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Abstract

We propose a pure electrical means of detecting an alternating (ac) spin current,
and we perform theoretical calculations on the order of magnitude of the expected
electrical signal. Our proposed scheme has employed the spin-orbit interaction in
semiconductors. The proposed measurement device consists of a two-dimensional
electron gas (2DEG) sandwiched between two metallic gates such that the
electromagnetic waves in between the gates are waveguide modes. An ac in-plane
spin current, with both spin and flow direction orthogonal to each other and in the
plane of the 2DEG, passes through the structure is found to excite photons. Only
photons corresponding to the transverse magnetic (TM) waveguide modes are excited.
These excitations give rise to an ac electrical potential difference between the two
metal gates. The potential difference is found to be measurable by present day
experimental capability.
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Chapter 1

Introduction

To start this first chapter of this thesis, we provide in Sec. 1-1, a general guide to the
structure of the thesis. The next two sections of this introductory chapter cover the
background and motivation of this thesis. The last section describes our calculation

method in this thesis.

1.1 Introductory touring to this thesis

In the first chapter, we introduce the background of spintronics as well as spin-orbit
interaction, and we propose the motivation of this issue and the calculation method in this
thesis. Chapter 2 describes the geometric structure of our system and the quantization of
electromagnetic wave confined by the waveguide. In Chapter 3, we solve two traditional
electrodynamics problems with our calculation method, for checking if our method is
practical. In Chapter 4, we solve the electric field induced by ac in-plane polarized spin
current. Chapter 5 reports that the signal generated by ac in-plane polarized spin current

is measurable. Finally, we discuss and take conclusions in this thesis.
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1.2 Background and Review

In this review section, we present a brief background on spintronics, on spin current, on
spin-orbit interaction, and on the progress in the research on the measurement of spin

current.

Spintronics

Spintronics is an area of intense current scientific interests[l]. It is important for in-
formation storage and quantum computing. Fundamental studies of spintronics include
investigations of spin transport in materials, as well as measurement of spin accumulation,
spin relaxation, and spin current. Especially, spin current plays an important role in an
spintronic devices. Our work in this thesis focus on measurenent of spin current. We

must understand the definition of spin current before our work.

Spin current

In this paragraph, we explain the definition of spin current. An electron carries both
charge and spin which may have two components: up and down. In the semi-classical
picture, spin can be described by a unit vector. Traditional charge current is a flow of
electron which is the sum of flows of up- and down-spin electrons. The spin information
may be neglected in charge current. A spin current differs from a charge current. For
a simple description, spin current can be recognized as the difference between the flows
of up and down spin electrons. A pure spin current means that equivalent up and down
spin flows in the opposite direction. There is no net particle transfer across any cross
section of the channel. Measuring spin current in solid state systems provides a new
tool to investigate the mesoscopic system, and it also give us hopes that it could be
applied in spintronics and quantum information processing in the future. We can say
that measurement of spin current is an indispensable part in field of spintronics. It has

been found that spin-orbit interaction can be a nice tool to measure spin current all
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electrically. In the following two subsections we will introduce spin-orbit interaction in

an atom and in semiconductor respectively.

Spin-orbit interaction in an atom

Spin-orbit interaction is a well-known phenomenon which is caused from the interaction
of a particle’s spin with its own motion. A particle in an electric field experiences an
effective magnetic field in its co-moving frame. For electrons, it brings about lifting of
the degeneracy of energy levels of electrons according to their spin states.

In atomic physics, this interaction comes from the electron spin magnetic moment
interacting with the magnetic moment due to the orbit motion of the electron. In non-
relativistic approximation to Dirac equation, the form of the spin-orbit interaction term

in an atom is given by:

eh

T dmgz2” (pxE), (1.1)

HSO,Uac =

where e is the magnitude of electron charge(e > 0), h is the Plank’s constant, my is the
mass of a free electron, c¢ is the light speed in vacuum, o = (o0,,0,,0,) are the Pauli
matrices , p is the momentum of the spin, and E is the electric field that the electron
travels through in the atom[2].

When the electron velocity is far less than the speed of light and a small electric field
is quite small, the Dirac gap 2mgc® ~ 1MeV in the denominator of Eq. (1.1) is too large

that the spin-orbit interaction in a single atom is quite week.

We may rewrite equation Eq. (1.1) as Hso vae = —eA“—h“o--(p x E) , where Ayqe = 4773—2202
is the spin-orbit coupling constant in vacuum. Actually, spin-orbit interaction in vacuum
or in a single atom has the same coupling constant, but the electric field comes from
different sources. In a atom, electric field comes from the atomic nucleus. In vacuum,
the electric field comes from the divergence of the potential in space. Even though the

spin-orbit coupling in a single atom or in vacuum is very week, it will be magnified in
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semiconductor.

Spin-orbit interaction in semiconductor

Spin-orbit interaction in solid state physics have the same form as Eq. (1.1) but difference
in the spin-orbit coupling due to the energy gap difference. In semiconductor, spin-orbit
coupling may be enhanced with several orders. The coupling strength is mostly derived
from the electrons with high velocity under the strong electric field near the core of the
atoms, rather than the weak velocity movement. Due to the periodicity of crystal, the
electron energy spectrum form energy band structure in the reciprocal vector space. If the
crystal system does not have the space inversion symmetry, the band gap will be narrower
which result in stronger spin orbit coupling. In GaAs, the spin-orbit coupling constant
A is about 82.5 A% which is seven order magnitude greater than A,,.. The perturbing

spin-orbit coupling Hamiltonian in GaAs may be written as:
A
Hso s = ¢ro (pxE), (1.2)

where A is the spin-orbit coupling constant in GaAs. The strength of spin-orbit interaction
un semiconductor is manifestly seven order higher in magnitude than that in vacuum such
that it becomes a nice tool to detect spin current electrically. Next, we will introduce

kinds of principle means of detection of spin current.

Review of measurement of spin current

Generally, there are three kinds of principle means of detection of spin current. Here, we
review some of them.

The first method is mechanical measurement|[3, 4]. In 2007, E. B. Sonin demonstrates
that an equilibrium spin current in two-dimension electron gas (2DEG) with Rashba
interaction which is one kind of spin-orbit interaction will lead to a mechanical torque

on a substrate near an edge of the Rashba medium[4]. If the substrate is flexible enough
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that the torques would distort it, it is a method to detect equilibrium spin currents
experimentally that he measure the degree of contortion.

Optical detection is also a general way to measure spin current[5-7]. In 2008, J. Wang,
B. F. Zhu, and R. B. Liu described the first non-invasive method of measure pure spin
current directly by a polarized light beam [7]. The polarized light beam which act as a
‘photon spin current’ will interact with spin current due to the spin-orbit coupling without
the Rashba or the Dresselhaus effect. The interaction result in linear and circular optical
birefringence. They utilized the birefringence effects to measure to pure spin currents.

The third one is electrical detection[8-12]. In 1985, Mark Johnson and R. H. Silsbee
performed the experiment in non-magnetic aluminum strip contacted to two ferromag-
netic electrodes[11]. They reported that injecting charge current from one of ferromagnetic
electrodes into aluminum strip results in non-equilibrium spin accumulation at the inter-
face of aluminum strip and the source ferromagnetic electrode. The spin accumulation
defuses away from the interface and forms spin current. If there is a non-equilibrium spin
accumulation in the vicinity of the detector, an open-circuit voltage will be developed
across the interface. In 2006, S. O. Valenzuela and M. Tinkham demonstrate electrical
detection of spin currents in metallic nanostructures. They apply reciprocal spin Hall
effect in a diffusive metallic conductor and obtain its spin Hall conductivity. Finally they
measure the laterally induced voltage which results from the conversion of the injected
spin current into charge imbalance owing to the spin-orbit coupling. There are still Some
other means of electrical detection of spin current proposed in resent years including the-
oretical and experimental proposition. It is worth to mention that in 2004, Qing-feng
Sun et al. propose a journal named ”spin-current induced electric field” [12]. In that
article, the authors investigate properties of the induced electric field of a steady-state
spin-current without charge current. They regard one electron spin as a magnetic dipole.
Such magnetic dipole current will generate electric field in space. They claim that a spin
current with drift velocity 107%m/s flowing in an infinitely long wire with cross section

area of 2 mm x 2 mm and the magnetic moment is perpendicular to the current direction.
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The spin current causes the potential difference~ 12 pV at distance -1.1 mm and 1.1 mm
on either side of the wire. It is a novel method to measure spin current by measuring the
voltage directly induced by spin current. Even though the potential difference their report
is measurable, the spin current is up to 640.82 Ampere. That is very giant magnitude of

spin current. It is extremely difficult to generate such strong current in the thin wire.

1.3 Motivation

In Sec. 1-2, we mentioned the paper which is proposed by Sun et al.[12] and based on
the calculation of electrodynamics and relativity. They utilized the potential difference
induced by magnetic dipole current to detect spin current. The spin-orbit interaction
strength can be enhanced up to six orders of magnitude in semiconductor rather than
in vacuum. We think that if spin current flows in semiconductor, we may think that
it could induce more strongly electric field than in vacuum. It may be a power tool to
measure spin current by detecting the potential difference induced by spin current. But it
is very hard both to take the advantages of spin-orbit interaction in semiconductor and to
use the calculation method of electrodynamics simultaneous. We can not find any equa-
tion corresponding to the enhanced strength of spin-orbit interaction in electrodynamics.
However from the hamiltonian Eq. (1.2), we may take the advantages of spin-orbit inter-
action in semiconductor and calculate the potential difference induced by ac spin current
in semiconductor from the viewpoint of photons.

In addition, from equation Eq. (1.2), we support that the spin polarized direction,
the direction of spin flow, and electric field induced by ac spin-polarized current are
perpendicular to each other. Therefore, we want to design a device which can detect the
ac electrical potential difference generate by ac spin polarized current, and two parallel-
planes waveguide is the best choose. The two parallel-planes waveguide is not only easy-
fabricated but also measures the electrical potential difference easily. If the spin polarized

direction and the ac in-plane spin flow is parallel to the metal gates of waveguide and they
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are perpendicular to each other, it will generate electric field which is perpendicular to the
metal gates of the waveguide. In this thesis, we propose that the ac spin current which
flowing in 2DEG which is at the middle of the two metal gates of a two parallel-planes
waveguide can induced electrical signal. This signal is measurable if we add appropriate

external circuit.

1.4 Introduction to calculation method

Our calculation is based on non-degenerate perturbation theorem. The calculation starts
from the perturbing spin-orbit interaction term of the Hamiltonian.

H’ze%a-(pr), (1.3)

where e is the magnitude of electron charge (e > 0), A is the spin-orbit interaction constant
in semiconductor, & is the Plank constant, o = (0,,0,,0,) are the Pauli matrices , and
E is the electric field in the waveguide.

While we consider that the second quantization procedure is applied to quantum field
theory, the classical field variables become quantum operators [13]. In classical mechanics,
the coordinates and momenta of a classical system can specify its state. In ordinary
quantum mechanics, the position and the momentum of a single particle promoted to
operators because the observables of position and the momentum can be quantized. The
ordinary quantum mechanics can only deal with the number of conserved particle systems.
However, in relativistic quantum mechanics, particles can be generated and annihilated.
The mathematical formulations of ordinary quantum mechanics no longer apply. We must
dealing with the creation and annihilation of particles with second quantization which is
the establishment of relativistic quantum mechanics and quantum field theory. Second
quantization method can deal with natural and simple symmetry of identical particles
and anti-symmetry. Essentially, if we can stand in the viewpoint of electron to solve the

problem with electromagnetic methods, but it is difficult to calculate. That is why we

7
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solve the problem with second quantization method.

When we sandwich the perturbing Hamiltonian H" with the states of the oscillating
spin polarized electron state |¢)), we can obtain the equivalent perturbing Hamiltonian
H' ;s for the photons which emitted by the oscillating spin current between the parallel

slabs. The effective Hamiltonian is given by:

H'ogs = (030 (b x B) ). (1.4)

Because the momentum p is an operator for electron, it act on the photon state. And the
"E” in Eq. (1.4) is the operator for photons and it does not act on the electron state.
Applying time-dependent perturbation theory, we will obtain the first order perturba-

tion coefficient. That is

. t
]
o 7/_ ({0,0,,0, Lyson, 0, o, OF Hepy [{O0})l, (1.5)

where the subscript nk\ indicate the mode number. And we get the eigenstate state of

first order approximation of the photons. It is given by:

B = [Wo) + > £ 10,0, ...,0, Luer, 0, ..., 0}) (1.6)

nkA

where |W) is the initial photon state which is one of the eigenststes of unperturbed
Hamiltonian. |U) is the new state after the H' is added to our system. It means that the
photon state changes from |¥g) to |¥) when the ac spin current is applied. The photon
eigetstate tells us all information of the photons of our system which we want to know.
Then we sandwich the vector potential in the parallel plate capacitor with the the photon

state |U).

A (r,t) = (T] AP | D) (1.7)
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The result A (r,t) is the expectation value of vector potential in the parallel-plates waveg-
uide in the photon state |¥). If we choose the transverse gauge, by taking A (r,t) partial
derivative with respect to ¢, the electric field between the two parallel slabs could be ob-
tained easily. By integrating the electric field, what we obtain is the ac electrical potential
difference between the two metal gates. The potential difference is induced by ac spin

current and is also what we want to know.



