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Student : Bo-Ying Lee  Advisor : Chih-Wen Shih
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June 2009

Abstract

Transitions in ecological systems often occur without apparent warning.
Thus an effective way of prediction is in strong demand. Recent researchers
proposed that decreasing ecological resilience can signal an upcoming transi-
tion. Unfortunately, it is very difficult to measure the resilience in practice.
Therefore, we need some indicator to measure it. Some recent works in the
literatures investigated that critical slowing down is a good indicator of eco-
logical resilience. In this report, we use analytical and numerical methods
to characterize several results about two-species generalized predator-prey
model, three species food chain model, and generic control system. These
results can lead directly to predict more complex systems in ecology or real
world.
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1 Introduction

It is very important to predict the transition in ecosystems. However, the transitions
are often difficult to predict, because they can originate from a variety of factors.
Decreasing ecological resilience has been proposed as a signal of upcoming transi-
tions in complex systems [6, 7]. Ecological resilience is the ability of a system to
absorb perturbations and persist at a particular stable equilibrium [3, 5]. In other
words, this is a measure of how much that parameter would need to be perturbed
to reach the threshold point, and it correlates to the size of the basin of attraction.
Unfortunately, ecological resilience can not be measured directly in practice, so there
is a need for indirect indicators. One such potential indicator is “critical slowing
down”, the decrease in recovery rate that occurs as the basin of attraction around a
stable equilibrium contracts and a system approaches a transition [5]. For a variety
of ecological models, critical slowing down often occurs far enough from a threshold
to be a potentially useful indicator of an upcoming transition [5]. Most importantly,
this phenomenon can be proved mathematically to occur as all continuous differ-
ential equations approach local bifurcations [4]. Recovery rates are inferred from
the amount of time that the system needs to return to equilibrium after a small
perturbation [5]. But, it is also not so easily quantified, even in models. Hence,
we demand some method to estimate the quantity of recovery rates for any system.
Fortunately, the recovery rate can be determined by linearizing at the stable equi-
librium and determining the eigenvalues in a model, since the dominant eigenvalue
is an approximation of the recovery rate to equilibrium [17, 18].

For each model, we then calculate the recovery rate as the absolute value of
the real part of the dominant eigenvalue Ay, of the Jacobian matrix at each stable
equilibrium (the dominant eigenvalue is the eigenvalue with greatest real part for
a continuous system) [5, 19]. The first step in the analysis of each model is to
find its equilibria and the conditions for existence and stability of these equilibria.
To find the conditions for stability we linearize each model around its equilibria
by constructing the Jacobian matrix and applying the Routh-Hurwitz criteria for
two dimensional and three dimensional continuous-time systems. In this report, we
estimate the recovery rates by linearizing the models and determining the maximal
real part of the eigenvalues of the Jacobian matrix.

However, we are interested in measuring the distance between the point at

which the recovery rate starts to decrease K, and the critical transition K,.;;. This



distance can be seen as a warning period of the upcoming transition. The utility of
critical slowing down as a leading indicator of the transition depends on the length
of this warning period. Our method can yield general conclusions about the effects
of the various parameters on the usefulness of critical slowing down as an indicator
of an upcoming transition in a systems dynamics.

Critical slowing down has been proposed as a leading indicator of transitions
in real world [5]. In 2007, Van Nes and Scheffer showed using numerical techniques
that critical slowing down occurs far enough from a transition to be a promising
indicator of loss of resilience for several ecological models. Van Nes and Scheffer are
only the first steps towards establishing when critical slowing down will be a useful
leading indicator of transitions in different ecosystems. In the last few years, several
articles have been devoted to the study of the relationship between critical slowing
down and ecological resilience. In this report, we choose these models because they
are the simplest and most studied in biology. Of course, we can extend these insights
to more complex, multi-species systems and predict that critical slowing down is still
an effective indicator. Here, we just give slight theoretical contributions. Our study
in this report is just a stepping stone to understanding more complex ecological
models. To understand them, we require more mathematical theories than we have
used here.

Moreover, there are various concepts and terminology from dynamical systems
that we use in this report. These concepts are usually covered in an undergraduate
(or graduate) course in ordinary differential equations. Here, we summarize these
basic theory in Section 2. For a more complete treatment and more details, see [1,

2,8,9, 10, 11, 12, 13, 14].



2 Some basic definitions and classical theorems

In this section, we collect some basic definitions and classical theorems in ordinary

differential equations that we will use in this report. Consider the nonlinear system
x = f(x), feCYR").

Let ¢; be the flow map for the system.

