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Abstract

The main topic of this article discusses the motion of the ideal
pendulum and its perturbation. First, we introduce the
partial differential equations and their classification, and we
give some practical problems whose mathematical models are
systems of linear hyperbolic equations. Next, we study the
classical Elliptic functions and one application in solving a
nonlinear equation. Moreover, we use the Jacobian Elliptic
function to analyze the Sine-Gordon equation to derive the
exact solutions, the periods, and to sketch the phase
portraits. Finally, we focus on the perturbed pendulum. We
do qualitative analysis by using the tools of dynamical system.
We find out that even if two initial conditions are close, their
behaviors will have big difference in a later time. The

phenomenon is called Chaos, a field which still much open.
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Chapter 1
Introduction

A partial differential equation represents a relation between an unknown function
and its partial derivatives and the parameters of the function. Partial differential
equations are not only used in area of physics, but appears in areas such as engineer-

ing, biology, chemistry, economic, and etc. The general form of a partial differential

equation for a unknown function @z, z, . .., &) can be written as
F(x1, o, . .« oty &, ...) =0, (1.1)
where 1, s, . .., x, are the indépendent variables and u,, denotes the partial deriva-

u
. In general, the equation (I:d).is-supplemented by additional conditions

i
such as initial conditions or boundary conditions. In most of case, we just can

tive

analyze the properties of the solution rather than solving the equation.

1.1 Classification

At first, we classify the types of the partial differential equations. As a matter of

fact, there exist several classifications and we just describe the basic type here.

1. The order of an equation
The first classification is according to the order of the equation. The order of
an equation is defined to be the order of the highest derivative int the equation.
For example, the equation u; — u,, = g(z,t) is called a second-order equation,

while u, + uy,, = 0 is called a third-order equation.



2. Linear equation
Another classification is to determine whether the equation is linear or not.
An equation is called linear if in (1.1), F'is a linear function of the unknown
function u and its derivatives. If F' is not linear, the equation (1.1) is called
nonlinear. For example, the equation z*u, + e¥u, + sin(zy)u = y* is a linear

equation, while u? — U;Q; = 2 and u,u, = —1 are nonlinear equations.

3. Homogeneous equation
Mappings between different function sets are called operators. The operation
of an operator O on a function u will be denoted by O (u). A differential
equation can be expressed as O (u) = f, where O is an operator and f is a
given function. A differential equation is called a homogeneous equation if

f = 0. For example, O (u) = uy — uz, = 0 is a homogeneous equation, while

3

O (u) = uy — Uy = x° is an example of inhomogeneous equation.

1.2 Second-Order Einear Equations in Two Vari-

ables

After introducing some basic clagsifieation;“we focus on the second order linear

partial differential equations [5]. Suchian-equation has the form
L (u) = augy + 2bugy + cuyy + du, + euy, + fu =g, (1.2)

where a,b, ..., f, g are given functions of z,y and u(x,y) is the unknown function.

we assume that a, b, and ¢ do not vanish and define

0(L)(w,y) = b*(z,y) — alz, y)c(w, y). (1.3)

Then we classify the equation according to the sign of §(L).

Definition 1. Given any point (z¢, o), then equation (1.2) is said to be
1. hyperbolic at (x,y) if §(L)(xo,yo) > 0.
2. parabolic at (x,y) if 6(L)(xo,yo) = 0.

3. elliptic at (z,y) if §(L)(xo,yo) < 0.



And the equation is hyperbolic (parabolic, elliptic) in A if it is hyperbolic (
parabolic, elliptic ) at all points (z,y) € A. Moreover, the equation (1.2) will be

express as
1. L(u) =we, + [ (w) = G(&,n) for hyperbolic equations,
2. L(u) = wge + 1 (w) = G(&,n) for parabolic equations,
3. L(u) = wee + wyy + 1 (w) = G(&,n) for elliptic equations,

after the nonsingular transformation where [ is a first-order linear differential oper-
ator, and G is a function. The difference of them is about the number of character-
istics. The hyperbolic equations have two characteristics, the parabolic equations
have only one characteristic, and the elliptic equations have no characteristic. The
characteristic influence the behavior of the equation. The more content will read

the reference [4].

1.3 The Linear Hyperbolic Equations as Mathe-

matical Models

The main topic of this article is to discuss the hyperbolic equation. Now we give
some ideal problems which can be represented as a hyperbolic equation in the math-

ematical model but we just talk about the Telegrapher’s equation in detail.

Telegrapher’s Equation

Suppose that a transmission lines has a voltage V' (z,t) across them and a current
I(z,t) at position x and time ¢. One of the transmission line contains a resistance
(R) and a inductance (L). And the two transmission line connected with a capac-
itance (C') and a leakage resistance (G). Assume the energy is conserved. Now, if
the current passes through an inductor, the voltage across the inductor is directly

proportional to the time rate of change V = LE' By Kirchhoft’s current law and



Kirchhoft’s voltage law, we could get

I(x+ Ax,t) = I(2,1) — GV (x, ) Az — Cavg:, DA, (1.4)
Vi + Ant) = V(1) — RI(n, t)Az — 12T A, (1.5)
Let Az — 0, then (1.4), (1.5) will become
L(z,t) = —GV(2,1) — CVy(w, 1), (1.6)
Vi(z,t) = —RI(z,t) — LL(z,1). (1.7)

Since we assume that there is no energy lost, we get R = 0 and G = 0. Hence, (1.6)
and (1.9) can be deduced as

I(z,t) = =CVj(z,1), (1.8)
Vp(z,t) = —LI;(x,t). (1.9)

After differentiating (1.8) and (1.9)with ¢ and«, respectively, we have

B DS OVl (6 (1.10)
Voo (x, 8)==L1; . (0, ). (1.11)

From (1.10) and (1.11), we could get

1
Vie(z,t) — k*Vyp(z,t) = 0 where k* = Ic (1.12)

Similarly, differentiating (1.8) and (1.9) for x and t, respectively, we have

Vir(z,t) = —LIy(x,t). (1.14)

And we can derive

1
Iy(x,t) — KLy (x,t) = 0 where k* = Vrel

(1.15)
from the equation (1.13) and equation (1.14). The (1.12) and (1.15) shows that the
voltage and current will satisfy the wave equation under the ideal ( no energy lost)

condition.



Next, we introduce the vibrating string. Its mathematical model is also a hy-
perbolic equation under some ideal assumptions and Newton’s second law. The

mathematical model can be expressed as the following system:

Uy — gy =0, for 0 < z <, (1.16)
u(z,0) = f(x), (1.17)
u(z,0) = g(z), (1.18)
u(0,t) = u(l,t) = 0. (1.19)

(1.17) and (1.18) are the initial conditions. They limit the shape of position and ve-
locity for the solution at ¢t = 0. (1.19) is called the boundary condition. It represent
the states at © = 0 and = = [ for all . The detail of the derivation can read the

reference [4].

There are many other problems can be represented as hyperbolic equation like
Maxwell’s equation and so on. This shows that the linear hyperbolic equation can be
applied in our life. But in most,of time, the real problems in our life are correspond-
ing to the nonlinear equation= Thus, we will discuss a nonlinear equation in the
whole following contents. It is alledsSine=Gordon equation, uy — g, + sin(u) = 0.
On the other hand, it could be tramsferred to be a ordinary differential equation,

ugp + sin(u) = 0, by letting 6 = kx — wt with w? — k% = 1.

Consider a pendulum consisting of a light rod of length [ to which is attached a
ball of mass m. The position of the mass at time ¢ is described by u(6). By Newton’s
law, the mathematical model of the motion of the pendulum could be represented
as ,

ml% = —blj—g — mgsin(u), (1.20)
where g is the gravitational acceleration and b represents the coefficient of friction
with b > 0 [8] [9] [10]. Assume that the pendulum is frictionless (b = 0) with m =1
and [ = g. Then the equation (1.20) will become wugg + sin(u) = 0. This implies that
the equation ugy + sin(u) = 0 could be regarded as the motion of a ideal pendulum

with m =1 and [ = ¢g. The whole chapter 3 will discuss the problem in detail.



Chapter 2

Elliptic functions

2.1 Definitions and Properties

Before introducing the elliptic functions, we introduce some definitions. We just
talk about some important and interesting parts of the elliptic function. The fol-
lowing contents referred to [3] and’you could get'more information about the elliptic

functions from it.

