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摘要 

 

 

  我們提出了一種全電性量測交流自旋流(alternating spin current)的方法並且

理論計算出交流自旋流所產生的電信號。我們的系統主要利用半導體中的自旋軌

道交互作用，以平面二維電子氣(two-dimension electron gas)夾在兩個金屬閘極中

間作為測量裝置，在這樣結構中的電磁波為波導的模態。我們研究在自旋極化方

向與流動方向相互垂直並且躺在二維電子氣平面中的自旋流，這樣的交流自旋流

會激發出光子，只有對應於橫向磁場的波導模式(transverse magnetic modes)的光

子才被激發。光子在兩個閘極之間產生交替的電位差，而此電位差是可以用實驗

去量測的。 
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Abstract 
 

We propose a pure electrical means of detecting an alternating (ac) spin current, 
and we perform theoretical calculations on the order of magnitude of the expected 
electrical signal. Our proposed scheme has employed the spin-orbit interaction in 
semiconductors. The proposed measurement device consists of a two-dimensional 
electron gas (2DEG) sandwiched between two metallic gates such that the 
electromagnetic waves in between the gates are waveguide modes. An ac in-plane 
spin current, with both spin and flow direction orthogonal to each other and in the 
plane of the 2DEG, passes through the structure is found to excite photons. Only 
photons corresponding to the transverse magnetic (TM) waveguide modes are excited. 
These excitations give rise to an ac electrical potential difference between the two 
metal gates. The potential difference is found to be measurable by present day 
experimental capability. 
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ŷ′-ẑ′ plane and θ is the angle between r̂ and ẑ. . . . . . . . . . . . . . . . 60
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Chapter 1

Introduction

To start this first chapter of this thesis, we provide in Sec. 1-1, a general guide to the

structure of the thesis. The next two sections of this introductory chapter cover the

background and motivation of this thesis. The last section describes our calculation

method in this thesis.

1.1 Introductory touring to this thesis

In the first chapter, we introduce the background of spintronics as well as spin-orbit

interaction, and we propose the motivation of this issue and the calculation method in this

thesis. Chapter 2 describes the geometric structure of our system and the quantization of

electromagnetic wave confined by the waveguide. In Chapter 3, we solve two traditional

electrodynamics problems with our calculation method, for checking if our method is

practical. In Chapter 4, we solve the electric field induced by ac in-plane polarized spin

current. Chapter 5 reports that the signal generated by ac in-plane polarized spin current

is measurable. Finally, we discuss and take conclusions in this thesis.
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CHAPTER 1. INTRODUCTION

1.2 Background and Review

In this review section, we present a brief background on spintronics, on spin current, on

spin-orbit interaction, and on the progress in the research on the measurement of spin

current.

Spintronics

Spintronics is an area of intense current scientific interests[1]. It is important for in-

formation storage and quantum computing. Fundamental studies of spintronics include

investigations of spin transport in materials, as well as measurement of spin accumulation,

spin relaxation, and spin current. Especially, spin current plays an important role in an

spintronic devices. Our work in this thesis focus on measurenent of spin current. We

must understand the definition of spin current before our work.

Spin current

In this paragraph, we explain the definition of spin current. An electron carries both

charge and spin which may have two components: up and down. In the semi-classical

picture, spin can be described by a unit vector. Traditional charge current is a flow of

electron which is the sum of flows of up- and down-spin electrons. The spin information

may be neglected in charge current. A spin current differs from a charge current. For

a simple description, spin current can be recognized as the difference between the flows

of up and down spin electrons. A pure spin current means that equivalent up and down

spin flows in the opposite direction. There is no net particle transfer across any cross

section of the channel. Measuring spin current in solid state systems provides a new

tool to investigate the mesoscopic system, and it also give us hopes that it could be

applied in spintronics and quantum information processing in the future. We can say

that measurement of spin current is an indispensable part in field of spintronics. It has

been found that spin-orbit interaction can be a nice tool to measure spin current all

2



CHAPTER 1. INTRODUCTION

electrically. In the following two subsections we will introduce spin-orbit interaction in

an atom and in semiconductor respectively.

Spin-orbit interaction in an atom

Spin-orbit interaction is a well-known phenomenon which is caused from the interaction

of a particle’s spin with its own motion. A particle in an electric field experiences an

effective magnetic field in its co-moving frame. For electrons, it brings about lifting of

the degeneracy of energy levels of electrons according to their spin states.

In atomic physics, this interaction comes from the electron spin magnetic moment

interacting with the magnetic moment due to the orbit motion of the electron. In non-

relativistic approximation to Dirac equation, the form of the spin-orbit interaction term

in an atom is given by:

HSO,vac = − e~
4m0

2c2
σ · (p× E) , (1.1)

where e is the magnitude of electron charge(e > 0), ~ is the Plank’s constant, m0 is the

mass of a free electron, c is the light speed in vacuum, σ = (σx, σy, σz) are the Pauli

matrices , p is the momentum of the spin, and E is the electric field that the electron

travels through in the atom[2].

When the electron velocity is far less than the speed of light and a small electric field

is quite small, the Dirac gap 2m0c
2 ≈ 1MeV in the denominator of Eq. (1.1) is too large

that the spin-orbit interaction in a single atom is quite week.

We may rewrite equation Eq. (1.1) as HSO,vac = −eΛvac

~ σ·(p× E) , where Λvac = ~2
4m0

2c2

is the spin-orbit coupling constant in vacuum. Actually, spin-orbit interaction in vacuum

or in a single atom has the same coupling constant, but the electric field comes from

different sources. In a atom, electric field comes from the atomic nucleus. In vacuum,

the electric field comes from the divergence of the potential in space. Even though the

spin-orbit coupling in a single atom or in vacuum is very week, it will be magnified in

3



CHAPTER 1. INTRODUCTION

semiconductor.

Spin-orbit interaction in semiconductor

Spin-orbit interaction in solid state physics have the same form as Eq. (1.1) but difference

in the spin-orbit coupling due to the energy gap difference. In semiconductor, spin-orbit

coupling may be enhanced with several orders. The coupling strength is mostly derived

from the electrons with high velocity under the strong electric field near the core of the

atoms, rather than the weak velocity movement. Due to the periodicity of crystal, the

electron energy spectrum form energy band structure in the reciprocal vector space. If the

crystal system does not have the space inversion symmetry, the band gap will be narrower

which result in stronger spin orbit coupling. In GaAs, the spin-orbit coupling constant

Λ is about 82.5 Å
2

which is seven order magnitude greater than Λvac. The perturbing

spin-orbit coupling Hamiltonian in GaAs may be written as:

HSO,sc = e
Λ

~
σ · (p× E) , (1.2)

where Λ is the spin-orbit coupling constant in GaAs. The strength of spin-orbit interaction

un semiconductor is manifestly seven order higher in magnitude than that in vacuum such

that it becomes a nice tool to detect spin current electrically. Next, we will introduce

kinds of principle means of detection of spin current.

Review of measurement of spin current

Generally, there are three kinds of principle means of detection of spin current. Here, we

review some of them.

The first method is mechanical measurement[3, 4]. In 2007, E. B. Sonin demonstrates

that an equilibrium spin current in two-dimension electron gas (2DEG) with Rashba

interaction which is one kind of spin-orbit interaction will lead to a mechanical torque

on a substrate near an edge of the Rashba medium[4]. If the substrate is flexible enough

4



CHAPTER 1. INTRODUCTION

that the torques would distort it, it is a method to detect equilibrium spin currents

experimentally that he measure the degree of contortion.

Optical detection is also a general way to measure spin current[5–7]. In 2008, J. Wang,

B. F. Zhu, and R. B. Liu described the first non-invasive method of measure pure spin

current directly by a polarized light beam [7]. The polarized light beam which act as a

’photon spin current’ will interact with spin current due to the spin-orbit coupling without

the Rashba or the Dresselhaus effect. The interaction result in linear and circular optical

birefringence. They utilized the birefringence effects to measure to pure spin currents.

The third one is electrical detection[8–12]. In 1985, Mark Johnson and R. H. Silsbee

performed the experiment in non-magnetic aluminum strip contacted to two ferromag-

netic electrodes[11]. They reported that injecting charge current from one of ferromagnetic

electrodes into aluminum strip results in non-equilibrium spin accumulation at the inter-

face of aluminum strip and the source ferromagnetic electrode. The spin accumulation

defuses away from the interface and forms spin current. If there is a non-equilibrium spin

accumulation in the vicinity of the detector, an open-circuit voltage will be developed

across the interface. In 2006, S. O. Valenzuela and M. Tinkham demonstrate electrical

detection of spin currents in metallic nanostructures. They apply reciprocal spin Hall

effect in a diffusive metallic conductor and obtain its spin Hall conductivity. Finally they

measure the laterally induced voltage which results from the conversion of the injected

spin current into charge imbalance owing to the spin-orbit coupling. There are still Some

other means of electrical detection of spin current proposed in resent years including the-

oretical and experimental proposition. It is worth to mention that in 2004, Qing-feng

Sun et al. propose a journal named ”spin-current induced electric field” [12]. In that

article, the authors investigate properties of the induced electric field of a steady-state

spin-current without charge current. They regard one electron spin as a magnetic dipole.

Such magnetic dipole current will generate electric field in space. They claim that a spin

current with drift velocity 10−2m/s flowing in an infinitely long wire with cross section

area of 2 mm×2 mm and the magnetic moment is perpendicular to the current direction.

5



CHAPTER 1. INTRODUCTION

The spin current causes the potential difference∼ 12 µV at distance -1.1 mm and 1.1 mm

on either side of the wire. It is a novel method to measure spin current by measuring the

voltage directly induced by spin current. Even though the potential difference their report

is measurable, the spin current is up to 640.82 Ampere. That is very giant magnitude of

spin current. It is extremely difficult to generate such strong current in the thin wire.

1.3 Motivation

In Sec. 1-2, we mentioned the paper which is proposed by Sun et al.[12] and based on

the calculation of electrodynamics and relativity. They utilized the potential difference

induced by magnetic dipole current to detect spin current. The spin-orbit interaction

strength can be enhanced up to six orders of magnitude in semiconductor rather than

in vacuum. We think that if spin current flows in semiconductor, we may think that

it could induce more strongly electric field than in vacuum. It may be a power tool to

measure spin current by detecting the potential difference induced by spin current. But it

is very hard both to take the advantages of spin-orbit interaction in semiconductor and to

use the calculation method of electrodynamics simultaneous. We can not find any equa-

tion corresponding to the enhanced strength of spin-orbit interaction in electrodynamics.

However from the hamiltonian Eq. (1.2), we may take the advantages of spin-orbit inter-

action in semiconductor and calculate the potential difference induced by ac spin current

in semiconductor from the viewpoint of photons.

In addition, from equation Eq. (1.2), we support that the spin polarized direction,

the direction of spin flow, and electric field induced by ac spin-polarized current are

perpendicular to each other. Therefore, we want to design a device which can detect the

ac electrical potential difference generate by ac spin polarized current, and two parallel-

planes waveguide is the best choose. The two parallel-planes waveguide is not only easy-

fabricated but also measures the electrical potential difference easily. If the spin polarized

direction and the ac in-plane spin flow is parallel to the metal gates of waveguide and they

6



CHAPTER 1. INTRODUCTION

are perpendicular to each other, it will generate electric field which is perpendicular to the

metal gates of the waveguide. In this thesis, we propose that the ac spin current which

flowing in 2DEG which is at the middle of the two metal gates of a two parallel-planes

waveguide can induced electrical signal. This signal is measurable if we add appropriate

external circuit.

1.4 Introduction to calculation method

Our calculation is based on non-degenerate perturbation theorem. The calculation starts

from the perturbing spin-orbit interaction term of the Hamiltonian.

H ′ = e
Λ

~
σ · (p× E) , (1.3)

where e is the magnitude of electron charge (e > 0), Λ is the spin-orbit interaction constant

in semiconductor, ~ is the Plank constant, σ = (σx, σy, σz) are the Pauli matrices , and

E is the electric field in the waveguide.

While we consider that the second quantization procedure is applied to quantum field

theory, the classical field variables become quantum operators [13]. In classical mechanics,

the coordinates and momenta of a classical system can specify its state. In ordinary

quantum mechanics, the position and the momentum of a single particle promoted to

operators because the observables of position and the momentum can be quantized. The

ordinary quantum mechanics can only deal with the number of conserved particle systems.

However, in relativistic quantum mechanics, particles can be generated and annihilated.

The mathematical formulations of ordinary quantum mechanics no longer apply. We must

dealing with the creation and annihilation of particles with second quantization which is

the establishment of relativistic quantum mechanics and quantum field theory. Second

quantization method can deal with natural and simple symmetry of identical particles

and anti-symmetry. Essentially, if we can stand in the viewpoint of electron to solve the

problem with electromagnetic methods, but it is difficult to calculate. That is why we

7



CHAPTER 1. INTRODUCTION

solve the problem with second quantization method.

When we sandwich the perturbing Hamiltonian H ′ with the states of the oscillating

spin polarized electron state |ψ〉, we can obtain the equivalent perturbing Hamiltonian

H ′
eff for the photons which emitted by the oscillating spin current between the parallel

slabs. The effective Hamiltonian is given by:

H ′
eff = 〈ψ| eΛ

~
σ · (p× E) |ψ〉 . (1.4)

Because the momentum p is an operator for electron, it act on the photon state. And the

”E” in Eq. (1.4) is the operator for photons and it does not act on the electron state.

Applying time-dependent perturbation theory, we will obtain the first order perturba-

tion coefficient. That is

f
(1)
nkλ =

−i

~

∫ t

−∞
〈{0, 0, ..., 0, 1nkλ, 0, ..., 0}|H ′

eff |{0}〉dt′, (1.5)

where the subscript nkλ indicate the mode number. And we get the eigenstate state of

first order approximation of the photons. It is given by:

|Ψ〉 = |Ψ0〉+
∑

nkλ

f
(1)
nkλ |{0, 0, ..., 0, 1nkλ, 0, ..., 0}〉 , (1.6)

where |Ψ0〉 is the initial photon state which is one of the eigenststes of unperturbed

Hamiltonian. |Ψ〉 is the new state after the H ′ is added to our system. It means that the

photon state changes from |Ψ0〉 to |Ψ〉 when the ac spin current is applied. The photon

eigetstate tells us all information of the photons of our system which we want to know.

Then we sandwich the vector potential in the parallel plate capacitor with the the photon

state |Ψ〉.

A (r, t) = 〈Ψ|A(op) |Ψ〉 (1.7)

8



CHAPTER 1. INTRODUCTION

The result A (r, t) is the expectation value of vector potential in the parallel-plates waveg-

uide in the photon state |Ψ〉. If we choose the transverse gauge, by taking A (r, t) partial

derivative with respect to t, the electric field between the two parallel slabs could be ob-

tained easily. By integrating the electric field, what we obtain is the ac electrical potential

difference between the two metal gates. The potential difference is induced by ac spin

current and is also what we want to know.

9



Chapter 2

Geometric structure of the system

we consider

In this chapter, we will introduce the geometric structure of our system and derive the

quantized electromagnetic wave in waveguide.

2.1 Structure of our system

In this section, we show the geometric structure of our system. The model of our system

is shown as Fig. 2.1. In chapter 5, we will demonstrate that this device can detect electric

potential difference induced by ac in-plane polarized spin current by adding appropriate

external electric circuit.

At the middle of the device there is an extremely thin layer of 2DEG which is formed at

the intersection of two kind of semiconductor with different band gap energies. Two pieces

of metal gates sandwich the semiconductor structure and are parallel to the 2DEG. These

two metal gates are used to detect the electrical potential difference and they construct a

two-parallel-planes waveguide. We can apply two layers with two different ratios of Al to

Ga of aluminum gallium arsenide (AlGaAs) as dielectric material between the two metal

slabs to form 2DEG, and use aluminum slabs as gate to detect the electrical potential

10



CHAPTER 2. GEOMETRIC STRUCTURE OF THE SYSTEM WE CONSIDER

Figure 2.1: An illustration of the geometry of the two parallel-planes waveguide. The
2DEG which is formed at the intersection of two kind of semiconductor with different
band gap energies is at the middle of the waveguide.

Figure 2.2: If the ac in-plane spin current oscillates toward x-direction on 2DEG and the
spin polarized direction toward negative y-direction, it will generate ac electrical potential
difference between the two metal gates.

difference.

We had discussed that electric field induced by ac spin-polarized current is perpen-

dicular to the spin polarized direction and the oscillation direction of ac spin current. If

we can generate pure ac in-plane polarized spin current on the 2DEG, which the spin

11



CHAPTER 2. GEOMETRIC STRUCTURE OF THE SYSTEM WE CONSIDER

polarized direction is towards the negative y-direction, oscillating in x-direction shown as

Fig. 2.2, we may measure the ac electrical potential difference between two metallic slabs.