Definition 1. An equilibrium xq is said to be stable if for all £ > 0 there exists a
d > 0 such that for all x € Ns(xp) and ¢ > 0 we have ¢4(x) € N.(xo), i.e. nearby

solutions stay nearby for all future time.

Definition 2. An equilibrium xq is said to be unstable if it is not stable. This
means that there is a neighborhood U of x¢ such that for every neighborhood U; of
Xp in U, there is at least one solution x(t) starting at x(0) € U; that does not lie

entirely in U for all £ > 0.

Definition 3. An equilibrium xgq is said to be asymptotically stable if it is stable

and there exists a 0 > 0 such that for all x € Ns(xg), we have

tlim 1(x) = Xo.

For linear systems, there is a criterion on the eigenvalues that ensures asymp-
totic stability of the origin. This criterion is summarized in the next theorem.

Theorem 2.1 [2] : Consider the linear differential equation

T = Ax.

(a) If all of the eigenvalues A of A have negative real parts, then the origin is
asymptotically stable. In particular, stable nodes, degenerate stable nodes, and
stable foci are all asymptotically stable.

(b) If one of the eigenvalues A; has a positive real part, then the origin is unstable.
In particular, saddles, unstable nodes, degenerate unstable nodes, and unstable foci
are all unstable. A saddle has some directions that are attracting and others that
are expanding, but it still satisfies the condition to be unstable.

(c) In two dimensions, if the eigenvalues are purely imaginary 0 then the origin is

3



stable but not asymptotically stable.
(d) In two dimensions, if one eigenvalue is 0, then the origin is stable but not

asymptotically stable.

In two dimensional case, we can use the determinant and the trace to determine
the type of linear system. It is convenient to have these results summarized so we
can immediately recognize the stability type from these quantities, which are easy

to compute.

Theorem 2.2 [2] : Let A be a 2 x 2 matrix with determinant A and trace 7.
(a) If A < 0, then the linear system is a saddle, and therefore unstable.
(b) If A > 0 and 7 > 0, then the linear system is unstable.

(i) If 72 — 4A > 0, then it is an unstable node.

(ii) If 72 — 4A = 0, then it is a degenerate unstable node.

(iii) If 72 — 4A < 0, then it is an unstable focus.

(¢) If A >0 and 7 < 0, then the linear system is asymptotically stable.
(i) If 72 — 4A > 0, then it is an stable node.

(ii) If 72 — 4A = 0, then it is a degenerate stable node.

(iii) If 72 — 4A < 0, then it is an stable focus.

(d) If A =0, then one or more of the eigenvalues is zero.

(i) If 7 > 0, then the second eigenvalue is positive.

(i))If 7 = 0, then the both eigenvalues are zero.

(

iii) If 7 < 0, then the second eigenvalue is negative.

If x¢ is a hyperbolic equilibrium (there is no eigenvalues with zero real parts
for the Jacobian matrix at xg), then the stability type of the equilibrium for the
nonlinear system is the same as that for the linearized system. The following result

states this more precisely.

Theorem 2.3 [2] : Consider a differential equation Xx=F(x) in n variables, with

OF; *F;
> Ox; (X)’ Ox;0xy,

Then, the stability type of the equilibrium for the nonlinear system is the same as

a hyperbolic equilibrium xg. Assume that F (x) are all continuous.
that for the linearized system at that equilibrium.

(a) If the real parts of all the eigenvalues of DF(xq) are negative, then the equi-
librium xg is asymptotically stable for the nonlinear system. (i.e., if the origin is

asymptotically stable for the linearized system, then xq is asymptotically stable for



the nonlinear system).
(b) If at least one eigenvalue of DF'(xg) has a positive real part, then the equilibrium

Xg is unstable for the nonlinear system.

How do we determine whether a non-hyperbolic equilibrium is stable, asymp-
totically stable, or unstable 7 The following method, due to Lyapunov, is very

helpful for answering this question.

Definition 4. Assume Xxq is an equilibrium for the differential equation x = f(x).
A real-valued function L is called a weak Lyapunov function for the differential
equation provided there is a neighborhood U of x¢ on which L is defined and (i)
L(x) > L(xo) for all x in U but distinct from xo, and (ii) L(x) < 0 for all x in U.
The function L is called a Lyapunov function or strict Lyapunov function on an
open neighborhood U provided it is a weak Lyapunov function which satisfies which
satisfies L(x) < 0 for all x in U but distinct from xq.

Theorem 2.4 [13] : Let E be an open subset of R" containing xo. Suppose that
f € CYE) and f(x¢) = 0. Suppose further that there exists a real valued function
L € CY(E) satisfying L(xo) = 0 and L(z) > 0 if  # xo. Then (a) if L(z) < 0 for
all € E, xq is stable. (b) if L(z) < 0 for all z € E — {x¢}, Xo is asymptotically
stable. (c) if L(z) > 0 for all z € E — {Xo}, Xo is unstable.

