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摘         要 

 

    生態系統中變化的發生往往沒有明顯的徵兆。因而需要一個有效

的方式以預測變化的發生。近來眾多研究者提出環境恢復力的下降可

提供變化即將來臨的預兆;但是，在實際上環境的恢復力是難以量測

的，於是需要一些間接的指標以測量環境的恢復力。最近的一些研究

文獻顯示臨界慢化是一個良好的環境恢復力的指標。在這篇報告裡頭

我們運用分析以及數值的方法刻劃了幾個關於捕食者與獵物模型，三

個物種的食物鏈模型，以及基因控制模型的結果。這些結果將引領我

們預測在更多物種的生態學模型或真實世界變化的發生。 
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Abstract

Transitions in ecological systems often occur without apparent warning.
Thus an effective way of prediction is in strong demand. Recent researchers
proposed that decreasing ecological resilience can signal an upcoming transi-
tion. Unfortunately, it is very difficult to measure the resilience in practice.
Therefore, we need some indicator to measure it. Some recent works in the
literatures investigated that critical slowing down is a good indicator of eco-
logical resilience. In this report, we use analytical and numerical methods
to characterize several results about two-species generalized predator-prey
model, three species food chain model, and generic control system. These
results can lead directly to predict more complex systems in ecology or real
world.
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1 Introduction

It is very important to predict the transition in ecosystems. However, the transitions

are often difficult to predict, because they can originate from a variety of factors.

Decreasing ecological resilience has been proposed as a signal of upcoming transi-

tions in complex systems [6, 7]. Ecological resilience is the ability of a system to

absorb perturbations and persist at a particular stable equilibrium [3, 5]. In other

words, this is a measure of how much that parameter would need to be perturbed

to reach the threshold point, and it correlates to the size of the basin of attraction.

Unfortunately, ecological resilience can not be measured directly in practice, so there

is a need for indirect indicators. One such potential indicator is “critical slowing

down”, the decrease in recovery rate that occurs as the basin of attraction around a

stable equilibrium contracts and a system approaches a transition [5]. For a variety

of ecological models, critical slowing down often occurs far enough from a threshold

to be a potentially useful indicator of an upcoming transition [5]. Most importantly,

this phenomenon can be proved mathematically to occur as all continuous differ-

ential equations approach local bifurcations [4]. Recovery rates are inferred from

the amount of time that the system needs to return to equilibrium after a small

perturbation [5]. But, it is also not so easily quantified, even in models. Hence,

we demand some method to estimate the quantity of recovery rates for any system.

Fortunately, the recovery rate can be determined by linearizing at the stable equi-

librium and determining the eigenvalues in a model, since the dominant eigenvalue

is an approximation of the recovery rate to equilibrium [17, 18].

For each model, we then calculate the recovery rate as the absolute value of

the real part of the dominant eigenvalue λdom of the Jacobian matrix at each stable

equilibrium (the dominant eigenvalue is the eigenvalue with greatest real part for

a continuous system) [5, 19]. The first step in the analysis of each model is to

find its equilibria and the conditions for existence and stability of these equilibria.

To find the conditions for stability we linearize each model around its equilibria

by constructing the Jacobian matrix and applying the Routh-Hurwitz criteria for

two dimensional and three dimensional continuous-time systems. In this report, we

estimate the recovery rates by linearizing the models and determining the maximal

real part of the eigenvalues of the Jacobian matrix.

However, we are interested in measuring the distance between the point at

which the recovery rate starts to decrease Kr and the critical transition Kcrit. This
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distance can be seen as a warning period of the upcoming transition. The utility of

critical slowing down as a leading indicator of the transition depends on the length

of this warning period. Our method can yield general conclusions about the effects

of the various parameters on the usefulness of critical slowing down as an indicator

of an upcoming transition in a systems dynamics.

Critical slowing down has been proposed as a leading indicator of transitions

in real world [5]. In 2007, Van Nes and Scheffer showed using numerical techniques

that critical slowing down occurs far enough from a transition to be a promising

indicator of loss of resilience for several ecological models. Van Nes and Scheffer are

only the first steps towards establishing when critical slowing down will be a useful

leading indicator of transitions in different ecosystems. In the last few years, several

articles have been devoted to the study of the relationship between critical slowing

down and ecological resilience. In this report, we choose these models because they

are the simplest and most studied in biology. Of course, we can extend these insights

to more complex, multi-species systems and predict that critical slowing down is still

an effective indicator. Here, we just give slight theoretical contributions. Our study

in this report is just a stepping stone to understanding more complex ecological

models. To understand them, we require more mathematical theories than we have

used here.

Moreover, there are various concepts and terminology from dynamical systems

that we use in this report. These concepts are usually covered in an undergraduate

(or graduate) course in ordinary differential equations. Here, we summarize these

basic theory in Section 2. For a more complete treatment and more details, see [1,

2, 8, 9, 10, 11, 12, 13, 14].
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2 Some basic definitions and classical theorems

In this section, we collect some basic definitions and classical theorems in ordinary

differential equations that we will use in this report. Consider the nonlinear system

ẋ = f(x), f ∈ C1(Rn).

Let φt be the flow map for the system.

Definition 1. An equilibrium x0 is said to be stable if for all ε > 0 there exists a

δ > 0 such that for all x ∈ Nδ(x0) and t ≥ 0 we have φt(x) ∈ Nε(x0), i.e. nearby

solutions stay nearby for all future time.

Definition 2. An equilibrium x0 is said to be unstable if it is not stable. This

means that there is a neighborhood U of x0 such that for every neighborhood U1 of

x0 in U , there is at least one solution x(t) starting at x(0) ∈ U1 that does not lie

entirely in U for all t > 0.

Definition 3. An equilibrium x0 is said to be asymptotically stable if it is stable

and there exists a δ > 0 such that for all x ∈ Nδ(x0), we have

lim
t→∞

φt(x) = x0.

For linear systems, there is a criterion on the eigenvalues that ensures asymp-

totic stability of the origin. This criterion is summarized in the next theorem.

Theorem 2.1 [2] : Consider the linear differential equation

ẋ = Ax.

(a) If all of the eigenvalues λ of A have negative real parts, then the origin is

asymptotically stable. In particular, stable nodes, degenerate stable nodes, and

stable foci are all asymptotically stable.

(b) If one of the eigenvalues λ1 has a positive real part, then the origin is unstable.

In particular, saddles, unstable nodes, degenerate unstable nodes, and unstable foci

are all unstable. A saddle has some directions that are attracting and others that

are expanding, but it still satisfies the condition to be unstable.

(c) In two dimensions, if the eigenvalues are purely imaginary ±β then the origin is
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stable but not asymptotically stable.

(d) In two dimensions, if one eigenvalue is 0, then the origin is stable but not

asymptotically stable.

