國立交通大學 電子物理系 碩士論文

以極化飛秒光譜研究(100)Y_{0.9}Ca_{0.1}Ba₂Cu₃O_{7-δ} 薄膜之超快動力學

Ultrafast Dynamics in (100)Y_{0.9}Ca_{0.1}Ba₂Cu₃O_{7-δ} Thin Films Probed by Polarized Femtosecond Spectroscopy

研 究 生:林書瑩 指導教授:吳光雄 教授

中華民國九十八年七月

以極化飛秒光譜研究(100)Y_{0.9}Ca_{0.1}Ba₂Cu₃O₇₋₈薄膜 之超快動力學

Ultrafast Dynamics in (100)Y_{0.9}Ca_{0.1}Ba₂Cu₃O_{7-δ} Thin Films Probed by Polarized Femtosecond Spectroscopy

研 究 生:林書瑩

指導教授: 吴光雄

Student : Shu-Ying Lin

Advisor : Kaung-Hsiung Wu

Submitted to Institute of Electrophysics College of Science National Chiao Tung University in partial Fulfillment of the Requirements for the Degree of Master in

m

Electrophysics

July 2009

Hsinchu, Taiwan, Republic of China

中華民國九十八年七月

以極化飛秒光譜研究(100)Y_{0.9}Ca_{0.1}Ba₂Cu₃O_{7-δ}薄膜 之超快動力學

研究生:林書瑩 指導教授: 吳光雄 教授

國立交通大學 電子物理學系碩士班

本實驗室一直致力於使用飛秒極化光譜研究高溫超導體 YCa_xBaCO₇ 薄膜的各向異性超快動力學。在本論文中,我們成功地利用脈衝雷射鍍膜製備高品質(100) Y_{0.9}Ca_{0.1}Ba₂Cu₃O_{7-δ}薄膜,並且利用同步輻射的 x-ray 繞射法証實 其(100)軸向的純度百分率高達 98%以上。搭配樣品控氧方法改變 YCBCO 薄膜的氧含量,我們可以有系統地從同一個(100)YCBCO 薄膜上觀察在 b 軸方向上,其光激發準粒子的弛緩動力行為隨著不同摻雜,如: 過度摻雜、最 佳摻雜與不足摻雜的變化。

Ultrafast Dynamics in (100)Y_{0.9}Ca_{0.1}Ba₂Cu₃O_{7-δ}

Probed by Polarized Femtosecond Spectroscopy

Student : Shu-Ying Lin

Adviser : Prof. Kaung-Hsiung Wu

Department of Electrophysics National Chiao Tung University

Abstract

Anisotropic dynamics of YCa_xBaCuO_{7- δ} thin films probed by a polarized femtosecond pump-probe system have been investigated continuously in our laboratory. In this thesis, we have successfully prepared the well-textured (100)-oriented Y_{0.9}Ca_{0.1}Ba₂Cu₃O_{7- δ} thin films by pulsed laser deposition (PLD), and the (100) purity of (100)YCBCO thin films, as revealed by x-ray diffraction in National Synchrotron Radiation Research Center, was better than 98%. In addition, by using the encapsulated bulk annealing method to control the oxygen content of the (100)YCBCO films, we can systematically investigate the relaxation dynamics of photoexcited quasiparticles along the b-axis as a function of various hole doping, i.e. overdoped, optimally-doped and underdoped regions in a single (100)YCBCO film.

誌謝

首先誠摯感謝指導教授吳光雄老師,給我一個這麼優質做物理研究的環 境與機會。並且及時指點我正確的方向,使我能如期完成論文。老師對研究 的嚴謹更是我們學習的典範。

感謝固態實驗室的林俊源老師與羅志偉老師,您們的建議讓我在我的實驗及研究上獲益良多。也感謝溫增明老師與莊振益老師讓我們學習到很多做 人的道理,相信在人生旅途上會受用無窮。

謝謝實驗室的學長們給的指導,裕仁、訓全、明道、德江、彥宇,謝謝 你們不厭其煩的指導我實驗上的技術,謝謝怡君以及邰瑛陪我度過歡樂的碩 一實驗室時光,謝謝實驗室夥伴們家權、宣毅、東穎、書楷,我不會忘記和 你們一起打拼的日子。感謝佩茹和秋娥的鼓勵,讓我能用笑容面對每一天。 感謝好同學們宗叡、純芝、凱婷、崇真、享穎,也謝謝實驗室的學弟們,小 趴、耀宗、祐廣、柏全、育廷、嘉偉、彥智,還有學妹雅卿幫了我好多的忙, 讓我在最後階段能安心口試。

最後感謝親愛的爸爸、媽媽、奶奶、妹妹還有邱邱的支持,讓我有強大 的力量與休憩的港口,有你們的鼓勵我才能飛得更高更遠。

iii

目 錄

中文摘	要 一	i
英文摘	æ	ii
誌謝		iii
目錄		iv
第一章	緒論	1
第二章	(100) Y _{0.9} Ca _{0.1} Ba ₂ Cu ₃ O7 薄膜製備與一般特性量測分析	9
	2.1 脈衝雷射鏡膜實驗步驟	10
	2.2 (100) Y _{0.9} Ca _{0.1} Ba ₂ Cu ₃ O ₇ 薄膜基本特性	13
	2.2.1 X-ray 繞射量測	14
	2.2.2 Φ方向掃描(in-plan Φ scanning , Φ-scan)	19
	2.2.3 表面平整狀態	23
	a. 原子力顯微鏡 (AFM)	23
	b. 掃描式電子顯微鏡 (SEM)	25
	2.2.4 薄膜電性量測	26
	a.微橋製備 (pattern)	26
	b.控氧系統	27
	c.電阻-溫度(R-T)量測	29
第三章	X 光吸收光譜 (XANES)	32
	3.1 X 光吸收光譜原理 (XANES)	32
	3.2 X 光吸收光譜實驗方法	33
	3.3 (100) Y _{0.9} Ca _{0.1} Ba ₂ Cu ₃ O ₇ X 光吸收光譜實驗結果	34
第四章	極化飛秒光譜實驗系統及研究 HTSC 特性之原理	38
	4.1 時間解析極化飛秒光譜	38
	4.1.1 激發-探測技術原理	38

4.1.2 激發-探測實驗系統	40	
4.2 實驗方法	44	
4.2.1 時間延遲零點定位	44	
4.2.2 樣品量測實驗步驟	44	
4.3 光激發探測之物理模型基礎	47	
第五章 實驗結果與討論	50	
5.1 量測結果	51	
5.2 $\frac{\Delta R}{R}$ 曲線適配分析	55	
5.3 準粒子在(100)Y _{0.9} Ca _{0.1} Ba ₂ Cu ₃ O _{7-δ} b軸上的動力學	59	
5.3.1 超導能隙與偽能隙之理論計算模型	59	
5.3.2 超導能隙(supercoducting gap)之數據分析	60	
5.3.3 偽能隙(Psudogap)之數據分析	64	
5.4 總結	67	
第六章 結論與未來工作	70	
6.1 結論	70	
6.2 未來工作	71	
參考文獻		

4.1.2 激發-探測實驗系統	40
4.2 實驗方法	44
4.2.1 時間延遲零點定位	44
4.2.2 樣品量測實驗步驟	44
4.3 光激發探測之物理模型基礎	47
第五章 實驗結果與討論	50
5.1 量測結果	51
5.2 $\frac{\Delta R}{R}$ 曲線適配分析	55
5.3 準粒子在(100)Y _{0.9} Ca _{0.1} Ba ₂ Cu ₃ O _{7-δ} b軸上的動力學	59
5.3.1 超導能隙與偽能隙之理論計算模型	59
5.3.2 超導能隙(supercoducting gap)之數據分析	60
5.3.3 偽能隙(Psudogap)之數據分析	64
5.4 總結	67
第六章 結論與未來工作	70
6.1 結論	70
6.2 未來工作	71
參考文獻	72

第一章 緒論

1987年, 吴茂昆和朱經武博士共同發現 T。高達 90K 以上的高溫超導材 料「釔鋇銅氧化物」, 此發現突破 BCS 理論[1]預測的極限, 因此科學家對 於高溫超導理論之研究及更高 T。的超導體化合物的發展燃起了新的希望。

由於碰撞脈衝鎖模染料雷射技術成熟,雷射脈衝寬度降低到數十飛秒 (fs),使得快速動力學量測的時間解析度大為提升[2]。將飛秒雷射入射各種 金屬、半導體或超導體材料,量測瞬時反射率(ΔR/R)或穿透率(ΔT/T),可成 功的觀察到光激發準粒子在正常態(T>T_c)與超導態(T <T_c)時的弛緩行為。

超導能隙(Superconducting gap, $\Delta(T)$)與偽能隙(Pseudogap, Δ_p)的大 小。可以根據瞬時反射率($\frac{\Delta R}{R}$)隨溫度的變化情形來推測, V. V. Kabanov 與 J. Demsar 等人在 1999 年提出理論計算模型[3],並利用他們所量測的(001) YBa₂Cu₃O_{7-δ} 薄膜的時間解析光譜有系統的解釋與溫度相關 BCS 相似的能 隙 $\Delta_c(T)$ 、與溫度無關的偽能隙 Δ_P ,以及弛緩時間(τ)的物理意義[4]。

圖 1-1 超導能隙Δ_c和偽能隙Δ_P對氧含量(和Ca含量)的關係圖[4]

由圖 1-1 所示, optimally-doped 的 YBa₂Cu₃O_{7-δ}($T_c = 90$ K, $\delta < 0.1$)是 屬於溫度相關的能隙 $\Delta_c(T)$ 所主導, 然而, 其在 underdoped (0.15< $\delta < 0.48$) 是屬於溫度無關的能隙 Δ_P 所主導。除此之外, 他們也有量測一系列 Y_{1-x}Ca_xBa₂Cu₃O_{7-δ}單晶的超快光譜(x = 0, 0.016, 0.101 和 0.132), 由實驗結果 他們發現 Y_{1-x}Ca_xBa₂Cu₃O_{7-δ} 在 overdoped 區域都是超導能隙 $\Delta_c(T)$ 與偽能隙 Δ_P 兩者共存[4]。

