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The transport properties of layered type
Il superconductors in the magnetic field

Student: Rui Fu Hung Advisor: Baruch Rosenstein

Institute of Electrophysics

National Chiao Tung University

Abstract

Static and dynamic distributions of the superconducting condensate order para-
meter and current density is studied by numerical simulation of the 2D
time-dependent Ginzburg-Landau equations. They describe the vortex lattice in
layered type Il superconductors under magnetic fields above the lower critical
field. In a clean superconductor the non-linear J-E characteristics were calcu-
lated and compared to existing analytic results. The Abrikosov lattice which is
hexagonal in statics is deformed due to the electric field. The artificial pinning
arrays on the nano scale were fabricated recently and are investigated for the
most interesting case of the pinning superlattice commensurate with the Abri-
kosov lattice. The dynamical order parameter distribution shows that the vortex
transport (flux flow) is conducted via diffusive motion of the so called intersti-
tial vortices. The J-E characteristics are strongly influenced by the pinning, since
the vortices are trapped on the pinning centers and thus the energy dissipation
(Joule heat) inside the cores of the moving vortices is reduced.
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Chapter 1

Introduction

1.1 Superconductivity in strongly layered superconductors

Superconductivity is a remarkable property of metals and some other compounds at very
low temperatures and generally signals Bose-Einstein condensation of pairs of electrons called
Cooper pairs into a state in which dissipation processes are totally suppressed. On the macro-
scopic level this include two basic characteristic properties, zero electrical resistance and per-
fect diamagnetism. More quantitatively these phenomenon would happen when temperature is
cooled below certain temperature T,, which-was called superconducting transition temperature
(critical temperature). The Cooper pairs in superconducting metals (now termed "low temper-
ature superconductors") are electron-electron bound states (more precisely resonances), with
binding energy provided by a combined effect of the phonon exchange and the Pauli principle,
overpowering the screened Coulomb repulsion. In more recent families of high 7, cuprates and
pnictides the mechanism is most probably different (perhaps magnon mediated attraction), but
unlike the metals for which the BCS theory is highly successful, the existing microscopic mod-
els are either too complicated or too infirm to be useful in studying mesoscopic or macroscopic
phenomena or for applications.

The Cooper pairs are bosons and undergo Bose - Einstein condensation (BEC). Supercon-
ductivity therefore is a macroscopic quantum phenomenon (sometimes termed "mesoscopic"),
since the phase ¢ (the Aharonov - Bohm or Josephson) of the Cooper pairs is coherent over

very large distances. The BEC is purely a quantum mechanical phenomenon described by an



order parameter

where n = |1/1]2 is Cooper pairs density. The phase In a homogeneous ground state this phase
is arbitrary, since all values lead to the same total free energy.

According to the superconductor’s response to external magnetic field, they can divided
superconductors into two different classes: the type I superconductors and the type II super-

conductors.

1.1.1 Type I and II superconductors in magnetic field

For type-1 superconductors, the external magnetic field almost does not penetrates interior of
a superconducting sample. In other words, the magnetic field inside the sample is zero. This
characteristics is called the "Meissner effect". The magnetization therefore M is 4nM = —H. If
the external field larger than a particular field H,. , called the critical field, the superconductivity
would be destroyed. In contract, type-1I_superconductors have two critical fields H.; and H.
and two different states, show in Fig:l-1.-—When external field smaller than H.;,the Meissner
effect still exist and have no resistance. However, iwhen external magnetic field between H.q
and H.o, the small magnetic field would penetrate the superconductor sample and destroy su-
perconducting state, thus both superconducting phase and normal phase in the superconductor
sample, this states was called mixed state or the Shubnikov phase. When external magnetic is
above H.o, the magnetic field would break all the Cooper pairs, so that the sample’s electronic

state becomes normal .

In the mixed state of type II superconductors, the magnetic field enters the superconductors
in the form of vortices, each carrying one unit of magnetic flux, &y = %, shown in Fig.1-2.
The supercurrent flows around each vortex core which has essentially become normal state, and
super current serve to screen out the magnetic filed outside the vortex. The physical explanation
was pioneered by Abrikosov. The vortices repel each other with a long range force, usually,
vortices arrange themselves in a form of hexagon to minimize mutual repulsion. The arrange
of vortices similar to atomic lattice, therefore,it also be called Abrikosov lattice.

Two important length scales characterize a superconductor (shown in Fig.1-3 which de-



Figure 1-1:  Schematic magnetic phase diagram of a type II superconductor. In the Meiss-
ner state, superconductvity remains perfect, while magnetic field is totally expeled. In the
mixed state both the normal and the superconducting domains coexist. In the normal state,
superconductivity is completely suppressed.

Figure 1-2: Scanning superconducting quantum interference device (SQUID) microscopy (SSM)
vortex imaging.[31] Flux lattice (distances larger than penetration depth, that is the field is
just above H.i (T),H = 30mOe) in near a« — MoGe surface at T = 4.2K is shown.White
color corresponds to large magnetic field (vortices), while black color indicates superconducting
domains between the vortices.



x=5.0

Figure 1-3: Parameters £ and X\ in S-N junction. This figure was simulated by using Carlo
Method. Coherence length ¢ has a Monte physical interpretation of the size of the Cooper
pair bound state.Magnetic penetration depth A is the distance inside the surface over which an
external magnetic field is screened out to zero

scribes an S-N junction in narrow chanmel). Coherence length ¢ has a physical interpretation
of the size of the Cooper pair bound state; while the magnetic penetration depth A is the

distance inside the surface over which an external magnetic field is screened out to zero.

In conclusion, the type II superconductors not only can endure strong magnetic field but
also have high critical temperature, thus, type II superconductors are quite important for both

academic and industrial development.

1.1.2 Layered structure and two dimensional superconductors.

The crystalline structure of the type I and the type II superconductors is typically different.
Usually type I superconductors are pure metal or their alloys and the Cooper pairs are bound
in an s-wave state (have rotational symmetry). There are no important structural effects since
the coherence length is much larger than the penetration depth. The type II superconductors
typically are more complex. The most prominent representative class of a strongly type II ma-

terials, the high T, cuprates are tetragonal, and all of them have one or more CuQO; planes[23].
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Figure 1-4: Atomic structure in layered high T. superconductor Y BasCusO7_s[25].Each unit
cell has a C'uO bilayer in which superconductivity resides.

see Fig.1-4. Other atoms like Bi, Y, Ba etc. separate the CuOs layers and provide charge car-
riers into CuQO4 planes. These layers-are called charge-reservoirs. The Cooper pairs move along
CuO4 planes and the properties for superconductivity become quasi-two dimension. Moreover,
Cooper Paris have the d,2_,2 symmetry, namely are paired in an [ = 2 state. The parameter
v, which is called the anisotropy parameter, is very large for BSCCO and underdoped Y BCO
(of order 50 or higher). These superconductors can be considered as two dimensional systems.
Recently, layered superconductor BSCCO become a major material for application like the THz

wave generator.

1.1.3 Vortex dynamics

For type II superconductors, the dissipation of superconducting current is attribute to the
magnetic quantized flux motion and it’s transport properties have been derived form flux dy-
namic. For vortex is pushed by Lorentz force, thus, vortex move perpendicular to the electrical

field,as show in Fig.1-5. For the phenomenologically of view, it’s suitable to imagine a friction



force cause the dissipation

d
fdissipation = _77£x = —nv. (12)

The over-damped dynamics results in motion of velocity with a constant velocity

) DyJ
*fdissipation =nv = fL = Jio =V = L (13)
c cn
Across the boundary of length L. It produces the flux change
Ad = vBLAL. (1.4)
From the Maxwell equation,
1 Adg
-—— =V 1.5
c At (15)
Substitute Eq.(1.4) into Eq.(1.5), the velocity of vortex is
cV' ¢k
= |EISh oY 1.6
‘= BL. B (1.6)
The induce electronic field from the moving vortex . is
dyJB
E=Yp= — (1.7)
c cn

Note that the induce electric field is equal to the applied electric field. From the standpoint of
the application of type II superconductors, it’s important to understand how vortex dissipative

process influence the I-V characteristic for type 1l superconductors.

1.1.4 Pinning in disordered superconductors

Disorder in superconductors originates form various sources. A partial list of intrinsic (namely
existing in the material) defects includes point defects like the oxygen vacancies in cuprates,
screw dislocation and twinning planes due to imperfections of the atomic structure, grain bound-
aries. On the mesoscopic scale the disorder would cause a short range pinning force which can

hold the vortex. If the pinning forces are sufficiently strong and numerous, the vortex motion
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Figure 1-5: The vorter flow. The supercurrent flows in x direction. The magnetic feld applied
in z direction. The Lorentz force f = q(v x B) = J %, so Lorentz force is —y direction, the
vortex move perpendicularly to the supercurrent

can be arrested, so that the superconductor will restore the perfect conductor property. Phys-
ical quantities, such as, critical temperature, critical current, etc. are also affected by disorder.
However, in technologically important materials critical current due to intrinsic pinning are not
enough especially at high magnetic fields. One of the main reason is destructive competition of
pinning centers, as demonstrated by the collective pinning theory [30, 29].

