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摘要 

 

   此論文的工作一直致力解讀在一個圓盤微結構附近，考慮 Dresselhaus 型自

旋軌道耦合作用下自旋相關的散射效應。Dresselhaus 型自旋軌道耦合作用在這

裡主要包括了 linear-k 相關以及 cubic-k 相關的貢獻。 

   以分波方法為基礎，在散射區間內經計算後可以得到完整散射後的波函數。

透過調查入射電子平面波後，DSOI造成空間辦別的散射效應，linear-k與 cubic-k 

DSOI 貢獻的差異可以明顯地被辨識，同時得到所對應的能量耗散關係。在我們的發

現：對於 linear-k Dresselhaus，電子自旋密度與機率密度分佈擁有空間對稱性

輪廓，與平面波入射角度無關。相反地，在 cubic-k Dresselhaus SOI 例子中明顯

地表示出與平面波入射角度相關。 

   特別地，若入射平面波角度為幾個特定的角度，我們可以發現有相似的電子

自旋密度對應在 cubic-k Dresselhaus 例子與 linear-k Dresselhaus 例子之

間。 
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Abstract

This thesis work has devoted to the study of spin-dependent scattering effects from a
circular-disk microscopic structure with Dresselhaus-type spin-orbit coupling. The Dres-
selhaus spin-orbit coupling considered here includes both contributions terms for one is
linear-k dependence and the other is cubic-k dependence.

Based on the method of partial waves, the complete scattering wave function in a
circular scattering region can be rigorously derived and obtained. Through investigating
their spatial-resolved scattering behaviors from linear and cubic Dresselhaus-type SOI
disk under the electron plane wave incidence, different DSOI contributions can be appar-
ently discerned, and their corresponding detail energy dispersion relationships as well. In
our findings: for linear-k Dresselhaus case, the spin density and probability density distri-
butions own their spatial symmetry profile, which is featured independence of the plane
wave incident angle. On the contrary, strong incident angle dependence is manifested for
the case of cubic-k Dresselhaus spin-orbit interaction.

In particular , for incidence plane wave in some characteristic angle, we can find similar
spin density responses between cubic-k Dresselhaus case and linear-k Dresselhaus case.
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Chapter 1

Introduction

The spin dependence of the electronic properties of mesoscopic technology and artificial

nano-structure is one of leading problem nowadays in the physics of electric devices. In

this way, taking account of spin property of electrons are the improvement of actual

devices. To develop spintronic device in spintronics, quantum information, and other

applications is necessary to understand how the transport of electron affect its spin and

further control conditions on the manipulation of the spin orbit interaction in the semi-

conductor macrostructure. The interaction causes the decay of spin polarization since the

spin-orbit coupling breaks the total spin symmetry [1]. Accordingly, we must understand

the spin-orbit coupling [2].

In semiconductor with strong SOI, the energy eigenstates are spin dependent and

can have apparently spin splitting without a magnetic field for electrons when there exits

inversion asymmetry. And then the effect in the low dimensional structure becomes larger

where the inversion asymmetry controlled. It is known that in a variety of systems we

consider that changing the spin properties of an incident beam of particle in scattering

experiment. The spin-orbit interaction cause asymmetry of the differential scattering cross

section ( skew scattering ). In addition, the SOI also changes the polarization vector of

the incident beam.
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CHAPTER 1. INTRODUCTION

1.1 Background : types of spin-orbit coupling system

in solid state system

There are two types of spin-orbit interaction in semiconductor according to the physical

origan. One is intrinsic type such as Rashba spin orbit interaction (RSOI) [3] induced by

structure inversion asymmetry (SIA) and the other is extrinsic type such as Drsselhaus

spin orbit interaction (DSOI) [4] induced by bulk inversion asymmetry (BIA) of the crystal

lattice. The effect produced by the interplay between Dresselhaus and Rashba spin-orbit

interactions on spin relaxation has been studied in a few publications [5–7]. Furthermore

, there are a few works on the transport properties of two-dimensional electron gas [8–

11] . Especially, Datta and Das proposed a spin-field-effect transistor (SFET) [12] for

quasi-1D ballistic wires with Rashba coupling . In thin quantum wells, the strength of

the DSOI is compatible to the strength of the RSOI. The special spin symmetry arises

due to the translational invariance in the longitudinal coordinate in quantum wires is

used to propose a transport experiment to measure the strengths of the Rashba and

the Dresselhaus interaction for any chosen polarization [13]. There are a few works on

the effects of the competition between two types of SOI on the transport properties in

mesoscopic rings [14, 15].

A promising spin transistor application has been proposed that the strength of the

RSOI can be tuned by external gates voltages or asymmetric doping and this initiated

intensive research in spintronics [16]. Schliemann, Egues, and Loss proposed a SFET

[17] that can operate in diffusive quasi-2D systems based on tuning Rashba and linear

Dresselhaus terms to be equal in strength, which produces long spin lifetime , neglecting

cubic Dresselhaus term. On the other hand, recent studies have been devoted to the

physical consequences of the interplay of the RSOI and impurity [18]. Recently, the

intrinsic spin Hall effect (SHE ) [19, 20] as been established in a spin-orbit coupled p-doped

semiconductor and in a Rashba spin-orbit coupled two-dimensional electron systems was

predicted theoretically.

2



CHAPTER 1. INTRODUCTION

1.2 Motivation : cubic-k Dresselhaus spin-orbit in-

teraction (SOI)

In quasi-2D systems, Dresselhaus terms has two components, one linear in the momentum

and the other cubic. The cubic Dresselhaus contribution [21] is often neglected since it is

smaller apparently than the linear Dresselhaus contribution. Nevertheless , the strength

of the SO terms are difficult to measure so that to obtain a full understanding of their

strength is crucial . In addition, in confined system such as quantum dot, quantum wire,

some effect of the linear Dresselhaus SOI are suppressed, so it is important to know the

contribution from the cubic Dresselhaus SOI which is helpful to develop spintronic devices.

Theoretically, the spin current is the important physical quantity in spintronics, and

it has been extensively studied [22–24] . Many fundamental phenomena, such as the SHE

and the spin precession in systems with spin-orbit coupling have been discovered . There

are many recent works on spin dependent quantum scattering [25] around microstructures

[26–28]. In this thesis , we study the scattering of the scattering of electrons by a disk in

2DEG with Dresselhaus spin-orbit coupling.

1.3 A simple guide to thesis

In Chapter 2 , we will solve the eigenstate problem in two dimensional Dresselhaus-

type system including linear-k and cubic-k DSOIs, so that the energy dispersion can be

obtained. In addition , the eigenstates would be represented in cylindrical form due to the

cylindrical symmetry potential .We consider that the plane wave which is the eigenstate

of Dresselhaus-type Hamiltonian incident a hard wall disk in DSOI system. At such, we

can make a connection between linear-k Dresselhaus and Rashba Hamiltonian.

In Chapter 3, we introduce the method of partial waves for a scattering. The total

waves are composed of incoming waves and outgoing waves, where the incoming wave

part is given by the incident plane wave and then outgoing wave part can be represented

3



CHAPTER 1. INTRODUCTION

by the eigenstate which we obtained in Chapter 2. Furthermore, the outgoing wave part

contains unknown coefficients which are contributed from the two kinds of helicity wave

functions. The unknown coefficients can be obtained by solving the boundary condition

problems. Finally, we obtain the particle current density by driving the particle continuity

equation of the Dresselhaus-type system .

In Chapter 4, the numerical results show the spin density or other quantities after

scattering by a hard wall disk both in linear-k and cubic-k DSOI. Therefore, we can use

the result to evaluate the cubic-k contribution during the scattering process by comparing

the results only for linear-k Dresselhaus and the results includes cubic-k Dresselhaus. Also,

we discuss the connection between spin density and the plane wave direction.

In Chapter 5, we present possible work about spin-orbit interaction in Dresselhaus or

Rashba system.

4



Chapter 2

Two dimensional Dresselhaus-type

SOI electron system

In this chapter we present a theoretical study of electron scattering in two dimensional

Dresselhaus-type SOI electron system. Using the spin dependent method of partial waves

[29] the complete scattering wave function is derived exactly for the case of a circular

region. For a 2D central potential (hard wall disk), the cylindrical symmetry governs

that the wavefunction is expressed most conveniently in polar coordinates. There exit

linear-k DOSI and cubic-k DOSI in Dresselhaus-type SOI and mostly cubic-k DOSI is

neglected. At the same time, linear-k DSOI can be compare with that Rashba-type spin

orbit interaction (ROSI) that we can make a connection between them. The competition

of two types of SOI on the transport properties of two dimensional electron gas are

interesting and highly desirable.

In our numerical examples, physical parameters are chosen according to practical

experimental situation and for the material GaAs. Parameters units typical for GaAs

are: electron density n =2.51 × 1011 cm−2; energy units ε∗ = 8.977 meV; m∗ =0.067 me;

Dresselhaus strength β∗= 4553 eVA3; k∗= 1.25 × 108 m−1; disk radius R = 50 nm; wide

scale d=25nm.

5



CHAPTER 2. TWO DIMENSIONAL DRESSELHAUS-TYPE SOI ELECTRON
SYSTEM

Units

In order to simplify our calculation, in the following expression that all the physical

quantities are dimensionless in units according to a typical carrier concentration n = 6.98×
1015m∗−2. The wave vector is in unit of Fermi wavelength k∗ =

√
2πn; length in the unit

of 1/k∗ ; energy E in the unit of Fermi energy ε∗ =
~2k2

F

2m∗ ; Dresselhaus constant in the unit

of β∗ = ~2
2m∗kF

. The Hamiltonian for a 2D potential in the Dresselhaus SOI type system

has the form

H =
−~2

2m∗∇2 + βkx(k
2
y − κ2)− βky(k

2
x − κ2) + V (x, y) (2.1)

where m∗ is the effective electron mass, V (x, y) is the 2D potential, β is Dresselhaus spin

orbit constant, and κ = π
d

.

Affer a standard dimensionless process, we can obtain a dimensionless Hamiltonian

Ĥ = −∇2 + βkx(k
2
y − κ2)− βky(k

2
x − κ2) + V (x, y) . (2.2)

Frist, we investigate the incident plane wave in 2D Dresselhaus-type SOI electron system

including linear k and cubic k and then make a connection between Dresselhaus SOI and

Rashba SOI.

2.1 Linear-k Dresselhaus SOI

According to the physical origin of the SOI, the SOI can be divided into intrinsic and

extrinsic types. The intrinsic type is Rashba which arises from SIA or Dresselhaus inter-

action which arises from BIA. The extrinsic SOI is due to the presence of SOI scatterers

in the system. In quasi-two-dimensional systems, the Dresselhaus SOI includes two com-

ponents, the linear part and the cubic part in momentum. The cubic Dresselhaus term is

usually neglected, as it is much smaller than the linear term contribution. We present a

similar model to deal with a Dresselhaus spin-oribit coupling system in which we consider

6



CHAPTER 2. TWO DIMENSIONAL DRESSELHAUS-TYPE SOI ELECTRON
SYSTEM

Dresselhaus linear k.

2.1.1 Incident plane wave

The Hamiltonian for a 2DEG in the presence of the Dresselhaus spin-orbit interaction

with a circular disk at the origin is given by

Ĥ = −∇2 − κ2β1(k̂xσx − k̂yσy)+V (x, y) , (2.3)

where σj are the Pauli matrices and β1 is the Dresselhaus spin-orbit coupling constant

. The eigenstates and corresponding eigenvalues for a free-particle Hamiltonian (outside

the disk) with Dresselhaus spin-orbit coupling, are given by

ψin,η(φk) = eik·rχη (2.4)

ε = k2 + η(β1κ
2)k , (2.5)

where

tan(ϕk) =
ky

kx

, (2.6)

χη =
1√
2




1

η<


 helicity η = ± , (2.7)

and

< = −e−i(ϕk) . (2.8)

7
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And the only assumption for the scattering potential (see Fig. 2.1) is that

V (x, y) = V (r) =





0 , r > R

∞ , r ≤ R
. (2.9)

Figure 2.1: Radial profile of ”hard” wall disk of our system.