Definition 2. The point z, i§ called-the singularity ( singular point ) of f(z) if
f(2) is not analytic at z = zy. If*zp.is"a singularity and there exists a neighborhood
N(zp) of zp such that the function f(z)isanalytic in N(zo)\{z0}, then z is isolated.
Moreover, if there is an analytic function g : N(zy) — C such that g(z) = f(z) on

N(20)\{20}, the point z is called a removable singularity.
Ezxamples
(i) f(2) =1In(2), 2 =0 is a non-isolated singularity.

1
(ii) f(z) = —, z = 0is an isolated singularity, but it is not a removable singularity.
z

(iii) f(z) = SEELR analytic except z =0. z = 0 is a removable singularity since we
2
z—1, ifz=0
can define g(z) = ¢ .2 _ , Then g(z) = g(x) on Nr(0)\{z0}

, otherwise.
z



Definition 3. The pole z, of the function f(z) satisfies:

1.

2o 18 a singularity.

2. zp is isolated.

3. 3mink € N such that (z — 2)¥f(z) is analytic at 2.

After knowing the previous definitions, we can define elliptic function now:

Definition 4. Assume that f is a doubly-periodic function with periods 2w; and
2ws.(That is, f(z+2wi) = f(24+2ws) = f(2).) And f is called an elliptic function

if it is analytic (except poles) and has no singularities other than poles in the finite

part of the plane.

Remark 1.

w
a. The constants wy,wy € F (B=R or C) and — is not purely real number.

W

b. If there is no w inside the;parallelograms such that f(z + w) = f(2),Vz,

the parallelogram constructeds by“2, 2 + 2wy, 2 + 2ws, 2 + 2(wy + wy) is called
a fundamental period-parallelogram fer an elliptic function with period
2wy, 2wy. The points z, z + 2wy, 2+ 2ws, 2z + 2(w; + ws), ... will have the same
value after transferring by f since 2w; and 2w, are periods. And any pair of
such points are said to be ”congruent” to one another. The congruence of two
points z, 2z’ is denoted by z = 2’ ( mod 2wy, 2wsy). And the set of poles of an

elliptic function in any given cell is called an irreducible set.

Some simple properties of elliptic functions

1.

The number of poles of an elliptic function in any cell is finite.

. The number of zeros of an elliptic function in any cell is finite.

. The sum of the residue of an elliptic function, f(z), at its poles in any cell is

Zero.

Liouville’s Theorem:

An elliptic function ,f(z), with no poles in a cell is merely a constant.



The order of an elliptic function

f(2) is an elliptic function and the number of the roots of the equation f(z) = ¢
(where ¢ is any constant) which lies in any cell depends only on f(z). Then the

number is called the order of the elliptic function.

Remark 2.
a. The order of f(z) is the number of poles in the cell.
b. The order of an elliptic function is = 2.

c. The simplest elliptic function could be divided into two classes. One is the
elliptic functions which have a single irreducible double pole with residue = 0.
The other is the elliptic functions which have two single poles and the sum of

their residues is 0.

After knowing some basic preperties-of-eliptic function. We will introduce the
Weierstrass elliptic function which belongs .to the- former class and the Jacobian

elliptic functions in the following sections:

2.2 Weierstrass Elliptic Function

The Weierstrass elliptic function p(z) is defined as

1 L L
_ = - 2.1
o(2) = + mzn;m ((Z —2mw; — 2nws)?  (2mw, + an2)2> (2.1)
1 1 1
_ 1 _ 2.2

where (2, , = 2mw; + 2nws.

Remark 3.

a. When m,n such that |€,,,| is large, the general terms of the series defining

p(2)is O (|an\_3) So p(z) converges absolutely and uniformly.

b. p(z) is analytic except the poles, namely the points €, , and the points €, ,,

are all double poles.



The following contents will introduce some properties and theorem about @(z)

and ¢'(2).
(1) Periodicity and other properties of p(z)

Since p(z) is uniformly convergent series of analytic function, we could differen-

tiate it term-by-term.Thus,
1
'"(2) = =2 —_— 2.3
o) =23 g 23)

and

because the points —€,,,, is the same as the set Q,,,, and ¢'(z) is absolutely con-

vergent,we can get

This means that ¢'(z) is an odd fanction. We know that ¢/(z) is analytic (except at
poles) and which has no singularity other than.poles. Moreover,it is not difficult to
check that 2w, 2w, are periods of @/(z).Then ¢'(2) is an elliptic function.Using
the same way, we could show that p(2)/isralsoran elliptic function, but it is different

to ¢'(z). p(2) is an even function.. Given the following table as conclusion:

— Definition Periods | Parity | Poles

©(2) | equation (2.2) | 2wy,2wy | even | Q.
¢ () | equation (2.3) | 2w1,2we | odd | Qpp

Table 2.1: The summary of p(z) and ©'(z).

(2) The differential equation satisfied by (=)

By the equation (2.2), we know that

1 1 1
o=t ) ooy w,)
m,n#0 ) ’
1
Let S(2) = p(z) — o Then S(z) could be represented as
S&= Y (g - ) 2.9
B (2 = Qmn)® Q" .
m,n#0 ’ )

10



Then S(z) is analytic at z = 0 and it is an even function. Do Taylor extension for

S(z) for |z| — 0. The (2.4) can be derived as

(-t g g 0 () (2.5)

2)— = =—g,+— 2°), :

VT T g% T g™

where g, = Z 60(Qp.p) * and g; = > om0 140(Q ) 7. According to (2.5), the
m,n#0

functions p(z) and ¢/(z) can be written as

()—1+Z2 +Z4 + 0 (2% (2.6)
PRI = T2 T 508 T g =) '
—2 z 23 5
p’(z) = ? + Egz + 793 +0 (Z ) . (27)
By the above two equations, we can derive the following equations
1 3 3
3 2
- L+ — O , 2.8
0°(2) = 5+ 5529 T 59 T O () (2.8)
N = 55— 38t 285+ O () (29)
26 5p2¥r 73 ‘ '

Then use (2.8) and (2.9), we get

T(2) = [¢'(2))3 40°(3) + wle)gzt g5 = O (2%) .

Since 7 (z) is an elliptic function and it-is‘analytic at the origin, the all congruent
points of 0 are also analytic. This means-that 7 (z) is an elliptic function with
no singularities. This implies that 7(z) = ¢ where ¢ is a constant by Liouville’s
Theorem. If we let z — 0, the constant ¢ is zero. This implies that the function

o(z) satisfies

[0/ (2)]? = 49°(2) — p(2)g. — g5 = O (2%, (2.10)
where g, = Z 60(Qnpn)™* and g, = Z 140(Qpn.n) ~°.
m,n=0 m,n#0

d
Conversely, given the equation (d_y)2 =4y® — g,y — g5. If wy,w, can be determined
z
such that g, = Y7/ 60(Qn,)~* and g5 = > 140(Qyp,n) %, then the general so-
lution of the differential equation is y(z) = p(+2z + «), where « is a constant. And

the solution can be written as y(z) = p(z + a) since p(z) is an even function.

Moreover, consider the integral equation

L= / <4t3 gt 93‘1/2> dt (2.11)
13

11



with the path of integration may be any curve which does not pass through a zero
of 4¢3 — g,t — g;. By the above equation, we differentiate z with respect to &, and
get

s,
T 212)

By the previous result, we know that ¢ = p(z + «), where « is a constant. Let
& — 00, then z — 0. This implies that « is a pole of p(z). In other words, a € ,,,.,

and
£=p(z+ Qnn) = p(2).

So the equation (2.11) is called the integral formula for p(z) and it is sometimes

2= / (4t3 —g.t — 93_1/2) dt.
o(2)

written as

(3) Addition Theorem for the function (%)

Here, we want to show that p(y -+ z) can be expressed by p(y) and @(z). If y

and z satisfy y + z = 0, then we ecan get the relation as follow:

pz) P 1
ply)  o'ly) 1 ]=0.
pz+y) ¢z+y) 1
Therefore, p(z + y) can be expressed algebraically in terms of p(z) and p(y).

Remark 4.

a. If u+ v+ w = 0,then the addition theorem could be extended as

p(z) ¢'(2)
) ¢'(y)

)
p(w)  ¢'(w)

—_ = =
Il
(@)

b. The addition theorem could be written in another form as :

1 {@’(2) —¢'(y)

olztv) =7 0(2) — p(y)

: | = o= ot (2.13)

12



c. Assume that 2z is not a period of p(z). If we take the limit for the equation

(2.13) with y — 2, we can get

0(22) % {Z((ZZ)) ] ~20(2). (2.14)

The result is called the duplication formula of ¢(z).