The type 1l superconductors with periodic artificial pinning have been studied in recent years,
see Fig.1-6 . It was predicated theoretically [2] and confirmed experimentally[1, 3, 4] that when
pinning centers are arranged into a periodic array commensurate with the Abrikosov lattice the
critical current increases dramatically. The effect is maximized when the felling fraction is one,
when one pinning center traps a single vortex. Additional vortices are "interstitial" and can be
depinned easily thus significantly reducing the critical current [5]. Recently there have been an
advance in the fabrication of the periodic arrays of pinning sites. The arrays with triangular,
square, and rectangular geometries have been fabricated using either microholes or blind holes

[1], magnetic dots [3] and columnar defects [4].



Figure 1-6: High-resolution scanning Hall probe microscopy Vortex configuration with periodic
pinning[1]. Image for (a) h = 1.916 and (b) h = 2.084. the second matching field h = 2. The
small dark circles are the positions of the holes. Below h = 2, the vacancies (white spots) all
sit directly on holes; thus all vortices must as well. Above h = 2, the extra vortices (dark
spots) sit on both hole and interstitial sites. Where h = H/H,,, H, = ®/a* = 5.913G,
a = 1.87um is pinnng lattice constant.The sample investigated was a 100-nm-thick Nb film
with 0.3-mm-dimeter holes on square lattice

1.2 Theoretical approaches totype 11 superconductivity

1.2.1 London’s approximation far from H., (T)

London theory is an earlier theory to phenomenologically describe Meissner effect and a su-
perconducting state on the mesoscopic scale. This theory is very effective to describe electro-
magnetic properties of homogeneous superconductors [10] and is quite sufficient for the type I
materials. It utilizes the fact that even in the mixed state at sufficiently low magnetic field most
of the superconductor is in a superconducting state with maximal superfluid density ng = |¢0|2.
Neglecting small regions of vortex cores, one approximates 1 = 1, and the only degree of free-
dom left is the magnetic field. The resulting linear (London’s) equations replace the Maxwell

equations, namely are the material electrodynamics of the superconductor.

1.2.2 Ginzburg-Landau approach far from H. (T)

Ginzburg-Landau(GL) theory which was proposed by Ginzburg and Landau in 1950 is a mean-
field theory of the thermodynamic state . The most powerful features is that it can be used to go

beyond the original mean-field limit, so as to include the effect of thermal fluctuations. Thermal



fluctuation is not important for "low-1." superconductors; however, for high T, superconductors
is quite important, thermal fluctuation lead to many important phenomenon, such as flux flow,
and vortex melting. GL theory had great success in describing intermediate-sate phenomena of
inhomogeneous superconductors.

Using the GL theory, Abrikosov showed that the two types of superconductors introduced
in section 1.1 are distinguished by different value of a single parameter k = /& which is called
Ginzburg-Landau parameter. Superconductors with x < 1/4/2 are type I superconductors,
for k > 1/4/2 are type II superconductors. The interface energy (between normal state and
superconductivity state, see Fig. ) vanish when x = 1/v/2, which can be calculated exactly in
the GL theory. For type I superconductors interface energy is positive. In other words, magnetic
field would be eliminated inside superconductor samples. Therefore, type I superconductors
only have two phases, superconductivity phase and normal phase. For type II superconductors,
interface energy is negative; that is, external magnetic could enter superconductor samples and
become mixed state and have a three phase magnetic phase diagram explaining Fig.1.

In strong magnetic fields magnetic envelopes of vortices overlap and field inside superconduc-
tor becomes homogeneous even in the mixed state. Not very far from H.s (1) the GL equation
can be linearized and become similar to Schroedinger equation of an electron in homogeneous

magnetic field. The energy spectrum become quantized [24].

B-to(ns L), 0

where w = eB/m*c is the cyclotron frequency, and n = 0,1, 2... number the quantized Larmor
orbits. As a result, the charged particles (Cooper pairs) can only occupy orbits with discrete
energy values and one calls this these Landau levels. When |H., — H| < H., the magnetic
field is high enough, so that the solution belongs to the lowest Landau level (LLL). This is
called the LLL approximation.

Using this approximation various static properties including effects of thermal fluctuations
and disorder in vortex lattices were studied[8]. D.Li, B. Rosentein and V.Vinokur [14], provided
a theory determining the glass transition in a disordered vortex system. For dynamical case,

R. J. Troy and A. T. Dorsey studied the transport properties for type-II superconductors near



H_s including electrical conductivity and transverse thermomagnetic effects (the Ettingshausen
and Nernst effects), while D. Li, A. M. Malkin and B. Rosentein[15] studied the structure of

the moving vortex lattice (clear system). They also contributions of high Landau levels.

1.3 Simulation methods and previous results for 2D GL for

strongly type II superconductors

1.3.1 Monte Carlo simulation method. Static and thermodynamics proper-

ties

The Monte Carlo (MC) method is very popular in physics, engineering, economic, etc. In
statistical physics, Metroplos algorithm is a most often used simulation method. MC simulations
of phase transformation of type Il superconductors in magnetic field using the phenomenological
Ginzburg - Landau approach were performed over the last 15 years. Static thermal and magnetic
properties of a clean 2D system in the presence of thermal fluctuations was simulated by Y.
Kato and N. Nagaosa [11], who used:the quasi-periodic boundary condition within the LLL
approximation in Landau gauge. The finite size scaling of the algorithm was estimated to
be N2 (Nj is defined as the degrees of freedom). /J. Hu and A. H. MacDonald[12] used the
quasimomentum basis to speed up the simulation, so that the finite size scaling becomes Ng.
Both J. Hu and A. H. MacDonald, Kato and Nagaosa, among others, found the first order
phase transition form crystalline the liquid phase, by the double peak in probability of energy
distribution P(E)

Disordered 2D system was first simulated only recently by M. S. Li and T. Nattermann[13].
They adopted the model of the disorder of the system with expanding the random Gaussion
disorder in Hermite polynomials. They presented the results of the flux lattice melting transition
and the behavior of the different correlation factor. They concluded that the phase transition
form the curves of reduced temperature dependence of the structure factor splayed out near the
melting temperature. No glass transition was found for the highest value of disorder considered
the disorder parameter ¢ = 0.01. To my knowledge no simulations of the periodic arrays of

pinning centers were performed within the framework of the GL model.
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1.3.2 Molecular dynamics and the Langevin method

For the vortices can be seen as classical particles, therefore the Lagevin equation is suitable
to analyses vortex flow. The Lagevin equation [17] is a mathematical model of dynamics of
molecular system. This equation include fluctuation and noise, so that it’s good to represent
molecular in real world. The Langevin equation as follows

dg; _ 9S]q|

dr B 8qi

+n; (1), (1.9)

with correlation

(n(r)n (') = o (r=7). (1.10)

This nonlinear parabolic equation can be solved by following algorithms, Euler Method, Durfort-
Frankel Method, Crank-Nicholson method[18].

Although the MC method is economical to get the lowest free energy, however, the mole-
cular relaxation process are also popular fer. studying vortex structure. Q. Du and M. D.
Gunzburger[35] studied superconductivity including random pinning by finite-element method,
Q. Du showed that pinning distribution influence the vortex structure and supercurrent flow
around vortex. After few years, J. Deang, Q: Duand M. D. Gunzburger[20] added the thermal
noise into the superconductors. As J. Deang showed the vortex hexagonal symmetric is broken
by thermal noise. U — 1 method was introduced by W. D. Gropp le al.[21], moreover this
method is base on lattice gauge theory. This method is applicable to simulate magnetization
system. W. D. Gropp showed the vortex relaxation process in large sample with random pin-
ning. Kato, Enomoto, and Maekawa[27] studied the magnetization process and presented the
hysteresis curve of magnetization.

For the point view of application, the nonlinear conductivity in type II superconductors
is very important. M. Machida and H. Kaburaki[22] calculated I-V characteristics in type-II
superconductors by using TDGL equation couple with Maxwell equation. After few years, D.
Y. Vodolazov and F.M Peeters[19] used general TDGL equation to study moving vortex and
find the critical velocity v., they also compared the I-V characteristic with vortex structure in

different magnetic field. The Nernst effect in superconductors was studied by S. Mukerjee and

11



D. A. Huse[28], they used TDGL equation with thermal noise.

In this thesis, I using 2D TDGL equation to studied static and dynamic vortex system
in strong layered superconductor, Forward-Difference method is used to solve TDGL equation
in this simulation[36].In chapter 2, the static system was introduced, while in chapter 3, the
dynamic system was studied. Both chapter 2 and chapter 3 study in clean superconductors.
In chapter 4, the effect of periodic pinning were considered, both the static and dynamic case

were studied in this chapter. The conclusion is in the last chapter.
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Chapter 2

The relaxation method investigation
of the static state of the Abrikosov

lattice

2.1 2D Time Dependent Ginzburg Landau Model in continuum

2.1.1 Free energy and the relaxation method

In this work I use a numerical method to simulate the Time Dependent Ginzburg - Landau
(TDGL) theory[32]. Here I first present a continuum version of the theory and in what follows
"discretize" it on a grid, so that it is amenable to numerical simulation. A layered superconduc-
tor, in which the Cooper pairs move inside the Cu-O planes, is a quasi-two dimensional system.