The dispersion relation in Eq. (2.5) represents two parabolic bands Fig. 2.2 centered

up k = −η (β1κ2)
2

. For states propagating with their momentum k making a angle ϕk with

respect to the x̂ axis Fig. 2.3 and for an energy E ≥ 0, there exit a degenerate states

which is

ψin,+ =
1√
2




1

<


 eik·r , (2.10)

ψin,− =
1√
2




1

−<


 eik′·r , (2.11)

8
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SYSTEM

where
−→
k = k [cos(ϕk)x̂ + sin(ϕk)ŷ] and

−→
k′ = k′ [cos(ϕk)x̂ + sin(ϕk)ŷ] whom we can get

by solving ε = k2 + β1kκ2 = k′2 − β1k
′κ2 .

The states ψin,+ represent plane wave states with helicity (η = +) whose spin states are

perpendicular to the momentum direction. The detail derivation of the eigenstates and

eigenvalues is in the appendix.

Figure 2.2: Energy dispersion with helicity η for a linear-k Dresselhaus system ; the blue
line correspond to η = + and the red line correspond to η = −. The dash line means that
system has no spin-orbit coupling (β1 = 0) and Eq. (2.5) represents two parabolic bands

centered up k = −η (β1κ2)
2

.

A plane wave corresponding to an free electron propagating with the momentum vector

−→
k making a propagating angle ϕk with x̂ axis, in accordance with Jacobi-Anger expansion

[30] which can be expanded as a linear superposition of the circular free waves

eik·r = eikr cos(ϕ−ϕk) =
∞∑

m=−∞
imJm(kr)eim(ϕ−ϕk) . (2.12)

9



CHAPTER 2. TWO DIMENSIONAL DRESSELHAUS-TYPE SOI ELECTRON
SYSTEM

Figure 2.3: The plane wave of an incident electron wave with wave vector k making an
angle ϕk with x̂ axis gets scattered by a scattering region defined by a Dresselhaus SOI
and a ”hard” wall disk.

Then the incident plane wave with momentum k and helicity (η = +) can be decom-

posed as the following linear superposition:

ψin,+ =
1√
2

∞∑
m=−∞




imJm(kr)eim(ϕ−ϕk)

(+<)im−1Jm−1(kr)ei(m−1)(ϕ−ϕk)


 (2.13)

Since Bessel function Jm(kr) is a standing wave along the radial direction, for our

purpose, it is easily to express it in terms of two radial propagating waves, the Hankel

functions,

Jm(kr) =
1

2

[
H(1)

m (kr) + H(2)
m (kr)

]
, (2.14)

10
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where the first kind and the second Hankel functions are defined as

H
(1)
m (z) = Jm(z) + iYm(z) ;

H
(2)
m (z) = Jm(z)− iYm(z) .

(2.15)

In the region where kr À 1 the radial propagating dependence of these Hankel functions

become most apparent in their asymptotic form,

lim
kr→∞

H
(1)
m (kr) ∼ 1√

kr
eikr ;

lim
kr→∞

H
(2)
m (kr) ∼ 1√

kr
e−ikr .

(2.16)

For large r, H
(1)
m (kr) goes like eikr

/
r, we can regard it as a circular waves propagating

radial outwards from the scattering center. In the same way, H
(2)
m (kr) can be treated as

a circular waves propagating radial inwards from the scattering center.

To consider the scattering process for the cylindrical symmetric potential, we decom-

pose Bessel function Jm(kr) (standing waves) as Hankel functions H
(2)
m (kr) (incoming

waves) and H
(1)
m (kr) (outgoing waves) so Eq. (2.13) become

ψin,+ =
1

2
√

2

∞∑
m=−∞




im
[
H

(2)
m (kr) + H

(1)
m (kr)

]
eim(ϕ−ϕk)

(+<)im−1
[
H

(2)
m−1(kr) + H

(1)
m−1(kr)

]
ei(m−1)(ϕ−ϕk)


 (2.17)

or

=
1

2
√

2

∞∑
m=−∞

im




[
H

(2)
m (kr) + H

(1)
m (kr)

]
eim(ϕ−ϕk)

(−i<)
[
H

(2)
m−1(kr) + H

(1)
m−1(kr)

]
ei(m−1)(ϕ−ϕk)


 (2.18)

where

< = −e−iϕk .

For the general case, the incident wave propagates along x̂ axis (ϕk = 0) with positive

11
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helicity, the wave function is given by

ψin,+ =
1

2
√

2

∞∑
m=−∞

im




[
H

(2)
m (kr) + H

(1)
m (kr)

]
eim(ϕ)

(i)
[
H

(2)
m−1(kr) + H

(1)
m−1(kr)

]
ei(m−1)(ϕ)


 (2.19)

The cylindrical symmetry of the scattering potential cause waves to be coupled only with

the same m . This essentially the conservation of the conservation of orbital angular

momentum, which is true for a center potential but no SOI.

2.1.2 Cylindrical form representation of the eigenstates

In cylindrical coordinates, which are useful when we consider scattering from a localized

, cylindrically symmetric potential, Hamiltonian can be written as

Ĥ =




−∇2 −κ2β1k̂+

−κ2β1k̂− −∇2


 (2.20)

where ∇2 = ∂2

∂r2 + 1
r

∂
∂r

+ 1
r2

∂2

∂ϕ2 and

k̂± = k̂x ± ik̂y = −ie±iϕ(
∂

∂r
± i

r

∂

∂ϕ
) . (2.21)

The raising and lowering operators k̂± work on Bessel function through the the recurrence

relations

℘′m(z) + m
z
℘m(z) = ℘m−1(z)

℘′m(z)− m
z
℘m(z) = −℘m+1(z)

(2.22)

where ℘ denotes, Bessel function, Neumann function and Hankel function that we can get

a relation

k̂ν [Jm(γr)eimϕ] = iγνJm+ν(γr)ei(m+ν)ϕ (ν = ±) . (2.23)

12
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The total Hamiltonian Ĥ commutes with the z projection of the total angular momentum

Ĵz = Lz +
1

2
σz (2.24)

that allows one to representation eigenstate of Eq. (2.20) as

ψm =




Am(r)eimϕ

Bm′(r)eim′ϕ


 (2.25)

Am(r) and Bm′(r) are both radial dependent , so we can make Am(r) = A0Jm(γr) and

Bm′(r) = B0Jm′(γr) (m′ = m− 1) where A0 and B0 are arbitrary constants.

ψm =




A0Jm(γr)eimϕ

B0Jm−1(γr)ei(m−1)ϕ


 (2.26)

Substituting Eq. (2.23) into Ĥψm = εψm, one can obtain the following systems of radial

equations:

(
{−1

r
∂
∂r

(r ∂
∂r

) + m2

r2 } −
(
ε + κ2β1iγ

B0

A0

))
Jm(γr) = 0 ,

(
{−1

r
∂
∂r

(r ∂
∂r

) + (m−1)2

r2 } −
(
ε− κ2β1iγ

A0

B0

))
Jm−1(γr) = 0 .

(2.27)

The above equation must hold for the equation Eq. (2.28) due to the properties of Bessel

function

γ2 = ε + κ2β1iγ
B0

A0
= ε− κ2β1iγ

A0

B0
(2.28)

To simplify our calculation, we define R = B0

A0 . After calculation, we can get energy

dispersion

ε = γ2 + ηβγκ2 (2.29)

13
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and the ratio R

R = ηi (η = ±) . (2.30)

Consequently , the energy eigenstates of Hamiltonian with momentum γ, helicity η, and

a ratio value < are

ψηm(r, ϕ) =




Ωηm(γr)eimϕ

(ηi)Ωη(m−1)(γr)ei(m−1)ϕ


 , (2.31)

where Ωη,m can be a Bessel function, a Neumann function and a Hankel function. Here

we choose Hankel functions as the eigenbasis to suit our boundary condition during the

scattering process. The detail dervation of solving eigenequation is presented in appendix.

2.2 Cubic-k Dresselhaus SOI

2.2.1 Incident plane wave

The Hamiltonian for a 2DEG in the presence of the Dresselhaus SOI with a circular

hard-wall disk at the origin can be expressed,

H = −∇2 + βkx(k
2
y − κ2)σx + βky(κ

2 − k2
x)σy + V (

⇀
r) (2.32)

where σj are the Pauli spin matrices and β is the Dresselhaus spin-orbit coupling constant

. In order to distinct the contribution from the linear-k and cubic-k Dresselhaus SOI, we

change the Hamiltonian form Eq. (2.32) into Eq. (2.33).

H = −∇2 − κ2β1(kxσx − kyσy) + β3(kxk
2
yσx − kyk

2
xσy) + V (

⇀
r) (2.33)
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where β1 related to the linear-k Dresselhaus SOI and β3 related to the cubic-k Dresselhaus

SOI. The assumption for the scattering potential is same in the linear-k case (see Fig. 2.1).

The eigenstates and correspond eigenvalues for the free-particle Hamiltonian (r ≥ R)

with Dresselhaus spin-orbit coupling are given by

ψin,η(r, ϕ, ϕk) = eik·rχη , (2.34)

ε = k2 + ηβ1k

√
κ4 + [

β3

2β1

k2 sin(2ϕk)]2 − β3

β1

k2κ2 sin2(2ϕk) , (2.35)

where

χη(ϕk) =
1√
2




1

R


 =

1√
2




1

η<


 , (2.36)

tan(ϕk) = ky

kx
,

R = η< , (2.37)

and

< = −
√√√√κ2e−i(ϕk) + β3

2β1
ik2 sin(2ϕk)ei(ϕk)

κ2ei(ϕk) − β3

2β1
ik2 sin(2ϕk)e−i(ϕk)

. (2.38)

where < denoting a ratio value which is function of incident angle and Dresselhaus SOI

constant. The detail derivation of the eigenstates and eigenvalues shown in the appendix.

The dispersion relation in Eq. (2.35) represents two helicity (η = ±) branches.

For states propagating with their momentum vectors making an angle ϕk with respect

to the x̂ axis (see Fig. 2.3) and for an incident energy E ≥ 0, there exits a degeneracy
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with the degenerate with the degenerate states are given by

ψin,+ = eik·r 1√
2




1

<


 , (2.39)

ψin,− = eik′·r 1√
2




1

−<


 , (2.40)

where
−→
k = k (cos(ϕk)x̂ + sin(ϕk)ŷ) and

−→
k′ = k′ (cos(ϕk)x̂ + sin(ϕk)ŷ) which you can

obtain by solving

ε = k2 + β1k

√
κ4 + [

β3

2β1

k2 sin(2ϕk)]2 − β3

β1

k2κ2 sin2(2ϕk) (2.41)

and

ε = k′2 − β1k
′
√

κ4 + [
β3

2β1

k′2 sin(2ϕk)]2 − β3

β1

k′2κ2 sin2(2ϕk) . (2.42)

The states Eq. (2.39) and Eq. (2.40) represent plane wave states with spin states shown

in Eq. (2.36) being in the plane, perpendicular to the momentum direction. A plane wave

corresponding to an free electron propagating with the momentum vector
−→
k making a

propagating angle ϕk with x̂ axis, in accordance with Jacobi-Anger expansion which can

be expanded as a linear superposition of the circular free waves

eikr = eikr cos(ϕ−ϕk) =
∞∑

m=−∞
imJm(kr)eim(ϕ−ϕk) . (2.43)

Then the incident plane wave with a specific momentum k and positive helicity (η = +)
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Eq. (2.41) can be decomposed as the following linear superposition:

ψin,+ =
eikr

√
2




1

<


 =

eikr cos(ϕ−ϕk)

√
2




1

<


 =

1√
2




∑
m

Jm(kr)eim(ϕ−ϕk)

∑
m′

(<)Jm′(kr)eim′(ϕ−ϕk)


 (2.44)

And then we can deal with cubic Dresselhaus SOI case in the same way just like plane

wave in a linear Dresselhaus system.