J. Demsar 研究團隊已完整觀察, YBCO 在不足掺雜(Under-doped)、最 佳掺雜(Optimal-doped)及過度掺雜(Over-doped)區域中,超導能隙與偽能隙

2

的變化情形[4]。但由於大多使用具 twin 之單晶和 c 軸垂直薄膜樣品,所以 無法解析在 YBCO 不同軸向上能隙的變化情形。

本實驗室的優勢除了發展漸趨成熟的極化飛秒級時間解析激發-探測 系統外,還可以配合雷射鍍膜系統所成長的各種軸向性良好的 YBa₂Cu₃O₇₋₈ 薄膜[5],使我們可以分別得到來自於銅氧平面(CuO₂ - plane)、銅氧鏈(CuO -Chain)以及銅氧面對角線(ab-diagonal)上的準粒子之超快動力行為[6]。參考 圖 1-2,分別為(001)、(100)和(110)YBCO 在接近 optimally-doped (*T_c*~90 K) 區域時的 Δ*R*/*R* 對溫度的變化關係圖,可以發現反射率隨溫度變化的情形有 很大的差異。比較弛緩時間 τ 對溫度的變化關係後(圖 1-3、圖 1-4),發現 其沿著(100)YBCO 薄膜的 b 軸量測, τ 的弛緩行為在靠近 Tc 的位置有發散 情形,而沿著(110)YBCO 薄膜的 ab-diagonal 量測, τ 的弛緩時間卻在靠近 0 K 時發散[7],這意味著其準粒子的各向弛緩動力行為應該由不同的機制 主宰。

3

圖 1-2 均值化的 ΔR/R 對溫度的變化關係圖[7]

圖 1-3 不同氧含量沿著(100)YBCO薄膜b-axis

之τ對溫度的關係圖[7]

圖 1-4 不同氧含量沿著(110)YBCO薄膜ab-diagonal

之τ對溫度的關係圖[7]

由圖 1-5,我們發現在最佳摻雜(Optimal-doped)與不足摻雜 (Under-doped)時,超導能隙在 YBCO ab 軸平面上為 $d_{x^2-y^2}$, d-wave 對稱性 [8]。比較有趣的是,偽能隙在最佳摻雜(Optimal-doped)時為 d_{xy} 的對稱行為, 但是隨著電洞濃度的減少,會逐漸轉變為 $d_{x^2-y^2}$ 對稱。

圖 1-5 臨界溫度 $T_c \oplus T^*$ 對電洞濃度(p)的關係圖[8] 十字和菱形的數據點來自Demsar研究團隊[5],其中 紅虛線呈現出 $T^* \propto 1/p$ 的行為,藍點線由經驗式繪出: $T_c(p) = T_{c,max}[1-82.6(p-0.16)^2]$ [9]

1.1 研究動機

近年來偽能隙與超導能隙的物理相圖描繪眾說紛紜,尤其是 Y_{1-x}Ca_xBa₂Cu₃O_{7-δ}在 overdoped 區域中的超導機制仍未完整明瞭。如圖 1-6 所示,大致上可以分為幾種說法:(1)偽能隙在 over-doped 的區域逐 漸與超導能隙合併在一起(2)偽能隙之臨界線在大約 optimal doping (maximum Tc)的位置貫穿進入超導能隙,更甚者主張偽能隙之臨界線進入超導能隙之後即消失[10][11][12]。

直到現在,高溫超導體 Y_{1-x}Ca_xBa₂Cu₃O_{7-δ}在 overdoped 區域中的超導機 制仍未完整明瞭,有許多研究團隊使用掃描穿遂光譜(scanning tunneling spectroscopy)研究不同軸向的 Y_{1-x}Ca_xBa₂Cu₃O_{7-δ}薄膜[13][14], N.-C. Yen, C.-T. Chen 等人的研究結果發現,在 optimally-doped 與 underdoped 的 YBCO 由 $d_{x^2-y^2}$ (>95%)對稱機制所主宰,然而,在 overdoped 的 YCBCO 卻出現 $d_{x^2-y^2} + s$ 對稱(s部份>20%)。除此之外,J.J. Ngai 與 W. A. Atkinson 等人 量測一系列(001)Y_{1-x}Ca_xBa₂Cu₃O_{7-δ}薄膜(x = 0, 0.05, 0.15 和 0.2)的穿遂光 譜,不但得到能隙隨著不同摻雜的變化情形,也宣稱 $d_{x^2-y^2} + s$ 對稱機制與 摻鈣相關[15]。

所以在本論文中,利用實驗室已發展好的飛秒級極化探測-激發 (femtosecond polarized pump-probe)技術,藉由量測(100)Y_{0.9}Ca_{0.1}Ba₂Cu₃O₇₋₆ 薄膜的瞬時反射率($\frac{\Delta R}{R}$)大小及弛緩時間與溫度變化的關係,可以研究其在 費米面的b軸上(\bar{E} //b)的準粒子超快遲緩動力行為,並配合上本實驗室的樣 品控氧方法,改變其氧含量,因此我們可以有系統地在同一個 (100)YC_{0.1}BCO 薄膜上,研究其物理機制隨著不同摻雜(overdoped、 optimally-doped 與 underdoped)的變化情形。

本論文中第二章將介紹樣品的製備方法與薄膜樣品基本特性量測。第 三章,介紹同步輻射的 x-ray 繞射法檢驗薄膜晶格結構。第四章,介紹極化 飛秒光譜的架構及原理和實驗方法。第五章將闡明我們的實驗結果。最後 在第六章做總結論,並提出未來可再繼續研究的方向。

8

第二章 鍍膜製備與薄膜晶格結構分析

正方晶系(tetragonal)基板之(100)鑭鍶鎵氧(SrLaGaO₄)基板上。鑭鍶 鎵氧除了 a 軸的晶格常數與 YBCO 和 PBCO 只差別+0.6% 和-0.7%之外, LSGO 和 YBCO 在 a(或 b)和 c 軸上的熱膨脹係數也幾乎是相同的,如此一 來,可以大大減低應力(strain)的影響並且盡量避免在加熱或是冷卻的 過程中產生裂縫(crack)[13]。

成長出超導電性良好的(100)YBCO 薄膜並不容易,首先,D.Fuchs[13] 等人的研究顯示:在溫度低於 675℃時利於 a 軸成長,軸向性非常良好,a 軸的比例幾乎可以到達 99%,但因為成長溫度過低會導致薄膜的超導性質劣 化程度嚴重,其臨界超導溫度(T_c)比起在高溫成長的(001)YBCO 薄膜的超導 臨界溫度低於 20K 以上。因此為了得到兼具良好超導電性的(100)YCBCO 薄膜,首先在蒸鍍溫度較低時(例如,T_{substrates}為 640°C)時先成長一層 PrBa₂Cu₃O₇薄膜在(100)LSGO 基板上作為緩衝層,然後 T_s以緩慢的升溫速 率(~20°C/min)升溫至 750°C,升溫期間要繼續蒸鍍 PrBa₂Cu₃O₇,最後 T_s保持

第二章 镀膜製備與薄膜晶格結構分析

在 750° C 蒸鍍約 300nm 的 YCBCO, 鍍膜結束後以高純氧降溫[14]。

2.1 脈衝雷射鏡膜實驗步驟

本實驗所用的薄膜是用脈衝雷射蒸鍍法製成, 雷射光源是使用 KrF 準分子雷射, 波長 248 nm, 脈衝寬度約為 20~30 ns, 雷射重複率與能 量密度的設定分別為 2~5 Hz 及 3~4J/cm²。真空鍍膜系統如圖 2-1 所示。 當溫度、壓力等環境皆符合需求後, 雷射光源導至靶材上, 當靶材旋轉 時, 雷射會從靶材表面均勻的打出蒸發物,進而蒸鍍到加熱的基板表 面。基板溫度可藉由加熱器加以控制,使得薄膜成長在我們所需要的條

鍍膜步驟:

a. 清潔基板

- 以丙酮在超聲波震盪器下震盪 10 分鐘,去除基板表面的油質及殘餘物。
- 2. 以甲醇在超聲波震盪器下震盪 10 分鐘,去除基板表面殘餘的丙酮。
- 以去離子水在超聲波震盪器下震盪 10 分鐘,去除基板表面殘餘的甲醇。

b. 固定基板位置及對光

將清洗好的(100)LSGO 基板以銀膠黏在基座(Holder)上,將加熱器調 至 350°C 預熱,再以此溫度將基座上的銀膠烤乾後,把基座固定在真空 腔內的固定架上,先以倍頻 Nd:YAG 雷射光檢視準分子雷射出光的路徑 及位置是否在最恰當之處。並且先確定靶材能夠轉動再蓋上真空腔蓋。

c. 抽真空過程

 開機械幫浦(Rotary Pump),壓力小於 1×10⁻¹torr 後開轉高真空計三~ 四圈使 Rotary Pump 抽至壓力小於 5×10⁻²torr 之後,關機械幫浦閥門。
 開渦輪幫浦(Turbo Pump)閥門一圈,一開始發現真空計讀數開始下 第二章 鍵膜製備與薄膜晶格結構分析 降,是由於真空腔的壓力小於渦輪幫浦內的壓力,非常自然的氣流會 往壓力小的地方流動,則真空腔內的壓力讀數就變小。

- 觀察到這現象後就可以打開渦輪幫浦電源其壓力抽至5×10⁻³ torr後再 將閥門全部打開。
- 4. 當真空腔環境到達 5×10⁻⁷ torr 就可以開始升溫。

d. 升温過程

- 加熱基板使其逐漸升溫至鍍膜溫度。在溫度達到 120°C 之前,基板較 可能從基座上掉落,因此我們將升溫的速率調慢成每分鐘升溫 10°C。
- 2. 到達 120°C後,速率調整成以每分鐘 25°C升溫到 640°C,先成長脈 衝次數為 500P (pulse)的 PBCO,接著讓加熱器以每分鐘 20°C 的速度 持續上升至 750°C,在升溫的同時,持續蒸鍍脈衝次數約 1650P 的 PBCO,達到 750°C 之後,再鍍上厚度約為脈衝次數為 3000P 的 YCa_{0.1}BCO。
- 3. 鍍完後,充超高純氧約 700 torr,關閉加熱器控制電源,使基板逐漸 降溫。
- 4. 通氧(約 770 torr)破大氣,等溫度降至大約室溫之後再取出樣品。