Therefore I consider the two-dimension TDGL equation

v R Q\P__(SF[\II,A]
22m* ot U+

(2.1)

Here, V¥ is the (complex) order parameter, ¢ and m* are the Cooper pair’s charge (considered
positive) and effective mass. The inverse diffusion constant /2 is a real number, if relatively
small Hall effect is neglected. I assume that the ratio k = A/€ > 1. This means that magneti-
zation is by a factor 1/x2 smaller than the field and consequently (for magnetic few times larger

then H.1) B ~ H. The magnetic field B = V x A therefore is homogeneous and constant. The
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vector potential A is chosen in symmetric gauge
1~ 1_ =
A= 7Byz + §B:L‘j. (2.2)

Ginzburg Landau free energy with constant magnetic field is

F[T,A] (2.3)
ot :

2
where t' = T'/T, is the dimensionless temperature, covariant derivatives are defined by D =

V| —al. (1) [T + - [2]*,

A\ %A ,aand b/ (T) are phenomenological parameters which can be represented by coherence

length £ and penetration depth A as a = and b = 2mi2X%e? - ppqr, equation, therefore,

2m *§2T £2c2m*2
can be written as
v 129 h e\ 2 . Lo
fi—lj[l V——A ]| ¥ T.(1—-t)¥ -0 |WU|*W. 2.4
2 2m* Ot 2m* he ol ( ) 71 24

Note that %\IJ is non-hermitian linear operator describing relaxation.
The density for Cooper pairs is ng = ]111]2, while the current density generally has two
contributions J = J, + Js. J, = 0oF is the normal current density, while .J; is the supercurrent

density

OF [V] e*h

Jo = o =i (VDY — WDV’ (2.5)
* *2
— i e - wver) £ S uP A,
2m* c

2.1.2 The dimensionless form

It is convenient to use a dimensionless form of the TDGL equation. Sometimes, both the
penetration depth A\g and the coherence length & are used as units of length. In our simulation,
the unit of length will chosen to be £;: T = %3:; g = %y The unit of time characterizing the

relaxation is tqy, = v&2 /2,1 = ét. The unit of magnetic field will be the upper critical field
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H_o, so that I use dimensionless quantities b = H%B V2:

a=—A; a,= —gy; a, = -7. (2.6)

The maximal value of the order parameter (without magnetic field) ¥y = /a7, /b is the unit

of order parameter: ¢ = \/51\1; U. In this units the TDGL equation, Eq.(2.4) is (detail please
0

see Appendix A)

0 0
E%b = —waL- (2.7)

Here fgr is dimensionless free energy (dropping the bars from now on)

* 17 * 1 *
for = [ e B — anpr + 5 (00 (28)
The dimensionless parameter,

1

ap-= 9 ’ (29)

has a physical meaning of "distance" from the state normal-mixed state boundary in the H-T

space. The operator

He-lp2_Y
2 2
The dimensionless super current density is
js=Js/Jar = 5 (DY — DY) = o (" VY — Ve + U a (2.10)

,where the unit of current density is Jgr = zczfg. The conductivity will be given in unit of

2 2
c“tar cy
= = 2.11
o0 27 \2 A7k ( )

The rescaled model have two parameters: the temperature ¢, the magnetic field b. These two

parameters determine the value of ay,.
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2.2 Discrete TDGL on the hexagonal grid with Wilson link

variables.

2.2.1 Hexagonal grid, site and link variables

The points on the sample are described by two integers n = (nq,n2), where ny,no = 1 nmax.

In order to simplify the simulation, the sample is following direction

an
Tn =~ (n1py + napty) (2.12)

with unit vectors of the Abrikosov lattice

1 V3
2" 2
Here s is an integer and a, is distance between vortex and vortex
4
i (2.14)
The physical distance between vortices is determined by the flux quantization: apé = \2/‘:1))3]03.
It is convenient to introduce a third unit'vector
-1 \/3
M3 = H2 — H1 = <27 2) (2.15)

in order to represent the Laplace operator H (see Appendix). The unit vectors are show in
Fig.2-1 for s = 5. The shape of grid is hexagonal (sometimes called "triangular). It’s more
convenient to simulate a system under magnetic field by using the technique of link variables.

The method of the link variables describing electromagnetic field originated in the lattice
gauge theory[33] used in simulations in particle physics. The general formula for link variable

in our simulation is

Ugl,m = €exp (_ie;’ylhng) ’ (216)
where 0 | = fl?ﬂ‘ /% a.dr is the Aharonov - Baohm(A - B) phase, with a is the dimensionless
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Lz

Figure 2-1: The unit vectors and vortex distance. ap is the distance between vortex, where
define in Eq.(2.14).1, o and pg are unit vectors, where define in Eq.(2.13) and Eq.(2.15)

vector potential, n is the link’s origin, while itjends'at n+ (aa/s) u”. The line integral is taken
along the straight line. In order to simplify the calculation of the line integration, we define a

parameter 0 < a < 1:

d an
Bl = = pu 2.1
do’ (o) sV (2.17)

where v = 1,2,3 and p, is the unit vector which defined in Eq.(2.13,2.15).

The general formula for 07, ;. is

s = [ d0{ [ @] a0 @)+ [ @] @)} 29

Finally, the AB phase for each directions are (detail see Appendix D)
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1 \/gai

nina *Tgbnz (2.19)
2 — ﬁﬁbn
niy,n2 4 g2
V3 a?
Orine = 5 20 (m+m2), (2.20)

where d is lattice distance. Substituting Eq.(2.14) into Eq.(2.19), we can get the following final

formula

1

Onimy = — 32 (2.21)
2 T

Orins = 3™

2

0711,712 = 72(”14_”2)

2.2.2  Free energy on hexagonal lattice

The continuous first differential term-7- d 1), () on the lattice can be naively defined (discretized)

as

@) v, (@)
nZ: = y : (2.22)

where d is distance between neighboring points. Unfortunately, the order parameter is a complex
quantity which has the AB phase. To take into account the external magnetic field, link
variable would be added into the formula. Therefore in magnetic field one makes the minimal

substitution[21],
N

n=1

The free energy can be written as f = fgrqa + fpot Where
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\

Uﬁhmwmﬁ-l,nz (U7}LLTL2) wm—lﬂ%z—i_

Mmax 2 2
Um n2¢n1,n2+1 + (Um nz) wm,m—l"i_

fgrad = Z Q;Z)nl,nQ 3 (224)
ni,n2= 1 nl,n2¢n1 1,n2+1 + (Unl ’ng) wn1+1,n271
_61/’711,712
V3ad% ¥ 1 4
“A
fPOt = 2 82 Z [ W}nhm + 5 ‘wm,m :| :
ni,ng=1

The factor v/3/2 comes from the volume integration and the factor 3/2 comes from the ex-
pression for the Laplace operator (see details in Appendix A). In Appendix B, I show that
the discrete free energy matches the continuum free energy, Eq.(2.8). Discretized versions of
various physical quantities could be derived from free energy. Examples include magnetization,

heat capacity and the electric current density, see Chapter III.

2.2.3 Discretized TDGL equation

Substitute Eq.(2.24) into Eq.(2.1), the space part for TDGL equation is discretized, the formula

is

Uﬁhnzwm-&-l,nz (U7}b1,n2) wm—l,nz_‘_
iwm ny = 1 Ugl no¥nimat1 + (U7%1 n2) Py mg—17T (2.25)
dt 7 \/g nl n2wn1 1,na+1 + (Ugl n2) wm+1,n271
L —6%n; g i

LV (=)

2 52

2
ng }wmmz‘ wnl,nz

1/1n1 ,no (t+At)7wn1 ,no
At

Then, I discretize time part %wm,nz = . In order to simplify the equation,

the t + At terms put in left hand side, and ¢ terms put in right hand side. Finally, The TDGL

equation or the equation of motion of order parameters as following

wnl,ng (t + At) = wnl,ng (t) + Atf [¢n1,n27 Unl,n2:| ’ (226)
where
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F [¢n1,n2,Un1,n2] =
Ul

nl,nzwn1+17n2 + (
2
Unl,n2¢n17n2+1 + (

(2.27)

1 *

Unl,nz) wnl—l,nz—i_
2 *

Un17n2) Q/)7117712*1_{—

1
— +
\/g Ugl,ngwnl—l,ng—‘rl + (U’r'?zl,ng) wnl-f—l,ng—l
L _Gwnlﬁw i
V3a [1-t) 2
+7872 92 wm,nz - Wm,nz‘ wm,nz
2.2.4 Boundary condition

I assume that the superconducting sample is large enough. In this case there is a well developed

periodic vortex structure and the sample’s boundaries very weakly influence the bulk. Conse-

quently the periodic boundary condition (PBC), see Fig.2-2, is suitable for simulation of such

a system. The PBC are a set of boundary, conditions that are often used to simulate a large

system by modelling a small part of it which isdocated far from its edge. The present system

is more complicated due to local gauge invariance so that the magnetic translation group [34]

should be considered. Periodicity is only up to-a phase factor (AB phase) which is different for

different locations and directions. The relation between the order parameters in the boundary

as following

3 T
¢0,7’L2 = €xp |:Z (?

. T
wnho = ¢€Xp |:7/ <?