(4) The constants ey, ey, €3

Pick three points w, wsy, w3 in the same cell with w; + wy + w3 = 0. Set ¢; =
o(w;),i = 1,2,3. We could show that w; is the zero of p(z) —e;,7 = 1,2,3 and
e1 # ey # e3. Furthermore, ey, eq, €3 are roots of 4t — g,t — g, since p(z) satisfies
the equation [¢(2)]* = 4[p(2)]* — g.9(2) — g5. This means that

3

[/ (2)]" = 4] [ (p(2) — ). (2.15)

==l

By roots of equations with theirscoefficients,-we eould get

€1+€2+63=0,

92
eres H €963 = €31 — —Z,

€1€2€3 — 9—3
4
Moreover, using the constants and equation (2.13) and equation (2.15). We can de-

rive the addition theorem of half-period for p(z) and the result is as following:

ol +wn) =, + OO
p(z) — e
(62 —€1)€2 — 63)

p(Z +WQ) = €2 —+

zZ+ws) =e3+
\p( 3) ’ p(Z — €3

After introducing the Weierstrass elliptic function and some simple properties
about it, we introduce the Jacobian elliptic function in the following. Note that p(z)
is one of the simplest example for the elliptic function with single double pole. And
the next section will show that the Jacobian elliptic function is the elliptic function

with two simple poles.

13



2.3 Jacobian Elliptic Functions

Before starting the Jacobian elliptic functions, we discuss the Theta-functions first.

The theta-function 9(z, q) is defined by

Iz, q) = Z (—1)" g e* (2.16)
=142 Z " q" cos (2nz) (2.17)
= W4(2,q), (2.18)

where ¢ = ™", 7 € C is constant and its imaginary part is positive and |q| < 1.

Remark 5.

a. By the equation (2.16), we could attain the following results

{ e+, q)=0(z,q),

(2.19)
Uz Femiq) = K(z,q),

—2iz

where K = —qg~'e~%#. This implies that J(2) is a quasi doubly-periodic

function of z.

b. By the definition of ¥4(z), other three Theta-functions is defined as:

791(2”7 Q) = _ieiz—i_iﬂ—iTﬁll(z + %7'('7', Q>7
192(27 Q) = 191(’2 + %ﬂ-v q)a (22())
793(27(]) ET94(/Z—i_ %W,Q)~

From (2.17), the definition , (2.20) can be written as series form:

(z,q) _QZ gvta)? sin(2n 4+ 1)z,
Va(z,q) =2 Z q (nt3)° cos(2n + 1)z, (2.21)
n=0
V3(z,q) =2 Z q(”)Qcos(an) + 1.
\ n=0

c. By (2.17) and (2.21) and parity of trigonometric functions, it is easy to see
that ¥1(z,q) is an odd function of z, and the other Theta-functions are even

functions of z. And the four Theta-functions are all satisfy (2.19).

14



d. ¥;(z,q) is a two variables function. It is be denoted as ¥;(z) when we just

focus on the parameter z. Moreover, the notation 9; is represented ;(0), for

i=1,2,3,4.
By the relation of (2.19), we know that if zj is a zero of ¥(z, ¢), then zo+mn+nn7
19/
is also a zero, V. m,n € N. Let us consider the function % We could
%, q

show that it has only one poles in the parallelogram constructed by the points
t,t+mt+m+n7 and t+ w7 by the residue theorem. The we can find the zeros
for ¥;(z,q) for i = 1,2, 3,4 and we discuss ;(z, q) first. From equations (2.21), we
find out that 0 is the zero of 1 (z, ¢). And this means that the all zeros of ¥ (z, ¢) are
congruent to 0 mod (7w, n7). Using relation between the Theta-functions, we can find
out that the zeros of ¥5(z,q), Us3(z,q) and Y4(z,q). The result can be summarized
as the following table :

— Zeros Relation
Y1(z,q) 2=0 mod(m,n7) By definition
Ua(2, q) z=im mad(r,7T) Us(z,q) = (2 + 17, q)
V3(2,q) | 2 = 37+ 37 mod(m,wm) | P3(z,q) = 9u(z + 37, q)
V4(2,q) z = 37 =mod(w, =7) V1%, q) = Kdu(z + i77,9)

Table 2.2: zéerés of Theta-functions.

Next, we will derive the relation between these Theta-functions. We know that

91(2), ¥2(2), ¥3(2), and 94(z) are analytic and have periodicity factors 1, —q~ e ™2™

with periods 7, 7. It is clear that ¥%(z), ¥3(2), ¥3(2), and ¥3(z) are analytic and

—4nT

have periodicity factors 1, —¢2e and each has a double zero in any cell. If we

choose suitable constants a, b, a’,b’, then we could make
a??(z) + b3(z)
93(2)

(2.22)

and
a3 (z) + V93(2)
V3(2)

will become doubly-periodic function with periods 7 and n7. By the properties

(2.23)

of elliptic function, these two relations are merely a constant and we choose the
constant is 1. Hence the equations (2.22) and (2.23) will become

{ 93(2) = a}(z) + b93(2),

(2.24)
93(2) = a'¥3(z) + V93 (2).
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Given z the special values 0 and %71’7’, (2.33) could be represented as

03(2) = V() — 0303(2), .
303(2) = 303 (2) — 0303(2). |
If we replace z with z + %7‘(‘, we could get other two relations. The relation of square

are arranged as following:

D293 (2) = 9303(2) — V203(2),
929%(2) = 92093(2) — V293 (2), (2.26)
D203(2) = 303(2) — 9393(2), |

| V10i(2) = 9393(2) — V303(2).

Remark 6.
a. If 2 = 0, the last relation will become 5 + 9} = 3.

b. It is more clearly to compare the period factors of the four Theta-functions by

making a following table:

— ?91(2) ’192(2) 193(2) 194(2)
7 -1 -1 1 1
7T | =K K K -K

Table 2:3: Period factors.

In order to get some relation between the Theta-functions easily, we can represent

the Theta-functions as infinite products. The result is derived by Jacobi. Let

f(Z) _ H( 2n 1 2@,2 H 2n 1 —sz) ) (227)

194(2)
(

First, we know has no poles and no zeros since f(z) has the same zeros as

Y4(2). Second, f(z) has the same periodicity factors as ¥4(z) by calculating f(z+ )

9
and f(z 4+ 77) directly. This means that f4((;> is a doubly-periodic function with
no poles. By Liouville’s Theorem, 73}1((2)) = G, G is a constant. Thus, ¥4(z) can be
z

rewritten as
Ua(z) =G f(2)
=G [] (1 —2¢"" "cos(22) + ¢ ?)
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by using (2.27). Moreover, the relation (2.20) implies that

91(z, q) = 2Gq7sin(z) H (1 —2¢°"cos(22) + ¢*") , (2.28)
n=1

Uo(z,q) = QQq%cos(z) H (1 +2¢*"cos(22) + ¢™), (2.29)
n=1

VU3(z,q9) =G H (14 2¢*" "cos(22) + ¢*"7?). (2.30)

n=1

Remark 7.
a. By the expression of infinite product form and given z = 0. We can the relation

19/1 = 192793194.

b. Using the relation of (a). The constant G can be determined as
G=J[(-¢").
n=1

Recall that we found out the,differential equation which satisfied by the Weier-
strass elliptic function. Similarly, we can'derived:the differential equation which

satisfied by the quotient of Theta-functions. By thestable of periodicity factors, it is
/ gy

not hard to see that 191(2)? 191(,2)194(2)2 194(2')191(2:)7 and 192(22)193(2)

o U4(2) 73(2) 3(z)

periodicity factors —1 and 1 with respect-to 7, 77 respectively. Ratio the last two

have the same

functions and define

_ V1(2)04(2) — 94(2)041(2)
plz) = 02(2)03(2) '

(2.31)

By liouville’s Theorem, it shows that ¢(z) = ¢ where c is a constant since there is

no poles of p(z) = 0 in the cell. Make z — 0, we can determine ¢ = ¥3. The we get

01(2)] a0a(2) U3(2)
[wz)} =i, 04) (2.82)
Let £ = glgz; and (2.32) will become
(%) = @3- vie) @3- o3¢, 239
’191(2’)

The function is a solution of the above equation.

T94(Z>

17



Remark 8.

