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Abstract

This thesis work has devoted-to the study-of spin-dependent scattering effects from a
circular-disk microscopic structure swith Dresselhaus-type spin-orbit coupling. The Dres-
selhaus spin-orbit coupling considered here includes both contributions terms for one is
linear-k dependence and the other is cubic-k dependence.

Based on the method of partial waves, the complete scattering wave function in a
circular scattering region can be rigorously derived and obtained. Through investigating
their spatial-resolved scattering behaviors from linear and cubic Dresselhaus-type SOI
disk under the electron plane wave incidence, different DSOI contributions can be appar-
ently discerned, and their corresponding detail energy dispersion relationships as well. In
our findings: for linear-k Dresselhaus case, the spin density and probability density distri-
butions own their spatial symmetry profile, which is featured independence of the plane
wave incident angle. On the contrary, strong incident angle dependence is manifested for
the case of cubic-k Dresselhaus spin-orbit interaction.

In particular , for incidence plane wave in some characteristic angle, we can find similar
spin density responses between cubic-k Dresselhaus case and linear-k Dresselhaus case.
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Chapter 1

Introduction

The spin dependence of the electronic properties of mesoscopic technology and artificial
nano-structure is one of leading problem mowadays in the physics of electric devices. In
this way, taking account of spin’ property of electrons are the improvement of actual
devices. To develop spintronic-device in spintronics, quantum information, and other
applications is necessary to understand how the transport of electron affect its spin and
further control conditions on the manipulation of the spin orbit interaction in the semi-
conductor macrostructure. The interaction causes the decay of spin polarization since the
spin-orbit coupling breaks the total spin symmetry [1]. Accordingly, we must understand
the spin-orbit coupling [2].

In semiconductor with strong SOI, the energy eigenstates are spin dependent and
can have apparently spin splitting without a magnetic field for electrons when there exits
inversion asymmetry. And then the effect in the low dimensional structure becomes larger
where the inversion asymmetry controlled. It is known that in a variety of systems we
consider that changing the spin properties of an incident beam of particle in scattering
experiment. The spin-orbit interaction cause asymmetry of the differential scattering cross
section ( skew scattering ). In addition, the SOI also changes the polarization vector of

the incident beam.
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1.1 Background : types of spin-orbit coupling system
in solid state system

There are two types of spin-orbit interaction in semiconductor according to the physical
origan. One is intrinsic type such as Rashba spin orbit interaction (RSOI) [3] induced by
structure inversion asymmetry (SIA) and the other is extrinsic type such as Drsselhaus
spin orbit interaction (DSOI) [4] induced by bulk inversion asymmetry (BIA) of the crystal
lattice. The effect produced by the interplay between Dresselhaus and Rashba spin-orbit
interactions on spin relaxation has been studied in a few publications [5-7]. Furthermore
, there are a few works on the transport properties of two-dimensional electron gas [8—
11] . Especially, Datta and Das proposed a spin-field-effect transistor (SFET) [12] for
quasi-1D ballistic wires with Rashba 'coupling .. In thin quantum wells, the strength of
the DSOI is compatible to the strength of the RSOI. The special spin symmetry arises
due to the translational invariance in the longitudinal coordinate in quantum wires is
used to propose a transport experiment to measure the strengths of the Rashba and
the Dresselhaus interaction for any chosen polarization [13]. There are a few works on
the effects of the competition between two types of SOI on the transport properties in
mesoscopic rings [14, 15].

A promising spin transistor application has been proposed that the strength of the
RSOI can be tuned by external gates voltages or asymmetric doping and this initiated
intensive research in spintronics [16]. Schliemann, Egues, and Loss proposed a SFET
[17] that can operate in diffusive quasi-2D systems based on tuning Rashba and linear
Dresselhaus terms to be equal in strength, which produces long spin lifetime , neglecting
cubic Dresselhaus term. On the other hand, recent studies have been devoted to the
physical consequences of the interplay of the RSOI and impurity [18]. Recently, the
intrinsic spin Hall effect (SHE ) [19, 20] as been established in a spin-orbit coupled p-doped
semiconductor and in a Rashba spin-orbit coupled two-dimensional electron systems was

predicted theoretically.
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1.2 DMotivation : cubic-k Dresselhaus spin-orbit in-

teraction (SOI)

In quasi-2D systems, Dresselhaus terms has two components, one linear in the momentum
and the other cubic. The cubic Dresselhaus contribution [21] is often neglected since it is
smaller apparently than the linear Dresselhaus contribution. Nevertheless , the strength
of the SO terms are difficult to measure so that to obtain a full understanding of their
strength is crucial . In addition, in confined system such as quantum dot, quantum wire,
some effect of the linear Dresselhaus SOI are suppressed, so it is important to know the
contribution from the cubic Dresselhaus SOI which is helpful to develop spintronic devices.

Theoretically, the spin current is the important physical quantity in spintronics, and
it has been extensively studied [22-24} .- Many fundamental phenomena, such as the SHE
and the spin precession in systems with spin-orbit-coupling have been discovered . There
are many recent works on spin dependent quantum scattering [25] around microstructures
[26-28]. In this thesis , we study the scattering of the scattering of electrons by a disk in

2DEG with Dresselhaus spin-orbit coupling.

1.3 A simple guide to thesis

In Chapter 2 , we will solve the eigenstate problem in two dimensional Dresselhaus-
type system including linear-k and cubic-k DSOIs, so that the energy dispersion can be
obtained. In addition , the eigenstates would be represented in cylindrical form due to the
cylindrical symmetry potential .We consider that the plane wave which is the eigenstate
of Dresselhaus-type Hamiltonian incident a hard wall disk in DSOI system. At such, we
can make a connection between linear-k Dresselhaus and Rashba Hamiltonian.

In Chapter 3, we introduce the method of partial waves for a scattering. The total
waves are composed of incoming waves and outgoing waves, where the incoming wave

part is given by the incident plane wave and then outgoing wave part can be represented
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by the eigenstate which we obtained in Chapter 2. Furthermore, the outgoing wave part
contains unknown coefficients which are contributed from the two kinds of helicity wave
functions. The unknown coefficients can be obtained by solving the boundary condition
problems. Finally, we obtain the particle current density by driving the particle continuity
equation of the Dresselhaus-type system .

In Chapter 4, the numerical results show the spin density or other quantities after
scattering by a hard wall disk both in linear-k and cubic-k DSOI. Therefore, we can use
the result to evaluate the cubic-k contribution during the scattering process by comparing
the results only for linear-k Dresselhaus and the results includes cubic-k Dresselhaus. Also,
we discuss the connection between spin density and the plane wave direction.

In Chapter 5, we present possible work about spin-orbit interaction in Dresselhaus or

Rashba system.



Chapter 2

Two dimensional Dresselhaus-type

SOI electron system

In this chapter we present a theoretical study of electron scattering in two dimensional
Dresselhaus-type SOI electron system. Using the spin dependent method of partial waves
[29] the complete scattering wave function is derived exactly for the case of a circular
region. For a 2D central potential (hard wall disk), the cylindrical symmetry governs
that the wavefunction is expressed most conveniently in polar coordinates. There exit
linear-k DOSI and cubic-k DOSI in Dresselhaus-type SOI and mostly cubic-k DOSI is
neglected. At the same time, linear-k DSOI can be compare with that Rashba-type spin
orbit interaction (ROSI) that we can make a connection between them. The competition
of two types of SOI on the transport properties of two dimensional electron gas are
interesting and highly desirable.

In our numerical examples, physical parameters are chosen according to practical
experimental situation and for the material GaAs. Parameters units typical for GaAs

2, energy units e* = 8.977meV; m* =0.067 m,;

are: electron density n =2.51 x 10" ecm™
Dresselhaus strength 3*= 4553 eVA?: k*= 1.25 x 10®m~!; disk radius R = 50 nm; wide

scale d=25nm.
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Units
In order to simplify our calculation, in the following expression that all the physical
quantities are dimensionless in units according to a typical carrier concentration n = 6.98 x

10%m* 2. The wave vector is in unit of Fermi wavelength k* = v/27n; length in the unit

RN

5.3 Dresselhaus constant in the unit

of 1/k* ; energy E in the unit of Fermi energy £* =

of 5* = " The Hamiltonian for a 2D potential in the Dresselhaus SOI type system

2m*kp

has the form

)
H = h
2m*

V2 + Bk, (k] — k%) — Bky (K2 — &%) + V(x,y) (2.1)

where m* is the effective electron mass, V(x,y) is the 2D potential, 3 is Dresselhaus spin

us

orbit constant, and k = % .

Affer a standard dimensionless process, we ¢an obtain a dimensionless Hamiltonian
H ==V + Bk, (k. — k%) = Bky(ks —#2) + V(z,y) . (2.2)

Frist, we investigate the incident plane wave in 2D Dresselhaus-type SOI electron system

including linear k and cubic k and then make a connection between Dresselhaus SOI and

Rashba SOI.

2.1 Linear-k Dresselhaus SOI

According to the physical origin of the SOI, the SOI can be divided into intrinsic and
extrinsic types. The intrinsic type is Rashba which arises from SIA or Dresselhaus inter-
action which arises from BIA. The extrinsic SOI is due to the presence of SOI scatterers
in the system. In quasi-two-dimensional systems, the Dresselhaus SOI includes two com-
ponents, the linear part and the cubic part in momentum. The cubic Dresselhaus term is
usually neglected, as it is much smaller than the linear term contribution. We present a

similar model to deal with a Dresselhaus spin-oribit coupling system in which we consider
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Dresselhaus linear k.