Considering the scattering process with the cylindrical symmetric potential , we decom-

pose Bessel function Jm(kr) (standing waves) as Hankel functions H
(2)
m (kr) (incoming

waves) and H
(1)
m (kr) (outgoing waves) so Eq. (2.45) become

ψin,+ =
1

2
√

2

∞∑

m,m′=−∞




im
[
H

(2)
m (kr) + H

(1)
m (kr)

]
eim(ϕ−ϕk)

(<)im
′
[
H

(2)
m′ (kr) + H

(1)
m′ (kr)

]
eim′(ϕ−ϕk)


 . (2.45)

2.2.2 Cylindrical form representation of the eigenstates

In polar coordinates, which are useful when we consider scattering from a localized, cylin-

drically symmetric potential (hard− wall disk), Hamiltonian can be written as

Ĥ =




−∇2 −κ2β1k̂+ + β3

4
(k̂2

+ − k̂2
−)k̂−

−κ2β1k̂− − β3

4
(k̂2

+ − k̂2
−)k̂+ −∇2


 (2.46)

where ∇2 = ∂2

∂r2 + 1
r

∂
∂r

+ 1
r2

∂2

∂ϕ2 and

k̂± = k̂x ± ik̂y = −ie±iϕ(
∂

∂r
± i

r

∂

∂ϕ
) (2.47)

For solving the eigenequation Ĥψ = εψ in a localized and cylindrically symmetric
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potential, the eigenstates can be written as a two-component wave function.

ψ(r, ϕ) =




∑
m

Am(r)eimϕ

∑
m′

Bm′(r)eim′ϕ


 (2.48)

Since Am(r) and Bm′(r) both have radial-dependence, we assume that Am(r) = A0
mJm(γr)

and Bm′(r) = B0
m′Jm′(γr) . Then wavefunction become a two-component function which

is a linear superposition of Bessel functions

ψ(r, ϕ) =




∑
m

A0
mJm(γr)eimϕ

∑
m′

B0
m′Jm′(γr)eim′ϕ


 (2.49)

where A0
m and B0

m′ are unknown constants which are determined by eigenequations. And

then we can deal with cubic-k Dresselhaus SOI case in the same way similar to plane wave

in a linear-k Dresselhaus system.

k̂ν [Jm(γr)eimϕ] = iγνJm+ν(γr)ei(m+ν)ϕ (ν = ±) . (2.50)

Substituting Eq. (2.49) and Eq. (2.50) into equation Ĥψ = εψ, one can obtain the fol-

lowing radial equations:

{−1
r

∂
∂r

(r ∂
∂r

) + m2

r2 − (ε + κ2β1γi
B0

m−1

A0
m
− iβ3

4
γ3 B0

m−1

A0
m

+ iβ3

4
γ3 B0

m+3

A0
m

)}Jm(γr) = 0,

{−1
r

∂
∂r

(r ∂
∂r

) + m2

r2 − (ε− κ2β1iγ
A0

m+1

B0
m
− iβ3

4
γ3 A0

m−3

B0
m

+ iβ3

4
γ3 A0

m+1

B0
m

)}Jm(γr) = 0.
(2.51)

By setting

A0
m ∼ A0xm , B0

m ∼ B0xm (2.52)
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and using properties of Bessel functions, gives rise to Eq. (2.51)

(ε + κ2β1γiB0

A0 x
−1 − iβ3

4
γ3 B0

A0 x
−1 + iβ3

4
γ3 B0

A0 x
3)

= (ε− κ2β1iγ
A0

B0 x− iβ3

4
γ3 A0

B0 x
−3 + iβ3

4
γ3 A0

B0 x)

= γ2 .

(2.53)

To simplify our calculations, we let R = B0/A0. We also assume that R=eiθ and x = eiδ

are both phase vectors. As a result, we obtain two simple relations

ε + ei(θ+δ)β1γ(iκ2e−i2δ − β3

β1

γ2

2
sin(2δ))

= ε− e−i(θ+δ)β1γ(iκ2ei2δ + β3

β1

γ2

2
sin(2δ))

= γ2

(2.54)

between momentum γ and energy ε . From Eq. (2.54), the unknown values can be solved.

The eigenstate is

ψη(r, ϕ) =




∑
m

Jm(γr)eimϕeimδ

∑
m′

(η<)Jm′(γr)eim′ϕeim′δ


 (2.55)

where

< = e−iδ

√√√√−
(iκ2ei2δ + β3

β1

γ2

2
sin(2δ))

(iκ2e−i2δ − β3

β1

γ2

2
sin(2δ))

(2.56)

and eigenenergy is

ε = γ2 + ηβ1γ

√
κ4 + (

β3

β1

γ2

2
)2 sin2(2δ)− κ2

β3

β1

γ2 sin2(2δ) . (2.57)

Here η = ± can be viewed as helicity + and helicity −. Consequently , the energy

eigenstates of Hamiltonian Eq. (2.46) with momentum γ, a phase δ, helicity η, and a
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ratio value < are

ψη(r, ϕ) =




∑
m

Ωm(γr)eimϕeimδ

∑
m′

(η<)Ωm′(γr)eim′ϕeim′δ


 (2.58)

where Ω can be a Bessel function, a Neumann function and a Hankel function. Here

we choose Hankel functions as the eigenbasis to suit our boundary condition at infinity

during the scattering process. The detail derivation of solving eigenequation is presented

in Appendix.

2.3 Energy dispersion of Dresselhaus SOI system

In this section, we discuss the energy dispersion of Dresselhaus SOI system including

linear and cubic k. For given energy dispersions from the Eq. (2.5) and Eq. (2.35), we

find that the energy dispersion in cubic k DSOI system Eq. (2.35) which is dependent

on the incident angle ϕk. As a result, we propose energy dispersion diagrams in different

scales which are given by Fig. 2.4 and Fig. 2.5. On the other hand, the energy dispersion

in linear k DSOI system

ε = k2 ± (βκ2)k

is like in the RSOI system

ε = k2 ± αk

but the spin orbit couple strength in the later case is stronger ( α À β̃ = βκ2)

βκ2

α
=

(
27eVA3

)
(0.209nm )2

0.35nmeV
∼= 0.003 .
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The twofold denervate branch (η = ±) is unapparent due to the small k contribution

that we found from Fig. 2.4. In contrast, the degeneration is more apparent in Fig. 2.5

if k becomes larger gradually in the larger k range. In the specific incident plane angle

Eq. (2.35) is reduced to Eq. (2.5). We can use the special cases to know what differential

contribution from linear and cubic k although the cubic k contribution is smaller. At the

same time, the DSOI linear k result can be compared with the RSOI result [16].

Figure 2.4: Dispersion relation for a 2D Dresselhaus-type system (includes linear and

cubic terms) and the Dresselhaus constant β = 27eV
o

A3 and d = 15nm.
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Figure 2.5: Dispersion relation for a 2D Dresselhaus-type system (includes linear and

cubic terms) and the Dresselhaus constant β = 27eV
o

A3 and d = 15nm in the larger k
range.

On the other hand, we obtain three roots by solving the energy dispersion in cubic-

k system Eq. (2.35) for a given energy ε and incident angle ϕk. For the example, the

incident angle ϕk is π
3

and the helicity is positive so that we can evaluate the roots of the

energy dispersion in Fig. 2.6.

The roots of the energy dispersion Eq. (2.35) where ϕk = π
3

and η = +. The right pattern

is the real part of k and the left pattern is the imagine part of k. In the central region of

the real k and k imagine pattern show that the three roots in the region are all pure real

values. Apparently, the momentum k we have to neglect is only the smallest one due to

the corresponding much fast oscillation and then the others are exactly we must consider.

By the way, the energy ε in the top and bottom regions of the real k and imagine k pattern

are not the incident energy so that here we don’t discuss them. Similarly, if the energy
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dispersion has negative helicity, we also can use the manner to obtain the momentums

in the same way. The smaller pattern of Fig. 2.6 is the energy dispersion of the incident

plane wave where the incident energy ε which we consider is located in the energy region.

But just like the energy dispersion

ε = k2 + ηβ1k

√
κ4 + [

β3

2β1

k2 sin(2ϕk)]2 − β3

β1

k2κ2 sin2(2ϕk)

we have derived before, the incident wave angle ϕk can determine the number of roots

of the energy dispersion. However, the roots of the energy dispersion in linear-k DSOI

system Eq. (2.5) or in cubic-k DSOIsystermEq. (2.35) we need are both two roots.
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Figure 2.6: The roots of the energy dispersion Eq. (2.35) where ϕk = π
3

and η = +.
The right pattern is the real part of k and the left pattern is the imagine part of k. In
the central region of the real k and k imagine pattern show that the three roots in the
region are all pure real values. Apparently, the momentum k we have to neglect is only
the smallest one due to the corresponding much fast oscillation and then the others are
exactly we must consider.

2.4 BIA in spin splitting in 2D systems

For two dimension systems,we can estimate the BIA-induced spin splitting. We obtain a

spin splitting

∆ε(
⇀

k) = ±β1k

√
κ4 + [

β3

2β1

k2 sin(2ϕk)]2 − β3

β1

k2κ2 sin2(2ϕk) (2.59)

To reduce the energy splitting form Eq. (2.59), we make Dresselhaus constant return
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to the origin shape (β1 = β3 = β) and Eq. (2.59) becomes

∆ε(k) = ±βk

√
κ4 + [

1

4
k2 − κ2]k2 sin2(2ϕk) (2.60a)

≈ ±β

[
κ2k2 − 1

2
κ3 sin2(2ϕk) + a

(
k5

)]
. (2.60b)

where
⇀

k = k cos(ϕk)x̂ + k sin(ϕk)ŷ. We have used κ to replace with the expectation value

〈kz〉 of the wave vector along z-direction. For small
⇀

k the BIA spin splitting is linear in
⇀

k and independent of the direction of
⇀

k. For larger values of
⇀

k the BIA spin splitting

becomes anisotropic, with energy surfaces that have a fourfold rotational symmetry. Note

also that for ϕk = 0
(

⇀

k ‖ [100]
)

and ϕk = π
4

(
⇀

k ‖ [110]
)

, Eq. (2.60) is exact [2]. Within

our approach we thus have zero BIA spin splitting for ϕk = π
4

and k2 = 2κ2.

2.5 Connection between linear-k DSOI and ROSI sys-

tems

For a 2DEG system, linear-k DSOI Hamiltonian is like RSOI Hamiltonian. We can make

a coordinate rotation about DSOI Hamiltonian

HD = β (σxkx − σyky) (2.61)

and then the rotated DSOI Hamiltonian to compare with RSOI Hamiltonian

HR = α(σxky − σykx) (2.62)

where α is the Rashba spin orbiting constant and β is the Dresselhaus spin orbiting

constants. Suppose, for instance, the [x′, y′] system is rotated by angle θ Fig. 2.7, relative

to the [x, y] system. After calculation, we might express the relation between [x′, y′]
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system and [x, y] system in matrix notation:




x′

y′


 =




cos(θ) sin(θ)

− sin(θ) cos(θ)







x

y


 . (2.63)

Figure 2.7: the [x′, y′] system is rotated by angle θ, retaliative to the [x, y] system.