The waveguide structure can lead the far field to near field if the thickness of waveguide

is comparable with the wave length of field. In our problem here, the propagating direc-

tion of the field radiated by ac spin current happens to be parallel to the field direction,

because the electric field, spin polarized direction and current direction are perpendicular

to each other. Thus we need to use a description different from that for the oscillating

electric dipole because near field near field behavior is important. The waveguide modes

provide us a naturel and appropriate scheme to describe the near field, which is very im-

portant for our case. Furthermore its upper and lower metal gates can also be electrodes

to measure the ac electrical potential difference induced by the ac spin current. If we can

figure out the correlation between the electrical potential difference and the magnitude

of spin current, we may declare that we can detect ac in-plane polarized spin current by

electric means.

2.2 Quantization of electromagnetic wave in waveg-

uide

Electromagnetic wave confined by a waveguide is different from that in vacuum. In this

section we will deduce the quantization of electromagnetic wave in the waveguide.

Quantization of electromagnetic wave in free space

In chapter1, we discussed why we utilize the second quantization manner to deal with

the field induced by ac spin current. The quantization of radiation field in free space is

described in many textbooks [14]. The free radiation field is the quantized electromagnetic

field inside an optical cavity with dimension L (L →∞).

If we want obtain the mathematics form of vector potential, in an intuitive picture, we

can start from Maxwell’s equations in the absence of currents and charges. Then we can

12
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obtain the vector potential in free space in transverse gauge in which the electric scalar

potential is equal to zero and the vector potential A (r, t) is divergence-free. One way to

obtain the quantized radiation field in free space is to identify the amplitudes of the vector

potential A (r, t) with the annihilation or creation operators of harmonic oscillators. In

interaction representation A(op) (r, t) develops in time by:

A(op) (r, t) =
∑

kλ

A
(op)
kλ λ

exp (ik · r− iωkλt)√
V

+ A
(op)
kλ

+
λ∗

exp (−ik · r + iωkλt)√
V

, (2.1)

where V = L3 is the free space volume and the vector λ is the polarization of the plane

wave. k is the wave vector of the radiation field. A
(op)
kλ and A

(op)
kλ

+
are corresponding

to creation and annihilation (raising and lowering) operators respectively. The subscript

λ (λ = 1 or 2) of A
(op)
kλ denotes two orthogonal polarization. When they act on eigenstate

of photon, we can write down the relations:

A
(op)
kλ |Nk1λ1 , Nk2λ2 , ...., Nkλ, ...〉 =

√
~

2ε0ωkλ

√
Nkλ |Nk1λ1 , Nk2λ2 , ...., Nkλ − 1, ...〉 , (2.2)

A
(op)
kλ

+ |Nk1λ1 , Nk2λ2 , ...., Nkλ, ...〉 =

√
~

2ε0ωkλ

√
Nkλ + 1 |Nk1λ1 , Nk2λ2 , ...., Nkλ + 1, ...〉 ,

(2.3)

where Nkλ is the number of photons in the mode k, λ and ε0 is the permittivity in vacuum.

When A
(op)
kλ applies on photon state , it reduces the number of photons in the mode kλ

by one. A
(op)
kλ

+
applies on photon state , it increase the number of photons in the mode

kλ by one.

Quantization of electromagnetic wave in waveguide

Now we will derive the electromagnetic wave in the waveguide which is constructed with

two metal plates , and a thick dielectric slab with thickness d and its dielectric constant

13
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Figure 2.3: The two parallel-planes waveguide consists of a dielectric material with per-
meability µ and primitivity ε sandwiched by two parallel metal gates with conductivity
σ (σ →∞).

Figure 2.4: The picture shows the relation between ẑ, x̂′, ŷ′, and k̂.(We set a reference
coordinate, x̂′-ŷ′ coordinate, which is in the x-y plane.)

and magnetic permeability are ε and µ respectively. The dielectric slab is sandwiched by

the two plates. We assume the metal slabs are perfect conductor. The structure of the

waveguide is shown as Fig. 2.3.

We assume that the total electromagnetic wave propagate along the k-direction (note
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that k̂ = x̂′) in dielectric layer, and the two metal plates are put z = 0 and z = d. And

we assume ẑ × x̂′ = ŷ′. The relation between ẑ, x̂′, ŷ′, and k̂ is shown in Fig. 2.4.

We just consider about the plane waves, and it means B ∝ e−iωt and E ∝ e−iωt where

is the angular frequency of incident wave and ∂
∂y′ → 0. From Faraday’s law, we can get

∇ × E = − ∂
∂t

B = iωB. We may write down the three components of Faraday’s law as

the following

− ∂

∂z
Ey′ = iωBx′ , (2.4)

∂

∂z
Ex′ − ∂

∂x′
Ez = iωBy′ , (2.5)

∂

∂x′
Ey′ = iωBz, (2.6)

Considering Ampere’s law, we obtain ∇ × B = µε ∂
∂t

E = −iωµεE. Then we obtain the

following three differential equations.

− ∂

∂z
By′ = −iωµεEx′ , (2.7)

∂

∂z
Bx′ − ∂

∂x′
Bz = −iωµεEy′ , (2.8)

∂

∂x′
By′ = −iωµεEz. (2.9)

Considering Maxwell equations, for two pieces of slab of waveguide which are made

of perfect conductor, we have two boundary condition derived by Faraday’s law and

divergence free of magnetic field. They are Bz = 0 at z = 0 and z = d Ex′ , Ey′ = 0 at

z = 0 and z = d.

The Eq. (2.4), Eq. (2.6), Eq. (2.8) only have variables Ey′ , Bx′ , and Bz. They can

construct a wave equation called TE wave equation. The name ”TE” means transverse
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electric field. The wave equation is given by:

(
∂2

∂x′2
+

∂2

∂z2
+ ω2µε

)
Ey′ = 0. (2.10)

Solving Eq. (2.10) by separation of variables, finally, we have:

Ey′ = E0 sin (kzz) eikx′x
′
,

where E0 is the amplitude of the electric field, kx′ is the x′-component wave number, and

kz = mπ
d

, m = 0, 1, 2, 3, ...

Magnetic field is transverse or perpendicular to the propagation direction. The fields

are calculated to be

− ∂

∂z
Ey′ = iωBx′ → Bx′ = i

kz

ω
E0 sin (kzz) eikx′x

′
,

∂

∂x′
Ey′ = iωBz → Bz =

kx′

ω
E0 sin (kzz) eikx′x

′
.

m is the mode number which starts from one . kz and kx′ are satisfied with the dispersion

relation kz
2 + kx′

2 = ω2µε.

The Eq. (2.5), Eq. (2.7), Eq. (2.9) contain variables Ex′ , Ez, and By′ . The three

differential equations can construct a wave equation called TM wave equation (Magnetic

field is transverse or perpendicular to the propagation direction.). The wave equation is:

(
∂2

∂x′2
+

∂2

∂z2
+ ω2µε

)
By′ = 0. (2.11)

Solving Eq. (2.11), we obtain

By′ = B0 cos (kzz) eikx′x
′
,

where kz = nπ
d

, n=0,1,2,3, ..., kx′ is the x′-component wave vector, and B0 is the amplitude
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of the magnetic field. Magnetic field is perpendicular to the electric field, and the fields

are calculated to be

− ∂

∂z
By′ = −iωµεEx′ → Ex′ = i

kz

ωµε
B0 sin (kzz) eikx′x

′
,

∂

∂x′
By′ = −iωµεEz → Ez = − kx′

ωµε
B0 cos (kzz) eikx′x

′
,

and we get the dispersion relationkz
2 + kx′

2 = ω2µε. Actually, kz is the transverse wave

vector and k is the effectively longitudinal component of the wave vector.

We already derived electromagnetic wave modes in parallel-plates waveguide. For real

physical quantity, we may add its complex conjugate to the fields. Furthermore, we know

that the wave in an arbitrary parallel-plate waveguide is not a plane wave, because a

plane wave cannot satisfy the appropriate boundary conditions at the waveguide walls.

But the modes can be expressed as a sum of plane waves. In general, we decompose the

total electric field in the waveguide for different modes and different k as infinite (Fourier)

superposition of all modes as given by

For TE modes:

E = −
∑

m,k

sin
(mπ

d
z
) {

bmke
i(k·ρ−ωmk2t) + bmk

∗e−i(k·ρ−ωmk2t)
} (

ẑ × k̂
)

(2.12)

B =
∑

m,k

[
1

ωmk2

(mπ

d

)
cos

(mπ

d
z
) (−ibmke

i(k·ρ−ωmk2t) + ibmk
∗e−i(k·ρ−ωmk2t)

)
k̂

− k

ωmk2

sin
(mπ

d
z
) (

bmke
i(k·ρ−ωmk2t) + bmk

∗e−i(k·ρ−ωmk2t)
)
ẑ

] (2.13)

For TM modes, we have

B = By′ ŷ
′ = −

∑

n,k

cos
(nπ

d
z
) {

cnke
i(k·ρ−ωnk1t) + cnk

∗e−i(k·ρ−ωnk1t)
} (

ẑ × k̂
)

, (2.14)
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E =
∑

n,k

[
1

µε

1

ωnk1

(nπ

d

)
sin

(nπ

d
z
) (−icnke

i(k·ρ−ωnk1t) + icnk
∗e−i(k·ρ−ωnk1t)

)
k̂

+
1

µε

k

ωnk1

cos
(nπ

d
z
) (

cnke
i(k·ρ−ωnk1t) + cnk

∗e−i(k·ρ−ωnk1t)
)
ẑ

] . (2.15)

The dispersion relation is kz
2 + k2 = ω2µε. bm(cn) denotes the amplitude of the electric

field for the m-th (n-th) mode. The time-dependence is given by putting in the whole plane

wave: eik·ρ → ei(k·ρ−ωt). The summation k contains all direction as well as all magnitude.

We also change the notation ω into ωmk2 (ωnk1), because the frequency depends on k̂-

component (k̂ = x̂′) of wave number and mode number m(n). The other subscript of ωmk2

(ωnk1), 1 or 2, indicates TM or TE modes respectively.

The electric field and vector potential respect to the relationship E = −∇φ− ∂A
∂t

It’s

easy to derive the vector potential, if we choose the transverse gauge. For TE modes, the

vector potential is given by:

A = −
∑

m,k

1

iωmk2

sin
(mπ

d
z
) {

bmke
i(k·ρ−ωmk2t) − bmk

∗e−i(k·ρ−ωmk2t)
} (

ẑ × k̂
)

. (2.16)

For TM modes, we have:

A =
∑

n,k

[
− 1

µε

1

ωnk1
2

(nπ

d

)
sin

(nπ

d
z
) (

cnke
i(k·ρ−ωnk1t) + cnk

∗e−i(k·ρ−ωnk1t)
)
k̂

+
1

µε

k

ωnk1
2

cos
(nπ

d
z
) (−icnke

i(k·ρ−ωnk1t) + icnk
∗e−i(k·ρ−ωnk1t)

)
ẑ

]
.

(2.17)

Canonical quantization (also called second quantization) asks that the classical field

variable becomes a quantum operator. The amplitude of vector potential cnk (bmk) or

cnk
∗ (bmk

∗) is corresponded to annihilation or creation operator respectively. Because

cnk
∗ (bmk

∗) becomes operator, it may be wrote as cnk
+ (bmk

+). When cnk (bmk) acts on

the photon state, it will removes one photon with the mode nk (mk). cnk
+ (bmk

+) acts

on an energy eigenstate, it will increase one photon with the mode nk (mk) ( Here ”n” or

”m” indicates the n-th mode in TM wave or the m-th mode in TE waves respectively.).

Using cnk (bmk) or cnk
∗ (bmk

∗) to describe the classical electromagnetic energy in a
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volume V , we find the energy for TE modes inside the volume V is given by:

Eenergy =

∫
dr

[
1

2
εE2 +

1

2µ
B2

]
= ε

∑
m=1,2,3,...

|bmk|2V. (2.18)

By the same way, for TM modes we have

Eenergy =
1

µ

∑
n=0,1,2,3,...

|cnk|2V. (2.19)

Actually, in quantum theory the radiation energy is given by:

Eenergy = N~ω, (2.20)

where N is the number of photons in the volume V, and is the angular frequency of these

photons. Combining Eq. (2.18), Eq. (2.19), and Eq. (2.20), we have the dimension of the

four coefficients. When they act on the eigenstate of electromagnetic field, we have:

bmk |Nm1k12, Nm2k22, ..., Nmk2, ...〉 =

√
~ωmk2

εV

√
Nmk2 |Nm1k12, Nm2k22, ..., Nmk2 − 1, ...〉 ,

(2.21)

bmk
+ |Nm1k12, Nm2k22, ..., Nmk2, ...〉 =

√
~ωmk2

εV

√
Nmk2 + 1 |Nm1k12, Nm2k22, ..., Nmk2 + 1, ...〉 ,

(2.22)

cnk |Nn1k11, Nn2k21, ..., Nnk1, ...〉 =

√
µ
~ωnk1

V

√
Nnk1 |Nn1k11, Nn2k21, ..., Nnk1 − 1, ...〉 ,

(2.23)

cnk
+ |Nn1k11, Nn2k21, ..., Nnk1, ...〉 =

√
µ
~ωnk1

V

√
Nnk1 + 1 |Nn1k11, Nn2k21, ..., Nnk1 + 1, ...〉 ,
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(2.24)

where Nnκ1 (Nmk2) is the number of photons in the TM (TE) mode n (m) ,k.

We have found out the quantized radiation field in the waveguide. With the result,

we can correctly calculate the radiation field generate by spin current or else radiation

problem in the waveguide.

2.3 Brief summary

Our system essentially comprises 2DEG which is formed at the AlGaAs/GaAs heteroin-

terface and sandwiched by two piece of Al electrodes outermost. When ac in-plane spin

current flows on the 2DEG, we utilize waveguide structure to detect the potential differ-

ence induced by the spin current. The quantized field in two-parallel-planes waveguide

can be divided into two kinds of modes , TM modes and TE modes. Electric field in TE

modes is perpendicular to the propagation direction of the beam and there is no electric

field in the direction of propagation. Electric field in TM modes is perpendicular to the

propagation direction.
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Chapter 3

Examination of the calculation

method we consider

In this chapter, we want to check if our calculation method is practical. We propose two

problem of electrodynamics to compare the result which is solved by method of classical

electrodynamics and the result solved by our method. The first problem is electromagnetic

(EM) wave generated by single charge oscillation in free space. The second one is EM

wave induced by oscillating charge current carried by an infinite long wire in waveguide.

3.1 Charge oscillation in free space

In electrodynamics, the charge oscillation will generate electromagnetic wave in space.

Using the method we proposed in Chapter 1, we calculate electric field generated by

the charge oscillation in free space. We can also obtain the EM wave with Jefimenko’s

equations which describe the behavior of the electric and magnetic fields in terms of the

charge and current density at retarded times. Then we compare the result by this method

with the result by the method of electrodynamics. If both the results are identical with

each other, we confirm that our method is practical. We start from a charge oscillating

along the z direction with the frequency Ω and the amplitude ”a” in the Cylindrical
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Figure 3.1: The particle carrying electric charge q with is deposited at the origin, and it
acts as simple harmonic oscillation with frequancy Ω and amplitude a.

coordinate. The equilibrium point of the charge is deposited at the origin shown as

Fig. 3.1. We can write down the time-dependent position of the charge as the following:

rp = a cos (Ωt) ẑ

Effective Hamiltonian of photons

The perturbation operator of charge-photon interaction is given by H ′ = −qE · r where E

is the electric field[14]. If we just consider about the transverse field, the field induced by

charge oscillation is the same as dipole oscillation with identical frequency and amplitude.

In quantum mechanics, even though we cannot describe both position and momentum of

an electron, we still recognize the oscillating charge as a classical particle. If the amplitude

”a” is much smaller than the wavelength of the light, the field can be recognize as far

field. For relativity far field, because the oscillator is placed at origin, we can replace

E (r, t) by E (0, t) because the charge oscillating at origin.

H ′
eff = −qE (0, t) · rp

= q
∂A (0, t)

∂t
· rp,

(3.1)
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where c is the light speed in vacuum , q is the electric charge of the particle, A is the

vector potential in transverses gauge . Incorporating Eq. (2.2) into Eq. (3.1) , and then

the perturbing Hamiltonian becomes

H ′
eff = iq

∑

kλ

{
−ckkλA

(op)
kλ (λ · rp)

exp (−ickkλt)√
V

+ ckkλA
(op)
kλ

+
(λ∗ · rp)

exp (+ickkλt)√
V

}
,

(3.2)

where V is the free space volume and λ is the polarization of the plane wave. k is the

wave vector of the radiation field. A
(op)
kλ and A

(op)
kλ

+
are corresponding to creation and

annihilation operators respectively. The subscript λ (λ = 1 or 2) of A
(op)
kλ denotes two

orthogonal polarization.