2.1.1 Incident plane wave

The Hamiltonian for a 2DEG in the presence of the Dresselhaus spin-orbit interaction

with a circular disk at the origin is given by
I:I = —V2 - /<';2/81<]%$O-1‘ - ]%yay)"i_v(xvy) ) (23)

where o; are the Pauli matrices and (3, is the Dresselhaus spin-orbit coupling constant
. The eigenstates and corresponding eigenvalues for a free-particle Hamiltonian (outside

the disk) with Dresselhaus spin-orbit coupling, are given by

@bm,n(ﬁbk) = eik.an (2~4)

=k +n(BrDk (2.5)
where

ky
tan(yy) = T (2.6)
L ! helicit 4 (2.7)

Xp = —= elicityn = , .
and

R — i) (2.8)



CHAPTER 2. TWO DIMENSIONAL DRESSELHAUS-TYPE SOI ELECTRON
SYSTEM

And the only assumption for the scattering potential (see Fig. 2.1) is that

0, r>R
V(z,y) =V(r) = i (2.9)
o, r<R

V(r)

>V

R

Figure 2.1: Radial profile of "hard” wall disk of our system.

The dispersion relation in Eq. (2.5) represents two parabolic bands Fig. 2.2 centered

up k = —n(ﬁl—;z). For states propagating with their momentum k making a angle ¢, with

respect to the T axis Fig. 2.3 and for an energy £ > 0, there exit a degenerate states

which is
1 1 .
Vit = —= e (2.10)
) \/§ %
1 1 "
Vi = 75 . e (2.11)
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where & = k [cos(pk) T + sin(px)y] and ¥ =K [cos(pr)T + sin(gg)y] whom we can get
by solving € = k? + B1kr? = k"? — B1k'k? .

The states 1, + represent plane wave states with helicity (n = +) whose spin states are
perpendicular to the momentum direction. The detail derivation of the eigenstates and

eigenvalues is in the appendix.

sry

2

Figure 2.2: Energy dispersion with helicity n for a linear-k Dresselhaus system ; the blue

line correspond to n = + and the red line correspond to 7 = —. The dash line means that

system has no spin-orbit coupling (3; = 0) and Eq. (2.5) represents two parabolic bands
2

centered up k = —n(ﬁl—;).

A plane wave corresponding to an free electron propagating with the momentum vector
H
k making a propagating angle ¢, with z axis, in accordance with Jacobi-Anger expansion

[30] which can be expanded as a linear superposition of the circular free waves

6z'k-r _ eikrcos(ap—gok) — Z Z’m(]m<k.r)eim(%0—$@k) . (212)

m=—0Q0
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n wave with wave vector k making an
o region defined by a Dresselhaus SOI

Figure 2.3: The plane wave of a
angle ¢ with Z axis gets scatter
and a "hard” wall disk.

Then the incident plane wave with momentum k and helicity (n = +) can be decom-

posed as the following linear superposition:

s i Ty (k) e ek)

1
Vin s = NG > (2.13)

m=—o00 (—I—%)im_ljm_l(kr)ei(m_l)(QO_SDk)

Since Bessel function J,,(kr) is a standing wave along the radial direction, for our
purpose, it is easily to express it in terms of two radial propagating waves, the Hankel

functions,

T (k) = % (HO (k) + HO (k)] (2.14)

10



CHAPTER 2. TWO DIMENSIONAL DRESSELHAUS-TYPE SOI ELECTRON
SYSTEM

where the first kind and the second Hankel functions are defined as

HWY (2) = Jon(2) + iYp(2) ;

o B (2.15)
Hy'(2) = Jn(2) — iYo(2) -

In the region where kr > 1 the radial propagating dependence of these Hankel functions

become most apparent in their asymptotic form,

1 ikr .

Jim Hy(kr) ~ et (2.16)
1 —ikr

kllian (k) ~ 5

For large r, Hy(r})(k;r) goes like e'*" / r, we can regard it as a circular waves propagating
radial outwards from the scattering.center.-In the same way, Hr(f)(kr) can be treated as
a circular waves propagating radial inwards from the scattering center.

To consider the scattering process for the cylindrical symmetric potential, we decom-
pose Bessel function J,,(kr) (standing waves)’as Hankel functions HS (kr) (incoming

waves) and H},})(kr) (outgoing waves) so Eq. (2.13) become

i | HD (k) + HY (kr) | em(e—ex)
Yiny = — Z [ ) ( )] (2.17)
22, | gy [H r) + B (k)] et D00
or
> HD (kr) + HY (kr) | emie=en)
L (12 ) + D ()| 015
2\/5 m=—o00 (—iR) [H 2)_1(kr) +H (k:r)] i(m=1)(p—wy)
where

RN = —e or

For the general case, the incident wave propagates along & axis (¢ = 0) with positive

11
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helicity, the wave function is given by

1

77ZJz‘n,—|— = = Z ™
W2, \ ) [HE () + H (k)] 006

HP (kr) + HY (kr)| eim()
(H2 (k) + HE (k)| 210

The cylindrical symmetry of the scattering potential cause waves to be coupled only with
the same m . This essentially the conservation of the conservation of orbital angular

momentum, which is true for a center potential but no SOI.

2.1.2 Cylindrical form representation of the eigenstates

In cylindrical coordinates, which are useful when we consider scattering from a localized

, cylindrically symmetric potential, Hamiltonian can be written as

. ~V2 K28k
i = ) hg (2.20)
—IQQﬁlk_ —VQ
where V? = g—:g + %% + %288—; and
. . . 0 10
ky =k, +ik, = —ie™(=—+ ——) . 2.21
+ 7 Y e (8r r a(p) ( )

The raising and lowering operators k.. work on Bessel function through the the recurrence

relations

0 (2) + Zom(z) = prs(2) (2.22)

o (2) = Zom(2) = —pm+1(2)

where g denotes, Bessel function, Neumann function and Hankel function that we can get

a relation

~

[ (yr)e™#] = i”yl/Jer,,(’yr)ei(m*”)“” (v=+4) . (2.23)

12
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The total Hamiltonian H commutes with the z projection of the total angular momentum

A 1
J, =L+ 502 (2.24)

that allows one to representation eigenstate of Eq. (2.20) as

A (r)eme
Vm = (2.25)
Bm’ (T)eim/w
A, (r) and B, (r) are both radial dependent , so we can make A,,(r) = A%J,,(yr) and

By (1) = B J(yr) (m’ = m — 1) where A° and B° are arbitrary constants.

A° T, (yr)et™e
= () (2.26)
B0 J,_1(yr)elm=b¢

Substituting Eq. (2.23) into H Uy =€V, One can obtain the following systems of radial

equations:

(14808 + 28y = (c+ i) ) Jmor) =0

(L0 2) + =52 — (e = w2 iins) ) dmalam) = 0 . 2:27)

The above equation must hold for the equation Eq. (2.28) due to the properties of Bessel

function

B° A°

Y =c+ li2617;’}/ﬁ =¢c— /<;2ﬁlz'fy§ (2.28)
To simplify our calculation, we define R = 2—8. After calculation, we can get energy
dispersion
_ A2 2
e=9"+nbyk (2.29)

13
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and the ratio R
R=mni(n=4=). (2.30)

Consequently , the energy eigenstates of Hamiltonian with momentum -, helicity 7, and

a ratio value R are

Qp (7)™
Yo (r, ) = ! | , (2.31)
(78) Q1) (yr)e tm=e

where €, ., can be a Bessel function, a Neumann function and a Hankel function. Here
we choose Hankel functions as the eigenbasis to suit our boundary condition during the

scattering process. The detail dervation of solving eigenequation is presented in appendix.

2.2 Cubic-k Dresselhaus SOI

2.2.1 Incident plane wave

The Hamiltonian for a 2DEG in the presence of the Dresselhaus SOI with a circular

hard-wall disk at the origin can be expressed,
H = =V + ko (k] — %o, + Bky(k* — KX)o, + V(T) (2.32)

where o; are the Pauli spin matrices and 3 is the Dresselhaus spin-orbit coupling constant
. In order to distinct the contribution from the linear-k and cubic-k Dresselhaus SOI, we

change the Hamiltonian form Eq. (2.32) into Eq. (2.33).

H = —V? = &*B1(ke0y — kyoy) + Bs(kokion — kykioy,) + V(7) (2.33)

14
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where (3; related to the linear-k Dresselhaus SOI and (35 related to the cubic-k Dresselhaus
SOL. The assumption for the scattering potential is same in the linear-k case (see Fig. 2.1).
The eigenstates and correspond eigenvalues for the free-particle Hamiltonian (r > R)

with Dresselhaus spin-orbit coupling are given by

win,n<r7 @, Sok) - eik'rXT] 9 (234)
_ 1.2 4 Bs 2 o 2 Bs 2,2 12
e =k 4+ nbiky [+ [ k%sin(2p;)]? — == k%K% sin” (2¢y) (2.35)
261 B
where

1 1 1 1

Xn(r) = —= =—= : (2.36)
2\ R V2 R

tan(pg) = %,

R =nR, (2.37)

and

K2emiler) 4 JRik? sin(2¢py)el(9r)

R=— (2.38)

K2eiler) — 26—5’12'1432 sin(2¢py, ) e~ ek)
where R denoting a ratio value which is function of incident angle and Dresselhaus SOI
constant. The detail derivation of the eigenstates and eigenvalues shown in the appendix.
The dispersion relation in Eq. (2.35) represents two helicity (n = 4) branches.

For states propagating with their momentum vectors making an angle ¢, with respect

to the  axis (see Fig. 2.3) and for an incident energy E > 0, there exits a degeneracy
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with the degenerate with the degenerate states are given by

1 1
Ying = €7 — : (2.39)
2\ »

1

!