In two dimensional case, we can use the determinant and the trace to determine

the type of linear system. It is convenient to have these results summarized so we

can immediately recognize the stability type from these quantities, which are easy

to compute.

Theorem 2.2 [2] : Let A be a 2× 2 matrix with determinant ∆ and trace τ.

(a) If ∆ < 0, then the linear system is a saddle, and therefore unstable.

(b) If ∆ > 0 and τ > 0, then the linear system is unstable.

(i) If τ 2 − 4∆ > 0, then it is an unstable node.

(ii) If τ 2 − 4∆ = 0, then it is a degenerate unstable node.

(iii) If τ 2 − 4∆ < 0, then it is an unstable focus.

(c) If ∆ > 0 and τ < 0, then the linear system is asymptotically stable.

(i) If τ 2 − 4∆ > 0, then it is an stable node.

(ii) If τ 2 − 4∆ = 0, then it is a degenerate stable node.

(iii) If τ 2 − 4∆ < 0, then it is an stable focus.

(d) If ∆ = 0, then one or more of the eigenvalues is zero.

(i) If τ > 0, then the second eigenvalue is positive.

(ii)If τ = 0, then the both eigenvalues are zero.

(iii) If τ < 0, then the second eigenvalue is negative.

If x0 is a hyperbolic equilibrium (there is no eigenvalues with zero real parts

for the Jacobian matrix at x0), then the stability type of the equilibrium for the

nonlinear system is the same as that for the linearized system. The following result

states this more precisely.

Theorem 2.3 [2] : Consider a differential equation ẋ=F (x) in n variables, with

a hyperbolic equilibrium x0. Assume that F , ∂Fi

∂xj
(x), ∂2Fi

∂xj∂xk
(x) are all continuous.

Then, the stability type of the equilibrium for the nonlinear system is the same as

that for the linearized system at that equilibrium.

(a) If the real parts of all the eigenvalues of DF (x0) are negative, then the equi-

librium x0 is asymptotically stable for the nonlinear system. (i.e., if the origin is

asymptotically stable for the linearized system, then x0 is asymptotically stable for
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the nonlinear system).

(b) If at least one eigenvalue of DF (x0) has a positive real part, then the equilibrium

x0 is unstable for the nonlinear system.

How do we determine whether a non-hyperbolic equilibrium is stable, asymp-

totically stable, or unstable ? The following method, due to Lyapunov, is very

helpful for answering this question.

Definition 4. Assume x0 is an equilibrium for the differential equation ẋ = f(x).

A real-valued function L is called a weak Lyapunov function for the differential

equation provided there is a neighborhood U of x0 on which L is defined and (i)

L(x) > L(x0) for all x in U but distinct from x0, and (ii) L̇(x) ≤ 0 for all x in U .

The function L is called a Lyapunov function or strict Lyapunov function on an

open neighborhood U provided it is a weak Lyapunov function which satisfies which

satisfies L̇(x) < 0 for all x in U but distinct from x0.

Theorem 2.4 [13] : Let E be an open subset of Rn containing x0. Suppose that

f ∈ C1(E) and f(x0) = 0. Suppose further that there exists a real valued function

L ∈ C1(E) satisfying L(x0) = 0 and L(x) > 0 if x 6= x0. Then (a) if L̇(x) ≤ 0 for

all x ∈ E, x0 is stable. (b) if L̇(x) < 0 for all x ∈ E − {x0}, x0 is asymptotically

stable. (c) if L̇(x) > 0 for all x ∈ E − {x0}, x0 is unstable.

The following result is due to Bendixson and is called Bendixson’s Nega-

tive Criterion.

Theorem 2.5 [9] : Let ẋ=f(x) be a planar system, where f=
(

f1

f2

)
, x =

(
x
y

) ∈ R2.

Furthermore f ∈ C1(E) where E is a simply connected region in R2. If ∂f1

∂x
+ ∂f2

∂y
(the

divergence of the vector field f, ∇ · f) is always of the same sign but not identically

zero on E, then there are no periodic solution in the region E of the planar system.
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3 Generalized predator prey model

The first model we shall study is the generalized predator prey model [20]:

dV

dt
= rV f(V )− kPh(V )

dP

dt
= AkP [h(V )− h(J)]

(3.1)

where t is time, V is the prey population size, r is the intrinsic rate of increase in

prey, P is predator population size, k is the predation rate, J is the equilibrium

prey population size, and A is the predator-prey conversion efficiency. The function

f(V ) represents the effects of intra-specific competition among the prey: as the prey

population increases, the per-capita population growth rate decreases and eventually

becomes zero at the carrying capacity K, i.e. (i) f(V ) > 0, for 0 ≤ V < K, and

f(K) = 0 ; (ii) f ′(V ) < 0, for 0 < V < K. The carrying capacity K is the control

parameter. If a family of functions f , i.e. f = fK(V ), are consider, then we further

assume that f is an increasing function of K and that the derivative of fK with

respect to V is a non-decreasing function of K, i.e. ∂fK(V )
∂K

> 0,
∂f ′K(V )

∂K
≥ 0. The

function h(V ) represents the per-capita rate at which predators kill prey; the kill-

rate increases as the number of available prey increases, but does so at a decreasing

rate, i.e. h(V ) > 0, h′(V ) > 0, and h′′(V ) < 0. The following Figures 1, 2, 3, 4,

depict typical graphs for the functions f and h.

In this section, we summarize the propositions obtained in [20], and provide

detailed computations for these results.
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Figure 1: This figure depicts the function f with f ′′(V ) > 0.

Figure 2: This figure depicts the function f with f ′′(V ) = 0.

Figure 3: This figure depicts the function f with f ′′(V ) < 0.

Figure 4: This figure depicts the function h.
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It is easy to verify that this model has three equilibria,

(V, P ) = (0, 0), (K, 0), (J,
rJf(J)

kh(J)
).

At first, let us consider these equilibria of the system (3.1). Existence and local

stability conditions of these equilibria of the system (3.1) are summarized in propo-

sitions 3.1, 3.2.

Proposition 3.1 [20]: Let K be the carrying capacity and J be the equilibrium

prey population size. Then

(a) the equilibria (0, 0) and (K, 0) exist for all K;

(b) the equilibrium (0, 0) is unstable for all K;

(c) the equilibrium (K, 0) is stable for K < J .

Proof:

(a) It is easy to see that (0, 0) and (K, 0) exist for all K.

(b) From the system (3.1), we can compute the Jacobian matrix at (V, P )

(
r[f(V ) + V f ′(V )]− kPh′(V ) −kh(V )

AkPh′(V ) Ak[h(V )− h(J)]

)
.

Then the Jacobian matrix at the equilibrium (0, 0) is

(
rf(0) −kh(0)

0 Ak[h(0)− h(J)]

)
.