The photon eigenstate

For spontaneous emission, the oscillator emits only one photon. The initial state must

be |Ψ0〉 = |{0k1λ1 , 0k2λ2 , ..., 0kλ, .., }〉 (or we can write as|{0}〉) and the final state is

|{0, 0, ..., 0, 1kλ, 0, ..., 0}〉. The initial state is also one of the unperturbed eigenstates.

H ′
eff is identified as time dependant perturbing Hamiltonian. Applying first-order

perturbation theory, the first order perturbation coefficient is given by

f
(1)
kλ =

−i

~

∫ t

−∞
〈{0, ..., 0, 1kλ, 0, ...}|H ′

eff |{0}〉dt,

where ~ is the Plank constant. Essentially, the strength of perturbing Hamiltonian H ′ is

weak enough, so we can apply perturbation theorem.

Assuming the limit of a very slow switch on, H ′
effe

ηt with η which is far smaller than

1, so H ′
eff switched on very gradually in the past. We can then take the initial time to

be −∞, and the first order perturbation coefficient becomes:

f
(1)
kλ =

−i

~

∫ t

−∞
〈{0, ..., 0, 1kλ, 0, ...}|H ′

effe
ηt |{0}〉dt (3.3)
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We consider one photon emittion. It means the photon state from |{0}〉 to |{0, ..., 0, 1kλ, 0, ...}〉.
Substituting equation Eq. (3.2) into Eq. (3.3), we obtain:

f
(1)
kλ =

q

~

∫ t

−∞
〈{0, ..., 0, 1kλ, 0, ...}|

∑

k′λ′

{
ckk′λ′A

(op)
k′λ′

+ (
λ′∗ · rp

) exp (+ickk′λ′t)√
V

}
eηt |{0, ..., 0}〉dt′.

(3.4)

Here we used the character of annihilation operator A
(op)
k′λ′ |{0, 0, ..., 0}〉 = 0. Solving

Eq. (3.4), we can rewrite the first order perturbation coefficient is

f
(1)
kλ =

q

~

√
~ωkλ

2ε0

1√
V

a (λ∗ · ẑ)
1

(η + ickkλ)
2 + Ω2

{(η + ickkλ) cos (Ωt) + Ω sin (Ωt)}

× exp [(η + ickkλ) t]

(3.5)

The eigenstate of the photon is changed to |Ψ〉 after we consider about the perturbation

of the system H ′
eff . |Ψ〉 is given by:

|Ψ〉 = |{0, 0, ..., 0, ..., 0}〉+
∑

kλ

f
(1)
kλ |{0, 0, ..., 0, 1kλ, 0, ..., 0}〉 (3.6)

The expectation value of vector potential

The photon state describes all information about photons in the waveguide including the

vector potential in space. The expectation value of the magnetic vector potential in the

state |Ψ〉 is given by:

A (r, t) = 〈Ψ|A(op) |Ψ〉

=

{
〈{0, 0, ..., 0, ..., 0}|+

∑

k′′λ′′
f

(1)
k′′λ′′

+ 〈{0, 0, ..., 0, 1k′′λ′′ , 0, ..., 0}|
}

A(op) {|{0, 0, ..., 0, ..., 0}〉

+
∑

k′λ′
f

(1)
k′λ′ |{0, 0, ..., 0, 1k′λ′ , 0, ..., 0}〉

}

(3.7)
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A
(op)
kλ

+
is an operator that increases the number of photons in the mode kλ by one. When

the operators A
(op)
kλ and A

(op)
kλ

+
are applied to the photon state, they obey the Eq. (2.2) and

Eq. (2.3), respectively. And the expectation value of the vector potential of the system

becomes

A (r, t) =
∑

kλ

√
~

2ωkλε0

{
λf

(1)
kλ

exp (ik · r− iωkλt)√
V

+ λ∗f (1)
kλ

+ exp (−ik · r + iωkλt)√
V

}
. (3.8)

Putting Eq. (3.5) into Eq. (3.8), the vector potential leads to

A (r, t) =
∑

kλ

qa (−i)

4V ε0

exp [ik · r] λz
∗λ

{
exp (iΩt)

Ω + ck − iη
+

exp (−iΩt)

ck − Ω− iη

}

+
∑

kλ

qa (i)

4V ε0

exp [−ik · r] λzλ
∗
{

exp (−iΩt)

Ω + ck + iη
+

exp (+iΩt)

ck − Ω + iη

}
.

(3.9)

We notice that the second term in above equation is complex conjugate of the first term.

Now we take average over polarization. By taking linear polarization, we have λ∗ = λ.

Then, we have

A (r, t) =
∑

k

qa (−i)

4V ε0

exp [ik · r]
{

ẑ −
(
k̂ · ẑ

)
k̂
}{

exp (iΩt)

Ω + ck − iη
+

exp (−iΩt)

ck − Ω− iη

}

+
∑

k

qa (i)

4V ε0

exp [−ik · r]
{

ẑ −
(
k̂ · ẑ

)
k̂
}{

exp (−iΩt)

Ω + ck + iη
+

exp (+iΩt)

ck − Ω + iη

}
.

(3.10)

The summation over k means summing over arbitrary direction and magnitude of wave

number k. k must be continuous, so we may change the representation of the summation

to representation of integration. It means

∑

k

→
∑

k

∆kx

∆kx

∆ky

∆ky

∆kz

∆kz

→ 1

(∆kx) (∆ky) (∆kz)

∫
dkxdkydkz =

1(
2π
Lx

)(
2π
Ly

)(
2π
Lz

)
∫

k2dkdΩk =
V

(2π)3

∫
k2dkdΩk,
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where Li (i=x,y,z) is length which an quantum state occupies, and Ωk̂ is the solid angle.

A (r, t) =
V

(2π)3

∫
k2dkdΩk

qa (−i)

4V ε0

exp (ik · r)
[
ẑ −

(
k̂ · ẑ

)
k̂
]

×
{

exp (iΩt)

Ω + ck − iη
+

exp (−iΩt)

ck − Ω− iη

}
+

V

(2π)3

∫
k2dkdΩk

qa (i)

4V ε0

× exp (−ik · r)
[
ẑ −

(
k̂ · ẑ

)
k̂
] {

exp (−iΩt)

Ω + ck + iη
+

exp (+iΩt)

ck − Ω + iη

}
.

(3.11)

We deal with the angular integral 1
4π

∫
dΩk first. The detail of calculation is complex, and

it will save for Appendix A. After average over direction, the vector potential becomes:

A (r, t) =
V

2π

qa

8V ε0

(
θ̂ sin θ

)

×
{∫ ∞

k=0

k2dk

(− exp [ikr] + exp [−ikr]

kr

)[
exp (iΩt)

Ω + ck − iη
+

exp (−iΩt)

ck − Ω− iη

]

+

∫ ∞

k=0

k2dk

(
exp [ikr]− exp [−ikr]

kr

)[
exp (−iΩt)

Ω + ck + iη
+

exp (+iΩt)

ck − Ω + iη

]}
.

(3.12)

Using the relationship
∫ a

0
f (x)dx =

∫ 0

−a
f (−x)dx, and making the change of variables,

u′ = ck we can obtain :

A (r, t) =
cqa

16π2ε0c4

(
θ̂ sin θ

) ∫ ∞

u′=−∞
u′2

[
− exp

[
iu′ r

c

]

u′ r
c

exp (iΩt)

u′ + (Ω− iη)
+
− exp

[
iu′ r

c

]

u′ r
c

× exp (−iΩt)

u′ − (Ω + iη)
+

exp
[−iu′ r

c

]

u′ r
c

exp (iΩt)

u′ + (Ω− iη)

+
exp

[−iu′ r
c

]

u′ r
c

exp (−iΩt)

u′ − (Ω + iη)

]
du′

(3.13)

Using residue integral method , the vector potential can be derived as :

A (r, t) = − qa

4πc2ε0

Ω

r

(
θ̂ sin θ

)
sin

(
Ωt− Ω

r

c

)
(3.14)

The detailed complex integral of equation is preserved in Appendix B. It’s easy to obtain

the electric field after we get the result of the complex calculation. Because we choose

26



CHAPTER 3. EXAMINATION OF THE CALCULATION METHOD WE
CONSIDER

the transverse gauge, the electric scalar potential is equal to zero.

E (r, t) = −∇V − ∂

∂t
A

=
qa

4πc2ε0

Ω2

r
(sin θ) cos

(
Ωt− Ω

r

c

)
θ̂

(3.15)

Here, we only consider about the transverse field and neglect Coulomb field. The field

is identical with the far electric field induced by dipole antenna. From above equation,

we can realize that the frequency of the field is Ω which is the same as the frequency of

the oscillating electron. If the charge wiggles back and forth, the higher the frequency,

the shorter the waves, because it have less time to get out of the way before the charge

changes its direction. This result which we use semi-classical calculation method is the

same as the result which we use calculation method of classical electrodynamics. The two

results obtained by different calculation methods are the same. It implies our assumption

that our oscillating charge radiates light with one photon can match the oscillating charge

problem. Also, our method is practical to be use for calculating spin current problem.

3.2 EM wave generated by oscillating line charge cur-

rent in waveguide

In the same way, we solve the electric field induced by ac line charge current in waveguide

with the method we consider, for checking if our calculation method is practical, again.

The calculation also gives us a simpler exercise for solving electric field induced by ac

in-plane polarized spin current.

When the wave length becomes comparable with the thickness of the waveguide, we

should consider the near-field light instead of far-field light. The waveguide structure

confines the field and leads far-field into near-field wave. The near-field wave is more

complicated than far-field wave. Fortunately, plane wave expansion method is useful

method for us to deal with our problem. Therefore, the quantization field in two-parallel-
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Figure 3.2: An infinite long wire is located at the middle of the waveguide and towards
the x-direction.

Figure 3.3: The side view of the waveguide structure and the wire. The waveguide is the
same as one we discussed in 2.2 which has permeability µ and primitivity ε. The up and
down electrode slabs are made of perfect conductor.

planes waveguide we derived in Chapter 2 can be a complete set. The structure of the

waveguide we consider about is the same as we discussed in Chapter 2. An infinite long

wire parallel with x-axis is located in the middle of two parallel metal gates as shown the

following picture.
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Assume that the semiconductor between two metal gates has the permittivity ε and

permeability µrespectively. The wire is very thin, comparing with the distance d, and

this wire carries flow of electron charge I = eλe
~ke

me
x̂ where λe is the particle density per

unit length, me is the mass of a free electron, and ke is the electron wave number, where

~ is the Plank constant. The wave function of the electrons is

Ψ (r) = 〈r|ψ〉 =
√

λe exp [ikex] ϕ (y, z) . (3.16)

At the beginning, we do not consider about ac current. We will add the oscillating

information in the effective Hamiltonian later. The perturbation operator of oscillating

line current in the waveguide is given by:

H ′ =
e

2me

(p ·A + A · p) =
e

me

p ·A =
e

me

A · p, (3.17)

where e > 0. For the transverse gauge p ·A−A ·p = −i~∇ ·A = 0. We care about only

the transverse field without the longitudinal field. It means that we consider about the

field induced by ac charge current without the Coulomb field. Therefore, the perturbing

Hamiltonian does not include the Coulomb potential.

Effective Hamiltonian

We sandwich Eq. (3.17) with electron state to get the effective Hamiltonian of the photons

in the waveguide which is given by the following:

H ′
eff = 〈ψ|H ′ |ψ〉 = 〈ψ| e

me

A · p |ψ〉

= ke~λe
e

me

∫
dx

∫
dy

∫
dzϕ (y, z) Axϕ (y, z)− i~λ

e

me

{∫
dx

∫
dy

∫
dzϕ (y, z)

× Ay
∂

∂y
ϕ (y, z) +

∫
dx

∫
dy

∫
dzϕ (y, z) Az

∂

∂z
ϕ (y, z)

}
,

(3.18)
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where Ax, Ay, Az is the x, y, z-component of vector potential respectively. Vector potential

near the position
(
x, y = 0, z = d

2

)
changes violently, but the wave function of the electron

ϕ (y, z) changes smoothly, so we may take some approximation. Then we have:

H ′
eff = ~λe

e

me

{
ke

∫
dxAx

(
x, 0, d

2

)− 1

2
i

∫
dx

∂

∂x
Ax

(
x, 0, d

2

)}
. (3.19)

The detailed derivation from Eq. (3.18) to Eq. (3.19) is left in the Appendix C. Putting

Eq. (2.16) and Eq. (2.17) into Eq. (3.19), we obtain:

H ′
eff = ~λe

e

me

·
{

ke

[
−

∑

m,k

{
1

iωmk2

bmk sin
(mπ

2

)
e−iωmk2t

∫
dxeikxx − 1

iωmk2

bmk
+

× sin
(mπ

2

)
eiωmk2t

∫
dxe−ikxx }

(
ẑ × k̂

)
· x̂− 1

µε

1

ωnk1
2

(
cnk

(nπ

d

)
sin

(nπ

2

)

× e−iωnk2t

∫
dxeikxx +cnk

+
(nπ

d

)
sin

(nπ

2

)
eiωnk2t

∫
dxe−ikxx

)
kx

]
− 1

2
i [

−
∑

m,k

{
ikx

iωmk2

bmk sin
(mπ

2

)
e−iωmk2t

∫
dxeikxx +

ikx

iωmk2

bmk
+ sin

(mπ

2

)

× eiωmk2t

∫
dxe−ikxx

} (
ẑ × k̂

)
· x̂− 1

µε

1

ωnk1
2

(
ikxcnk

(nπ

d

)
sin

(nπ

2

)
e−iωnk2t

×
∫

dxeikxx −ikxcnk
+

(nπ

d

)
sin

(nπ

2

)
eiωnk2t

∫
dxe−ikxx

)
kx

]}
.

(3.20)

According to Fourier analyze,
∫∞
−∞ eikxxdx = 2πδ (kx). The terms with kzδ (kz) in the

equation above will be vanished after integration overkx. We can drop it. Then we have

H ′
eff = −eλe

~ke

me

2π
∑

m,k

[
1

iωmk2

bmk sin
(mπ

2

)
e−iωmk2tδ (kx)

− 1

iωmk2

bmk
+ sin

(mπ

2

)
eiωmk2tδ (kx)

]
cos

(π

2
+ φk

)
,

(3.21)

where φk is the angle between the k and x̂. The relationship between φk, k, and x̂ is

shown in Fig. 3.4

”δ (kx) cos
(

π
2

+ φk

)
” in equation above will lead to the form ”−Sgn(ky)” after inte-
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Figure 3.4: The illustration shows the relation between φk, k̂, and ẑ × k̂.

gration with respect to kx, so we substitute δ (kx) cos
(

π
2

+ φk

)
to −δ (kx) Sgn(ky) to avoid

complicated calculation. Actually, the magnitude of electron current is equal to eλe
~ke

me

by definition, so that we let I0 = eλe
~ke

me
.Then, we have

H ′
eff = 2πI0

∑
m,κ

1

iωmk2

sin
(mπ

2

) {
bmk2e

−iωmk2t − bmk2
+eiωmk2t

}
δ (kx) Sgn(ky) (3.22)

If we allow the current to oscillate harmonically in time, we can substitute I0 cos (Ωt) for

I0 where Ω is the oscillation angular frequency. The perturbation operator becomes:

H ′
eff = 2πI0 cos (Ωt)

∑
m,κ

1

iωmk2

sin
(mπ

2

) {
bmk2e

−iωmk2t − bmk2
+eiωmk2t

}

× δ (kx) Sgn(ky)

(3.23)

The first order perturbation coefficient

Again, we apply time-dependent perturbation theory to solve the new eigenstate of pho-

ton, and the first order perturbation coefficient in H ′
eff is given by:

f
(1)
kλ =

−i

~

∫ t

−∞
〈{0, 0, ..., 0, 1kλ, 0, ..., 0}|H ′

eff |{0}〉dt. (3.24)
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We impose the mechanism of adiabatic turn-on to simulate the more realistic system and

simplify calculation. Therefore, we put the term eηt in the integration form. We consider

about one photon emission. It means the photon state from |{0}〉 to |{0, 0, ..., 0, 1kλ, 0, ..., 0}〉
We add a factor of to describe adiabatic turned on . η is a constant smaller than 1

far, switched on very gradually in the past, and we are looking at times much smaller

than 1
η
. We can then take the initial time to be −∞. For TE modes We have the first

order perturbation coefficient by:

f
(1)
m′κ′2 =

−i

~

∫ t

−∞
〈{0, 0, ..., 0, 1mk2, 0, ..., 0}| e

m
A · peηt |{0}〉dt

=
i

~

∫ t

−∞
eηt 〈{0, 0, ..., 0, 1mk2, 0, ..., 0}| I0 cos (Ωt) 2πi

×
∑

m,k

1

ωmk2

sin
(mπ

2

) {
bmke

−iωmk2t − bmk
+eiωmk2t

}
δ (kx) Sgn(ky) |{0}〉 dt

(3.25)

bmk and bmk2
+ in Eq. (3.25) is corresponded to the annihilation operator and the creation

operator respectively. We use Eq. (2.21) as well as Eq. (2.22) and Simplify Eq. (3.25), so

we have:

f
(1)
mk2 =

I0

~
2π

1

ωmk2

√
~ωmk2

εV
sin

(mπ

2

)

× 1

2i

{
exp [i (ωmk2 − iη + Ω) t]

ωmk2 − iη + Ω
+

exp [i (ωmk2 − iη − Ω) t]

ωmk2 − iη − Ω

}
δ (kx) Sgn(ky)

(3.26)

For TM modes

f
(1)
n′k′1 =

−i

~

∫ t

−∞
〈{0, 0, ..., 0, 1n′k′1, 0, ..., 0}|H ′

eff |{0}〉dt = 0.