以下為詳細鍍膜條件:

步驟	材料	溫度 (⁰ C)	氣壓 (torr)	雷射重複率 (Hz)	雷射脈衝 次數(P)
1	PrBa ₂ Cu ₃ O _{7-δ}	640	0.1	5	500
2	PrBa ₂ Cu ₃ O _{7-δ}	640~750	0.1	5	1650
3	$Y_{0.9}Ca_{0.1}Ba_2Cu_3O_{7-\delta}$	750	0.3	5	3000

2.2 薄膜晶格結構與基本特性分析

爲了清楚瞭解 Y_{0.9}Ca_{0.1}Ba₂Cu₃O_{7.8} 薄膜成長在基板上的情況,本實 驗使用交大奈米中心(NDL)的四環繞射儀(four-circle diffractionmeter) 去分析其平面上的軸向分佈、有序排列與磊晶品質。更進一步,我們藉 由 X-ray 繞射法證實出我們的樣品確實是高純度的(100)YCBCO 薄膜, 此外,我們還利用原子力顯微鏡(atomic force microscope)、掃描電子顯 微鏡(scanning electron microscope)和電阻隨溫度變化的電性傳輸特性量 測(R-T 量測)分別去檢驗我們所製備的薄膜的表面形貌以及超導傳輸特 性。

2.2.1 X-ray 繞射量測

本實驗室的 X-ray 繞射分析儀為二環式薄膜繞射儀,即放置樣品 固定座的垂直軸與 X 光入射線夾角 θ 可以改變 此外偵測器也可以隨 著 θ 角而做 2 θ 角的變動。當 X-ray 入射到有週期性晶格排列的樣品 時,就會產生繞射光束,且繞射形成必須滿足布拉格(Bragg)繞射條 件:

凡是符合此繞射條件的晶格平面,在空間中即顯現對應的繞射亮 點,即其倒晶格點,當 θ 角隨著薄膜樣品做變化時偵測器則在水平面 上隨著 2 θ 的改變而移動。若分布於空間中的繞射亮點與偵測器相交 則會將此亮點的強度訊號經由處理而以光電流的數量顯示,最後由電 腦存取資料 再經由繪圖軟體書出圖形 。

圖 2-2 X-ray 繞射儀系統

 將樣品置於靶的基座上,再以黏土與載波片將薄膜放置平整。開啟直 流馬達讓基座上的薄膜繞其平面垂直軸做360度不停的旋轉。若是多 晶粉末樣品則不需要旋轉。

م *ت*الللته

- 為保護偵測器,量測時要避開過大的基板訊號,但是若想觀察靠近基板訊號附近的訊號,可以斟酌加上衰減片讓強度減弱,則可以獲得需要的資訊。
- 將繞射所得的強度對角度關係圖,比對資料庫之各材料繞射強度資料,即可知道樣品的晶格結構。

4. 實驗結果與討論

第二章 鍵膜製備與薄膜晶格結構分析 圖 2-3 是單純 PBCO 做 θ-2 θ 掃瞄的實驗結果,可以知道在 640°C 時,利於成長 YCBCO 之 PBCO(100)的訊號是最優良的並且也尚未長 出 c 軸的相,因此我們挑選 640°C 做為成長第一層 PBCO 的溫度。

圖 2-3 不同溫度下(100) PBCO 薄膜 XRD

接著我們改變氧壓,發現在 0.1、 0.01、 0.05torr 的情況下在靠近 38° 附近都有一些 c 軸的雜相,但是 PBCO(100)的訊號在氧壓為 0.1torr 時最 好。

確定緩衝層的品質之後,即可蒸鍍我們所需要的(100)薄膜。同樣 的,我們也對樣品做 XRD。圖 2-5 及圖 2-6 即為(100) Y_{0.9}Ca_{0.1}Ba₂Cu₃O₇₋₈ 薄膜 XRD,由圖中我們可以清楚的看到,除了各個我們預期的軸相信 號之外,並無其他雜相的存在,因此可以確定該樣品的結構良好。

圖 2-6 製備完成之(100) Y_{0.9}Ca_{0.1}Ba₂Cu₃O_{7-δ}薄膜在 45~49° 之 XRD 放 大圖

2.2.2 Φ方位掃描 (in-planeΦscanning)

為了更加確定(100) Y_{0.9}Ca_{0.1}Ba₂Cu₃O_{7-δ}薄膜的二重對稱結構,特別 將薄膜送至國家奈米實驗室(NDL)用四環繞射儀做 x-ray Φ scan 的量測。 布拉格繞射必須滿足反射定律,即入射角等於反射角,且光的入射線及 反射線須與樣品的法線在同一平面上。在做薄膜的 x-ray 繞射來定結構 時,在入射光固定的情形下,需使薄膜做任何立體角的轉動或移動,來 讓待測面的法線調至入射光及反射光的平面上。薄膜可以 Θ、χ、Φ 三 個互相垂直的三環各做 360 度的自由度轉動來滿足反射定律,其中 Θ、 χ、Φ 及 2Θ 四環即為四環繞射儀,如圖 2-7

圖 2-7 四環繞射儀

圖 2-8 Φ scan 示意圖

Φ-scan 其方法為取某一平面的繞射峰值,而在Φ 方向作 360⁰ 的旋轉,如果此薄膜為二重對稱,且當Φ 方向旋轉 360⁰時,不會有其他平面的建設性峰值出現,則偵測器則會偵測到2 個幾乎強度相當的峰值, 且經過 180⁰ 才會出現。

如圖 2-9 所示,若我們選取的平面是(103),當 Ф 方向作 360⁰的旋 轉,在旋轉的路徑上,平面(110)亦會有建設性的干涉出現,造成我們在 數據分析上的錯誤。而若選取平面(102),如圖 2-10,當 Ф 方向作 360⁰ 的旋轉 Ф 方向作 360⁰的旋轉,在旋轉的路徑上,將只有此平面的建設 性干涉出現,所以,如果 0⁰、180⁰為峰值,而之間卻有額外的峰值出現, 則此額外出現的峰值即為薄膜本身在製程時,排列誤差的存在。

第二章 鍵膜製備與薄膜晶格結構分析 利用 Φ- scan 分析我們所製成的(100) YCa_{0.1}BCO 薄膜,以(100)的峰 值作基準,偵測計的位置便已固定,而我們對於此 a 軸薄膜而言,所 選取的平面為(102) [15],當我們在 Φ 方向(沿樣品表面法線方向)作 360⁰ 的旋轉時,如果此薄膜為二重對稱,則偵測器則會偵測到 2 個幾乎強度 相當的峰值,且¢角相差 180⁰。個別分析我們所製成的(100) YCa_{0.1}BCO 薄膜的 LSGO(103),PBCO(102)平面與 YCa_{0.1}BCO(102)的繞射峰值,實驗 結果如圖 2-11 所示,LSGO(103)和 YCa_{0.1}BCO(102)的繞射峰值,實驗 結果如圖 2-11 所示,LSGO(103)和 YCa_{0.1}BCO(102)平面皆出現兩個繞射 峰值,位置分別在 $\phi = 90^{0}$ 與 $\phi = 270^{0}$ 附近,為了計算樣品的純度百分 率 V(100)的多寡,必須考慮 YCa_{0.1}BCO 結構因子與幾何因子對繞射峰強 度的影響[16],由數據分析, V(100)%= $\frac{(100)I_{90}}{(100)I_{90}}$ %,我們成長 出的薄膜沿(100)軸向成長的純度大於 98%。

圖 2-11 (110)YCa_{0.1}BCO 對平面(102)做 φ scanning

2.2.3 表面平整狀態 (Surface morphology)

除了晶格結構確認之外,也必須對樣品的表面作確認。我們使用 的原子力顯微鏡(AFM) 如圖 2-13,圖 2-14 以及掃描電子顯微鏡(SEM) 圖 2-15 分別去觀察薄膜的表面平整狀態,所示。我們所使用的原子力顯 微鏡,操作模式為接觸式(Contact mode)。探針使用微顯影技術,使探針 的尖端達到原子的數量級。探針對樣品表面進行掃描,藉由探針與樣品 表面原子之間的作用力大小變化,再經電腦的處理轉換,就可以得到樣 品表面結構的影像圖。

a.原子力顯微鏡(AFM)

由圖 2-13 中我們可以看到表面粗操度的 RMS 值為 4.2 nm, 顆 粒長度約為 300 nm, 寬度約為 150 nm。另外,我們可以看到在樣 品的表面,晶格式沿著一定的方向規則排列的,也就是說在樣品表 面上,Y_{0.9}Ca_{0.1}Ba₂Cu₃O₇₋₈ 的(010)軸與(001)軸確實是各自沿著一定 的方向排列的,這樣表示薄膜表面上的排列有序度很好,這可以作 為我們成長軸向解析樣品的證據。

第二章 鍍膜製備與薄膜晶格結構分析

圖 2-13

3 (100) YCa_{0.1}BCO 的 AFM 影像圖

圖 2-14 (100) YCa_{0.1}BCO 的 AFM 影像圖

b. 掃描電子顯微鏡(SEM)

掃描式電子顯微鏡(SEM)主要是利用二次電子及反射電子影像來觀 察大範圍的影像,在圖 2-15 中我們將影像放大倍率選擇為 40000 倍, 由圖中觀察 b 軸排列的方向幾乎和裂縫(crake)的方向平行,所以 SEM 的量測讓我們方便判斷 b 軸和 c 軸在薄膜上的方向。以便我們接下來微 橋製備的準備工作。

圖 2-15 (100) YCa_{0.1}BCO 的 SEM 影像圖

2.3.4 薄膜電性量测

a.微橋製備

為了使電性量測時的各異向性更加明顯 我們對薄膜以微橋技術處理:

- 上光阻液:用丙酮將旋轉機的試片座擦拭乾淨 o-ring 部分以酒精擦拭,然後將樣品放上旋轉軸中央,按 vacuum 鈕以真空吸附薄膜。光 阻液使用前要搖一搖,滴二~三滴光阻液在試片上以約 1200rpm 的轉 速旋轉 10 秒後,再以 4500rpm 的轉速旋轉 25 秒。
- 軟烤:將上了光阻液後的樣品放到加熱器上以 90°C 的溫度烤乾樣品
 五分鐘,以趕走光阻薄膜內的溶劑,並改善光阻與薄膜的附著性。
- 3. 曝光:將烤乾的樣品放在光罩對準機(Karl Suss Mask Aliggner MJB3) 中,用光學顯微鏡觀察樣品與光罩的相對位置,將樣品對準到光罩上 我們需要的圖案後,使曝光時間為10秒,汞燈能量300mw。
- 4. 顯影:準備一杯離子水,和一杯稀釋過的顯影液

(AZ400K:D. I. water=1:2),將樣品放入顯影液中,輕輕的晃動燒杯, 使顯影均勻。十幾秒後就能看到看到顯影的圖案後,將樣品用去離子 水洗一洗。洗完後用氮氣槍吹乾。如果沒有看到顯影的圖案,就再把

第二章 鍍膜製備與薄膜晶格結構分析

樣品放到顯影液中重複1~4的動作。

5. 蝕刻:將顯影過的樣品置於鹽酸:水=1:40的溶液中進行蝕刻,約

五秒後,出現微橋圖案,拿出用去離子水(D.I.water)清洗。 6去光阻:蝕刻後的樣品上面還殘有光阻,所以我們去丙酮做清潔,最

後得到我們所要的蝕刻圖形。如下圖 2-16

圖 2-16 蝕刻後的微橋圖形,單位 µm

b. 控氧系統

利用控氧系統,我們可以在同一塊樣品上改變不同的含氧量,製 成所需摻雜電洞數不同的樣品。使用高溫爐與溫控器來控制溫度。在真 空系統方面,控氧的過程如下:

- 將薄膜先用丙酮跟甲醇清乾淨放入石英管內,然後再將石英 管置入高溫爐中。
- 由渦輪分子幫浦、油旋轉幫浦抽真空,當石英管內的壓力降至 5×10⁻⁶ torr以下,然後執行升溫程式(10°C/min),在溫度到達控 氧溫度時,此時要關掉抽氣幫浦的閥門,放高純氧氣(99.999%)
 至目標壓力,進行 30分鐘的熱處。
- 熱處理完成之後,將石英管放入以冰塊中進行淬冷(quench)約 5
 分鐘,如此即完成控氧動作。

圖 2-17 控氧系統圖
C. 電阻-溫度(R-T)量測

我們利用實驗室電阻-溫度的量測系統來量測超導薄膜的電阻值隨溫度 變化情形,藉由分析薄膜的臨界溫度(T_c),來初步判定薄膜的品質。

實驗所用的方法是四點量測法。如圖 2-18(a),在樣品上接出四點,A、 B、C、D 四點分別接 I⁺、V⁺、V、Γ,由於 B、C 之間是接伏特計,相當 於一個很大的電阻跨在 B、C 之間,所以由 A 點輸入的電流 I 會完全經過 樣品本身,而由 D 點流出,所量到的電阻 Rm 為薄膜本身的質 R,其公式 為 (2-1) 所示。相較於傳統的兩點量測,如圖 2-18(b),在樣品上接出 A、B 兩點,A、B 兩點分別接 I⁺、Γ, 且 A、B 之間亦接伏特計,所以,由 A 點 輸入的電流 I 會經過兩條電線與樣品,所以量到的電阻 Rm 將包括兩條電 線的電阻,即為 R+2r,其公式如(2-8)所示。

$$Rm = \frac{V}{I} = \frac{IR}{I} = R$$

$$Rm = \frac{V}{I} = \frac{I(R+2r)}{I} = R+2r$$
(2-1)
(2-2)

圖 2-18 (a) 四點量測

圖 2-18(b) 兩點量測

我們所製備的樣品因為已經經過微橋技術處理,所以在試片座的外側 兩點輸入電流,內側兩點量測電壓,能夠確保輸入電流不會流入電壓接點, 因此所量得的電壓值將不會受接點電阻的影響。

量测的步驟如下:

- (1)剪四段長度適當的銅線,用焊槍熔融焊錫,再利用熔融的焊錫來剝去銅線兩端的包漆。
- (2)銅線的一端沾銀膠黏在樣品的接點上,然後用加熱器烤乾約十分鐘,確 定銀膠全乾再進行接下來的量測,否則可能會造成量測結果的曲線有突 然過大的電阻值跳點。此步驟亦可以改用銦(In)來代替銀膠,利用焊槍將 銦熔融,將銅線一端插入熔融態的小球狀銦中,然後利用載玻片將這一 端放在接點上壓平,銦這時候可塑性很大,會像黏土一般幫忙把銅線連 在試片接點上。
- (3)基板以雙面膠黏貼在試片座上,銅線的另一端用焊槍將其焊在試片座上的相應接點。控制輸入電流,觀察對應的電壓讀值是否隨選擇的輸入電流做線性變化,確定後選擇適當的電流,使對應的初始電壓大約在 1V 左右。
- (4)打開真空幫浦後,使用電腦系統控制選取降溫升溫皆量測的模式,量測範圍在 30 K~290 K,本實驗室最低可降溫到 15K 左右。設定完成後即可開始量測。圖 2-19 為 R-T 量測系統圖。

29

圖 2-19 電阻-溫度量測系統裝置圖。

實驗結果:

圖 2-20 沿(100) Y_{0.9}Ca_{0.1}Ba₂Cu₃O_{7-δ}的b 軸方向電阻對溫度關係圖

Thunny

第三章 X光吸收光譜 (XANES)

3.1 X光吸收光譜原理

一般而言在X光的能量區段中,能量愈高物質對其吸收度會越 低,但在吸收對X光能量的曲線上仍會看到一些躍升峰值,那是因為 進入物質的能量剛好足夠將某一元素的內層電子激發,而使吸收度大 幅增加。在吸收邊緣附近的一些譜圖特徵統稱為X光吸收近邊緣結 構,簡稱XANES。XANES可反映吸收原子的電子結構特性(如:氧化 價數和d軌域的電子占有率)及吸收原子所處之晶位對稱性。測量 XANES光譜有兩種方法:全電子產率(Total Electron Yield, TEY) 與X光螢光產率(X-ray Fluorescence Yield, FY)。如圖3-1,X光照射樣 品,會激發內層電子到激發態,光電子激發後留下的空軌域,會由較 接近原子核的電子將之佔據而產生螢光。放出的螢光可能會再激發特 定能階上的電子,稱為歐傑電子(Auger electron)。也有可能直接由光 電子再碰撞出能階上的電子,此電子稱為二次電子。從全電子產率可 得知樣品表面的特性,因為當X光照射樣品時會激發內部的光電子往 樣品的表面移動,但由於電子與電子之間的庫倫作用力之牽制,會使 得較深層的電子不容易到達表面被接收,只有接近表層的電子會被外 加的偏壓吸引而被接收器接收,實驗上由電流計檢測其光電流,而知

樣品表面

的特性。相對於全電子產率,X光螢光產率是用來了解材料整體結構 的特性分析。因為螢光是由光子所組成,所以不會受到庫倫作用力的 牽制,故可探測較深層的電子結構,因此實驗上常用X光螢光產率來 做樣品整體結構的特性分析。

3.2 X光吸收光譜實驗方法

由SEM的觀察,我們已經能清楚的分出樣品上b和c軸的方向,因為我們想得知薄膜各異向性的結構資訊,所以將樣品的b軸和c軸各自 平行同步輻射光源電場偏振方向做量測。

圖3-1 同步輻射入射樣品示意圖

由於沒辦法直接量測到垂直膜面的a軸資訊,所以我們藉由改變同步 輻射入射光角度為60度,再利用公式算出E//a的XANES。

 $I_{\theta}(\mathbf{E}) = I_{0^{\circ}}(\mathbf{E})\cos^{2}\theta + I_{90^{\circ}}(\mathbf{E})\sin^{2}\theta$

 $I_{\theta}(E)$: X光入射角 θ 的螢光強度

 $I_{0}(E)$: X光入射角0度的螢光強度

*I*_{90°}(E): X光入射角90度的螢光強度

圖3-2為YBCO晶格的結構示意圖,其中O(1)位於Cu(1)O鏈上,O(2) 與O(3)位於銅氧平面上,而O(4)則位於鋇氧平面上。O1s空軌道的 XANES主要可以分成兩部分,以523 eV為界,較高能量的部分是Y 4d 和4f軌道與Ba 4f軌域內空的能態與O 2p軌域的能態相互混成而產生 的連續光譜線,這些光譜線與薄膜中的氧含量關係較小 [18]。

圖3-2 YBCO晶格結構

圖3-4 Y_{0.9}Ca_{0.1}Ba₂Cu₃O_{7-δ}(100)同步輻射光譜

36

我們將(100) Y_{0.9}Ca_{0.1}Ba₂Cu₃O_{7.6} 和(100)YBa₂Cu₃O_{7.6}的X光吸收 光譜做比較,發現在526 eV~ 533 eV是相同的,這表示釔鋇銅氧化物 摻鈣並不會在釔鋇銅氧化物費米能階附近多出額外的電子結構。

527.5 eV的光譜線 (peak A):

由雨部份的電子躍遷所貢獻,

a. O(1) 1s軌域的電子躍遷至O(1) 2pv軌域之電洞。

b. O(4) 1s躍遷至O(4) 2pz軌域之電洞。

527.8 eV的光譜線 (peak B):

因為O(2)和O(3)在銅氧平面上的貢獻幾乎一樣,所以E//a的光譜和E//b 的光譜在peak B這個位置最大的差異在E//b的光譜多了銅氧鏈(Cu-O) 上O(1)有未被占據的空能態,所以可以清楚看到E//b在這個位置比 E//c高出許多。

<u>م والللارم</u>

528.3 eV的光譜線 (peak C):

此吸收峰的強度代表記銀銅氧超導體銅氧平面上的載子數多寡,該能帶稱為ZR band,主要是由O 1s躍遷至O 2p軌域的貢獻。O(2)和O(3) 在銅氧平面上的貢獻幾乎一樣,所以E//b和E//a的光譜在這個位置的 強度幾乎一樣。