L)} ¢n1,L; ¢n1,L+1

where

AN max
5 .

L=

In order to simplify the boundary conditions, we let

20
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= [i (5] s

[i (%L)] . (2.28)
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Figure 2-2: Periodic boundary conditions. The magnetic translations between the opposite
along the boundaries on the grid are indicated. In actual computation four additional lines of
"images" are used points. These are outside of the sample which is shown as a gray area.

L =2Ns?

where N is a integer number, therefore, the boundary conditions become

Vo.ns = VLt WEt1ne-= V1105 Y00 = Vr.L- (2.29)

Discrete TDGL equation and simulation result in rectangular grid

2.2.5 Rectangular grid and boundary conduction

The points on the sample are also described by two integers(in unit of £) n = (n1,n2), where

n1,Nns = 1 Nmax. The sample is following direction

an
Tn =~ (n1py +n2ps) (2.30)

with unit vector p; = (1,0) and pu, = (O, @) The unit vectors show in Fig.2-3 as following
and the shape of grid is rectangle.

The boundary condition for rectangle is periodic boundary condition with magnetic trans-
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Figure 2-3: The unit vectors and vortex distance. apa is the distance between vortex, where
define in Eq.(2.14).p;, 19 are and unit vectors, where define in Eq.(2.13)

formation group which is similar as hexagonal-grid. The relation between order parameters on

the boundary is

Yoms = o [i (HL)] Yrmiviiin = [ (5L)]¥im (2:31)
T

Yo = €xp [2 <:—2L>} Uy L3 V0 = [Z <S—2L>} Yy L1

Chose sample L = 2Ns?, the boundary condition became following

wo,nz = QpL,nz; ¢L+1,n2 = wl,nz (232)

wnl,o = wnl,L; ¢n1,0 = ¢n1,L+1~

In rectangle gird, link variables only have two directions, one for x direction another for

y direction. The formula for link variable U = exp (—im ), where v = 1,2. The must

ni,n2

different of link variables between hexagonal grid and rectangle grid is ¢}, ,for the link variable
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represent the phase different between order parameters, in the other word, link variables are

different in different shape of grid. The formula of 67

1,12

1 — —_— —

enl,ng - 4 32 an
2

2 . \/gaAb

n1,n2 4 2 ni.

Although the formulas seem the same, but there are different link directions.

Eq.(2.14) into Eq.(2.33), the final formulas are

1 7T

ning ?ng

2 - T
anl,ng - 52 ni.

2.2.6 Free energy and TDGL equation in rectangular grid

Similar as hexagonal grid, varied the differential terms with link variable -2 = (z) —

The free energy f = ferad + fpot ;Where

as following(detail see Appendix )

(2.33)

Substituting

(2.34)

> Um0 ()

n=1

1 1
Unl,n2¢n1+1 n2 (Um,nz) wn1*1,n2+

Mmax
_ 4
fgrad - ( ) Z Tp"l’”? 3 217n2wn1,n2+1+ (UT% nz) wnl,nz—l (2'35)
ni,ne= 1 14

_?wnl,m

3a Mmax

YA

prt = 2 52 Z |: W)nhng} + ¢n1n2 :|

ni,na2=1

The factor 4/3 cause by the lattice distance for x direction(d) and y direction <§d) are different.

And v/3/2 come form volume integration.

Replace continuum free energy by discretized free energy in Eq.(4.3), the formula is
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\/g n17n2wn1+1 n2 (UT%LnQ) wnl—l n2+

d
awn”m — \ (2.36)

2 2 * 14
§Un17n2¢n17n2+1 +3 (Um nz) wm,m—l - ?wm,nz

4
\/g 2 (1 — t) 2
+7d 9 ng ‘wnl,'ﬂa‘ wnly”&

Next, discrete time part
wm,ng(t-i-At)—@bnl,ng
At '

d
£¢n1,n2 = (237)

Similar as discretized TDGL equation in hexagonal grid, the TDGL equation can be written as

equation of motion of order parameter finally. The formula is

Uy ng (E+ D) =y oy (6) + ALF [P 11y Unyns] (2.38)
where
f [wnth,Unlm&] = (239)
ﬁ Unl,ngwnl—l—l ng (Urlzl,ng) ¢n1—17n2+ +
4 4 14
Un21,n2¢n1 na+1 +3 (U72l1 nz) wm,m—l - ?wm,nz
\/3 (1- )
? 2 m,nz ‘wnl,m‘ wm,m

2.3 Simulation result and comparison of two grids.

2.3.1 Rectangular grid

The theory of <¢%LL> was defined by D. Li, A. M. Malkin, and B. Rosensten[15], the definition

as following

( %LL> = %7 (2.40)
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Figure 2-4: Awerage superfluid density <|¢|2> as function of magnetic field(rectangular grid).
The red line is values for the analytic expression Eq.(2.40).The blue points are simulation values
for rectangular grid.

where 54 = <<$:’>>2 = 1.16 for hexagonal structure[32}.When the magnetic field is high enough(ay
< 1), the order parameters belong in LLL. Fig2-4 show relation between <w2> and b in t = 0,
The red line is theory value for Eq.(2.40), and the blue points are simulation values. When
ap become smaller, the <\w\2> for theory and simulation are closer. Superconductivity would
totally break down when a;, < 0, since there is no condensation potential. The vortex structures

in different magnetic fields are shown in following (Fig.2-57Fig.2-7).

It’s clearly that the distribution of vortex structure is hexagonal(vortex solid). The vortex
density become larger when magnetic field become larger. Moreover, the values for <1,Z)2> become

smaller. The Cooper pairs are broken by the magnetic field.

2.3.2 Hexagonal grid

Hexagonal gird is similar as Arbikosove lattice, the relation between average order parameters

<¢2> and magnetic field show in Fig.2-8
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(a) vortex sutructure in x space
©©@©©©©©@©©©©©@©©©©©

| .
0.2460

0.4920
0.4305
0.3690

0.1845
0.1230
0.06150
0

(b)Vortex structure in k space

_—

Figure 2-5: Vortex structure(b = 0.1). The picture (a) is vortex lattice in real space, the
vortex structure have the hexagonal symmetry. The picture (b) is the vortex spectrum in
qusi-monentum space, the peaks are sharp and the peak distribution has hexagonal symmetry,

therefore, this tell that the vortices in the solid phase.
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(a) vortex sutructure in x space
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(b)Vortex structure in k space

_—

b e

Figure 2-6: Vortex structure(b = 0.3).

broke by the magnetic field

Similar as Fig.2-5, the vortex lattice
space(picture(a)) has hexagonal symmetry, and the peak distribution for the vortex spec-
trum(picture(b)) still has hexagonal symmetry. The order parameters(|1|%) in large magnetic
file(b = 0.3) are smaller than small magnetic field(b = 0.7), because of the Cooper pairs are
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(b)Vortex structure in k space
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(a) vortex sutructure in x space
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Similar as Fig.2-5, the vortex lattice in real

space(picture(a)) has hexagonal symmetry, and the peak distribution for the vortex spec-

Vortex structure(b = 0.7).

Figure 2-7:

=0.3).

b

(

trum (picture(b)) still has hexagonal symmetry. The order parameters(|)|?) in large magnetic

file(b = 0.7) are samller than small magnetic field
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Figure 2-8: Awverage superfluid density <|1/)|2> as function of magnetic field(hexagonal grid).
The red line is values for the analytic expression Eq.(2.40). The purper points are simulation
values in hexagonal grid, and almost the same as values for rectangular grid.
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The red line is theory value where come form Eq.(2.40), the purple points are simulation
value. The value for <¢2> rectangular grid and for hexagonal grid are almost the same. The
vortex structure in different magnetic field as shown in the following, see Fig.2-8 Fig.2-10.
Similar as vortex structure on rectangular grid, the vortex structure are also has hexagonal
symmetry. The hexagonal grid is more symmetric than rectangular grid, however, the vortex
lattice structure on the rectangular grid is more beautiful than on the hexagonal grid, since the

relaxation time for hexagonal grid is larger than rectangular grid.
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Figure 2-9: Vortex structure(b =0.1). The vortex lattice has hexagonal symmetry.