In the same way, Dresselhaus type Hamiltonian in [x′, y′] system is

H ′
D = β (kx′σx′ − ky′σy′)

and then it is transformed into [x′, y′] system after coordinate rotation. Similar to

Eq. (2.63), we can use the same rotation matrix in momentum kx′(ky′) and Pauli ma-

trix σx′(σx′). The detailed derivation of the coordinate rotation between linear-k DSOI

and RSOI Hamiltonians are shown in the appendix. After a coordinate rotation, the

linear-k DSOI Hamiltonian in [x, y] system is given by

H ′
D(θ) = HD = β (kxσx − kyσy) cos(2θ) + β (kxσy + kyσx) sin(2θ) . (2.64)
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We can chose a special rotating angle π
4

and then the corresponding rotated Hamiltonian

H ′
D(

π

4
) = HD = β (kxσy + kyσx) (2.65)

is like ROI Hamiltonian Eq. (2.62) so that we can make a competition between them.

It means that the propagating with their momentum k making a angle ϕk = π
4

with

respect to the x̂ axis in linear k Dresselhaus SOI system whose propagating process is

compellable. We can discuss the spin density or the probability density distribution in

this case comparing the Rashba result.
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Chapter 3

Scattering from a cylindrically

symmetric potential in a Dresselhaus

SOI system

The main focus in this chapter is discussed the scattering process. We first present the

spin dependent scattering calculation including cylindrical wave representations of the

incoming wave and the outgoing wave and then for a given m these equations involving

Hankel functions can be transformed into a m×m matrices result from independence of

the angle. We can determine the unknown coefficients by solving this boundary condition

problem.

In contrast, the scattering process in linear-k DSOI system can be solved analytically so

that the total function and the spin density both have analytical forms. The spin density

distribution is evaluated exactly and it is helpful to analyze the cubic-k DSOI case. For a

given total wave function, spin density will be studies. Finally, we drive particle continuity

equation in Dresselhaus SOI Hamiltonian to find the particle current.
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3.1 Cubic-k Dresselhaus SOI

3.1.1 Coupled cylindrical wave representations of the incoming

wave

First, we choose the propagating direction of the incident plane wave along x̂-direction

with the angle ϕk respecting to the x̂ axis in Drsselhaus-type SOI system. Then, in cylin-

drical coordinate, incident plane wave with the incident energy ε, a ratio <, momentum

γ and helicity η = + can be expansion of partial waves

ψincoming =
1

2
√

2

∞∑

m,m′=−∞




imH
(2)
m (γr)eim(ϕ−ϕk)

<inci
m′

H
(2)
m′ (γr)eim′(ϕ−ϕk)


 . (3.1)

For the scattering process in the Dresselhaus-type system we can take ψ as a eigenbasis

ψ = A




∑
m

Jm(γr)eimϕeimδ

∑
m′

(η<)Jm′(γr)eim′ϕeim′δ


 (3.2)

where

< = e−iδ

√√√√−
(iκ2ei2δ + β3

β1

γ2

2
sin(2δ))

(iκ2e−i2δ − β3

β1

γ2

2
sin(2δ))

(3.3)

, A is a unknown constant and

ε = γ2 + ηβ1γ

√
κ4 + (

β3

β1

γ2

2
)2 sin2(2δ)− κ2

β3

β1

γ2 sin2(2δ). (3.4)

due to the central cylindrical symmetric potential.

The total wave function outside the scattering region (r > R) has the form

ψtotal = ψoutgoing + ψincoming (3.5)
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where

ψincoming = c




g1(γ, r, δ)

g2(γ, r, δ)


 (3.6)

and

ψoutgoing =

∫ 2π

0

dδa(δ)




f1(γ, r, δ)

f2(γ, r, δ)


 +

∫ 2π

0

dδ′b(δ′)




f1(γ
′, r, δ′)

f2(γ
′, r, δ′)


 . (3.7)

(postive helicity : γ , δ negative helicity : γ′ , δ′)

Here f1(f2) are the first kind Hankel functions and g1(g2) are the second kind Hankel

functions. From Eq. (3.5) to Eq. (3.7), it can show that if an incident wave has a specific

helicity ψin,+, no incoming cylindrical wave with negative helicity and nonzero coefficient

b(δ′) lead to outgoing waves with flipped helicity (outgoing wave must have both η = ±).

For a given incident plane wave Eq. (3.1), we look at the incoming part that the all

coefficients in Eq. (3.6) can be determined and use <inc to replace with < where <inc is a

function of ϕk in order to avoid to confuse the incoming wave with the outgoing wave.

ψincoming =
1

2
√

2

∞∑

m,m′=−∞




imH
(2)
m (γr)eim(ϕ−ϕk)

<inci
m′

H
(2)
m′ (γr)eim′(ϕ−ϕk)


 (3.8)

ε = γ2 + β1γ

√
κ4 + [

β3

2β1

γ2 sin(2ϕk)]2 − β3

β1

γ2κ2 sin2(2ϕk) (3.9)

<inc = −
√√√√κ2e−i(ϕk) + β3

2β1
iγ2 sin(2ϕk)ei(ϕk)

κ2ei(ϕk) − β3

2β1
iγ2 sin(2ϕk)e−i(ϕk)

(3.10)

Boundary conditions will be established in the later section for the solving of unknown

coefficients of outgoing wave Eq. (3.7). And we simplify the outgoing wave part in the

next section.
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3.1.2 Coupled cylindrical wave representations of the outgoing

wave

The continuous integration
∫ 2π

0
dδ in Eq. (3.7) can be treated as the discrete summation

N∑
i=1

∆δ in representation of a matrix form to and then use it to solve the boundary problem

in the numerical method. Here δ describes that the integration range of δ from 0 to 2π

is divided into N pieces and each piece ∆δ = 2π/N. The summation is more close to the

integration if N is larger enough. In the later section, we can determine N through the

numerical result of the spin density and the probability of the total wave function.

The integration approximation is estimated by

∫ 2π

0

dδ →
N∑

i=1

∆δ and
∫ 2π

0
dδ′ →

N∑
i=1

∆δ′ (3.11)

The outgoing wave part of the total wave function Eq. (3.7) can be regarded as the

discrete form

ψoutgoing =
N∑

n=1

∆δa(δn)




f1(γn, r, δn)

f2(γn, r, δn)


 +

N∑
n=1

∆δ′b(δn)




f1(γ
′
n, r, δ

′
n)

f2(γ
′
n, r, δ

′
n)


 (3.12)

where ∆δ = 2π
N

= ∆δ′ and δn = n∆δ = n∆δ′ = δ′n . The unknown constants a(δn) and

b(δn) are function of δn and then δn is the Nth piece of the angle δ. Substituting the

eigenbasis Eq. (3.2) into the Eq. (3.12), we have the outgoing wave function in the dis-

crete form

ψoutgoing =
N∑

n=1

∆δa(δn)




∞∑
m=−∞

H
(1)
m (γnr)eim(ϕ+δn)

(<n)
∞∑

m′=−∞
H

(1)
m′ (γnr)eim′(ϕ+δn)




+
N∑

n=1

∆δ′b(δ′n)




∞∑
m=−∞

H
(1)
m (γ′nr)eim(ϕ+δ′n)

(<′n)
∞∑

m′=−∞
H

(1)
m′ (γ′nr)eim′(ϕ+δ′n)




(3.13)
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The equation shows that consider a incident plane wave with positive helicity after scat-

tering by central symmetric potential ( hard wall disk) whose incoming wave part is the

same as before scattering but the outgoing wave part including both positive and negative

helicity lead to spin flipping. For a reference, if the incident wave has only negative he-

licity, then the helicity of the incoming wave part is still negative. At the same time, the

rules of γ and γ′, as well as the probability amplitudes a(δ) and b(δ′) must be interchanged.

We can easily deduce the outgoing wave function into the convenient form with the

representation am(δn) = am and bm′(δn) = bm′ and then it becomes

ψoutgoing =
N∑

n=1

∆δ




∞∑
m=−∞

[anH
(1)
m (γnr)e

im(ϕ+δn) + bnH
(1)
m (γ′nr)eim(ϕ+δn)]

∞∑
m′=−∞

[an(<n)H
(1)
m′ (γnr)eim′(ϕ+δn) + bn(<′n)H

(1)
m′ (γ′nr)eim′(ϕ+δn)]




(3.14)

Here the correspond energy dispersion and the ratio are

ε = γ2
n + β1γn

√
κ4 + (

β3

β1

γ2
n

2
)2 sin2(2δn)− κ2

β3

β1

γ2
n sin2(2δn) , (3.15)

<n = e−iδn

√√√√−
(iκ2ei2δn + β3

β1

γ2
n

2
sin(2δn))

(iκ2e−i2δn − β3

β1

γ2
n

2
sin(2δn))

(3.16)

and

ε = (γ′n)2 − β1γ
′
n

√
κ4 + (

β3

β1

(γ′n)2

2
)2 sin2(2δn)− κ2

β3

β1

(γ′n)2 sin2(2δn) , (3.17)

<′n = −e−iδn

√√√√−
(iκ2ei2δn + β3

β1

(γ′n)2

2
sin(2δn))

(iκ2e−i2δn − β3

β1

(γ′n)2

2
sin(2δn))

(3.18)
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; Eq. (3.15) and Eq. (3.16) corresponding to helicity η = + , while Eq. (3.17) and

Eq. (3.18) correspond to η = −. In the case of helicity η = +, for a given energy ε,

momentum γn can be get from the energy dispersion in each δn. And then if momentum

is known, we also obtain the correspond ratio <n by solving the equation which is function

of η and δn Eq. (3.16). The negative helicity case is the same as the negative helicity case ,

so all parameters is known for a given energy expect for the probability an and bn which we

can determine by the boundary condition. After detailed calculation process in section

3.1 and this section, from the incoming wave part in Eq. (3.8) and the outgoing wave part

in Eq. (3.14), the total wave function with the incident angle ϕk outside the disk Eq. (3.5)

is given by

ψtotal(r, ϕ, ϕk) =




N∑
n=1

∞∑
m=−∞

∆δ[anH
(1)
m (γnr)e

im(ϕ+δn) + bnH
(1)
m (γ′nr)e

im(ϕ+δn)]

+ 1
2
√

2

∞∑
m=−∞

imH
(2)
m (γr)eim(ϕ−ϕk)

N∑
n=1

∞∑
m′=−∞

∆δ[an(<n)H
(1)
m′ (γnr)e

im′(ϕ+δn) + bn(<′n)H
(1)
m′ (γ′nr)e

im′(ϕ+δn)]

+ 1
2
√

2

∞∑
m′=−∞

(<inc)i
m′

H
(2)
m′ (γr)eim′(ϕ−ϕk)




(3.19)

The total wave function ϕk outside the scattering region (r ≥ R) for a given incident

angle must be zero which is independent of the angle ϕ at r = R due to the boundary

condition of the cental symmetric potential ( ”hard ” wall disk).

ψtotal(R,ϕ, ϕk) =




N∑
n=1

∞∑
m=−∞

∆δ[anH
(1)
m (γnR)eim(ϕ+δn) + bnH

(1)
m (γ′nR)eim(ϕ+δn)]

+ 1
2
√

2

∞∑
m=−∞

imH
(2)
m (γR)eim(ϕ−ϕk)

N∑
n=1

∞∑
m′=−∞

∆δ[an(<n)H
(1)
m′ (γnR)eim′(ϕ+δn) + bn(<′n)H

(1)
m′ (γ′nR)eim′(ϕ+δn)]

+ 1
2
√

2

∞∑
m′=−∞

(<inc)i
m′

H
(2)
m′ (γR)eim′(ϕ−ϕk)




= 0
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(3.20)

In Eq. (3.20) the summation
∞∑

m=−∞
we can define a finite range from −m to m to represent

an infinite range just like Eq. (3.11) . At the same time, we make N in Eq. (3.11) equal

2M + 1 so that the first low of the total wave function is given by

M∑
m=−M

(
2M+1∑
n=1

∆δeim(ϕ+δn)[anfmn + bnf ′mn] + gmeim(ϕ−ϕk)

)
(3.21)

where fmn = H
(1)
m (γnR) , f ′mn = H

(1)
m (γ′nR) and gm = im

2
√

2
H

(2)
m (γR) .