The expectation value of vector potential

We are interesting the expectation value of vector potential, because the electric field

can be obtained easily after knowing it. The time-dependent expectation value of vector
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potential in the photon state |Ψ〉 is given by:

A (r, t) = 〈Ψ|A(op) |Ψ〉

= {〈{0, 0, ..., 0, ...}|+
∑

mk

f
(1)
mk2

∗ 〈{0, ..., 0, 1mk2, 0, ...}|}A(op){|{0, 0, ..., 0, ...}〉

+
∑

mk

f
(1)
mk2 |{0, ..., 0, 1mk2, 0, ...}〉}.

(3.27)

Let’s remember that f
(1)
nk1 is equal to zero, and we already derived f

(1)
mk2 in Eq. (3.26). We

combine Eq. (2.16), Eq. (3.26) and Eq. (3.27), and we get:

A (r, t)

=
∑
m,κ

I0

~
π

1

ω2
mk2

~ωmk2

εV
sin

(mπ

2

)
sin

(mπ

d
z
) {

ei(k·ρ−ωmk2t) · exp [i (ωmk2 + Ω) t]

ωmκ2 − iη + Ω

+ ei(k·ρ−ωmk2t) exp [i (ωmk2 − Ω) t]

ωmk2 − iη − Ω
+ e−i(k·ρ−ωmk2t) exp [−i (ωmk2 + Ω) t]

ωmk2 + iη + Ω

+e−i(k·ρ−ωmk2t) exp [−i (ωmk2 − Ω) t]

ωmk2 + iη − Ω

}
× δ (kx) Sgn(ky)

(
ẑ × k̂

)

(3.28)

We can find the first two terms in the curve bracket in above equation is the complex

conjugate of the last two terms. It is just like that we add the complex conjugate of electric

field in equation, and it keeps the physical quantity be real number. The summation

over k takes arbitrary directions and arbitrary magnitudes wave number. For arbitrary

orientations and magnitudes of k, the summation over k can be generalized to integration

over k, just like what we do in Chapter 3.

∑

k

→
∑

k

∆kx

∆kx

∆ky

∆ky

→ 1

(∆kx) (∆ky)

∫
dkxdky =

V

d(2π)2

∫
dkxdky
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Because the z direction is quantized and described by summation over m, it cannot change

to representation of integration. The integral only respects to x and y.

A (r, t) = I0
π

εd

(
1

2π

)2 ∑
m=1

sin
(mπ

2

)
sin

(mπ

d
z
) ∫ ∞

−∞
dkx

∫ ∞

−∞
dky

1

ωmk2

×
{

ei(kxx+kyy)

[
exp [iΩt]

+ωmk2 − iη + Ω
+

exp [−iΩt]

+ωmk2 − iη − Ω

]
+ e−i(kxx+kyy)

×
[

exp [−iΩt]

+ωmk2 + iη + Ω
+

exp [iΩt]

+ωmk2 + iη − Ω

]}
δ (kx) Sgn(ky) {− sin φκx̂ + cos φκŷ}

(3.29)

Substituting the dispersion relation kz
2 + k2 = ωnk1

2µε into above equation, we have:

A (r, t) = − I0

4πεd

∑
m=1

sin
(mπ

2

)
sin

(mπ

d
z
)



exp [iΩt]

∫ ∞

−∞
dky

ei(kyy)

√
1
µε

(
kz

2 + ky
2
)

× 1√
1
µε

(
kz

2 + ky
2
)− iη + Ω

+ exp [−iΩt]

∫ ∞

−∞
dky

ei(kyy)

√
1
µε

(
kz

2 + ky
2
)

× 1√
1
µε

(
kz

2 + ky
2
)− iη − Ω

+ exp [−iΩt]

∫ ∞

−∞
dky

e−i(kyy)

√
1
µε

(
kz

2 + ky
2
)

× 1√
1
µε

(
kz

2 + ky
2
)

+ iη + Ω
+ exp [iΩt]

∫ ∞

−∞
dky

e−i(kyy)

√
1
µε

(
kz

2 + ky
2
)

× 1√
1
µε

(
kz

2 + ky
2
)

+ iη − Ω



 x̂

(3.30)

Solving these integrals is not easy. Even though we can apply complex integral meth-

ods solve these integrals, the branch cuts make the complex integrals complicated. The
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detailed derivation is saved for Appendix D. Considering y > 0, we have

A (r, t) = − I0

4πεd

∑
m=1

sin
(mπ

2

)
sin

(mπ

d
z
)





e−iΩt2πi

µε exp

[
i
√

µε (Ω2 + i2ηΩ)− kz
2y

]

√
µε (Ω2 + i2ηΩ)− kz

2

−eiΩt2πi

µε exp

[
−i

√
µε (Ω2 − i2ηΩ)− kz

2y

]

√
µε (Ω2 − i2ηΩ)− kz

2





x̂

(3.31)

By the same way, we can derive the vector potential for y < 0 which is given by:

A (r, t) = − I0

4πεd

∑
m

sin
(mπ

2

)
sin

(mπ

d
z
)





e−iΩt2πi

µε exp

[
−i

√
µε (Ω2 + i2ηΩ)− kz

2y

]

√
µε (Ω2 + i2ηΩ)− kz

2

−eiΩt2πi

µε exp

[
i
√

µε (Ω2 − i2ηΩ)− kz
2y

]

√
µε (Ω2 − i2ηΩ)− kz

2





x̂

(3.32)

From Eq. (3.31) and Eq. (3.32) , we can rewrite the vector potential as following:

A (r, t) = A> (r, t) + A< (r, t) (3.33)

where A> (r, t) is vector potential for µεΩ2 > kz
2 and A< (r, t) is vector potential for

µεΩ2 < kz
2. A> (r, t) and A< (r, t) can be written as:

A> (r, t) =
µI0

d

∑
m

sin
(mπ

2

)
sin

(mπ

d
z
) sin

[√
µεΩ2 − kz

2 |y| − Ωt
]

√
µεΩ2 − kz

2
x̂ (3.34)
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and

A< (r, t) = −µI0

d

∑
m

sin
(mπ

2

)
sin

(mπ

d
z
)

cos (Ωt)
exp

[
−

√
kz

2 − µεΩ2 |y|
]

√
kz

2 − µεΩ2
x̂. (3.35)

µεΩ2 > kz
2 means the frequency of the current oscillation beyond the cutoff frequency

of the parallel-plates capacitor. The wave is in propagating modes. µεΩ2 < kz
2 indicates

the frequency of the current oscillation above the cutoff frequency of the parallel-plates

capacitor. And the corresponding electric field is given by:

E (r, t) = E> (r, t) + E< (r, t) (3.36)

where E> (r, t) is vector potential for µεΩ2 > kz
2 and E< (r, t) is vector potential for

µεΩ2 < kz
2. They are expressed as:

E> (r, t) =
µI0Ω

d

∑
m

sin
(mπ

2

)
sin

(mπ

d
z
) cos

[√
µεΩ2 − (

mπ
d

)2 |y| − Ωt

]

√
µεΩ2 − (

mπ
d

)2
x̂ (3.37)

and

E< (r, t) = −µI0Ω

d

∑
m

sin
(mπ

2

)
sin

(mπ

d
z
)

sin (Ωt)

exp

[
−

√(
mπ
d

)2 − µεΩ2 |y|
]

√(
mπ
d

)2 − µεΩ2

x̂ (3.38)

The electric field only couples to TM wave and it only has the x-component field,

because the line current oscillates in the x-direction. The direction of the electric field

satisfies the expectations of classical electrodynamics. When µεΩ2 > kz
2 =

(
mπ
d

)2
, the

situation will insure wave propagation. When µεΩ2 < kz
2 =

(
mπ
d

)2
, the wave becomes

evanescent mode. An evanescent wave is a nearfield standing wave with an intensity that

exhibits exponential decay with distance and it does not propagate. We can see this in

Eq. (3.38) which has a term exponentially decaying from y = 0.

The electric field is the same as the classical expectation. Again, we prove that our
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calculation method is practical and the quantization wave in the waveguide we deduce is

correct. The detailed calculation process of this problem in classical method is left for

Appendix E.

3.3 Brief summary

In previous two sections, we drove the vector potential and electric field induced by

oscillating charge in free space and ac line current in waveguide. The electromagnetic

wave induced ac line current in waveguide only couples to TM modes. The results of the

two different systems solved by our calculation method are identified with the calculation

method of classical electrodynamics. We did show that our method is practical.
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Chapter 4

The electric field induced by ac spin

current

We already know that our calculation method is practical, and we will solve the electric

field induced by ac in-plane polarized spin current in the waveguide in this chapter.

4.1 Effective Hamiltonian for photon

We had discussed the structure of the waveguide of our system previously. 2DEG (two

dimensional electron gas) in our system is at the middle of the two parallel metal gates

as Fig. 2.2. Ac in-plane polarized spin current will generate out-off-plane electric field

and we can use a voltmeter to measure the electrical potential difference between the two

metal gates.

We will calculate line spin current instead of surface spin current, because the field

induced by line spin current is easy to analyze its physical meaning. Moreover, if we

directly calculate the field induced by surface current, the field has singularity owing

to the waveguide structure. Actually we may decompose the surface spin current into

countless line spin currents. We can integrate over the electric field distribution of line

spin current into one of surface spin current. Assume that the line spin current flow is
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parallel to x-axis and this ”line” is located at (x,0,d/2). The spin polarization direction

is towards the negative y-axis. We do not let this spin current oscillate at first, and the

wave function of the spins is given by:

ψ (r) = 〈r|ψ〉 =
√

λs exp [iksx] ϕ (y, z)




1√
2

− i√
2


 (4.1)

where λs is the line density of the spins and ks is the wave number of the spins.

[
1√
2
− i√

2

]T

is

the spin state, whose spin direction always point towards the negative y-axis. In semicon-

ductor, the spin orbit coupling term is given by H ′ = eΛ
~σ ¦ (p× E) , where we discussed

in Chapter 1. The effective perturbing Hamiltonian for photons in the system can be

obtain by sandwiching H ′ with electron state as given by:

H ′
eff = 〈ψ|H ′ |ψ〉

=

∫ {√
λse

−iksxϕ (y, z)

[
1√
2

i√
2

]}
e
Λ

~
σ ¦ (p× E)





√
λse

iksxϕ (y, z)




1√
2

− i√
2








dr

= −eλs
Λ

~

∫ {
e−iksxϕ (y, z)

} {
−i~

∂

∂z
Ex + i~

∂

∂x
Ez − i~Ex

∂

∂z
+ i~Ez

∂

∂x

}

× {
eiksxϕ (y, z)

}
dr,

(4.2)

where Ex and Ez is the x and z component of the electric field respectively. p is operator

for electron, it operate on the electron state. E is classical physical quantity for electron.

The Eq. (2.12) and Eq. (2.15) lead us to obtain Ex and Ez by dot product. Hence, the
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Figure 4.1: The figure shows the relationship between φk, k, and x̂.

perturbing Hamiltonian becomes:

H ′
eff = −eλΛ

∫ {
e−iksxϕ (y, z)

}
{

1

µε

∑

n,k

1

ωnk1

(nπ

d

)2

cos
(nπ

d
z
) [−cnke

i(kxx+kyy−ωnk1t)

+ cnk
+e−i(kxx+kyy−ωnk1t)

]
cos φk − i

∑

m,k

(mπ

d

)
cos

(mπ

d
z
) [

bmke
i(kxx+kyy−ωmk2t)

+ bmk
+e−i(kxx+kyy−ωmk2t)

]
sin φk +

1

µε

∑

n,k

k

ωnk1

cos
(nπ

d
z
) [−kxcnke

i(kxx+kyy−ωnk1t)

+kxcnk
+e−i(kxx+kyy−ωnk1t)

]− iEx
∂

∂z
+ iEz

∂

∂x

} {
eiksxϕ (y, z)

}
dr,

(4.3)

where φk is the angle between the k and x̂. The relationship between φk, k, and x̂ is

shown in Fig. 4.1.

Because the cross section of the y-z plane of the line spin current is far smaller than the

thickness of the waveguide d, and the electric field near the line current
(
x, y = 0, z = d

2

)

change smoothly in the space and the electric field near the line current changes violently
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in the space, we can write the integration
∫

dx
∫

dy
∫

dzϕ (y, z) Eiϕ (y, z) (i = x, y, z) as:

∫
dx

∫
dy

∫
dzϕ (y, z) Ei (x, y, z) ϕ (y, z)

=

∫
dx

∫
dy

∫
dz|ϕ (y, z)|2

∫
dxEi

(
x, 0, d

2

)

=

∫
dxEi

(
x, 0, d

2

)
(4.4)

For the same reason, the integration
∫

dx
∫

dy
∫

dzExϕ (y, z) ∂
∂z

ϕ (y, z) can be written as:

∫
dx

∫
dy

∫
dzExϕ (y, z)

∂

∂z
ϕ (y, z) = −1

2

∫
dx

∫
dy

∫
dzϕ(y, z)2×

[∫
dx

∂

∂z
[Ex]

] ∣∣∣∣y=0,z=
d
2

(4.5)

We substitute Eq. (4.4) into Eq. (4.5) and express Ex , and Ez in waveguide modes. After

simple integral process, the effective perturbing Hamiltonian becomes:

H ′
eff = −eλΛ

{
1

µε

∑

n,k

1

ωnk1

(nπ

d

)2

cos
(nπ

2

)
2πδ (kx)

[−cnke
−iωnk1t + cnk

+eiωnk1t
]
cos (φk)

− i
∑

m,k

(mπ

d

)
cos

(mπ

2

)
2πδ (kx)

[
bmke

−iωmk2t + bmk
+eiωmk2t

]
sin (φk)

+
1

µε

∑

n,k

kx
k

ωnk1

cos
(nπ

2

)
2πδ (kx)

[−cnke
−iωnκ1t + cnk

+eiωnk1t
]

+ πδ (kx)
1

µε

∑
n,κ

1

ωnκ

(nπ

d

)2

cos
(nπ

2

) [
cnke

−iωnκ1t − cnk
∗eiωnk1t

]
cos φk

+ πδ (kx) i
∑
m,κ

(mπ

d

)
cos

(mπ

2

) [
bmke

−iωmk2t + bmk
∗eiωmk2t

]
sin φk

− ks2πδ (kx)
1

µε

∑
n,κ

k

ωnκ1

cos
(nπ

2

) [
cnκe

−iωnκ1t + cnκ
∗eiωnκ1t

]
}

(4.6)

The first, third, fourth, term in the curve bracket have δ (φk) cos (φk) or kxδ (kx) will vanish

after integrating over kx. We drop it to avoid unnecessary calculation. The Hamiltonian
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of the effective perturbation becomes:

H ′
eff = −eλsΛ

{
−πi

∑

m,k

(mπ

d

)
cos

(mπ

2

) [
bmke

−iωmk2t + bmk
+eiωmk2t

]
δ (kx) sin φk

−2πks
1

µε

∑

n,k

k

ωnk1

cos
(nπ

2

) [
cnke

−iωnk1t + cnk
+eiωnk1t

]
δ (kx)

}

(4.7)

We divide the effective perturbing Hamiltonian into two parts as H ′
eff = H ′

TM + H ′
TE

where

H ′
TE = eλsΛπi

∑

m,k

(mπ

d

)
cos

(mπ

2

) [
bmke

−iωmk2t + bmk
+eiωmk2t

]
δ (kx) sin φk

H ′
TM = 2πeλsks

Λ

µε

∑

n,k

k

ωnk1

cos
(nπ

2

) [
cnk1e

−iωnk1t + cnκ1
+eiωnk1t

]
δ (kx)

H ′
TE which contains bmk and bmk

+ couples to the TE wave, and H ′
TM which contains

cnk and cnk
+ couples to the TM wave. We only care about the z-component of the electric

field, because only this component of the electric field distributes the electrical potential

difference between the two metal slabs of the waveguide. The z-component electric field is

corresponding to the TM wave. (cnκ1 or cnκ1
+ couples to photons of TM wave.) Actually,

if we keep calculating the vector potential with the perturbing Hamiltonian H ′
TE, the

vector potential of TE modes will be equal to zero. It means that only photons corre-

sponding to the transverse magnetic (TM) waveguide modes are exited. If we allow the

spin current to become oscillatory, with an ac frequency Ω, we can incorporate this into

our present framework by changing: ks → ks cos (Ωt). Hence, the Hamiltonian of the

effective perturbation becomes as the following:

H ′
TM = 2πeλsks cos (Ωt)

Λ

µε

∑

n,k

k

ωnk1

cos
(nπ

2

) [
cnk1e

−iωnk1t + cnk1
+eiωnk1t

]
δ (kx) (4.8)

With the perturbing Hamiltonian for photons, we can obtain the wave function by
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using perturbation theorem. We will solve the photon state in our system in next section.