By the same discussion, we could also find that:

/

192(2/) _ 2791(2) 193(2’)
{194(2’)} - 193194(2) 9a(2)’ (2.34)
193(2) , _ 2191(2) 192(2)
{194(2)1 =" 04(2) Va(2)’ (2.35)

Now, we could introduce the Jacobian elliptic functions. We start from the
v
function sn(u). Let y = 19—35 and u = ¥3z. Then the equation (2.33) will be written
2
as N2
Y
(%> = (1—¢°) (1 —r*?), (2.36)
2
19—2 and it is ealled the modulus. And the solution y is
3

denoted by y = sn(u; k) or y =8n(u)-On the other version, (2.36) can be written

where k is defined by k =

as the integral form
Y 1 1
u= / (1 =2 (- sft7) 2 dt (2.37)
0

and y = sn(u; k) satisfies it.

Remark 9.

’191 (Z)

U4(2)
with the periods 7 and 77, respectively. This also implies that y(u) is a doubly-

a. y(u) has periodicity factors —1,1 with the periods 927 and Y377 since

periodic function with periods 2027, 9277 and we define them as 4K = 29%r,
21K' = ¥3nT.

b. The poles of y(u) is the zeros of ¥4(uv3?). From the definition of 14(z),

we could know that the poles of y(u) at the points congruent to %7?7'19% and
T3 + $7793 mod (4K, 2iK’).Moreover, y(u) has two simple poles in any cell

and their residues are equal but opposite sign.

c. Similarly to (b). The zeros of y(u) is the zeros of ¥;(u3?). So the zeros of
y(u) at points congruent to 0 and 792 mod(4K, 2/K’).

18



Next, we define other two Jacobian elliptic functions cn(u, k) and dn(u, k):

( 194192(%)
cn(u) = ———,
192194(@)
3 (2.38)
194193(@)
dn(u) = ——-.
193194(@)
\ 3

And there are some properties and relation between the three Jacobian elliptic

functions as following:

1. From (2.38), we can get some results:

sn?(u) + cn?(u) = 1. (2.39)
k2sn?(u) + dn’(u) = 1. (2.40)
cnl) = dn0 =1, (2.41)

2. The derivatives of sn(u),zen(u), and dn(u) are as following:

% {snfu)}="en(u)dn(u), (2.42)
% {en(u)} = —sn(u)dn(u), (2.43)
% {dn(u)} = —ksn(u)cen(u). (2.44)

3. By the properties of Theta-functions, the parity of them are

19



Similarly, we could find their periods, poles, and zeros just like what we do for

sn(u).
— sn(u) en(u) dn(u)
Periods 4K, 2K/ 4K, 2K + 2K’ 9K, 4iK’
Poles 1K', 2K 4 iK' mod | iK', 2K + iK'’ mod iK', 3K’ mod
(4K, 2iK') (4K, 2K + 2iK') (2K, 4iK')
Zeros 0 (2K,2iK’) K (2K,2iK") |K+iK (2K,2iK’)
Parity odd even even
Derivative en(u)dn(u) —sn(u)dn(u) —r2sn(u)en(u)

Table 2.4: Summary about sn(u),cn(u) and dn(u).

The above table is a roughly conclusion for sn(u), cn(u), and dn(u). In the end

of this chapter, we see the graphs of them with different modulus x as following:

19

0.59

sn(u, 1)

sn(u,1/2)

sn(u,2/3)

0.5

Figure 2.1: sn(u, k) with kK = %, %, and 1
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dn(u,2/3)

Figure 2.3: dn(u, k) with kK = %, %, and 1
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2.4 An Application of Elliptic functions

In the last section of this chapter, we will introduce a physical problem which could
be solved by elliptic function. That is, its mathematical model can be represented
as the elliptic integrals. Most of mathematical models of these problems must de-
rive by the Newton’s second law, the famous equation, ? = m'a. Let us see the

example of the nonlinear spring vibration [7].

In the before, the mathematical model of the spring motion represented as

2
m% = —kuz, (2.45)
where k is a constant and called the spring rate, m is the mass of the body, and
x denoted the position. But the linear model only satisfies over a small range of
displacements. The spring rate will depend on the position = when the displacement
is large. Such spring rate may be represented by a quadratic function k = ko + ra?

where r is determined case by caseX Applied thé:Newton’s second law, the equation

(2.45) can be replaced by

d*z
Megis 5 0 (karrat) = (2.46)
The equation (2.46) can be arranged as
d*z ko T
2o (B 3. 2.47
dt? (mx - m ) (2.47)

And the initial conditions are given by
z(0) =0, 2/(0) =wvg > 0.

Multiplying equation (2.47) and integrating it, we have

dx 2ko r
at _ 2 24 - 4 2.4
7 \/Uo (mx —|—2mx) (2.48)

2]{50 r
= 1—(——=a? 4. 2.49
UO\/ (mv%x N 2mv(2)x ) (249)

(2.50)




The equation (2.50) can be solved by elliptic function. After twice change variables,

the solution can be find out as

x(t) = 1cn(K —vpVa? + bt) (2.51)

a
where
k ke \>
2 0 0
_ 9.52
¢ 2mu? * \/(vag) * 2mu’ (2.52)
—ko ]€0 2 r
b = 2.53
2mu} + \/(vag) + 2mu’ (2.53)
2
a

The solution shows that this problem could be solved by elliptic function cn(t, k).
Not like the pendulum model, this problem is more complicated. In general, most of
the problems which involved elliptic problem have to change variables many times.
The application of elliptic functiongiis not only for spring vibrating. There are many
problems in engineering, electromagnetics and.other science will involve the elliptic

functions. The chapter 9 of the reference [7] has more examples.
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Chapter 3

The Exact Theory of the

Sine-Gordon Equation

3.1 The Exact Theory

Sine-Gordon equation is a partialidifferential.equation with the form
Ugt = Ugy +.s100(0) = 0. (3.1)

We want to find the traveling wave solution of (3.1). Assume that § = kz — wt with

w? — k? =1 and (3.1) will be transferredto be a ordinary differential equation as
ugg + sin(u) =0 (3.2)

which we have introduced in the section 1.3. Multiplying ug to (3.2) and integrating
it with respect to 6, the equation (3.2) will become

1
§u§ —cos(u) = F, where FE is a constant. (3.3)

Then the square roots of ug are £4/2 (E + cos(u)). We focus on the positive sign

up = /2 (E + cos(u)). (3.4)

By cos(2z) = 1 — 2sin*(x), the relation of trigonometric function. The equation

(3.4) can be written as

g = \/2 <E Tl 25m2(g)). (3.5)
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Since the equation is a separable equation, we could get

1
b= /0 V2(E +1) — dsin?(2)

du. (3.6)

Our goal is to find the solution of equation (3.6). That is, we must find the represen-

tation of U(#) in terms of . We discuss it in three different cases by given different E.
Casel. -1 <E<1

If the constant E € (—1, 1), the equation (3.6) can be written as

|
9:/ NCICES —4sm2(g) du (3.7)

U(9
,/ELH Ny a(3): (3.8)

Let t = /55 sin (%), then d( ) —dt And (3.8) becomes

2
IS
2 . (U(9) 1
T_HS’LTL(T) 1 " 1
_ / = dar. (3.9)
= Et1
: - (& e
Let k = /Z£L, then equation (3.9) can be represented as
Kk~ Lsin( Ugo)) 1 1
6 :/ dt. 3.10
0 V1—124/1— k22 (3.10)

By Jacobian elliptic function sn(u, k), the equation (3.10) implies that sn(f, ) =

v

5~ ). This means

Kk lsin(=2

U(#) = 2sin"*(k sn(0, k)), where k = ? (3.11)

The graphs of this case are performed below:
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E=0 E=1/2

Figure 3.1: Solution curves with £ = —%, E=0,and F = %

Remark 10.

a. Since F € (—1,1), \/% € (0,1). That is, 0 < k < 1. Furthermore, k x E.

b. See the Figure 3.1. We could find out that the cases which have bigger energy
will have bigger period and amplitude. «

Case 2. =1

When the constant £ = 1, the equation (3.6) becomes

U(9) 1
0 :/ , du (3.12)
0 /4 —4sin?(3)
R 1
2 u
N N0 319
/0 1 —sin?(3) \2 (3.13)
Let ‘(%—tthnd(E)— L. And (3.13) will becom
et sin(5) =t the 2) = = .13) will become
sin(Z{) 1
0 — (3.14)

dt.
0 V1—12y/1 -2

0
By the Jacobian elliptic function sn(u, k), (3.14) implies that sm(UT)) = sn(6,1).
That is,
U(#) = 2sin~" (sn(0,1)) . (3.15)

Let us see the graph before get a remark.
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Figure 3.2: Solution curve with £ =1

Remark 11.

a. If we do not use Jacobian elliptic function, we can also get the solution by

Calculus. The solution is
U(0) = 2sin (tanh 0).

b. Observe the Figure 3.2. We may guess that U = 7 and U = —7 are two

horizontal asymptotes.