Yin,— = X7 (2.40)

Sl

—R

where & = k (cos(¢r)Z + sin(pg)y) and ¥ o= K (cos(pk )z + sin(¢g)y) which you can

obtain by solving

e=k*+ ﬁlk\//f‘ + [%/@ sin(2p)]2< %k‘252 sin?(2¢p4) (2.41)
1 1
and
e=k"?— ﬁlk/\/Kfl + [25—;113’2 sin(2¢p)2 = %k’%Q sin?(2¢py) (2.42)

The states Eq. (2.39) and Eq. (2.40) represent plane wave states with spin states shown
in Eq. (2.36) being in the plane, perpendicular to the momentum direction. A plane wave
corresponding to an free electron propagating with the momentum vector ¥ making a
propagating angle ¢, with z axis, in accordance with Jacobi-Anger expansion which can

be expanded as a linear superposition of the circular free waves
ek = gibroos(p—wr) — Z ime(kr)eim(“"_‘p’f) ) (2.43)

m=—0o0

Then the incident plane wave with a specific momentum % and positive helicity (n = +)
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Eq. (2.41) can be decomposed as the following linear superposition:

eikr 1 eikr cos(p—pr) 1 1 Z Jm(kjr)eim(@—Wk) ( )
¢m,+:— = = — m 92 44
v w V2w ) VRS @

And then we can deal with cubic Dresselhaus SOI case in the same way just like plane
wave in a linear Dresselhaus system.

Considering the scattering process with the cylindrical symmetric potential , we decom-
pose Bessel function J,,,(kr) (standing waves) as Hankel functions Hy(,g)(kr) (incoming
waves) and Hr(r})(kr) (outgoing waves) so Eq. (2.45) become

im | HiP ) 1) (kr)| eimie-en

wm + = 2\/— Z (2.45)

oo \ () [H (kr) + H()(kr)] m'(p—px)

2.2.2 Cylindrical form representation of the eigenstates

In polar coordinates, which are useful when we consider scattering from a localized, cylin-

drically symmetric potential (hard — wall disk), Hamiltonian can be written as

R % — K28k, + B(k2 — k)
i = ) - Oiles + 5 — ) (2.46)
—2Bk- — B (k2 - E2)ky —V?
where V2 = g—; + %% + T—Q% and
by =k, +ik, = —ieﬂ@(% + %%) (2.47)

For solving the eigenequation H ¥ = ey in a localized and cylindrically symmetric
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potential, the eigenstates can be written as a two-component wave function

> A(r)e™?
m (2.48)

¢(T7 90) = .,
> By (r)en

Since A,,(r) and B, (r) both have radial-dependence, we assume that A,,(r) = A% J,,(yr)

and B, (r) = B2, J,(yr) . Then wavefunction become a two-component function which

is a linear superposition of Bessel functions

> A?n‘]m ('Vr)emup
(2.49)

)= ™ »
> By (yr)et™?

where A% and B, are unknown constants which are determined by eigenequations. And

then we can deal with cubic-k Dresselhaus SOI casein the same way similar to plane wave

in a linear-k Dresselhaus system.

I%I,[Jm(’yr)e"m@] = iy Ty (Y1) (1 = +) (2.50)

Substituting Eq. (2.49) and Eq. (2.50) into equation Hv = £t one can obtain the fol-

lowing radial equations:
_ Z 3 m 1 + ZﬁB 73 m+3 Jm ,y,r — 07
el 2 =) m () 251)

m+1 _ 4,}/3 m 3 —|—Zi3’73 goﬂ)}e]m(')/r) = 0.

a)+m—2 — (8+/€2ﬁ1’yi3

(r2) + 2 — (¢ — w2Brin s

By setting
A%~ A% BY ~ B2™ (2.52)
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and using properties of Bessel functions, gives rise to Eq. (2.51)

.RO . 0o _ . 0
(e + k2 PrviZsa — i%y3 Boa=t 4 i3 B5a?)
. 0 . 0 . . 0
= (e = KBy gor — 137 o + iy o) (2.53)

To simplify our calculations, we let R = B°/A°. We also assume that R=e and z = ¢?

are both phase vectors. As a result, we obtain two simple relations

£+ 6i(9+5)6w(m26—i25 _ %g sin(26))

= — ¢~ 049) 3y (k26 + %g sin(20)) (2.54)

:’}/2

between momentum v and energy ¢ . From Fq. (2:54), the unknown values can be solved.

The eigenstate is

Z Jm (,.YT) eimweimé

S (MR) Ty (7)™ et

ml

Wn(r, ) = (2.55)

where

. . 2 .
oot | (iK2ei20 + %% sin(24)) (2.56)
(ik2e="20 — g—f:; sin(20))

and eigenenergy is

2

e=~2+ nﬁ17\/li4 + (%%)2 sin?(26) — rﬂ%y? sin?(26) . (2.57)

Here n = &+ can be viewed as helicity 4+ and helicity —. Consequently , the energy

eigenstates of Hamiltonian Eq. (2.46) with momentum +, a phase §, helicity n, and a
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ratio value R are

Z Qm (,Wq) eimcp 6im6

> (R)Qpy (yr )™ eeim'

ml

WUn(r,p) = (2.58)

where ) can be a Bessel function, a Neumann function and a Hankel function. Here
we choose Hankel functions as the eigenbasis to suit our boundary condition at infinity
during the scattering process. The detail derivation of solving eigenequation is presented

in Appendix.

2.3 Energy dispersion of Dresselhaus SOI system

In this section, we discuss the energy:dispersion of Dresselhaus SOI system including
linear and cubic k. For given energy dispersions from the Eq. (2.5) and Eq. (2.35), we
find that the energy dispersion in\cubic k-DSOI system Eq. (2.35) which is dependent
on the incident angle ;. As a result, we propose energy dispersion diagrams in different
scales which are given by Fig. 2.4 and Fig. 2.5. On the other hand, the energy dispersion

in linear k DSOI system
e =K+ (BHk

is like in the RSOI system
e=k+ak

but the spin orbit couple strength in the later case is stronger ( a > G = BK?)
Bk2 (27eVA®) (0.209nm )°

— =~ (0.003 .
« 0.35nmeV
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The twofold denervate branch (n = +) is unapparent due to the small k contribution
that we found from Fig. 2.4. In contrast, the degeneration is more apparent in Fig. 2.5
if k£ becomes larger gradually in the larger k£ range. In the specific incident plane angle
Eq. (2.35) is reduced to Eq. (2.5). We can use the special cases to know what differential
contribution from linear and cubic k although the cubic & contribution is smaller. At the

same time, the DSOI linear k result can be compared with the RSOI result [16].

energy dispersion EC

Figure 2.4: Dispersion relation for a 2D Dresselhaus-type system (includes linear and

cubic terms) and the Dresselhaus constant 3 = 27¢V A3 and d = 15nm.

21



CHAPTER 2. TWO DIMENSIONAL DRESSELHAUS-TYPE SOI ELECTRON
SYSTEM

energy dispersion EC

14000 - -
12000
10000 .-

8000-|
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6000 7

4000

100

ky -100.. -100

Figure 2.5: Dispersion relationfor a 2D Dresselhaus-type system (includes linear and

cubic terms) and the Dresselhaus constant-3= 27eV A3 and d = 15nm in the larger k
range.

On the other hand, we obtain three roots by solving the energy dispersion in cubic-
k system Eq. (2.35) for a given energy ¢ and incident angle ¢,. For the example, the
incident angle ¢y is  and the helicity is positive so that we can evaluate the roots of the
energy dispersion in Fig. 2.6.
The roots of the energy dispersion Eq. (2.35) where ¢, = % and n = +. The right pattern
is the real part of k and the left pattern is the imagine part of k. In the central region of
the real £ and k£ imagine pattern show that the three roots in the region are all pure real
values. Apparently, the momentum k& we have to neglect is only the smallest one due to
the corresponding much fast oscillation and then the others are exactly we must consider.
By the way, the energy ¢ in the top and bottom regions of the real k and imagine k pattern

are not the incident energy so that here we don’t discuss them. Similarly, if the energy
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dispersion has negative helicity, we also can use the manner to obtain the momentums
in the same way. The smaller pattern of Fig. 2.6 is the energy dispersion of the incident
plane wave where the incident energy ¢ which we consider is located in the energy region.

But just like the energy dispersion

e =Kk +nbiky/r*+ [ﬁk2 sin(2¢pg)]? — @]{]252 sin?(2¢py)
201 63}

we have derived before, the incident wave angle ¢, can determine the number of roots
of the energy dispersion. However, the roots of the energy dispersion in linear-k DSOI

system Eq. (2.5) or in cubic-k DSOIsystermEq. (2.35) we need are both two roots.
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Helicity: +
e

energy dispersion %10 energy dispersion
T T L} 1 T L} 1

E Dimensionless
E Dimensionless

4 i i i f i 4 i ' ' i
500 -400 -300 -200 -100 il 100 200 200150 100 50 0 50 100 150 200
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_F
i

Figure 2.6: The roots of the energy dispersion Eq. (2.35) where ¢, = % and n = +.
The right pattern is the real part of k£ and the left pattern is the imagine part of k. In
the central region of the real k£ and k& imagine pattern show that the three roots in the
region are all pure real values. Apparently, the momentum k we have to neglect is only
the smallest one due to the corresponding much fast oscillation and then the others are
exactly we must consider.