Hence, its eigenvalues are given by λ=rf(0), Ak[h(0) − h(J)]. Since λ=rf(0) > 0,

the equilibrium (0, 0) is unstable for all K.

(c) Similarly, the Jacobian matrix at the equilibrium (K, 0) is

(
r[f(K) + Kf ′(K)] −kh(K)

0 Ak[h(K)− h(J)]

)
.

Therefore, its eigenvalues are given by λ=r[f(K) + Kf ′(K)], Ak[h(K)− h(J)].

Both r[f(K)+Kf ′(K)] and Ak[h(K)−h(J)] are negative for all K < J by hypothesis

of f and h, the equilibrium (K, 0) is stable for all K < J . The assertion follows.

Proposition 3.2 [20]: Let K be the carrying capacity and J be the equilibrium prey

population size. Then the equilibrium (J, rJf(J)
kh(J)

) exists for for K > J , and is stable
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for J < K < Kcrit, where Kcrit is the solution of the equation αf(J) + Jf ′(J) = 0,

where α = 1− Jh′(J)
h(J)

. In particular, Hopf bifurcation occurs for K = Kcrit.

Proof:

Since f(J) > 0 when J < K, the equilibrium (J, rJf(J)
kh(J)

) exists for for K > J. From

the system (3.1), we can compute the Jacobian matrix at (V, P ) is

(
r[f(V ) + V f ′(V )]− kPh′(V ) −kh(V )

AkPh′(V ) Ak[h(V )− h(J)]

)
.

Then the Jacobian matrix at the equilibrium (J, rJf(J)
kh(J)

) is

M =

(
r[f(J) + Jf ′(J)]− rJf(J)

h(J)
h′(J) −kh(J)

Ak rJf(J)
kh(J)

h′(J) 0

)

=

(
r[αf(J) + Jf ′(J)] −kh(J)

r2τf(J)
kh(J)

h′(J) 0

)
,

where

α = 1− Jh′(J)

h(J)
, τ =

AkJ

r
h′(J).

By Mean Value Theorem, we have h(J)−h(0) = h′(c) for some c ∈ (0, J). Moreover,

h′(c) > h′(J) by h′′(V ) < 0. Therefore, h(J) > h(J) − h(0) = h′(c)J > h′(J)J , i.e.

α = 1 − Jh′(J)
h(J)

> 0. Since A, k, J , r, h′(J) are positive, τ = AkJ
r

h′(J) > 0. In fact,

we have the characteristic equation of M is

λ2 − r[αf(J) + Jf ′(J)]λ + r2τf(J) = 0.

So, its eigenvalues are given by

λ =
r[αf(J) + Jf ′(J)]±

√
r2[αf(J) + Jf ′(J)]2 − 4r2τf(J)

2
.

In two dimensional case, we can only use the determinant and the trace to determine

the stability of the equilibrium. The determinant and trace of M are r2τf(J) and

r[αf(J) + Jf ′(J)], respectively. By Theorem 2, the equilibrium (J, rJf(J)
kh(J)

) is stable

when the determinant of M is positive and the trace of M is negative, which occurs

at

αf(J) + Jf ′(J) < 0.
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Next, let us compute the derivative of αf(J) + Jf ′(J) with respect to K.

d[αf(J) + Jf ′(J)]

dK
= α

df(J)

dK
+ J

df ′(J)

dK
> 0.

So, as the control parameter K increases, the equilibrium (J, rJf(J)
kh(J)

) becomes un-

stable. Furthermore, we have λ = 0 ±
√

r2τf(J) and dRe(λ)
dK

6= 0 when K = Kcrit,

where

αf(J) + Jf ′(J) = 0, (3.2)

so Hopf bifurcation occurs for K = Kcrit. This completes the proof.

Assume the equilibrium (J, rJf(J)
kh(J)

) is stable, let us compute the eigenvalues of

M and determine the dominant eigenvalue to find the recovery rate. The following

proposition will tell us where the maximum recovery rate occurs.

Proposition 3.3 [20]:

Suppose the equilibrium (J, rJf(J)
kh(J)

) is stable. Then the maximum recovery rate

occurs for some value of K = Kr when δ2 + 4βγ = 0, which occurs at αf(J) +

Jf ′(J) = −2
√

τf(J).

Proof:

We know that the characteristic equation of the Jacobian matrix at the equilibrium

(J, rJf(J)
kh(J)

) is

λ2 − r[αf(J) + Jf ′(J)]λ + r2τf(J) = 0

and its eigenvalues are given by

λ =
r[αf(J) + Jf ′(J)]±

√
r2[αf(J) + Jf ′(J)]2 − 4r2τf(J)

2
=

δ ±
√

δ2 + 4βγ

2

where

β = −kh(J) < 0, γ = r2τf(J)
kh(J)

> 0, δ = r[αf(J) + Jf ′(J)] < 0.

Let λ+ ≡ δ+
√

δ2+4βγ

2
, λ− ≡ δ−

√
δ2+4βγ

2
. Then we can compute the dominant eigen-

value λdom. First, we divide the situation into two kinds according to δ2 + 4βγ. If

δ2 + 4βγ > 0 then λ+ =
δ+
√

δ2+4βγ

2
>

δ−
√

δ2+4βγ

2
= λ−. Hence, Re(λ+) > Re(λ−),

i.e. λdom = λ+ =
δ+
√

δ2+4βγ

2
. If δ2 + 4βγ ≤ 0 then Re(λ+) = Re(λ−) = δ

2
, i.e.

λdom = λ+ = λ− = δ
2
. Thus, the recovery rate ρ ≡ |Re(λdom)| is

{
−δ−

√
δ2+4βγ

2
if α2 + 4βγ > 0,

−δ
2

if α2 + 4βγ ≤ 0.
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Finally, let us compute the derivative of ρ with respect to K. Consider α2 +4βγ > 0

and let δ′ = dδ
dK

Then

dρ

dK
=

d(
−δ−

√
δ2+4βγ

2
)

dK

= −1

2
· d(δ +

√
δ2 + 4βγ)

dK

=
−δ′

2
− 1

4
√

δ2 + 4βγ
· d[δ2 + 4(−r2τf(J))]

dK

=
−δ′

2
− 1

4
√

δ2 + 4βγ
· (2δδ′ − 4r2τ

df(J)

dK
)

=
−δ′

2
(1 +

δ√
δ2 + 4βγ

) + r2τ
df(J)

dK

> 0

since (1 + δ√
δ2+4βγ

) < 1 + δ√
δ2

= 1 + δ
(−δ)

= 0. When α2 + 4βγ < 0, we have

dρ

dK
=

d(− δ
2
)

dK

= −r

2
· d[αf(J) + Jf ′(J)]

dK
< 0

because d[αf(J)+Jf ′(J)]
dK

> 0. Therefore, the maximum recovery rate occurs for some

value of K = Kr when δ2 + 4βγ = 0, which occurs when

αf(J) + Jf ′(J) = −2
√

τf(J). (3.3)

To sum up, if we are using the recovery rate as an indicator of the system

(3.1), we will have more warning of the upcoming transition when Kr is far enough

from Kcrit. From equations (3.2) and (3.3), we see that Kr is far away from Kcrit

when the right-hand side of (3.3) tends to minus infinity:

τf(J) =
AkJ

r
h′(J)f(J) →∞.