30



300

b=0.3

0.4380
0.3833
0.3285
0.2737
0.2190
0.1643
0.1095
0.05475
0

Figure 2-10: Vortex structure(b = 0.3). The vortex lattice also has hexagonal symmetry.
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Figure 2-11: Vortex structure(b = 0.7). The vortex lattice also has hexagonal symmetry, and
the values of order parameters become samller, the Cooper pairs are broken by the magnetic
field.
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Chapter 3

Model and simulation method for

the vortex dynamics in clean system

3.1 Time Dependent Ginzburg-Landau theory in continuum

3.1.1 Electric field in a mixed state superconductor and the flux flow

In previous chapter I discussed the static vortex system. The system would eventually relax to
a lowest free energy state. The relaxation dynamics was not realistic in a sense that effects of
the electric field were neglected (which is not essential for the static properties of the system
since the final state is the same). In this chapter I start to consider dynamics of a type II
superconductor in external magnetic and electric fields. When the electric field applied to the
system, it acts on vortices as an external force. Consequently the TDGL equation should be

modified as following

v RE (D e _ SF[T,A]
2 2m* <8t+ h (I)) V= S (3:-1)

where the free energy was defined in Eq.(chapter II). Here, ® is an electric potential and = is
the inverse diffusion constant. The electric field is E = —V® — %%—?, while the magnetic field

is given by B =V x A. The TDGL equation is invariant under the gauge transformation
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e*
= Texp(—iSy ) 2
eXp< thx>, (3.2)
= A+ Vy;
10x

c ot’

where  is an arbitrary function of space and time. Choosing the zero scalar potential gauge is

convenient for the simulations which follow:

Here both magnetic and electric fields are assumed to be constant. Dynamics of electromagnetic
field should in principle also taken into account by the Maxwell quietens. However as explained
in chapter II, for strongly type II superconduétors magnetization is of order 1/x? and hence
negligible. Vortices overlap and their magnetic fields become homogeneous. Electric fields in
the flux flow state are also homogenéous (except at very low values in the presence of pinning,

see chapter IV) and their dynamics can be neglected as well except for the normal conductivity

J=o0,F. (3.4)

Substituting the free energy F'[U, A] of Eq.(chapter II) into equation, the TDGL equation
becomes
VI 0y (V—ieA>2\Il+aT (1—t)¥ -V [P . (3.5)
22m* Ot 2m* he ‘
The formula is formally identical to the static TDGL equation, however the vector potential now
contains a time dependent part. The time derivative term is purely dissipative (relaxational)
and carries an implicit the information about the vortex velocity. When vortices move faster
the frequency of phase change becomes larger, and finally, the vortex structure would break

down and the order parameter goes to zero. Because of the energy dissipation, resistance of
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type 1l superconductors is not zero. The formula for supercurrent density is the same as in the
static case.
e*h e*?

(U*V — UVT*) +

2m* msC

Jo=i 7% A. (3.6)

Note that the supercurrent density is also invariant under gauge transformation.

3.1.2 Dimensionless electric field and conductivity

Using the same units as in static case, £, tgr, the derived units of electric field is Fgp =

2
will be defined as

Ct%Hcg = %HCQ. In YBCO this field is very large. Therefore the dimensionless electric field

¢=E/EqyL. (3.7)

Consequently the dimensionless vector potential is

—1 1
a= (Tby, §bx — et) , (3.8)

here x and y in unit of £, and ¢ in unit, of ¢¢z. The yvelocity of vortices, which in physical units
is V = cE/B, in dimensionless units reads:
tar cE tgr, E Heo €

VST B TEa B b

The dimensionless TDGL equation takes a form

0 77 *
2= HY —anp + (@) v, (3.9)
where H = —%Dz - %,
J— / —
aj, = %b (3.10)

and the dimensionless supercurrent density

o= 5 V% — 6y + [9la, (311)

34



are the same as in the static case, with the only difference being the electric field term in vector

potential, Eq.(3.8).

3.2 Discrete TDGL equation on rectangular grid

3.2.1 Rectangular grid

The discretized version of the dynamic TDGL equation is similar to the statistic one, the only

difference being the link variables for the gauge field. The link variable

U";Ylyn2 = exp (_Le;yLl,nQ) ’ (312)
where AB phase
1
O ny = d/o {dauxaz (x7 () + pyay (r7 (a))} ) (3.13)

For the nonequlibrum system, the link variables change with time, the link variables in p; and

1o directions are

nine _§?by (314)
9 V3as V3as
mms = bz — ———et,
’ 4 s 2
where the distance between vortex a, = %, r="ny= 73%112. Substitute a,, = and
y into Eq.(3.14),
1 T
ni,na2 = —?nz (315)
9 T V3 aa
N

The discretized dynamic TDGL equation is similar as static case, the only difference is the link

variables. The formula show as following
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\/g UTILhnzwnH-l n2 (UT%LHQ) wnl—l n2+

d
awn”m — \ (3.16)

2 14
3Un17n2¢n1,n2+1 +3 (Um nz) wm,m—l - ?wm,nz

4
f
7 ( ) ng ‘wnl,mf wm,m

3.2.2 Discretized supercurrent density

The the definition of supercurrent density

5f grad

1

j,u =
where u = 1,2, f is the dimensionless free energy. The supercurrent density in x and y direction

as following

1

- 1 *

Je = Saa (Um,nzd’nl,nzwnﬁl,nz - C'C) (3.18)
S

: i 2 *

Jy = 9 <\/§GA> (Um,nzwm,nzwm,nz-&-l - C'C) :
2 s

Next, I expand discretized supercurrent density formula to get continuum formula. Use

Taylor expansion to expand link variables U, n, and order parameters 1

ni,ng’
Ul ny, = exp(=ib), ) ~1—1i6] .. (3.19)
an O
/lzz)n1+1,’n2 = /lzz) + ?%
3a,A 0
wnl,n2+1 = Q,Z) 2 s 8 w’

where v = 1,2, both 0} and 9%17712 were defined in Eq.(3.14). The discretized supercurrent

ni,n2

density in z direction can be write as
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.

(1 - ie}Ll,TLQ) w* (1/} + %6@@’ ) -

Jz = a
an . * o]
205 | (U408, ) Yy (Vs + 2 00, )
1 % 0 0 % S 1 2
= § <¢n17n2 %wm,nz - wm,m &anl’m) + aenhnz ‘¢n11n2}

i [ 0 o . 2
= 5 <¢n1,n2 %wnl,ng - Tvbnl,ng &nwm,m) + Qg }wnl,ng‘

Similarly, The discretized supercurrent density in y direction

M| .

. (1 - i@}“’nz) 1/}21,112 (wnl,m + 23 as gywm,r@) -
jy = _—
-nl * 3 O /%
2 ( aﬁ) (1 + 167117"2) ¢n17n2 (wnlﬂw + \{aﬁ @wnl,n2>

VA 0 J . 2 s 4
= 5 <¢n1,n2 @¢n1,n2 - wnl,m ywm,m) + %aem,m W]mmz

i 0 0 2
= 5 (Vs gy P = Vv g Vi) + 0 o

‘ 2

Both the continuum limit for discretized supercurrent density in x and y direction are the some

as continuum formulas Eq.(3.11).

3.3 Simulation result and discussion

3.3.1 Parameters for YBCO

To the following parameters of Y BC'O sample as used. T, = 100K, He. = 1407, m* = 2me.
The coherence length and the penetration depth:

h n?
(2m*aTy) (2m*T.£7)
*x I/ *2 2 5
A= Y o — = AT g g EmE
2e* \ maT, c2m* 52
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The Lattice spacing is

20y 20,

= b2 = 4.1nm b1/, apn = 4| —.

a = =
g 2 \/gB \/gHCQ
magnetic field b = 0.1 in this simulation aaf ~ 13nm. The unit of time is:

Op = i 5% 1030hm~lem ™! = 15—1 % 10% % 1012 sec™! = 4.545 % 1015

82 ( )2
140 15
Cogmn2 . 8m(49)7(4.54541015) 9
— =0, = (32101072 = 1.06 s/cm

tar =7€%/2 = 1.24 % 10~ s,
and unit of electric field
Eqr = chti — 578GY20m Y2Sec! = 1.7 « 1O5V0t/Cm
ClGL

For sample size ymax = 10 % 13 % 1077Cm = 1.3« 107°C'm, voltage is

VA~ Bl =231V ot

Superfluid density:

* .2
U2 = oT, /b S = 7.2 4 10%0%em ™3
0 e/ Are*2 )\?
The supercurrent density:
_ he* 2 s GYE 15 A

3.3.2 Superfluid density at flux flow

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

In contrast to the static case, under the influence of the Lorentz force the vortices move.

At low electric fields, the vortex structure approximately remains hexagonal for an isotropic

material (assumed in the present study) in directions perpendicular to magnetic field. See Fig.