Chapter 2

Geometric structure of the system

we consider

In this chapter, we will introduce the geometric structure of our system and derive the

quantized electromagnetic wave in waveguide.

2.1 Structure of our system

In this section, we show the geometric structure of our system. The model of our system
is shown as Fig. 2.1. In chapter 5, we will demonstrate that this device can detect electric
potential difference induced by ac in-plane polarized spin current by adding appropriate
external electric circuit.

At the middle of the device there is an extremely thin layer of 2DEG which is formed at
the intersection of two kind of semiconductor with different band gap energies. Two pieces
of metal gates sandwich the semiconductor structure and are parallel to the 2DEG. These
two metal gates are used to detect the electrical potential difference and they construct a
two-parallel-planes waveguide. We can apply two layers with two different ratios of Al to
Ga of aluminum gallium arsenide (AlGaAs) as dielectric material between the two metal

slabs to form 2DEG, and use aluminum slabs as gate to detect the electrical potential

10
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AlGads — 1~
Gads — 1/ \
\\ Al
IDEG

Figure 2.1: An illustration of the geometry of the two parallel-planes waveguide. The
2DEG which is formed at the intersection of two kind of semiconductor with different
band gap energies is at the middle of the waveguide.

Z
Y
X L
Al by
| — <_,<_,<_,<_<j d-

AlGads | &= S S 1

L ’) _\ “E
Gads — | \ 2
A< = \

\

inplane spin current

Figure 2.2: If the ac in-plane spin current oscillates toward x-direction on 2DEG and the
spin polarized direction toward negative y-direction, it will generate ac electrical potential
difference between the two metal gates.

difference.
We had discussed that electric field induced by ac spin-polarized current is perpen-
dicular to the spin polarized direction and the oscillation direction of ac spin current. If

we can generate pure ac in-plane polarized spin current on the 2DEG, which the spin

11
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polarized direction is towards the negative y-direction, oscillating in x-direction shown as
Fig. 2.2, we may measure the ac electrical potential difference between two metallic slabs.
The waveguide structure can lead the far field to near field if the thickness of waveguide
is comparable with the wave length of field. In our problem here, the propagating direc-
tion of the field radiated by ac spin current happens to be parallel to the field direction,
because the electric field, spin polarized direction and current direction are perpendicular
to each other. Thus we need to use a description different from that for the oscillating
electric dipole because near field near field behavior is important. The waveguide modes
provide us a naturel and appropriate scheme to describe the near field, which is very im-
portant for our case. Furthermore its upper and lower metal gates can also be electrodes
to measure the ac electrical potential difference induced by the ac spin current. If we can
figure out the correlation between the electrical potential difference and the magnitude
of spin current, we may declare that we can detect ac in-plane polarized spin current by

electric means.

2.2 (Quantization of electromagnetic wave in waveg-
uide

Electromagnetic wave confined by a waveguide is different from that in vacuum. In this

section we will deduce the quantization of electromagnetic wave in the waveguide.

Quantization of electromagnetic wave in free space

In chapterl, we discussed why we utilize the second quantization manner to deal with
the field induced by ac spin current. The quantization of radiation field in free space is
described in many textbooks [14]. The free radiation field is the quantized electromagnetic
field inside an optical cavity with dimension L (L — o0).

If we want obtain the mathematics form of vector potential, in an intuitive picture, we

can start from Maxwell’s equations in the absence of currents and charges. Then we can

12
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obtain the vector potential in free space in transverse gauge in which the electric scalar
potential is equal to zero and the vector potential A (r,t) is divergence-free. One way to
obtain the quantized radiation field in free space is to identify the amplitudes of the vector
potential A (r,t) with the annihilation or creation operators of harmonic oscillators. In

interaction representation A (%) (r,t) develops in time by:

exp (—ik - r + iwgt)

N ,

AW (r 1) = 3 Al ER (T )

+
— + AN
kA 4

(2.1)
where V = L? is the free space volume and the vector X is the polarization of the plane
O O, + .
wave. k is the wave vector of the radiation field. AL{J ) and Al((f )" are corresponding
to creation and annihilation (raising and lowering) operators respectively. The subscript
A(A=1or2)of Aiof ) denotes two orthogonal polarization. When they act on eigenstate

of photon, we can write down the relations:

o h
AP Nienss Nigrgs oo Nica, ) = ’/Qsowkf/N“ | Nicoass Nieags coos Ni — 1,.), (2.2)

h

280wk

\/ Nk)\ + 1 |Nk1)\17 Nk2)\2, ’Nk)\ + 17 > 9
(2.3)

on) T
Al(d]\?) |Nk1>\17Nk2)\2,....,Nk)\,...> =

where Ny, is the number of photons in the mode k, A and gy is the permittivity in vacuum.

When Al((of) applies on photon state , it reduces the number of photons in the mode kA
+

by one. Al((of) applies on photon state , it increase the number of photons in the mode

kA by one.

Quantization of electromagnetic wave in waveguide

Now we will derive the electromagnetic wave in the waveguide which is constructed with

two metal plates , and a thick dielectric slab with thickness d and its dielectric constant

13
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Z
A
g —> o
dI H.E
\ y
\O'—)oo

Figure 2.3: The two parallel-planes waveguide consists of a dielectric material with per-
meability p and primitivity e sandwiched by two parallel metal gates with conductivity
o (0 — 00).

5
P
P}

O )_f‘-
y4

Figure 2.4: The picture shows the relation between Z, 7’7/, and l;‘.(We set a reference

coordinate, Z’-y" coordinate, which is in the x-y plane.)

and magnetic permeability are € and p respectively. The dielectric slab is sandwiched by
the two plates. We assume the metal slabs are perfect conductor. The structure of the

waveguide is shown as Fig. 2.3.

We assume that the total electromagnetic wave propagate along the k-direction (note

14
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that k = 2/ ) in dielectric layer, and the two metal plates are put z = 0 and z = d. And
we assume 2 x 2’ = . The relation between 2, #/, ¢/, and k is shown in Fig. 2.4.

We just consider about the plane waves, and it means B o e~™®* and F o« e~ where
is the angular frequency of incident wave and 8%, — 0. From Faraday’s law, we can get
VXE= —%B = iwB. We may write down the three components of Faraday’s law as

the following

0 .
—&Ey/ = szx/, (24)
0 0 .
&Ewl - %Ez = 'I/WBy/7 (25)
0 .
%Ey/ = szZ, (26)
Considering Ampere’s law, we obtain V x B = ,ue%E = —iwpeE. Then we obtain the

following three differential equations.

—%By/ = —wpely,, (2.7)
0 0 :

an/ - %Bz = —iwpelEy, (2.8)
0 :

%By/ = —iwuekE,. (2.9)

Considering Maxwell equations, for two pieces of slab of waveguide which are made
of perfect conductor, we have two boundary condition derived by Faraday’s law and
divergence free of magnetic field. They are B, =0 at z =0 and 2z = d Ey,Ey = 0 at
z=0and z =d.

The Eq. (2.4), Eq. (2.6), Eq. (2.8) only have variables E,, B/, and B,. They can

construct a wave equation called TE wave equation. The name "TE” means transverse

15
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electric field. The wave equation is given by:
o? 0?
(W tost w%e) E, =0. (2.10)
Solving Eq. (2.10) by separation of variables, finally, we have:
E, = Eysin (k.z) e* ™

where Ej is the amplitude of the electric field, &,/ is the 2’-component wave number, and
k,="%,m=0,1,23, ..
Magnetic field is transverse or perpendicular to the propagation direction. The fields

are calculated to be

0

. k . >
—&Ey/ = iwBy — By = szo sin (k,z) e

a km/ . ’
—FE, =iwB, — B, =—EFsin (k,2) et
w

ox!
m is the mode number which starts from one . k. and k. are satisfied with the dispersion
relation k.2 + k2 = w2 e,
The Eq. (2.5), Eq. (2.7), Eq. (2.9) contain variables E,/, E,, and B,. The three
differential equations can construct a wave equation called TM wave equation (Magnetic

field is transverse or perpendicular to the propagation direction.). The wave equation is:

02 o 9

W_}_@_{—w pe | By = 0. (2.11)
Solving Eq. (2.11), we obtain
B, = Bycos (k,2) e,

where k, = "7, n=0,1,2,3, ..., ky is the 2’-component wave vector, and By is the amplitude
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of the magnetic field. Magnetic field is perpendicular to the electric field, and the fields

are calculated to be

0

k., . I
——By = —iwpueE, — Ey =i——Bysin (k,2) ethar®
0z WHE
0 ko

%By/ = —z'w,usEZ — Ez = _u)

gBo cos (k.z) ¢tk
and we get the dispersion relationk,? 4 k> = w?ue. Actually, k. is the transverse wave
vector and k is the effectively longitudinal component of the wave vector.

We already derived electromagnetic wave modes in parallel-plates waveguide. For real
physical quantity, we may add its complex conjugate to the fields. Furthermore, we know
that the wave in an arbitrary parallel-plate waveguide is not a plane wave, because a
plane wave cannot satisfy the appropriate boundary conditions at the waveguide walls.
But the modes can be expressed as a sum of plane waves. In general, we decompose the
total electric field in the waveguide for different modes and different k as infinite (Fourier)

superposition of all modes as given by

For TE modes:

E =~ sin (T2 ) {bue®Pmemet) 4 by e reman ) (2 ) (2.12)

m,k

1 ' | A
B = Z |:ka2 <%> CoSs (%Z) (—ibmkel(k‘P_wkat) =+ ibmk*e—z(k-p—wmmt)) i

(2.13)

_ k Sin <%Z> (bmkei(k~p—wmk2t) ‘I’ bmk*e—i(lop—wmkzt)) 7:,:|

For TM modes, we have

B = By — — Z cos (%TZ> {epgeellep—emad) 4 ¢ xo=ilicp—aniat)) (Z % k) . (2.14)
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11 , . .
B3 [ty () (55 Coowebo s i b m0)
nok . (2.15)

nm e TS “

HE Wnk1

The dispersion relation is k.? 4+ k? = w?ue. by,(c,) denotes the amplitude of the electric
field for the m-th (n-th) mode. The time-dependence is given by putting in the whole plane

wave: kP _, gilkp—wt)

. The summation k contains all direction as well as all magnitude.
We also change the notation w into wmks (wnk1), because the frequency depends on k-
component (k = ') of wave number and mode number m(n). The other subscript of Wy
(Wnk1), 1 or 2, indicates TM or TE modes respectively.

The electric field and vector potential respect to the relationship E = —V¢ — %—‘? It’s

easy to derive the vector potential, if we choose the transverse gauge. For TE modes, the

vector potential is given by:

1 . , A
A () (et o) (1) @10

For TM modes, we have:

1 1 ) . .
5 [ (5o (55 bt s
n,k (217)

1k nm . (k- p— . —i(kep—
+— 5 COS <—z> (—icpe'tPmemal) 4, *emilkpwmal)) 5|
HE Wnkl

Canonical quantization (also called second quantization) asks that the classical field
variable becomes a quantum operator. The amplitude of vector potential ¢, (byk) or
Cnk”™ (bx™) is corresponded to annihilation or creation operator respectively. Because
cak” (bmi") becomes operator, it may be wrote as ¢ ™ (b ). When ¢ (b)) acts on
the photon state, it will removes one photon with the mode nk (mk). c,® (bni") acts

M40

on an energy eigenstate, it will increase one photon with the mode nk (mk) ( Here "n” or

7

"m” indicates the n-th mode in TM wave or the m-th mode in TE waves respectively.).

Using ¢k (bmk) or ¢ (bmx™) to describe the classical electromagnetic energy in a

18
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volume V', we find the energy for TE modes inside the volume V' is given by:

1
Eenergy = /dI'|: 5E2+ B2:| = Z |bmk|2V (218)

2
K m=1,2,3,...

By the same way, for TM modes we have

1
Eenergy = - Z |an|2V (219)

n=0,1,2,3,...

Actually, in quantum theory the radiation energy is given by:
Eenergy = Nhw, (2.20)

where N is the number of photons in the volume V, and is the angular frequency of these
photons. Combining Eq. (2.18), Eq. (2.19), and Eq. (2.20), we have the dimension of the

four coefficients. When they act on the eigenstate of electromagnetic field, we have:

bmk‘Nm1k12aNm2k227’”7Nmk27‘-‘ mk2 V mk2|Nm1k127 m2k227”'7Nmk2_17"'>7
(2.21)

bmk+ ’Nm1k12aNm2k227'”7Nmk27-'~ - ka V mk2+ |Nm1k127 m2k227‘”7Nmk2+17”'>7
(2.22)

hwnkl
Cnk | Noyki 15 Nogkots <oy Nokts o) = A/ j vV Noxt [Nnjxi 15 Nogkots oos Noxa — 1, .00)

(2.23)

hwp,
Cnk T I Nagka1s Noskots -os Ny o) = A/ Vkl VN1 + 1| Noa 1 Nogkots - Noa + 1, .0)
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(2.24)

where N,.1 (NVpke) is the number of photons in the TM (TE) mode n (m) , k.
We have found out the quantized radiation field in the waveguide. With the result,
we can correctly calculate the radiation field generate by spin current or else radiation

problem in the waveguide.

