae TV ip(5)%€e%p
I~ m 2 + _ 2m | <d) PP (210)
B<kE>k. £tV B e Py BtV

In the following, we will guess the form of the eigenstate of H with the choice of
quantum numbers parallel that of the unperturbed eigenstate {E2m0> Here n, m, o are,
respectively, the quantum numbers for the radial, azimuthal and spin degrees of freedom.
Hints for the form of the eigenstate of H can be obtained from applying Hpgso repeatedly

0
upon ‘Enmo>
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Consider, for example, applying Hpgo to |E2,m,T>, we get, apart from a proportionality

constant —f3 (k?), the essence of Hpgo is carried by the operator ok, +o_k_,

Hpso ‘E27m7T> x (oyky +o0_k_) ‘Eng>

=o_k_|E2,. ;) (2.11)

where the superscript (1) denotes the state ‘E£L17)7w> to have a different radial dependence

from that of ‘E2m0> Applying Hpso the second time gives

> X (o4ky + o k) ’EST)WLO
=0 ky ‘Egr)n—l,l>

(2)
x )Ean> -

Hpso ‘Eﬁ:?)n,u
(2.12)

From this we see that only |E,, 1) and |E;, 1) are coupled by the action of Hpgo.
We no longer use the superscript in the states | E, ,, ) because the eigenstate of H should

include arbitrary number of times the Hpgo is applied. This amounts to give the form

for the total eigenfunction where fi(p), fo(p) have to be solved explicitly.

Fle)e™ (213

fa(p)eltm=1#

U —

For a hard-wall confinement potential

0 forr,<p<ryand|z| <2
' zand |2] <5 (2.14)

14 (7’ Z) =
00 otherwise

the Schrodinger equations inside the ring is given by

p? s (T2 it imep imep
- 0 e¥p filp)e filp)e
m (@) o 1@ =F 1@ . (2.15)
iB(5)%e%p,, o fa(p)eltm—1e fap)eltm=1e
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RING

2.1.2 Dimensionless

In order to get more clearly formula and prepare for the Numerical analysis, we set

some parameters to dimensionless the Hamiltonian: (a) Fermi wave length [, (b) Fermi

21.2
wave vector ky = %, (c) Fermi energy E; = anf , (d) Del operator in polar coordinates
2
S ~ ~ 5 6(5)" _
V= k. (), = ki, () B= £ () 5= )= 2.

After calculation, we get the dimensionless couple equations ( The detail process is

shown in Appendix A ).

V2 [fu(pr)em) = iBeme | 2 £(p,) — B fo(p) | = ~Efi(r)em

- E B (2.16)
V2 [fo(B)eim 08 = et V2 | £ () + 2 fi(7r)] = —Efa(pr)eim e

Since these differential equations have the forms of Bessel equation and the recurrence

relation, we can choose the Bessel functions as the spinor part eigenfunctions. Therefore,

—Y? Adm (Y Pr) e’ — ig[_'VBJm('Yﬁr)] eme = _EAJm('Vﬁr)eimso
2By () el D¢ ZB VAT 1 (5,)] em=De = _EBJmil(fyﬁr)ei(m—l)go
(2.17)

where A and B are the coefficients of the two eigenfunction components.
Comparing with above couple equations, we find that the ratio of the coefficients

R = % = 41, then we get two branches of wave functions

T (VPr)e™? T (VPr )€™
v (vor) o (vor) | (2.18)
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2.1.3 Eigenenergy and Eigenstate

We get two energy dispersion v2+3y—FE = 0 and v2—3y—FE = 0 when R is equal to +i and

—i respectively. Then, if we set v = 3 <5+ \/ 3+ 4E> and v, = 1 <—5+ \/ 3+ 4@),

we can obtain four-eigenstates ( first kind of Bessel function ):

Im (107) €% I (—10) €M%
0 o (1) ~_ ,
—im-1 (y1Pr) €D T (=71pr) €017
(2.19)
Jm Nr 6z‘m<p Jm _ Nr 6im(p
(11D (7v20r) vy (=727r)
i1 (y2py) €M71E —iJ 1 (—yapy) €0 1)¢

But (I) (II) and (I1I) (IV) have the same forms, there are just two independent
bases. Therefore, we chose (I) and (I11) to be our eigenstates. Besides, the index of m
should be integers (including positive and negative), then we have to introduce the second

kind of Bessel function ”Neumann” to be eigenstates.

N (117) € Ny (=717,) €
(1) #o (1) o
~iNm_1 (1197 €12 iNp_i (—717,) eitm=De
(2.20)
Nm ~T eimSD Nm - ~r €im90
(I11) ) | (IV) (=720 |
iNp—1 (V20r) pi(m=1)p —iNp_1 (—7257) ei(m=1)¢

In order to get more clear physical meaning, we change Bessel functions to Hankel

functions: H." (x) = Jo(x) + N, (), HY (x) = Jo(x) —iN4(x). Thus, we get the total

eigenfunction:
HY (317,) eime HE (115, eme
v ! C o 2 .
—iH Ly (1) €02 —iH®) | (y17,) ellm=e (2.21)
HY (10pr) € HE (127,) ™
+c ) _ +d o |
Z.H’(”’l (o) €% iH,) | (y2p,) €m=1e
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where a, b, ¢ and d are the coefficients which can be decided by confinement potential
and normalization.