Case 3. I >1

The discussion of this case is similar to the first case. The different is on the

modulus . From (3.6), we have

0= / \/2 = 4sin2(§) du (3.16)

‘ E—“ \/ = ) (3) o

2

Let k = then (3.17) will be written as

E+1’

U(0) 1
6= d :
" 0 1 — K%sin?(3) <2>

(3.18)



u 1
Let ¢ = sin(%), dd(-): dt. Then (3.18) can b ted
e sin(%), an 5 Nigers en (3.18) can be represented as
0=k / dt. (3.19)
o - (-en)
By Jacobian elliptic function, (3.19) implies that sn(£, k) = sz’n(UTe)). Thus,
U) = 25m_1(3n(§ k)) where k = L (3.20)
K’ E+1

The solutions of this case are as following:

(b) Extend the domain

(a) Solution curves
3A
-
{E=5/2
2 67
E=5/2
o
1 -
2_
£=2 1 E=2
) -1 1 2 6 4 -2 2 ) 4 6
0 E=3/2 2-
E=3/2 A1
—44
-2 6
_8_
,3A
Figure 3.3: Solutionseurves with £ = %, 2, g
Remark 12.
a. Since F > 1, ELH is smaller than 1. That is, 0 < k < 1. Moreover, Kk %

b. By observing the Figure 3.3 (a), we find that the domain of U is smaller if
the F is larger. Moreover, the solutions of this type are not periodic solutions

since the position U is increasing as the parameter 6 runs.

3.2 The Periods

We had found the solutions for the ordinary differential equation in the form of
Jacobian elliptic function with different constant £. Now we want to find out the
period of solution if it is a periodic solution. The idea it to find the rest position

U(6y) and the period is the four times time of the particle moves from U(0) to U(6).
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Casel. -1<FE<1

The solution of this case is

U(#) = 2sin~*(k sn(, k)), where k = ?7

the equation (3.11). Using (3.5), we could get the velocity of the particle is

Up:¢ﬂE+dy—%m%%) (3.21)
If the equation (3.21) equal to 0, then
U(0) = +2sin" (k).

Therefore, by (3.10), we know that the period is

T=446

K~ Lgin(sin= (k) 1 1

= 4/ dt
0 VI =123/1 — k22
- 0! 1

= 4/ dt
o VIE D=

= 4K.

Then we find the period for this case.

Remark 13.

a. The constant K here is defined as K = fol (1- t2)_% (1— I<d2t2)_% dt, where &

is the modulus. It is the same value to the Remark 9. (a).

b. The constant K o« k. This is implies that the period T" o< k. Moreover,
it is not difficult to calculate that 17" = 27 if Kk = 0. This means that the
period T' > 27, V k € (0,1). Furthermore, this also tell us that if U(f) =

2sin~ (k) < 2sin~!(1) = 7, it is a periodic solution with period 4K.
Case 2. =1
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The solution of this case is U(6) = 2sin~! (sn(f, 1)), the equation (3.15). Putting
E = 1into (3.21) and we could get Uy = /4 — 4sin?(¥) and the zeros at U(§) = +7.
Then using (3.14), the period can be calculated

T=460

sin(m/2) 1
—1f dt
0 VI-B/I-P2

1
1
Y

The period of this case could be regarded as oo although it is not a periodic solution.

This means that if we release the particle at the position —m, it needs infinity time

to approach the position 7.
Case 3. £ >1

By the equation (3.21), we know that the velocity is always positive for this case
E > 1. This means that at each position U(#), the pendulum always has velocity,

so the pendulum will never stop. This implies that it has no periodicity.

In the end of this section, we construct a table to collect the results we had gotten:

Energy (E) | E=—1 -1<E<1 E=1 E>1
Solution U (#) 0 2sin" (ksn(0, k) | 2sin~(sn(0,1)) | 2sin~ (sn(¢, k))

e

E+1 2
Modulus (k) | None \/ T+ \/ Tl

Period (T) a€eR 4K 00 No periodicity

—_

Table 3.1: Summary about the ideal pendulum model with different E.

3.3 The Phase Portraits

The ordinary differential equation we had discussed is the mathematical model of
ideal pendulum. We have plotted the solution curves, the relation between U(#)

and 6, in the above section. Now we try to plot the relation between U and Uy
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and the graph is called phase portrait. Before drawing the phase portrait, we see
back to the equation (3.3) first. It shows that %ug — cos(u) is a constant. It can
be regarded as a conservation law in the view point of mathematics since —cos(u)
is not always larger than 0. (But this case can be transferred to the conservation
law in the view point of physics by plus a constant a > 1 for equation (3.3).). This
means that its total energy is a constant and the former part %ug can be regarded
as kinetic energy and the latter part —cos(u) can be regarded as potential energy.

The following we discuss the potential energy and phase portrait with different cases.

Casel. —-1<FE<1

We set E' = 0 to analyze the case. By the equation (3.3), we have the equation
up = £+/2cos(u). The following graphs are potential energy and phase portrait,

respectively. This means that they are the relation between u and cos(u) and the

relation between u and uyg.

(b) Phase Portrait

(a) Potential Energy(under the brown line)
1 -

cos(u) 0.5

Figure 3.4: The potential energy and phase portrait for E = 0

Remark 14.

a. From the graph of the phase portrait, the red curve means that the velocity
at those position are positive and the blue curve means that the velocity
at those position are negative. The positive velocity is defined by rotating

counterclockwise and the negative velocity is defined by rotating clockwise.
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b. By the graph of potential energy, we can find out that the maximum of am-

plitude, u(0), for the pendulum is 7 and it oscillates forth and back.

Case 2. =1

Now we focus on the case with £ = 1. By the equation (3.3), we have the
equation up = £4/2 (1 + cos(u)). We see the potential energy and phase portrait as

following.

(a) Potential Energy(under the green line) (b) Phase Portrait

Figure 3.5: The potential-energy -and phase portrait for E = 1

Note:

By the graph of potential energy, we can find out that the maximum of ampli-
tude, u(#), for the pendulum is 7. If we release the pendulum at position 7, the

particle will approach to the position —7 after infinite time.

Case 3. > 1

Last, we see the case F > 1 with £ = % By the equation (3.3), we have the

equation uy = j:\/ 2 (% + cos(u)). We see the potential energy and phase portrait

as following.
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(a) Potential Energy (b) Phase Portrait

1=
j vl

E=3/2

cos(u) 0.54

u

Figure 3.6: The potential energy and phase portrait for E = 3/2

Remark 15.

a. From the graph of the phase portrait, we know that the pendulum of this case

will never stop since the phase portrait has no intersection with the u — axis.

b. By the graph of potentialienergy; we observée that the kinetic energy is never
equal 0.This implies that the case has 1o periodic solution and the result is

corresponded to the property which-we-had discussed.

By our discussion, there are three kinds of the phase portraits. Before finishing

the section, we combine the three phase portraits and the vector field together.

With vector field

Figure 3.7: Global phase portrait.

We can make some conclusions from the Figure 3.7:
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1. There are three different kinds of phase portraits with different energy E. The
outer curve corresponds to larger energy E. They are separated by the phase
portrait with £ = 1 and the phase curve is called the separatrix with periods
o0o. The phase curves outer the separatrix are called the wave train and they
has no period. The phase curves inside the separatrix are periodic and their

period T satisfies 27 < T < 0.

2. The direction of the phase curves which are upper the u — axis toward the
right on the phase plane and it means the pendulum rotates counterclockwise.
Similarly, the direction of the phase curves which are below the u—axis toward

the left and it means the pendulum rotates clockwise.

3. The points (nm,0) are also the solutions for all n € Z. They are classified into
two classes. The first is the points with n is even. These points are stable and
with energy ¥ = —1. The other is the points with n is odd and these points

are unstable and with energy E =1,

3.4 The Solutions in Terms of (z,¢) Variables

At the beginning, we transferred the-partial differential equation wuy — u,, + sin(u) =
0 to the ordinary different equation wge + sim(u) = 0 by setting § = kx — wt with
w? — k* = 1. We solved the ordinary differential equation and got the solution suc-

cessfully. Now we transfer the solutions U(6) to U(z,t) and analyze some properties.
Casel. -1<E<1

We know that the solution for wugy + sin(u) = 0 in this case is equation (3.11).