2.3 Brief summary

Our system essentially comprises 2DEG which is formed at the AlGaAs/GaAs heteroin-
terface and sandwiched by two piece of Al electrodes outermost. When ac in-plane spin
current flows on the 2DEG, we utilize waveguide structure to detect the potential differ-
ence induced by the spin current. The quantized field in two-parallel-planes waveguide
can be divided into two kinds of modes , TM modes and TE modes. Electric field in TE
modes is perpendicular to the propagation direction of the beam and there is no electric
field in the direction of propagation. Electric field in TM modes is perpendicular to the

propagation direction.
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Chapter 3

Examination of the calculation

method we consider

In this chapter, we want to check if our calculation method is practical. We propose two
problem of electrodynamics to compare the result which is solved by method of classical
electrodynamics and the result solved by our method. The first problem is electromagnetic
(EM) wave generated by single charge oscillation in free space. The second one is EM

wave induced by oscillating charge current carried by an infinite long wire in waveguide.

3.1 Charge oscillation in free space

In electrodynamics, the charge oscillation will generate electromagnetic wave in space.
Using the method we proposed in Chapter 1, we calculate electric field generated by
the charge oscillation in free space. We can also obtain the EM wave with Jefimenko’s
equations which describe the behavior of the electric and magnetic fields in terms of the
charge and current density at retarded times. Then we compare the result by this method
with the result by the method of electrodynamics. If both the results are identical with
each other, we confirm that our method is practical. We start from a charge oscillating

along the z direction with the frequency €2 and the amplitude "a” in the Cylindrical
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4

point clg‘

2a

Figure 3.1: The particle carrying electric charge ¢ with is deposited at the origin, and it
acts as simple harmonic oscillation with frequancy €2 and amplitude a.

coordinate. The equilibrium point of the charge is deposited at the origin shown as
Fig. 3.1. We can write down the time-dependent position of the charge as the following:

r, = acos () 2

Effective Hamiltonian of photons

The perturbation operator of charge-photon interaction is given by H' = —¢E -r where E
is the electric field[14]. If we just consider about the transverse field, the field induced by
charge oscillation is the same as dipole oscillation with identical frequency and amplitude.
In quantum mechanics, even though we cannot describe both position and momentum of
an electron, we still recognize the oscillating charge as a classical particle. If the amplitude
”a” is much smaller than the wavelength of the light, the field can be recognize as far

field. For relativity far field, because the oscillator is placed at origin, we can replace

E (r,t) by E (0,¢) because the charge oscillating at origin.

H/eff = —qE (O,t) . I‘p

DA (0, t
_ A0

ot

(3.1)
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where ¢ is the light speed in vacuum , ¢ is the electric charge of the particle, A is the
vector potential in transverses gauge . Incorporating Eq. (2.2) into Eq. (3.1) , and then

the perturbing Hamiltonian becomes

exp (—ickyat o)tk
eff—qu{ Ck’k)\A A'I‘I,)M—FClﬁk)\Al&;) (A 'I‘p)

exp (+ickit) }
vV ’

N
(3.2)

where V' is the free space volume and A\ is the polarization of the plane wave. k is the
+

wave vector of the radiation field. Al(ff ) and Al(ff) are corresponding to creation and

annihilation operators respectively. The subscript A (A = 1 or 2) of Al(ff) denotes two

orthogonal polarization.

The photon eigenstate

For spontaneous emission, the oscillator emits only one photon. The initial state must
be [Wo) = {Okyars Oxorgs s Okry -y ;) (O we can write as|{0})) and the final state is
1{0,0,...,0, 1k, 0, ...,0}). The initial state is also one of the unperturbed eigenstates.

H' ;s is identified as time dependant perturbing Hamiltonian. Applying first-order

perturbation theory, the first order perturbation coefficient is given by

—i
i — ({0, ...,0, 1yex, 0, .. Y| H'epp [{OV)dt

where 7 is the Plank constant. Essentially, the strength of perturbing Hamiltonian H' is
weak enough, so we can apply perturbation theorem.

Assuming the limit of a very slow switch on, H'.fre™ with n which is far smaller than
1, so H'.ss switched on very gradually in the past. We can then take the initial time to

be —oo, and the first order perturbation coefficient becomes:

t

s = - ({0, ..,0, 11x, 0, .. Y| H' oy e |{0})dt (3.3)

— 00

23



CHAPTER 3. EXAMINATION OF THE CALCULATION METHOD WE
CONSIDER

We consider one photon emittion. It means the photon state from [{0}) to [{0, ..., 0, 1k, 0, ...}).

Substituting equation Eq. (3.2) into Eq. (3.3), we obtain:

! /% exp (+ickynt ,
fé?:%/ ({0, ..., 0, 1, 0, }IZ{ckk,A,Ak,A, (X" 1,) b (Fickiox )}e"t|{0,...,0})dt.

—00 k') \/V
(3.4)
Here we used the character of annihilation operator AS’;\), {0,0,...,0}) = 0. Solving
Eq. (3.4), we can rewrite the first order perturbation coefficient is
huwien 1 . 1 : .
fo =1 A*-Z . N + ickyy) cos (Q2t) + Qsin (Q
8 = o T ) s ik con @)+ in @}

x exp [(n + ickyr) ]

The eigenstate of the photon is changed to |V) after we consider about the perturbation

of the system H' ;. |¥) is given by:

1) = [{0,0, .. +Zf 1{0,0,...,0,1)ix,0, ..., 0}) (3.6)

The expectation value of vector potential

The photon state describes all information about photons in the waveguide including the
vector potential in space. The expectation value of the magnetic vector potential in the

state |W) is given by:

A (r,t) = (T| AP |D)

+
={<{0,0,. SO+ b ({0,0,.,0, L, 0 0}|} () {1{0,0,...,0,...,0})

k//A//
37 A H0,0,.0.,0, Ligar, 0, oo o}>}

k/>\/
(3.7)
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op)t . . .
Al((f " is an operator that increases the number of photons in the mode kA by one. When
O, O, + .
the operators Aif) and Al(dl\)) are applied to the photon state, they obey the Eq. (2.2) and
Eq. (2.3), respectively. And the expectation value of the vector potential of the system

becomes

/ nyexp (ik - r —iwnt) |, (1)+ exp (—ik - r + iwgt) }
E + A . (3.8
ka,\é?o { fk’\ VYV v (3.8)

Putting Eq. (3.5) into Eq. (3.8), the vector potential leads to

A(rt) = qa (—i) exp [ik - 1] )\Z*)\{ exp (i) N exp(—iQt.) }

Q+ck—in  ck—Q—

qa (1) , . [ exp (—=iQ)  exp (+if2t)
—tk -] A\ .
+§ exp [k -] A; {Q+ck+in+ck—ﬂ—l—in

(3.9)

We notice that the second term in above equation is complex conjugate of the first term.
Now we take average over polarization. By taking linear polarization, we have \* = .
Then, we have

qa (—1i)
4V80

k
—i—Z 4V€o eXp k-r] {2 - <l%

A (r,t) =

l\b

exp [ik - 1] {73 2 </% )]%} { exp (i) n exp(—z’QiZl}

Q+ck—im ck—Q—

3.10
}{ exp (—iQdt) L, &xp (+i€2) } (310)
The summation over k means summing over arbitrary direction and magnitude of wave

>

Q>

Q+ck+m  ck—Q+in

number k. k must be continuous, so we may change the representation of the summation

to representation of integration. It means

Ak, Ak, Ak,
; - ; Ak, A_k:z Ak

- TR J - (=) é) (%) | wandtn = s [ wandn
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where L; (i=x,y,z) is length which an quantum state occupies, and 2; is the solid angle.

Al t) = — /dedek U= e (ik ) [z—(kz) k]

(2m)° 4Veg
exp (i2t) exp (—idt) Vv / 9 qa (1)
k= dkdS 11
X{Q+ck—m+ck—9—m MRCISE K 4Ve (3:11)

: (s 2\ 1] [ exp(—it)  exp (+it)
ik - — (k- _
x exp (k) [ = (k Z>k]{9+ck+in+ck—9+z‘n

We deal with the angular 1ntegral f dQy first. The detail of calculation is complex, and

it will save for Appendix A. After average over direction, the vector potential becomes:

Vi oqa [, .
A(r,t) = 27 8Ve (0 sin 6)

* — exp [ikr] 4 exp [—ikr] exp (i€2t) exp (—idt)
x{/k_ok‘dk:< kr Q+ck—i77+ck—Q—i77 (3.12)

N /Oo_kzdk (exp [ikr] — exp [-m]) [exp(—mt) L e (+iQt)}}'

-0 kr Q+ck+im  ck—Q+in

Using the relationship [ f (z)dz = f f (—z)dx, and making the change of variables,

u = ck we can obtain :

cqa (5. > o | —exp [iw'E]  exp (iQ) — exp [iw'Z]
At = g (681n0) / o [ T T

u'=—00 c

exp (—idt) N exp [—iu't]  exp (iQt)

uw — (Q+in) u't u 4 (Q —in)
eXp |: _:| eXp ZQt) du/
u't uw — (2 +1in)
(3.13)
Using residue integral method , the vector potential can be derived as :
A (r, 1) qa_ (9 .9) i (Qt Qr> (3.14)
=— sinf ) sin — Q- .
’ Amc2ey v c

The detailed complex integral of equation is preserved in Appendix B. It’s easy to obtain

the electric field after we get the result of the complex calculation. Because we choose
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the transverse gauge, the electric scalar potential is equal to zero.

E(rt) = -vV—2A
» Q;% o (3.15)
= MT (SlIl 0) COS <Qt — QE) 0

Here, we only consider about the transverse field and neglect Coulomb field. The field
is identical with the far electric field induced by dipole antenna. From above equation,
we can realize that the frequency of the field is €2 which is the same as the frequency of
the oscillating electron. If the charge wiggles back and forth, the higher the frequency,
the shorter the waves, because it have less time to get out of the way before the charge
changes its direction. This result which we use semi-classical calculation method is the
same as the result which we use calculation method of classical electrodynamics. The two
results obtained by different calculation methods are the same. It implies our assumption
that our oscillating charge radiates light with one photon can match the oscillating charge

problem. Also, our method is practical to be use for calculating spin current problem.

3.2 EM wave generated by oscillating line charge cur-
rent in waveguide

In the same way, we solve the electric field induced by ac line charge current in waveguide
with the method we consider, for checking if our calculation method is practical, again.
The calculation also gives us a simpler exercise for solving electric field induced by ac
in-plane polarized spin current.

When the wave length becomes comparable with the thickness of the waveguide, we
should consider the near-field light instead of far-field light. The waveguide structure
confines the field and leads far-field into near-field wave. The near-field wave is more
complicated than far-field wave. Fortunately, plane wave expansion method is useful

method for us to deal with our problem. Therefore, the quantization field in two-parallel-
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metal
; d
semiconductor 5
N
; d
semiconductor 5
metal

line charge current

Figure 3.2: An infinite long wire is located at the middle of the waveguide and towards
the z-direction.

wire

/

metal o — o /
e
2
Semiconductor [I,& - )
Z d
2
; x >3
melal o — © 2DEG

Figure 3.3: The side view of the waveguide structure and the wire. The waveguide is the
same as one we discussed in 2.2 which has permeability p and primitivity €. The up and
down electrode slabs are made of perfect conductor.

planes waveguide we derived in Chapter 2 can be a complete set. The structure of the
waveguide we consider about is the same as we discussed in Chapter 2. An infinite long
wire parallel with x-axis is located in the middle of two parallel metal gates as shown the

following picture.
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Assume that the semiconductor between two metal gates has the permittivity € and

permeability prespectively. The wire is very thin, comparing with the distance d, and

this wire carries flow of electron charge I = e\, Z’f
e

2 where )\, is the particle density per
unit length, m, is the mass of a free electron, and k. is the electron wave number, where

A is the Plank constant. The wave function of the electrons is

= (r¢)) = /A exp [ike7] L Z2) . (3.16)

At the beginning, we do not consider about ac current. We will add the oscillating
information in the effective Hamiltonian later. The perturbation operator of oscillating
line current in the waveguide is given by:

 (p-A+A p=—p-A=—A-p (3.17)
2me me Mme

H =

where e > 0. For the transverse gauge p- A — A -p = —ihV - A = 0. We care about only
the transverse field without the longitudinal field. It means that we consider about the
field induced by ac charge current without the Coulomb field. Therefore, the perturbing
Hamiltonian does not include the Coulomb potential.