The following result is due to Bendixson and is called Bendixson’s Nega-
tive Criterion.
Theorem 2.5 [9] : Let X=f(x) be a planar system, where f= (g), X = (z) c R2.
Furthermore f € C'(F) where F is a simply connected region in R?. If % + %—];2 (the
divergence of the vector field f, V - f) is always of the same sign but not identically

zero on F, then there are no periodic solution in the region E of the planar system.



3 Generalized predator prey model

The first model we shall study is the generalized predator prey model [20]:

W v rv) — kPR(V)

dt
(3.1)
fj—f — ARPI(V) = h(J)]

where t is time, V is the prey population size, r is the intrinsic rate of increase in
prey, P is predator population size, k is the predation rate, J is the equilibrium
prey population size, and A is the predator-prey conversion efficiency. The function
f(V) represents the effects of intra-specific competition among the prey: as the prey
population increases, the per-capita population growth rate decreases and eventually
becomes zero at the carrying capacity K, i.e. (i) f(V) > 0, for 0 <V < K, and
f(K)=0; (ii) f/(V) <0, for 0 <V < K. The carrying capacity K is the control
parameter. If a family of functions f, i.e. f = fx(V), are consider, then we further

assume that f is an increasing function of K and that the derivative of fx with

respect to V' is a non-decreasing function of K, i.e. 8fgl((v) > 0, o1 gf({v) > 0. The
function h(V') represents the per-capita rate at which predators kill prey; the kill-
rate increases as the number of available prey increases, but does so at a decreasing
rate, i.e. h(V) > 0, W' (V) > 0, and A"(V) < 0. The following Figures 1, 2, 3, 4,
depict typical graphs for the functions f and h.

In this section, we summarize the propositions obtained in [20], and provide

detailed computations for these results.



Figure 1: This figure depicts the function f with f”(V) > 0.
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Figure 2: This figure depicts the function f with f”(V)) = 0.
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Figure 3: This figure depicts the function f with f”(V)) < 0.
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>V

Figure 4: This figure depicts the function h.



It is easy to verify that this model has three equilibria,

rJf(J)

(‘/7 P) = (070)7(}(70)7(‘]’ k‘h(J) )

At first, let us consider these equilibria of the system (3.1). Existence and local
stability conditions of these equilibria of the system (3.1) are summarized in propo-
sitions 3.1, 3.2.

Proposition 3.1 [20]: Let K be the carrying capacity and J be the equilibrium
prey population size. Then

(a) the equilibria (0,0) and (K, 0) exist for all K;

(b) the equilibrium (0, 0) is unstable for all K;

(¢) the equilibrium (K, 0) is stable for K < J.

Proof:
(a) It is easy to see that (0,0) and (K, 0) exist for all K.
(b) From the system (3.1), we can compute the Jacobian matrix at (V, P)

( r[f (V) + V (V)] = kPR(V) —kh(V) )
AkPR (V) Ak[R(V) = h(J)] )

Then the Jacobian matrix at the equilibrium (0,0) is

rf(0) —kh(0)
0 Ak[h(0) —h(J)] )°
Hence, its eigenvalues are given by A=rf(0), Ak[h(0) — h(J)]. Since A=rf(0) > 0,
the equilibrium (0, 0) is unstable for all K.
(c) Similarly, the Jacobian matrix at the equilibrium (K 0) is

rlf(K) + Kf'(K)] —kh(K)
0 Ak[W(K) —h(J)] )~
Therefore, its eigenvalues are given by A=r[f(K) + K f'(K)], Ak[h(K) — h(J)].
Both r[f(K)+K f'(K)] and Ak[h(K)—h(J)] are negative for all K < J by hypothesis
of f and h, the equilibrium (K, 0) is stable for all K < J. The assertion follows.

Proposition 3.2 [20]: Let K be the carrying capacity and J be the equilibrium prey

population size. Then the equilibrium (./, r,;]hjf(f]‘]))

) exists for for K > J, and is stable

8



for J < K < K, where K. is the solution of the equation af(J) + Jf'(J) =0

where o = 1 — J:(l%) In particular, Hopf bifurcation occurs for K = K_,;.

Proof:
Since f(J) > 0 when J < K, the equilibrium (./, Tl;]hf((j))) exists for for K > J. From
the system (3.1), we can compute the Jacobian matrix at (V, P) is

( rlf(V)+V (V)] — kPR (V) —kh(V) ) .