This occurs as A → ∞ (predator-prey biomass conversion is efficient), r → 0 (the

intrinsic rate of increase in the prey population is low), or k → ∞ (predation rate

being high). Kr is also far enough from Kcrit when h′(J) → ∞, meaning that

the predation rate increases quickly with increasing prey population size, which is

equivalent to the predation rate being high.
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4 Three species food chain model

In this section, let us discuss the Lotka-Volterra equation for a food chain of three

species [22]. Consider the system of differential equations are given by

dN1

dt
= N1(r1 − a11N1 − a12N2),

dN2

dt
= N2(r2 + a21N1 − a22N2 − a23N3),

dN3

dt
= N3(r3 + a32N2 − a33N3).

(4.1)

where ri > 0 and aij > 0, ∀ 1 ≤ i, j ≤ 3.

In this model, t is time, Ni is the population of species i, ri is the intrinsic

growth rate of the species i, and aij is the competitive impact of species j on species

i. Moreover, N1 and N2 have a negative effect on the growth rate of N1 ; N1 has a

positive effect and N2 and N3 have a negative effect on the growth rate of N2 ; N2

has a positive effect and N3 have a negative effect on the growth rate of N3. That

is why this model is said to be a food chain.

In order to give a manageable exposition, we henceforth reduce the number

of parameters in this three species food chain model by making the symmetry as-

sumptions that (i) r1 = r2 = r3 = 1 ; (ii) with respect to species, 2 affects 1 as 3

affects 2, i.e. a12 = a23 = α ; (iii) with respect to species, 1 affects 2 as 2 affects 3,

i.e. a21 = a32 = β ; (iv) a11 = a22 = a33 = 1, to arrive at

dN1

dt
= N1(1−N1 − αN2),

dN2

dt
= N2(1 + βN1 −N2 − αN3),

dN3

dt
= N3(1 + βN2 −N3).

(4.2)

The study of equilibria plays a central role in ordinary differential equations

and their application. At first, let us find the conditions for existence of the equilib-

ria of this system. It can be computed that there exist eight nonnegative equilibria

for this model:

(i) no-species equilibrium: E0 = (0, 0, 0).

(ii) single species equilibrium: E1 = (1, 0, 0), Ê1 = (0, 1, 0), Ě1 = (0, 0, 1).

(iii) two-species equilibrium: E2 = (1, 0, 1), Ê2 = (0, 1−α
1+αβ

, 1+β
1+αβ

) , Ě2 = ( 1−α
1+αβ

, 1+β
1+αβ

, 0).

(iv) three species equilibrium: E3 = (1+αβ−α+α2

1+2αβ
, 1+β−α

1+2αβ
, 1+αβ+β+β2

1+2αβ
).
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Existence conditions of these equilibria of this model are summarized in proposition

4.1.

Proposition 4.1:

(a) E0, E1, Ê1, Ě1, and E2 exist and for all values of α, β > 0.

(b) Ê2 and Ě2 exist for 0 < α < 1 and β > 0.

(c) E3 exists for α− β < 1.

Proof:

(a) We know that

E0 = (0, 0, 0), E1 = (1, 0, 0), Ê1 = (0, 1, 0), Ě1 = (0, 0, 1), E2 = (1, 0, 1). Hence,

no-species equilibrium E0, single species equilibria E1, Ê1, Ě1, and two-species equi-

librium E2 exist for all values of α, β > 0.

(b) Since

Ê2 = (0,
1− α

1 + αβ
,

1 + β

1 + αβ
),

Ě2 = ( 1−α
1+αβ

, 1+β
1+αβ

, 0), two-species equilibria Ê2, Ě2 exist for 0 < α < 1 and β > 0.

(c) We know that the three species equilibrium

E3 = (
1 + αβ − α + α2

1 + 2αβ
,
1 + β − α

1 + 2αβ
,
1 + αβ + β + β2

1 + 2αβ
),

so there is the three species equilibrium E3 when 1+β−α > 0 and 1+αβ−α+α2 > 0.

Since 1 + αβ − α + α2 = (α− 1/2)2 + αβ + 3/4 > 0, for all α, β > 0, therefore, the

three species equilibrium E3 exists for α− β < 1.

It is in general a routine, although often algebraically messy, matter to study

the stability of such equilibria. For convenience, at first we only verify the local

stability of the equilibria of this system when β = 1. Afterward we focus on stability

of the three species equilibrium E3 for various parameters. Local stability conditions

of these equilibria of this model when β = 1 are summarized in proposition 4.2.

Proposition 4.2: Let β = 1.

(a) E0, E1, Ê1, and Ě1 are unstable for all values of α.

(b) E2 is stable for α > 2 and is unstable for α < 2.

(c) Ê2 and Ě2 are unstable for α < 1.

(d) E3 is stable for α < 2.
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Proof:

First, we compute the Jacobian matrix at (N1, N2, N3)



1− 2N1 − αN2 −αN1 0
N2 1 + N1 − 2N2 − αN3 −αN2

0 N3 1 + N2 − 2N3


 .

Thus, we obtain the Jacobian matrix for each equilibrium of this system.

(a) (i) At E0, the Jacobian matrix is




1 0 0
0 1 0
0 0 1


 .

Hence, its eigenvalues are given by

λ = 1, 1, 1.

Thus, E0 is always unstable.

(ii) At E1, the Jacobian matrix is



−1 −α 0
0 2 0
0 0 1


 .

Therefore, its eigenvalues are given by

λ = −1, 2, 1.

Therefore, E1 is always unstable.

(iii) At Ê1, the Jacobian matrix is




1− α 0 0
1 −1 −α
0 0 2


 .

Thus, its eigenvalues are

λ = 1− α,−1, 2.

Therefore, Ê1 is always unstable.

(iv) At Ě1, the Jacobian matrix is




1 0 0
0 1− α 0
0 1 −1


 .
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So, its eigenvalues are

λ = 1, 1− α,−1.

Thus , Ě1 is always unstable.

(b) At E2, the Jacobian matrix is



−1 −α 0
0 2− α 0
0 1 −1


 .

So, one eigenvalue is positive when α < 2 and all of its eigenvalues are negative

when α > 2. Therefore, E2 is stable for α > 2 and is unstable for α < 2.