Effective Hamiltonian

We sandwich Eq. (3.17) with electron state to get the effective Hamiltonian of the photons

in the waveguide which is given by the following:

H'egp = (6 H' ) = (¢ —A-plw)

- kemei/dx/dy/dw (v, 2) Avp (y, 2) —mmie {/dx/dy/dw (y, 2)
X Ay /dx/dy/dzsoy, aw(y, )},

(3.18)
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where A,, A,, A, is the x, y, z-component of vector potential respectively. Vector potential
near the position (x, y=0,z= g)changes violently, but the wave function of the electron

¢ (y, z) changes smoothly, so we may take some approximation. Then we have:

: € 1 0
H'epp = hAe— {ke/dmx (2,0,9) — /dx%A (m,o,g)}. (3.19)

e

The detailed derivation from Eq. (3.18) to Eq. (3.19) is left in the Appendix C. Putting
Eq. (2.16) and Eq. (2.17) into Eq. (3.19), we obtain:

WWmk2 Wmk2

(ot v e8] - L o () 0 ()

1 4 . 1
H/eff = h>\e € . {ke [_ E { : bmk sin <%> ezwmkgt/dmezkzm - bmk+
Me
m,k

1
2
(TN it ikpw iky o (T
mk SIIL <T>€ =2 dre'™* + - bk sin <T)

el
iw, t —ikzx 2 7 A 1 1 . nm : nm —iwp kot
X elmk2 dxe™ " (z X k) - — (zk‘xcnk (—) sin <—> e~ "nk2
ue Wnk12 d 2
X /da:eik” —ikypCri " <%T> sin (%) ei“”“t/dxe_ik”) kzx} } .

(3.20)

According to Fourier analyze, [* e***dx = 27§ (k,). The terms with k.6 (k.) in the

equation above will be vanished after integration overk,. We can drop it. Then we have

Hle — m . (m) —iwmk2t6 k:p
I [ oS omesin (5 e (k)
(3.21)
1 b (TN (7‘(‘ )
-~ bk sin ( 5 ) e (k)| cos 5 + o ),

where ¢, is the angle between the k and z. The relationship between ¢, k, and & is
shown in Fig. 3.4

"6 (ky) cos (5 4+ ¢x)” in equation above will lead to the form ”—Sgn(k,)” after inte-
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> X

Figure 3.4: The illustration shows the relation between ¢y, /Ac, and 2 x k.

gration with respect to k,, so we substitute & (k) cos (3 + ¢x) to —6 (k;) Sgn(k,) to avoid
complicated calculation. Actually, the magnitude of electron current is equal to e)\e%

by definition, so that we let [y = eAeZ—’“:.Then, we have

1 , .
Hugg =210 3 o sin (757) {bmae™ 7t = buaa® 0} (k) Son(l,) (32

If we allow the current to oscillate harmonically in time, we can substitute I cos (2t) for

Iy where ) is the oscillation angular frequency. The perturbation operator becomes:

1 mm . )
H' =271 Qt E i <—) bae” wmik2t _p T etwmkat
If w1y cos () 2 T sin { = { K2€ K2 € }

(3.23)
x 6 (kg) Sgn(ky)

The first order perturbation coefficient

Again, we apply time-dependent perturbation theory to solve the new eigenstate of pho-

ton, and the first order perturbation coefficient in H'.;y is given by:

-t
—1
FU = 7/ ({0,0,...,0, 1x, 0, ..., 0} H' o5 [{0})dt. (3.24)
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We impose the mechanism of adiabatic turn-on to simulate the more realistic system and
simplify calculation. Therefore, we put the term €™ in the integration form. We consider
about one photon emission. It means the photon state from [{0}) to |[{0,0, ..., 0, 1k, 0, ...,0})

We add a factor of to describe adiabatic turned on . 7 is a constant smaller than 1
far, switched on very gradually in the past, and we are looking at times much smaller
than%. We can then take the initial time to be —oo. For TE modes We have the first
order perturbation coefficient by:

—i [* e
0, = 7/ ({0,0,..,0, Ly, 0,..., 03| — A pe [{0})dt

t
= ﬁ/ ™ ({0,0,...,0, Lnka, 0, ..., 0}| I cos () 2mi (3.25)

Xa

sin ( ) {brxe " met — by e et § (k) Sgn(k,) [{0}) dt

Wmk2

bk and b’ in Eq. (3.25) is corresponded to the annihilation operator and the creation

operator respectively. We use Eq. (2.21) as well as Eq. (2.22) and Simplify Eq. (3.25), so

we have:
fr(nll)d = ]_027 ! imicz sin <m)
h Wmk2 €V 2 (326)
1 [expi(wmke —in+Q)t]  exp[i (Wpke — i — Q) 1]
2 5 (k k
) 2,&{ wmk2_277+9 * wka_“?_Q ( $)Sgn( y)

For TM modes

.ot
—1
FOb = 7/ ({0,0,...,0, Ly, 0, ..., 0} H'ep s [{0})dt = 0.

The expectation value of vector potential

We are interesting the expectation value of vector potential, because the electric field

can be obtained easily after knowing it. The time-dependent expectation value of vector
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potential in the photon state |¥) is given by:
A (r,t) = (U] A D)
= {({0.0,... \+Zf£iid 20, Ly, 0, HFA{[{0,0,....0,..})
+ 3 Fia 10,0, L2, 0, 1) ).
mk

(3.27)

Let’s remember that f (kl is equal to zero, and we already derived f;kQ in Eq. (3.26). We
combine Eq. (2.16), Eq. (3.26) and Eq. (3.27), and we get:

A (r,t)
_ omia (TN TN ) OXP [ (Wi + Q) €]

Zh w2mk2 s1n< 2 )sm( d Z) {e Wnk2 — 11 +

(3.28)
+ 6i(k-p7wmk2t) exp [ [ (wka Q) t] + efi(k-pfwmkgt) exp [ (wka + Q) ]
Winkz — 11 — 2 Wnk2 + 11 + €

ik poit) EXP [~ (Winka — ) €] ( >

+e R X d (k) Sgn(ky) (2 x k

We can find the first two terms in the curve bracket in above equation is the complex
conjugate of the last two terms. It is just like that we add the complex conjugate of electric
field in equation, and it keeps the physical quantity be real number. The summation
over k takes arbitrary directions and arbitrary magnitudes wave number. For arbitrary
orientations and magnitudes of k, the summation over k can be generalized to integration

over k, just like what we do in Chapter 3.

Ak, Ak, 1 1%
dk,dk, = dk,dk
Z ZAk Ak, (Aky) (Aky)/ B d(27r)2/ o
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Because the z direction is quantized and described by summation over m, it cannot change

to representation of integration. The integral only respects to x and y.

2 00 e )
A(r,t):]ogid(%> Y sin (%) sin (?z)/ dk:w/ dk;ywlkz

m=1
FWmk2 — i +Q FWmk2 — m = Q
5 [ exp [—iQt] exp [i92¢]
Fwmke + 11+ 2 twpke +in — Q

} } d (ky) Sgn(ky) {—sin ¢,.& + cos ¢,y }
(3.29)

Substituting the dispersion relation k.2 + k? = w1 2ue into above equation, we have:
g M

ei(kyy)

B I ) mm\ . mm ! >
A(r,t) = ~ired Z sin (7) sin (72> exp [i€2t] /oo dk, \/m
- e z Yy

=1

1 . 9° ei(kyy)
X ——— = + exp [—th]/ dk, —— -
Ve (k5 + k%) —in+Q —oo o\ Joz (B R
x ! + exp [—iQ] / S,
Xp =t Y 3.30
ik (k24 k) —in—Q N NP (3.30)
1 . o° e_i(kyy)
X ——— = + exp [i€2] / dk, —— -
\/,E(kz +ky*) +in+Q > \/,E(kz +k,%)
1

X T
L (k2 k) +in -0

Solving these integrals is not easy. Even though we can apply complex integral meth-

ods solve these integrals, the branch cuts make the complex integrals complicated. The
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detailed derivation is saved for Appendix D. Considering y > 0, we have

JLE eXP {i\/,us (Q2 +1420Q) — k,%y

\//LE (Q2 +i2nQ) — k.°

1 ,
A(r,t) = _47r(;d Z sin <%> sin <%z) e Mg
m=1

JLE eXP [—i\/,ua (Q2 —2nQ) — kfy]

iQte, -

—e" 21 z
\/ue —i2nQ) — k.

(3.31)

By the same way, we can derive the vector potential for y < 0 which is given by:

JLE XD {—i\/ua (Q2 +i2nQ) — k. %y

A=~ S (1) () oan =

JLE eXP [i\/ue (Q2 —i2nQ2) — kfy]
—e Mo z

\/,us —i2nQ) — k,*

(3.32)
From Eq. (3.31) and Eq. (3.32) , we can rewrite the vector potential as following:
A(r,t) = A" (r,t) + A= (r,1) (3.33)

where A> (r,t) is vector potential for ueQ? > k,? and A< (r,t) is vector potential for

peQ? < k2. A> (r,t) and A< (r,t) can be written as:

A% (r,1) = %]0 > sin (5 ) sin (72 sin [\/m -]

(3.34)

=>
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and

A< (r,t) = —% ; ( ) sin <%z) cos ()

1e2? > k.? means the frequency of the current oscillation beyond the cutoff frequency
of the parallel-plates capacitor. The wave is in propagating modes. pe? < k.? indicates
the frequency of the current oscillation above the cutoff frequency of the parallel-plates

capacitor. And the corresponding electric field is given by:
E(r,t) =E” (r,t) + E< (r,?) (3.36)

where E> (r,t) is vector potential for ueQ? > k> and E< (r,t) is vector potential for

1e? < k2. They are expressed as:

cos 592—(’"7) ly| —
B (1) = 290 5 (72T i (22) i y ", o

" uet® — ()

and

exp |— (m)2 — peQ? |y|
E< (r,t) = /MO Z < ) sin (%z) sin (Qt) ’ { ’ ' ’ } T (3.38)

" ()" — pe22
The electric field only couples to TM wave and it only has the x-component field,
because the line current oscillates in the x-direction. The direction of the electric field
satisfies the expectations of classical electrodynamics. When pueQ? > k.* = (%)2, the

situation will insure wave propagation. When ueQ? < k.? = (%)2, the wave becomes
evanescent mode. An evanescent wave is a nearfield standing wave with an intensity that
exhibits exponential decay with distance and it does not propagate. We can see this in

Eq. (3.38) which has a term exponentially decaying from y = 0.

The electric field is the same as the classical expectation. Again, we prove that our
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calculation method is practical and the quantization wave in the waveguide we deduce is
correct. The detailed calculation process of this problem in classical method is left for

Appendix E.

3.3 Brief summary

In previous two sections, we drove the vector potential and electric field induced by
oscillating charge in free space and ac line current in waveguide. The electromagnetic
wave induced ac line current in waveguide only couples to TM modes. The results of the
two different systems solved by our calculation method are identified with the calculation

method of classical electrodynamics. We did show that our method is practical.
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Chapter 4

The electric field induced by ac spin

current

We already know that our calculation method is practical, and we will solve the electric

field induced by ac in-plane polarized spin current in the waveguide in this chapter.

4.1 Effective Hamiltonian for photon

We had discussed the structure of the waveguide of our system previously. 2DEG (two
dimensional electron gas) in our system is at the middle of the two parallel metal gates
as Fig. 2.2. Ac in-plane polarized spin current will generate out-off-plane electric field
and we can use a voltmeter to measure the electrical potential difference between the two
metal gates.

We will calculate line spin current instead of surface spin current, because the field
induced by line spin current is easy to analyze its physical meaning. Moreover, if we
directly calculate the field induced by surface current, the field has singularity owing
to the waveguide structure. Actually we may decompose the surface spin current into
countless line spin currents. We can integrate over the electric field distribution of line

spin current into one of surface spin current. Assume that the line spin current flow is
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parallel to x-axis and this "line” is located at (x,0,d/2). The spin polarization direction
is towards the negative y-axis. We do not let this spin current oscillate at first, and the

wave function of the spins is given by:

¥ (r) = (v = VAexplikoal o (y,2) | V2 (4.1)
V2
T
where )\, is the line density of the spins and k; is the wave number of the spins. {\% _\/Li] is

the spin state, whose spin direction always point towards the negative y-axis. In semicon-
ductor, the spin orbit coupling term is given by H' = e%a . (p X E) , where we discussed
in Chapter 1. The effective perturbing Hamiltonian for photons in the system can be

obtain by sandwiching H" with electron state as given by:

H'opp = (U H' 1)

. A ' L
_ ik A\ bV e otk V2
_/{\/)\Se v (y,2) {75 75] }eha.(pr) A€ (y, 2) i dr
2 (4.2)
A ikea L0 0 _ o | 0
= _6)‘5%/ {e v (y, z)} { zhaZEJ; + zhasz 1hE, P +ihE, 81’}

x {7 (y, 2) } dr,

where E, and E, is the x and z component of the electric field respectively. p is operator
for electron, it operate on the electron state. E is classical physical quantity for electron.

The Eq. (2.12) and Eq. (2.15) lead us to obtain E, and E, by dot product. Hence, the
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P>

x>

b

> X

Figure 4.1: The figure shows the relationship between ¢, k, and z.

perturbing Hamiltonian becomes:

; 1 1 2 .
H'pp = —e)\A/ {e™™ %o (y,2)} {— Z <%> cos (%z) [— e’ Frrthuy—nial)

ue nk Wnkl

i _ _ mm mm . .
4 e iR thyy wnklt)] CoS ¢p — ZE : <7> o <7z) [bmkez(kzx—i-kyy wimieat)
m,k

+ bmk+€—i(kxw+kyy—ka2t):| sin ¢y, + i Z k oS (Ez> [_kmcnkei(kmm—l-kyy—wnklt)
ue n.k Wnki d

, 0 0 ,
+kxcnk—i-e—z(kxsc—l-kyy—wnmt)} _ ZEx& + ZEZ%} {eZkSZSO (y’ Z)} dI‘,

(4.3)

where ¢, is the angle between the k and z. The relationship between ¢, k, and & is

shown in Fig. 4.1.