And each piece ∆δ is equal to 2π
2M+1

corresponding δn = n∆δ = n 2π
2M+1

. In the same way,

the second low has the similar form

M∑

m′=−M

(
2M+1∑
n=1

∆δeim′(ϕ+δn)[an(<n)fm′n + bn(<′n)f ′m′n] + (<inc)gm′eim′(ϕ−ϕk)

)
(3.22)

where eiθnfm′n = (<n)H
(1)
m′ (γnR) , eiθ′nf ′m′n = (<′n)H

(1)
m′ (γ′nR) and gm′ = im

′

2
√

2
H

(2)
m′ (γR) . Then

the total wave functions on the bound (r = R) reduce to a simply form as following

ψtotal(R,ϕ, ϕk)

=




M∑
m=−M

(
2M+1∑
n=1

∆δeim(ϕ+δn)[anfmn + bnf
′
mn] + gmeim(ϕ−ϕk)

)

M∑
m′=−M

(
2M+1∑
n=1

∆δeim′(ϕ+δn)[an(<n)fm′n + bn(<′n)f ′m′n] + (<inc)gm′eim′(ϕ−ϕk)

)


 = 0 .

(3.23)

We use the orthogonal relation on the summations of the two component matrix since the

”hard” wall boundary is ϕ independent. Taking into the orthogonal relation on ϕ, the

first low Eq. (3.21) have no ϕ dependence, we have

2M+1∑
n=1

(
eim′′δn [fm′′nan + f ′m′′nbn]

)
= − 1

∆δ
Gm′′ (3.24)
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where Gm′′ = gm′′eim′′(−ϕk) and we can do the same orthogonality on Eq. (3.22). Eq. (3.23)

can be transformed into a big matrix which is given by




F11 F12

F21 F22







A

B


 =




G

G′


 (3.25)

where

F11 =




e−iMδ1f−M1 . . . e−iMδ2M+1f−M(2M+1)

...
. . .

...

eiMδ1fM1 · · · eiMδ2M+1fM(2M+1)




, (3.26)

F12 =




e−iMδ1f ′−M1 . . . e−iMδ2M+1f ′−M(2M+1)

...
. . .

...

eiMδ2M+1f ′M1 · · · eiMδ2M+1f ′M(2M+1)




, (3.27)

F21 =




e−iMδ1(<1)f−M1 . . . e−iMδ2M+1(<
2M+1

)f−M(2M+1)

...
. . .

...

eiMδ1(<1)fM1 · · · eiMδ2M+1(<
2M+1

)fM(2M+1)




, (3.28)

and

F22 =




e−iMδ1(<′1)f ′−M1 . . . e−iMδ2M+1(<′2M+1)f
′
−M(2M+1)

...
. . .

...

eiMδ2M+1(<′1)f ′M1 · · · eiMδ2M+1(<′2M+1)f
′
M(2M+1)




. (3.29)

The unknown matrix elements

A =




a−M1

...

aM2M+1




(3.30)
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and

B =




b−M1

...

bM2M+1




(3.31)

can be solved in the numerical method for a given

G =




G−M

...

GM




and

G′ =




(<inc)G−M

...

(<inc)GM




.

Appendix gives the detailed derivation of the matrix in Dresselhaus-type SOI system.

The numerical result of Eq. (3.30) and Eq. (3.31) can be used to obtain the total wave

function Eq. (3.23) so that the spin density is determined. Also, we can observe the spin

density pattern via the incident angle ϕk in the summation.

3.2 Linear-k Dresselhaus SOI

3.2.1 Coupled cylindrical wave representations

From the section 2.2, we know that the direction of the propagating of the incident plane

wave along the x̂ axis in linear-k Dresselhaus SOI system. Then, in cylindrical coordinate,

incident plane wave has energy ε, momentum γ and helicity η = +, can be expansion of
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partial waves

ψin,+ =
∞∑

m=−∞

im

2
√

2




[
H

(2)
m (γr) + H

(1)
m (γr)

]
eim(ϕ)

(i)
[
H

(2)
m−1(γr) + H

(1)
m−1(γr)

]
ei(m−1)(ϕ)


 . (3.32)

and m is the total angular momentum which is conserved during the scattering. The

energy eigenstate of the linear-k DSOI Hamiltonian can be written as

ψm =




eimϕ
[
amH

(1)
m (γr) + cmH

(1)
m (γ′r) + im

2
√

2
H

(2)
m (γr)

]

ei(m−1)ϕ
[
iamH

(1)
m−1(γr)− cmiH

(1)
m−1(γ

′r) + im

2
√

2
(i)H

(2)
m−1(γr)

]




(3.33)

where

ε = γ2 + β1κ
2γ = γ′2 − β1κ

2γ′.

The first and third terms have positive helicity while the second terms have the negative

helicity. Here H(1,2) refers to the Hankel functions of the first and second kind respectively,

and H(1)[H(2)] is an outgoing (incoming) cylindrical wave. The most general eigenstates

is a superposition of ψm, where the coefficients am and cm are determined by boundary

conditions. On the other hand, dm is determined by the initial condition in Eq. (3.32),

so we can obtain dm = im

2
√

2
. It means that the incident plane wave has η = +, then

by comparing Eq. (3.33); the incoming wave (the second kind of the Hankel function)

only has positive helicity, so dm can be obtained. For a ”hard ” wall boundary (i.e.

ψm = 0 at r = R), the coefficient can be given by

am = − im

2
√

2

H
(1)
m (γ̃′)H(2)

m−1(γ̃)+H
(2)
m (γ̃)H

(1)
m−1(γ̃′)

H
(1)
m (γ̃)H

(1)
m−1(γ̃′)+H

(1)
m (γ̃′)H(1)

m−1(γ̃)
,

cm = im

2
√

2

H
(1)
m (γ̃)H

(2)
m−1(γ̃)−H

(2)
m (γ̃)H

(1)
m−1(γ̃)

H
(1)
m (γ̃)H

(1)
m−1(γ̃′)+H

(1)
m (γ̃′)H(1)

m−1(γ̃)
,

(3.34)
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where we define γ̃ ≡ γR and γ̃′ ≡ γ′R . The total wave function is the summation of

partial wave can be represented by

ψtotal =
∑
m

ψm . (3.35)

The Rashba scattering model has been investigated in [16].

To produce the recursion relation of the total wave function, we simplify Eq. (3.33)

ψm =




eimϕA+m

ei(m−1)ϕB+m


 (3.36)

where

A+m = amH
(1)
m (γr) + cmH

(1)
m (γ′r) + H

(2)
m (γr)

B+m = iamH
(1)
m−1(γr)− cmiH

(1)
m−1(γ

′r) + iH
(2)
m−1(γr)

. (3.37)

We would obtain the relation of the coefficients

a−m+1 = i−2m+1am

c−m+1 = −i−2m+1cm

(3.38)

and

B+,−m+1 = (−1)miA+,m

B∗
+,−m+1 = −(−1)miA∗

+,m .
(3.39)

from the coefficient Eq. (3.34) if we have the properties of Hankel functions.

H−m(z) = (−1)mHm(z) (3.40)

The spin density of the total wave function in Eq. (3.32) for linear-k DSOI system can

be obtained in analytical form if we use the recursion relation in Eq. (3.39). However,
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the cubic-k DSOI system has to be solved in numerical method. The analytical form of

the spin density is much more powerful which can be compared with the Rashba SOI

scattering case [28].

3.3 Scattering of the scattering state

The scattering of the scattering state is composed of two kinds of outgoing waves (helicity

η = ± ) which resulted from scattering upon a hard disk. We change the helicity of

incident plane wave which is from the previous case and then the scattering process is

analogical. But the quantity of spin density is slightly different.

3.4 Spin density of the scattering state

In the section we focus on the spin density of the scattering state both in linear-k DSOI

and cubic-k DSOI systems. The spin density distribution is very important since we

observe the polarization around the disk from the distribution. Moreover, for a given

incident angle ϕk, we can obtain a spin density distribution. For the specific incident

angle, it can be compared with the one in the Rashba SOI system. At the same time, it

is important is to know the cubic-k contribution by comparing the in linear-k DSOI with

cubic-k DSOI systems. And then from the energy dispersion in cubic-k DSOI systems

which was derived in section 2.2, we know that the scattering process is the same due to

the same energy dispersion when the incident angle ϕk is equal to 2nπ (n is integer). In

contrast, at the other incident angle, the cubic-k SOI contribution is considerable. Here

we must use the numerical method to deal with the spin density in cubic-k DSOI system,

but the spin density can be obtained analytically in linear-k DSOI system.

The spin density on linear-k DSOI can be evaluated lightly since the total wave func-

tion can be expressed in analytical form Eq. (3.33). By the definition, the spin density
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Sz(r, ϕ) in units of ~/2 , is given by

Sz(r, ϕ) = ψ+
totalσzψtotal (3.41)

where σz is the Pauli matrix.

Substituting Eq. (3.33) into Eq. (3.41) the spin density becomes

Sz(r, ϕ)

= 1
8

∑
m,m′

im
′−m

(
A∗

+me−imϕ B∗
+me−i(m−1)ϕ

)



1 0

0 −1







A+m′eim′ϕ

B+m′ei(m′−1)ϕ




= 1
8

∑
m,m′

[
im

′−m cos ((m′ −m)ϕ) + i(m
′−m+1) sin ((m′ −m)ϕ)

] (
A∗

+mA+m′ −B∗
+mB+m′

)

(3.42)

where the elements are described in Eq. (3.37) and Eq. (3.38) . The spin density whose ϕ

dependence include odd function and even function (i.e. sin ((m′ −m)ϕ) and cos ((m′ −m)ϕ)

) . In addition, we reconsider recursion relation Eq. (3.39) which is useful to obtain the

relation between the spin density Sz(r, ϕ) and ϕ dependence.

∑

m,m′

[
im

′−m cos ((m′ −m)ϕ)
]
F (r) = 0

(3.43a)

∑

m,m′

[
i(m

′−m+1) sin ((m′ −m)ϕ)
]
F (r) =

∑

m,m′
2 sin ((m′ −m)ϕ)

(
A∗

+mA+m′
)
i(m

′−m+1)

(3.43b)

where F (r) =
(
A∗

+mA+m′ −B∗
+mB+m′

)
is only radial dependent.

Therefore, we substitutes Eq. (3.43) into account that the spin density Eq. (3.42) can be

obtained

Sz(r, ϕ) =
1

4

∑

m,m′
sin ((m′ −m)ϕ)

(
A∗

+mA+m′
)
i(m

′−m+1) . (3.44)

40



CHAPTER 3. SCATTERING FROM A CYLINDRICALLY SYMMETRIC
POTENTIAL IN A DRESSELHAUS SOI SYSTEM

As a result, the ϕ−dependence in spin density exhibits odd parity from the analytical

form Eq. (3.44) apparently (i.e. Sz(r,−ϕ) = −Sz(r, ϕ)). Hence, we conjecture that the

spin density in the cubic-k DOS system would have a similar result but something is

different due to the contribution from cubic-k term. The conjectural result in the cubic-k

system about the spin density from the linear-k system is useful for us to estimate the

result from the numerical method.

3.5 Particle continuity equation

In quantum mechanics, calculating current is crucial to applications. A widely accepted

approach is using the correspondence regulation from classical to quantum mechanics.