Since the annulus is defined by the hard-wall confining potential Eq. (2.14), we can
apply the boundary conditions W (p =r1) =0, U (p = ry) = 0. These conditions give the

equation set:

Hy(,}) (717"1) Hr(r?) (717"1) Hr(r}) (727’1) Hg) (727“1) a
—HD () —HE  (nr) HY L () HY L (am1) b
1 i 1 ) =0 (2.22)
HY (717s) HSura) B (ara) - HY (var2) c
- 7(721 (’717"2) _Hgll (’717”2) Hr(nl)—l (727’2) Hff)-l (727”2) d

If there exists non-trivial solution for a, b, ¢ and d, the determinant of the matrix M

must vanish, i.e.,

det (M) = 0, (2.23)

where

HY (71m) HY (mr)  HY (o) HY (am1)
A —H%L (7171) _HTSE)_I (7171) Hf()il)—l (7271) Hﬁ? (72r1) | (2.24)
Hr(n) (’717”2) Hr(n) (’717”2) Hﬁn) (727’2) Hv(n) (727’2)

—HY (are) —HE (yra) HEY L (yar)  HYL (7ars)

The more detail process is shown in Appendix A.
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2.2 Numerical results and discussion

2.2.1 Energy spectrum

Physical parameters used in the calculation are obtained for the case of GaAs: with
DSO coupling constant § = 25eV - ;1, effective mass m* ~ 0.067m,, Fermi wave length
As = 40nm. Structures parameters are inner radius r, = 10nm, outer radius r, = 70nm
and the height of the ring d = 50 A. 3].

Fig. 2.2 presents the energy spectrum for the quantum ring which is determined from
the determinant equation Eq. (2.23) and Eq. (2.24), where v, and 72 contain the energy E.
We want to show the effects caused by the DSOI on the first seven quantum ring energy
levels in units of Fy, as a function of the dimensionless DSOI coupling constant B . Due to
the confinement potential and in the absence of the DSO interaction, we know that there
exist discrete energy levels in y-axis. And each of them have degenerate states, namely,
|ES .q) and |EY L) for a given cigenenergy EJ . When we introduce, however, the
DSOI strength, we can see that the unperturbed energy level splitting into two parts and
most of them decreasing as B increasing monotically. Specially, some eigenenergies have
the trend which arise up first and then go down when 5 increasing.

In this section, we will focus on the physical insight of the splitting energy in our
system. First, we propose a useful regulation to understand the development of the states.
If we just consider the confinement potential in the quantum ring without DSOI, we can

get the discrete quantum energy levels and each of them has different degeneracy states

respectively, for instance, there are four degeneracy states |E9,3,T>> !E?’& l>’ E?,—S,T> and
|E9,737 l> in the same eigenenergy EY ;. However, if we add the DSO interaction to our
system, we find that each original degeneracy energy level split into two groups of energy
levels, and the new energy level exists new degeneracy states which is the superposition
of the original eigenstates in H,. The phenomenon can be understood by the operator

form of the Hpso = —fB (kZ) (04ks + o_k_) which has been presented in Eq. (2.11) to

Eq. (2.12) in section 2.1. In Hpgo, the operators k; and k_ are like the angular moment
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Figure 2.2: The energy spectrum for the quantum ring which is determined from the
determinant equation Eq. (2.23) and Eq. (2.24), and it is shown the effects caused by
the DSOI on the first seven quantum ring energy levels in units of Ey, as a function

of the dimensionless DSO coupling constant (3. These doubly degeneracy states come
from the superposition of the different unperturbed eigenstates respectively. The physical

parameters are obtained for the case of GaAs: g = 25eV - ,(4)1, m* =~ 0.067me, A\ = 40nm,
ry = 10nm, ro = 70nm, d = 50 Zl
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operator, the operators o, and o_ are like spinor operator. Each of them can create
or destroy the quantum number m or T| respectively. Today, we use Hpso to operate
the unperturbed states repeatedly in the quantum ring, the angular moment quantum
number and the spin quantum number are created or destroyed respectively to become
new superposition states [1,) = ¢1|E131) + 2 |E121), [ts) = c3|E1—27) + ca|Er—3,),
|e) = ¢5 |Evaq) + co|Ersy) and |¢g) = c7 |Ey—31) + cs|E1—4,). Therefore, we can use
this simple method to understand the development of states in DSOI systems.

Second, we find that the relative weighting between the constituent bases state ket
plays an important role to effect the trend of the energy spectrum when the DSOI strength
increases slowly. For example, we start from the unperturbed energy level in m = +3. We
can understand that the probability of the states |E) 31) and |E; 3 ) have more weight
in state |1h,) and |t) from Fig. 2.3 when 3 is small. Physically, it is because that the
splitting energy levels start from Eﬂig,, and the effect coming from energy levels E?,Z T
E?,—ZT can be seen as the correction of the energy. Therefore, we can distinguish which
one of the elements of superposition states is domination in small 5 .

Third, we deduce that the level repulsion is the reason of the two splitting energy
levels arising up and going down respectively when EE is small. Because of the first and
second analysis, we know that the splitting energy level consists of the dominate energy
level and the upper (lower) energy level. The upper or lower energy level play a repulsive
role to effect the trend of the spectrum. For example, the original eigenstates in the
eigenenergy FY ., split into two new degeneracy state [0,) = c1|E13;7) + ¢2|E12;) and
[ihy) = c3|E1 _2,1) 4 c4|E1—s). The lower energy E} ., repulses E? ;4 to arise up energy.

Fourth, in the next chapter, we will get the result about each of the perturbed states (
[a), |Us), |1e) and |tbg) ) is not mixing by considering external magnetic flux. Therefore,
we can use nondegenerate perturbation theory to analyze perturbation problems.

Fifth, in the small Dresselhaus strength region, we can get the trend of the energy
level which is represented in the quadratic form. The reason can be demonstrated by two

methods shown below. In nondegenerate perturbation theory, we can obtain the result,
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Figure 2.3: The relative weighting between the constituent bases state ket plays an im-
portant role to effect the trend of the energy spectrum. When the Dresselhaus strength
is small: (a) ¢; |E134) has more weight than ¢y |E24) in state |¢,), (b) ¢4 |Ey —5,) has
more weight than cs |Ey _o1) in state [¢y), (¢) cg|F13,) has more weight than cs |E44)
in state [1.), (d) ¢7 |E1—31) has more weight than cg |Ey _4 ) in state |¢g).
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Figure 2.4: In the small Dresselhaus strength region, 0 < 5 < 0.1, we can get the trend
of the energy level which is represented in the up (down) quadratic form. The physical
parameters are the same with Fig. 2.2.