Because the cross section of the y-z plane of the line spin current is far smaller than the
thickness of the waveguide d, and the electric field near the line current (:L‘, y=0,2= ‘51)

change smoothly in the space and the electric field near the line current changes violently
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in the space, we can write the integration [dx [dy [ dz¢ (y,2) Exp (y,2) (i = z,y, 2) as

/d:c/dy/dzso y,2) Ei (z,y,2) ¢ (y,2)
— /dx/dy/dz|gp(y,z)] /dei (z,0,9) (4.4)

= /deZ- (:13,0, %)

For the same reason, the integration [ dz [dy [ dzE,¢ (y,2) 2¢ (y, z) can be written as:

[ [ay [a:piow2) rotwn) =5 [an [y [ dspt l/dm— ]

We substitute Eq. (4.4) into Eq. (4.5) and express E, , and E, in waveguide modes. After

simple integral process, the effective perturbing Hamiltonian becomes:

1 1 2 . .
Z (n_7r> coS (%) 270 (kz) [—cnkeﬂ“’"klt + cnk+e““"k1t} cos (¢r)

H'opp = —edA
== { ne Wnk1 d

() con (1) 2080 e e s

m,

1 k | |
+ — Z k., CcOS (%) 21 (kx) [_anefzwnmt + an+€u‘)nk1t:|

1 1 2 ) A
+ 7o (k) ,U_5 Z — <%r> cos <n77r> [cnke_““"‘lt — cnk*ezw"klt] Cos Oy,

+ 7o (ky) i Z (%) cos <%) [bmke_wm“t + bk “"m“t} sin ¢y,

— k327T(5 (kx) i Z K COS (%) [Cmie*iwmilt + Cppe 6zwnn1t} }

HE - Wnkl

(4.6)

The first, third, fourth, term in the curve bracket have o (¢) cos (¢x) or k6 (k) will vanish

after integrating over k,. We drop it to avoid unnecessary calculation. The Hamiltonian
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of the effective perturbation becomes:

H'opp = —eXA {—m’ Z <%> cos (g) [bmke—iwmkﬂ + bmk+6iwmk2t:| § (ky) sin ¢,

m,k

1 k nmw . A
— 27k, — Z cos (7> [cnke_“’"klt + cnk+ew”k1t} ) (k:x)}

HE nk Wnk1

(4.7)

We divide the effective perturbing Hamiltonian into two parts as H'epr = H'ry + H'rp

where

H'rp = eXAmi Z (%) coS (%) [bmke_iwkat + bmk+eiwmk2t] d (k) sin ¢,

m,k

A k : .
H'pyy = 27re/\5k8£ ; cos (%) [cakie ™t 4 g Te ] 6 (ky)

H'rp which contains by, and b, T couples to the TE wave, and H'7y; which contains
¢k and ¢ T couples to the TM wave. We only care about the z-component of the electric
field, because only this component of the electric field distributes the electrical potential
difference between the two metal slabs of the waveguide. The z-component electric field is
corresponding to the TM wave. (¢px1 Or ¢pe1™ couples to photons of TM wave.) Actually,
if we keep calculating the vector potential with the perturbing Hamiltonian H'7g, the
vector potential of TE modes will be equal to zero. It means that only photons corre-
sponding to the transverse magnetic (TM) waveguide modes are exited. If we allow the
spin current to become oscillatory, with an ac frequency 2, we can incorporate this into

our present framework by changing: ks — ks cos (2t). Hence, the Hamiltonian of the

effective perturbation becomes as the following:

A k , .
H/TM = 2me)k, cos (Qt) _ cos (T) [anleﬂwnklt + an1+ezwnk1t] 5 (km> (4.8)
He n.k Wnk1 2

With the perturbing Hamiltonian for photons, we can obtain the wave function by
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using perturbation theorem. We will solve the photon state in our system in next section.

4.2 The new photon state in the waveguide

We have obtained the effective Hamiltonian of the system of ac in-plane polarized spin
current for TM wave in parallel-planes waveguide. We desire to know the photon state
of TM wave in our system. The photon state gives us all information of the wave in the
waveguide including the z-component electric field. The photon state of TM wave in our

system becomes:

T) = [Wo) + D £ 1£0,0,...,0, L, 0, .., 0})
nkl (49)
= 1{0,0,..,0,.,0}) + > f90 10,0, ..,0, 141, 0, ..., O})

nkl

where |Wy) is the original wave function. f,,(igl is the first order perturbation coefficient of

H'ryr. fr(i)l can be solved by:

_. t
7o = —’/ ({0,0,...,0, 1ys1,0, .., O} H'cppe™ [{0})dt

h
—i [! A
=+ /_OO e™ ({0,0,...,0, 1,101,0, ..., 0} 2me k, cos () e (4.10)
k nmw 4 .
> o cos (7) [ensre ™ 4 o Temat] 6 (k) [{0}) dt

After integration, the first order perturbation coefficient becomes:

n
fien =

+eXp (i (Wnk1 — Q) 1] } 5 (k)

Wnkl — ”7 -Q

—meNks Ak (mr) Bkl {exp [i (wnk1 + Q) 1]
— Ccos 0

h HE Wnk1 V Wpk1 — U1 + Q (411)

Since H'py; does not include the by or by, H'rar would not couple to the TE wave
but TM wave which we care about. From above equation, we know that f,(L,ll){,l vanishes

for odd ”n” which imply the electric field for TM wave will only couple to even n mode.
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Also, we know the photon state of TM wave in our system.

4.3 The expectation value of the vector potential in
our system

The expectation value can give us the predicted mean value of the result. In the previous
section, we obtained the photon state of TM wave |¥). The expectation value of the

vector potential of TM wave in the photon state |¥) is given by:

Ary (r,t) = (U] AP | D)

- {<{0,0, 1) YR S A O (1 ) 1m,kA,0,...,o}|} A©P) {[{0,0,...,0}) (4.12)

m/k\

m/k\

- Z f7§11’)k/\ 10, ..., 0, La, O, .o O})} ,
Substituting Eq. (2.17) into Eq. (4.12), we have:

ATM (I‘, t)

1 (%r) el hwnka { 1) i(k-p—wniat) (1) * —i(k-p— klt)} I
= — —_ = 7 - T (K- Wn (K- Wh, k
e nEk e sm( p z) = foa€ + fog €

1 k nmw hw”kl - o(1) i(k-p—wpikit) - p(1) —i(k-p—w klt)} 2
i HE % Wni1? COS( d Z) Iy { k1 ® il € :

(4.13)

From above equation, we notice that the vector potential has two components that are

k and z directions. The two directions are the same as the directions of electric field.
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Combining above equation Eq. (4.11) and Eq. (4.13), we obtain:

Ay (r,t) = (M/;)Qéwe)\sk‘s Z <%T> sin (%z)

(@) [exp[ i (roma + Q) 1] expli (+ewma = Qﬂ]} 5 (ky) ¢/ P=nia)

2 wnk1—2n+Q wnkl—m—Q
Ot -0 . .
wnklz Wnikl + “7 + Q Wnkl + “7 - Q
7re)\ ks Z cos (—z)
UE)
k2 nm\ [exp[i (W + Q)¢ | exp[i (W — Q)] :
nn n n 5 kz i(k-p—wnkit)
. Hwnkl?COS(?){ Wnk1 — 11 + € * Wnk1 — i1 — £ (ke) e
2
i k oS (n_W) {GXP [~ (Wi + ) {] + exp [—i (wnia — ) t]] 5 (ky) e—i(kp—wnklt)g}
Wkl 2 Wit + @1 + Q Wpk1 + 11 — €
(4.14)

For arbitrary orientation and arbitrary magnitude of wave number k, We can generalize

Ak, Aky
Ak, Ak,

the summation to representation of integration for continuous k. It means ) — >

K K
WI(A%) [ dk,dk, = 61(2—‘;)2 [ dk,dk,. Because the z direction is quantized and described
by summation m, it may not change to representation of integration. The integral only

respects to x and y. Then we get

Aqy (r,t) = (,ut)Z %WeAsks (%)2 Z (%) sin (%Z> €08 <n§>
n=0

/ i, / a, { [ exp [ZQt] L& [_?Qt] }

W12 | Fwpk1l — M+ Q2 Fwpg —in —

{ exp[ 1Qt] " exp [th] } 5 (/{: )ei(kzerkyy)}]%
wnkl Fwpk1 + 1+ Fwpi +in — Q

+ (,ut)z dﬂe)\ ks <27r)2 ; cos <%Tz> cos (%)

/ " / " { . { expli]  _ exp [ ] 5 (k) eitkzr+hu)
Wok1? | Fwnkt — i+ Q  Fwpir —in —
. |: exp [ ZQt] 4 €xXp [ZQt] :| 5 (]C ) —i(kzx-i-kyy)} 3
wnk1 Fwnk1 +in+Q Fwpi +in — Q

(=%

(km) ei(kszrkyy)

(4.15)
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We use the dispersion relation k. + k? = w,u2pe and replace wpxi by ,/Hie (k;y2 + k:f).

76 (k;)” in above equation make the integration with respect to k, easy. Then the vector

potential becomes:

A 1\? nT\ . /N7 nmw )
Aqy (r,t) = (Iug)nga)\sks (%) 2 (7> sin <72) cos (7) {Fi+ Fo+ F3+ Fy} g
+1 A w sk LY’ COS(mT> (mr){G + Gy — Gy — Gy} 2
¢ TTEAsRs | —2z ) cos | — — — ;
(,ue)2 d 2T — d- 2 ! 2 3 4z
(4.16)
where
F = / dky gkl,’f 3 % > [2215] ehuy
—oo Ry ARz = (B k) —in+Q
= / dky 51{‘2 3 % GQXP[ - d ey
1 .
—o0 y TR i (B +k7) —in—Q
Py = / k- g“f‘f;; _ X e;p[ 22 4 e~tkvy
—oo Ry R e (B ES) +in+Q
o0 () )
Fy= / k. é‘glﬁ]’c ~ X pr [th] e~tkvy
1 .
—00 y TR i (B ES) +in—Q
00 :IC 2 . )
Gy = / dkyk’f s X — [Z?t] ik
—oo Ryt R i (k) E) =i+ Q
0o 2 —i0 .
G = / dk;yk‘fkyk 5 X e;p[ 4 f et
1 .
- y+ Z E(k’y ‘|‘kfz)—'l7’]—Q
> k,? —i :
Gs = / dky 3 e:{p[ - | e~y
—oo Nyt R i (k7 E) +in+Q
00 2 Q) )
Gy = / e, 1Ko exp [#Y] etk
oo Ryt R & (ky® + k%) i = Q
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We find that Fy , Fy, Gy, G5 is the complex conjugate of F3 , Fy, G3, G4. When
we deal with vector potential induced by charge oscillation or ac line current problem
in Chapter 3, we ever both experience this condition. The integrals in Eq. (4.16) seem
not easy. We have to consider about the situation for y > 0 and y < 0. Complex
integral methods can simplify this problem. Using Complex integral method, we must
choose different contours for the corresponded integral. The detailed derivation is saved
for Appendix F. We instead )\% to Is. I, is the magnitude of spin current in unit of
Ampere.

After the complex contour integration, the vector potential can be divided by two

part.
ATM (I', t) = A;M (I', t) + A;M (I', t) (417)

Az, (r,t) is the vector potential in the situation ueQ? > k,>. For pueQ? < k.?, the

vector potential is A5, (r,t). A7, (r,t) and A%,, (r,t) is given by:

A7, (rt) = — SCQ Z cos (mr) {(%) sin (%z) [—e_%h‘/' sin ()
— sin ( puefd? — ("7)2 ly| — Qt)} k + cos (%z) [<n;r> il (4.18)

X sin () —1/ pe? — (%)Qcos ( puef? — (%)2 ly| — Qt)} 2}

Ay (rt) = —e— L= Zcos (mr) {( y ) sin (%z) [—e_%ﬁy' sin (Q¢)

+exp (— (%) — uef? |y]> sin (Qt)} k + cos (%z) [(7) e d (4.19)

x sin (QF) — 1/ (25)? — peQ? exp <— (1) — peQ2? |yy> sin (Qt)} z}

nm

Fory > 0, y = ki ; for y > 0, —) = k. Remember that k, is equal to “r. We choose

the transverse gauge in which the scalar potential vanishes. The electric field is given by
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E = —%. Therefore, the electric field for TM modes can be shown as:

Epy (r,t) = E7>“M (r,t) + E;M (r,t) (4.20)

where EZ,, (r,t) is the electric field in the situation ueQ? > (%)2 and E5,, (r,t) is the

electric field in the situation psQ? < (%)2. They are given by:

E7, (r,t) = 6%6%*[SCZCOS (%) {(%) sin <%z> [ef%‘w cos (Qt)
— COS < puef2? — (%’)2 ly| — Qt)} k — cos (%z) [(%) e~ d Wl (4.21)
x cos () — \/ueQ2 — (22)? sin ( peQ? — (1) Jy| — Qt) z}
and
Es,, (r,t) = 6%6%*ISCZCOS <%> {(%) sin <%z) [67%“" cos (Qt)
—exp <— (%)2 — uef)? |y|> cos (Qt)} k — cos (%z) [(%) e d Wl (4.22)

x cos () —\/ (25)* = peQ exp <— (20)? — e? |y|> cos (Qt)] z}

After complicated calculations we finally get the electric field induced by ac spin-
polarized current in the waveguide. ” >~ cos (%4F)” in Eq. (4.21) and Eq. (4.22) ask that
only the even modes of electric field 7;;(i)st. It is different from the electric field that is
induced by charge current in the waveguide we discussed in Chapter 3 only and couples
to odd modes.