(c) (i) At Ê2, the Jacobian matrix is




1− α1−α
1+α

0 0
1−α
1+α

1− 21−α
1+α

− α 2
1+α

−α 1−α
1+α

0 1−α
1+α

1 + 1−α
1+α

− 21−α
1+α


 .

So, there is an eigenvalue

λ = 1− α
1− α

1 + α
=

1 + α2

1 + α
> 0.

Therefore, Ê2 is unstable for α < 1.

(ii) At Ě2, the Jacobian matrix is




1− 21−α
1+α

− α 2
1+α

−α 1−α
1+α

0
2

1+α
1 + 1−α

1+α
− 2 2

1+α
−α 2

1+α

0 0 1 + 2
1+α


 .

So, there is an eigenvalue

λ = 1 +
2

1 + α
> 0.

Therefore, Ě2 is unstable for α < 1.

(d) At E3, the Jacobian matrix is



−1+α2

1+2α
0 0

1−α
1+α

−α 1+α2

1+2α
−α 2−α

1+2α

0 3+α
1+2α

− 3+α
1+2α


 .

So, we can compute its eigenvalues

λ = − 1 + α2

1 + 2α
,−α

α2 − α + 3

1 + 2α
,− 3 + α

1 + 2α
.
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Since all of its eigenvalues are negative, E3 is stable for α < 2.

From now on, we concentrate our attention on the stability of the three species

equilibrium E3 for various parameters. Here, we introduce an useful method to de-

termine the stability of the three species equilibrium E3 for various parameters. The

method is as follows. Given A ∈ Rn×n, Reλ(A) ≡ max{Reλ : λ is an eigenvalue of A}.
How do we verify analytically A is a stable matrix, i.e. Reλ(A) < 0 ? Suppose that

the characteristic polynomial of A is

g(z) = det(zI − A) = a0z
n + a1z

n−1 + · · ·+ an(a0 > 0).

The Routh-Hurwitz Criterion provides a necessary and sufficient condition for

a real polynomial to have all roots with negative real parts. We list the conditions

for n = 2, 3 which are frequently used in applications.

(i) Assume that n = 2. Then g(z) = a0z
2 + a1z + a2 with a1 > 0 and a2 > 0 if

and only if A is a stable matrix.

(ii) Assume that n = 3. Then g(z) = a0z
3 + a1z

2 + a2z + a3 with a1 > 0, a3 > 0,

and a1a2 > a0a3 if and only if A is a stable matrix.

A more thorough treatment are given in [10, 21].

By Routh-Hurwitz Criterion, we will analyze the stability of the three species

equilibrium E3 for various parameters. The result is as follows.

Proposition 4.3: If there exists the three-species equilibrium E3, then E3 is always

an asymptotically stable equilibrium.

Proof:

We will apply Routh-Hurwitz Criterion to prove stability of the three-species equi-

librium E3. Hence, we desire to acquire the coefficients a0, a1, a2, a3 of the charac-

teristic polynomial of the Jacobian matrix at E3. From the system (4.2), we have

the Jacobian matrix at E3=(N̄1, N̄2, N̄3)

A =




1− 2N̄1 − αN̄2 −αN̄1 0
βN̄2 1 + βN̄1 − 2N̄2 − αN̄3 −αN̄2

0 βN̄3 1 + βN̄2 − 2N̄3




=



−N̄1 −αN̄1 0
βN̄2 −N̄2 −αN̄2

0 βN̄3 −N̄3


 .
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Since

1− 2N̄1 − αN̄2 = 1− 2 · 1 + αβ − α + α2

1 + 2αβ
− α · 1 + β − α

1 + 2αβ

= −1 + αβ − α + α2

1 + 2αβ

= −N̄1,

1 + βN̄1 − 2N̄2 − αN̄3 = 1 + β · 1 + αβ − α + α2

1 + 2αβ
− 2 · 1 + β − α

1 + 2αβ
− α · 1 + αβ + β + β2

1 + 2αβ

= −1 + β − α

1 + 2αβ

= −N̄2,

1 + βN̄2 − 2N̄3 = 1 + β · 1 + β − α

1 + 2αβ
− 2 · 1 + αβ + β + β2

1 + 2αβ

= −1 + αβ + β + β2

1 + 2αβ

= −N̄3,

So, the characteristic polynomial of the Jacobian matrix at E3 is

det(λI − A) =
i=3∏
i=1

(λ + Ni) + αβN1N2(λ + N3) + αβN2N3(λ + N1)

= λ3 + (N̄1 + N̄2 + N̄3)λ
2 + [(1 + αβ)N̄1N̄2 + (1 + αβ)N̄2N̄3 + N̄3N̄1]λ

+ (1 + 2αβ)N̄1N̄2N̄3.

It is easy to see the coefficients a0, a1, a2, a3 of the characteristic polynomial of the

Jacobian matrix at E3 are

a0 = 1,

a1 = N̄1 + N̄2 + N̄3 > 0,

a2 = (1 + αβ)N̄1N̄2 + (1 + αβ)N̄2N̄3 + N̄3N̄1,

a3 = (1 + 2αβ)N̄1N̄2N̄3 > 0.
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Therefore, we have

a1a2 − a0a3 = (N̄1 + N̄2 + N̄3)[(1 + αβ)N̄1N̄2 + (1 + αβ)N̄2N̄3 + N̄3N̄1]− (1 + 2αβ)N̄1N̄2N̄3

= N̄1
2
(N̄2 + N̄3) + N̄2(N̄3 + N̄1) + N̄3

2
(N̄1 + N̄2) + 3N̄1N̄2N̄3 + 2αβN̄1N̄2N̄3

+ αβ(N̄1
2
N̄2 + N̄1N̄2

2
+ N̄2

2
N̄3 + N̄2N̄3

2
)− N̄1N̄2N̄3 − 2αβN̄1N̄2N̄3

= N̄1
2
(N̄2 + N̄3) + N̄2

2
(N̄3 + N̄1) + N̄3

2
(N̄1 + N̄2) + 2N̄1N̄2N̄3

+ αβ(N̄1
2
N̄2 + N̄1N̄2

2
+ N̄2

2
N̄3 + N̄2N̄3

2
)

> 0.

By Routh-Hurwitz Criterion, the assertion follows.

Next, we perform some numerical simulations for various α, β, to explore global

dynamics for the system. The numerical computations provide us some observation

and motivation to justify more dynamical properties for the three-species equilibrium

E3.
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Example 4.1: If α = 1 and β = 2, i.e., the system is

dN1

dt
= N1 (1−N1 −N2)

dN2

dt
= N2 (1 + 2N1 −N2 −N3)

dN3

dt
= N3 (1 + 2N2 −N3)

(4.3)

then E3=(3
5
, 2

5
, 9

5
) is an asymptotically stable equilibrium for the above system. (See

Figure 5, Figure 6.)
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Figure 5: A solution trajectory with initial value (0.8,1.5,1.1) for (4.3).