4.2 The new photon state in the waveguide

We have obtained the effective Hamiltonian of the system of ac in-plane polarized spin

current for TM wave in parallel-planes waveguide. We desire to know the photon state

of TM wave in our system. The photon state gives us all information of the wave in the

waveguide including the z-component electric field. The photon state of TM wave in our

system becomes:

|Ψ〉 = |Ψ0〉+
∑

nk1

f
(1)
nk1 |{0, 0, ..., 0, 1nk1, 0, ..., 0}〉

= |{0, 0, ..., 0, ..., 0}〉+
∑

nk1

f
(1)
nk1 |{0, 0, ..., 0, 1nk1, 0, ..., 0}〉

(4.9)

where |Ψ0〉 is the original wave function. f
(1)
nk1 is the first order perturbation coefficient of

H ′
TM . f

(1)
nk1 can be solved by:

f
(1)
n′k′1 =

−i

~

∫ t

−∞
〈{0, 0, ..., 0, 1n′k′1, 0, ..., 0}|H ′

effe
ηt |{0}〉dt

=
−i

~

∫ t

−∞
eηt 〈{0, 0, ..., 0, 1n′k′1, 0, ..., 0}| 2πeλsks cos (Ωt)

Λ

µε

×
∑
n,κ

k

ωnk1

cos
(nπ

2

) [
cnk1e

−iωnk1t + cnk1
+eiωnk1t

]
δ (kx) |{0}〉 dt

(4.10)

After integration, the first order perturbation coefficient becomes:

f
(1)
n′k′1 =

−πeλsks

~
Λ

µε

k

ωnk1

cos
(nπ

2

) √
µ
~ωnk1

V

{
exp [i (ωnk1 + Ω) t]

ωnk1 − iη + Ω

+
exp [i (ωnk1 − Ω) t]

ωnk1 − iη − Ω

}
δ (kx)

(4.11)

Since H ′
TM does not include the bmk or bmk

+, H ′
TM would not couple to the TE wave

but TM wave which we care about. From above equation, we know that f
(1)
n′k′1 vanishes

for odd ”n” which imply the electric field for TM wave will only couple to even n mode.
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Also, we know the photon state of TM wave in our system.

4.3 The expectation value of the vector potential in

our system

The expectation value can give us the predicted mean value of the result. In the previous

section, we obtained the photon state of TM wave |Ψ〉. The expectation value of the

vector potential of TM wave in the photon state |Ψ〉 is given by:

ATM (r, t) = 〈Ψ|A(op) |Ψ〉

=

{
〈{0, 0, ...., 0}|+

∑

m′kλ

f
(1)
m′kλ

∗ 〈{0, .., 0, 1m′kλ, 0, ..., 0}|
}

A(op) {|{0, 0, ..., 0}〉

+
∑

m′kλ

f
(1)
m′kλ |{0, ..., 0, 1m′kλ, 0, ..., 0}〉

}
.

(4.12)

Substituting Eq. (2.17) into Eq. (4.12), we have:

ATM (r, t)

= − 1

µε

∑

nk

(
nπ
d

)

ωnk1
2

sin
(nπ

d
z
)√

µ
~ωnk1

V

{
f

(1)
nk1e

i(k·ρ−ωnk1t) + f
(1)
nk1

∗
e−i(k·ρ−ωnk1t)

}
k̂

+
1

µε

∑

nk

k

ωnk1
2

cos
(nπ

d
z
) √

µ
~ωnk1

V

{
−if

(1)
nk1e

i(k·ρ−ωnk1t) + if
(1)
nk1

∗
e−i(k·ρ−ωnk1t)

}
ẑ

(4.13)

From above equation, we notice that the vector potential has two components that are

k and z directions. The two directions are the same as the directions of electric field.
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Combining above equation Eq. (4.11) and Eq. (4.13), we obtain:

ATM (r, t) =
Λ

(µε)2

µ

V
πeλsks

∑

nk

(nπ

d

)
sin

(nπ

d
z
)

×
{

k

ωnk1
2

cos
(nπ

2

) [
exp [i (+ωnk1 + Ω) t]

ωnk1 − iη + Ω
+

exp [i (+ωnk1 − Ω) t]

ωnk1 − iη − Ω

]
δ (kx) ei(k·ρ−ωnk1t)

+
k

ωnk1
2

cos
(nπ

2

) [
exp [−i (ωnκ1 + Ω) t]

ωnκ1 + iη + Ω
+

exp [−i (ωnk1 − Ω) t]

ωnk1 + iη − Ω

]
δ (kx) e−i(k·ρ−ωnk1t)k̂

}

+
Λ

(µε)2

µ

V
πeλsks

∑

nk

cos
(nπ

d
z
)

×
{

+i
k2

ωnk1
2

cos
(nπ

2

) [
exp [i (ωnk1 + Ω) t]

ωnk1 − iη + Ω
+

exp [i (ωnk1 − Ω) t]

ωnk1 − iη − Ω

]
δ (kx) ei(k·ρ−ωnk1t)

−i
k2

ωnk1
2

cos
(nπ

2

) [
exp [−i (ωnk1 + Ω) t]

ωnk1 + iη + Ω
+

exp [−i (ωnk1 − Ω) t]

ωnk1 + iη − Ω

]
δ (kx) e−i(k·ρ−ωnk1t)ẑ

}

(4.14)

For arbitrary orientation and arbitrary magnitude of wave number k, We can generalize

the summation to representation of integration for continuous k. It means
∑
k

→∑
k

∆kx

∆kx

∆ky

∆ky
→

1
(∆kx)(∆ky)

∫
dkxdky = V

d(2π)2

∫
dkxdky. Because the z direction is quantized and described

by summation m, it may not change to representation of integration. The integral only

respects to x and y. Then we get

ATM (r, t) =
Λ

(µε)2

µ

d
πeλsks

(
1

2π

)2 ∑
n=0

(nπ

d

)
sin

(nπ

d
z
)

cos
(nπ

2

)

×
∫ ∞

−∞
dkx

∫ ∞

−∞
dky

{
k

ωnk1
2

[
exp [iΩt]

+ωnk1 − iη + Ω
+

exp [−iΩt]

+ωnk1 − iη − Ω

]
δ (kx) ei(kxx+kyy)

+
k

ωnk1
2

[
exp [−iΩt]

+ωnk1 + iη + Ω
+

exp [iΩt]

+ωnk1 + iη − Ω

]
δ (kx) e−i(kxx+kyy)

}
k̂

+
Λ

(µε)2

µ

d
πeλsks

(
1

2π

)2 ∑
n=0

cos
(nπ

d
z
)

cos
(nπ

2

)

×
∫ ∞

−∞
dkx

∫ ∞

−∞
dky

{
i

k2

ωnk1
2

[
exp [iΩt]

+ωnk1 − iη + Ω
+

exp [−iΩt]

+ωnk1 − iη − Ω

]
δ (kx) ei(kxx+kyy)

−i
k2

ωnk1
2

[
exp [−iΩt]

+ωnk1 + iη + Ω
+

exp [iΩt]

+ωnk1 + iη − Ω

]
δ (kx) e−i(kxx+kyy)

}
ẑ.

(4.15)
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We use the dispersion relation kz
2 + k2 = ωnk

2µε and replace ωnk1 by
√

1
µε

(
ky

2 + kz
2
)
.

”δ (kx)” in above equation make the integration with respect to kx easy. Then the vector

potential becomes:

ATM (r, t) =
Λ

(µε)2

µ

d
πeλsks

(
1

2π

)2 ∑
n=0

(nπ

d

)
sin

(nπ

d
z
)

cos
(nπ

2

)
{F1 + F2 + F3 + F4} ŷ

+ i
Λ

(µε)2

µ

d
πeλsks

(
1

2π

)2 ∑
n=0

cos
(nπ

d
z
)

cos
(nπ

2

)
{G1 + G2 −G3 −G4} ẑ,

(4.16)

where

F1 =

∫ ∞

−∞
dky

µεky

ky
2 + kz

2 ×
exp [iΩt]√

1
µε

(
ky

2 + kz
2
)− iη + Ω

eikyy

F2 =

∫ ∞

−∞
dky

µεky

ky
2 + kz

2 ×
exp [−iΩt]√

1
µε

(
ky

2 + kz
2
)− iη − Ω

eikyy

F3 =

∫ ∞

−∞
dky

µεky

ky
2 + kz

2 ×
exp [−iΩt]√

1
µε

(
ky

2 + kz
2
)

+ iη + Ω
e−ikyy

F4 =

∫ ∞

−∞
dky

µεky

ky
2 + kz

2 ×
exp [iΩt]√

1
µε

(
ky

2 + kz
2
)

+ iη − Ω
e−ikyy

G1 =

∫ ∞

−∞
dky

µεky
2

ky
2 + kz

2 ×
exp [iΩt]√

1
µε

(
ky

2 + kz
2
)− iη + Ω

eikyy

G2 =

∫ ∞

−∞
dky

µεky
2

ky
2 + kz

2 ×
exp [−iΩt]√

1
µε

(
ky

2 + kz
2
)− iη − Ω

eikyy

G3 =

∫ ∞

−∞
dky

µεky
2

ky
2 + kz

2 ×
exp [−iΩt]√

1
µε

(
ky

2 + kz
2
)

+ iη + Ω
e−ikyy

G4 =

∫ ∞

−∞
dky

µεky
2

ky
2 + kz

2 ×
exp [iΩt]√

1
µε

(
ky

2 + kz
2
)

+ iη − Ω
e−ikyy
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We find that F1 , F2 , G1 , G2 is the complex conjugate of F3 , F4 , G3 , G4. When

we deal with vector potential induced by charge oscillation or ac line current problem

in Chapter 3, we ever both experience this condition. The integrals in Eq. (4.16) seem

not easy. We have to consider about the situation for y > 0 and y < 0. Complex

integral methods can simplify this problem. Using Complex integral method, we must

choose different contours for the corresponded integral. The detailed derivation is saved

for Appendix F. We instead λ~ks

m∗ to Isc. Isc is the magnitude of spin current in unit of

Ampere.

After the complex contour integration, the vector potential can be divided by two

part.

ATM (r, t) = A>
TM (r, t) + A<

TM (r, t) (4.17)

A>
TM (r, t) is the vector potential in the situation µεΩ2 > kz

2. For µεΩ2 < kz
2, the

vector potential is A<
TM (r, t). A>

TM (r, t) and A<
TM (r, t) is given by:

A>
TM (r, t) =

Λ

εd
e
m∗

~
Isc

1

Ω

∑
n

cos
(nπ

2

){(nπ

d

)
sin

(nπ

d
z
) [
−e−

nπ
d
|y| sin (Ωt)

− sin

(√
µεΩ2 − (

nπ
d

)2 |y| − Ωt

)]
k̂ + cos

(nπ

d
z
) [(nπ

d

)
e−

nπ
d
|y|

× sin (Ωt) −
√

µεΩ2 − (
nπ
d

)2
cos

(√
µεΩ2 − (

nπ
d

)2 |y| − Ωt

)]
ẑ

}
(4.18)

and

A<
TM (r, t) =

Λ

εd
e
m∗

~
Isc

1

Ω

∑
n

cos
(nπ

2

){(nπ

d

)
sin

(nπ

d
z
) [
−e−

nπ
d
|y| sin (Ωt)

+ exp

(
−

√(
nπ
d

)2 − µεΩ2 |y|
)

sin (Ωt)

]
k̂ + cos

(nπ

d
z
) [(nπ

d

)
e−

nπ
d
|y|

× sin (Ωt)−
√(

nπ
d

)2 − µεΩ2 exp

(
−

√(
nπ
d

)2 − µεΩ2 |y|
)

sin (Ωt)

]
ẑ

}
(4.19)

For y > 0, ŷ = k̂ ; for y > 0, −ŷ = k̂. Remember that kz is equal to nπ
d

. We choose

the transverse gauge in which the scalar potential vanishes. The electric field is given by
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E = −∂A(r,t)
∂t

. Therefore, the electric field for TM modes can be shown as:

ETM (r, t) = E>
TM (r, t) + E<

TM (r, t) (4.20)

where E>
TM (r, t) is the electric field in the situation µεΩ2 >

(
nπ
d

)2
and E<

TM (r, t) is the

electric field in the situation µεΩ2 <
(

nπ
d

)2
. They are given by:

E>
TM (r, t) =

Λ

εd
e
m∗

~
Isc

∑
n

cos
(nπ

2

){(nπ

d

)
sin

(nπ

d
z
) [

e−
nπ
d
|y| cos (Ωt)

− cos

(√
µεΩ2 − (

nπ
d

)2 |y| − Ωt

)]
k̂ − cos

(nπ

d
z
) [(nπ

d

)
e−

nπ
d
|y|

× cos (Ωt)−
√

µεΩ2 − (
nπ
d

)2
sin

(√
µεΩ2 − (

nπ
d

)2 |y| − Ωt

)
ẑ

}
(4.21)

and

E<
TM (r, t) =

Λ

εd
e
m∗

~
Isc

∑
n

cos
(nπ

2

){(nπ

d

)
sin

(nπ

d
z
) [

e−
nπ
d
|y| cos (Ωt)

− exp

(
−

√(
nπ
d

)2 − µεΩ2 |y|
)

cos (Ωt)

]
k̂ − cos

(nπ

d
z
) [(nπ

d

)
e−

nπ
d
|y|

× cos (Ωt) −
√(

nπ
d

)2 − µεΩ2 exp

(
−

√(
nπ
d

)2 − µεΩ2 |y|
)

cos (Ωt)

]
ẑ

}
(4.22)

After complicated calculations we finally get the electric field induced by ac spin-

polarized current in the waveguide. ”
∑
n=0

cos
(

nπ
2

)
” in Eq. (4.21) and Eq. (4.22) ask that

only the even modes of electric field exist. It is different from the electric field that is

induced by charge current in the waveguide we discussed in Chapter 3 only and couples

to odd modes.

The electric field has the term exp
(−nπ

d
|y|) which decays in the positive y-axis and

negative y-axis from the y = 0, even though we do not understand that it’s physical

meaning, we find that the result is extremely different with the ac charge current. From

mathematics view point, the ac in-plane polarized spin current couples to TM wave which

the electric field is proportional to 1
ωnk1

. But charge current oscillation which couples to

the TE wave is not. This difference results that the final residue integral methods generate
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difference number of poles, so that the electric field induced by the ac in-plane polarized

spin current exists the decay terms. From Eq. (4.22), we notice that the electric field

vanishes if the oscillation frequency is equal to zero. This checks with the ac nature of our

results in this work. We will explain in next chapter that only the n=0 waveguide mode

will contribute to the potential difference between the two metal gates of the waveguide.

4.4 Brief summary

We drove electric field induced by ac spin current in waveguide and coupling to TM modes.

The electric field only couple to even mode and has exponential decaying terms. With

the electric field, we can calculate the ac electrical potential difference induced by ac spin

current.
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Result and discussion

In the last chapter, we will discuss the final result of the ac electrical potential difference

induced by as in-plane polarized spin current and explain the signal is measurable if we

add a film bulk acoustic-wave resonator in the measuring circuit.