From the Schrödinger equation, we have Hψ = i ∂
∂t

ψ and (Hψ)† = −i ∂
∂t

ψ . Notice here

the transposition in the symbol † only acts on the spin index . We can use the above two

equations to get the particle continuity equation.

∂

∂t
ψ†ψ =

1

i

[
ψ† (Hψ)− (Hψ)† ψ

]
(3.45)

or

∂

∂t
n = −⇀∇ · ⇀

j (3.46)

where n = ψ†ψ is the particle density and
⇀

j is the particle current density.

It describes the conservation of the particle number. In the derivation below, we use

the following Hamiltonian:

H = −∇2 − κ2β1(kxσx − kyσy) + β3(kxk
2
yσx − kyk

2
xσy) + V (

⇀
r) (3.47)

In Eq. (3.45) the first term is the kinetic energy. The second and third terms are the

Dresselhaus spin-orbit coupling, which has been extensively studied recently. Next we
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substitute the Hamiltonian Eq. (3.47) into Eq. (3.45), and Eq. (3.45) becomes

∂

∂t
ψ†ψ =

1

i





−[ψ†∇2ψ − (∇2ψ†)ψ]− κ2β1[ψ
†σx(kxψ) + (kxψ

†)σxψ]+

κ2β1[ψ
†σy(kyψ) + (kyψ

†)σyψ]+β3[ψ
†σx(kxk

2
yψ) + (kxk

2
yψ

†)σxψ]

−β3[ψ
†σy(kyk

2
xψ) + (kyk

2
xψ

†)σyψ]





(3.48)

And we have the
⇀

k = 1
i

⇀∇ = 1
i
(x̂∇x + ŷ∇y) . After long careful calculations from Eq. (3.45) and Eq. (3.48),

we obtain

∂

∂t
n = −⇀∇ · (⇀

j
conv

+
⇀

j
extra

) (3.49)

where

⇀

j
conv

= −i[ψ†(
⇀∇ψ) + (

⇀∇ψ†)ψ]
⇀

j
extra

=
⇀

j
L

+
⇀

j
C

⇀

j
L

= −κ2β1[ψ
†(x̂σx − ŷσy)ψ]

⇀

j
C

= −[β3ψ
†(ŷσx − x̂σy)(∇x∇yψ) + β3(∇x∇yψ

†)(ŷσx − x̂σy)ψ] + [β3(∇iψ
†)(x̂σx − ŷσy)(∇iψ)]

(i = x, y, z)......repeated index connection adopted

(3.50)

Appendix B gives the detailed calculation of the particle continuity equation in Dressel-

haus SOI system.

Here
⇀

j
conv

is a ” conventional term ”. This term is general for any potential V (
⇀
r) in

Hamiltonian if the potential is position dependent. And the main source to induce an

extra term of the particle current
⇀

j
extra

comes from Dresselhaus spin orbit coupling which

include linear term
⇀

j
L

and cubic term
⇀

j
C

.

In Rashba SOI system in Eq. (3.51), we get the same result in Eq. (3.52) except for
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the extra term in Eq. (3.53).

HR = −∇2 + α(kxσy − kyσx) + V (
⇀
r) (3.51)

⇀

j =
⇀

j
conv

+
⇀

j
extra

(3.52)

where

⇀

j
extra

=
⇀

j
R

= αψ†(⇀
σ × ẑ)ψ (3.53)

However, we discuss the particle current in some complex system with SOI such as

Dresselhaus SOI in Eq. (3.47) and Rashba SOI in Eq. (3.51) in which the momentum

appears in the ”potential ” of the Hamiltonian of semiconductors that the extra term

must exit. In our case, the number of particle must conserve during the scattering process

without any bias or EM fields.
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Numerical results and discussions

4.1 Results for linear-k Dresselhaus SOI

We has studied the results of the scattering in linear-k Dresselhaus system. In chapter 3,

the spin density of the total wave function would be solved in numerical method as we

do in this chapter just like solving the Rashba scattering problem [28]. But we find the

recursion relation of the coefficients of the wave function which can be used to simplify

the spin density toughly so that we have the analytical form. However, we can compare

the numerical results with the analytical results. The plane wave incident a hard wall

disk in linear-k Dresselhaus system with the helicity η = +, the incident energy ε=7.7

(in unit of ε∗), and the incident angle ϕk=0 ( the energy unit ε∗ = 8.977 meV ).The spin

density of the total function has the analytical form

Sz(r, ϕ) = ψ+
totalσzψtotal =

1

4

∑

m,m′
sin ((m′ −m)ϕ)

(
A∗

+mA+m′
)
i(m

′−m+1) (4.1)

where

A+m = amH(1)
m (γr) + cmH(1)

m (γ′r) + H(2)
m (γr) (4.2)
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whose coefficients are

am = −H
(1)
m (γ̃′)H(2)

m−1(γ̃) + H
(2)
m (γ̃)H

(1)
m−1(γ̃

′)

H
(1)
m (γ̃)H

(1)
m−1(γ̃

′) + H
(1)
m (γ̃′)H(1)

m−1(γ̃)
(4.3)

and

cm =
H

(1)
m (γ̃)H

(2)
m−1(γ̃)−H

(2)
m (γ̃)H

(1)
m−1(γ̃)

H
(1)
m (γ̃)H

(1)
m−1(γ̃

′) + H
(1)
m (γ̃′)H(1)

m−1(γ̃)
. (4.4)

The numerical results of the spin density from 3.2.1 we can solve the boundary con-

dition by using numerical method. And then the distribution of the spin density and

the probability density of the total wave function are obtained in Fig. 4.1 and Fig. 4.2

respectively.

Figure 4.1: Distribution of the out-of-plane spin density Sz. The plane wave incident a
hard wall disk in linear-k Dresselhaus system with the helicity η = +, the incident energy
ε=7.7, and the incident angle ϕk=0. Lighter regions means the region whose spin density
Sz >0 (spin up). And the darker regions represent the region of spin down .
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Figure 4.2: The spatial dependence of the magnitude of the total wave function probability
density. Out of the white circle is the region with finite Dresselhaus SOI. Apparently, when
the plane wave propagates along the x axis, the probability density is almost zero behind
the disk due to the hard wall disk .

The spin density function is the odd function of ϕ from Eq. (4.1), i.e. Sz(r,−ϕ) =

−Sz(r, ϕ) . The property from the analytical result is consistent with the distribution

of the spin density pattern plotted in Fig. 4.1. Also, Fig. 4.2 show that the total wave

function density is almost zero behind the disk due to the hard wall disk.

For a larger incident energy ε=13.23 (in unit of ε∗) , we obtain the spin density plotted

in Fig. 4.3. The total wave function probability density is plotted in Fig. 4.4, where other

parameters of the incident plane wave and the linear-k DSOI constant are fixed. From

Fig. 4.3 and Fig. 4.2, we can conclude that the concentration of spin density (fringes)

become higher by larger incident energy. The energy dispersion of the incident wave with

helicity η which we derived in chapter 1 shows that the momentum is independent of the

incident angle ϕk and then the effective magnetic filed is perpendicular to momentum in

linear-k Dresselhaus system. Hence, the distribution of the probability density and spin

density in linear-k Dresselhaus system are just rotated by the incident wave angle but the

patterns are the same.
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Figure 4.3: Distribution of the out-of-plane spin density Sz. The plane wave incident
a hard wall disk in linear-k Dresselhaus system with the helicity η = +, the incident
energy ε=13.23, and the incident angle ϕk=0. Lighter regions means the region whose
spin density Sz >0 (spin up) . And the darker regions represent the region of spin down .

Figure 4.4: The spatial dependence of the magnitude of the total wave function probability
density. Out of the white circle is the region with finite Dresselhaus SOI. Apparently, when
the plane wave propagates along the x axis, the probability density is almost zero behind
the disk due to the hard wall disk.
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Figure 4.5: The quality the spin density Sz determining the number m as function of ϕ
for a central hard wall disk where m represents the number of the partial waves we must
sum. Apparently, the line of the spin density corresponding to the distribution of the spin
density Fig. 4.1 at r=2 is saturated for a larger m. And the probability density also has
the same situation.

4.2 Results for cubic-k Dresselhaus SOI and more

Discussions

In the case of cubic-k Dresselhaus, we must deal with a troublesome numerical problem.

However, it doesn’t saturate or converge to a value. Here we replace the plane wave with

the cylindrical wave to check the sliced method in appendix C. We consider a cylindrical

wave incidents a Dresselhaus SOI disk and we both use the sliced and non-sliced methods.

And then we make a comparison between analytical results and numerical approach in

cylindrical wave case in order to check our numerical method. Results in appendix C show

that the numerical method is feasible for cylindrical wave in Dresselhaus SOI case.
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4.3 Discussion on the connection of spin density with

the plane wave direction

We make a discussion on the connection of spin density with the plane wave direction in

Dresselhaus SOI system.

The energy dispersion in the linear-k Dresselhaus system we derived in Chapter 2

ε = k2 ± βκ2k (4.5)

and the spin density Eq. (4.1) we driven in Chapter 3 which can be evaluated easily.

For a given incident plane wave with energy ε, helicity η, and incident angle ϕk, we

can obtain the momentum k by solving Eq. (4.5) so that the corresponding momentum

is independent of incident angle ϕk. Also, we know that the effective magnetic field is

always perpendicular to the momentum. Hence, we can surmise that the spin density and

probability density patterns are just rotated an angle for a different incident angle ϕk in

linear-k Dresselhaus system and the distribution and the strength of them are analogical.

In the cubic-k Dresselhaus system the energy dispersion we driven

ε = k2 ± β1k

√
κ4 + [

β3

2β1

k2 sin(2ϕk)]2 − β3

β1

k2κ2 sin2(2ϕk) (4.6)

and then we can obtain the momentum from Eq. (4.6). Obviously, the momentum is

dependent of ϕk so that we can adjust that both the spin density and probability density

patterns in cubic-k Dresselhaus system are dependent of ϕk. The scattering process in

cubic-k Dresselhaus system with a different incident angle ϕk is more complex than in

linear-k Dresselhaus system.
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Future work

In the future, we continue to accomplish the cubic-k Dresselhaus scattering problem. The

scattering of incoming spin-polarized beam of electrons in DSOI system could provide a

way for detecting spin-current and then serves as a basis considering a magnetic flux in

the disk. Also, such a setting of SOI can be used to produce a source of spin-polarized

electrons, which has a variety of potential applications in spintronics processing.
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Simplify the boundary condition

problem

The total wave function in Dresselhaus system can be written as

ψtotal(R,ϕ, ϕk)

=




M∑
m=−M

(
2M+1∑
n=1

∆δeim(ϕ+δn)[amnfmn + bmnf
′
mn] + gmeim(ϕ−ϕk)

)

M∑
m′=−M

(
2M+1∑
n=1

∆δeim′(ϕ+δn)[am′n(<n)fm′n + bm′n(<′n)f ′m′n] + (<inc)gm′eim′(ϕ−ϕk)

)




= 0

(A.1)

where fmn = H
(1)
m (γnR) , f ′mn = H

(1)
m (γ′nR) , gm = im

2
√

2
H

(2)
m (γR) , and

N = 2M + 1 , ∆δ =
2π

2M + 1
, δn = n∆δ = n

2π

2M + 1
.
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Besides, in Eq. (A.1) the values of ratio we driven in Chapter 2 are

(<inc) = −ei(ϕk)

√√√√κ2e−i(2ϕk) + β3

2β1
ik2 sin(2ϕk)

κ2ei(2ϕk) − β3

2β1
ik2 sin(2ϕk)

(A.2a)

(<n) = e−iδn

√√√√−
(iκ2ei2δn + β3

β1

γ2
n

2
sin(2δn))

(iκ2e−i2δn − β3

β1

γ2
n

2
sin(2δn))

(A.2b)

(<′n) = −e−iδn

√√√√√−
(iκ2ei2δn + β3

β1

(γ′n)2

2
sin(2δn))

(iκ2e−i2δn − β3

β1

(γ′n)2

2
sin(2δn))

. (A.2c)

Here we use the orthogonal property of ϕ so that we integrals over ϕ in Eq. (A.1)

where the ϕ ranges from 0 to 2π and the the number m′′ ranges −M to M .