, m| H |n 2 m|H |n 4
<n!H!n>+Z%%O+Z% (2.25)

where the first order perturbation is equal to zero (n| H |n) = 0 and the second order

perturbation is not. In other way, let us simplify the problem to a 2 x 2 matrix, then the
En

Hamiltonian Hy + Hpgo can be represented as , where B is denoted as off-
B ¢,

diagonal term proportional to DSO coupling strength. If we calculate the determination

of this matrix when  is small, we can get the approximate eigenenergies.

En+ € Ep — & 1 2 2
e =il gy [T B? 2.26
c 2 2 <+2(5n—5m) ) ( )

This result is the same as our numerical analysis which is shown in Fig. 2.4
Finally, we also find that there are two degeneracy eigenstates which are cause of the

time-reversal symmetry in each new splitting energy level. If we use —(m — 1) to instead
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of m in our Schrodinger equation Eq. (2.16), we can get the same couple Schrodinger

equations which are meant to be Kramer degeneracy.

2.2.2 Spin density and net magnetic dipole moment

For a given eigenenergy E, ,,, a set coefficients of eigenfunction can be determined from
the equation set Eq. (2.22). With the normalization condition f:f Yabnpdp =1, we can
obtain the uniquely determined eigenfunction Eq. (2.21).

fin (Br) €™

Im—1 (57") ei(m—1)¢>

If the general form of the eigenfunction is defined as ¥, (p,, ¢) =

the components of the spinor part eigenfunction are

fm (52) = aH D (pr) + bHP (710,) + cH (v2p,) + dHD (21, (2.27)

g1 (5r) = i (—aHS () — BHSY (1) + B3y (125) + AH (197) ) (2.28)

Then, the particle density of each state m is N, (p,) = f% (pr) + g%,_1 (Pr)-

The spin density can be derived by the same method just like particle density. The
z-projection spin density for each m state is SZ, (p,) = ¥ o, = f2 (pr) — 92,1 (Pr)-
By summing the contributions from ground state to the mth state, one can acquire the
total spin density at zero temperature S, = > SZ (p,). The spin density as a function of
dimensionless radial position p, = p/r; of them ring with each state is shown in Fig. 2.5 at
DSO constant 3 = 25eV - ;1 .

In Fig. 2.5, we can see that when we input single-electron in each state, the net 2z-
projection spin is not zero, which can be seen as a magnetic dipole moment. But, because
of the cancelation relation between states, there will left very few z-projection spins.

Therefore, if we input odd-number of electrons in our system, we can get finite net total
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Figure 2.5: It is the z-projection spin density for each states as a function of the dimen-
sionless radial length which the angular is fixed to zero.(a) |¢q.,) states, (b) |[1pm) states,

pr

(€) |tem) states, (d) [am) states.
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the angular is fixed to zero.(a) radial ratio in different range, (b) radial ratio is set as big
as possible.
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z-projection spin.

In the other way, we change the inner and outer radii for different range to observe the
spin polarization phenomenon. Fig. 2.6 are the z-projection spin density as a function of
radial ratio %. We know that when the inner and outer radii become bigger in the same
time, the ring width are more like a horizontal channel in the ring system. Therefore, we
can see the effect of the different ring width between Fig. 2.6 (a) and Fig. 2.6 (b), then
we make a simple conclusion: When the ring width is big enough, the spin accumulation

phenomenon would be more observable.
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Chapter 3

Finite width mesoscopic Dresselhaus
spin-orbit (DSO) ring with a

magnetic flux

3.1 Theoretical model

3.1.1 Hamiltonian

In this chapter, we start the system from the single-particle Hamiltonian which describes
an electron in the mesoscopio ring piercing by a magnetic flux ® with DSO coupling. The
geometric model is almost the same with Fig. 2.1 in chapter 2. Therefore, we can write

down the Hamiltonian quickly:

o L4V —B<k>k 5
~ 2 . .
—B<kI>k_ e +V

In order to consider adding the magnetic flux in our system, we should correct the

momentum: (a) p — p—eA; (b) k — k — %, where A is the vector potential chosen as
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. . . o @ 2meApp _ eAyp - :
the axial gauge. And the corresponding magnetic flux is B = —h - = —j In units of

flux quantum &y = %

In the following, just like in chapter 2, we guess the form of the eigenstate of H with
the choice of quantum numbers parallel that of the unperturbed eigenstate |E2ma> Hints
for the form of the eigenstate of H can be obtained from applying Hpso repeatedly upon
|EY ,.»)- This amounts to give the form for the total eigenfunction where fi(p), f2(p)

T, O

have to be solved explicitly.

o[ Awem ) )

fa(p)eltm=1%
By rewriting the Hamiltonian in polar coordinates and a hard-wall confinement po-

tential defining the annulus is

0 forr <p<ryand|z] <2

V(P2 = (3.3)

00 otherwise

we can get the coupling Schrodinger equations

( 2 2 ) ) - : ; o
s [ -2 () e (55) ] e 9 )% (4 2+ 85) o) el

= Efi(p)e™?
2 ‘ . - ;
o2 () b+ ()| et i ()% (£ - 4 - %) R e

= E fo(p)elm—e

\
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3.1.2 Dimensionless

In order to get more clearly formula and prepare for the Numerical analysis, we set

some parameters to dimensionless the Hamiltonian: (a) Fermi wave length [, (b) Fermi
k3
I

5—, (d) Del operator in polar coordinates
8(%) ks

V=V, (0) ph, = ki, () B = £, () 5= "5, (h) 5 = £.

After calculation, we get the dimensionless couple equations (The detail process is

wave vector ky = %, (c) Fermi energy E; =

shown in Appendix B.)