5.1 Discussion

In this section, we deduce the magnitude of the electrical potential difference induced by

ac in-plane polarized spin current and discuss the result. The potential difference induced

by the ac spin current can be deduced from equation by integrating the z-component of

the electric field over the thickness of the waveguide. Then the ac electrical potential

difference is given by

Vz =

∫ d

0

Ezdz =
Λ

ε
e
m∗

~
Isc

{√
µεΩ2 sin

(√
µεΩ2y − Ωt

)}
(5.1)

Only the mode n = 0 wave distributes the potential difference, because the electric field

of every mode of the wave oscillates in the z direction and is canceled by integrating over

the thickness of the waveguide except the ground mode. We notice that the electrical

potential difference is independent from the thickness of the waveguide d. It is good news

for us, because we neglect the skin effect in our calculation.
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Skin depth

Skin depth, also known as classical skin depth, is the depth to which electromagnetic

radiation can penetrate the surface of a conductor. It will cause energy loss or change of

the field. Under the condition that the electronic mean free path becomes comparable with

or greater than the classically calculated skin depth, we should consider about anomalous

skin depth instead of classical skin depth [15]. The anomalous skin depth is given by:

δ =

(
l

2πf ′aµσ

)1/3
2√
3

where ”a” is a real coefficient of the order of unity, l is the mean free path in material, µ

is permeability in material, f ′ is the frequency of incident electromagnetic wave, σ is the

conductivity of material. The higher frequency gives the less anomalous skin depth.

If the thickness of slabs is longer than the skin depth, we do not worry about this

problem. Essentially, for any material the ratio of electronic mean free path l to absolute

conductivity σ is a constant independent of temperature. For aluminum and gigahertz of

incident electromagnetic wave, the skin depth is about 0.5µm. If the thickness of slabs is

more than 0.5µm, we do not worry about the impact of skin effect.

Surface spin current

The electric field in Eq. (4.20) is induced by the ac line spin current in the waveguide. Ac-

tually spin current should flow though the 2DEG. We can calculate the total distribution

of surface spin current on the 2DEG by integration over the y-direction. That is

Ez (r, t) =
Λ

εd
e
m∗

~
Isc cos

(nπ

d
z
)
×

√
µεΩ2

∫
dy′ sin

(√
µεΩ2 (y − y′)− Ωt

)
(5.2)

where we only consider about the ground mode. If the oscillation frequency is about giga-

hertz, when we integrate the electric field with respect to y′, the wave length 2π/
√

µεΩ2

for mode n = 0 is long enough not to cancel total electric field induced by surface ac spin
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current in the z direction. And the electrical potential difference is almost the same when

we think that the line spin current or surface spin current carries the same magnitude of

in-plane polarized spin current with the same oscillation frequency.

The potential difference

For we must be sure whether the electrical signal generated by ac in-plane polarized spin

current is measurable, we estimate the electrical potential difference between two slabs

of the waveguide from Eq. (5.1). The effective electron mass in GaAs m∗ = 0.068m0 ∼
6.1 × 10−32kg [16] where m0 is the electron mass in free space; the spin orbit coupling

constant Λ ∼ 8.25 × 10−19m2; the relative permittivity in GaAs is about 12.95. The

estimated value of the electrical potential difference Vz ∼ 2.9× 10−13× Ispin current× f in

the unit of Volt, Ispin current is the magnitude of spin current in the unit of Ampere, f is

the oscillation frequency of spin current in the unit of Hertz.

Electronic filter

If we can generate 50 nA of ac in-plane polarized spin current with oscillating frequency

109 Hertz, the induced electrical potential difference is not high enough to detect. Some

microstructure or electronic filters which can reach high quality factor Q and high opera-

tion frequency could enhance the signal by four order in magnitude.[17]. By apply these

kinds of microstructure, we can set our device as Fig. 5.1. If we generate 50 nA of ac spin

current with oscillating frequency 500 MHz , the maximum potential difference between

the resonant induced by ac spin current in system is about 725 × 10−10 volt which is

measurable.
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Figure 5.1: The spin current is injected from the both sides of the waveguide. We apply
an external electronic filter with high quality vector Q to increase the output signal by
several order.

5.2 Injection of in-plane AC spin current

Even thought we already know the electrical potential difference between the two metal

gates induced by ac in-plane polarized spin current, the generation of ac in-plane spin

current is still a challenge now. Here we propose a few means to generating in-plane ac

spin current.

Optical spin injection

A photon is a boson and its helicity is ±~. These two spin components correspond to

the classical concepts of right-handed and left-handed circularly polarized light. If we

drive the circular polarization electromagnetic wave to illuminate the 2DEG normally on

a spot, it will generate spin accumulation on this spot. These spins will diffuse away due

to concentration imbalance and cause spin current. When we drive right- and left-hand

alternating circular polarized electromagnetic wave to illuminate the 2DEG normally on

a spot, it will generate ac spin current. But the spin polarization direction of the spin

current is out of plane of 2DEG. we can redesign the waveguide as shown as Fig. 5.2.
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Figure 5.2: The illustration of the optical spin injection for our system. Right- or left-
hand circular polarized electromagnetic wave to illuminate the 2DEG normally and then
generate spin accumulation.Spins will diffuse away due to concentration imbalance and
cause spin current. Right- and left-hand alternating circular can drive ac spin current
diffusing away. The metal gates of waveguide are deposited at both side of the device
and detect the electrical potential difference. The two beams with opponent right- and
left-hand alternating circular polarization on the left and right side of the system can
enhance the spin current.

There two beams with opponent right- and left-hand alternating circular polarization on

the left and right side of the system in order to enhance the spin current. The metal

gates of waveguide are deposited at both side of the device. The spin current flows on

the 2DEG. Thought the spin current flows not only through the middle of the two slabs

but also the neighborhood of it, the ac electrical potential difference induced by ac spin

current flowing through the neighborhood of the middle of the waveguide is the same as

the potential difference induced by spin current flowing in the middle of the waveguide.

It is because of this that only ground mode of electromagnetic wave will distribute the

potential difference. surface spin current can be decomposed into numerous ”line spin

current” the and the electric field of the ground mode of wave is independent of relative

distance form the ”line” spin current to two metal gates.
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Figure 5.3: The ac charge current is injected from the both terminals, and the charge cur-
rent with spin-polarization flows through the waveguide. These spin-polarized electrons
originate from the ferromagnetic probes.

Ferromagnetic spin injection

The second method is ferromagnetic spin injection [18]. We can construct a ferromag-

net/semiconductor/ferromagnet device which is shown in Fig. 5.3. we inject ac charge

current through ferromagnetic probe to polarize the spins of the electrons. It can gener-

ate in-plane polarized spin current by apply external magnetic field to the ferromagnetic

probe. The external magnetic field applied on the ferromagnetic probe is used to tile the

magnetization in ferromagnetic probe and the spin polarized direction of the current will

be aligned. But the injected current not only include the spin current but also charge

current. Ac charge current can also generate electric field in a waveguide. Even though

the ferromagnetic spin injection could inject more spin current, the signal induced by

charge current may interfere the measurement.

Non-local spin injection

The third one is non-local spin injection. For non-local spin injection, our system could

be set up as Fig. 5.4. The FM1 and FM2 are ferromagnets which are use to align the
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Figure 5.4: When we drive charge current between A,B and D,E, it will resulting in
nonequilibrium spin accumulation in the ferromagnets that diffused away from the injec-
tion point. If we drive ac charge current, it will drive ac spin current into the waveguide
structure.

electron spin and their magnetization directions ate out of the 2DEG plane with opposite

directions. There is a waveguide at the middle of the system used to detect the potential

difference induced by spin current. If we drive the charge current flowing between the

electrode A and B, it will generate spin-polarized current diffusing away from FM1 into

the 2DEG. And spin-polarized current will flow into the waveguide structure and no net

charge current flows into the waveguide. When an ac power drives the charge current, the

ac spin current will flow though the waveguide structure. The another set of ferromagnet

FM2 with anti-direction of magnetization and ac power can increase the spin current. The

non-local detection can avoid interfering signal. We can detect the electrical potential

difference at the waveguide.
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5.3 Conclusion

This work demonstrates a new method to calculate spin-current induced field. The in-

duced ac electrical potential difference and ac spin current have the relation:

Vz ∼ 2.9× 10−13 × Ispin current × f in Volt

, where Ispin current is the magnitude of spin current in Ampere, f is the oscillation fre-

quency of spin current in Hertz. Even the strength of the induced electrical potential

difference is not enough to be detected. It shows that electrical signal generated by ac

spin current is measurable, if we set up appropriate external electronic filter. Comparing

with Sun et al. [12], we have reasonable magnitude of spin current, and the electric field

is not screened by the charge of the conduction electrons [19].
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Appendix A

Average over direction

In this appendix, we will show the derivation from Eq. (3.9) to Eq. (3.11). By taking

linear polarization, we have λ∗ = λ. For λ∗ = λ, we can assume k to be along ẑ′′, the λ

is in the x̂′′-ŷ′′plane. The Fig. A.1 show the relationship of k, x̂′′, ŷ′′, and ẑ′′.

We focus on the term
∑
λ

exp [ik · r]λλz
∗ in Eq. (3.9) which is related to polarization

direction. λz is the z-component polarization direction and
∑
λ

λλz can rewrite as λλz =

x̂′′ sin (θ1) =
(
k̂ × ẑ

)
× k̂. Therefore,

∑

λ

exp [ik · r]λλz
∗

=
∑

λ

exp [ik · r]λλz = exp [ik · r]
(
k̂ × ẑ

)
× k̂

Using the vector relation
(
k̂ × ẑ

)
× k̂ = ẑ −

(
k̂ · ẑ

)
k̂ , we get:

∑

λ

exp [ik · r]λλz
∗ = exp [ik · r]

{
ẑ −

(
k̂ · ẑ

)
k̂
}

(A.1)

From Eq. (A.1), we can derive Eq. (3.10) from Eq. (3.9). Then we will derive

Eq. (3.11). Assume that the angle between k and r is θ2. And the average over direction
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Figure A.1: The figure shows the relationship of k̂, ẑ′′, x̂′′, ŷ′′, ẑ. k̂ = ẑ′′, and the λ is in
the x̂′′-ŷ′′ plane. ŷ′′ is normal to the x̂′′-ẑ′′ plane.

of ”exp [ik · r] ẑ ” is given by:

1

4π

∫
exp [ik · r] ẑdΩk̂

=
1

4π
ẑ

∫ 2π

φ=0

∫ π

θ2=0

exp [ik · r] sin θ2dθ2dφ

=
1

kr
sin [kr] ẑ

It is more convenient to us to construct a coordinate to illustrate the relationship

between k̂, ẑ, and r̂ as Fig. A.2. From Fig. A.2, we know that k̂ = sin θ′ cos φ′x̂′ +

sin θ′ sin φ′ŷ′ + cos θ′ẑ′. The average over direction of ”− exp [ik · r]
(
k̂ · ẑ

)
k̂” is given by:

− 1

4π

∫
exp [ik · r]

(
k̂ · ẑ

)
k̂dΩk̂

= − 1

4π

∫ θ′=π

θ′=0

∫ φ′=2π

φ′=0

exp [ikr cos θ′]
{(

sin2θ′ cos φ′ sin φ′ sin θ + cos θ′ cos θ sin θ′ cos φ′
)
x̂′

+
(
sin2θ′sin2φ′ sin θ + cos θ′ sin θ′ cos θ sin φ′

)
ŷ′

+
(
sin θ′ sin φ′ sin θ cos θ′ + cos2θ′ cos θ

)
ẑ′

}
dφ′ sin θ′dθ′
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Figure A.2: The figure shown the relation of ŷ′, x̂′, ẑ′, and r̂. The ẑ direction is in the
ŷ′-ẑ′ plane and θ is the angle between r̂ and ẑ.

Because
∫ φ′=2π

φ′=0
cos φ′dφ′ = 0 and

∫ φ′=2π

φ′=0
sin φ′dφ′ = 0, we obtain:

− 1

4π

∫
exp [ik · r]

(
k̂ · ẑ

)
k̂dΩk̂

=
1

4
ŷ′ sin θ

∫ cos θ′=−1

cos θ′=1

exp [ikr (cos θ′)]
[
1− (cos θ′)2

]
d (cos θ′)

+
1

2
ẑ′ cos θ

∫ cos θ′=−1

cos θ′=1

exp [ikr (cos θ′)] (cos θ′)2
d (cos θ′)

(A.2)

where the first term in Eq. (A.2) can be solved as:

1

4
ŷ′ sin θ

∫ cos θ′=−1

cos θ′=1

exp [ikr (cos θ′)]
[
1− (cos θ′)2

]
d (cos θ′)

= − 1

2kr
ŷ′ sin θ sin(kr) +

1

4
ŷ′ sin θ

{
− ∂2

∂(kr)2

(
2 sin (kr)

kr

)} (A.3)
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The second term in Eq. (A.2) can be written as:

1

2
ẑ′ cos θ

∫ cos θ′=−1

cos θ′=1

exp [ikr (cos θ′)] (cos θ′)2
d (cos θ′)

= −1

2
ẑ′ cos θ

{
2

kr
sin (kr) +

4

(kr)2 cos (kr)− 4

(kr)3 sin(kr)

}

= −1

2
ẑ′ cos θ

{
− ∂2

∂(kr)2

(
2 sin (kr)

kr

)}
,

(A.4)

We combine Eq. (A.2), Eq. (A.3), and Eq. (A.4), 1
4π

∫
exp [ik · r]

{
ẑ −

(
k̂ · ẑ

)
k̂
}

dΩk̂ can

be write as:

1

4π

∫
exp [ik · r]

{
ẑ −

(
k̂ · ẑ

)
k̂
}

dΩk̂

=
1

kr
sin [kr] ẑ − 1

2
ŷ′ sin θ

{
sin(kr)

kr

}
+

1

4
ŷ′ sin θ

{
− ∂2

∂(kr)2

(
2 sin (kr)

kr

)}

− 1

2
ẑ′ cos θ

{
− ∂2

∂(kr)2

(
2 sin (kr)

kr

)}

=
1

2
ẑ

{
sin [kr]

kr
− ∂2

∂(kr)2

(
sin (kr)

kr

)}
+

1

2
r̂ cos θ

{
sin(kr)

kr
+ 3

∂2

∂(kr)2

(
sin (kr)

kr

)}

(A.5)

Dropping terms smaller than
(

1
kr

)
, we have:

1

4π

∫
exp [ik · r]

{
ẑ −

(
k̂ · ẑ

)
k̂
}

dΩk̂

≈ 1

2
ẑ

{
sin [kr]

kr
+

(
sin (kr)

kr

)}
+

1

2
r̂ cos θ

{
sin(kr)

kr
− 3

(
sin (kr)

kr

)}

=

(
sin [kr]

kr

)
(ẑ − r̂ cos θ) .

(A.6)

Utilizing above equation, we can get Eq. (3.11).
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The complex integral I

Eq. (3.13) in Chapter 3 will be derived in this Appendix.

Using residue integral method, the first term of the integral in the bracket can be

derived as:

∫ ∞

u′=−∞
u′2du′

[
− exp

[
iu′ r

c

]

u′ r
c

exp (iΩt)

u′ + (Ω− iη)

]
.

Let u′ = u′R + iu′I , where u′R is the real part of u′ and u′I is the imaginary part of u′.

The pole of

u′
− exp

(
iu′ r

c

)
r
c

× exp (iΩt)

u′ + (Ω− iη)

is located at u′ = −Ω + iη on the complex plane. Because

exp
[
iu′

r

c

]
= exp

[
i (u′R + iu′I)

r

c

]
= exp

[
iu′R

r

c

]
exp

[
−u′I

r

c

]
,

we may take a contour which closes the upper half-plane as Fig. B.1. There is a pole
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inside the contour. We use the Jordan’s lemma theorem [20] , we obtain:

∫ ∞

u′=−∞
u′2du′

[
− exp

[
iu′ r

c

]

u′ r
c

exp (iΩt)

u′ + (Ω− iη)

]

= − lim
R→∞

c

r

∮

contour

u′ exp
[
iu′

r

c

] exp (iΩt)

u′ + (Ω− iη)
du′

= −2πi
c

r

[
Re s

u′→−Ω+iη

(
u′ exp

[
iu′

r

c

] exp (iΩt)

u′ + (Ω− iη)

)]

≈ 2πi
c

r
Ω exp

[
−iΩ

r

c

]
exp (iΩt) .

We neglect η since it is very small. For the same reason we may solve the other three

integrations.

∫ ∞

u′=−∞
u′2du′

[
− exp

[
iu′ r

c

]

u′ r
c

exp (−iΩt)

u′ − (Ω + iη)

]
≈ −2πi

c

r

[
Ω exp

[
iΩ

r

c

]
exp (−iΩt)

]
,

∫ ∞

u′=−∞
u′2du′

[
exp

[−iu′ r
c

]

u′ r
c

exp (iΩt)

u′ + (Ω− iη)

]
= 0,

∫ ∞

u′=−∞
u′2du′

[
exp

[−iu′ r
c

]

u′ r
c

exp (−iΩt)

u′ − (Ω + iη)

]
= 0.