529.5 eV的光譜線 (peak D):

O1s躍遷到UHB(Upper Hubbard Band)的吸收。

第四章

極化飛秒光譜實驗系統及研究 HTSC 特性之原理

4.1 時間解析極化飛秒光譜

研究材料中載子的躍遷物理現象和其動態弛緩行為,時間解析激發-探測光譜(pump-probe spectroscopy)是非常重要的工具。在本章節中,首先我 們將介紹本實驗室建立的極化飛秒激發-探測系統(polarized femtosecond pump-probe system),接著我們引入光激發-探測物理模型去解釋 YBa₂Cu₃O₇₋₆薄膜的時間解析激發-探測光譜,其與溫度相關的穿透率 $\Delta T/T(或反射率 \Delta R/R)$ 的物理意義[19]。

4.1.1 激發-探測技術原理

激發-探測的流程如圖 4-1 所示,激發光和探測光是同步的,週期為 13 ns,其中 n(t)是指由激發光入射樣品後所造成的一個物理量,我們假設 n(t) 跟物質的反射率(index of reflection)相關,換句話說,在 n(t)的弛緩時間內, 經由樣品反射(或穿透)的探測光強度會因為瞬時反射率 Δ*R*/*R*(或穿透率 Δ*T*/*T*)隨著 n(t)的變化而改變,不過 n(t)的變化量通常在 10⁻⁵ ~ 10⁻⁷ 層級,因 此在有背景雜訊(包括雷射雜訊、電子儀器雜訊與機械震動等)的環境下直接 使用光偵測器是無法量測到真實訊號。

為了除去背景雜訊並且撷取到訊號,使用鎖相(lock-in)技術[20]去量測 是必要的。所以我們必須使用聲光調制器(acousto-optic modulator, AOM) 調制激發光束,我們選擇調制頻率為97 KHz,除了可以濾掉聲頻雜訊外, 還可以使從樣品反射的探測光束訊號因此被調制成週期為 0.01ms (1/97 KHz)的訊號(圖中的 *I*₀(*t*)表示 pump beam close 時的反射探測光的訊號強 度;*I*₀(*t*)+Δ*I*(*t*)表示 pump beam open 和入射探測光的延遲時間與 n(*t*)的弛緩 時間重疊的訊號強度),除此之外還可以確保 AC 訊號(Δ*I*(*t*))來自於激發光束

然而鎖相放大器的功能可以擷取其同相位的 AC 訊號(*ΔI(t)*),而 DC 訊號(*I₀(t)*)由多功能三用電表讀取。最後為了消除來自於雷射強度波動對訊號 的的影響,必須把 AC 訊號(*ΔI(t)*)用 DC 訊號(*I₀(t)*)作均一化處理,其關係式 如下:

$$\frac{\Delta R}{R} = \frac{R_{pump} - R_{pump}}{R_{pump}} = \left[\left(\frac{I_r}{I_i} \right)_{pump} - \left(\frac{I_r}{I_i} \right)_{pump} \right] / \left(\frac{I_r}{I_i} \right)_{pump}}{Closed} \right]$$
$$= \frac{\left(I_r \right)_{pump} - \left(I_r \right)_{pump}}{\left(I_r \right)_{pump}} = \frac{\Delta I}{I_0}$$
(4-1)

其 中 $(I_i)_{\text{pump}} = (I_i)_{\text{pump}}$ for $(I_r)_{\text{pump}} \equiv I_0$

因此我可以直接藉由量測 ΔI/I₀ 去得到瞬時反射率 ΔR/R(或穿透率 ΔT/T)的變 1990 化關係。另外,由公式(3-1)可以知道反射率 ΔR/R 與入射光強度(I_i) 無關, 所以我們能夠比較每一個超快光譜實驗量測的數據結果。

4.1.2 激發-探測實驗系統

極化飛秒光譜系統架構,如圖 4-2 所示,系統光源是由固態雷射 (Solid-Laser)激發鎖模鈦-藍寶石(mode-locked Ti:sapphire)雷射之後,產生中 心波長為 800 nm,脈衝寬度為 20 fs 和脈衝重複率為 75 MHz 的脈衝雷射。

雷射光經由出光到達樣品表面需經過許多的光學元件,例如:反射鏡、 聲光調制器(Acousto-optic modulator)、透鏡、偏振片等,這些光學元件會對 雷射光造成 positive group velocity dispersion (GVD),因此會導致脈衝變寬 達數百 ps,所以在光路上我們安排雷射光經過一稜鏡對(prism pair)做色散補 償(Dispersion compensation),使雷射脈衝寬度到達樣品時能維持在<45 ps。

雷射光在經過稜鏡對之後,會經過分光鏡(beam splitter)分成能量不同的激發光和探測光,能量比為 8:2,然後再分別進入聲光晶體調制器

(acousto-optic modulator, AOM),其中激發光光路上的 AOM 其頻率調制在 97.7 kHz,調供一調制頻率以便鎖相放大器擷取訊號。

接下來,激發光束會經過一個時間延遲裝置(time delay stage),主要由高精密平移台與平行反射鏡所構成,透過控制精密平移台的移動位置與距離,可以決定激發光與探測光之脈衝到達樣品時的相對時間。

在激發光進入低溫系統之前,會先經過半波片(half-wave plate)、偏振片(polarizer)及聚焦鏡,偏振片與半波片的功能主要用來控制光的偏振方向 與控制光能量的強度,聚焦鏡則是把雷射光聚焦於樣品表面上。

對於探測光而言,與激發光束一樣會先經過完全相同的聲光調制器, 主要原因是讓探測光的色散情形與激發光相同,但是我們並未在此聲光調 制器加上任何的調制訊號,最後再經過半波片、偏振片以及聚焦透鏡使得 其焦點在樣品上。

激發光與探測光到達樣品表面的光點直徑分別約為120µm與80µm, 故在樣品上,探測光的光點可以均勻分佈於激發光的光點內,以確保探測 的區域在激發區內,接下來我們擷取經樣品反射後的探測光,使用光偵測 器(photo detector)將光訊號轉換成電壓訊號,再利用鎖相放大器(lock-in amplifier)與多功能電表(multimeter)分別量測,再透過電腦使用 LabView 軟 體進行自動化量測與數據擷取。

42

Probe

Pump

變溫的量測則將樣品置於低溫設備中,為了使樣品降溫,我們將樣品 固定在一個真空腔內,利用渦卷幫浦(Scroll pump)以及渦輪幫浦(turbo pump) 可將真空抽至 10⁻⁶ torr 左右,降溫方式採取開放式的液氦冷卻系統,控溫方 式使用 Lake Shore 331 控溫器配合液氦流量進行控溫。

本實驗系統中,激發光及探測光之偏振方向可藉由光路上的二分之一 波片獨立調整(Ф₁,Ф₂),如圖 4-3 所示。藉此設計,我們可以分別量測 (100)YCa_{0.1}Ba₂Cu₃O_{7-δ}薄膜上,沿著 b-axis 方向的飛秒光譜。

圖 4-3 極化激發-探測示意圖

4.2 實驗方法

4.2.1 系統時間延遲零點定位

在 4.1.2 節中我們已說明讓激發光在樣品表面的直徑大於探測光,此時 我們緩緩調整探測光的位置,使其置於激發光光點的中心,以確保它們在 空間上的重合。之後把樣品拿開,再於原處放一個非線性二倍頻晶體 BBO(Beta-Barium Borate),BBO 晶體的特性為在特定的偏振與角度之下, 會吸收激發光與探測光的脈衝,並產生二倍頻的藍光(400 nm),當在 BBO 晶體產生最強之二倍頻藍光的位置,即將此位置定義為時間延遲零點。

另外,我們亦可以使用晶體來量測雷射脈衝寬度,當移動延遲裝置時, 會改變激發光與探測光在時間延遲上之重合情形,當兩道光脈衝重合最好 時,BBO 晶體將產生最強的二倍頻藍光;反之,若時間重合不良時,二倍 頻藍光將變弱,我們使用光電倍增管(PMT)量測二倍頻藍光強度隨時間延遲 變化的情形,即可估計雷射脈衝寬度。再配合調整稜鏡對的位置做色散補 償,最後量測到達樣品表面的雷射脈衝寬度約為40 fs。

4.2.2 樣品量測實驗步驟

在系統架設完成之後,我們即可進行樣品的超快光譜量測,樣品量測 的實驗步驟如下:

- 1 先將樣品用碳膠的貼在樣品座上,再將樣品放入真空腔。先旋轉樣品的 角度,以確保金鏡將探測光反射到光偵測器上時,金鏡不會擋到任一條 入射光,此時將偵測光光路上的 AOM 開啟,調頻率至 97.7 MHz,再將 光偵測器的電壓供應器打開,之後調整金鏡、光偵測器、光偵測器之前 的透鏡及針孔(pinhole)的相對位置,使偵測到的強度約為 0.3~0.6 V(DC)。之後任意移動光點在樣品上的位置,確定偵測到的光強度皆在 0.3~0.6 V(DC)的範圍,此步驟代表樣品的法線方向平行於入射光源,而 所偵測到的訊號才不會損失。
- 2 開渦卷(Scroll pump),約等 15 分鐘壓力降至 10⁻¹torr 以下,再打開渦輪 幫浦(turbo pump),之後可將真空抽至 10⁻⁶torr 左右。

1896

a shiller.