2.4 BIA in spin splitting in 2D systems

For two dimension systems,we can estimate the BIA-induced spin splitting. We obtain a

spin splitting

AS(E) = iﬁlk\/ka“ + [f_ﬁikQ sin(2¢pg)]? — %k%ﬂ sin?(2¢p4) (2.59)

To reduce the energy splitting form Eq. (2.59), we make Dresselhaus constant return

24



CHAPTER 2. TWO DIMENSIONAL DRESSELHAUS-TYPE SOI ELECTRON
SYSTEM

to the origin shape (5 = 83 = 3) and Eq. (2.59) becomes

Ae(k) = iﬁk\/ﬁ:“ + [ikQ — k2)k2 sin® (24, (2.60a)

~ 403 {/{Qk}Q — %/{3 sin®(2p) + 0 (K°) | . (2.60Db)

where k& = k cos(pr)Z + ksin(pr)y. We have used « to replace with the expectation value
(k) of the wave vector along z-direction. For small k the BIA spin splitting is linear in
k and independent of the direction of k. For larger values of k the BIA spin splitting
becomes anisotropic, with energy surfaces that have a fourfold rotational symmetry. Note
also that for ¢, =0 (E I [100]) and ¢, = § (E I [110]) , Eq. (2.60) is exact [2]. Within

our approach we thus have zero BIA spin splitting for ¢, = T and k* = 2k

2.5 Connection between linear-k DSOI and ROSI sys-
tems

For a 2DEG system, linear-k DSOI Hamiltonian is like RSOI Hamiltonian. We can make

a coordinate rotation about DSOI Hamiltonian

Hp = B (05ky — oyky) (2.61)
and then the rotated DSOI Hamiltonian to compare with RSOI Hamiltonian

Hp = a(o.k, — oyk,) (2.62)

where « is the Rashba spin orbiting constant and [ is the Dresselhaus spin orbiting
constants. Suppose, for instance, the [2/,y'] system is rotated by angle 6 Fig. 2.7, relative

to the [z,y] system. After calculation, we might express the relation between [2,1/]
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system and [z, y| system in matrix notation:

o B cos(f)  sin(6) x ‘ (2.63)

Y —sin(f) cos(6) Y

Figure 2.7: the [2/,1/] system is rotated by angle 0, retaliative to the [z, y] system.

In the same way, Dresselhaus type Hamiltonian in [z, 1] system is

H,D = ﬁ (kx/0-$l — k‘y/O'y/)

and then it is transformed into [z/,y] system after coordinate rotation. Similar to
Eq. (2.63), we can use the same rotation matrix in momentum k,/(k, ) and Pauli ma-
trix o,(0,7). The detailed derivation of the coordinate rotation between linear-k DSOI
and RSOI Hamiltonians are shown in the appendix. After a coordinate rotation, the

linear-k DSOI Hamiltonian in [z, y] system is given by

Hy(0) = Hp = B (kyo, — kyoy) cos(20) + 3 (kyoy + kyo,) sin(26) : (2.64)
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We can chose a special rotating angle 7 and then the corresponding rotated Hamiltonian

s
Hb(z) = Hp = [ (kyoy + kyoy) (2.65)
is like ROI Hamiltonian Eq. (2.62) so that we can make a competition between them.
It means that the propagating with their momentum k making a angle ¢, = 7 with
respect to the z axis in linear k Dresselhaus SOI system whose propagating process is

compellable. We can discuss the spin density or the probability density distribution in

this case comparing the Rashba result.
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Chapter 3

Scattering from a cylindrically
symmetric potential in a Dresselhaus

SOI system

The main focus in this chapter is discussed-the scattering process. We first present the
spin dependent scattering calculation including cylindrical wave representations of the
incoming wave and the outgoing wave and then for a given m these equations involving
Hankel functions can be transformed into a m x m matrices result from independence of
the angle. We can determine the unknown coefficients by solving this boundary condition
problem.

In contrast, the scattering process in linear-k DSOI system can be solved analytically so
that the total function and the spin density both have analytical forms. The spin density
distribution is evaluated exactly and it is helpful to analyze the cubic-k DSOI case. For a
given total wave function, spin density will be studies. Finally, we drive particle continuity

equation in Dresselhaus SOI Hamiltonian to find the particle current.
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3.1 Cubic-k Dresselhaus SOI

3.1.1 Coupled cylindrical wave representations of the incoming

wave

First, we choose the propagating direction of the incident plane wave along z-direction
with the angle ¢, respecting to the z axis in Drsselhaus-type SOI system. Then, in cylin-
drical coordinate, incident plane wave with the incident energy ¢, a ratio 8, momentum

~ and helicity 7 = + can be expansion of partial waves

00 imH2) (yr)eime=er)

1
7vbincoming = ﬁ i Z

(3.1)
;m/=—c0 %mcim'Hﬁ)(vr)e"m/(ww)

For the scattering process in the Dresselhaus-type system we can take 1) as a eigenbasis

Z Jm (’}/7“) eimcp eimé

S (9R) S (yr)e™ et

m/

Y= A (3.2)

where

. iK2ei2 4 27 gin (25
R=ec |- ( _hz (20)) (3.3)
(ik2e=720 — %72— sin(20))

, A is a unknown constant and

e ="+ by K+ (@7—2)2 sin’(20) — “2@72 sin*(20). (34)
ﬁl 2 61

due to the central cylindrical symmetric potential.

The total wave function outside the scattering region (r > R) has the form
wtotal = 2/}outgoing + 7pincoming (35)
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where

g1(7,1,6)
wincoming =cC

g2(,1,0)

and

27 ! /
fl(’)/?rad) +/ dé’b(é’) fl(’Y?ra(S)
0

/27r
wout oing — déa(é)
o 0 f2(’77r75> f2<7/,r,5/)

(postive helicity : v ,d negative helicity : 7", ")

(3.6)

(3.7)

Here fi(fs) are the first kind Hankel functions and g;(go) are the second kind Hankel

functions. From Eq. (3.5) to Eq. (3.7), it-can'show that if an incident wave has a specific

helicity v, 4+, no incoming cylindrical wave with negative helicity and nonzero coefficient

b(9") lead to outgoing waves with flipped helicity, (outgoing wave must have both n = =+).

For a given incident plane wave Eq. (3:1); we look at the incoming part that the all

coefficients in Eq. (3.6) can be determined and use R;,. to replace with  where R;,. is a

function of ¢ in order to avoid to confuse the incoming wave with the outgoing wave.

1 00 iqug) (»yr)eim(@—%)
wincoming - ﬁ Z

m,m/=—o00 %incimlHr(j,) (’yr)eiml(#’*@k)

e=7"+ ﬁw\/ KA+ [%72 sin(2¢)]? — %v%z sin”(2p%)

" k2e—i(er) 4 f—ﬁiz’fﬂ sin(2¢py, )eiler)

k2eiler) — 25—5"’12'72 sin(2¢py, ) e~ ¢k)

(3.8)

(3.9)

(3.10)

Boundary conditions will be established in the later section for the solving of unknown

coefficients of outgoing wave Eq. (3.7). And we simplify the outgoing wave part in the

next section.
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3.1.2 Coupled cylindrical wave representations of the outgoing

wave

The continuous integration fo% dé in Eq. (3.7) can be treated as the discrete summation
% AJ in representation of a matrix form to and then use it to solve the boundary problem
;rzllthe numerical method. Here § describes that the integration range of § from 0 to 27
is divided into N pieces and each piece Ad = 27/ N. The summation is more close to the
integration if N is larger enough. In the later section, we can determine N through the
numerical result of the spin density and the probability of the total wave function.

The integration approximation is estimated by
2m N 9 N
/ 6 — Y A and [ do s STIAG (3.11)
0 i1 i=1

The outgoing wave part of the total wave function Eq. (3.7) can be regarded as the

discrete form

N n, T, 5n N ;La r, 5;1
77Z10utgoing = Z Aéa((sn) fl (7 ) + Z A(S/b(&—b) fl (7 ) (312)
n=1 f2(7nar75n) n=1 fQ(FY;Lara(S%)

where Ad =27 = A¢ and 6, = nAd =nAd =¢),. The unknown constants a(d,) and
b(d,) are function of 4, and then 6, is the Nth piece of the angle d. Substituting the
eigenbasis Eq. (3.2) into the Eq. (3.12), we have the outgoing wave function in the dis-

crete form

N ; HY (yur)eim(@+on)
woutgm‘ng = Z A&a((Sn) mi_zg 1 .,
(Ra) 30 Hpd (ar)e™ #+00)
/=—oo (3.13)
¥ > Hu (et
+ > AY'b(0;,) TR
(R) 30 Hy (r)em o)

m/=—o00

m
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The equation shows that consider a incident plane wave with positive helicity after scat-
tering by central symmetric potential ( hard wall disk) whose incoming wave part is the
same as before scattering but the outgoing wave part including both positive and negative
helicity lead to spin flipping. For a reference, if the incident wave has only negative he-
licity, then the helicity of the incoming wave part is still negative. At the same time, the
rules of v and 7/, as well as the probability amplitudes a(d) and b(d") must be interchanged.

We can easily deduce the outgoing wave function into the convenient form with the

representation a,,(d,) = a,, and b, (6,) = b,y and then it becomes

o0

S [anH ()™ 0m) 4 b, HL () e (#+n)]

N
woutgoing = Z Ao 00 m=—ee
n=1 S [an(R) HS (yr)eim tom) b (R H (7 )i’ (40m)]

(3.14)
Here the correspond energy dispersion and-the ratio are
2
e=72+ 617n\/n4 + (%%")2 sin?(26,,) — /{2%%% sin®(24,) (3.15)
1 1

. iKk2e20n 4 D201 gin (24,
R, =e | - ( 53 Sn0)) (3.16)

(ik2e120n — %% sin(24,))

and

e = (L — Bty + (20 g2 G205y e vz (s, (3.17)
61 2 ﬂl

. iK2ei2n 4 B2 00 iy (26,
W = i | a b sin(2n) (3.18)

(in2e~i2n — B2 04" gin(24,,))
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; Eq. (3.15) and Eq. (3.16) corresponding to helicity n = + , while Eq. (3.17) and
Eq. (3.18) correspond to n = —. In the case of helicity n = +, for a given energy ¢,
momentum 7, can be get from the energy dispersion in each d,,. And then if momentum
is known, we also obtain the correspond ratio },, by solving the equation which is function
of n and §,, Eq. (3.16). The negative helicity case is the same as the negative helicity case ,
so all parameters is known for a given energy expect for the probability a,, and b, which we
can determine by the boundary condition. After detailed calculation process in section
3.1 and this section, from the incoming wave part in Eq. (3.8) and the outgoing wave part
in Eq. (3.14), the total wave function with the incident angle ¢ outside the disk Eq. (3.5)

is given by

N )

Y X AdlanHy (e o) + by, H (v r)emeton)]
n=1m=—00

+ A S ) eim (e —en)

m=—00

wtotal(ra P @k) = » B
Aé[a‘n(%n)HSI) (Y1) et ($F0n) 1 bn(é)‘E’n)Hg,) (yLr)etm’ (eton)]

M=
gt

n=1 / o0
T X (Rudi™ HY (yr)etema)

(3.19)

The total wave function ¢, outside the scattering region (r > R) for a given incident
angle must be zero which is independent of the angle ¢ at » = R due to the boundary

condition of the cental symmetric potential ( "hard ” wall disk).