3.1(a) compared to perfect hexagonal lattice in statics at the same field b = 0.4. The moving

lattice is not exactly hexagonal since electric field breaks explicitly the hexagonal symmetry,
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Figure 3-1: Superfluid density with small electric field. The picture(a) show the vortex lattice
without electric field. As show in previous chapter, the vortex lattice has hexagonal symmetry.
The picture(b) show the vortex lattice with small electric field. The electric field apply in
y direction, and the vortices move in x direction. The moving vortex lattice is not exactly
hexagonal.

see theoretical symmetry considerations in[7]. In the large electric fields, the vortex matter
flows in my simulation like a liquid(In fact, the theoretical results for moving lattice still has
hexagonal). For example, when I consider the vortex flow for a;, = 0.45 and electric field €

applied in the y direction, the vortex structures in different electric field show in Fig.3-1.

3.3.3 Definition of nonlinear conductivity and comparison of simulation with

the analytic results

Using expansion in small parameter

ah(v):%(l—t—b—v2) ;(1—15—19—2—2) (3.27)

D. Li, B. Rosenstein and M. Malkin [15] calculated the nonlinear conductivity for clean type-11
superconductors. In the flux flow regime, in addition to the normal state conductivity, there is

a large contribution form the Cooper pairs represented by order parameter field. The nonlinear

39

3
(@]

0.3640
0.3185
0.2730
0.2275
0.1820
0.1365
0.09100
0.04550
0



(a) t =2000 (b) t =2100
=/ =/

Figure 3-2: Moving lattices with pinning. Two snapshots at times t=2000 (a) and t=2100 (b).
The vortices move in the x direction

conductivity will be defined as follows

Js ihe*
O'S = — =

E S 2mE

v (v + %A) U+ cc. (3.28)

4mrk?
2y 0

Using the unit og = the dimensionless‘nonlinear conductivity in the LLL approximation

is proportional to the superfluid density,

ap (V) 2

Ba(v)

Numerical simulation allows to check the analytic theory and extend it beyond perturbation

7
2v

(3.29)

OLLL = <¢ELLay¢LLL - ¢LLLay¢zLL> = <‘¢LLL‘2> =

theory applicability range.

I simulated the case b = 0.9, t = 0, for which the parameter aj (v) = 0.05 is small, the
order parameters are within the LLL approximation applicability range. For velocity is low
(corresponding to low electric field), so that the Abrikosov beta does not change from its static
value, 54 (v) ~ 1.16. The comparison of the analytic theory and the simulation is shown in
Fig.3-3. For 84 (v) # 1.16 at large electric field ¢, the value for the theoretical line have to be
modified. As expected, the difference between the theory and the simulation becomes smaller
when ay, (v) become smaller. That is, when number of Cooper pairs in becomes smaller, most

of them stay in LLL.
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Figure 3-3: Comparison of simulated flux flow nonlinear conductivity with the analytic results.
The blue points are simulation values for j/e. The red points are simulation value for <1/J2> =

o, which provides the first approximation and the green line is the full analytic expression
Eq.(3.29).
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Figure 3-4: Comparison of simulated nonlinear j — € curve with analytic result. The green line
is theory value Eq.(3.29). The red points are simulation values for o1, * €. The blue points are
simulation for supercurrent density values.

Next, the j — € characteristic is shown in Fig:3.4.-The blue points are simulation result for
supercurrent density, and the red points are simulation result for superfluid density multiplied
by electric field, <¢2> x €. Note that <¢2> is the LLL conductivity according to Eq.(3.29). The
green line fit well with red points when aj become small.

The theory is inapplicable when ay, (v) is large, so I consider two cases with large ap, (v). In
the first the magnetic field b is fixed at b = 0.4, while temperature ¢’ has two values 0.0 and 0.3
(just change of aj, without thermal noise on the mesoscopic level). Electric field e ranges from
0 to 0.2. The parameters ap, (0) for this case are therefore, 0.3 and 0.15 respectively. See Fig.3-
5. The red triangles are values for a; = 0.3, while the blue squares are values for ap = 0.15.
The supercurrent current density at higher temperature is smaller since the temperature breaks
Cooper pairs.

In the case II, the magnetic field b has two values 0.4 and 0.7, while the temperature ¢’ is
fix, ¢ = 0.0. Electric field from 0 to 0.2. The parameters ay, (0) for case Il are, therefore, 0.3

and 0.15 respectively. See Fig3-6. The supercurrent density in large magnetic field(b = 0.7) is
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Figure 3-5: J-E curve for different a;, (fixr b). The red triangles are values for ay (0) = 0.3.
The blue squares are values for ay (0) = 0.15.
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Figure 3-6: J-E curve for different ay, (fix:t).-The red triangles are values for aj (0) = 0.3. The
blue squares are values for aj (0) = 0.15.

smaller the small magnetic field(b = 0.3) under the same electric field, for Cooper pairs density
are less in large magnetic. In addition, the j — e curve in b = 0.7 is more linear then in b = 0.3,

the reason is that when vortex move faster, the Cooper pairs are more difficult to transport.

44



Chapter 4

Vortex statics and dynamics in
superconductor with periodic

pinning.

4.1 Time dependent Ginzburg-Landau theory with periodic pin-
ning

The difference between the clean superconductor’s GL free energy and the energy in the presence

of the artificial pinning centers located r, is the pinning potential:

V(e)=T.) U(r—r,). (4.1)

The TDGL equation should be modified as follows

v h% 0 h ie \? , S
- — U = ——A| U T.(1— —1,)) ¥ -V | U7 W, 4.2
2 2m* Ot 2m* v he ta ( E+U@—r >) v (4.2)

Using the same unitsas in the clean case, the dimensionless TDGL equation becomes

(V —ia)? + % (1=t +u(F—Fa)) ¥ — (), (4.3)

N

0
o’
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where u(T — T,) is the dimensionless pinning potential. The dimensionless current density as

defined before j = j, + js, where

Jn = OqLE (4.4)
Jo = 5 WVY— 0V + e

As discussed in previous, the dissipation mainly comes from the vortex flow. The electric
resistance comes also from normal electrons, when the electric field is "allowed" to enter the
sample due to the flux flow. Pinning slows and eventually stops vortices from moving. This is

the reason why there exists the critical current.

4.2 Pinning distributions

Two kinds of pinning array are discussed in this thesis. The first one assumes that small parts
of the sample are normal or even insulating: “An example is the columnar defect or simply a
hole. Obviously the order parameter inside such a center (neglecting the proximity effects) is
always zero. The weaker 67, pinning is just a-local modification of the critical temperature
at the center’s site. It influences the condensation potential, Eq.(4.6). In other words, the
vortices will not be always confined to the pinning centers. The simulation results are shown
in following subsections.

The shape of pinning sites I simulated are rectangles. The pining distribution is hexagonal,
as shown in Fig.4-1. T assume that vortices outnumber the pinning sites, namely, the magnetic

field is above the so called matching field. Therefore the filling factor parameter defined as,

pinning sites’ number

f (4.5)

vortices’ number

. For example the f = 1/2 case is shown in Fig.4-1
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Figure 4-1: Pinning distribution. The black rectangles are pinning sites. The distribution of
their centers is hexagonal, commensurate with the Abrikosov lattice.

4.3 Strong pinning array

The magnetic field b = 0.4 and the temperature ¢ = 0 in the following simulation.

4.3.1 Superfluid density

The vortex distribution is influenced by pinning. In this simulation all the pinning distributions
are hexagonal, however the size of the pinning sites varies (pinning size 4,9,16). The pinning
factor f = 0.5. The results are shown in Fig.4-27Fig.4-4. In Fig.4-2 for the size of 4, the vortex
structure still has hexagonal symmetry, while for larger sited in Fig.4-3 and Fig.4-4, the vortex

structure does not remain hexagonal.

4.3.2 Dynamics in the presence of pinning.
a. Interstitial vortices

The vortices in the superconductors with artificial pinning array can be separated into two
different sets: the pinned vortices which are trapped on the pinning centers, and the interstitial
vortices which can be considered as "free vortices". If the number of vortices is smaller than
the number of pinning sites, all of them are likely to be pinned. If magnetic field is equal

to the matching field, there are no interstitial vortices, however when vortices outnumber the
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pinning size = 4

0.3880
0.3395
0.2910
0.2425
0.1940
0.1455
0.09700
0.04850

Figure 4-2: Vortex structure with periodic pinning (pinning size = 4). The vortex lattice still
has hexagonal symmetry, while the vortex core in the pinning centers are larger then that of
the intersticial vortices.

pinning size =9

0.4560
0.3990
0.3420
0.2850
0.2280
0.1710
0.1140
0.05700

Figure 4-3: Vortex structure with periodic pinning(pinning size = 9). The vortex structure is
different compared to the clean system. Pinning leads to expansion of the vortex cores.