Let ¢ =m — 2, Eq. (3.5) become
o)

U (785) = &} 1) e =B (= Ha =) 2 (7r) €% = ~Ef(7r)e™
(32 (72) - S} £ (5) 02 —iF (£ + 2) fi (7,) €02 = —Efy(5)elm e
(3.6)

Since these differential equations have the forms of Bessel equation and the recurrence

relation, we can choose the Bessel functions as the spinor part eigenfunctions. Therefore,

_VQAJq(Vﬁr) - ig[_WB‘]q(Vﬁr)] = _EAJq(%Br)

’ g (3.7)
—*BJy 1 (vpr) — 1B [vATy 1 (vpr)] = —EBJ, 1 (v0r)

where A and B are the coefficients of the two eigenfunction components.
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Comparing with above couple equations, we find that the ratio of the coefficients

R = % = +1, then we get two branches of wave functions

J, (VD )eme J (D, ) e
v «(7Pr) o «(vPr) | (3.8)

qu—l(Vﬁr)ei(m*1)¢ _Z'Jq_l(,yﬁr)ei(mfl)go

3.1.3 Eigenenergy and Eigenstate

We get two energy dispersion v2+3y—F = 0 and v2—3y—FE = 0 when R is equal to +i and

—i respectively. Then, if we set v = 3 <B+ \/ 32+ 4E) and v, = % (—B+ \/ 3+ 4E> ,

we can obtain the total eigenfunction

H? (1) e ;™ (npr) e
V=a W ~ e @) ~
_Z.Hq*l (’Ylpr) ez(m—l)@ _in—l (ler) ez(m—l)cp (3 9)
Hcgl) (v20:) e'me H§2) (72pr) e
+c , ' +d ) '
iH (o) /7 iHZ, (7, elm=e

where a, b, ¢ and d are the coefficients.
Since the annulus is defined by the hard-wall confinement potential, we can apply the
boundary conditions W (p =r1) =0, U (p =ry) = 0. These conditions give the equation

set:

H(nr) - HY (n) - HY (o) HY () (e

- q(lf)1 (7171) —Hq(z (7171) Héz (72r1) Héz (7271) b
1 . 1 ; =0  (3.10)

H,g : (mir2) Hé : (7172) H(g ) (72r2) H(g ) (v2r2) c

—HD, (ira) —HP, (yara) HY, (yara)  HY (7a72) d

If there exists non-trivial solution for a, b, ¢ and d, the determinant of the matrix M

must vanish, i.e.,

det (M) = 0, (3.11)
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where
Hq(l) (717’1) Hf) (717"1) Hq(l) (727"1) qu (727“1)
M= —Hél_)l (1) —HéQ_)1 (7171) H¢§1—)1 (72r1) H(§2—)1 (72r1) (3.12)
Hcgl) (717“2) Hq@) (717“2) H(gn (727”2) Hf) (727”2)

—Hél—)l (717"2) —Héz—)1 (’717”2) Hél—)1 (’727”2) Héz—)1 (’727”2)

The more detail process is shown in Appendix B.

3.2 Expression for charge current density

The Hamiltonian of the system including magnetic flux in polar coordinate is

2
B 52 52 1 92 (D 5] P
= {opﬁpap‘f?[_wwz <¢_°>%+<¢_°> ]} . (3.13)

+if (k2) [(ei‘”0+ +e o) & 1 (e¥oy — e o) L (Z% n (}%ﬂ

We start from time-dependent Schrodinger equation

_ a9

Then, we put the complex conjugate wave function to operator Eq. (3.14):

2
400 . RE 4 ___l 2\ 0 S
v =g {pon @@
HBE) 0T [0 + e ) 2+ (o, —etio )1 (i + )]

Q

At the same time, we change the wave function in Eq. (3.15) to become opposite

complex conjugate form:

2
_ wt _ _ n? ¥ 410 1 |_9 o9 (2) 9 2 +
1/1271 o 2m*¢{3p2+p3p pZ{ 9¢p? 21(4’o> <P+<‘I>o) ]}¢ (3.16)
1
p

—if <k€> (0 [(e—w(;_ + GWUJF) a% + (e_i‘pa_ — e’¢0+)
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By combining Eq. (3.15) and Eq. (3.16), we can obtain the azimuthal component of
the current density comparing with the continuity equation.

—ih 0 ot o ] . 4
] L s e ) R B L

(3.17)

In other way, the general form of the wave function can be expressed briefly by defining

its two components:

fo (pr) €™

gq—l (ﬁr) ei(m_l)(p

S
Il

(3.18)

where
fo(5r) = aHW® (np,) + bHP (117,) + cHD (305,) + dHP (125, (3.19)

9ot (7) = i |—aH ) (1) = bHZ, (1) + cHY, (v05,) + dHP, (125,)| - (3.20)

They give the terms in azimuthal component of current density :

(w oYt e . .

77D+ ¢_ Qmeq fq + 21 (m - 1) gq—lgq—l (321)
VT = fofy+ 9a 1941 (3.22)

+ i ; 01 fqeim@ * —1
Vo = ( fremime g;;_le%(mw) , = fr 941677 (3.23)

00 g1 m%

00 f,em? .

Yoy = < freme gr z(mw) | = Gg1fe€"” (3.24)
1 0 gq1€ Mm%

36



CHAPTER 3. FINITE WIDTH MESOSCOPIC DRESSELHAUS SPIN-ORBIT (DSO)
RING WITH A MAGNETIC FLUX

B<k§> -m*ry

If we set vg = t=—, we can get the azimuthal component of the current density:
h 1 . . ~ s «
To= i G [af; fa+ (@ = 1) g; 190-1] — Vs [f 991 — 951 4] (3.25)

The total charge current density at zero temperature is the sum of the contribution
from ground state to the Nth state where N is the total electron number. In the absence
of magnetic flux, the distribution of the total charge current density is zero even in the

presence of DSO coupling.