N )
D A(S[aan)(,ynR)eim(S@ﬁ-ﬁn) + anr(;)(%me(W&n)]

n=1m=—oo
S g 2 im(p—
+ﬁ§m;mz @ (yR)eimle—eor)
¢t0tal(R, @ (pk) - N 00 - 1 - 1 .
S Y Ad[an(Ra)H (v R)e™ #0) + b (R HE) (7, R)ei™ (7400
n=1m'=—oco
3 m’ (2 im/ (p—

Fia 5 G B R
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(3.20)

(0.9}
In Eq. (3.20) the summation Y, we can define a finite range from —m to m to represent
m=—oo

an infinite range just like Eq. (3.11) . At the same time, we make N in Eq. (3.11) equal

2M + 1 so that the first low of the total wave function is given by

2M+1
Z <Z Aé‘ezm(‘f’-ﬂs fmn+b fmn]+gme (@_Sok)) (321)

m=—M

where f,,, = Hf(r})(%R) S = Hr(;%)(%R) and g,, = ;\m[ " (VR) .

And each piece A/ is equal to corresponding §,, = nAd =n In the same way,

2M+1 2M+1

the second low has the similar form

m/'=—M n=1

M 2M+1
) (Z Aéel’m’w”n)[anmmfmm+bn<%;>f;/n}+<%mc>gm'€im'“@W) 522

where e f,1,, = (%n)HS,) (Vo R) , €nf! = (?R;I)H,(;,) (7. R) and g,y = Q?HS (vR) . Then

the total wave functions on the bound (r = R) reduce to a simply form as following

wtotal(R, @, ka)
M 2M+1 ) 4
Z ( Z Aaelm(w—'—én) [anfmn + bnfr/rm] + gmezm(cp_“"’“)>

= M 2171\7}1:+_1M et . =0 .
3 (1 AR () o ) ]+ (R0 )
m/'=—M n=1
(3.23)

We use the orthogonal relation on the summations of the two component matrix since the
"hard” wall boundary is ¢ independent. Taking into the orthogonal relation on ¢, the
first low Eq. (3.21) have no ¢ dependence, we have

2M+1

3 (eimﬁ‘s”[fmunan—i- f,’n,,nbn]) - —A—(SG y (3.24)

n=1
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where Gy = g™ (=9 and we can do the same orthogonality on Eq. (3.22). Eq. (3.23)

can be transformed into a big matrix which is given by

Fll F12 A
F21 F22 B

where

and

€_iM61 ffMl c
eiM(sl fMl e
e Ma flan
Fiy = :
eiM52M+1f]/\/[1
( e MU (R foan

etMo (R1) fana

e MR fLan

F22:

e Mo (1) fiy

e~ M1 f o ronriy

e Moot fyronr iy

P f/—M(ZM—H)

2l fjlw(2M+1)

T iMBanrya (3%

etMdanr 11 (§R

e—iM52M+1<

etMdanr i1 (

The unknown matrix elements

Qprr2M+1
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§RleJrl)JW_J\4(21\4+1)

/2M+1)f1/\/[(2M+1)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)
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and

b—Ml

B = : (3.31)

bM2M+1

can be solved in the numerical method for a given

G m
G =
Gy
and
(%inc)G—M
G =

Appendix gives the detailed derivation of the matrix in Dresselhaus-type SOI system.
The numerical result of Eq. (3.30) and Eq. (3.31) can be used to obtain the total wave
function Eq. (3.23) so that the spin density is determined. Also, we can observe the spin

density pattern via the incident angle ¢ in the summation.

3.2 Linear-k Dresselhaus SOI

3.2.1 Coupled cylindrical wave representations

From the section 2.2, we know that the direction of the propagating of the incident plane
wave along the z axis in linear-k Dresselhaus SOI system. Then, in cylindrical coordinate,

incident plane wave has energy ¢, momentum ~ and helicity n = +, can be expansion of
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partial waves

" H () + 2 ()| )

=
it = D, 5o

3.32
A 2\ ) [HE )+ )| e o

and m is the total angular momentum which is conserved during the scattering. The

energy eigenstate of the linear-k DSOI Hamiltonian can be written as

eime [amH,gi)(vr) + e, HY )(7 r)+ 2\/H’g) (77“)}

b, = (3.33)

cilm=1)p [mmHU (yr) — emiHY (o r)+2“}(')Hffll(vr)}

where

e =7" 4 By =% — B

The first and third terms have positive helicity while the second terms have the negative
helicity. Here H(1?) refers to the Hankel functions of the first and second kind respectively,
and HW[H®?)] is an outgoing (incoming) cylindrical wave. The most general eigenstates
is a superposition of 1,,, where the coefficients a,, and ¢, are determined by boundary
conditions. On the other hand, d,, is determined by the initial condition in Eq. (3.32),
so we can obtain d,, = % It means that the incident plane wave has n = +, then
by comparing Eq. (3.33); the incoming wave (the second kind of the Hankel function)
only has positive helicity, so d,, can be obtained. For a "hard ” wall boundary (i.e.
Y, =0 at r = R), the coefficient can be given by
im_ Hi (O HG \(D+Hy () Hy, 1 (3)
2fH”( VL () )L (5)

m HY GHE (3)-HD H)HY (7)
22 B G HE G+ HSY GVHSE  (G)

Ay = —

(3.34)

Cyp =
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where we define ¥ = vR and 4/ = 'R . The total wave function is the summation of

partial wave can be represented by

wtotal = Z wm . (335)

The Rashba scattering model has been investigated in [16].

To produce the recursion relation of the total wave function, we simplify Eq. (3.33)

6im<pA+m
U = (3.36)

€i(m_1)‘pB+m
where

A = am Hin (77) + e Hig) (52) - HEN)

(3.37)
Bim = it ) (yr) — e By LG o iHE | (r)
We would obtain the relation of the coefficients
A — ,L'72m+1am
! (3.38)
Com+1 = _i_2m+1cm
and
By 1= (—1)™A,
+om+1 = (=1)MiAL (3.39)
i,*erl = _(_]')mZAj»,m :
from the coefficient Eq. (3.34) if we have the properties of Hankel functions.
H_ . (2) = (=1)"H,(2) (3.40)

The spin density of the total wave function in Eq. (3.32) for linear-k DSOI system can

be obtained in analytical form if we use the recursion relation in Eq. (3.39). However,
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the cubic-k DSOI system has to be solved in numerical method. The analytical form of
the spin density is much more powerful which can be compared with the Rashba SOI

scattering case [28].

3.3 Scattering of the scattering state

The scattering of the scattering state is composed of two kinds of outgoing waves (helicity
n = £ ) which resulted from scattering upon a hard disk. We change the helicity of
incident plane wave which is from the previous case and then the scattering process is

analogical. But the quantity of spin density is slightly different.

3.4 Spin density of the scattering state

In the section we focus on the spin density of the scattering state both in linear-k DSOI
and cubic-k DSOI systems. The spin density distribution is very important since we
observe the polarization around the disk from the distribution. Moreover, for a given
incident angle ¢, we can obtain a spin density distribution. For the specific incident
angle, it can be compared with the one in the Rashba SOI system. At the same time, it
is important is to know the cubic-k contribution by comparing the in linear-k DSOI with
cubic-k DSOI systems. And then from the energy dispersion in cubic-k DSOI systems
which was derived in section 2.2, we know that the scattering process is the same due to
the same energy dispersion when the incident angle ¢y, is equal to 2nm (n is integer). In
contrast, at the other incident angle, the cubic-k SOI contribution is considerable. Here
we must use the numerical method to deal with the spin density in cubic-k DSOI system,
but the spin density can be obtained analytically in linear-k DSOI system.

The spin density on linear-k DSOI can be evaluated lightly since the total wave func-

tion can be expressed in analytical form Eq. (3.33). By the definition, the spin density
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S.(r,¢) in units of /2 | is given by

Sz(ﬁ 90) = wt—;talazl/}toml (341)

where o, is the Pauli matrix.

Substituting Eq. (3.33) into Eq. (3.41) the spin density becomes

S:(r, )
1 - ) . 1 0 Aer’eim/@
=z Z g —m Aime—zm@ Bimefl(mfl)go o
m,m/’ 0 —1 B+m,€l(m -

=+ > [i™mcos ((m' —m)p) +i™ " sin ((m' — m)p)] (A%, Ay — Bl Biow)

(3.42)

where the elements are described in Eq. (3:37) and Eq. (3.38) . The spin density whose ¢
dependence include odd function and even function (i.e. sin ((m’ —m)y) and cos ((m' —m)y)
) . In addition, we reconsider recursion relation Eq. (3.39) which is useful to obtain the

relation between the spin density S.(r,¢) and ¢ dependence.

Z [im/_m cos ((m' — m)gp)} F(r)=0

!

(3.43a)
S [ sin (' = m)g)] Fir) = 3 2sin (' = m)g) (A ) 17740
(3.43b)

where F(r) = (A%, Ayp — B, Biny) is only radial dependent.
Therefore, we substitutes Eq. (3.43) into account that the spin density Eq. (3.42) can be

obtained

S.(r,0) == sin((m' —m)p) (A, Ay ) i (3.44)
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As a result, the ¢o—dependence in spin density exhibits odd parity from the analytical
form Eq. (3.44) apparently (i.e. S.(r,—¢) = —S.(r,¢)). Hence, we conjecture that the
spin density in the cubic-k DOS system would have a similar result but something is
different due to the contribution from cubic-k term. The conjectural result in the cubic-k
system about the spin density from the linear-k system is useful for us to estimate the

result from the numerical method.