0 5 10 15 20 25 30

0.5

1

1.5

2

2.5

t

x,
 y

, a
nd

 z

 

 

x

y

z

Figure 6: x, y, z components with initial value (0.8,1.5,1.1) for (4.3).
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Example 4.2: If α = 2 and β = 3, i.e., the system is

dN1

dt
= N1 (1−N1 − 2N2)

dN2

dt
= N2 (1 + 3N1 −N2 − 2N3)

dN3

dt
= N3 (1 + 3N2 −N3)

(4.4)

then E3=( 9
13

, 2
13

, 19
13

) is an asymptotically stable equilibrium for the above system.

(See Figure 7, Figure 8.)
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Figure 7: A solution trajectory with initial value (1.3,0.7,1.7) for (4.4).
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Figure 8: x, y, z components with initial value (1.3,0.7,1.7) for (4.4).
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Example 4.3: If α = 3 and β = 5, i.e., the system is

dN1

dt
= N1 (1−N1 − 3N2)

dN2

dt
= N2 (1 + 5N1 −N2 − 3N3)

dN3

dt
= N3 (1 + 5N2 −N3)

(4.5)

then E3=(22
31

, 3
31

, 46
31

) is an asymptotically stable equilibrium for the above system.

(See Figure 9, Figure 10.)
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Figure 9: A solution trajectory with initial value (1,0.6,1.2) for (4.5).
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Figure 10: x, y, z components with initial value (1,0.6,1.2) for (4.5).
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Example 4.4: If α = 4 and β = 6, i.e., the system is

dN1

dt
= N1 (1−N1 − 4N2)

dN2

dt
= N2 (1 + 6N1 −N2 − 4N3)

dN3

dt
= N3 (1 + 6N2 −N3)

(4.6)

then E3=(37
49

, 3
49

, 67
49

) is an asymptotically stable equilibrium for the above system.

(See Figure 11, Figure 12.)
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Figure 11: A solution trajectory with initial value (0.3,0.9,0.5) for (4.6).
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Figure 12: x, y, z components with initial value (0.3,0.9,0.5) for (4.6).

22



Example 4.5: If α = 1 and β = 7, i.e., the system is

dN1

dt
= N1 (1−N1 −N2)

dN2

dt
= N2 (1 + 7N1 −N2 −N3)

dN3

dt
= N3 (1 + 7N2 −N3)

(4.7)

then E3=( 8
15

, 7
15

, 64
15

) is an asymptotically stable equilibrium for the above system.

(See Figure 13, Figure 14.)
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Figure 13: A solution trajectory with initial value (0.8,0.2,2) for (4.7).
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Figure 14: x, y, z components with initial value (0.8,0.2,2) for (4.7).
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Example 4.6: If α = 0.5 and β = 1, i.e., the system is

dN1

dt
= N1 (1−N1 − 0.5N2)

dN2

dt
= N2 (1 + N1 −N2 − 0.5N3)

dN3

dt
= N3 (1 + N2 −N3)

(4.8)

then E3=(5
8
, 3

4
, 7

4
) is an asymptotically stable equilibrium for the above system. (See

Figure 15, Figure 16.)
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Figure 15: A solution trajectory with initial value (0.7,0.3,0.4) for (4.8).
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Figure 16: x, y, z components with initial value (0.7,0.3,0.4) for (4.8).
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Example 4.7: If α = 3 and β = 3, i.e., the system is

dN1

dt
= N1 (1−N1 − 3N2)

dN2

dt
= N2 (1 + 3N1 −N2 − 3N3)

dN3

dt
= N3 (1 + 3N2 −N3)

(4.9)

then E3=(16
19

, 1
19

, 22
19

) is an asymptotically stable equilibrium for the above system.

(See Figure 17, Figure 18.)
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Figure 17: A solution trajectory with initial value (0.4,1.3,0.5) for (4.9).
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Figure 18: x, y, z components with initial value (0.4,1.3,0.5) for (4.9).
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Example 4.8: If α = 0.3 and β = 0.00000000000000001, i.e., the system is

dN1

dt
= N1 (1−N1 − 0.3N2)

dN2

dt
= N2 (1 + 0.00000000000000001N1 −N2 − 0.3N3)

dN3

dt
= N3 (1 + 0.00000000000000001N2 −N3)

(4.10)

then E3 ≈ (0.79, 0.7, 1) is an asymptotically stable equilibrium for the above system.

(See Figure 19, Figure 20.)
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Figure 19: A solution trajectory with initial value (0.6,0.8,0.9) for (4.10).
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Figure 20: x, y, z components with initial value (0.6,0.8,0.9) for (4.10).
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Example 4.9: If α = 0.00000000000000001 and β = 0.3, i.e., the system is

dN1

dt
= N1 (1−N1 − 0.00000000000000001N2)

dN2

dt
= N2 (1 + 0.3N1 −N2 − 0.00000000000000001N3)

dN3

dt
= N3 (1 + 0.3N2 −N3)

(4.11)

then E3 ≈ (1, 1.3, 1.39) is an asymptotically stable equilibrium for the above system

(see Figure 21, Figure 22.)
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Figure 21: A solution trajectory with initial value (0.1,1.3,0.4) for (4.11).
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Figure 22: x, y, z components with initial value (0.1,1.3,0.4) for (4.11).
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According to above proposition and examples, we might apparently observe

that the three-species equilibrium is not only asymptotically stable but also globally

attracting when it exists. The following result states this more precisely.

Theorem 4.1: Assume there is an equilibrium (p1, p2, p3) for the three-species

food chain model (4.1) with pi > 0, i = 1, 2, 3. Then the basin of attraction of the

equilibrium (p1, p2, p3) includes the first octant {(N1, N2, N3) : N1 > 0, N2 > 0, N3 >

0}.

Proof:

Suppose there is an equilibrium (p1, p2, p3) for three species food chain model with

pi > 0, i = 1, 2, 3. Then




p1(r1 − a11p1 − a12p2) = 0
p2(r2 + a21p1 − a22p2 − a23p3) = 0
p3(r3 + a32p2 − a33p3) = 0

⇒




r1 = a11p1 + a12p2

r2 = −a21p1 + a22p2 + a23p3

r3 = −a32p2 + a33p3

Let x1 = r1−a11N1−a12N2, x2 = r2 +a21N1−a22N2−a23N3, and x3 = r3 +a32N2−
a33N3. Then, we set

x1 := (a11p1 + a12p2)− a11N1 − a12N2

= a11(p1 −N1) + a12(p2 −N2),

x2 := (−a21p1 + a22p2 + a23p3) + a21N1 − a22N2 − a23N3

= −a21(p1 −N1) + a22(p2 −N2) + a23(p3 −N3),

x3 := (−a32p2 + a33p3) + a32N2 − a33N3

= −a32(p2 −N2) + a33(p3 −N3).