(i.e. 1
2π

∫ 2π

0
dϕe−im′′ϕ.)

The first low of Eq. (A.1) after integrating can written as

M∑
m=−M

(
2M+1∑
n=1

1

2π

∫ 2π

0

dϕe−im′′ϕeim(ϕ+δn)∆δ[fmnamn + f ′mnbmn] +
1

2π

∫ 2π

0

dϕe−im′′ϕgmeim(ϕ−ϕk)

)
= 0

(A.3)

M∑
m=−M

(
2M+1∑
n=1

eimδn∆δ[fmnamn + f ′mnbn] 1
2π

∫ 2π

0
dϕei(m−m′′)ϕ + gmeim(−ϕk) 1

2π

∫ 2π

0
dϕei(m−m′′)ϕ

)
= 0

M∑
m=−M

(
2M+1∑
n=1

eimδn∆δ[fmnamn + f ′mnbmn]δmm′′ + gmeim(−ϕk)δmm′′

)
= 0

(δmm′′ is delta function [30] )

2M+1∑
n=1

(
eim′′δn∆δ[fm′′nam′′n + f ′m′′nbm′′n]

)
+ gm′′eim′′(−ϕk)) = 0
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After calculation, we obtain

2M+1∑
n=1

(
eim′′δn [fm′′nam′′n + f ′m′′nbm′′n]

)
= − 1

∆δ
gm′′eim′′(−ϕk) . (A.4)

In the same way, we deal with the second low of Eq. (A.1).

M∑

m′=−M




2M+1∑
n=1

1
2π

∫ 2π

0
dϕe−im′′ϕeim′(ϕ+δn)∆δ[(<n)fm′nam′n + (<′n)f ′m′nbm′n]

+ 1
2π

∫ 2π

0
dϕe−im′′ϕeiθincgm′eim′(ϕ−ϕk)


 = 0 (A.5)

M∑
m′=−M




2M+1∑
n=1

eim′δn∆δ[(<n)fm′nan + (<′n)f ′m′nbn] 1
2π

∫ 2π

0
dϕei(m′−m′′)ϕ

+(<inc)gm′eim′(−ϕk) 1
2π

∫ 2π

0
dϕei(m′−m′′)ϕ


 = 0

M∑
m′=−M

(
2M+1∑
n=1

eim′δn∆δ[(<n)fm′nan + (<′n)f ′m′nbn]δm′m′′ + (<inc)gm′eim′(−ϕk)δm′m′′

)
= 0

2M+1∑
n=1

(
eim′′δn∆δ[(<n)fm′′nan + (<′n)f ′m′′nbn] + (<inc)gm′′eim′′(−ϕk)

)
= 0

Therefore, we also obtain the simplified form which is similar with Eq. (A.4).

2M+1∑
n=1

eim′′δn [(<n)fm′′nan + (<′n)f ′m′′nbn] = − 1

∆δ
(+<inc)gm′′eim′′(−ϕk) (A.6)

We consider the number m′′ which ranges from −M to M and then we can use Eq. (A.4)

and Eq. (A.6) to demonstrate a big matrix.




F11 F12

F21 F22







A

B


 =




G

G′


 (A.7)
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Each element of Eq. (A.7) are given respectively as following :

F11 =




e−iMδ1f−M1 . . . e−iMδ2M+1f−M(2M+1)

...
. . .

...

eiMδ1fM1 · · · eiMδ2M+1fM(2M+1)




(A.8a)

F12 =




e−iMδ1f ′−M1 . . . e−iMδ2M+1f ′−M(2M+1)

...
. . .

...

eiMδ2M+1f ′M1 · · · eiMδ2M+1f ′M(2M+1)




(A.8b)

F21 =




e−iMδ1(<1)f−M1 . . . e−iMδ2M+1(<
2M+1

)f−M(2M+1)

...
. . .

...

eiMδ1(<1)fM1 · · · eiMδ2M+1(<
2M+1

)fM(2M+1)




(A.8c)

F22 =




e−iMδ1(<′1)f ′−M1 . . . e−iMδ2M+1(<′2M+1)f
′
−M(2M+1)

...
. . .

...

eiMδ2M+1(<′1)f ′M1 · · · eiMδ2M+1(<′2M+1)f
′
M(2M+1)




(A.8d)

A =




a−M1

...

aM2M+1




, B =




b−M1

...

bM2M+1




(A.8e)

G =




G−M

...

GM




, G′ =




(<inc)G−M

...

(<inc)GM




. (A.8f)

We obtain the unknown coefficients of Eq. (A.8) by using numerical method to solve

the matrix Eq. (A.7). Hence, the numerical result can be used to obtain the total wave

function Eq. (A.1) so that the spin density is determined.
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Derivation of spin density of the

total wave function after scattering

The incident plane wave with helicity η and incident angle ϕk is

ψin,η =
1√
2




1

R


 eikr cos(ϕ−ϕk) =

1√
2




1

ηRin


 eikr cos(ϕ−ϕk) (B.1)

=
1

2
√

2

∞∑
m=−∞




im
[
H

(2)
m (kr) + H

(1)
m (kr)

]
eim(ϕ−ϕk)

(ηRin)im−1
[
H

(2)
m−1(kr) + H

(1)
m−1(kr)

]
ei(m−1)(ϕ−ϕk)


 (B.2)

=
1

2
√

2

∞∑
m=−∞

im




[
H

(2)
m (kr) + H

(1)
m (kr)

]
eim(ϕ−ϕk)

(−iηRin)
[
H

(2)
m−1(kr) + H

(1)
m−1(kr)

]
ei(m−1)(ϕ−ϕk)


 . (B.3)

For a given helicity η = + and ϕk = 0 (propagate along x axis), the incident wave can be

written as following

ψin,+ =
1

2
√

2

∞∑
m=−∞

im




[
H

(2)
m (kr) + H

(1)
m (kr)

]
eim(ϕ)

(i)
[
H

(2)
m−1(kr) + H

(1)
m−1(kr)

]
ei(m−1)(ϕ)


 . (B.4)
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The energy eigenstates of the Schrodinger equation with energy ε and the angular mo-

mentum (m + 1/2)~ can be written as :

ψ+m =




eimϕ
[
amH

(1)
m (γr) + cmH

(1)
m (γ′r) + H

(2)
m (γr)

]

ei(m−1)ϕ
[
iamH

(1)
m−1(γr)− cmiH

(1)
m−1(γ

′r) + (i)H
(2)
m−1(γr)

]




=




eimϕA+m

ei(m−1)ϕB+m




(B.5)

where

A+m = amH(1)
m (γr) + cmH(1)

m (γ′r) + H(2)
m (γr) (B.6a)

B+m = iamH
(1)
m−1(γr)− cmiH

(1)
m−1(γ

′r) + (i)H
(2)
m−1(γr) (B.6b)

and

ε = ~2γ2
/
2m + βγ = ~2γ′2

/
2m− βγ′ . (B.7)

Eq. (B.5) means that the total wave function ψ+m has the incident wave which is propa-

gating along x axis with incident energy ε, momentum γ, angular momentum (m+1/2)~,

and helicity +.

The most general eigenstate of the eigenequation is a superposition of the ψ+m

ψtotal =
∑
m

ψtotal
m =

1

2
√

2

∑
m

im




A+meimϕ

B+mei(m−1)ϕ


 (B.8)

, where am and cm are determined by boundary condition.
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For a hard disk

ψtotal(r = R) = 0 , (B.9)

it can be shown that

am = −H
(1)
m (γ̃′)H(2)

m−1(γ̃) + H
(2)
m (γ̃)H

(1)
m−1(γ̃

′)

H
(1)
m (γ̃)H

(1)
m−1(γ̃

′) + H
(1)
m (γ̃′)H(1)

m−1(γ̃)
(B.10a)

cm =
H

(1)
m (γ̃)H

(2)
m−1(γ̃)−H

(2)
m (γ̃)H

(1)
m−1(γ̃)

H
(1)
m (γ̃)H

(1)
m−1(γ̃

′) + H
(1)
m (γ̃′)H(1)

m−1(γ̃)
(B.10b)

where γ̃ ≡ γR and γ̃′ ≡ γ′R.

The recursion relation of the Hankel function is

H
(1)2
−d (z) = (−1)dH

(1)2
d (z) (B.11)

We can find a ration in Eq. (B.10) through Eq. (B.11).

a−m+1 = −H
(1)
−m+1(γ̃

′)H(2)
−m(γ̃)+H

(2)
−m+1(γ̃)H

(1)
−m(γ̃′)

H
(1)
−m+1(γ̃)H

(1)
−m(γ̃′)+H

(1)
−m+1(γ̃

′)H(1)
−m(γ̃)

= −H
(1)
m−1(γ̃′)H(2)

m (γ̃)+H
(2)
m−1(γ̃)H

(1)
m (γ̃′)

H
(1)
m−1(γ̃)H

(1)
m (γ̃′)+H

(1)
m−1(γ̃′)H(1)

m (γ̃)

= am

(B.12)

c−m+1 =
H

(1)
−m+1(γ̃)H

(2)
−m(γ̃)−H

(2)
−m+1(γ̃)H

(1)
−m(γ̃)

H
(1)
−m+1(γ̃)H

(1)
−m(γ̃′)+H

(1)
−m+1(γ̃

′)H(1)
−m(γ̃)

=
H

(1)
m−1(γ̃)H

(2)
m (γ̃)−H

(2)
m−1(γ̃)H

(1)
m (γ̃)

H
(1)
m−1(γ̃)H

(1)
m (γ̃′)+H

(1)
m−1(γ̃′)H(1)

m (γ̃)

= −cm

(B.13)

Hence, we obtain recursion relations both of am and cm

a−m+1 = am (B.14a)

c−m+1 = −cm (B.14b)
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which are useful. We take Eq. (B.14) into Eq. (B.6), and then obtain

B+,−m+1 = a−m+1iH
(1)
−m(γr)− c−m+1iH

(1)
−m(γ′r) + iH

(2)
−m(γr)

= ami(−1)mH
(1)
m (γr) + cmi(−1)mH

(1)
m (γ′r) + (−1)miH

(2)
m (γr)

= (−1)mi
[
amH

(1)
m (γr) + cmH

(1)
m (γ′r) + H

(2)
m (γr)

]

= (−1)miA+,m

(B.15)

B+,−m+1 = (−1)miA+,m (B.16a)

B∗
+,−m+1 = −(−1)miA∗

+,m (B.16b)

Therefore, A+,m can be replaced with B+,−m+1 so that the spin density of the total wave

function is

〈Sz〉 = ψ+
totalσzψtotal = 1

8

∑
m,m′

im
′−m

(
A∗

+me−imϕ B∗
+me−i(m−1)ϕ

)



1 0

0 −1







A+m′eim′ϕ

B+m′ei(m′−1)ϕ




= 1
8

∑
m,m′

im
′−m

(
A∗

+me−imϕ B∗
+me−i(m−1)ϕ

)



A+m′eim′ϕ

−B+m′ei(m′−1)ϕ




= 1
8

∑
m,m′

im
′−m

(
A∗

+mA+m′e−imϕeim′ϕ −B∗
+me−i(m−1)ϕB+m′ei(m′−1)ϕ

)

= 1
8

∑
m,m′

im
′−mei(m′−m)ϕ

(
A∗

+mA+m′ −B∗
+mB+m′

)

= 1
8

∑
m,m′

[
im

′−m cos ((m′ −m)ϕ) + i(m
′−m+1) sin ((m′ −m)ϕ)

] (
A∗

+mA+m′ −B∗
+mB+m′

)

(B.17)

Apparently , the spin density of the total wave function Eq. (B.17) can be decomposed

as a superposotion of the even function of ϕ and the odd function of ϕ .