3.5 Particle continuity equation

In quantum mechanics, calculating current is crucial to applications. A widely accepted
approach is using the correspondence regulation from classical to quantum mechanics.
From the Schrodinger equation, we have Hip = i%@b and (Hy)! = —i%¢ . Notice here
the transposition in the symbol § only acts-on the spin index . We can use the above two

equations to get the particle continuity equation.

0 1

UM = [ (He) - (H)' v (3.45)
or

%n —-V-j (3.46)

where n = 11 is the particle density and ; is the particle current density.
It describes the conservation of the particle number. In the derivation below, we use

the following Hamiltonian:
H = —V? = &*B1(ke0, — kyoy) + Bs(kokion — kykioy,) + V(7) (3.47)

In Eq. (3.45) the first term is the kinetic energy. The second and third terms are the

Dresselhaus spin-orbit coupling, which has been extensively studied recently. Next we
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substitute the Hamiltonian Eq. (3.47) into Eq. (3.45), and Eq. (3.45) becomes

; — [tV — (V2] — k2B [T o, (k) + (koD o)+
1
50 =2 KBy (k) + (kyh)oy ]+ s ou (kb)) + (kek2uh)ouy] o (3.48)
—Ba[btoy (kyk20) + (k, k20T o,

And we have the

k=1v = 2(@V,+9V,) . After long careful calculations from Eq. (3.45) and Eq. (3.48),

(2

we obtain

a N _.conv _extra

—n=-V-(j + ) (3.49)

where

i = =l (V) + (Vo))
_.extra L _C

J =] +J
i = k2B (G0 — o)
§ = (B0, — 0,) (VaV,0) + Bs(VaVyt) (G0, — 30,)0] + [B5(Viu) (30s — 07, ) (Vi)

(1 ==x,y, z).....repeated index connection adopted

(3.50)

Appendix B gives the detailed calculation of the particle continuity equation in Dressel-

haus SOI system.

—conv
7

Here j is a 7 conventional term

7

. This term is general for any potential V(7) in

Hamiltonian if the potential is position dependent. And the main source to induce an

—extra
extra term of the particle current j comes from Dresselhaus spin orbit coupling which

L ~C
include linear term 5 and cubic term j .

In Rashba SOI system in Eq. (3.51), we get the same result in Eq. (3.52) except for
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the extra term in Eq. (3.53).

Hp = —V? +a(k,o, — kyo,) + V(7) (3.51)

- —conv A.e;tt’ra

=3 +7 (3.52)
where

—extra ~R IR

i =J =a)i(ox 2 (3.53)

However, we discuss the particle current in some complex system with SOI such as
Dresselhaus SOI in Eq. (3.47) and Rashba SOI in Eq. (3.51) in which the momentum
appears in the ”"potential 7 of thesHamiltonian. of semiconductors that the extra term
must exit. In our case, the number of particle must conserve during the scattering process

without any bias or EM fields.
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Numerical results and discussions

4.1 Results for linear-k Dresselhaus SOI

We has studied the results of the scattering in linear-k Dresselhaus system. In chapter 3,
the spin density of the total wave funetion would be solved in numerical method as we
do in this chapter just like solving the Rashba scattering problem [28]. But we find the
recursion relation of the coefficients of the wave function which can be used to simplify
the spin density toughly so that we have the analytical form. However, we can compare
the numerical results with the analytical results. The plane wave incident a hard wall
disk in linear-k Dresselhaus system with the helicity 7 = 4, the incident energy £=7.7
(in unit of €*), and the incident angle ¢,=0 ( the energy unit £* = 8.977 meV ).The spin

density of the total function has the analytical form
1 : * <(m/—m
Sz<r7 ()0) = w;talgzd}toml - Z Z S ((m/ - m)gp) (AerA-l-m’) Z( +1) (41)
where

A = an H (97) + e H (7)) + HE () (4.2)
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whose coefficients are

o HEHEDG) + B G)H, ()
Hy) () Hy 1 (7) + Hin) (9)H, 4 ()
and
L HYGHG) - (D H, L 3)

(4.4)

The numerical results of the spin density from 3.2.1 we can solve the boundary con-

dition by using numerical method. And then the distribution of the spin density and

the probability density of the total wave function are obtained in Fig. 4.1 and Fig. 4.2

respectively.

Spin density Sz

Figure 4.1: Distribution of the out-of-plane spin density S,. The plane wave incident a
hard wall disk in linear-k Dresselhaus system with the helicity n = 4, the incident energy
e=7.7, and the incident angle ¢=0. Lighter regions means the region whose spin density

S, >0 (spin up). And the darker regions represent the region of spin down .
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Probahility density

Figure 4.2: The spatial dependence of the magnitude of the total wave function probability
density. Out of the white circle is the region-with finite Dresselhaus SOI. Apparently, when
the plane wave propagates along the x axisythe probability density is almost zero behind
the disk due to the hard wall disk .

The spin density function is the odd funetion of ¢ from Eq. (4.1), i.e. S,(r,—¢) =
—S.(r,) . The property from the analytical result is consistent with the distribution
of the spin density pattern plotted in Fig. 4.1. Also, Fig. 4.2 show that the total wave
function density is almost zero behind the disk due to the hard wall disk.

For a larger incident energy €=13.23 (in unit of £*) , we obtain the spin density plotted
in Fig. 4.3. The total wave function probability density is plotted in Fig. 4.4, where other
parameters of the incident plane wave and the linear-k DSOI constant are fixed. From
Fig. 4.3 and Fig. 4.2, we can conclude that the concentration of spin density (fringes)
become higher by larger incident energy. The energy dispersion of the incident wave with
helicity n which we derived in chapter 1 shows that the momentum is independent of the
incident angle ¢, and then the effective magnetic filed is perpendicular to momentum in
linear-k Dresselhaus system. Hence, the distribution of the probability density and spin
density in linear-k Dresselhaus system are just rotated by the incident wave angle but the

patterns are the same.
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Spin density (Sz)

-4 -3 -2 -1 0 1 2 3 4
X

Figure 4.3: Distribution of the out-of-plane spin density S,. The plane wave incident
a hard wall disk in linear-k Dresselhaus system with the helicity n = +, the incident
energy €=13.23, and the incident angle ¢r=0."Lighter regions means the region whose
spin density S, >0 (spin up) . And the darker regions represent the region of spin down .

Probability density

Figure 4.4: The spatial dependence of the magnitude of the total wave function probability
density. Out of the white circle is the region with finite Dresselhaus SOI. Apparently, when
the plane wave propagates along the x axis, the probability density is almost zero behind
the disk due to the hard wall disk.
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Spin density Sz (pm'z)

Figure 4.5: The quality the spin density S, determining the number m as function of ¢
for a central hard wall disk where mrepresents the number of the partial waves we must
sum. Apparently, the line of the spin densitiy-corresponding to the distribution of the spin
density Fig. 4.1 at r=2 is saturated for a larger m: And the probability density also has
the same situation.

4.2 Results for cubic-k Dresselhaus SOI and more

Discussions

In the case of cubic-k Dresselhaus, we must deal with a troublesome numerical problem.
However, it doesn’t saturate or converge to a value. Here we replace the plane wave with
the cylindrical wave to check the sliced method in appendiz C. We consider a cylindrical
wave incidents a Dresselhaus SOI disk and we both use the sliced and non-sliced methods.
And then we make a comparison between analytical results and numerical approach in
cylindrical wave case in order to check our numerical method. Results in appendiz C' show

that the numerical method is feasible for cylindrical wave in Dresselhaus SOI case.
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4.3 Discussion on the connection of spin density with
the plane wave direction

We make a discussion on the connection of spin density with the plane wave direction in
Dresselhaus SOI system.

The energy dispersion in the linear-k Dresselhaus system we derived in Chapter 2
e =k*+ Br%k (4.5)

and the spin density Eq. (4.1) we driven in Chapter 3 which can be evaluated easily.
For a given incident plane wave with energy ¢, helicity 1, and incident angle oy, we
can obtain the momentum k by solving Eq.(4.5) so that the corresponding momentum
is independent of incident angle .. —Also, we knew that the effective magnetic field is
always perpendicular to the momentum. Henee, we-can surmise that the spin density and
probability density patterns are just.rotated an angle for a different incident angle ;. in
linear-k Dresselhaus system and the distribution and the strength of them are analogical.