3.3 Numerical results and discussion

3.3.1 Energy spectrum - Removal of degeneracy

Physical parameters used in the below calculation are obtained for the case of GaAs: with
DSO coupling constant g = 25eV/ - Zl, effective mass m* ~ 0.067m,. Structures parameters
are inner radius r; = 10nm and outer radius ro = 70nm. The energy spectrum which is

plotted in the range of —0.6 < q% < 0.6 adopted the same parameters in chapter 2 before.

&

Do 11 our

Fig. 3.1 is the energy spectrum displayed as a function of the magnetic flux

system which is obtained from the determinant equation det (M) = 0, and 3 is turned off

2.2
hkf
2m

in (a) turned on in (b). The dimensionless energy E is eigenenergy in units of E; =
In Fig. 3.1 (b), we see that each of the discrete eigenenergy splits into two parts (arising
up and going down) when we turn on external magnetic flux, and it is interesting that
the bigger m become, the wider energy splitting would be.

In order to observe the development of the energy levels and eigenstates easily, we
combined Fig. 2.2 and Fig. 3.1 (b) artificial. In x-axis, left hand side is the dimensionless
DSO coupling strength 3 from 0 to 1, and right hand side is magnetic flux ® /@ from
0 to 0.6 ( keep B = 1). Then, we will discuss some issue about the eigenstates and the

effect of the external magnetic flux in this section.
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Figure 3.1: (a) Several lowest dimensionless eigenenergies F as a function of the magnetic
flux ®/®, for the quantum ring without DSOI, (b) with DSO coupling constant 3 =

25eV - ,(21 Where the legend denotes the state in the form of ( n , m ), nis a, b, ¢ or
d and m is the dominated magnetic quantum number. The other physical parameters
are obtained for the case of GaAs: m* ~ 0.067m,., A\y = 40nm, r = 10nm, r, = 70nm,

d =50 A.
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Figure 3.2: Left hand side is the the several lowest dimensionless eigenenergies F as a
function of the dimensionless DSO coupling strength 3 from 0 to 1, right hand side is
the eigenenergies as a function of the magnetic flux ®/®q from 0 to 0.6. The physical
parameters are the same with Fig. 3.1.
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First, we found a simple rule for the removal of the degeneracy when ® is turned on.

This analysis should be demonstrated by the operator form:

1o 1o

= (5,) [k + (G ) w9 o =) w20

In Eq. (3.26), we find that there are no correction about the orbit-angular moment and
spin-angular moment in the first several terms, but yes in the last two terms. For example,
there are two degeneracy states [1h,) = c1|Ey4;) + c2|Ey, ) and |th) = c3|Ey ;) +
Cy |E17_37 l> in the same eigenenergy. If we add, however, the magnetic flux to our system,
we find that original degeneracy energy level split into two new energy levels, cé {E1,72,T> +
c, |E1,—3,1> and ¢, |E1,3,T> + ¢ |E1,27l>' The analysis is the same as the Hpgo repeatedly
operating on original states in section 2.2.1. Therefore, Hgp can not create new states by
magnetic flux but just recombined original states.

Second, the external magnetic flux will split energy level again without mixing. As-
suming m’ > 0, then we can redefine |¢,) = ¢1 |Epmig) + 2 |Enpr—1,) and |¢) =
C3 {En,—(m’—l),T> + ¢y |Ey —mr,y). After considering magnetic flux, the effective correctional

Hamiltonian in matrix form is

2i 0 1 ® . ]
19 Dop v om0
Hy = (‘3) PO~ po . (3.27)
p Lo —iBe—i 260 L 1%
iBe? p Op T p ®o

Then, we calculate the expectative value (¢,| He |ty) which is equal to zero and un-
derstand that the original degeneracy states which exist in Hy + Hpgo just split again
without mixing respectively after considering external magnetic flux (The detail is shown
in appendix. C).

Third, we demonstrated that states with m, < 0 have higher energy than states with

m, > 0. If ® is small, He can be redefine as first order perturbation:
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1 Sas B’
HY = (__) poe . (3.28)

Then, we get the expectative value of Hg) by using state |1,) and state |1¢) respectively.

(The detail is shown in appendix. D)

1 1 ¢ k 1
<1/}a| Hé) |¢a> = <¢b| Hé) |77Z)b> r N (aﬂ) / {E [(2m - 1) N + Sz] + <;) 5Sy(300)}dv’

(3.29)

whete N = 60 = fify + Gfgty S- = Uros0 = f1f, — 6711, and S, =
i [= 7 () Gnm—1 (p) €7 4 g 1oy (p) frm (p) €] Tt is reasonable for us to understand
that when m > 0, the correction of the energy goes down, when m < 0, the correction of
the energy goes up. The trend is shown in Fig. 3.2.

Finally, we also got a reasonable explanation for the phenomenon that the higher the
state becomes, the wider energy splitting would be. Base on the third discussion, we can
tell that the scaler of the energy splitting is proportional to (1| Hél) |1p) — (4] Hg) [thy) o
2(2m —1) (%) i %dv. Thus, the energy splitting range is dependent of m, in other

words, the bigger m becomes, the wider energy splitting would be.

3.3.2 Persistent charge current

The total persistent charge current at zero temperature can be obtained from the charge
current density of each state through summing the contributions from all occupied states,
ie., I = f:f {Z Jm] dp = —g—g. The total persistent charge current and the angular
momentum Sz,mLz, Sz + Lz, Lz(@ = 0.01) with even number electrons N = 8 as a
function of magnetic flux 2 are shown in the Fig. 3.3 and Fig. 3.4.