For the last two integrals, we may take contours which close the lower half-plane, because

exp [−iu′r/c] is convergent at u′ approaching negative infinite. The contours do not close

any pole, so the integrals are equal to zero.
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Figure B.1: The counter-clockwise contour we choose closes the upper half plane and has
one pole at (−Ω, iη) in it.
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Appendix C

Approximation between wave

function of current and vector

potential

Here we will derive the detailed calculation from Eq. (3.18) to Eq. (3.19).

The first term in Eq. (3.18), ke~λe
e

me

∫
dx

∫
dy

∫
dzϕ (y, z) Axϕ (y, z), is equal to

~λe
e

me

ke

∫
dxAx

(
x, 0, d

2

) ∫
dy

∫
dzϕ2 (y, z) , (C.1)

because the vector potential near the position
(
x, y = 0, z = d

2

)
changes violently, but the

wave function of the electron ϕ (y, z) changes smoothly. And the integral
∫

dy
∫

dzϕ2 (y, z)

is equal to 1 due to the normalization of wave function.

Then we solve the second and third integrals in Eq. (3.18).That is

∫
dx

∫
dy

∫
dzϕ (y, z) Ay

∂

∂y
ϕ (y, z) +

∫
dx

∫
dy

∫
dzϕ (y, z) Az

∂

∂z
ϕ (y, z) .
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Now if we apply the relationship for integration by parts, we have

∫
dx

∫
dy

∫
dzϕ (y, z) Ay

∂

∂y
ϕ (y, z) +

∫
dx

∫
dy

∫
dzϕ (y, z) Az

∂

∂z
ϕ (y, z)

=

[∫
dx

∫
dzϕ (y, z) Ayϕ (y, z)

] ∣∣∣∣∣∣ the y−direction
boudary value of

the current density

−
∫

dx

∫
dy

∫
dzϕ (y, z)

∂

∂y
[Ayϕ (y, z)]

+

[∫
dx

∫
dzϕ (y, z) Azϕ (y, z)

] ∣∣∣∣∣∣ the z−direction
boudary value of

the current density

−
∫

dx

∫
dy

∫
dzϕ (y, z)

∂

∂z
[Azϕ (y, z)]

The boundary conditions ask that the wave function of the current is equal to zero at

the edge of cross-section of the wire. We deal with the derivative first, and we get:

∫
dx

∫
dy

∫
dzϕ (y, z) Ay

∂

∂y
ϕ (y, z) +

∫
dx

∫
dy

∫
dzϕ (y, z) Az

∂

∂z
ϕ (y, z)

= −
∫

dx

∫
dy

∫
dzϕ (y, z) Ay

∂

∂y
ϕ (y, z)−

∫
dx

∫
dy

∫
dzϕ2 (y, z)

∂

∂y
Ay

−
∫

dx

∫
dy

∫
dzϕ (y, z) Az

∂

∂z
ϕ (y, z)−

∫
dx

∫
dy

∫
dzϕ2 (y, z)

∂

∂z
Az

(C.2)

we rewrite Eq. (C.2):

∫
dx

∫
dy

∫
dzϕ (y, z) Ay

∂

∂y
ϕ (y, z) +

∫
dx

∫
dy

∫
dzϕ (y, z) Az

∂

∂z
ϕ (y, z)

= −1

2

{∫
dx

∫
dy

∫
dzϕ2 (y, z)

∂

∂y
Ay +

∫
dx

∫
dy

∫
dzϕ2 (y, z)

∂

∂z
Az

}

= −1

2

∫
dx

∫
dy

∫
dzϕ2 (y, z)∇ ·A +

1

2

∫
dx

∫
dy

∫
dzϕ2 (y, z)

∂

∂x
Ax

(C.3)

For transverse gauge, in which the vector potential is divergence-free, we can write down:

∇ ·A = 0. The Eq. (C.3) becomes:

∫
dx

∫
dy

∫
dzϕ (y, z) Ay

∂

∂y
ϕ (y, z) +

∫
dx

∫
dy

∫
dzϕ (y, z) Az

∂

∂z
ϕ (y, z)

=
1

2

∫
dx

∫
dy

∫
dzϕ2 (y, z)

∂

∂x
Ax

A-vector near the position
(
x, y = 0, z = d

2

)
changes violently, and the wave function of the
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electron ϕ (y, z)changes smoothly. Therefore, we have:

∫
dx

∫
dy

∫
dzϕ (y, z) Ay

∂

∂y
ϕ (y, z) +

∫
dx

∫
dy

∫
dzϕ (y, z) Az

∂

∂z
ϕ (y, z)

=
1

2

∫
dx

∫
dy

∫
dzϕ2 (y, z)

∂

∂x
Ax

≈ 1

2

∫
dx

∂

∂x
Ax

(
x, 0, d

2

)
(C.4)

Combing Eq. (C.1), Eq. (C.4),and Eq. (3.18), we can obtain Eq. (3.19).
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The complex integral II

Now , we derive the first integral in the curve bracket of Eq. (3.30)

∫ ∞

−∞
dky

ei(kyy)

√
1
µε

(
kz

2 + ky
2
)

1√
1
µε

(
kz

2 + ky
2
)− iη + Ω

. (D.1)

Let ky = z′, Eq. (D.1) becomes:

∫ ∞

−∞
dz′

eiz′y
√

1
µε

(
kz

2 + z′2
)

1√
1
µε

(
kz

2 + z′2
)− iη + Ω

eiz′y√
1

µε(kz
2+z′2)

1√
1

µε(kz
2+z′2)−iη+Ω

has two branch point on the complex plane which are

located at z = ikz and z = −ikz. The branch point will complicate the integration. The

contour does not close any branch point and branch cuts and we should define the branch

cuts.

For y > 0, we take our contour and the cut line as Fig. D.1, and the two red arrows

are the branch cuts that we choose. The section of contour , CR, is a semicircle with

infinite long radius and the integral along CR approaches zero. The integral along Cr also

approaches zero, because the point z = ikz on the complex plane is not a pole, but a

branch point.

eiz′y√
1

µε(kz
2+z′2)

1√
1

µε(kz
2+z′2)−iη+Ω

does not have any pole on the complex plane. So we
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Figure D.1: The contour we separate into five section closes the upper-half plane except
the branch point at z′ = ikz and the branch cut (red arrow).

have:

∫
ª

CR+Γ1+Γ2+Cr+Γ3

dz′
eiz′y

√
1
µε

(
kz

2 + z′2
)

1√
1
µε

(
kz

2 + z′2
)− iη + Ω

= 0 (D.2)

We solve the integral first:
∫
Γ2

dz′ eiz′y√
1

µε(kz
2+z′2)

1√
1

µε(kz
2+z′2)−iη+Ω

Let z′ − ikz = r1e
iθ1 , z′ + ikz = r2e

iθ2 ; z = ip and then dz′ = idp −3
2
π ≤ θ1 < 1

2
π ;

−π
2
≤ θ2 < 3

2
π.

For the integration path θ1 = 1
2
π,θ2 = 1

2
π, and z′ = ip. Hence, z′ − ikz = r1e

iθ1 ⇒
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i (p− kz) = r1e
i 1
2
π ⇒ r1 = p−kz. For the same reason, r2 = p+kz. The integral becomes

∫

Γ2

dz′
eiz′y

√
1
µε

(
kz

2 + z′2
)

1√
1
µε

(
kz

2 + z′2
)− iη + Ω

=

∫

Γ2

dz′
eiz′y

√
1
µε

r1eiθ1r2eiθ2

1√
1
µε

r1eiθ1r2eiθ2 − iη + Ω

=

∫

Γ2

dz′
eiz′y

1
µε

(
p2 − kz

2
)
ei(π

2
+π

2 ) + Ω
√

1
µε

√(
p2 − kz

2
)
ei(π

2
+π

2 )/2

= i

∫ kz

∞
dp

e−py

− 1
µε

(
p2 − kz

2
)

+ iΩ
√

1
µε

√(
p2 − kz

2
)

(D.3)

We neglect η in the denominator in Eq. (D.3).

Then we look at the integral:

∫

Γ3

dz′
eiz′y

√
1
µε

(
kz

2 + z′2
)

1√
1
µε

(
kz

2 + z′2
)− iη + Ω

Let z′ − ikz = r1e
iθ1 , z′ + ikz = r2e

iθ2 , z′ = ip, dz′ = idp, −3
2
π ≤ θ1 < 1

2
π ;

−π
2
≤ θ2 < 3

2
π , and η is so small that we neglect it.

For the integration path Γ3: θ1 = −3
2
π,θ2 = 1

2
π, z′−ikz = r1e

iθ1 ⇒ i (p− kz) = r1e
−i 3

2
π ⇒

r1 = p− kz, and z′ + ikz = r2e
iθ2 ⇒ i (p + kz) = r2e

i π
2 ⇒ r2 = p + kz

∫

Γ3

dz′
eiz′y

√
1
µε

(
kz

2 + z′2
)

1√
1
µε

(
kz

2 + z′2
)− iη + Ω

=

∫

Γ3

dz′
eiz′y

√
1
µε

r1eiθ1r2eiθ2

1√
1
µε

r1eiθ1r2eiθ2 − iη + Ω

=

∫

Γ3

dz′
eiz′y

1
µε

r1e
−i 3π

2 r2e
i π
2 + Ω

√
1
µε

(r1r2)
1/2ei(− 3π

2
+π

2 )/2

= −i

∫ ∞

kz

dp
e−py

1
µε

(
p2 − kz

2
)

+ iΩ
√

1
µε

√
p2 − kz

2

(D.4)
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Therefore, combining the Eq. (D.2), Eq. (D.3), and Eq. (D.4), we have

∫ ∞

−∞
dky

ei(kyy)

√
1
µε

(
kz

2 + ky
2
)

1√
1
µε

(
kz

2 + ky
2
)− iη + Ω

(y > 0)

=

∫

Γ1

dky
ei(kyy)

√
1
µε

(
kz

2 + ky
2
)

1√
1
µε

(
kz

2 + ky
2
)− iη + Ω

= i

∫ kz

∞
dp

e−py

+ 1
µε

(
p2 − kz

2
)− iΩ

√
1
µε

√(
p2 − kz

2
) + i

∫ ∞

kz

dp
e−py

1
µε

(
p2 − kz

2
)

+ iΩ
√

1
µε

√
p2 − kz

2

(D.5)

Then we solve this integral
∫∞
−∞ dky

ei(kyy)√
1

µε(kz
2+ky

2)
1√

1
µε(kz

2+ky
2)−iη−Ω

, for y > 0. Let f (z′) =

eiz′y√
1
µε(kz

2+z′2)

1√
1
µε(kz

2+z′2)−iη−Ω

. f (z′) has two poles at ±
√

µε (Ω2 + i2ηΩ)− kz
2 and it also

has two branch point at ±ikz.

We take our contour and the cut line the same as Fig. D.1, and the two red lines are

the branch cuts that we choose. Using the Jordan’s lemma theorem [20], we have:

∫
ª

CR+Γ1+Γ2+Cr+Γ3

dz′
eiz′y

√
1
µε

(
kz

2 + z′2
)

1√
1
µε

(
kz

2 + z′2
)− iη − Ω

= 2πi Re s
z′→+

√
µεΩ2−kz

2

(f (z′))

(D.6)

Then

∫ ∞

−∞
dz′

eiz′y
√

1
µε

(
kz

2 + z′2
)

1√
1
µε

(
kz

2 + z′2
)− iη − Ω

= −
∫

Γ2+Cr+Γ3

dz′
eiz′y

√
1
µε

(
kz

2 + z′2
)

1√
1
µε

(
kz

2 + z′2
)− iη − Ω

+ 2πi Re s
z′→+

√
µεΩ2−kz

2

(f (z′))

(D.7)

The section of contour CR is an infinite semicircle and the integral along CR approach

zero. The integral along Cr also approaches zero. The calculation method of Eq. (D.7)
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is the same as what we do from Eq. (D.1) to Eq. (D.4). But there is a pole inside the

integral contour. We should find out the residue of f (z′). That is

Re s
z′→
√

µε(Ω2+i2ηΩ)−kz
2

(f (z′))

= lim
z′→
√

µε(Ω2+i2ηΩ)−kz
2

eiz′y
√

1
µε

(
kz

2 + z′2
)

(
z′ −

√
µε (Ω2 + i2ηΩ)− kz

2

)

× 1√
1
µε

(
kz

2 + z′2
)− iη − Ω

=

µε exp

[
i
√

µε (Ω2 + i2ηΩ)− kz
2y

]

√
µε (Ω2 + i2ηΩ)− kz

2

(D.8)

The Eq. (D.7) can be write as:

∫ ∞

−∞
dky

ei(kyy)

√
1
µε

(
kz

2 + ky
2
)

1√
1
µε

(
kz

2 + ky
2
)− iη − Ω

(y > 0)

= i

∫ kz

∞
dp

e−py

1
µε

(
p2 − kz

2
)

+ iΩ
√

1
µε

√(
p2 − kz

2
) + i

∫ ∞

kz

dp
e−py

+ 1
µε

(
p2 − kz

2
)− iΩ

√
1
µε

√
p2 − kz

2

+ 2πi

µε exp

[
i
√

µε (Ω2 + i2ηΩ)− kz
2y

]

√
µε (Ω2 + i2ηΩ)− kz

2
.

(D.9)

By the same way, we can obtain:

∫ ∞

−∞
dky

e−i(kyy)

√
1
µε

(
kz

2 + ky
2
)

1√
1
µε

(
kz

2 + ky
2
)

+ iη + Ω
(y > 0)

= −


i

∫ kz

∞
dp

e−py

1
µε

(
p2 − kz

2
)

+ iΩ
√

1
µε

√
p2 − kz

2
+ i

∫ ∞

kz

dp
e−py

1
µε

(
p2 − kz

2
)− iΩ

√
1
µε

√
p2 − kz

2



 ,

(D.10)
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∫ ∞

−∞
dky

e−i(kyy)

√
1
µε

(
kz

2 + ky
2
)

1√
1
µε

(
kz

2 + ky
2
)

+ iη − Ω
(y > 0)

= −


i

∫ kz

∞
dp

e−py

1
µε

(
p2 − kz

2
)− iΩ

√
1
µε

√
p2 − kz

2
+ i

∫ ∞

kz

dp
e−py

1
µε

(
p2 − kz

2
)

+ iΩ
√

1
µε

√
p2 − kz

2





− 2πiµε

exp

[
−i

√
µε (Ω2 − i2ηΩ)− kz

2y

]

√
µε (Ω2 − i2ηΩ)− kz

2
.

(D.11)

Substituting the Eq. (D.5), Eq. (D.9), Eq. (D.10), and Eq. (D.11), into equation, we have

A (r, t)

= − I0

4πεd

∑
m

sin
(mπ

2

)
sin

(mπ

d
z
)





e−iΩt2πi

µε exp

[
i
√

µε (Ω2 + i2ηΩ)− kz
2y

]

√
µε (Ω2 + i2ηΩ)− kz

2

−eiΩt2πi

µε exp

[
−i

√
µε (Ω2 − i2ηΩ)− kz

2y

]

√
µε (Ω2 − i2ηΩ)− kz

2





x̂

The above equation is Eq. (3.31).
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Appendix E

The derivation of electric field

induced by ac line current in

classical calculation

Here, we will derive the electric field induced by ac line charge current in parallel-plane

waveguide with the means of classical electrodynamics. The system is the same as section

3-2 in this thesis. The infinite long wire carries ac electric current I = −I0 cos (Ωt) x̂. We

start with Jefimeko’s equation:

E =
1

4πε0

∫
dr′

(
ρc (r′, tr)

r− r′

|r− r′|3 +
1

c

∂ρc (r′, tr)
∂t

r− r′

|r− r′|2 −
1

c2

1

|r− r′|
∂J (r′, tr)

∂t

)
,

(E.1)

where tr ≡ t− |r−r′|
c

is the retarded time, ρc (r′, tr) is the charge density at r = r′ at t = tr,

J (r′, tr) is the current density at r = r′ and t = tr, c is the light speed.