The electric field has the term exp (—% |y]) which decays in the positive y-axis and
negative y-axis from the y = 0, even though we do not understand that it’s physical
meaning, we find that the result is extremely different with the ac charge current. From

mathematics view point, the ac in-plane polarized spin current couples to TM wave which

1

Wnkl

the electric field is proportional to

. But charge current oscillation which couples to

the TE wave is not. This difference results that the final residue integral methods generate
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difference number of poles, so that the electric field induced by the ac in-plane polarized
spin current exists the decay terms. From Eq. (4.22), we notice that the electric field
vanishes if the oscillation frequency is equal to zero. This checks with the ac nature of our
results in this work. We will explain in next chapter that only the n=0 waveguide mode

will contribute to the potential difference between the two metal gates of the waveguide.

4.4 Brief summary

We drove electric field induced by ac spin current in waveguide and coupling to TM modes.
The electric field only couple to even mode and has exponential decaying terms. With
the electric field, we can calculate the ac electrical potential difference induced by ac spin

current.
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Chapter 5

Result and discussion

In the last chapter, we will discuss the final result of the ac electrical potential difference
induced by as in-plane polarized spin current and explain the signal is measurable if we

add a film bulk acoustic-wave resonator in the measuring circuit.

5.1 Discussion

In this section, we deduce the magnitude of the electrical potential difference induced by
ac in-plane polarized spin current and discuss the result. The potential difference induced
by the ac spin current can be deduced from equation by integrating the z-component of
the electric field over the thickness of the waveguide. Then the ac electrical potential

difference is given by

*

V, = /Od E.dz = %e%[sc {Msin (\/Wy — Qt)} (5.1)

Only the mode n = 0 wave distributes the potential difference, because the electric field
of every mode of the wave oscillates in the z direction and is canceled by integrating over
the thickness of the waveguide except the ground mode. We notice that the electrical
potential difference is independent from the thickness of the waveguide d. It is good news

for us, because we neglect the skin effect in our calculation.
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Skin depth

Skin depth, also known as classical skin depth, is the depth to which electromagnetic
radiation can penetrate the surface of a conductor. It will cause energy loss or change of
the field. Under the condition that the electronic mean free path becomes comparable with
or greater than the classically calculated skin depth, we should consider about anomalous

skin depth instead of classical skin depth [15]. The anomalous skin depth is given by:

l 13 9
5= (sepas) 73

0

where ”a” is a real coefficient of the order of unity, [ is the mean free path in material, p
is permeability in material, f’ is the frequency of incident electromagnetic wave, o is the
conductivity of material. The higher frequency gives the less anomalous skin depth.

If the thickness of slabs is longer than the skin depth, we do not worry about this
problem. Essentially, for any material the ratio of electronic mean free path [ to absolute
conductivity o is a constant independent of temperature. For aluminum and gigahertz of
incident electromagnetic wave, the skin depth is about 0.5um. If the thickness of slabs is

more than 0.5um, we do not worry about the impact of skin effect.

Surface spin current

The electric field in Eq. (4.20) is induced by the ac line spin current in the waveguide. Ac-
tually spin current should flow though the 2DEG. We can calculate the total distribution

of surface spin current on the 2DEG by integration over the y-direction. That is

*

E. (r,t) = Aem?]x cos (%z) X \/usﬂQ/dy' sin <\/u5§22 (y—1y') — Qt) (5.2)

ed

where we only consider about the ground mode. If the oscillation frequency is about giga-
hertz, when we integrate the electric field with respect to 3/, the wave length 27 /+/pue?

for mode n = 0 is long enough not to cancel total electric field induced by surface ac spin
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current in the z direction. And the electrical potential difference is almost the same when
we think that the line spin current or surface spin current carries the same magnitude of

in-plane polarized spin current with the same oscillation frequency.

The potential difference

For we must be sure whether the electrical signal generated by ac in-plane polarized spin
current is measurable, we estimate the electrical potential difference between two slabs
of the waveguide from Eq. (5.1). The effective electron mass in GaAs m* = 0.068mg ~
6.1 x 10™%kg [16] where my is the electron mass in free space; the spin orbit coupling
constant A ~ 8.25 x 10719m?; the relative permittivity in GaAs is about 12.95. The
estimated value of the electrical potential difference V, ~ 2.9 x 107" X I in current X f in
the unit of Volt, Ipin current 1S the magnitude of spin current in the unit of Ampere, f is

the oscillation frequency of spin current in the unit of Hertz.

Electronic filter

If we can generate 50 nA of ac in-plane polarized spin current with oscillating frequency
10° Hertz, the induced electrical potential difference is not high enough to detect. Some
microstructure or electronic filters which can reach high quality factor ) and high opera-
tion frequency could enhance the signal by four order in magnitude.[17]. By apply these
kinds of microstructure, we can set our device as Fig. 5.1. If we generate 50 nA of ac spin
current with oscillating frequency 500 MHz , the maximum potential difference between
the resonant induced by ac spin current in system is about 725 x 107 volt which is

measurable.
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Figure 5.1: The spin current is injected from the both sides of the waveguide. We apply
an external electronic filter with high quality vector @) to increase the output signal by
several order.

5.2 Injection of in-plane AC spin current

Even thought we already know the electrical potential difference between the two metal
gates induced by ac in-plane polarized spin current, the generation of ac in-plane spin
current is still a challenge now. Here we propose a few means to generating in-plane ac

spin current.

Optical spin injection

A photon is a boson and its helicity is £A. These two spin components correspond to
the classical concepts of right-handed and left-handed circularly polarized light. If we
drive the circular polarization electromagnetic wave to illuminate the 2DEG normally on
a spot, it will generate spin accumulation on this spot. These spins will diffuse away due
to concentration imbalance and cause spin current. When we drive right- and left-hand
alternating circular polarized electromagnetic wave to illuminate the 2DEG normally on
a spot, it will generate ac spin current. But the spin polarization direction of the spin

current is out of plane of 2DEG. we can redesign the waveguide as shown as Fig. 5.2.
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Figure 5.2: The illustration of the optical spin injection for our system. Right- or left-
hand circular polarized electromagnetic wave to illuminate the 2DEG normally and then
generate spin accumulation.Spins will diffuse away due to concentration imbalance and
cause spin current. Right- and left-hand alternating circular can drive ac spin current
diffusing away. The metal gates of waveguide are deposited at both side of the device
and detect the electrical potential difference. The two beams with opponent right- and
left-hand alternating circular polarization on the left and right side of the system can
enhance the spin current.

There two beams with opponent right- and left-hand alternating circular polarization on
the left and right side of the system in order to enhance the spin current. The metal
gates of waveguide are deposited at both side of the device. The spin current flows on
the 2DEG. Thought the spin current flows not only through the middle of the two slabs
but also the neighborhood of it, the ac electrical potential difference induced by ac spin
current flowing through the neighborhood of the middle of the waveguide is the same as
the potential difference induced by spin current flowing in the middle of the waveguide.
It is because of this that only ground mode of electromagnetic wave will distribute the
potential difference. surface spin current can be decomposed into numerous ”line spin
current” the and the electric field of the ground mode of wave is independent of relative

distance form the ”line” spin current to two metal gates.
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Figure 5.3: The ac charge current is injected from the both terminals, and the charge cur-
rent with spin-polarization flows through the waveguide. These spin-polarized electrons
originate from the ferromagnetic probes.

Ferromagnetic spin injection

The second method is ferromagnetic spin injection [18]. We can construct a ferromag-
net /semiconductor/ferromagnet device which is shown in Fig. 5.3. we inject ac charge
current through ferromagnetic probe to polarize the spins of the electrons. It can gener-
ate in-plane polarized spin current by apply external magnetic field to the ferromagnetic
probe. The external magnetic field applied on the ferromagnetic probe is used to tile the
magnetization in ferromagnetic probe and the spin polarized direction of the current will
be aligned. But the injected current not only include the spin current but also charge
current. Ac charge current can also generate electric field in a waveguide. Even though
the ferromagnetic spin injection could inject more spin current, the signal induced by

charge current may interfere the measurement.

Non-local spin injection

The third one is non-local spin injection. For non-local spin injection, our system could

be set up as Fig. 5.4. The FM1 and FM2 are ferromagnets which are use to align the
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Figure 5.4: When we drive charge current between A'B and D E, it will resulting in
nonequilibrium spin accumulation in the ferromagnets that diffused away from the injec-
tion point. If we drive ac charge current, it will drive ac spin current into the waveguide
structure.

electron spin and their magnetization directions ate out of the 2DEG plane with opposite
directions. There is a waveguide at the middle of the system used to detect the potential
difference induced by spin current. If we drive the charge current flowing between the
electrode A and B, it will generate spin-polarized current diffusing away from FM1 into
the 2DEG. And spin-polarized current will flow into the waveguide structure and no net
charge current flows into the waveguide. When an ac power drives the charge current, the
ac spin current will flow though the waveguide structure. The another set of ferromagnet
FM2 with anti-direction of magnetization and ac power can increase the spin current. The
non-local detection can avoid interfering signal. We can detect the electrical potential

difference at the waveguide.
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5.3 Conclusion

This work demonstrates a new method to calculate spin-current induced field. The in-

duced ac electrical potential difference and ac spin current have the relation:

V. ~2.9x 107" X Ipin current X f  in Volt

, where Igpin current 15 the magnitude of spin current in Ampere, f is the oscillation fre-
quency of spin current in Hertz. Even the strength of the induced electrical potential
difference is not enough to be detected. It shows that electrical signal generated by ac
spin current is measurable, if we set up appropriate external electronic filter. Comparing
with Sun et al. [12], we have reasonable magnitude of spin current, and the electric field

is not screened by the charge of the conduction electrons [19].
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Appendix A

Average over direction

In this appendix, we will show the derivation from Eq. (3.9) to Eq. (3.11). By taking
linear polarization, we have A* = X. For A* = X, we can assume k to be along 2", the A

/)

is in the 2”-g"plane. The Fig. A.1 show the relationship of k, 2", ¢”, and 2”.
We focus on the term ) exp [ik - r]AN," in Eq. (3.9) which is related to polarization
X

direction. A, is the z-component polarization direction and > A\, can rewrite as A\, =
)

" sin (6,) = (l% X 2) x k. Therefore,

Z exp [ik - T]AN."

A
= Zexp [ik - *]AN, = exp [ik - 1] <l% X 2) X k

A
Using the vector relation (l% X 2) xk=2— (/2; . 2) 2 , we get:

S exp [ik - AN = exp [ik - 1] {z - (k - z) k} (A.1)

From Eq. (A.1), we can derive Eq. (3.10) from Eq. (3.9). Then we will derive

Eq. (3.11). Assume that the angle between k and r is . And the average over direction
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APPENDIX A. AVERAGE OVER DIRECTION

Figure A.1: The figure shows the relationship of k, 27, 2, ¢, 5. k = 2", and the X is in
the z”-¢" plane. " is normal to the z”-Z” plane.

of "exp [ik - r| 2 7 is given by:

1 : .
E/exp [ik - ] 2d€Y;,
2

1 T iy

— _2/ / exp [ik - r] sin Oadfad g
A Jy=0 Jo,=0
1

= sin [kr] 2

It is more convenient to us to construct a coordinate to illustrate the relationship
between k, 2, and # as Fig. A.2. From Fig. A.2, we know that k = sin®’ cos '3’ +

sin @' sin ¢'y’ 4 cos @'Z’. The average over direction of ”— exp [ik - r] </2; : 2) k” is given by:
1 . AN\ »
- — [ ewlik-x] (k : z) kd<;
1 0'=m @' =27
=0 / exp [ikr cos 0] { (sin®6’ cos ¢’ sin ¢’ sin 6 + cos 0 cos O sin @’ cos ¢') &’
™ 0 '—0

+ (sin®#'sin’*¢’ sin 6 + cos ¢’ sin @’ cosfsin ¢') ¢/

+ (sin @' sin ¢’ sinf cos ' + cos’¢’ cos 0) 2’} d¢f sin 0'db’
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Figure A.2: The figure shown the relation of ¢/, 2/, 2/, and #. The 2 direction is in the
y'-Z' plane and @ is the angle between 7 and 2.