(i.e.cos ((m′ −m)ϕ) and sin ((m′ −m)ϕ). )
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The even function of ϕ part of Eq. (B.17) can be simplified by Eq. (B.16).

∑
m,m′

[
im

′−m cos ((m′ −m)ϕ)
] (

A∗
+mA+m′ −B∗

+mB+m′
)

=
∑

m,m′

[
im

′−m cos ((m′ −m)ϕ)
] (

A∗
+mA+m′

)− ∑
m,m′

[
im

′−m cos ((m′ −m)ϕ)
] (

B∗
+mB+m′

)

=
∑

m,m′

[
im

′−m cos ((m′ −m)ϕ)
] (

A∗
+mA+m′

)

− ∑
m,m′

[
i(−m′+1+m−1) cos ((−m′ + 1 + m− 1)ϕ)

] (
B∗

+,−m+1B+,−m′+1

)

=
∑

m,m′
cos ((m′ −m)ϕ)

(
A∗

+mA+m′
) [

im
′−m − i−(m′−m)(−1)m′+m

]

= 0

Also, the odd function of ϕ part of Eq. (B.17) by Eq. (B.16).

∑
m,m′

[
i(m

′−m+1) sin ((m′ −m)ϕ)
] (

A∗
+mA+m′ −B∗

+mB+m′
)

=
∑

m,m′

[
i(m

′−m+1) sin ((m′ −m)ϕ)
] (

A∗
+mA+m′

)− ∑
m,m′

[
i(m

′−m+1) sin ((m′ −m)ϕ)
] (

B∗
+mB+m′

)

=
∑

m,m′

[
i(m

′−m+1) sin ((m′ −m)ϕ)
] (

A∗
+mA+m′

)

− ∑
m,m′

[
i(−m′+1+m−1+1) sin ((−m′ + 1 + m− 1)ϕ)

] (
B∗

+,−m+1B+,−m′+1

)

=
∑

m,m′

[
i(m

′−m+1) sin ((m′ −m)ϕ)
] (

A∗
+mA+m′

)

+ i2
∑

m,m′

[
i−(m′−m+1) sin ((m′ −m)ϕ)

] (−(−1)miA∗
+mi(−1)m′

A+,m′
)

=
∑

m,m′
sin ((m′ −m)ϕ)

(
A∗

+mA+m′
)
i(m

′−m+1)
[
1− i−2(m′−m+1)(−1)m+m′]

=
∑

m,m′
sin ((m′ −m)ϕ)

(
A∗

+mA+m′
)
i(m

′−m+1)2

Finally, the spin density of the total wave function can be obtained as

〈Sz〉 = ψ+
totalσzψtotal

= 1
8

∑
m,m′

sin ((m′ −m)ϕ)
(
A∗

+mA+m′
)
i(m

′−m+1)2

= 1
4

∑
m,m′

sin ((m′ −m)ϕ)
(
A∗

+mA+m′
)
i(m

′−m+1) .

(B.18)
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Appendix C

Comparison of analytical results and

numerical approach for cylindrical

wave case

Here we make a comparison of analytical results and numerical approach for cylindrical

wave case. At first, we use the sliced numerical method to solve the incident cylindrical

wave problem.

We replace plane wave with cylindrical wave and then the total wave function outside

the disk is given by

ψt(r, ϕ)

=
∑

m,m′




∫ 2π

0
dδa(δ)H

(1)
m (γr)eim(δ+ϕ)

∫ 2π

0
dδa(δ)(ieiδ)H

(1)
m′ (γr)eim′(δ+ϕ)


 +

∑
m,m′




∫ 2π

0
dδ′b(δ′)H(1)

m (γ′r)eim(δ′+ϕ)

∫ 2π

0
dδ′b(δ′)(−ieiδ′)H

(1)
m′ (γ′r)eim′(δ′+ϕ)




+




imin

2
√

2
H

(2)
min(γr)eiminϕ

i(min−1)

2
√

2
(Rin)H

(2)
min−1(γr)ei(min−1)ϕ




(C.1)

where the corresponding ratio Rin is −1 and the last term in Eq. (C.1) is the incident
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cylindrical wave. For a hard wall boundary condition, the total wave function is zero.

ψt(R,ϕ) =

∑
m,m′




eimϕ
∫ 2π

0
dδa(δ)H

(1)
m (γ̃)eimδ

eim′ϕ
∫ 2π

0
dδa(δ)(i)H

(1)
m′ (γ̃)ei(m′+1)δ


 +

∑
m,m′




eimϕ
∫ 2π

0
dδ′b(δ′)H(1)

m (γ̃′)eimδ′

eim′ϕ
∫ 2π

0
dδ′b(δ′)(−i)H

(1)
m′ (γ̃′)ei(m′+1)δ′




+




eiminϕ imin

2
√

2
H

(2)
min(γ̃)

ei(min−1)ϕ imin

2
√

2
(i)H

(2)
min−1(γ̃)


 = 0

(C.2)

Here we use the orthogonal relation on the summations of the two component matrix

since the ”hard” wall boundary is independent.

1
2π

∫ 2π

0
dϕe−im′′ϕψt

=




∫ 2π

0
dδa(δ)H

(1)
m′′(γ̃)eim′′δ

∫ 2π

0
dδa(δ)(i)H

(1)
m′′(γ̃)ei(m′′+1)δ


 +




∫ 2π

0
dδ′b(δ′)H(1)

m′′(γ̃′)eim′′δ′

∫ 2π

0
dδ′b(δ′)(−i)H

(1)
m′′(γ̃′)ei(m′′+1)δ′




+




imin

2
√

2
H

(2)
min(γ̃)δminm′′

imin

2
√

2
(i)H

(2)
min−1(γ̃)δ(min−1)m′′


 = 0

(C.3)

where δmm′ = 1
2π

∫ 2π

0
dϕei(m′−m)ϕ is delta function. The continuous integration in

Eq. (C.3) can be viewed as the discrete summation so that we obtain
∫ 2π

0
dδ →

N∑
n=1

∆δ

where ∆δ = 2π
N

= ∆δ′ and δn = n∆δ = n∆δ′ = δ′n . To simplify formula, we replace a(δn)

and b(δn) with an and bn. After simplification, we obtain two equations as following

N∑
n=1

anH
(1)
m′′(γ̃)eim′′δn +

N∑
n=1

bnH
(1)
m′′(γ̃

′)eim′′δn = − 1

∆δ

imin

2
√

2
H(2)

min
(γ̃)δminm′′

(C.4a)

N∑
n=1

anH
(1)
m′′(γ̃)ei(m′′+1)δn −

N∑
n=1

bnH
(1)
m′′(γ̃

′)ei(m′′+1)δn = − 1

∆δ

imin

2
√

2
H

(2)
min−1(γ̃)δ(min−1)m′′

(C.4b)
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From Eq. (C.11), the matrix FX = G can be evaluated

Next, we use the analytical non-slices method to solve the incident cylindrical wave

problem. Then the total wave function outside the disk is given by

ψt(r, ϕ) =




eimϕamH
(1)
m (γr)

ei(m−1)ϕiamH
(1)
m−1(γr)




+




eimϕbmH
(1)
m (γ′r)

ei(m−1)ϕ(−i)bmH
(1)
m−1(γ

′r)




+




eiminϕ imin

2
√

2
H

(2)
min(γr)

ei(min−1)ϕ imin−1

2
√

2
RinH

(2)
min−1(γr)




(C.5)

For a hard wall boundary condition , the total wave function is zero .

ψt(R, ϕ) =




eiminϕamin
H

(1)
min(γ̃)

ei(min−1)ϕiamin
H

(1)
min−1(γ̃)




+




eiminϕbmin
H

(1)
min(γ̃′)

ei(min−1)ϕ(−i)bmin
H

(1)
min−1(γ̃

′)




+




eiminϕ imin

2
√

2
H

(2)
min(γ̃)

ei(min−1)ϕ imin

2
√

2
iH

(2)
min−1(γ̃)




= 0

(C.6)

After calculation, we obtain as following

amin
H(1)

min
(γ̃) + bmin

H(1)
min

(γ̃′) = − imin

2
√

2
H(2)

min
(γ̃)δminm′′ (C.7a)

amin
H

(1)
min−1(γ̃)− bmin

H
(1)
min−1(γ̃

′) = − imin

2
√

2
H

(2)
min−1(γ̃)δ(min−1)m′′ (C.7b)

where m = min and we define γ̃ ≡ γR and γ̃′ ≡ γ′R .
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(δmm′′ is delta function [30] )

The unknown coefficients am and bm can be evaluated by solving Eq. (C.5).

am = amin
= − im

2
√

2

H
(1)
m (γ̃′)H(2)

m−1(γ̃) + H
(2)
m (γ̃)H

(1)
m−1(γ̃

′)

H
(1)
m (γ̃)H

(1)
m−1(γ̃

′) + H
(1)
m (γ̃′)H(1)

m−1(γ̃)
(C.8a)

bm = bmin
=

im

2
√

2

H
(1)
m (γ̃)H

(2)
m−1(γ̃)−H

(2)
m (γ̃)H

(1)
m−1(γ̃)

H
(1)
m (γ̃)H

(1)
m−1(γ̃

′) + H
(1)
m (γ̃′)H(1)

m−1(γ̃)
(C.8b)

We compare Eq. (C.2) with Eq. (C.5) after slicing and then we can obtain a relation

of coefficients.

a(δ) = a(δn) = an = am
1
2π

e−imδn

b(δ′) = b(δ′n) = bn = bm
1
2π

e−imδ′n
(C.9)
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We present here the comparison of analytical results and numerical approach for cylin-

drical wave case with the wave property min for different the number of slices N . In

following series of figures that the red ∗ line is the numerical approach and the black ©
line is the analytical result. We find that a given larger min corresponds to a lager N

before diverging.

Figure C.1: Comparison of analytical results and numerical approach for cylindrical wave
case of min=1: (a) N = 11, (b) N = 45, (c) N = 47 and (d) N = 49.
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Figure C.2: Comparison of analytical results and numerical approach for cylindrical wave
case of min=3 : (a) N = 49 and (b) N = 51.

Figure C.3: Comparison of analytical results and numerical approach for cylindrical wave
case of min=7: (a) N = 129 and (b) N = 131.

Figure C.4: Comparison of analytical results and numerical approach for cylindrical wave
case of min=11 : (a) N = 133 and (b) N = 135.

Here the matrix from Eq. (C.11) can be decomposed into small matrix combination.

FX = G

65



APPENDIX C. COMPARISON OF ANALYTICAL RESULTS AND NUMERICAL
APPROACH FOR CYLINDRICAL WAVE CASE

F =




F11 F12

F21 F22




The unknown coefficients of X can be obtained by solving X = F−1G. Also, we

assume that

F−1 = H =




H11 H12

H21 H22


 . (C.10)

So the element of F can be in terms of the element of H where

H11 =
(
F11 − F12F

−1
22 F21

)−1
(C.11a)

H22 =
(
F22 − F21F

−1
11 F12

)−1
(C.11b)

H12 = −F−1
11 F12H22 (C.11c)

H21 = −F−1
22 F21H11 (C.11d)

. To do the matrix simplification, we have a bigger N for a given min = 1 .

Figure C.5: Comparison of analytical results and numerical approach for cylindrical wave
case of min=1 : (a) N = 63 and (b) N = 65.
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