Now, we define a function L by

L(N1, N2, N3) = c1[N1 − p1 ln (N1)] + c2[N2 − p2 ln (N2)] + c3[N3 − p3 ln (N3)]

=
3∑

i=1

ci[Ni − pi ln (Ni)],

where c2
c1

= a12

a21
, c3

c2
= a23

a32
and cij > 0, for i = 1, 2, 3. Then L(N1, N2, N3) >

L(p1, p2, p3), for all (N1, N2, N3) 6= (p1, p2, p3)
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and

L̇(N1, N2, N3) = c1(1− p1 · 1

N1

) ·N1x1 + c2(1− p2 · 1

N2

) ·N2x2 + c3(1− p3 · 1

N3

) ·N3x3

= c1(N1 − p1)x1 + c2(N2 − p2)x2 + c3(N3 − p3)x3

= c1(N1 − p1)[a11(p1 −N1) + a12(p2 −N2)]

+ c2(N2 − p2)[−a21(p1 −N1) + a22(p2 −N2) + a23(p3 −N3)]

+ c3(N3 − p3)[−a32(p2 −N2) + a33(p3 −N3)]

= −a11c1(N1 − p1)
2 − a22c2(N2 − p2)

2 − a33c3(N3 − p3)
2

+ (−a12c1 + a21c2)(N1 − p1)(N2 − p2)

+ (−a23c2 + a32c3)(N2 − p2)(N3 − p3).

Since c2
c1

= a12

a21
and c3

c2
= a23

a32
, −a12c1 + a21c2 = −a23c2 + a32c3 = 0, then

L̇(N1, N2, N3) = −a11c1(N1 − p1)
2 − a22c2(N2 − p2)

2 − a33c3(N3 − p3)
2

= −
3∑

i=1

aiici(Ni − pi)
2.

i.e. for all (N1, N2, N3) 6= (p1, p2, p3), L̇(N1, N2, N3) < 0 and L̇(p1, p2, p3) = 0.

Therefore, L is a Lyapunov function on {(N1, N2, N3) : N1 > 0, N2 > 0, N3 > 0}. By

Theorem 2.4, the assertion holds.

Finally, let us compute the recovery rate at the stable equilibria E2 = (1, 0, 1)

and E3 = (1+αβ−α+α2

1+2αβ
, 1+β−α

1+2αβ
, 1+αβ+β+β2

1+2αβ
), respectively. For arithmetical convenience,

we only compute the recovery rate of the stable equilibria E2, E3 when β = 1. Of

course, we can use similar method to calculate the recovery rate at the stable equi-

librium E3 for the other case. For β = 1, the recovery rate at the stable equilibria

E2, E3 are summarized in proposition 4.4.

Proposition 4.4: Let β = 1. Assume that E2 and E3 are stable equilibria. Let α0

be the solution of the equation α3 − 2α2 + 3α− 1 = 0.

(a) The recovery rate at the stable equilibrium E2 is α−2 when 2 < α < 3. It means

the recovery rate at the stable equilibrium E2 is increasing with respect to α.

(b) The recovery rate at the stable equilibrium E2 is 1 when α ≥ 3. It means the

recovery rate at the stable equilibrium E2 is constant.
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(c) The recovery rate at the stable equilibrium E3 is 3α−α2+α3

1+2α
when 0 < α < α0.

(d) The recovery rate at the stable equilibrium E3 is 1+α2

1+2α
when α0 < α < 2.

Proof:

(a)(b)Let β = 1. By Proposition 4.1, 4.2, we have E2 = (1, 0, 1) exists and is stable

when α > 2. At E2, the Jacobian matrix is



−1 −α 0
0 2− α 0
0 1 −1




and its eigenvalues are λ = −1, 2−α,−1. So, the dominant eigenvalue λdom at E2 is
{

2− α if 2 < α < 3,
−1 if α ≥ 3.

Therefore, the recovery rate ρ ≡ |Re(λdom)| at E2 is
{

α− 2 if 2 < α < 3,
1 if α ≥ 3.

(c)(d) Similarly, E3 = (1+α2

1+2α
, 2−α

1+2α
, 3+α

1+2α
) exists and is stable when α < 2. At E3, the

Jacobian matrix is



−1+α2

1+2α
0 0

1−α
1+α

−α 1+α2

1+2α
−α 2−α

1+2α

0 3+α
1+2α

− 3+α
1+2α




and its eigenvalues are

λ = − 1 + α2

1 + 2α
,−3α− α2 + α3

1 + 2α
,− 3 + α

1 + 2α
.

Since (i) 1 + α2 < 3 + α for 0 < α < 2; (ii) 3α − α2 + α3 < 1 + α2 for 0 < α < α0;

(iii) 3α− α2 + α3 > 1 + α2 for α0 < α < 2, where α0 is the solution of the equation

α3 − α2 + 3α − 1 = 0. By Maple, we can compute α0 ≈ 0.4301597088. So, the

dominant eigenvalue λdom at E3 is
{
−3α−α2+α3

1+2α
if 0 < α < α0,

−1+α2

1+2α
if α0 < α < 2.

Therefore, the recovery rate ρ ≡ |Re(λdom)| at E3 is
{

3α−α2+α3

1+2α
if 0 < α < α0,

1+α2

1+2α
if α0 < α < 2.

The result follows.
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5 Genetic control system

In this section, we mention a basic model in genetic control system. The following

system has been discussed by [16] as a model for a genetic control system. The

activity of a certain gene is assumed to be directly induced by two copies of the

protein for which it codes. In other words, the gene is stimulated by its own product,

potentially leading to an autocatalytic feedback process. In dimensionless form, the

equations are
dx

dt
= −ax + y

dy

dt
=

x2

1 + x2
− by

(5.1)

where x and y are proportional to the concentrations of the protein and messenger

RNA from which it is translated, respectively, and a, b > 0 are parameters that

govern the rate of degradation of x and y.

First, we shall prove a simple result toward the system (5.1). The result is as

follows. It can be proved from Bendixson’s Negative Criterion.

Proposition 5.1: There does not exist periodic solution in the first quadrant

{(x, y) : x > 0, y > 0} for the system (5.1).

Proof:

On {(x, y) : x > 0, y > 0}, the divergence of the vector field is

∂

∂x
(−ax + y) +

∂

∂y
(

x2

1 + x2
− by) = −a− b = −(a + b) < 0.

By Theorem 2.5, the assertion holds.

Next, we will show that the system (5.1) has three equilibria when a < acrit,

where acrit is to be determined. Moreover, two of these equilibria coalesce in a

saddle-node bifurcation when a = acrit. Then we will sketch the phase portrait

for a < acrit, and give a biological interpretation. These results are summarized in

proposition 5.2, 5.3.