In the cubic-k Dresselhaus system the energy dispersion we driven

1

=k % Biky [kt + [ﬁk2 sin(2¢pg)]? — @k%ﬁ sin?(2¢py) (4.6)
261 s

and then we can obtain the momentum from Eq. (4.6). Obviously, the momentum is
dependent of ¢y so that we can adjust that both the spin density and probability density
patterns in cubic-k Dresselhaus system are dependent of ;. The scattering process in
cubic-k Dresselhaus system with a different incident angle ¢, is more complex than in

linear-k Dresselhaus system.
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Future work

In the future, we continue to accomplish the cubic-k Dresselhaus scattering problem. The
scattering of incoming spin-polarized beam of électrons in DSOI system could provide a
way for detecting spin-current and then serves as a basis considering a magnetic flux in
the disk. Also, such a setting of SOI' can be used to produce a source of spin-polarized

electrons, which has a variety of potential applications in spintronics processing.
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Appendix A

Simplify the boundary condition

problem

The total wave function in Dresselhaus system can be written as

wtotal (RJ 2 Spk)

M /2M+1 . ,
> ( > AGE ™) [y, fran + b fran) + gme’m(“"‘“”’“))
m=—M n=1

= M 2M+1 ., .
Z ( Z Ade™ (Lp—l—én)[am’n(%n)fm/n + bm’n(g%;z)fr/n/n] + (g%inc)gm’ezm (@_wk))
n=1

m/=—M

(A1)

— am

where frn = Hia) (WaR) , fn = Hi (,R) , g = 375 Hix (YR) , and

27 27
———— 6, =nA§ = :
2M +1° " "M+ 1

N=2M+1,A6=
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Besides, in Eq. (A.1) the values of ratio we driven in Chapter 2 are

K2e—i(20k) 4 2%@'1@2 sin(2¢4)

§Rz'nc = _ei(SDk) : A.2a
(Rinc) k2ei(20K) — %il@ sin(2¢y) ( )
. 2
‘ (iK2ei20n + &’Y?n sin(26,))
R,) =e 0n |~ & A2b
(%) (ir2e—i20n — %% sin(24,)) ( )

. ik2ei2on 4 B n) 20,
(éRl) — _efzén . ( ' 51 2/ ; ( )) . (A,Qc)
(ir2e=20m — 52085 gin(25,))

Here we use the orthogonal property of ¢ so that we integrals over ¢ in Eq. (A.1)
where the ¢ ranges from 0 to 27 and the the.nmumber m” ranges —M to M.
(i.e. 5= OQW dpe=m"? )

The first low of Eq. (A.1) after integrating can written as

M 2M+1 1 o , .
— —im" ¢ Sim(p+6n) / - —im” im(p—pr) | —
Z ( Z 27T /0 d@e <P6 ¥ A(s[fmnamn + fmnbmn] + 27T A dspe L‘nge P—Pk ) — O

m=—M n=1

(A.3)

M

2M+1 . T . " . T . 7
Z ( Z elménA(S[fmnamn + fr/nnb”]% fOQ d(pel(m_m e + gmelm(_%)% f02 d<pel(m_m )w) -0
m=—M n=1

M 2M+1 )
Z ( Z elménAd[fmnamn + f’r/nnbmn]dmm// —|— gmelm(_wk)dmm,,> — O

m=—M n=1

(O 1s delta function [30] )
2M+1

> (0 A frwrmmn + Frunabmr] ) + gure™" ) = 0

n=1
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After calculation, we obtain

2M+1

/] 1 im/! (—
Z (ezm On [fm”nam”n + frln”nbm”n]> = —Egmuezm (o) . (A4)
n=1

In the same way, we deal with the second low of Eq. (A.1).

u 5= Jo  dpe™ ™" e D NG((Ry) frnm O + (R,) Fryry b
S —0 (A5)

2M+1

> (€0 AS[(Rn) frrmtn + (R0) Fiiabrd F (Rine) g™ (=24)) = 0

n=1

Therefore, we also obtain the simplified form which is similar with Eq. (A.4).

2M+1

Z eim”(sn[(%n)fm”nan + (%;)frln”nbn] =

n=1

_A_5(+%inc)gm”eim,,(_¢k) (A6)

We consider the number m” which ranges from —M to M and then we can use Eq. (A.4)

and Eq. (A.6) to demonstrate a big matrix.

23



APPENDIX A. SIMPLIFY THE BOUNDARY CONDITION PROBLEM

Each element of Eq. (A.7) are given respectively as following :

eTIMOF L e MO f oy
Fi =
ML f eMo2n1 o onriy
T TP Y 2N
Fip =
Moo g1 €iM§2M+1f],\4(2M+1)

e MR fan

Fo =
MO (Ry) fan
e MO (R fLan
Fy =
M ()
a_pr
A—
apM2M+1
G-
G =
Gum

e_iM62M+l (‘SR2M+1 )f—M(QM-I—l)

eiM521M+l (%2M+1 )fM(QM-H)

M
e T (R 1) L vronrt)

MR 1) Fhranrn)
b
; B =
bM2M+1
(minc)G—M
G =

(A.8a)

(A.8b)

(A.8c)

(A.8d)

(A.8e)

(A.8f)

We obtain the unknown coefficients of Eq. (A.8) by using numerical method to solve

the matrix Eq. (A.7). Hence, the numerical result can be used to obtain the total wave

function Eq. (A.1) so that the spin density is determined.
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Appendix B

Derivation of spin density of the

total wave function after scattering

The incident plane wave with helicity 1 and incident angle ¢y is

1 1 " 1 1 .
S ikr cos(p—pp) ikr cos(p—r) B.1
in e e .
Vi ﬁ(R) ﬂ(nRin) Y

o ( i [ HD (kr) + B (kr) | eimte-en )

B.2
m—1 | 77(2) ey i(m=1)(p—k) (B2)
(anﬁ Hmfl(kr) + Hmfl(kr) €

IR D (r) + B (k)| emteen )
22 -y (2) (1) i(m—1)(o—p) ' '
( ZT]RWL) Hmflamq) + Hmfl(]m’) €

m=—0o0

For a given helicity n = + and ¢, = 0 (propagate along z axis), the incident wave can be

written as following

Loy [ k) + (k)] e
T ) : B.4
2V/2 2. ( (1) [H@) (kr) + Hfjll(kr)} Lilm=1)() (B.4)

m=—0oQ m—1
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APPENDIX B. DERIVATION OF SPIN DENSITY OF THE TOTAL WAVE
FUNCTION AFTER SCATTERING

The energy eigenstates of the Schrodinger equation with energy € and the angular mo-

mentum (m + 1/2)h can be written as :

eimy [amHﬁ)(’yT) + cmenl)(fy’r) + q®? ('yr)}

eimgoAer
Yim = : () (1) (2) |
02 iy HU) (97) = e By (3/r) + (L ()] VB,
(B.5)
where
Apm = an HS (yr ) a2 (F0) S H D (yr) (B.6a)
B = iamHy,) 1 (v7) = coiiHy, s ()% (VHS  (7r) (B.6b)
and
e=n/2m+ By =1*Y?/2m — By . (B.7)

Eq. (B.5) means that the total wave function ¢, has the incident wave which is propa-
gating along z axis with incident energy €, momentum ~y, angular momentum (m+1/2)A,
and helicity +.

The most general eigenstate of the eigenequation is a superposition of the ¢,

A+m eimtp

tota tota 1 M
(8 l:;?/fm l:mzmzl (B.8)

B+mei(m—l)go

, where a,,, and ¢,, are determined by boundary condition.
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For a hard disk

wtotal(r = R) = O s (Bg)

it can be shown that

HY (3VHE () + HY (3)HY L (7)
Um = =70 O (= D =g (= (B.10a)
Hy' () Hy () + He (7)) Hy "4 ()
L HGH)G) - (D HL () (B.10b)
HY )V HS L (3) + HY (3 HS L (7)
where 4 = YR and 7' = +'R.
The recursion relation of the Hankel function is
HY(2) = (-1)'HM(2) (B.11)

We can find a ration in Eq. (B.10) through Eq/(B.11).

_HO L GOHE, G, L 3HY, ()

1) GHE, G+, HD), ()
_ HY L GOHR G+ED  GHS () (B.12)
T HLL GHY G)+EL GOER ()

A_my1 =

:am

1Y  HH®) 3)-HE) 5H) (3
HYD  »HD, 3)+HD L GHHD %)

Com+1 =

_HY (9HP @) -HP (3 HY F) B.13
v GHS @) +ED  GHEY () (B.13)

Cm

Hence, we obtain recursion relations both of a,, and ¢,

A i1 = Gy (B.14a)

Comi1 = —Cm (B.14b)
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APPENDIX B. DERIVATION OF SPIN DENSITY OF THE TOTAL WAVE
FUNCTION AFTER SCATTERING

which are useful. We take Eq. (B.14) into Eq. (B.6), and then obtain

By —mit = acpariHY) (y7) = copani HY) (') + iH), ()

= apmi(—1)"HD () + emi(—1)"HY (7'r) + (=1)™iHE (yr)

(B.15)
= (=)™ [an Y () + e H (3/r) + H ()]
= (_l)miA—i—,m
B+’,m+1 — (—1>m2A+7m (B16a)
i = —(-LTiAL, (B.16D)

Therefore, A, ,, can be replaced with-B; —,,+1/so that the spin density of the total wave

function is

s
0 Appem?

<SZ> = w;talgz¢total = % Z Z‘m/—m ( Aime_im@ Bime—i(m—l)cp )

m,m/’

1
0 _1 B+m/€i(m,_1)¢

A leim’go
1 m/—m * —im * —i(m—1 tm
=3 Z t ( A+m€ ® B+m6 ( )¢

m,m’ _B+m,ei(m,_1)ﬂo

— % ,Z'm/—m (Aj_mAer/e—imcpeim’cp _ Bime—i(m—l)zpB+m/€i(m’—1)ap)
=1 ¥ it (AL, A — BL,, Bi)
= L5 [ cos (' — m)g) + i sin (' — m)g)] (A} At — BB

(B.17)

Apparently , the spin density of the total wave function Eq. (B.17) can be decomposed
as a superposotion of the even function of ¢ and the odd function of ¢ .

(i.e.cos ((m' —m)p) and sin ((m' — m)yp). )
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FUNCTION AFTER SCATTERING

The even function of ¢ part of Eq. (B.17) can be simplified by Eq. (B.16).

> [ cos (m' = m)e)] (A% s = B Biw)

= Z, [i™ =™ cos ((m' — m)p)] (A%, Arm) — Z/ [i™ =™ cos ((m' — m)p)] (B Bim)
= S [ cos (!~ m)e)] (A i)

- > [i(_m/+1+m_1) cos ((—m'+14+m — 1)90)] (Bi,—m+1B+,—m'+1)

m,m/’

= 3 cos ((m' = m)p) (AL, ) [ = — i (m=m(—1ymsm]

m,m/

=0

Also, the odd function of ¢ part of Eq. (B.17) by Eq. (B.16).