48



pinning size =16

0.1195
0.05975

Figure 4-4: Vortex Structure with periodic pinning(pinning size = 16). Similar to Fig.4-3, the
pinning vortices lead the vortex distortiontion increasing the unit cell

sites, some of them will be "liberated" due to repulsion from the vortices already pinned. On
Fig.4-5 the dynamics of the interstitial vortices is shown. The electric field is applied in the y
direction, thus the vortices move along'the x-direction. The parameters for the simulation are:
the electric field e = 0.0001. Pinning centers size is 4. Two snapshots at times ¢t = 2000 (a)
and t = 2100 (b) for the case when for each rectangular pinning center there are two vortices.
Two different kinds of vortices are seen:‘the-interstitial vortices have smaller cores and move,
and the pinned vortices which have larger cores (like in the static case) and don’t move.

For the pinning force is larger that the driving force, the pinned vortices are not moving,
while the interstitial are pushed by driving force. The flux flow therefore is due to interstitial

vortices.

b. I-V curves

In this subsection the dependence of the flux flow current on the electric field is presented. One
should be warned that the simulation is reliable only when the supercurrent is smaller than
the normal current. Otherwise the electric field in the superconductors is not uniform and a
much more complicated system of equations including the Maxwell equations for the electric

field should be solved. Thus the simulation results for currents approaching the critical current
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(a) t =2000 (b) t =2010

Figure 4-5: Moving lattices with pinning. Two snapshots at times t=2000 (a) and t=2100
(b) for the case when for each rectangular pinning center there are two vortices. Two different
kinds of vortices are seen: the interstitial vortices have smaller cores and move, and the pinned
vortices which have larger cores and don’t move.

are not correct.

In Fig. 4-6, the J — E curves for:-the clean superconductors and the superconductors with
pinning array are compared. The parameters in-the simulation are: the electric field € from 0
to 0.2, pinning factor f = 0 (clean) and 0.5:-The size of pinning centers is 9. When the electric
field is large the behavior of J— E curve for the clean superconductors and superconductors with
pinning array are similar. However when electric field is small but larger than pinning force, the
current for superconductors with pinning array is larger than the clan superconductors. The
reason is that the pinning array reduces the velocity of moving vortices. If the driving force is

smaller than the pinning, the resistance is zero inside the superconductors.

4.4 Weaker pinning array

The magnetic field b = 0.4 and the temperature ¢ = 0 in the following simulation.
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Figure 4-6: Comparison J—FE curve for clean superconductors and superconductors with pinning
array. The red triangle represent clear system. The blue rectangle represent system with
pinning in size of 9.
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Figure 4-7: Comparison of vortex lattices for clean superconductors and superconductors with
pinning array. The picture in the left hand side show the vortex lattice in clean superconductors,
and the picture in the right hand side show the vortex lattice in superconductors with pinning
array. The different between two pictures is that the positions of vortices are shifted by the
pinning array.

4.4.1 Superfluid density

The comparison of vortex lattice for the clean superconductors and superconductors with pin-
ning array is shown in Fig.4-7. The pinning factor f = 0 (clean) and 1, and the pinning size is
9. As Fig.4-7 shown, the vortices are trapped on the pinning centers. The pinned vortices in
strong pinning array and in weaker pinning array are different. For the strong pinning array the
size of vortex cores dependent on the pinning size (see Fig.4-3), while for the weaker pinning

array the size of vortex cores is almost the same as vortex in clean superconductors.

4.4.2 1I-V curves

The condensation potential is influenced by the pinning array, it can be seem as the critical

temperature is changed. The average condensation potential is modified as following

N
—1—t—u(ry,—ry)) = Z (1-1t) (4.6)

=z~
‘M-
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where 7, represent the pinning positions, ¢ is the original critical temperature and ¢’ is the new
critical temperature. Note that ¢’ > ¢, which means the critical temperature T, become smaller.
However, this work compared systems with the same critical temperature, a constant ¢ is added

into the condensation potential, so that

1 1Y
NZ (I—t—u(rn—re) +¢) = NZ (1-1), (4.7)

where

N
> utra =)

(=t ——— (48)

The comparison of J — E cures for different strength of pinning potentials as shown in
Fig.4-8. The parameters for the simulation are: the electric field form 0 to 0.4. The pinning
factor f = 1, and size of pinning center is 1. The strength of pinning potential are 0 (clean
system), 1 and 10. The values of critical current are dependent on the strength of pinning
potential. When pinning potential is'large, the vortices are more difficult to escape from the
pinning centers. The resistance is zero when vortices are trapped. As shown in Fig4-8, the
superconductors with pinning array can bear stronger electric field. The reason is the velocity
of moving vortices is reduced by the pinning force, in other words, the energy dissipation is
reduced. All in all, the pinning effect increase both the critical current and critical electric field

(critical velocity of moving lattice), while the critical temperature is decrease.
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Figure 4-8: Comparison of J — E curve for different strength of pinning potential (u = 0,u =
0.5,u4 = 1). The red triangles are values for clean superconductor, the blue circle are values
for superconductors with weaker pinning array (u = 1), the purple diamond are values for
superconductors with stronger pinning array (v = 10). The pinning effects are obvious when
electric field is small, and when electric field near critical electric field.
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Chapter 5

Conclusion

The statics and dynamics of vortex lattices in highly anisotropic layered type II superconductors
has been studied by using the 2D time-depentent Ginzburg-Landau equation. The U — v
algorithm was used to simulate the TDGL equation numerically. Both the order parameters
describing the vortex lattice and the non-linear J — E characteristics were calculated. Two
different cases were investigated in this thesis;oneds the clean superconductors and another
one is superconductors with artificial pinning array commensurate with Abrikosov lattice.

In clean superconductors, the static superfluid density (square of the order parameter \w\z)
decreases as the magnetic field increases approaching the upper critical field H.o (T') and van-
ishes when magnetic field is larger then H.o (T'). The statics configuration of vortex lattice has
hexagonal symmetry. When the electric field enters the superconductors, the vortices would
move due to the Lorentz force and the vortex configuration is deformed. Furthermore, the
superfluid density also decreases with electric field increase. The relation between superfluid
density, magnetic field and electric field are well represented by the bifurcation expansion for-
mula [¢|? = as /B 4,where the parameter aj, = (1—t—b— Z—;)/Q (the superfluid density becoming
zero when aj, < 0). Deviations from this formula at large currents (electric fields) were found.
In small electric filed region the J — E characteristic is linear, while in large electric field the
J — E characteristic is non-linear. The simulation result for J — E characteristic fit in with
analytical result in small ap. I also compared J — F characteristics with different a; including
different temperature ¢ and different magnetic field b.

In superconductors with artificial pinning array, the vortices are trapped by the pinning
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centers. Two different strength of pinning arrays are considered in this work. I compared
vortex configuration in statics and dynamics for different pinning sizes (form small to large),
numbers and kinds (from a very strong pinning by a normal islands to weak §7, pinning). The
order parameter and supercurrent configuration, which is in clean material dominated by the
repulsive inter - vortex forces is deformed by the pinned vortices. The J — E characteristics are
also strongly influenced by the pinning array. When the electric field is smaller than the pinning
force, the vortices are standing on the pinning centers and reduce the energy dissipation(Joule
heat). When the electric field is larger than the pinning force, the velocity of moving vortex
is reduced by the pinning array. Therefore the superconductors with pinning array can bear
stronger electric field. All in all, the pinning effect increase both the critical current and critical
electric field (critical velocity of moving lattice), while the critical temperature is decrease.
The model in this thesis only consider the uniform electric field, therefore this model only
can applied when normal current is larger than supercurrent. The full electrodynamics have
to be considered when normal current smaller than supercurrent. In addition, the model does
not contain the influence of thermal fluctuation which are especially important for high 7,
superconductors. When temperature-approach T;; the thermal fluctuation would dominate the
physical quantities such as vortex structure (structure factor), heat capacity and conductivity.