Then using 0 = kxr — wt with w? — k* = 1, (3.11) will become

E+1
U(x,t) = 2sin" " (k sn(kx — wt, k), where k = 1/ T+ (3.22)

First, we verify that (3.22) is a solution of uy — uy, + sin(u) = 0. After complicated

computing, we have

Uy = —2kw?sn(kx — wt, k)y/1 — k2sn2(kx — wt, k), (3.23)
Upe = —26k%sn(kx — wt, k)\/1 — k2sn2(kx — wt, k), (3.24)
sin(U) = 2ksn(kx — wt, k)\/1 — k2sn2(kx — wt, k). (3.25)
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Then (3.23) — (3.24) + (3.25) = 0 since w? — k? = 1. Thus, we show that (3.22) is a
solution of (3.1).
And we see the graph about (3.22).

Figure 3.8: The graph of,U(xt) with E =0 and E =1

The Figure 3.8 displays two-surfaces of U{, t). The green is with £ = 1 and the
yellow is with £/ = 0. It is obviously'that the maximum value of the green surface
is larger than the yellow one and.the Tesult is ¢orresponding to the property of the
Jacobian function sn(u, k) which we have discussed before. Next, we see other two

graphs which display the surface U(z,t) and some special curves on the surface.

(a) The surface U(x,t) with E=0 and the spacecurve with x =0 (b) The surface U(x,t) with E=0 and spacecurves kx-wt=constant

Figure 3.9: U(z,t) with £ =0

35



Case 2. =1

We found the solution for ugy + sin(u) = 0 in this case is equation (3.15). Using

0 = kx — wt with w? — k* = 1, (3.15) will become
Ul(x,t) = 2sin* (kz — wt, 1). (3.26)

It is a special case of (1) with x = 1, so (3.26) satisfies equation (3.1). The graph of
(3.26) is as following:

(a) The surface U(x,t) with E=1. (b) The surface U(x,t) with E=1 and spacecurves kx-wt=constant

Figure 3.10: Ufwst)ywith £ = 1

Case 3. £ >1

The solution for ugy + sin(u) = 0 in this case is (3.20). After transferring by
0 = kx — wt with w? — k? =1, (3.20) will become

kx — wt 2
_ - —1 _
U(z,t) = 2sin™ (sn( p ,K)), where kK = ”—E 1 (3.27)

Then computing Uy, U,,, and sin(U) with respect to (3.27), we have

kx — wt kx — wt
Uy = —2w25n( oW ,H)\/l — sn?( oW LK), (3.28)
K K
kx — wt kx — wt
Upe = —2k?sn( T ,li)\/l — sn?( T LK), (3.29)
K K
sin(U) = 23n(kx — wt’ /1)\/1 - sn2(lm — wt) K). (3.30)
K K

Then (3.28) — (3.29) + (3.30) = 0 since w? — k? = 1. Thus, we show that (3.27) is a
solution of (3.1). Next, we see the graph of (3.27).
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(a) The surface U(x,t) with E= 1.5 (b) The surface U(x,t)with E=1.5 and spacecurves kx-wt=constant

y
AL

4,
oo
20,02,

R
L7
"0,

7y

s
ey
W
%
&
Z

s
s
&

¢

Figure 3.11: U(z,t) with E = 3/2

Remark 16.

a. We see the Figure 3.9(a) firsteUnder thérsituation z = 0, we can get the red

curve on the surface. The'shaperof the red ¢urve is similar to the Figure 3.1
since U(0,t) = U(kx —wt) = U(=wt). So the equation of red curve has
the form like the equation (3il1). . Moreover; this implies that if we stay at
x = 0 to observe the wave; the amplituderat the position is looked like the
red curve. Furthermore, the result is satisfied by each fixed point . The blue
curves of the right graphs in the Figure 3.10 and the Figure 3.11 have the same

properties as the red curve.

The curves on the surface U(z,t) of the Figure 3.9(b) with color blue, green,
pink, and red corresponded to kx — wt = —3, —4, —5, and — 12, respectively.
Notice that the curves are all straight lines. This means that the height is the
same on the line kx — wt is a constant and the lines kx — wt = ¢ are called
phase lines. In the view point of physics, this implies that if we start from
any position zg with velocity £ to observe a wave, we can always see the same
height of the wave. The velocity ¢ is called the wave velocity. Similarly, the
straight lines in the right graphs of Figure 3.10 and Figure 3.11 are also phase

lines.

In our discussion, the w and k have to satisfy w? — k? = 1. In general, £ can

be any real number except 0.
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Chapter 4

The Perturbation Theory of the

Sine-Gordon Equation

We have discussed the solutions, phase portraits, and solution curves of the math-
ematical model of the ideal pendulum, ugg.+ sin(u) = 0 in the previous chapter.
We do the qualitative analysis and quantitative.analysis for the equation. In this
chapter, we will discuss the perturbed equations. There are many different sources
of perturbation. Here, we will mention the damping term and external force and

they will have big different on the hehavior of their solutions.

4.1 The Pendulum with Friction

First, we start from the equation
ugg + sin(u) = —cuy (4.1)

with small € > 0. The term, wug, represents the velocity of the pendulum at one
position. This means that the source of perturbation of the system is from its

velocity. Assume that v = ug, then the equation (4.1) will become a system as

du
U?

4~ (4.2)

9= TV sin(u).

Then we focus on the system (4.2) in this section. Before our analysis, it is necessary

to introduce the definition of the Hamiltonian system [9].
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Definition 5. A system of differential equations is called a Hamiltonian system

if there exists a real-valued function H(z,y) such that

dv  OH
dt — oy’
dy 8H
at oz

for all x and y. The function H is called the Hamiltonian function for the system.
Remark 17.

a. If (x(t),y(t)) is the solution of the system, the function H is always a constant

0=(a) (&) ~(3) (3)
(7). (50) (5) 52)

This implies that the solutien curves.of the system lie on the level curves of

on the solution curve:

d
—H(z
dt

f

the Hamiltonian function-H (x, y):

b. If H(x,y) is a Hamiltonian function forsa'system, then H(z,y) + a is also a

Hamiltonian function for the system for any constant a € R.

c. In some special cases, Hamiltonian function can be regarded as total energy

of the system.

Unfortunately, the system (4.1) is not a Hamiltonian system since there does not
exist any two variable function H (u, v) satisfy the definition of Hamiltonian system.
But we analyze it with the Lyapunov theorem [6]. In many case, the Lyapunov

function is the Hamiltonian function of the unperturbed system. Hence, we let

L(u,v) = %112 + (1 — cos(u)). (4.3)

dL
Next, calculating 7l with respect to the system (4.2) will get
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w00 = (5) (5)+ (&) ()

= (sin(u)) v+ v (—ev — sin(u))

<0.

This means that if (u(#),v(6)) is a solution of the system (4.2), the total energy is
always decrease. In other words, the pendulum will stop swing for a large time no
matter how large the total energy for the pendulum. The following is the solution

curves with vector field for € = 0.06.

Figure 4.1: Phase portraits for the damped system with ¢ = 0.06.

By the system (4.2), we could find the equilibrium points are (nm,0) where
n € Z. It is easy to check that the undamped system (derive from equation (3.2))
has the same equilibrium points to the damped system. But we know that the type
of equilibrium points are not always the same from their phase portrait Figure 3.7
and Figure 4.1. The equilibrium points for the undamped system is either a center
or a saddle. It never has sink since it is a Hamiltonian system. And the equilibrium
points for the damped system is either sink or saddle. It never has center because
it is not a Hamiltonian system. In other words, the total energy is not conserved
for the damped system. As a matter of fact, the total energy is decreasing to 0 as

the time runs. This means that the pendulum will must stop no matter how large
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the energy for the pendulum at the beginning. We make a table to summarize the

equilibrium points of the two systems:

Equilibrium Points | (2(n + 1)7,0) | (2n7,0)
(4.2) with e =0 saddle center
(4.2) with € = 0.06 saddle sink

Table 4.1: The comparison of the equilibrium points of the undamped system with

the damped system.