S [ =t sin ((m! — m) )] (A A = B B )

= > [i™ = Dsin (m' — m)g)] (AL Adw) <3 [i™ =™V sin ((m' —m)p)] (B, Bim)
= > [i™ = Dsin ((m! — m)p) [ (A%, AL

_ Z [Z'(*m/JrlerflJrl) sin ((_m/ + 1 +m— 1)4'0)} (Bj_,_m_t,_lB—i—,—m’—i—l)

/

= Z/ﬁ[i(m'm“) sin ((m' —m)p)] (A% Arn)

4;2'2 Z, [i= " =m D gin (m' — m)ep)] (—(—1)™iA%,i(—1)™ Ay )
= leil; ((m' —m)p) (A%, Ay ) 077D [1 — m20m=mt ) (g ymam’]
= Z sin ((1m' — m)p) (A%, Agp) 80772

Finally, the spin density of the total wave function can be obtained as

<SZ> = w;talazwtoml

=3 2 sin((m' —m)p) (A%, Ap ) i 7HD2 (B.18)

m,m’

=1 3 sin((m' —m)p) (A%, App) iV mHD

m,m’
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Appendix C

Comparison of analytical results and
numerical approach for cylindrical

wave case

Here we make a comparison of analytical results and numerical approach for cylindrical
wave case. At first, we use the sliced numerical method to solve the incident cylindrical
wave problem.

We replace plane wave with cylindrical wave and then the total wave function outside

the disk is given by

wt(h 90>

-5 Jo" dba(@)Hi (il > ST dsb (8" HLY (/) e +)
man' \ 27 d5a(8) (i) HY) (vr)em' o) | mant \ 2T q(8) (—ie ) HLL) (y/'r) e 0 +)

+ B Ho, (yr)ei™min®
i(min_l) 2 (e —
2v2 (R”L)Héu)n71<'y7")6( in—1)p

(C.1)

where the corresponding ratio R;, is —1 and the last term in Eq. (C.1) is the incident
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APPROACH FOR CYLINDRICAL WAVE CASE

cylindrical wave. For a hard wall boundary condition, the total wave function is zero.

¢t(R> 90) =

zmg& f27" d5 ) (1) (,y)eimé . Z zmgo f27" dé/ 5/) (’7 )ezmé
m,m’ eim %) IQW déa(é) (’i>H(1/) (:Y)ei(m’—&—l)cS m,m’ Zm ) f27r ddl 5/)( ) (1) (,)/) i(m/+1)¢

m

iMin zm'Ln 2

mzn_l)<p imin (2)

e’ s (O H 1 (7)

+ =0

(C.2)

Here we use the orthogonal relation on the summations of the two component matrix

since the "hard” wall boundary is independent.

dipe™ ")
_ o dbald) HL) (3)em By YRS JoT do'b(& ) H D (7 )"
2T 480 () (i) H') (7) el + D8 J27da'b(8") (—i) H)(7)elm 08 | (C.3)

" H'r(nz)n 5771 m’’
+ 2[ ( ) in _ 0

1 Min 2
e () H o) 1 (7 min—1)m

where 0, = % OQW d(pei(m'_m)‘P is delta function. The continuous integration in
N

Eq. (C.3) can be viewed as the discrete summation so that we obtain fo% do — > A
n=1

where Ad = 2 = A¥’ and 6, = nA§ = nAd’ =6, . To simplify formula, we replace a(6,)

and b(,) with a, and b,. After simplification, we obtain two equations as following

N N oy
(1) /=~ im"'s, W) o imis, LUy
anH " e + an 17 e — ___Hm 6minm”
2 anfln (1) 2_ bt ) 5975 0 ()
(C.4a)
H) (3)im"+1)8 (1) (3/)eitm"+ D _ L™ o)
Zan Zb H // N A(s2\/_Hmm*1(,y)6(min_1)m”
(C.4b)
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APPROACH FOR CYLINDRICAL WAVE CASE

From Eq. (C.11), the matrix F X = G can be evaluated
Next, we use the analytical non-slices method to solve the incident cylindrical wave

problem. Then the total wave function outside the disk is given by

eim‘f’amH,(,%) (vr) eims"bmHS) (~'r)
¢t(r7 @) = . (1) + . 1)
e Veian 1) () D (i), HY 1 (1'r)
o (C.5)
elmzn@’;\;ﬁ Hmzn (PYT)
+ .
cimn Ve R HE (o)
For a hard wall boundary condition , the total wave function is zero .
€y, Hinly ()
V(R ) = , 0
e D%iay,, Hyo ()
: (1) (2) (C6)
eminhy, Him,, (¥ eimin® 22\71 Hmg, (7)
o 1) o @) =0
ez(minil)w(_i)bminHmin_l(;5/) el(min Dwz?lemin_l(;?)
After calculation, we obtain as following
O ), 3) 4 b HD), (3) = — 2 HE) (3) 8 (C.7a)
n n 2\/_ n
1 5 1 _ /L Min
s, Hn, 2 (3) = by ol 1(3) = =5 Ho, (D (C.7b)

where m = m;, and we define ¥y =R and ¥/ =R .
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(O 1s delta function [30] )

The unknown coefficients a,, and b, can be evaluated by solving Eq. (C.5).

) _ i HW () H () + B () HL () (C.8a)
" A EOEEDY Y+ B () HY ()
- i Hy (DH () — H () Hy 4 (3) (C.8b)
" a2 O ED () + HP () HD ,(5)

We compare Eq. (C.2) with Eq. (C.5) after slicing and then we can obtain a relation

of coefficients.

(C.9)

63
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APPROACH FOR CYLINDRICAL WAVE CASE

We present here the comparison of analytical results and numerical approach for cylin-
drical wave case with the wave property m;, for different the number of slices N. In
following series of figures that the red * line is the numerical approach and the black ()
line is the analytical result. We find that a given larger m,, corresponds to a lager N

before diverging.

m. =m=1, N=11 m._ =m=1, N=45
56 10'3 inc 5 10’3 Inc
8| = T T T T T T 8 T T T T T T
; ; —x—(numerical) real part of a, ——(numerical) real part of a
6 5 *aims 7] 61 *nimd 7]
—©-(anyltical) real part of a e » —©-(anyltical) real part of a e’
4 8 4r £
2t 4 2t —
o 1 0 —
2 1 2 8y
4 q -4r .
8- 4 6 -
8 i i 8 i i
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 06 0.8 1 1.2 1.4 1.6 1.8 2
8 Im 8 In
o o
m.=m=1, N=47 m__=m=1, N=49
inc Inc
0.015 T T T T T 0.01 T T T T

T T h T
—+—(numerical), real part of a —«—(numerical) real part of a_

-~ (anyltical).real part of am"eiman |

ims

—-©~(anyltical) real part of am"e

0.01F

<
0.005-

0,005}

-0.005-
-0.0051

-0.01 -0.01

Figure C.1: Comparison of analytical results and numerical approach for cylindrical wave
case of m;,=1: (a) N =11, (b) N =45, (¢) N =47 and (d) N = 49.
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m_=m=3, N=49 gk, bl
inc 0.1 T T

0.04

T T T
——(numerical) real part of a,

T T T T
—+—(numerical) real part of a

imé

0.03F -6~ (anyltical) real part of a, "™ | |

-©-(anyltical) real part of am"eimsn 0.05-
0.021
0.01+ 0

0

-0.01-¢ -0.05-
-0.02-
-0.03+ -0.1F
4 i i
0% 12 14

-0.15 i i i i
0

Figure C.2: Comparison of analytical results and numerical approach for cylindrical wave
case of m;,=3 : (a) N =49 and (b) N =51.

m._ =m=7, N=129 m._ =m=7, N=131
inc inc
12 T T T T T T
—+—(numerical) real part of 3
1 -6~ (anyltical) real part ofam*e‘mar 7

0.1k —«—(numerical) real part of a,

—-©-(anyltical) real part of am’eim”n

.0.15 i i i i i i i i i
0 0.2 0.4 06 0.8 1 12 1.4 16 1.8 2

Figure C.3: Comparison of analytical results.and numerical approach for cylindrical wave
case of m;,=7: (a) N =129 and (b) N'="131.

m._ =m=11, N=133 m.=m=11, N=135
inc inc
0.15 T T T T T T 0.5, T T T T
—+—(numerical) real part of a_ —»—(numerical) real part of a
-6 (anyltical) real part of a_*em, DA -6~ (anyltical) real part of am*e‘m“r 1
'm

r i i i i i i i i i
0. 20

Figure C.4: Comparison of analytical results and numerical approach for cylindrical wave
case of m;,=11: (a) N =133 and (b) N = 135.

Here the matrix from Eq. (C.11) can be decomposed into small matrix combination.

FX =G
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Fll F12
F =

F21 F22

The unknown coefficients of X can be obtained by solving X = F~!G. Also, we

assume that

Hy H
Flopg=| " "7 (C.10)

H21 H22

So the element of F' can be in terms of the element of H where

Hyy = (Fi — 171121:12_21le)_1 (C.11a)
Hyy = (Fp —= F21F1_11F12)_1 (C.11b)
Hiy = —Fi FioHy, (C.11c)
Hy ="=F3 Fy Hig (C.11d)

. To do the matrix simplification, we have a bigger N for a given m;, =1 .

m._ =m=1, N=63 m._=m=1, N=65
inc inc
8 T T T T 0.01 T T
+(numerical) real part of a, —+—(numerical) real part of a
6 % s
-&-(anyltical) real part of am*e"“sn J -&-(anyltical) real part of am*e‘”"’r
4 . @ 0005 :
Al ; B
4 : g
4 K -0.005
s : 5 ; 4
W
8 i i i i i sl i i 001 i i i i i
0 0.2 04 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 04 0.6 0.8 1 1.2 1.4 1.6 1.8 2
8 In 8 /
i o

Figure C.5: Comparison of analytical results and numerical approach for cylindrical wave
case of my,=1: (a) N =63 and (b) N = 65.
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