Proposition 5.2 [15]: The system (5.1) has three equilibria when a < acrit, where

acrit = 1/2b. In particular, two of these equilibria coalesce in a saddle-node bifurca-

tion when a = acrit.
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Proof:

One of the most useful tools for analyzing nonlinear systems of differential equa-

tions (especially planar systems) are nullclines. If we determine all of the null-

clines of the system (5.1), then the intersections of the x- and y-nullclines yields

the equilibria. From the system (5.1), we have the nullclines are given by the

line y = ax and y = x2

b(1+x2)
. To find acrit, we compute the equilibria directly

and find where they coalesce. Since the nullclines intersect when ax = x2

b(1+x2)
,

the equilibrium (0, 0) always exists for any parameters a, b > 0 and there are equi-

libria (x∗, y∗)=(1+
√

1−4a2b2

2ab
, 1+

√
1−4a2b2

2b
), (1−√1−4a2b2

2ab
, 1−√1−4a2b2

2b
) if 1− 4a2b2 > 0, i.e.

ab < 1/2. So, these two equilibria coalesce when ab = 1/2 and therefore acrit = 1/2b.

The assertion follows.

The nullclines also provide a lot of information about the phase portrait for

a < acrit. The vector field is vertical on the line y = ax and horizontal on the curve

y = x2

b(1+x2)
. It appears that the equilibrium (1−√1−4a2b2

2ab
, 1−√1−4a2b2

2b
) is a saddle and

the other two are sinks. To confirm this, we turn to classify these equilibria.

Proposition 5.3 [15]: If the system (5.1) has three equilibria, i.e. a < acrit then the

equilibria (0, 0) and (1+
√

1−4a2b2

2ab
, 1+

√
1−4a2b2

2b
) are stable and (1−√1−4a2b2

2ab
, 1−√1−4a2b2

2b
)

is unstable.

Proof:

From the system (5.1), we find the Jacobian matrix at (x, y) is

A =

( −a 1
2x

(1+x2)2
−b

)
.

A has trace τ = −(a + b) < 0, so all equilibria are either sinks or saddles by

theorem 2.2. At (0, 0), the determinant ∆ = ab > 0, so the origin is always a stable

equilibrium. In fact, it is a stable node, since τ 2 − 4∆ = (a− b)2 > 0 (except in the

degenerate case a = b). For the other two fixed points, we can compute that

∆ = ab− 2x

[1 + (x)2]2
= ab[1− 2

1 + (x)2
] = ab[

−1 + (x)2

1 + (x)2
].

At (1−√1−4a2b2

2ab
, 1−√1−4a2b2

2b
), the determinant ∆ < 0 since 0 < 1−√1−4a2b2

2ab
< 1. Hence,

we have the equilibrium (1−√1−4a2b2

2ab
, 1−√1−4a2b2

2b
) is a saddle. At (1+

√
1−4a2b2

2ab
, 1+

√
1−4a2b2

2b
),

the determinant ∆ = ab − 2x
[1+(x)2]2

= ab[1 − 2
1+(x)2

] < ab since 1+
√

1−4a2b2

2ab
> 1. So,
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τ 2 − 4∆ = (a + b)2 − 4ab− 2x
[1+(x)2]2

= (a − b)2 + 8x
[1+(x)2]2

> (a− b)2 > 0. Thus, the

equilibrium (1+
√

1−4a2b2

2ab
, 1+

√
1−4a2b2

2b
) is a stable node. This completes the proof.

The phase portrait and the nullclines for the system (5.1) when a = 0.92 and

b = 0.5 are plotted in Figure 23. And we plot the bifurcation diagram for (5.1) when

b = 0.5 in Figure 24.

Figure 23: The phase portrait and the nullclines for the system (5.1) when a = 0.92
and b = 0.5.
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Figure 24: The bifurcation diagram for the system (5.1) when b = 0.5.
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More importantly, the stable manifold separates the plane into two regions,

each a basin of attraction for a sink. The biological interpretation is that the system

can act like a biochemical switch, but only if the mRNA and protein degrade slowly

enough-specifically, their decay rates must satisfy ab < 1/2. In this case, there are

two stable steady states: one at the origin, meaning that the gene is silent and

there is no protein around to turn it on; and one where x and y are large, i.e.

(x, y) = (1+
√

1−4a2b2

2ab
, 1+

√
1−4a2b2

2b
), meaning that the gene is active and sustained by

the high level of protein. The stable manifold of the saddle acts like a threshold;

it determines whether the gene turns on or off, depending on the initial values

of x and y. Finally, let us compute the recovery rate at the stable equilibrium

(1+
√

1−4a2b2

2ab
, 1+

√
1−4a2b2

2b
). For arithmetical convenience we only investigate for b =

1/2. Of course, we can use similar method to calculate the recovery rate at the

stable equilibrium (1+
√

1−4a2b2

2ab
, 1+

√
1−4a2b2

2b
) for the other case. When b = 1/2, the

characteristic equation of A is

λ2 + (a + 1/2)λ +
a

2
(
−1 + x2

1 + x2
) = 0.

So, its eigenvalues are given by

λ =
−(a + 1

2
)±

√
(a + 1

2
)2 − 2a[−a2+(1+

√
1−a2)2

a2+(1+
√

1−a2)2
]

2
.

Therefore, the dominant eigenvalue

λdom =
−(a + 1

2
) +

√
(a + 1

2
)2 − 2a[−a2+(1+

√
1−a2)2

a2+(1+
√

1−a2)2
]

2
.

At the stable equilibrium (1+
√

1−4a2b2

2ab
, 1+

√
1−4a2b2

2b
), the recovery rate

ρ ≡ |Re(λdom)| =
(a + 1

2
)−

√
(a + 1

2
)2 − 2a[−a2+(1+

√
1−a2)2

a2+(1+
√

1−a2)2
]

2
.

Let f ′(a) = (a + 1
2
) −

√
(a + 1

2
)2 − 2a[−a2+(1+

√
1−a2)2

a2+(1+
√

1−a2)2
]. By Matlab, we calculate

f ′(a) = 0 only when a = ar ≈ 0.4676, f ′(a) > 0 when a < ar, and f ′(a) < 0

when a > ar. Then f has a local maximum at a = ar ≈ 0.4676. Therefore, the

maximum recovery rate occurs for a = ar ≈ 0.4676. To sum up, if we are using

the recovery rate as an indicator of the system (5.1), we will have more warning of

the upcoming transition when ar is far enough from acrit. So far, we have seen that

acrit = 1 and ar ≈ 0.4676 when b = 1/2, it will help us judge the dynamics of the

system (5.1) when b = 1/2.
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