4.2 The Pendulum with External Force

The previous section we discuss the perturbation with respect to the damped term.
In this section, we will focus on the perturbation by giving a external force to the
Sine-Gordon equation. We will see that the system will have big different behavior

if it is given different external foree;

4.2.1 Position

We start from the equation
ugg + sin(u) = —eu where € > 0 (4.4)

which is given an little external force related to the position u. Just like the previous
section, we transfer (4.4) to a system of two first order differential equations first.

Assume that v = wuy, then the equation (4.4) will become a system as following:
du
= 'U’

0 (4.5)

g = U~ sin(u).

The following discussions are based on the system (4.5).
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Hamiltonian System

By the Definition 5, we could check that (4.5) is a Hamiltonian system. We want

to find a function H(u,v) such that

on _
ov
_od
ou

U?
= —cu — sin(u).

Integrating (4.6) with respect to v, we will get

H(u,v) = %v2 + g(u).

Similarly, integrating (4.7) with respect to u will have

H(u,v) = %EUQ — cos(u) + h(v).

Combine (4.8) with (4.9), we could choose a Hamiltonian function

1 1
H* (u, v)'= —vispeeu® = cos(u).

2 2

To ensure (4.10) is always nonnegative, let H. = HX + 1. Then

1 1
H.(u,v) = 5112 + §5u2 +(1"— cos(u)) .

(4.6)

(4.7)

(4.9)

(4.10)

(4.11)

Hence, this implies that (4.5) is a Hamiltonian system and H. is a Hamiltonian

function for this system.

Remark 18.

a. We use the symbol H. to represent the Hamiltonian function because the

Hamiltonian function H(u,v) is dependent on the . This means that the

Hamiltonian function varies with . Moreover, when ¢ = 0, it is a Hamiltonian

function for the system which derive from the ideal pendulum model ugy +

sin(u) = 0.

b. The hamiltonian function H could be regarded as total energy. %vZ represents

the kinetic energy since it depends on velocity and $eu?+(1—cos(u)) represents

the potential energy because it only depends on position. This implies the

system (4.5) satisfies the conservation law.
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After verifying the system (4.5) is a Hamiltonian system, there are many benefits
to analyze the quality of the system. For example, we could draw the phase por-
traits of the system easily if it is a Hamiltonian system. We will focus on the phase
portraits of (4.5) in the end of this subsection. Let us talk about the equilibrium
points of the system (4.5) in the following.

Equilibrium points of the system (4.5)

Before discussing the equilibrium points, we introduce the definitions of equilibrium

point and linearization system first.

Definition 6. Assume a system of first ordinary differential equations

d

= = f(xy)
4l

= -y

If (o, yo) satisfies f(zo,y0) = gl@o, Yo) =-0;the point (x¢, yo) is called an equilibrium
point of the system.

Definition 7. Assume a systemrof first ordinary. differential equations

_t = f(x,y),
d_?; = g(z,y)

d — — — T
The linearized system of it is EY =AY where Y = < > and A is called the Ja-

Y
of of
cobian matrix which depends on the point (z,y) with A = 6§ 83

Remark 19.

a. For the system (4.5), the number of the equilibrium points, N, depends on «.

The smaller € have more equilibrium points.

b. The linearized system depends on the equilibrium point since the Jacobian
matrix is dependent on the equilibrium point. That is, different equilibrium

points will correspond to the different linearized system.
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c. By discussing the eigenvalues of the Jacobian matrix, we could determine
the type of the equilibrium point for linearized system. After deciding the
type of equilibrium point for linearized system, we can determine the type of
the equilibrium points of the nonlinear system from the linearized system by

Linearization Theorem 8.

Now, we go back to discuss the system (4.5). Definition 6 tell us that the all
equilibrium points of the system (4.5) is the set

E ={(u,0): —eu = sin(u)} . (4.12)

And the linearized system of (4.5) is

d — 0 1\ —= — U
—Y = Y, where Y = . (4.13)
do —e —cos(u) 0 v

0 1

The Jacobian matrix J(u,v) =
=& — cos(u) 10

) and J(u, v) has two eigenvalues

A = £./—e—cos(u). (4.14)

And the set E of (4.12) is divided into twe-classes E; and FE5 by the equation (4.14).
E; = {(uo,0) € E| — e — cos(up)™>0} and Ey'= {(up,0) € E| —e — cos(up) < 0}.

Then we discuss the two classes in the following.
Case 1. (up,0) € F4

The equilibrium point (ug,0) in E; make the Jacobian matrix J(ug,0) has two
real-valued eigenvalues which with opposite sign. This implies that the equilibrium
point (0,0) is a saddle for the linearized system (4.13). Moreover, we know that
(uo,0) is also a saddle for the original system (4.5) by linearization theorem. Thus,

the equilibrium points in E; are all saddle for the system (4.5)
Case 2. (ug,0) € Es

The Jacobian matrix J(ug, 0) has two purely imaginary eigenvalue with opposite
sign if the equilibrium point (ug,0) € Es. This means that (0,0) is a center for

the linearized system (4.13). Unfortunately, we can not get any information about
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the type of the equilibrium point (ug,0) for the original system. Hence, we have to
use other method to determine the type of equilibrium points in F,. We use the
Lyapunov function to determine the type of these equilibrium points. Consider the
function L(u,v) = v + eu® + (1 — cos(u)) + C. Tt is not difficult to check L(u, v)
is a Lyapunov function and by the Lyapunov’s stability theorem [6], we can

ensure the equilibrium points in Ey are all center.

Remark 20.
a. In Hamiltonian system, the Hamiltonian function is a Lyapunov function.

b. The C in the L(u,v) is any constant. We use it to make sure L(ug,0) = 0 for
different (uyg, 0).

c. Using the following table to make a conclusion:

Equilibrium Points Ey E,
Type Saddle Center
Method Linearization | Lyapunov

Table 4.2: The types of the equilibriui peoints of the system (4.5).

Phase Portraits

In the last, we will see the phase portrait of the system (4.5). Since the € can not
be too large, we discuss the system with € = 0.01. That is, the following discussion

is based on the system

du
40 (4.15)
i —0.01u — sin(u).
By equation (4.11), the Hamiltonian function of the system (4.15) is
H(u,0) = 3%+ o0 + (1= cos(w) (4.16)
u,v) = o7+ gosu cos(u)) . :
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Figure 4.2: The Hamiltonian function of the system (4.15).

The Figure 4.2 is the Hamiltonian function for the system (4.15) with different
angle. The Figure 4.3 is the relation between the potential energy and the position

u with different velocity v.

Figure 4.3: Potential energy with v =0, 1,2

Remark 17 (a) tell us that the phase portraits of a Hamiltonian system is the
level curves of its Hamiltonian function. Therefore, we could draw the level curves

first (Figure 4.4).
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4

Figure 4.4: Level curves of the system (4.15).

Now we add the vector field to the Figure 4.4, we can know the direction of the
level curves. That is, we can get the phase portrait of the perturbed system with

e = 0.01. RTTTTe

T i e G W S S

a6 g s a—d—— S G g

Figure 4.5: Phase portraits of the system (4.15).

Compare Figure 4.5 with Figure 3.7. Figure 3.7 shows that there the ideal pen-
dulum mathematical model has three kinds of phase portrait. This means that there
are three different types of solution curves. But in the perturbation case(Figure 4.5),
the wave train does not exist anymore since each phase portrait will touch the u-

axis. This implies that no matter how large the energy for the system, it will stop

47



at some position. Moreover, the pendulum will not stop forever because the system
is a Hamiltonian system. Thus, the solution of the perturbed case corresponds to

either the separatrix or the periodic phase portrait.

Last, we use the nullclines to analyze the equilibrium points. We draw the graph

of nullclines first.

10

W
Pa——

_2_

-4

Figure 4.6: Nullclines and the vector field on them.

Notice that the blue lines are x-nullelines'so the direction of vectors on them are
horizontal. Similarly, the pink line is y-nullcline so the direction of vectors on it are
vertical. Moreover, the intersection points are equilibrium points of the perturbed
system with ¢ = 0.01. There two cases of the vector field around the equilibrium

points as following.
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Figure 4.7: Two types of equilibrium.
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For the case ¢ = 0.01, we could use computer to run the approximated value of

the equilibrium points as the following table:

(0,0)
+12.44163106, 0
+24.88128684, 0
+37.31669166, 0
+49.74482766, 0

+74.55683640, 0

£3.173331295,0
£15.86730985, 0
+£28.56400815, 0
+41.26607772,0
£53.97724185,0
+£66.70366994, 0
+£79.45813407,0

£6.220935755, 0
+18.66183701,0
£31.09968482, 0
£43.53190452, 0
£55.95482711,0
+68.36232277,0
+80.74164906, 0

£9.520123592, 0
+22.21516933,0
+34.91417424,0
£47.62022050, 0
£60.33799317,0
£73.07606663, 0
+85.85544527,0

(
(
(
(
(
(
(
(

~— — — ~— ~— ~— ~— ~—

(
(
(
(
(
(
(
(

S~ N N N N N N

(
(
(
(
(
(
(
(

~— N N N N S

+86.91119035, 0
£99.09481991, 0

+92.28151203, 0 £93.05195083, 0 £98.80544697, 0

( )
( )
( )
( )
(£62.16105599, 0)
( )
( )
( )

Table 4.3: The equilibrium points of the system (4.15).