0]
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Figure 3.3: Electron numbers from N =1 to N = 4, left hand side is the total persistent
charge current of the quantum ring as a function of magnetic flux ®/®, right hand side

is Sz, Lz, Sz+ Lz and Lz( = 0.01) as a function of magnetic flux ®/®,.
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Figure 3.4: Electron numbers from N =5 to N = 8, left hand side is the total persistent
charge current of the quantum ring as a function of magnetic flux ®/®, right hand side

is Sz, Lz, Sz+ Lz and Lz( = 0.01) as a function of magnetic flux ®/®,.
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It is well-known that the persistent charge current has a universal behavior indepen-
dent of N when N is large enough. But, when N is small, the total number of electrons
is important. Base on above reasons, we are careful about details in Fig. 3.3 and Fig. 3.4.
We found that the characteristic features of persistent charge current depends on the
parity of the total number of electrons N. At the point of the magnetic flux & = 0,
there is an abrupt jump when N is odd and continuous when N is even. Therefore, these
characteristic features can be distinguished by two groups with N odd and N even. This
is attributed to the different occupation patterns of the highest occupied single parti-
cle energy level. The same with the persistent current, the total z-projection magnetic
moment including spin S, and angular moment L, have similar features, too. Near the
magnetic flux ® = 0, there is an abrupt jump when N is odd and flat when N is even.
These results can be a hint for us to distinguish the electron numbers which are even or
odd. And it is a useful method to double check the experimental results by electrical and

magnetic measurements.
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Chapter 4

Conclusion and future work

4.1 Conclusion

In Chapterl, we survey some journal papers to understand the background of the spin-
orbital interaction (SOI) and the persistent current. According to the physical origin
of the SOI, the SOI can be divided into intrinsic and extrinsic types, the extrinsic type
SOI comes from the effective field of the impurity and the intrinsic type SOI comes from
the structural effect. In intrinsic regime, the SOI in semiconductors requires an effective
electric field in the material. Such effective electric field can find contribution from the
build-in crystal field when the crystal has bulk inversion asymmetric (BIA) the so-called
Dresselhaus SOI, or structural inversion asymmetry (SIA), the so-called Rashba SOI.

In other way, the persistent current can be trace from the AB effect, and the first one
who proposed a model in a one-dimensional mental ring threaded by a flux to discuss
band structure was Buttiker et al. in 1983. Until now, the persistent current is still
an interesting issue for scientists to focus on, like Splettstosser et al., they proposed
a mesoscopic isolated quasi-one-dimension ring with Rashba SOI threaded by magnetic
flux at low temperature. They found some regulations about the persistent current and
persistent spin current.

In Chapter2, we propose a geometric model which is an isolated finite width mesoscopic
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ring with Dresselhaus spin-orbit (DSO) coupling without any external electromagnetic
field to discuss eigenstates, energy spectrum and spin density. Moreover, we make some
limiting case and perturbation to discuss the physical insight between the eigenstates,
energy levels, and spin density. In our case, if we just consider the effect of the confinement
potential in the quantum ring, we can get the discrete quantum energy levels and each of
them has different degeneracy states respectively. But, if we add the DSO interaction to
our system, we find that each unperturbed degeneracy energy level split into two groups
of energy levels, and the new one exists new degeneracy states which is the superposition
of the unperturbed eigenstates in Hj.

After some detail analysis, we propose a systematic method to understand the develop-
ment of the states, and the trend of the energy spectrum is understood by level repulsions
and the relative weighting between the constituent bases state ket. The energy spectrum
depends on the DSOI quadratically in the weak SOI field regime, which is consistent with
our perturbation result. Finally, we demonstrate that all energy levels are doubly degen-
erate, of the Kramer’s type. In other way, we obtain same results about the z-projection
spin density. When we input single-electron in each state, the net z-projection spin is not
zero, which can be seen as a magnetic dipole moment. But, because of the cancelation
relation between states, there will left finite z-projection spins.

In Chapter3, we start our research from the same system as chapter 2 but threaded by
an external magnetic flux ® to discuss the physical insight of the eigenstates and energy
levels. After many analysis, we find a simple way using He to understand the perturbed
statesas as the same meyhod as Hpso shown in chapter 2, and demonstrate that the
energy level will split into higher and lower energy levels after considering magnetic flux.
Besides, we also got a reasonable explanation for the phenomenon that the higher the
state becomes, the wider energy splitting would be. The most important is that we show
the Kramer degenerate states splitting and the physical reason for the subsequent order

in the energy splitting is identified.
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4.2 Future works

Although we spend much time focusing on the physical insight about the eigenstates and
energy spectrum in DSOI mesoscopic ring, there are still some problems need us to solve.
First, we still don’t know which is the domination between level repulsion effect and the
relative weighting in the constituent bases state ket when DSOI strength is increasing.
Second, the spin hall effect may be seen in finite width mesoscopic ring when the width is
big enough. Third, there should be some relationships between the persistent currents and
angular moment when we input different number electrons, furthermore, we can propose
an experimental model to check it’s realistic in the future.

In the future, we will study those topics which we have not finished, and try to solve

our problem in different method like using tight-binding model.
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Appendix A

Solve the finite width mesoscopic

ring Hamiltonian with DSO coupling

The finite width mesoscopic ring Hamiltonian with DSO coupling:

P4V —B<k2>k 2oLV iB(%)2eivpt
H ~ 2m : + ™, 2m . 5(d2> pp,gp (Al)
—0 < k2 > HiE T iB(5)e %, E£=+V

Because of the analysis in chapter 2, we guess the form of the total eigenfunction is

. fi(p)e™? | (A2)

falp)elm0e

where fi(p) and fo(p) have to be solved explicitly.