Because fjj,::o% cos ¢'d¢’ = 0 and fj:o% sin ¢’d¢’ = 0, we obtain:

— i/exp [ik - r] <]2?2> ]%inc

cosf'=—1
_ Ly sin 0 exp [ikr (cos@)] |1 — (cos0)?| d (cos ¢ A2
4 9/71
1 cos;’:—l )
+ =% cos 9/ exp [ikr (cos )] (cos @) d (cos @)
cosf'=1
where the first term in Eq. (A.2) can be solved as:
1 cosf'=—1
Z;g’ sin 9/ exp [ikr (cos6')] [1 — (cos 9’)2} d(cos®")
cos /=1 . (AB)
r ., . 0si (k)—l—l”' 0 0? 2sin (kr)
= ———¢'sinfsin —¢'sinf § —
ol SV BRI okr? \ " kr
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The second term in Eq. (A.2) can be written as:

1 cosf'=—1
52’ cosf / exp [ikr (cos8')] (cos 0)*d (cos 0')
cos /=1

1, 2 . 4 4
=57 cos f {H sin (kr) + )2 cos (kr) — 5% sm(k:r)} (A.4)

1, { 0? (ZSin (k:r))}
=——Z'cosf{ — 5 ,
2 8(kr> kr

We combine Eq. (A.2), Eq. (A.3), and Eq. (A.4), .= [ exp [ik - 1] {;3 - <]2: : 2) l;:}ko can

be write as:

Dropping terms smaller than (ﬁ), we have:

% exp [tk - 1] {2 — <l§: . 2) l%}ko

. % . {sink[frr] . <Sin k(f@)} .\ % - {Sinkgfr) . (Sin k(fr))} A6)

_ (#) (2 — i cos ).

Utilizing above equation, we can get Eq. (3.11).
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The complex integral 1

Eq. (3.13) in Chapter 3 will be derived in this Appendix.
Using residue integral method, the first term of the integral in the bracket can be

derived as:

/°° L | exp [w’%] exp (th)
u'=—00 U/£ u' + (Q - ”7)

/I —

Let ' = u'p + iu';, where v is the real part of u’ and u/; is the imaginary part of u’.

The pole of

,—exp (iu't) exp (i1Qt)
X X
z ' 4 (Q —in)

c

u

is located at v’ = —Q 4 in on the complex plane. Because

r r r r
exp [z’u'—} = exp [z (u'g +iu'y) —] = exp [z’u'R—} exp [—u’l—] ,
c c c c

we may take a contour which closes the upper half-plane as Fig. B.1. There is a pole
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inside the contour. We use the Jordan’s lemma theorem [20] , we obtain:

/°° —exp [iw't]  exp (iQt)
u’:—oo P u + (Q - ”7)

[
B exp (i€2t)
__}%l—rgo; ?{ uexp[ } —m)d ,

contour

Q1
= —27m'E Re s u’ exp [w’q M
T |w——Q+in clu + (2 —1in)

. 27?2'%9 exp [—zﬁg] exp (i) .

We neglect n since it is very small. For the same reason we may solve the other three

integrations.

/°° 2 [—eXp [iu't] exp (—iQ)

" u't uw — (24 in)

~ —27m'§ [Q exp [ng] exp (—Z'Qt)] ;

[ el s

W' uw — (2 +in)

/=—00

For the last two integrals, we may take contours which close the lower half-plane, because

exp [—iu'r /c] is convergent at u’ approaching negative infinite. The contours do not close

any pole, so the integrals are equal to zero.
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contour

Figure B.1: The counter-clockwise contour we choose closes the upper half plane and has
one pole at (—€,in) in it.
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Appendix C

Approximation between wave
function of current and vector

potential

Here we will derive the detailed calculation from Eq. (3.18) to Eq. (3.19).

The first term in Eq. (3.18), khide [ da [ dy [ dzg (y, 2) Azp (y, 2), is equal to

h)\emike/dxAx (x,O,g) /dy/dzc,o2 (y,2), (C.1)

because the vector potential near the position(x, y=0,2z= g)changes violently, but the
wave function of the electron ¢ (y, z) changes smoothly. And the integral [ dy [ dz¢? (y, 2)
is equal to 1 due to the normalization of wave function.

Then we solve the second and third integrals in Eq. (3.18).That is

/dw/dy/dwy, ya @ (y, 2 /dx/dy/dw% aso(y,)-
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AND VECTOR POTENTIAL

Now if we apply the relationship for integration by parts, we have

/dx/dy/dwy, ya oy, z /dm/dy/dwy, as@(.%)
= |:/ dl’/ngO (y,Z) AySO (y,Z)] bthedy—direlctionf /dx/dy/dﬂﬂ Y,z y‘P (y7 )]
OU ary vatue o

the current density

0
+ |:/ dx / dZQO (’y, Z) AZQO (y, Z>:| the z—direction — — /dl’ / dy / ngD (y7 Z) a. [AZ()O (y> Z)]
boudary value of 0z

the current density

The boundary conditions ask that the wave function of the current is equal to zero at

the edge of cross-section of the wire. We deal with the derivative first, and we get:

/dx/dy/dw Y, 2 ya (y, 2 /dw/dy/dw Y,z aw(y, z)
/dm/dy/dzgp Y, 2 y@ o (y,z /dx/dy/dzgo A, (C2)
—/dw/dy/dw(y,Z) 25,0 (4, 2) /dw/dy/dw Y, 2

we rewrite Eq. (C.2):

/dx/dy/dzgo Y, 2 ya (y, 2 /dm/dy/dzgo Y,z 890(317 2)
- —5{/0191:/@/612902 (y,2) a—yAer/dx/dy/de (y,2) @Az} (C.3)
:—%/dx/dy/dngQ(y,z)V-A—l—%/da:/dy/dzgf(y,z)ﬁfl

For transverse gauge, in which the vector potential is divergence-free, we can write down:

V- A =0. The Eq. (C.3) becomes:

/d:c/dy/dzgoy, /d:c/dy/dwy, a@(%)
_§/dx/dy/dzg02(y,z)

A-vector near the position (x, y=0,z= g)changes violently, and the wave function of the
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electron ¢ (y, z)changes smoothly. Therefore, we have:

de | dy | dzo? ZA C.4
w/ y [ dzo (y,Z)(% . (C.4)
0

Combing Eq. (C.1), Eq. (C.4),and Eq. (3.18), we can obtain Eq. (3.19).
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The complex integral 11

Now , we derive the first integral in the curve bracket of Eq. (3.30)

kyy) 1

/dk .
\/ (k> +k2) \J& (k2 + k) —in+9

(D.1)

Let k, = 2/, Eq. (D.1) becomes:

ly 1

/dz
\/ k +z’2 \/#is(k;f—kzﬂ)—in—i—@

\/JE(@]: j+z,2) \/ﬁ(k;;ﬂ)—z‘?ﬁﬁ has two branch point on the complex plane which are
located at z =1k, and z = —ik,. The branch point will complicate the integration. The

contour does not close any branch point and branch cuts and we should define the branch
cuts.

For y > 0, we take our contour and the cut line as Fig. D.1, and the two red arrows
are the branch cuts that we choose. The section of contour , Cg, is a semicircle with
infinite long radius and the integral along C'r approaches zero. The integral along C). also
approaches zero, because the point z = ¢k, on the complex plane is not a pole, but a

branch point.

.
61/2y 1

Vo (k2422) L (k2 422) —int0

does not have any pole on the complex plane. So we
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Figure D.1: The contour we separate into five section closes the upper-half plane except
the branch point at 2’ = ik, and the branch cut (red arrow).

have:

iz'y 1
}5 de'—— =0 (D.2)
CrAT1+T2+C, 4T3 \/i (k2 + 22 \/ig (k2 + 22) — i+ Q

. ) iz'y 1
We solve the integral first: Ff2 dz,\/ﬁsz%z'?) \/ﬁ(kz%z”)—inﬁl

Let 2/ — ik, = me?, 2/ + ik, = rye'®; 2z = ip and then d2 = idp —%7‘(‘ <6, < %7‘(‘ :

s 3
-5 §92< 5.

For the integration path 6, = %7’(’,92 = %71’, and 2/ = ip. Hence, 2/ — ik, = rie™ =
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i(p—k,) = reeT =y = p—k,. For the same reason, r, = p+k,. The integral becomes

/dz L
VE k;+z2¢¢@£+za—m+g
1

/ dz'
\/—rlewl roeif2 \/—Tlewl roei2 — in + Q

lzy
:FQ/dZ/MLE(pQ_kZ %%+Q\/7/p_
k=
:z/oo dp ( +Zg\/7\/p_7

We neglect 7 in the denominator in Eq. (D.3).

Then we look at the integral:

[ !
L (k7 +27) & (k2 +22) —in+9

Let 2/ — ik, = e, 2 + ik, = re'®, 2 = ip, d2’ = idp, —%7? < 0 < %71’ ;

-5 <t < %71’ , and 7 is so small that we neglect it.
idn

For the integration path I's: 6; = 7T 0y = 27r 2 —ik, =1 = i(p—k.) =rie 2" =

ri=p—k., and 2’ + ik, = 19" = i (p+ k) = 19e'2 =1y =p+ k.

- !
L (k. + 27 \/#i (k2 4+ 2%) —in+9Q

67,2 y 1
= [ dY
/ \/%rleiel roeif2 \/irlewl roeif2 —in + Q
(D.4)
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Therefore, combining the Eq. (D.2), Eq. (D.3), and Eq. (D.4), we have

/ ", cilkyy) 1 =0
Y
\/ (k> +0) 5 (k2 + k) —in+ 0
et (kyy) 1
/dk:
Vi (k2 4k \/L(k32+ky2)—in+9
e_py
= z/ dp + z/ dp
R RN I
(D.5)
.. oo i(kyy) 1 /
Th lve this integral dk - fi > 0. Let =
en we solve this integral [~ y\/ﬁ(kz%kf) \/ﬁ(kz%kyz)—in—ﬂ’ or y et f(2)
e L . f(2’) has two poles at :‘:\/[LE (Q2 +i2nQ) — k.? and it also

e (s222) | (s247) -

has two branch point at +ik..
We take our contour and the cut line the same as Fig. D.1, and the two red lines are

the branch cuts that we choose. Using the Jordan’s lemma theorem [20], we have:

v

2’y 1
yg ds' € = 27 Res (f (")
CrAT1+T2+Cr 4T \/i (kz2 + 2’2) \/i (kz2 + 2’2) —n— o=ty Q2 k.2
(D.6)
Then

zzy 1
- / 2 1 2 2 +2m Res (f(2)
e+ ¢ L (k24 22) LR+ —in—0 i

(D.7)

The section of contour Cg is an infinite semicircle and the integral along C'r approach

zero. The integral along C,. also approaches zero. The calculation method of Eq. (D.7)
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is the same as what we do from Eq. (D.1) to Eq. (D.4). But there is a pole inside the

integral contour. We should find out the residue of f (2’). That is

Res (f (1)
2=/ pe(Q2+i2nQ) —k,2
= lim (z’ — \/ue (2% +1i2nQ2) — kZZ)
2=/ pe(Q24i2nQ)— A / ]{} + 2,2

X
& (k.2 +z’2)—in—Q

JLE eXP {i\/,us (Q2 4 i2nQ2) — kfy]

\/,us (Q2 +i2nQ) — k.°
The Eq. (D.7) can be write as:

kyy) 1

/ dk\/ (k2 + k,° \/i(k2+k2)—' o
pe \'F Y mn
=1 p —|—i/ D
oo i(pQ—k:f)—i-iQ,/i,/(p?—sz) S L (p?— —ZQ,/ SV — k,?