By the Table 4.3, we show that the gystem has 65 equilibrium points. Notice
that the equilibrium points are’Symmetric to' the'v = axis and they are either center
or saddle from our discussiontin section 3.2.. Moreover, the equilibrium points
with the vector field around it like the left graphs of Figure 4.7 are center and the
other equilibrium points are saddle. Thus, the equilibrium points like the left graph
belong to the set Fy and the equilibrium points like the right graph belong to set E}.
Moreover, the equilibrium points in £ will have stable and unstable separatrices.
Furthermore, we obeserve that the center and saddle appear alternately by the
nullclines, the Figure 4.6. This implies that the equilibrium points in the first and

the third columns of the Table 4.3 are centers and the second and the forth columns
of the Table 4.3 are saddles.

4.2.2 Periodic Force and Chaos

In this subsection, we will discussed the equation ugg + sin(u) = esin(f) and it can

be represented as the system

i _
6" (4.17)
% = esin(f) — sin(u).
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Notice that (4.17) is a non-autonomous system since the system depends on the
parameter #. We can not analyze the solutions by its vector field as before since the
vector field changes with 6. Thus, we need a three dimensional picture with u—, v—,
and 6— axes to perform the solution curves of this system. But the system (4.17)

can be represented as autonomous system by letting 7(6) = 6. We obtain

du _
6"

% = esin(1) — sin(u), (4.18)
_ 1.

i

Thus, we could draw the vector field of the system (4.18) for an . Furthermore,
if the system given a initial conditions, we can have a solution curve and the solution
curve can be projected on the uf—, v6—, and uv—plane. The Figure 4.8 is the system
with & = 0.1 and the initial conditions given u(0) = 0.2, v(0) = 0. The Figure 4.9
shows the system with £ = 0.1 and the initial conditions given u(0) = 3.14, v(0) = 0.
The blue, brown and rainbow curves are represented the solution curve projected
on the ufl—, v—, and uv—planes respectively. 'Compare the Figure 4.8 and the
Figure 4.9. Though the two cases have the same perturbed coefficient € = 0.1, their
behaviors are quite different with differemtrinitial eonditions. The initial condition
of the former system is near the point (0, 0), the center of the unperturbed system.
The initial condition of the other system is near the point (m,0), the saddle of the
unperturbed system. It seems that the initial condition near the different types of
equilibrium of the unperturbed system will influence the behavior of the solution.

Next, we analyze the two different cases by return map [9].

Let us look back to the (4.17). Notice that the external force is esin(f), a peri-
odic function. Thus, if any two parameter 6, 5 with 6; — 0y = 2nm where n € Z,
we will get the same system at § = 0, and 0 = 0,. If we given an initial condition,
(u(0),v(0)), there is a solution curve in 3—dimensional space. The solution will
intersect the plane 6 = 27 at some point (uy,v1) = (u(27),v(27)). Since the system
is the same at § = 0 and 2, the solution travels from (uy,v;) at plane § = 27 can
be regarded as start from (ug,v;) at plane # = 0. Hence we use a map to translate

the point (uq,v;) on the plane § = 0. The map is call the return map [9].
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Figure 4.9: ¢ = 0.1, u(0) = 3.14, v(0) = 0.
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Moreover, the points (u(2nm),v(2n7)) can be translated on the plane § = 0 for all
n € {0} UN if we keep applying the return map. In other words, we choose some
particular points on the last graph of the Figure 4.8 ( or Figure 4.9 ) to analyze the
behavior of the solution. The Figure 4.10 and the Figure 4.11 are derived by the
Figure 4.8 and the Figure 4.9, respectively.

Figure 4.10: Return map with 1000 iterates:for u(0) = 0.2,v(0) = 0.

R oL
.‘." H : -~
. . . *
: <. HE
i i .o
te . .1. '
‘. © ® e .
% % H
- 33 o :
.‘jg -
:.:u T hd v T P
*120 flléo do 60 40 20 O 200 2 40 @
P . . . P
R T . [
R T .
o ° . P [}
gHE RERE '
H .
1]
o
e -2+

Figure 4.11: Return map with 500 iterates for u(0) = 3.14,v(0) = 0.

The Figure 4.10 and the Figure 4.11 tell us that the solution with the initial

condition near the center of the unperturbed system has more regular behavior and
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the behavior of the solution with initial condition near the saddle of the unperturbed
system is unpredictable. We can get some clues about the phenomenon from the
system (4.17) with € = 0.1 and the equilibrium points of the unforced system. For
the ideal pendulum, the initial condition near the center means that the pendulum
given a small displacement and it oscillates forever. Now, we give the pendulum a
external force in terms of esin(). The external force will make the pendulum swing
higher in some situation and sometimes make it swing less. The result depends on
the parameter 6. Since the amplitude of the external force is a small constant ¢,
the pendulum still oscillate near the center. On the other hand, the initial condi-
tions near the saddle is more complicated since the external force, esin(f), plays
an important roles. Since when the pendulum swing approach to the saddle, the
external force will decide the particle rotate in clockwise or counterclockwise. Thus,
the behavior of the solution has closely relation with #. Hence we can not forecast
where the solution will approach in long time. The behavior is called the chaos
since the solution is incontrollable.  Finally; we see some solutions with different

initial conditions for the system (4.17) with & = 0.1 in return map.

Figure 4.12: Return map with 500 iterates for u(0) = —3.14,v(0) = 0.
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Figure 4.15: Return map with 1000 iterates for u(0) = —4.21,v(0) = 0.
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Chapter 5
Conclusion

To summarize, at the beginning, we introduced and classified the linear partial dif-
ferential equations where we then focused on the hyperbolic case. Then we presented
certain practical problems whose mathematical models are system of the linear hy-
perbolic equations and introduced the Sine-Gordon equation roughly. Following,
to developed the exact theory ofithe Sine-Gordon equation, we studied the clas-
sical Elliptic functions where dne application in solving a nonlinear equation has
been presented and gave a mathematical.-model of the nonlinear vibrating string to
practice Jacobian elliptic function. ‘Afterstiidying the Jacobian elliptic functions,
we applied it to study the systems of the Sime-Gordon equation in detail. In the
end, we further studied the perturbations of the Sine-Gordon equation by certain
qualitative analysis methods. None of our arguments in this paper are new, yet our
effort is. But we will become a more mature researcher for the applied mathematics
by engaging a nice and fundamental mathematical model, namely, the Sine-Gordon

equation through the hard work in a long period.

26



Bibliography

[1]

[10]

David Betounes. Differential Equations: Thery and Applications with maple,

Springer, 2001.

Darren Redfern and Edgar Chandler. Maple O.D.E. Lab Book, Springer, 1996.

E.T. Whittaker and G.N. Watson. A Course of Modern Analysis, Cambridge,
1927.

H.F. Weinberger. A First Courselin Partial Differential Equations, Blaisdell,
1965.

J. Rubinstein and Y. Pinchover. An Introduction to Partial Differential Equa-
tions, Cambridge, 2005. |

Lawrence Perko. Differential Hquations and Dynamical Systems, Springer,

1991.

Mario G. Salvadori and Ralph J. Schwarz. Differential Equations in Engineer-
ing Problems, Prentice-Hall, 1954.

Morris W. Hirsch, Stephen Smale, and Robert L. Devaney. Differential Equa-

tions, dynamical Systems and An Introduction to Chaos, Elsevier, 2004.

Payk Blanchard, Robert L. Devaney, Glen R. Hall, and Jong-Eao Lee.
Differential Equations: A Contemporary Approach, Thomson, 2007.

Raymond A. Serway and John W. Jewett, Jr. Physics for Scientists and Engin-
eers with Modern Physics, Thomson, 2004.

o7



	cover3.pdf
	main