- 3 開雷射之後,需等1到2個小時,以確定雷射光源穩定後再鎖膜,鎖模 之後,觀察鎖模光點的狀況,出光位置,再利用光譜儀來測量確定沒有 連續波輸出的光源存在,才可開始做量測。
- 4 室溫光譜量測。在實驗進行當中,需時時確定激發光與探測光兩者的能量、偏振方向與光點在樣品表面之重合。我們使用 power meter,配合偏振片與半波片的相對角度進行雷射功率控制。實驗時,我們所使用的激發光功率與探測光功率比為 40mW:2mW。在偏振方向上,若樣品於表面上並無軸向解析,我們可以將激發光與探測光的偏振方向控制為互

相垂直,以避免光譜擷取時由激發光與探測光產生的干涉(Interference) 現象,此效應會造成擷取訊號上的困擾,但若樣品於表面上有軸向解 析,則需將激發光與探測光的偏振方向同時調整至欲量測之軸向上。

5 降溫進行光譜量測:開氦氣將系統冷卻時,必須很緩慢的升壓(壓力讀數 約在-720 torr),慢慢等溫度計的讀數開始下降(大約必須等 15 分鐘左 右),再試著把閥門轉大一點(壓力讀數約在-680~-660 torr),從室溫降至 13 K 左右需半小時。在低溫下時,我們以溫控計所讀到的溫度為控溫的 準則,到達所要溫度時,須等其熱平衡約 5~10 分鐘,再開始量測。利 用此時間,先確定激發光與探測光的能量是否為 40:1 進入樣品表面的極 化方向是否正確。之後,再確定以下各項儀器打開了沒:鎖相放大器、 AOM、光偵測器以及其電壓供應器。最後,由 CCD 看出激發光與探測 光的光點是否重合,如果沒有,需微調至光點重合時,才開始實驗上的 測量。

4.3 光激發-探測之物理模型基礎

當 T < T_c時,如圖 4-3,在擁有微小能隙(2Δ)的高溫超導體 YBCO 的光 激發、載子弛緩和探測光吸收過程,分別由圖中的步驟 1 和步驟 2 表示, 然而探測光的吸收過程由步驟 3 表示。接下來我們逐一討論這 3 個過程。

圖 4-3 YBCO 在超導態 $(T < T_c)$ 的光激發、載子弛緩

和光吸收過程示意圖

1 首先由一道能量 1.5eV 的激發光使載子(電洞)從填滿態(低於 E_F)激發到
 未填滿態(高於 E_F)。

- 2 吸收激發光子後的載子最初的弛緩過程,激發載子的熱傳遞主要是藉由 在內層能帶(intraband)電子-電子散射(electron-electron scattering)以及電 子-聲子散射(electron-phonon scattering)效應,其弛緩時間分別為 $\tau_{ee} \sim 10 \text{ fs}^{i}$ 與 $\tau_{eoh} \sim 100 \text{ fs}^{ii}$ 。而且只要在 τ_{ee} 小於 τ_{eoh} (電子-聲子弛緩時 間)條件下,就會有電子-電子碰撞導致如同雪崩效應般的產生大量非平 衡態的準粒子。已經有很多研究團隊量測在正常態 $(T > T_c)$ 的 τ_{ant} ,也就 是說在費米能階附近並不存在 2∆ 能隙,在其弛緩時間的尺度約在於數 百個 fs[23][24]。然而在超導態(T <T_c)時,YBCO 在費米能階附近會產 . واللله . 生一個微小 2Δ 能隙(典型的高溫超導體能隙 2Δ~30-50 meV),對準粒子 的弛緩過程在約 100 fs 以後會產生瓶頸效應,換句話說,也就是準粒子 在最後的弛緩過程將通過此能隙並且弛緩時間被其抑制[25][26],所以準 粒子會連同高頻聲子($\hbar\omega > 2\Delta$)形成準靜態分佈(near-steady-sate distribution), 如圖 4-3 的內圖所示。
- $\tau_{e-e} \sim \hbar E_F / 2\pi E^2$,其中 E 表示從費米能階所量測到的載子能階,其能量範圍 1.4-3eV 已經從 Bi₂Sr₂CaCu₂O₈₋₆ 的實驗量測中得到[21]。
- ⁱⁱ Allen's formula $\tau_{e,ph} = E_I/3C_e\lambda < \omega^2 > [22], 其中 E_I 是單位體積的能量密度、<math>C_e$ 是電 子比熱、 λ 是電子-聲子作用常數和 < ω^2 > 是聲子頻率的均方根值,其弛緩時間已經從 YBa₂Cu₃O_{7- δ}的時間解析實驗量測到[23]。

因為上述的準粒子不平衡分佈的關係可以利用時間解析激發-探測實驗,藉由探測光的吸收變化(ΔA/A)過程直接觀察到準粒子動態行為以及 能隙現象。

3 在探測光能量非常小的擾動下,我們可以假設探測光的反射率 ΔR/R (或 穿透率 ΔT/T)是大約線性正比與吸收率 ΔA/A,而且探測光子能量遠大於 高溫超導體的電漿頻率,因此我們可以近似的使用 Fermi golden rule 去 解釋吸收率 ΔA/A 的改變來自於載子態密度由初始到完成態的變化情 形。因此由 Fermi golden rule 可以知道,吸收率 ΔA/A 的振幅大小正比於 光激發準粒子密度 n_{pe}和量測到的反射率 ΔR/R (或穿透率 ΔT/T)。

第五章 實驗結果與討論

在本章節中我們將討論(100) $Y_{0.9}Ca_{0.1}Ba_2Cu_3O_{7-\delta}$ 薄膜的飛秒極化光譜之 實驗結果。根據 2.2.4 節的控氧實驗,我們能在同一片樣品討論其在 E//b 上 的準粒子超快弛緩動力行為隨著不同摻雜(overdoped : $T_c = 74 \text{ K}$; near optimally-doped : $T_c = 81 \text{ K}$; 與 underdoped : $T_c = 60 \text{ K}$ 和 $T_c = 40 \text{ K}$)的變化。 利用公式 5-1[27],我們能知道超導臨界溫度 T_c 與電洞濃度(p)的關係,如圖 5-1 所示,虛點線由經驗式繪出:

$$\Gamma_{c}(p) = T_{c,max} [1 - 82.6(p - 0.16)^{2}]$$
 (5-1)
其中, $T_{c}(p)$: 满氧 YBCO 的 T_{c}

 $T_{c,max}$: 最佳掺雜 $Y_{0.9}Ca_{0.1}Ba_2Cu_3O_{7-\delta}$ 的 T_c 理論值 = 88 k [28]

圖 5-1 超導臨界溫度 T_c 對電洞濃度(p)的關係圖

5.1 量測結果

圖 5-2~圖 5-6 分別是(100) Y_{0.9}Ca_{0.1}Ba₂Cu₃O_{7-δ}薄膜在不同摻雜下,各個 溫度的瞬時反射率 Δ*R*/*R* 隨時間變化

圖 5-2 (a) (100) $Y_{0.9}Ca_{0.1}Ba_2Cu_3O_{7-\delta}$ 薄膜在 overdoped ($T_c = 74$ K)

的 ΔR/R 隨溫度(20 K~72 K)的變化關係

圖 5-2 (b) (100) $Y_{0.9}Ca_{0.1}Ba_2Cu_3O_{7-\delta}$ 薄膜在 overdoped ($T_c = 74$ K)

的 ΔR/R 隨溫度(75 K~280 K)的變化關係

圖 5-3 (100) $Y_{0.9}Ca_{0.1}Ba_2Cu_3O_{7-\delta}$ 薄膜在 near optimally doped ($T_c = 81$ K)的 $\Delta R/R$ 隨溫度的變化關係

圖 5-4 (100) $Y_{0.9}Ca_{0.1}Ba_2Cu_3O_{7-\delta}$ 薄膜在 under doped ($T_c = 60$ K)的

△R/R 隨溫度的變化關係

(a)

圖 5-5 (100) Y_{0.9}Ca_{0.1}Ba₂Cu₃O_{7-δ}薄膜在 under doped (*T_c* = 40 K)的 Δ*R/R* 隨 溫度的變化關係 。(a) 溫度變化由 18 ~ 35 K (b) 溫度變化由 37 ~ 230 K

5.2 $\frac{\Delta R}{R}$ 曲線適配分析

根據 4.3 節的分析基礎,已經知道 $\Delta R/R \propto \Delta A/A \perp |\Delta A/A| \propto n_{pe}$,因此我 們必須透過曲線適配分析 $\Delta R/R$ 的隨溫度變化的關係圖分別得到兩個物理 量:1. 振幅大小 $|\Delta R/R|$ 隨溫度的變化關係 2. 弛緩時間 τ 隨溫度的變化關 係。所有實驗條件下量測到的 $\Delta R/R$,我們都可以使用公式(5-2)做完整的適 配[29]。

$$\frac{\Delta R}{R}(T,t) = A_2(T)[1 - \exp(-t/\tau_3)]\exp(-t/\tau_2) + A_1 \exp(-t/\tau_1)$$
 (5-2)

其中A1(T): 快速弛緩分量振幅

- A2(T): 慢速弛緩分量振幅
 - T1: 快速弛緩分量之弛緩時間
 - τ₂: 慢速弛緩分量之弛緩時間(relaxation time)

圖 5-6(a)與圖 5-8(a)分別是在 underdoped ($T_c = 40$ K)和 overdoped ($T_c = 74$ K)的 YCBCO 在超導態時的順時反射 $\Delta R/R$ 變化圖,由半對數圖 (圖 5-6(b)、5-8(b))可以清楚觀察到兩種不同斜率;圖 5-7(a)是 near optimally doped ($T_c = 81$ K)的 YCBCO 在超導態時的順時反射 $\Delta R/R$ 變 化圖。

圖 5-8 (a)、(b) 在 overdoped ($T_c = 74$ K)

的 $\Delta R/R$ 在 T = 20 K 的變化關係

圖 5-7 (a)、(b) 在 near optimally-doped ($T_c = 81$ K)

的|Δ*R/R*|在*T* = 50 K 的變化關係

A SHILLER

由適配結果我們發現在各種摻雜條件下(包含 over-doped : $T_c = 74$ K; near optimally-doped : $T_c = 81$ K;與 under-doped : $T_c = 60$ K 和 $T_c = 40$ K)的 瞬時反射率 $\Delta R/R$ 均可以使用兩個分量做線性組合:

- 快速弛缓分量(a fast component): τ₁~ 0.3 3 ps, 其振幅(A1)關係著偽 能隙的大小。
- 極慢弛緩分量(a longer-lived component): τ₂ 約為 3~12 ps,其振幅(A2)
 關係著偽能隙的大小。