JLE exp [i\/ue (2 +i2nQ) — kfy]

(y >0)

+ 271
Ve (92 4 i209) — k.2
(D.9)
By the same way, we can obtain:
/ dk —i(kyy) 1 ( )
y>0
\/ (k> + k) & (k2 + k) +in+ 9
/ 4 e~ Py d e~ Py
o (PP k) iy eV kS — k) =i [/ p? — k.
(D.10)
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—i(kyy) 1

/dk
\/ (k> +h) /5 (k2 4+ k) +in - ©

(y >0)

e~ PY

k- e PY 00
=—<1 dp —1—2'/ dp

exp {—z \/us —i2nQ)) — k;fy]

\/ue —i2nQ) — k,*

— 2mipue

k2) + m\/%/gﬂ e

(D.11)

Substituting the Eq. (D.5), Eq. (D.9), Eq. (D.10), and Eq. (D.11), into equation, we have

A (r,t)

JUE eXP {z’\/us (92 + 2n9Q) — k.%y

I ,
= —1 Od Zsin (%) sin (%z) e~ “%omr;
TE

JUE €XP [—i\/,us (Q2 —i2nQ)) — k‘zgy}
iQto, .
—e""2m T

\/ua —i2nQ0) — k.,

The above equation is Eq. (3.31).
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Appendix E

The derivation of electric field
induced by ac line current in

classical calculation

Here, we will derive the electric field induced by ac line charge current in parallel-plane
waveguide with the means of classical electrodynamics. The system is the same as section
3-2 in this thesis. The infinite long wire carries ac electric current I = —I; cos (Qt) z. We

start with Jefimeko’s equation:

B /dr/(ﬂ (w.1,) ST L LOpe(ity) x—x' 1] aJ(r’,t,))
Cc y br |I‘ ’

" dneg P e at pr-vf Efr-r| ot

(E.1)

[r—r'| -

where ¢, = t— = is the retarded time, p. (r',,) is the charge density at r = v’ at t = ¢,
J (r',t,) is the current density at r = r’ and ¢ = t,., ¢ is the light speed.
We utilize image current to calculate the electric field in the waveguide. For simplifying

the calculation, we assume the wire is deposited along z-axis. If the wire is in free space,
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the electric field is given by:

, 1 /dr' (p Wt) r—r _'_lapc(r/,tr) r—r 1 1 aJ(r’,tr))
C T |

~ 4reg r—rf ¢ o |jr—v)? Er—r| o

! /dwl 1 Iy Ocos (Qtr):fc
- 4dmeg clr —r/| ot
— Ll[OQ {sin Q) Y, <%p) + cos (Qt) Jy (Qp) } z

4eq 2 c
(E.2)
where p = \/y? + 22. If the wire is located at (x,0,d/2), the field becomes
By = 10l (Q) Y, Ly S 2
= ——Q¢sin - z— =
0 4eg o1 ¢ Y 2
(E.3)

Q 2
+ cos () Jo —\/yQ—i—(zgd)) iy
c

The electric field we solve Eq. (E.3) is induced by ac line charge current in free space. If
we put two metal gates at z = 0 and z = d, we must add the field induced by its image

current. the total field is:

o0

E(r1) = Z (-1 — =0 sin (Qt) Yo E\/y2+<z_ 5

4eg 2
2
d> 2

Applying Poisson summation formula, Eq. (E.4) becomes:

d)2

n=—oo

(E.4)
Q 1+2

+ cos () Jy —\/y2+(z— —i—2n
c

For £ > mx
c d

E” (r,t) = MZ)Q sin (%) sin (%z) Z

m=odd
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CURRENT IN CLASSICAL CALCULATION

for & < mx
c d

The total electric field is E (r,t) = E~ (r,t) + E< (r,t). The Eq. (E.5) and Eq. (E.6) are
the same as the calculation in Eq. (3.37) and Eq. (3.38) which are solved by semi-classical

method.
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Appendix F

The complex integral 111

In this appendix, we derive Eq. (4.18) and Eq. (4.19) from Eq. (4.16) briefly. Let’s solve

. k exp[iQt] ik
the first integral term F} = [ dk, b2, ety
/8 Vhy™ k" [ L (2 +k.%) —in+0

22’ ; exp[iQt]
ZEkeT L (2 4.2) —in 0

and 2z’ = —ik, respectively on the complex plane. The contour must not close any branch

Let k, = 2. For y > 0,

has two branch points located at z’ = ik,

point and branch cuts. We take the contour and the cut lines as Fig. F.1, and the two
red arrows are the branch cut that we choose.

The contour we choose closes no pole on the complex plane. So we have:
, 7 exp [i]

,ueyg dz y 5 X
Cr+T'14T24+Cr+T'3 27+ kZ ,uiz-: (2/2 + sz) - “7 + Q

eV =0 (F.1)

The section of the contour Cf is a semicircle with infinite radius and the integral along

Cr approaches zero. Then Eq. (F.1) can be rewrite as

[oe} / Q .,
/ 5 I2u€z : exp [i€2¢] iy
o ATART L (22 4 k) — i+ Q
ez’ exp [i92¢] (F2)
_ / dz' H p eiz'y

2?4+ k2 L2 2\
Io+Crtls \/ e (22 + k%) —in+Q
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ol
e

A 4

ik, ®

Figure F.1: The illustration shows the contour we choose in Eq. (F.1) on the com-
plex plane of 2’. The contour can be separated with five sections, I'y, 'y, I's, C,, Ck.

2 exp|it] . ;. I ~

. \/;( k) e has two branch points located at 2z’ = ik, and 2’ = —ik, respec
HE

tively on the complex plane. The red allows are the branch cuts we choose.

1 iz'y

+k 2 1 /2 2 Qe
/M_:\/ +kz”—in+

There are three path integral in Eq. (F.2). We solve the integral fr dz'
first. Let 2/ — ik, = re', 2/ = ip ; d2' = idp.
We already chosen the branch cuts on the complex plane, so we have—%ﬁ <0 < %7? and

-5 <ty < 37. For the integration path I'y: 6, = —7T 0y = 7T and 2z’ = ip. There-

2

. ' . 1
fore, 2/ — ik, = rie" = i(p—k,) = rme2™ = r = p—k, For the same reason,

2 ik, =ree® = i(pt k) =re’r = ro=p+k,

/ dz' 5 5 e#'Y
r, % +k5 1/ \/Z/2+]€2 m+ Q
1 .

dZ/ 'Y P
101 02 .3
ra et \/ﬂsmewl% —in+9 )

k-
/ dp 2 X 2e_f"y
o (PP Q—i—z’,/t\/pZ—kz
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: 12 1 iz'y
Then we solve the integral st dz Tz X \/7 e

l 12 2 .
e V +k.“—in+Q

. Let 2/ — ik, = rie',

2+ ik, = ree'®, 2/ = ip, and dz’ = idp.
For the branch cuts we choose: —%7‘(’ < b, < %71’, —5 < 0, < %7‘(‘. 71 is small enough to be

neglected. For the integration path 6; = —%’N

2 — ik, =" = r=p—k,.

1

For the same reason 6, =

™

2+ ik, = ree'®

- / dz' d x :
r, Ti€efiryeifz imei(eﬁez)/? —m+Q o

°° 1
= / dp 5 p X €_py

R i\/%\/]ﬂ k2

Then we solve the integral

iz'y

dz’ ? ! e
2L k? 1 /e 2 .
Cr z E z +k’z —277+Q

Let 2/ — ik, = e = 2/ = ik, + e’ = d2' = ice™df, and 2/ + ik, = rye'®,
where ¢ is positive real number which approach to zero. We define :—%7? <t < %7‘1’ and

-5 < 0, < %71’. For the integration path C.: —%7‘(‘ <6, < %WFQQ = %71’ and ry = 2k,. The
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1

27'('.

7 in the denominator is small enough to be neglected and 6, =

2y

g 2! 1 ;
z ’2+k2x - - — e
Cr < ? \/E\/Z/ +kz —17’]—|—Q

' k’z 101 1 3
N / ize®dp, - _’;91661'02 X : exp [i (ik: +ee'™) y]
¢ Fraetie® | JL JEmei @tz — i+ Q (F.5)

3

a7 : ik 1

_ - 101 z

= 1ee”tdf — X exp |—k.
/9123 12'87"26101 —ZT] +Q P [ y]

1
= —mig exp [~k.y]

Substituting Eq. (F.3), Eq. (F.4), Eq. (F.5), into Eq. (F.2), we obtain:

o Q1 ;
Fy :/ dz 2M€Z 2 xp [0 e (y>0)
w0 BAETL L (24 k%) —in+Q

ke S
= —pe exp [iQ] / dp Y

1
X e ?
o (PR o [LVpE k2 (£.6)

1
Y — i exp [—k.y]

+/OO dp P X ! e’ ?
R Ay e

Then we deal with the integral

_ , .
oo kSRS [ (2 k) —in - 0

The contour we choose and the steps of calculation is the same as we work out Fj, except

that there is a pole in the contour of F, we choose. Let

pek, exp [—i§2¢]

— ikyy
k2 E? 1 2 2 . ©
y z E(ky —i—kz)—’m—Q

f' (ky)

We choose the contour for F; which is shown as Fig. F.2 and the contour closes a pole at

\/ pe (92 +i2nQ) — k.°. We get the following equation, using Jordan’s lemma theorem.
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ol
e

A 4

ik, ®

Figure F.2: There are still two poles at i\/ pe (92 +i2nQ) — k.* which we do not show
here. The section of integral I'; is the integral from negative infinity to infinity x. The
two red arrows are the cut lines which are from the points ¢k, and — ik, respectively to
infinity and negative infinity.

pek, exp [—i] ik

yg dkyk‘ 24 k2 1 2 2 .
Cr+T'14T2+Cr 4T3 y + R = (k‘y + k?z ) — ) — Q

(F.7)

= 2mi Res (f (ky))
hy—-+\/ e — k2 4

The integral

}é dk, éesky - exp [—iQ] ik
cn kR U k) — i 0

peky exp[—iQt]
ky+k.? 1 .
Y z \/E(kyQ"rkZQ)_ln_Q

is equal to zero, because will vanish for |k,| — oo on the upper
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half-plane.
I = Ry e ey et
—oo  Ry" R = (k) + k) —in—Q
k exp [—iQt ,
= THE / dky—5—"— X bl | 't (F.8)
ky” + ke o= (k) + k) —in = Q

Io+Cr+TI'3

+ 2mi Res (f' (ky))
ky—+1+/ 1eQ2—k,2 Y

The residue of f'(k,) can be written as:

Re s (f" (ky))
ky—/ pe(Q2+i2nQ)—k.2
_ lim (ky — e (@2 + i2n) - kf)
ky—n/ pe(Q2+i2nQ) —k, 2
) exp [~ ]
& (k) + k7)) —in —Q

_ HE . . 2
=g &P {2 <\/,u6 (2 +i2nQ) — k,°y — Qt>]

peky
k2 + k.

We can solve the path integral the same as we deal with F;. Hence, we obtain

o k —i{2 ;
F2:/ dkyk 58 :,2 N e:ip[ Z2 ] ™ (y > 0)
ooy RS L (B 4 R2) —in - Q
ks 1
= —peexp [—iQ] —/ dp P X e

o (PP-k7) T - i\/g\/;ﬁ k2

1
e P 4 mi—exp [—k.y]

—/ dp X

2 kz2 . /1 / _ 2 Q
z (p ) Q + 1 E p2 kZ
+ 2mi (% exp [z (\/ pe (2 +i2nQ) — k.%y — Qt)D

By the same way, we can solve F3, Fy, Gy, Go, G3, Gy,:
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F — * dk :Ufk:y eXp [_ZQt] e*ikyy ( > 0)
3 - V2?2 /o 5 5 , Y
o0 v TR (kRS F i+ Q

— 0 d [ ap—2 ! ~u
_—/LEGXP[_Z ] . p(pz_kZQ) X O i(1)2_]{;2)6
pe Z

o 1 1
+/ dp( b X e 4 mi—ehY

[ RPN ey R 2

F _ fe’e) dk ,ngy exp [ZQt] e_ikyy (y > 0)
Y N I A
o0 Y z E(ky +kz)+z77—Q

k
3 1
= —pueexp [i] —/ dp & X e P

2
o (P=k) i /L -1?)

o P 1 a 1,
- dp X e —mi—e Y
e e

- 27”,%5 exp (—z’\/,ue (Q2 —i2nQ) — k. 2y + iQt)

> ek,? exp |+t ,
oo [T ool
—o0 y TR = (k7 + k) —in+Q

k 2

, [ p 1 -
= —peexp [i€d] z/ dp X e P
(PP —k7) Qtiy /oD = k2
o) 2
. P 1 _ 1
+z/ dp 5 5 X e P+ 7k, x —e Y
— k., N SR N Q
2 (p ) Q 1 L D kz

83

(F.10)

(F.11)

(F.12)



APPENDIX F. THE COMPLEX INTEGRAL III

> k) —iQt :
Gy —/ dhy 5t X —= e;{p[ - . ety
—oo y R E(k:y + k%) —in—Q
k. p2 1
= —ue exp [—i] —i/ dp— o X e MY
oo p°— kz — i/ 2 _ ) 2
( ) Q—1, /#E\/p k. (F.13)
oo 2
. p 1
—1 dp — 7k, X —exp [—k,y]
/kz (p— 2 Q+@,/ -/ p? —k2 Q

—i—27rz—\/ue (Q2+1i2nQ2) — k, exp{ (\/ua (2 +i2nQ) — k.%y — Qt)}

—o0 i (B +HES) +in+Q
= —peexp [—iQ] ¢ —i /kz dp P’ 5+ X ! e P F 14
- (p2_k'z) 0O—i ﬁs(pz—kzz) ( )

o) 2 0
G — / i, gsky 2 exp [i§2¢] ikyy
—o0 ky™ + k. (k'y2 + k ) +in—Q
k 2
A p 1 _
= —pue exp [i] Z/ dp X e MY
o0 (p2—k2) Q+1 1€(p2 k2)

(F.15)

N A S Y
[ ] p(pQ_ij2) O_i l(pz_kz)e TRy Qe

— 2m—\/,u€ —i2n) — k% exp { (\/ue —i2nQ) — k2y — Qt)}

where peQ? > k.2 = \/,us (2 4 i2nQ) — k.2 ~ Vpue? — k.2
Cif pe0? < k2 = \/,ue (02 + i20Q) — k% ~ ik — peQ?

I pe? > B2 S\ e (@2 4 i20Q) — k2~ Ve k2

i peQ? < B2 = \fue (@2 — i2nQ) — k2 & —in/RT — e,
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