In the future, the full electrodynamics ‘and.thermal noise would add into the model.
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Appendix A

Dimensionless formulas

Start from physical unit Gibb’s free energy without pinning potential

2 b/

h? 1e*
F = [d — —A)U| —aT.(1-1t)|¥ o) Al
[rams|(v-a) ] -ana-opwEs G (A1)
= /dQ’I“Fn
with o1, = W2y = 2PN e F,, is‘energy density. Let unit of length is &, unit of

2m*§2 ) £202m*2 ’

gauge is HE, unit of order parameter is v2Wg = /2 (aT.) /¥, the equation above can be write

as following

F h2 (1 ie* > 2 aT, S
= -V — — (Hca) | ¥| — 1—8)|U]* 4 = , A2
Tt = am a7 e () 9| e ol gl (a2)
2 2 Ho£2)? 2 * ¢2 . .
where b,‘\;()' 1= 5 §g§2e*2 — (87r5§>\)2 - 81;22, and £ Igccs — %7(; H.£% = 1. Let dimensionless energy
_ 87k? . . . 5 . .
- g2 )
[ ="z F , therefore the dimensionless Gibb’s free energy can rewrite as following
_1 . 2 (11—t 1
f= /d2r2 |(V' —ia) ¥|” - ( 5 ) ) + 3 ). (A.3)

Next, I chose symmetric gauge, A = (%By, %Bm — cEt), while the dimensionless gauge as
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following

A —1 By 1 Bx cEt
a = = — , = — (A.4)
H:¢ 2 H§ 2HE HL
—1 1 _
with e = E/Eqp, t = t/tgr, where unit of electric field Eqp = %Hcg = C%EHCQ.
Third, the TDGL equation
2 o
et (A5)
22m* Ot o
o _ 9 (A.6)
ot o
1 N2 1-—t
= 5 (V' —ia) ¢y - Oy s oo,
2 2
with the unit of time tgr = %.
Finally, supercurrent density,
the* < e* 2 €'h 9 .
Js = (U*'VU — VT + —A |V|° = |Wol” s (A.7)
2m* m*c m*&
o CHC2
o omER2TY
che *2 2 * * 7 ¢2
where 267%{22 = 275222 = 6*5;;2 = efzcjrge ;1;'6\1;0' = i’?—fg, and © I;icg = %’;Hg? = 1, therefore
the dimensionless supercurrent density
. l —; 1% 2
j = (@' - uV'Y) + ua. (A8)
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Appendix B

Link variables

The link variable vector U define as following

U =exp (=0}, ) » (B.1)
where phase 0 . = f:ﬂﬂ/s a - dr is the Aharonov-Baohm(A-B) phase, with a is the dimen-

sionless vector potential, n is the link’s origin, while it ends at n + (aa/s) p7.he line integral
is taken along the straight line. In order,to simplify the calculation of the line integration, we

define a parameter 0 < a < 1:

d an

@r’y (Oé) = ?H,y,

where v =1,2,3 and p, is the unit vector.

The general formula for 67, is

s = [ d0{[ i @] a0 @)+ [y @] @)} B2
- = Olda{uxam (0)) + ryay (7 (@)},

where a, and a, were defined in Eq.(A.4). For hexagonal grid, the unit vectors are
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pr = (1,0)5 9 = },ﬁ g = ;176 ,
27 2 272
The A-B phase for u; direction:
3
rl(a) = aa <n1+a+m,fn2> —
2° 2
1
1 an —1
Gmynz = ? o da7by
2
_ _V3ag,
2 s2
Similarly, the A-B phase for py and ps direction
o) = % (m+ 200y 1))
s 2 2
1
2 an ]_ < \/g _ —
9n1’n2 = ?— | [_iby + 7 (bx — Et)] do
2
() = a(nl—a+n2;a,\é§(n2+a)> —
ba [1|1V3 V3 _
3 _ ba SVOE LN (bp —
Orime = & ; [2 591 (bz — et) | do
V3ai V3 -
= T?b (TL]_ + n2) — 7€t

For rectangular grid, the unit vectors are

py = (1,0) ;09 = (0,

The A-B phase for p; and ps directions
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Appendix C

Contimuum limit

In this work, I introduced lattice gauge theory to get the discretized TDGL equation and free
energy. This appendix proof that the limit of discretized formulas are the same as continuum

formulas. About the free energy on hexagonal grid:

Nmax
f= Z fgrad+fpot§ (Cl)
ni,n2=1
Ul - )
( n1,ﬂ2wn1+1,n2 7’/)711,712) +
max 2
2 e I N A |
ni,nz=1 ni,ne ¥ni—1lna+1 ni,ng
\ +cc
\/g Mmax 9 1 4
fpot = 7‘12 Z - (1_t,) W)m,m‘ +§ Unymal |5
ni,na2=1
with lattice distance “4 = d, where symbol U represent the link variable which defined in

Eq.(B.1).
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eXp ( 7/91111 n2) ’l/}nl-‘rl,’nz—i_
exp (7’9717,1 nz) ¢n1—1 n2+

Mmax 2
exp ( 9711 n2) ¢n17n2+1+
fgrad Z wnl,nz - 61/&7117712 (03)
nhnz 1 exp (wm nz) Py np—171
3
exp ( wm,nz) Py —1,ma+17T
3
\ exp (Zem,m) ¢n1+1,n2*1 | ),
(T 12 7 \

1 (9n nz)
<1 — sz n2 12 2 ) ¢n1+1,n2+

2

1 (931 nz)
1 + sz n2 12 2 wnl—l,nz—i_

2

2 (931 ny)

9 Nmax Zenl n9 % wnlvn2+1+
_ *
- 73 Z djmﬂw 9 (0% n )2 B 61!1”1’”2

ni,na2=1 1 + Zenl na % wn1—17n2+

2
1— 03 (95;1,"2) ¢ +
W, nz 2 n1—1,na+1

3 (9%17”2)
Vil Y052 | Ynitine—1

\ J

Expend the order parameters ¥, 1 nsy Ynpmgrrsand ¥, 1 .14 by using Taylor explanation.

The Eq.(C.3) become as following

\

(
|:(9%L1 n2) (021 n2) ( nl’"2) ] wnl’"Q
max 6¢n n
_ g —id [297111 ng 0%1 ny T Hil "2] 1 =+ C4
fgrad - Z wn17n2 2 3 Oy m ( ' )
n1m2 1 —idv/3 [enhnz + 05, nz] 1 “+
821/)7’1/ n ’Lpn n
% 8x12’ >+ 5 ﬁy% ?
n
max 3 82 82 6 a
2 ' 2
i D D [ e B O ) L L
ni,ng
- / d2f¢1*117n2 [v2 —2a-V + a2] wm,nz'
Note that A-B phases for unit vectors can be written as ¢9m ny = —?bdzm = —% bdy, Oilm =

bd (\[— _ y) m ny = % (\/35 4 @), therefore,
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2
(0?111 2 ) + (021 ,T2

201 92

ni,n2

ni,n2

ni,nz

)+ (63, ,)° = Z (d20%2? + dPy) = ng (a2+a2) (C.5)

3
3
+ 9n17n2 = 5 dy = d3ax

d
O, = ‘fbdx — ‘fay.

Put fyarar and fpor together, It’s clear that the formula for discretized free energy and continuum

free energy are the same. Similarly, the discretized TDGL equation is the same as continuum

TDGL equation.

For discretized free energy on rectangular grid, the potential term is nothing different,

however, the gradient term has to modify. The gradient term for free energy is

Mmax

fgrad = - Z ¢)2177’L2

ni,na2=1

Mmax

= - Z Wﬁl,nz

ni,na2=1

1
(Un17n2¢n1+1,n2 - wnl,m) +

| % (Ugl,nzwnl,nz-i-l o, 1/}n17n2) + (Cﬁ)

+cc

€xp (_Zﬂ?lll,nz) wnﬁ-lmz +exp (i97111,n2) wnl—lmg—l_

4 N2 4 N2
| 38XP (_Zenl,nz) ¢n17n2+1 + 3€xp (wnhnz) wnl,m—l_‘_

14

3 7ni,n2

Similarly as discretized free energy on hexagonal grid, both the link variables and order para-

meters are expend by using Taylor explanation.
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i e;’ll n 2
( 207111 nz ( 1é 2) > ¢n1+1,n2+
0L )’
(1 + 07, g (2)) Yy 1T
Mmax
_ x 07y n
fgrad B Z ¢n1,n2 §< 7’9%1 nz @ ¢n17n2+1+ (07)
ni,na=1 ( , )
on ,n
% <1 + Z97211 ng T 12 2 > wnl—l,nz
14
\ _7#}”1,”2
1
(03, n2> (62, .,) }wm .
o
gt | ) e
- ni,n2 . awn n
n1,n2=1 71d\4f [0%«1,”2] 1 24
\ 83:12 >+ By% ? Y,
n
mox 82 92\ ) 9 )
- = 3 v | (gt gp) 2 (a2 ) 158
ni,n2

= — / v L, (V2 =2a-V a2 v, .,

Note that A-B phases for unit vectors can be written as 07 = —@bdQng = —%bdy, 62 =

ni,n2 ni,n2

VydPn, = bda,
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Appendix D

The Forward-Difference Method

Forward-Difference method is base on finite difference method which is one of the most pop-
ular method to solve partial differential equations with boundary conditions. Similar as finite

difference method, discrete space part and replace the space derivative.

d? i+ hotj) =20 (aty) +ab (@ — ht))  h? 04

(D.1)

where §; € (z;—1,2;4+1). Similar as space, discrete time part and replace the time derivative.

) nti+ k) = (xt;) kO

for some p1; € (t,%j41). The local truncation error for this difference equation is

k 9% h2 9t

T’L]

For linear diffusion equation, it’s convenient to write equation represent as matrix, the system
could implied as the tridiagonal form. For non-linear equation, it’s difficult to calculate by

matrix, thus, we solve equation of motion directly.
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