5.3 準粒子在(100) Y_{0.9}Ca_{0.1}Ba₂Cu₃O₇₋₈b 軸上的動力學

在此章節我們將討論準粒子在(100)Y_{0.9}Ca_{0.1}Ba₂Cu₃O_{7-δ}薄膜 b 軸上,其 隨著摻雜與溫度的變化關係,透過上一章節所討論的分析方法我們整理出 在 overdoped、near optimally-doped 和 underdoped 弛緩分量的振幅大小 $|\Delta R/R| = |A_i(T)|$ 隨溫度的變化關係以及 τ 隨溫度的變化關係。透過這兩個物理 量隨溫度的變化關係,定性上我們可以觀察在(100)Y_{0.9}Ca_{0.1}Ba₂Cu₃O_{7-δ} 的 b 軸方向上有隨著樣品摻雜載子量的不同其超導能隙和偽能隙的變化。除此 之外,我們還利 V.V. Kabanov 與 J. Demsar 等人提出的理論計算模型[5]去對 超導能隙 $\Delta_c(T)$ 與偽能隙 Δ_P 作定量上的分析。

5.3.1 超導能隙與偽能隙之理論計算模型

為了得到超導能隙 $\Delta_c(T)$ 與偽能隙 Δ_P 之值,我們利用的理論模型如公式 (4-2)和(4-3)所示[22]:

A COLORADO

$$\left|\Delta R/R\right| \propto n_{pe} = \begin{cases} \frac{\varepsilon_I/\Delta_p}{1 + B\exp(-\Delta_p/k_B T)}; \Delta_p = const. \\ \varepsilon_I/(\Delta_p/k_B T) \end{cases} (5-2) \end{cases}$$

$$\left(\frac{\varepsilon_{I}/(\Delta_{c}(T)+k_{B}T/2)}{1+B\sqrt{\frac{2k_{B}T}{\pi\Delta_{c}(T)}}\exp(-\Delta_{c}(T)/k_{B}T)};\Delta_{c}(T)=\Delta_{BCS}(T)\right)$$
(5-3)

其中 $\mathbf{B} = \frac{2\nu}{N(0)\hbar\Omega_c}$ 是非因次(dimensionless)項,其值範圍為 10-100, $\varepsilon_I \approx 20 \times 10^{-20} \text{ J cell}^{-1}$ 是指單位晶胞所吸收的入射光能量, Δ_P 是與溫度無關 的偽能隙,而 $\Delta_c(T)$ 是與溫度相關的 mean-field like gap。

5.3.2 超導能隙之數據分析

Overdoped 的 $|\Delta R/R|$ 和 τ 之數據分析

圖 5-9 (a) overdoped ($T_c = 74$ K)的 $|\Delta R/R|$ 隨溫度的變化關係

(b) overdoped ($T_c = 74$ K)的 τ 隨溫度的變化關係

如圖 5-9(a) 所示,極慢弛緩分量的振幅 $|\Delta R/R|$ 在超導臨界溫度($T_c = 74 \text{ K}$)以下開始出現,且逐漸在溫度約 20 K 以下達到最大值。可以觀察到在 溫度低於 T_c 約 10 K 左右時其弛緩時間 τ 急遽地上升,如圖 5-9(b)所示。如 3.3 節中提到,在超導態時所形成的超導能隙 2Δ 會抑制準粒子的遲緩過程, 使其弛緩時間 τ 產生異常(anomaly)地變化,其關係式為:當 $T \cong T_c$, $\tau \propto 1/\Delta(T)$ [5]。在定性上,由上述的討論結果意味著在 over doped 的銅氧 平面 b 軸方向上是存在超導能隙(superconducting gap)。因此我們利用公式 (4-3)去適配圖 5-9(a),結果得到 b 軸上的超導能隙

$\Delta_c(0) = 211 \pm 2 \text{ K} = 18 \pm 0.2 \text{ meV}$ °

near optimally doped 的 $|\Delta R/R|$ 和 τ 之數據分析

圖 5-10 (a) near optimally-doped ($T_c = 81$ K)的 $|\Delta R/R|$ 隨溫度的變化關係 (b) near optimally-doped ($T_c = 81$ K)的 τ 隨溫度的變化關係

near optimally-doped 的弛緩時間 τ 隨溫度的變化關係如圖 5-10 所示, 弛緩時間 τ 隨著溫度升高而逐漸變長,在溫度低於 T_c 附近時也和 overdoped 的實驗結果相同的明顯地急遽變化,因此我們利用公式(5-3)去適配圖 5-10(a),結果得到b軸上的超導能隙 Δ_c(0)=369±18K=31.8±1.6 meV。

Underdoped 的 | ΔR/R | 之數據分析

圖 5-11 under-doped ($T_c = 60$ K)的 $|\Delta R/R|$ 隨溫度的變化關係

圖 5-12 under-doped ($T_c = 40$ K)的 $|\Delta R/R|$ 隨溫度的變化關係

under-doped 的弛緩時間 τ 隨溫度的變化關係如圖 5-13 所示,在 Tc 之下,弛緩時間 τ 隨著溫度升高而逐漸變長,但溫度在於 T_c 附近時, underdoped 的 realaxation time 在靠近 Tc 時的發散情形並不如 overdoped、near optimally- doped 明顯,我們利用公式(5-3)去適配圖 5-11,結果得到當 Tc = 60 K 時, b 軸上的超導能隙 $\Delta_c(0) = 238 \pm 63 \text{ K} = 20.5 \pm 5.4 \text{ meV}$ 。利用公式(5-3) 去 適 配 圖 5-12,結果得到當 Tc = 40 K 時,b 軸上的超導能隙 $\Delta_c(0) = 134 \pm 52 \text{ K} = 11.6 \pm 4.5 \text{ meV}$ 。

對於高溫超導體在超導態時的弛緩機制來自於準粒子重新結合 (recombination)成庫柏對(Copper pair),有研究團隊提出不同的看法 [30][31],由實驗結果顯示,在 $T < T_c$ 時其弛緩行為來自於散射導致的熱效 應(scattering-induced thermalization)[32]。

圖 5-13 與摻雜相關的弛緩時間 T 隨溫度的變化關係
5.3.3 偽能隙之數據分析

由 overdoped 到 underdoped 偽能隙會逐漸變大我們利用公式(5-3) 去適配圖 5-1,結果得到當 Tc = 74 K 時,b 軸上的偽能隙 Δp=278±6K=23.8±0.5meV。當Tc = 81K時, b軸上的偽能隙 Δp = 492±38K = 42.4±3.2 meV。 當 Tc = 60K 時, b 軸上的偽能隙 Δp=660±43K=57±3.7meV。當Tc = 40K時, b 軸上的偽能隙 $\Delta p = 864 \pm 81 \text{ K} = 74 \pm 6.9 \text{ meV}$ 0.10 over doped Tc = 7 4 K 0.08 0.06 0.04 0.02 0.00 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 τ/τ_c

圖 5-14 over-doped ($T_c = 74$ K)的 $|\Delta R/R|$ 隨溫度的變化關係

圖 5-15 near optimally doped ($T_c = 81$ K)的 $|\Delta R/R|$ 隨溫度的變化關係

圖 5-16 under-doped ($T_c = 60$ K)的 $|\Delta R/R|$ 隨溫度的變化關係

圖 5-17 under-doped ($T_c = 40$ K)的 $\Delta R/R$ 隨溫度的變化關係

5.4 總結

我們整理不同掺雜的(100)YCBCO 薄膜的超導能隙 $\Delta_c(0)$ 與偽能隙 Δ_P 之 值,如下表 5-1 所示:

	Тс	$\Delta_{ m c}(0)$ / $ m k_{ m B}$	$\Delta_{ m p}$ / $ m k_{ m B}$
Over doped	74K	211±2k	278±6k
Near optimally doped	81K	369±18k	492±38k
Under doped	60K	238±63k	660±43k
Under doped	40K	134±52k	864±81k

表 5-1

接著我們利用公式(5-1)分別將超導臨界溫度 T_c 轉換成電洞濃度(p),並且對 超導能隙 $\Delta_c(0)$ 與偽能隙 Δ_P 作圖,如圖 5-18 所示。除此之外,我們還加上 (001)和(100)Y_{0.7}Ca_{0.3}Ba₂Cu₃O_{7-δ} 薄膜在满氧(p≈0.22)的實驗數據[31]以及 (100)、(110)和(001)YBCO 的實驗數據[32],去討論超導能隙 $\Delta_c(0)$ 和偽能隙 Δ_P 在 ab-diagonal 方向(nodal direction)和 b-axis (antinodal direction)方向上隨 著電洞濃度的變化關係。

1. optimally-doped \mathfrak{I} underdoped (0.081 < p < 0.16) :

觀察 YBCO 的 ab-diagonal 和 b-axis 的偽能隙 Δ_P 變化,在 optimally-doped 時為 d_{xy} 的對稱性,而隨著電洞濃度的減少會逐漸轉變為 $d_{x^2-y^2}$ 的對稱性, 相同地,(100)YCBCO 的偽能隙 Δ_P 也是隨著電洞濃度減少而變大,因此可 以更加確認偽能隙 Δ_P 之各向異性的真實性。

2. Overdoped (0.16< p <0.22) ;

在 p ≈ 0.22 時 ab-diagonal 與 b-axis 都存在超導能隙 $\Delta_c(0)$ 。而 b-axis 在 p = 0.19 時為超導能隙 $\Delta_c(0)$ 與偽能隙 Δ_P 兩者共存,這符合 J. Demsar 等人的 (001)Y_{1-x}Ca_xBa₂Cu₃O_{7-δ} 的實驗結果[4]。

圖 5-18 超導能隙與偽能隙對載子濃度作圖(虛線&點線均為示意曲線)

第六章

總結與未來工作

6.1 總結

綜合以上幾個章節,我們已經成功的製備(100) Y_{0.9}Ca_{0.1}Ba₂Cu₃O_{7-δ}的薄膜樣品。並且利用實驗室發展的控氧技術,能 夠將樣品從滿氧狀態,調整為缺氧狀態。

以下總結各個量測結果:

 從 XRD 的結果,顯示出並無其他雜相的存在,我們更可確定樣 品(100) Y_{0.9}Ca_{0.1}Ba₂Cu₃O_{7-δ}的品質。

a shiller

- 從 AFM 及 SEM 的影像,對(100)薄膜而言,在膜面上 Y_{0.9}Ca_{0.1}Ba₂Cu₃O₇₋₈的b軸與c軸是各自延著特定的方向,有序的 排列。而Φ-scan 的結果顯示了其沿(100)的有序排列純度大於 98%。
- 利用控氧技術,我們成功的在同一片樣品上,製作出四種不同載 子濃度的情形,以便我們更完整的了解由過度掺雜到不足掺雜, 物理機制的轉變。

變化的情形。將 $\frac{\Delta R}{R}$ 振幅大小隨溫度變化的情形取出,配合理論分析,在(100) Y_{0.9}Ca_{0.1}Ba₂Cu₃O_{7-δ}樣品中,我們的確發現到在沿著b 軸方向上,可以觀察到偽能隙與超導能隙所造成的弛緩行為。並 將所求得在不同軸向上之超導能隙與偽能隙大小,加入相圖之 中,與其他實驗團隊以及實驗室學長姐所得之結果做比較,如圖 5-1。我們發現 Y_{0.9}Ca_{0.1}Ba₂Cu₃O_{7-δ}和 YBa₂Cu₃O_{7-δ}在b 軸上的行為 相似。

6.2 未來工作

由於,我們已經在(100)Y_{0.9}Ca_{0.1}Ba₂Cu₃O_{7-δ}薄膜上做了有系統的 分析探討,配合上之前學長姐的結果,接下來我們將再製作 (110)Y_{1-x}Ca_xBa₂Cu₃O_{7-δ}(x=0.1,0.3)和(100)Y_{0.9}Ca_{0.3}Ba₂Cu₃O_{7-δ}的薄 膜,以便我們探討在不同摻雜區域中,一系列超導能隙與偽能隙變化 情形,並製作更完整的能隙相圖。

參考文獻

- J. Bardeen, L. N. Cooper *, and J. R. Schrieffer ,"Theory of Superconductivity" Phys. Rev. 108, 1175 - 1204 (1957)
- [2] R. W. Schoenlein, W. Z. Lin, and J. G. Fujimoto, "Femtosecond studies of nonequilibrium electronic processes in metals", Phys. Rev. Lett 58, 1680 (1987).
- [3] V. V. Kabanov, J. Demsar, B. Podobnik, and D. Mihailovic, "Quasiparticle relaxation dynamics in superconductors with different gap structures: Theory and experiments on YBa2Cu3O7-δ", Phys. Rev. B. 59, 1497 (1999).
- [4] J. Demsar B. Podobnik V. V. Kabanov, Th. Wolf, and D. Mihailovic, "Superconducting Gap Δc, the Pseudogap ΔP, and Pair Fluctuations above Tc in Overdoped Y1-xCaxBa2Cu3O7-δ from Femtosecond Time-Domain Spectroscopy", Phys. Rev. Lett. 82, 4918 (1999).
- [5] C. W. Luo, M. H. Chen, S. P. Chen, K. H. Wu, J. -Y. Juang, J. Y. Lin, T. M. Uen, and Y. S. Gou, "Spatial symmetry of the superconducting gap of YBa2Cu3O7-δ obtained from femtosecond spectroscopy", Phys. Rev. B. 68, 220508 (2003).
- [6] C. W. Luo, C. C. Hsieh, Y.-J. Chen, P. T. Shih, M. H. Chen, K. H. Wu, J. Y. Juang, J.-Y. Lin, T. M. Uen, and Y. S. Gou, "Spatial dichotomy of qasiparticle dynamics in underdoped thin-film YBa2Cu3O7-δ superconductors", Phys. Rev. B. 74, 184525 (2006).
- [7] C. W. Luo, P. T. Shih, Y.-J. Chen, M. H. Chen, K. H. Wu, J. Y. Juang, J.-Y. Lin, T. M. Uen, and Y. S. Gou, "Spatially resolved relaxation dynamics of photoinduced quasiparticles in underdoped YBa2Cu3O7-δ", Phys. Rev. B. 72, 092506 (2005).
- [8] C. W. Luo, M. H. Chen, S. P. Chen, K. H. Wu, J. Y. Juang, J.-Y. Lin, T. M. Uen, and Y. S. Gou, "Spatial symmetry of the superconducting gap of YBa2Cu3O7– obtained from femtosecond spectroscopy", Phys. Rev. B 68, 220508 (2003).
- [9] S. H. Naqib, J. R. Cooper, J. L. Tallon, R. S. Islam, and R. A. Chakalov, "The dpoing phase diagram of Y1-xCaxBa2(Cu1-yZny)O7-δ form transport measurements : tracking the pseudogap below Tc", Cond-Mat/0312443.

[10] R.Daou et al. Supplementary Information for "Linear- T resistivity and change in Fermi surface at the pseudogap critical point of a high-Tc superconductor"

Nature Physics 5, 31 - 34 (2009) Published online: 2 November 2008(2008)

- [11] S Hufner et al ," Two gaps make a high-temperature superconductor? "2008 Rep. Prog. Phys. 71 062501
- [12] S. H. Naqib^{1,2} *, J. R. Cooper¹, J. L. Tallon², R. S. Islam¹, and R. A. Chakalov³Doping phase diagram of $Y_{1-x}Ca_xBa_2(Cu_{1-y}Zn_y)_3O_{7-\delta}$ from transport measurements: Tracking the pseudogap below T_c , PRB 71,054502 (2005)
- [13] N,-C, Yen, C.-T. Chen, G. Hammerl, J. Mannhart, A. Schmehl, C. W. Schneider, R. R. Schulz, S. Tajima, K. Yoshida, D. Garrigus, and M. Strasik, "Evidence of Doping-Dependent Pairing Symmetry in Cuprate Superconductors", Phys. Rev. Lett. 87, 087003 (2001).
- [14] A. Sharoni and O. Millo, A. Kohen, Y. Dagan, R. Beck, and G. Deutscher, G. Koren, "Local and macroscopic tunneling spectroscopy of Y_{1-x}Ca_xBa₂Cu₃O_{7-δ} thin film : Evidence for a doping-dependent is or id_{xy} component in the order parameter", Phys. Rev. B 65, 134526 (2002).
- [15] J. H. Ngai, W. A. Atkinson, and J.Y. T. Wei, "*Tunneling Spectroscopy of c-Axis* $Y_{1-x}Ca_xBa_2Cu_3O_{7-\delta}$ *Thin-Film Superconductors*", Phys. Rev. Lett. **98**, 177003 (2007).
- [16] D. Fuchs,Growth and characterization of a-axis oriented YBa2Cu3O7?x thin films on (100) LaSrGaO4 substrates ,"physica c 280 167 "

441111

- [17] 施柏宗,'以極化飛秒光譜研究YCaBaCuO薄膜各向異性超快動力學'交通大學95碩士論文
- [18] C. W. Luo, S. J. Liu, M. H. Chen, K. H. Wu, J.-Y. Lin, J.-M. Chen, J. Y. Juang, T. M. Uen, "Polarization-dependent x-ray absorption spectroscopy of in-plane aligned (100) YBa2Cu307-δ thin films", Physica C 388-389, 435, 2003
- [19] J. Demsar, "Photoexcited Carrier Relaxation in High Temperature Superconductors probed by Ultrafast Optical Spectroscopy", Ph. D. dissertation, University of Ljubljan Faculty of Mathematics And Physicsphysics Department (2000).
- [20] P. Horowitz and W. Hill, "The art of electronics", 2nd edition, Combridge,

NewYork, (1989)

- . [21] W. Nessler, S. Ogawa, H. Nagano, H. Petek, J. Shimoyama, Y. Nakayama, and K. Kishio, "Femtosecond time-resolved study of the energy and temperature dependence of hot-electron lifetimes in Bi2Sr2CaCu2O_{8+δ}", Phys. Rev. Lett. 81,4480 (1998).
- [22] P. B. Allen, "Theory of thermal relaxation of electrons in metals", Phys. Rev. Lett. 59, 1460 (1987).
- [23] S. V. Chekalin, V. M. Farztdinov, V. V. Golovlyov, V. S. Letokhov, Yu. E.Lozovik, Yu. A. Matveets, and A. G. Stepanov, "Femtosecond spectroscopy of YBa2Cu3O7-δ: electron-phonon-interaction measurement and energy-gapobservation", Phys. Rev. Lett. 67, 3860 (1991).
- [24] S. D. Brorson, A. Kazeroonian, D. W. Face, T. K. Chen, G. L. Doll, M. S. Dresselhaus, G. Dresselhaus, E. P. Ippen, T. Venkatesan, X. D. Wu, and A. Inam, Solid State Commun. 74, 1305 (1990).
- [25] A. Rothwarth and B. N. Taylor, "Measurement of Recombination Lifetimes of Superconductors", Phys. Rev. Lett. 19, 27 (1967).
- [26] A. G. Aronov and B. Z. Spivak, J. Low Temp. Phys. 29, 149 (1977).
- [27] G. P. Segre, N. Gedik, J. Orenstein, D. A. Bonn, Ruixing Liang, and W. N. Hardy, "Photoinduced Changes of Reflectivity in Single Crystals of YBa₂Cu₃O_{6.5} (Ortho II)", Phys. Rev. Lett. 88, 137001 (2002).

[28] J. L. Tallon, Generic superconducting phase behavior in high- T_c cuprates: T_c variation with hole concentration in YBa₂Cu₃O_{7- δ_1} Phys. Rev. B 51, 12911 - 12914 (1995)

[29] D. H. Reitze, A. M. Weiner, A. Inam, and S. Etemad , Fermi-level dependence of femtosecond response in nonequilibrium high- T_c superconductors, Phys. Rev. B 46, 14309 - 14312 (1992)

- [31] Mei-Hsin Chen, "Anisotropic Ultrafast Dynamics in Y_{0.7}Ca_{0.3}Ba₂Cu₃O_{7-δ} Probed by Polarized Femtosecond Spectroscopy", Master dissertation, National Chiao Tung University, Taiwan, R.O.C., (2004).
- [32] Chih-Wei Luo, "Anisotropic Ultrafast Dynamics in YBa₂Cu₃O_{7-δ} Probed by Polarized Femtosecond Spectroscopy", Ph. D. dissertation, National Chiao Tung University, Taiwan, R.O.C., (2003)