For a hard-wall confinement potential

0 forr, <p<ryand|z| <2
V(7,2 = 1 zand ol < (A.3)

00 otherwise
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APPENDIX A. SOLVE THE FINITE WIDTH MESOSCOPIC RING HAMILTONIAN
WITH DSO COUPLING

the Schrodinger equations inside the ring is given by

2

2]7)71*' Zﬂ(%)f%% fl(ﬂ)'eimw _ fl(ﬂ?eim¢ (A4)
iB(5)%e %p,, DT fa(p)eitm=1e fa(p)eitm=De

In order to get more clearly formula and prepare for the Numerical analysis, we set

some parameters to dimensionless the Hamiltonian: (a) Fermi wave length [y, (b) Fermi
h2k2 . .
5—, (d) Del operator in polar coordinates

~ . ~ ~ (=) -
V= kY, (0) pE, = ki, () E= £ () F="0L% ), =

wave vector ky = %, (c) Fermi energy E; =

ry’

~5d V)] + 9GP [P0 = BRens
—wa [f2(e)e V2] +iB(5) e kD, LFu(Pr)e™?] = E fa(py)e'm 17
~V? [A@)ene] + 1B [t ()] = Enpyeme
_v2 [fQ(pr) i(m— I)Lp:| _I_Zﬁefup [__Zlai] [fl( ) 1m<p] EfQ( ) i(m—1)p
Y/ =\ itmel o imp | 0 ~y _ (m—-1) N __r ) pimep
V2 [ f1(pr)e™?] Zﬁj, [%fz(ﬂr) 7 fQ(Pr)} = —Efi(pr)e (A7)
v? [f2(pr)elm—1¢] — ipeitm=1¢ [a%fl(ﬁr) + %fl(ﬁr)} = —E fo(p,)eim1¢

We compare the second term of above equations with the properties of Bessel func-

tion:(a) aipjm 1__Jm 1= ’YJm7 (b)(‘%t}m‘i‘%t]m = fYJmfla (C) [%aﬁp(paﬁp) - 7;1_22] Jm(’Yﬂ) =
—v2 T (vp), therefore,

—Y?* AT (vpr)e™? — iﬁ[_'YBJm('VﬁT’)] e = _EAJm('yﬁr)emw

(A.8)
_’YQBJm—l (Vﬁr>ei(m_1)w

— iB[YAT 1 (v5,)] €V = —EBJy 1 (p,)e D%
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APPENDIX A. SOLVE THE FINITE WIDTH MESOSCOPIC RING HAMILTONIAN
WITH DSO COUPLING

VA — iB’yB = EA

~ - (A.9)
v*B +i3yA=EB
let R = % as the ratio of the coefficient A,B
2 _iByR=FE
o (A.10)

V2 +iByR™ = E

Comparing above equations, we get the ratio R = =i, but there are two branches of

wave functions. When R = +i, wave function is

Jm - eimcp
- (vr) | (A.11)

iJm-1 (Vﬁr)ei(mil)@

when R = —i, wave function is

Jm ~7" e'me
v — (17r) | (A.12)

_Z.Jm71<fyﬁr)ei(m_1)@

After setting v, = % <§+ \/52 +4E> and vy = % (—6—1— \/52 +4E), we get 4-

eigenstates ( first kind of Bessel function ).

Jm (7157‘) eimso Jm (—’}/1,57.) eimcp
(1) | , (1) | :
—i 1 (71Pr) eilm=1)p iJ 1 (—71pr) eilm=1)¢
(A.13)
Jm ~r 6im«,o Jm _ ~7” eimgp
(I11) (7277) | (V) (=72pr)
iJm-1 (y2py) €'V — i1 (—72pr) €m71¢
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APPENDIX A. SOLVE THE FINITE WIDTH MESOSCOPIC RING HAMILTONIAN
WITH DSO COUPLING

But (I) (II) and (III) (IV) have the same form, therefore we have just 2 independent
bases. Besides, the index of m should be integers (including positive and negative), then

we have to introduce the second kind of Bessel function ”Neumann” to be eigenstates.

Nm (71151") eimcp Nm (—’ylﬁr) eim‘P
(1) o (1) e ,
—iNp_1 (71,) €17 1¢ iNp1 (=) eitm=De
(A.14)
Nm "’T elmy Nm _ "’r elmy
(I11) () | J(IV) (=720r) |
iN,, 1 (’)/Qﬁr) eilm=1)p —iN,, 1 (_72@> eilm=1)¢

In order to get more clearly physical meaning, we change Bessel functions to Henkel
functions: HY (z) = Ju(x) + iN,(z) and HY (x) = Jo(x) — iNL(2).

Finally, we get total eigenfunction

Hy (n5,) €™ HP (1p,) e
\I/ = Qa 1) ! + b (2) ‘
—iHy, L () e —iH," (py) eme
(A.15)
H’r(é) (72;57) eimgo Hg) (,}/257) eimgo
ivaw)—l (y2) €1t inn)_1 (Y2py) 1m0
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Appendix B

Solve the finite width mesoscopic
ring Hamiltonian with DSO coupling

after considering magnetic flux

In order to consider adding the magnetic flux in our system, we should correct the mo-
mentum: (a) p — p—eA; (b) k — k — %, where A is the vector potential chosen as the

. . . ; 2meA A . .
axial gauge. And the corresponding magnetic flux is = = 2L — £2¢f ip ypits of flux
o h h

quantum @y = 2. ( The magnetic flux ® = f§ -nda = | <§> X Z)da = f?f dl =

f Agpdp =2mALp)

Three main expression about the corrections are:

(a) (p— eA)* =p* —e (132+ ﬁﬁ) +e2A2 = p? — 2eA,p, + 2 A2

— 2 (k2 - 2hehe ) g2 lk? —2 (%) kot (p%)Q] oy
(D)ky = (ky — ) 4i(k, — ) = (k, +ik,) — £(A, +i4,)
(B.2)
ek (5 5 2) = et (4 s+ h)
(k- = (ky — =) —i(ky — “52) = (ko — iky) — £(As — i4,) (B3)

— i (O P8 el —ip (0 _i0 _ &
e (ap p Op ﬁ) —te (60 pOp  pPo



APPENDIX B. SOLVE THE FINITE WIDTH MESOSCOPIC RING HAMILTONIAN
WITH DSO COUPLING AFTER CONSIDERING MAGNETIC FLUX

Note: Aﬁ——'h? ~AG) L Ap=A
: pA=—i L)+ Ap = Agp,

In the following, just like in chapter 2, we guess the form of the total eigenfunction:

. fi(p)e™e ' (B.4)

fa(p)e'm =D,
where fi(p), fa(p) have to be solved explicitly.
Considering Eq. (B.1), Eq. (B.2), Eq. (B.3) and rewriting the Hamiltonian in polar

coordinates with a hard-wall confinement potential:

0 forr <p<ryand 2| < 4
V(7,2) = < ma ond I (B.5)

00 otherwise

the Schrodinger equation H¥ = EW becomes Eq. (B.6)

¢ 2’;2* {/& —9 (p%ﬂ) ko + (/)%))2} f1(p) €™ +if () 2e%¢ <a% 1 %% 4 %) fa (p) im=1e
= Efi(p)e™
2 2 () b () | Bt i (520 (- 1 ) 1 e
| = Efa(p)elm1¢

In order to get more clearly formula and prepare for the Numerical analysis, we set
some parameters to dimensionless the Hamiltonian: (a) Fermi wave length [;, (b) Fermi

Rk3
wave vector ky = i , (c) Fermi energy Ey = 5L, (d)Del operator in polar coordinates

V= k¥, (€) bk, = kit (1) B = £, () = 28 )5 - 2.

T1
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APPENDIX B. SOLVE THE FINITE WIDTH MESOSCOPIC RING HAMILTONIAN
WITH DSO COUPLING AFTER CONSIDERING MAGNETIC FLUX

{12 (5%) - &} h () eme—iB (& = Lla— 1) o (5) €™ = —Efi(5,)eme
(3£ (7%) - "} o)™ —iB (& + 1)y (B V> = —Ef(5)eit D7

(B.8)

Since these differential equations have the forms of Bessel equation and the recurrence

relation, we can choose the Bessel functions as the spinor part eigenfunctions. Therefore,

~2 AT, (vpy) — iB[~vBJ,(v5r)] = —EAT,(vp)

B B (B.9)
=y BJg-1(vpr) — iB [yAJg-1(vr)] = —EBJ41(7pr)

where A and B are the coefficients of the two eigenfunction components.
Comparing with above couple equations, we find that the ratio of the coefficients

R = % = &4, then we get two branches of wave functions

J, (v, )eme J, (v, )eme
v «(vor) o «(vor) | (B.10)

qu—l(Vﬁr)ei(m_l)@ _Z.Jq—l('Yﬁr)ei(m_l)w
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Appendix C

Prove state [¢,) and |¢;) do not
mixing
Assuming m’ > 0, then we can define |¢,) and |):

[%a) = 1| Enm 1) + Ca | Enmii,1) (C.1)

|wb> = C3 ‘En,—(m’—l),T> + ¢y ‘En,fm’,l> ; (02)

After considering external magnetic flux, the effective correctional Hamiltonian can

be defined:
i 9 i n i
Hy = (12) %%—i_/l?@_o ’Lﬁ@‘p (C 3)
o o i i 9 '
PRSI\ s Bt

If we integrate the sandwich-matrix, we get the angular-part result is zero:

il lin) = [ (S50 ) Flppas =0, (C.1)
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APPENDIX C. PROVE STATE |¢4) AND |¢g) DO NOT MIXING

where
F(p,¢)
21 0 1P ca il 1
_ * —im/ * —i(m/—1)p F@ + ;()TO 256 ¥ fn,f(m’fl)e ( )
o / 1€
n,m € gn,m —1 o /8 7150 27, 8 + li e*im’g&
e P Bap p ®o 9n,—m’
2Hm'1) —i(m/—1
= ( fo e g il ) [( * P‘1’O> =1y +1Bgn, m] im’=1)¢
— n,m/’ n,m'—1 m .
p<I>0 In,—m’ — Z/Bfn :| P

(2 22 S —i—zﬁfnm,gn ]

m’ @ *
+ |:<27 + %QTO) gn,m’flgn,*m Z/Bgn m/— 1fn —(m/— 1

i(2m/—1)¢
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Appendix D

Demonstrate that the energy level
split into the higher energy part and

the lower energy part

2% 0 iﬁeicp
It 5% is small, Hy can be redefine as - (%2) p Op

‘n —i 2 9
_’l/ e ZSO —_ =
p p Op

) . The expected

value of Hg) with state |1,) is (¥,] Hél) [Ya) = F (p, p)dv,

Fo (0, ¢)
' ' %% ife'? Fam (p) €
- ( Frm (0) €7 gy (p) €717 ) (,%%) % o ) ( )
) ( £ (p)emim () i(m—1) ) [_QTmfn,m (p) + iBGnm—1 (p)} i
n,m p)e ® g;; m— p e~ m=1)p |
: ;m—1 [Mgmm_l (p) — iB fam (p)} ilm=1)p

_iﬁei p O 9n,m—1 (P) elm=1)¢
) 2 [ f2 1 (0) fom (0) + (1= 1) Gt (0) Grmr (9] }

Bl

p

=
Zle

- ( +iB [fn (P) Gnm—1 (P) = G () Frm (P)]
=—4 (q%) [(2m — 1) N, + S,] — (%;%) ASy(p=0)
Where

o7



APPENDIX D. DEMONSTRATE THAT THE ENERGY LEVEL SPLIT INTO THE
HIGHER ENERGY PART AND THE LOWER ENERGY PART

N = fom (P) fam () + 9nm—1 (P) gnm—1 (p) (D.1)
Sz = fam (P) fam () = Gnm—1 (P) Gnm—1 (p) (D.2)
Sy =1 [=Frm (P) Gnm () €7+ Gp o1 (P) frm (p) €] (D.3)

(el 1) 1) = ol 82} = = () [ 50m =)0+ 51+ (3 ) B0 i
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Appendix E

The table of the eigenstates
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