We utilize image current to calculate the electric field in the waveguide. For simplifying

the calculation, we assume the wire is deposited along x-axis. If the wire is in free space,
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the electric field is given by:

E′
0 =

1

4πε0

∫
dr′

(
ρc (r′, tr)

r− r′

|r− r′|3 +
1

c

∂ρc (r′, tr)
∂t

r− r′

|r− r′|2 −
1

c2

1

|r− r′|
∂J (r′, tr)

∂t

)

=
1

4πε0

∫
dx

′ ( 1

c2

I0

|r− r′|
∂ cos (Ωtr)

∂t
x̂

)

=
1

4ε0

1

c2
I0Ω

{
sin (Ωt) Y0

(
Ω

c
ρ

)
+ cos (Ωt) J0

(
Ω

c
ρ

)}
x̂

(E.2)

where ρ =
√

y2 + z2. If the wire is located at (x, 0, d/2), the field becomes

E0 =
1

4ε0

I0

c2
Ω



sin (Ωt) Y0


Ω

c

√
y2 +

(
z − 3

2
d

)2



+ cos (Ωt) J0


Ω

c

√
y2 +

(
z − 3

2
d

)2





 x̂

(E.3)

The electric field we solve Eq. (E.3) is induced by ac line charge current in free space. If

we put two metal gates at z = 0 and z = d, we must add the field induced by its image

current. the total field is:

E (r, t) =
∞∑

n=−∞
(−1)n 1

4ε0

I0

c2
Ω



sin (Ωt) Y0


Ω

c

√
y2 +

(
z − 1 + 2n

2
d

)2



+ cos (Ωt) J0


Ω

c

√
y2 +

(
z − 1 + 2n

2
d

)2





 x̂

(E.4)

Applying Poisson summation formula, Eq. (E.4) becomes:

For Ω
c

> mπ
d

E> (r, t) =
µI0Ω

d
sin

(mπ

2

)
sin

(mπ

d
z
) ∑

m>0
m=odd





cos

(√
µεΩ2 − (

mπ
d

)2 |y| − Ωt

)

√
µεΩ2 − (

mπ
d

)2





x̂;

(E.5)
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for Ω
c

< mπ
d

E> (r, t) = −µI0Ω

d

∞∑
m=0

sin
(mπ

2

)
sin

(mπ

d
z
)





exp

(
−

√(
mπ
d

)2 − µεΩ2 |y|
)

√(
mπ
d

)2 − µεΩ2

sin (Ωt)





.

(E.6)

The total electric field is E (r, t) = E> (r, t) + E< (r, t). The Eq. (E.5) and Eq. (E.6) are

the same as the calculation in Eq. (3.37) and Eq. (3.38) which are solved by semi-classical

method.
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The complex integral III

In this appendix, we derive Eq. (4.18) and Eq. (4.19) from Eq. (4.16) briefly. Let’s solve

the first integral term F1 =
∫∞
−∞ dky

µεky

ky
2+kz

2
exp[iΩt]√

1
µε(ky

2+kz
2)−iη+Ω

eikyy.

Let ky = z′. For y > 0, z′
z′2+kz

2
exp[iΩt]√

1
µε(z′2+kz

2)−iη+Ω
has two branch points located at z′ = ikz

and z′ = −ikz respectively on the complex plane. The contour must not close any branch

point and branch cuts. We take the contour and the cut lines as Fig. F.1, and the two

red arrows are the branch cut that we choose.

The contour we choose closes no pole on the complex plane. So we have:

µε

∫
ª

CR+Γ1+Γ2+Cr+Γ3

dz′
z′

z′2 + kz
2 ×

exp [iΩt]√
1
µε

(
z′2 + kz

2
)− iη + Ω

eiz′y = 0 (F.1)

The section of the contour CR is a semicircle with infinite radius and the integral along

CR approaches zero. Then Eq. (F.1) can be rewrite as

∫ ∞

−∞
dz′

µεz′

z′2 + kz
2

exp [iΩt]√
1
µε

(
z′2 + kz

2
)− iη + Ω

eiz′y

= −
∫

Γ2+Cr+Γ3

dz′
µεz′

z′2 + kz
2

exp [iΩt]√
1
µε

(
z′2 + kz

2
)− iη + Ω

eiz′y
(F.2)
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Figure F.1: The illustration shows the contour we choose in Eq. (F.1) on the com-
plex plane of z′. The contour can be separated with five sections, Γ1, Γ2, Γ3, Cr, CR.

z′
z′2+kz

2
exp[iΩt]√

1
µε(z′2+kz

2)−iη+Ω
has two branch points located at z′ = ikz and z′ = −ikz respec-

tively on the complex plane. The red allows are the branch cuts we choose.

There are three path integral in Eq. (F.2). We solve the integral
∫

Γ2
dz′ z′

z′2+kz
2

1√
1
µε

√
z′2+kz

2−iη+Ω

eiz′y

first. Let z′ − ikz = r1e
iθ1 , z′ = ip ; dz′ = idp.

We already chosen the branch cuts on the complex plane, so we have−3
2
π ≤ θ1 < 1

2
π and

−π
2
≤ θ2 < 3

2
π. For the integration path Γ2: θ1 = 1

2
π, θ2 = 1

2
π, and z′ = ip. There-

fore, z′ − ikz = r1e
iθ1 ⇒ i (p− kz) = r1e

i 1
2
π ⇒ r1 = p − kz. For the same reason,

z′ + ikz = r2e
iθ2 ⇒ i (p + kz) = r2e

i π
2 ⇒ r2 = p + kz

∫

Γ2

dz′
z′

z′2 + kz
2 ×

1√
1
µε

√
z′2 + kz

2 − iη + Ω
eiz′y

=

∫

Γ2

dz′
z′

r1eiθ1r2eiθ2
× 1√

1
µε

√
r1r2ei(θ1+θ2)/2 − iη + Ω

eiz′y

=

∫ kz

∞
dp

p(
p2 − kz

2
) × 1

Ω + i
√

1
µε

√
p2 − kz

2
e−py

(F.3)
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Then we solve the integral
∫

Γ3
dz′ z′

z′2+kz
2 × 1√

1
µε

√
z′2+kz

2−iη+Ω

eiz′y. Let z′ − ikz = r1e
iθ1 ,

z′ + ikz = r2e
iθ2 , z′ = ip, and dz′ = idp.

For the branch cuts we choose: −3
2
π ≤ θ1 < 1

2
π, −π

2
≤ θ2 < 3

2
π. η is small enough to be

neglected. For the integration path θ1 = −3
2
π

z′ − ikz = r1e
iθ1 ⇒ r1 = p− kz.

For the same reason θ2 = 1
2
π

z′ + ikz = r2e
iθ2 ⇒ i (p + kz) = r2e

i π
2 ⇒ r2 = p + kz.

∫

Γ3

dz′
z′

z′2 + kz
2 ×

1√
1
µε

√
z′2 + kz

2 − iη + Ω
eiz′y

=

∫

Γ2

dz′
z′

r1eiθ1r2eiθ2
× 1√

1
µε

√
r1r2ei(θ1+θ2)/2 − iη + Ω

eiz′y

=

∫ ∞

kz

dp
p(

p2 − kz
2
) × 1

Ω− i
√

1
µε

√
p2 − kz

2
e−py

(F.4)

Then we solve the integral

∫

Cr

dz′
z′

z′2 + kz
2

1√
1
µε

√
z′2 + kz

2 − iη + Ω
eiz′y

. Let z′ − ikz = εeiθ1 ⇒ z′ = ikz + εeiθ1 ⇒ dz′ = iεeiθ1dθ1 and z′ + ikz = r2e
iθ2 ,

where ε is positive real number which approach to zero. We define :−3
2
π ≤ θ1 < 1

2
π and

−π
2
≤ θ2 < 3

2
π. For the integration path Cr: −3

2
π ≤ θ1 < 1

2
πFθ2 = 1

2
π and r2 = 2kz. The
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η in the denominator is small enough to be neglected and θ2 = 1
2
π.

∫

Cr

dz′
z′

z′2 + kz
2 ×

1√
1
µε

√
z′2 + kz

2 − iη + Ω
eiz′y

=

∫

Cr

iεeiθ1dθ1
ikz + εeiθ1

εr2eiθ1eiθ2
× 1√

1
µε

√
εr2ei(θ1+θ2)/2 − iη + Ω

exp
[
i
(
ikz + εeiθ1

)
y
]

=

∫ − 3
2
π

θ1=π
2

iεeiθ1dθ1
ikz

iεr2eiθ1
× 1

−iη + Ω
exp [−kzy]

= −πi
1

Ω
exp [−kzy]

(F.5)

Substituting Eq. (F.3), Eq. (F.4), Eq. (F.5), into Eq. (F.2), we obtain:

F1 =

∫ ∞

−∞
dz

µεz

z2 + kz
2

exp [iΩt]√
1
µε

(
z2 + kz

2
)− iη + Ω

eizy (y > 0)

= −µε exp [iΩt]





∫ kz

∞
dp

p(
p2 − kz

2
) × 1

Ω + i
√

1
µε

√
p2 − kz

2
e−py

+

∫ ∞

kz

dp
p(

p2 − kz
2
) × 1

Ω− i
√

1
µε

√
p2 − kz

2
e−py − πi

1

Ω
exp [−kzy]





(F.6)

Then we deal with the integral

F2 =

∫ ∞

−∞
dky

µεky

ky
2 + kz

2

exp [−iΩt]√
1
µε

(
ky

2 + kz
2
)− iη − Ω

eikyy .

The contour we choose and the steps of calculation is the same as we work out F1, except

that there is a pole in the contour of F2 we choose. Let

f ′ (ky) =
µεky

ky
2 + kz

2

exp [−iΩt]√
1
µε

(
ky

2 + kz
2
)− iη − Ω

eikyy.

We choose the contour for F2 which is shown as Fig. F.2 and the contour closes a pole at√
µε (Ω2 + i2ηΩ)− kz

2. We get the following equation, using Jordan’s lemma theorem.
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Figure F.2: There are still two poles at ±
√

µε (Ω2 + i2ηΩ)− kz
2 which we do not show

here. The section of integral Γ1 is the integral from negative infinity to infinity x. The
two red arrows are the cut lines which are from the points ikz and − ikz respectively to
infinity and negative infinity.

∫
ª

CR+Γ1+Γ2+Cr+Γ3

dky
µεky

ky
2 + kz

2 ×
exp [−iΩt]√

1
µε

(
ky

2 + kz
2
)− iη − Ω

eikyy

= 2πi Re s
ky→+

√
µεΩ2−kz

2

(f ′ (ky))

(F.7)

The integral

∫
ª

CR

dky
µεky

ky
2 + kz

2 ×
exp [−iΩt]√

1
µε

(
ky

2 + kz
2
)− iη − Ω

eikyy

is equal to zero, because µεky

ky
2+kz

2× exp[−iΩt]√
1
µε(ky

2+kz
2)−iη−Ω

will vanish for |ky| → ∞ on the upper
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half-plane.

∫ ∞

−∞
dky

µεky

ky
2 + kz

2 ×
exp [−iΩt]√

1
µε

(
ky

2 + kz
2
)− iη − Ω

eikyy

= −µε

∫

Γ2+Cr+Γ3

dky
ky

ky
2 + kz

2 ×
exp [−iΩt]√

1
µε

(
ky

2 + kz
2
)− iη − Ω

eikyy

+ 2πi Re s
ky→+

√
µεΩ2−kz

2

(f ′ (ky))

(F.8)

The residue of f ′ (ky) can be written as:

Re s
ky→

√
µε(Ω2+i2ηΩ)−kz

2

(f ′ (ky))

= lim
ky→

√
µε(Ω2+i2ηΩ)−kz

2

(
ky −

√
µε (Ω2 + i2ηΩ)− kz

2

)
µεky

ky
2 + kz

2

× exp [−iΩt]√
1
µε

(
ky

2 + kz
2
)− iη − Ω

eikyy

=
µε

Ω
exp

[
i

(√
µε (Ω2 + i2ηΩ)− kz

2y − Ωt

)]

We can solve the path integral the same as we deal with F1. Hence, we obtain

F2 =

∫ ∞

−∞
dky

µεky

ky
2 + kz

2

exp [−iΩt]√
1
µε

(
ky

2 + kz
2
)− iη − Ω

eikyy (y > 0)

= −µε exp [−iΩt]



−

∫ kz

∞
dp

p(
p2 − kz

2
) × 1

Ω− i
√

1
µε

√
p2 − kz

2
e−py

−
∫ ∞

kz

dp
p(

p2 − kz
2
) × 1

Ω + i
√

1
µε

√
p2 − kz

2
e−py + πi

1

Ω
exp [−kzy]





+ 2πi

(
µε

Ω
exp

[
i

(√
µε (Ω2 + i2ηΩ)− kz

2y − Ωt

)])

(F.9)

By the same way, we can solve F3, F4, G1, G2, G3, G4,:
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F3 =

∫ ∞

−∞
dky

µεky

ky
2 + kz

2

exp [−iΩt]√
1
µε

(
ky

2 + kz
2
)

+ iη + Ω
e−ikyy (y > 0)

= −µε exp [−iΩt]





∫ kz

∞
dp

p(
p2 − kz

2
) × 1

Ω− i
√

1
µε

(
p2 − kz

2
)e−py

+

∫ ∞

kz

dp
p(

p2 − kz
2
) × 1

Ω + i
√

1
µε

(
p2 − kz

2
)e−py + πi

1

Ω
e−kzy





(F.10)

F4 =

∫ ∞

−∞
dky

µεky

ky
2 + kz

2

exp [iΩt]√
1
µε

(
ky

2 + kz
2
)

+ iη − Ω
e−ikyy (y > 0)

= −µε exp [iΩt]



−

∫ kz

∞
dp

p(
p2 − kz

2
) × 1

Ω + i
√

1
µε

(
p2 − kz

2
)e−py

−
∫ ∞

kz

dp
p(

p2 − kz
2
) × 1

Ω− i
√

1
µε

(
p2 − kz

2
)e−py − πi

1

Ω
e−kzy





− 2πi
µε

Ω
exp

(
−i

√
µε (Ω2 − i2ηΩ)− kz

2y + iΩt

)

(F.11)

G1 =

∫ ∞

−∞
dky

µεky
2

ky
2 + kz

2 ×
exp [+iΩt]√

1
µε

(
ky

2 + kz
2
)− iη + Ω

eikyy

= −µε exp [iΩt]



i

∫ kz

∞
dp

p2

(
p2 − kz

2
) × 1

Ω + i
√

1
µε

√
p2 − kz

2
e−py

+ i

∫ ∞

kz

dp
p2

(
p2 − kz

2
) × 1

Ω− i
√

1
µε

√
p2 − kz

2
e−py + πkz × 1

Ω
e−kzy





(F.12)
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G2 =

∫ ∞

−∞
dky

µεky
2

ky
2 + kz

2 ×
exp [−iΩt]√

1
µε

(
ky

2 + kz
2
)− iη − Ω

eikyy

= −µε exp [−iΩt]



−i

∫ kz

∞
dp

p2

(
p2 − kz

2
) × 1

Ω− i
√

1
µε

√
p2 − kz

2
e−py

−i

∫ ∞

kz

dp
p2

(
p2 − kz

2
) × 1

Ω + i
√

1
µε

√
p2 − kz

2
e−py − πkz × 1

Ω
exp [−kzy]





+ 2πi
µε

Ω

√
µε (Ω2 + i2ηΩ)− kz

2 exp

[
i

(√
µε (Ω2 + i2ηΩ)− kz

2y − Ωt

)]

(F.13)

G3 =

∫ ∞

−∞
dky

µεky
2

ky
2 + kz

2 ×
exp [−iΩt]√

1
µε

(
ky

2 + kz
2
)

+ iη + Ω
e−ikyy

= −µε exp [−iΩt]



−i

∫ kz

∞
dp

p2

(
p2 − kz

2
) × 1

Ω− i
√

1
µε

(
p2 − kz

2
)e−py

− i

∫ ∞

kz

dp
p2

(
p2 − kz

2
) × 1

Ω + i
√

1
µε

(
p2 − kz

2
)e−py + πkz × 1

Ω
e−kzy





(F.14)

G4 =

∫ ∞

−∞
dky

µεky
2

ky
2 + kz

2 ×
exp [iΩt]√

1
µε

(
ky

2 + kz
2
)

+ iη − Ω
e−ikyy

= −µε exp [iΩt]



i

∫ kz

∞
dp

p2

(
p2 − kz

2
) × 1

Ω + i
√

1
µε

(
p2 − kz

2
)e−py

+i

∫ ∞

kz

dp
p2

(
p2 − kz

2
) × 1

Ω− i
√

1
µε

(
p2 − kz

2
)e−py − πkz × 1

Ω
e−kzy





− 2πi
µε

Ω

√
µε (Ω2 − i2η)− kz

2 exp

[
−i

(√
µε (Ω2 − i2ηΩ)− kz

2y − Ωt

)]

(F.15)

where µεΩ2 > kz
2 ⇒

√
µε (Ω2 + i2ηΩ)− kz

2 ≈
√

µεΩ2 − kz
2

; if µεΩ2 < kz
2 ⇒

√
µε (Ω2 + i2ηΩ)− kz

2 ≈ i
√

kz
2 − µεΩ2

; if µεΩ2 > kz
2 ⇒

√
µε (Ω2 + i2ηΩ)− kz

2 ≈
√

µεΩ2 − kz
2

; if µεΩ2 < kz
2 ⇒

√
µε (Ω2 − i2ηΩ)− kz

2 ≈ −i
√

kz
2 − µεΩ2.
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