AKPH(V) AK[R(V) = B(J)]
Then the Jacobian matrix at the equilibrium (./, T,;]hf(f]‘]))) is

o ( rLF(D) + Jf()) = SR () —kh(J))
Ak

S () 0
| rlef () +Tf(I)] —kh(])
_< T () 0 )
where TN AkJ
a=1- ) i h'(J).

By Mean Value Theorem, we have h(J)—h(0) = h'(c) for some ¢ € (0, J). Moreover,
R'(c) > K(J) by B"(V) < 0. Therefore, h(J) > h(J) — h(0) = K'(c)J > h'(J)J, ie.
a=1- J:gg‘)]) > 0. Since A, k, J, r, h'(J) are positive, 7 = 4ELp/(.J) > 0. In fact,

we have the characteristic equation of M is

N —rlaf(J) + Jf (DA +r27f(J) =
So, its eigenvalues are given by

rlaf(J) + Jf' (N £ Vr2laf(]) + Jf ()] — 421 f(J)
2 :

A:

In two dimensional case, we can only use the determinant and the trace to determine
the stability of the equilibrium. The determinant and trace of M are r?7f(J) and
rlaf(J) + Jf'(J)], respectively. By Theorem 2, the equilibrium (J, T];]}Lf(f]‘]))) is stable
when the determinant of M is positive and the trace of M is negative, which occurs

at

af(J)+ Jf'(J) <0



Next, let us compute the derivative of af (J) + Jf'(J) with respect to K.

dlof (/) +Jf ()] _ df) | df'0)

aK ~ 0K a v

So, as the control parameter K increases, the equilibrium (.J, T,jh]c(E]L]))) becomes un-

stable. Furthermore, we have A\ = 0 + /727 f(J) and dlze]g’\) # 0 when K = K.,

where

af(J)+ Jf'(J) =0, (3.2)
so Hopf bifurcation occurs for K = K.;;. This completes the proof.
Assume the equilibrium (J, r,;]hf(%)) is stable, let us compute the eigenvalues of

M and determine the dominant eigenvalue to find the recovery rate. The following

proposition will tell us where the maximum recovery rate occurs.

Proposition 3.3 [20]:
Suppose the equilibrium (/J, T,;]hf((h,‘]))
occurs for some value of K = K, when 6% + 43y = 0, which occurs at af(J) +

Jf'(J) = =2y/7f ().

Proof:

We know that the characteristic equation of the Jacobian matrix at the equilibrium

rJf(J)
(J’ kh(J)

) is stable. Then the maximum recovery rate

) is
N —rlaf(J)+ Jf (DN +r*1f(J) =0

and its eigenvalues are given by

o Maf)+ )+ Vr2laf () + Jf ()2 —4r2rf(J) _ 0+ /62 + 46y
2 2
where

B=—kh(J) <0,v="729 50,6 =rlaf(J)+ Jf(J)] < 0.

Let A\, = @, A= @. Then we can compute the dominant eigen-
value Agom. First, we divide the situation into two kinds according to 62 + 43~. If
82+ 4By > 0 then A, = ‘”V‘f*—‘”’* > 5*@ — A_. Hence, Re(\;) > Re(\_),
ie. Nom = Ay = @. If 62 + 48y < 0 then Re(M;) = Re(A_) = 2, ie.

29

Adom = Ay = A\ = g. Thus, the recovery rate p = |Re(Agom)| is

{ OV Ry ”52% if a® 448y > 0,
=)

= if a2 + 48y < 0.

10



Finally, let us compute the derivative of p with respect to K. Consider o> +43v > 0
and let ¢’ = % Then

R

2

dK dK
_ 1 A+ /445
2 dK
-5 1 d[62 + 4(—r2r £ ()]
T2 4 /2t4py dK
4 1 e df)
RN/ T =15 (260" — 4r TW)
5 5 df(J)

2r—2

I+ +r
> T e dK
>0

(=9)

since(l%—\/ﬁ)<1+¢%:1+L:0,Whena2+457<0,wehave
dp

d(=$)
dK  dK
_ v daf() +If()]
2 dK
<0

W > (. Therefore, the maximum recovery rate occurs for some

value of K = K, when 62 + 43y = 0, which occurs when

af(J)+ Jf'(J) = =2y/7f(J). (3.3)

because

To sum up, if we are using the recovery rate as an indicator of the system
(3.1), we will have more warning of the upcoming transition when K, is far enough
from K. From equations (3.2) and (3.3), we see that K, is far away from K.,
when the right-hand side of (3.3) tends to minus infinity:

AkJ
Ty

Tf(J)

This occurs as A — oo (predator-prey biomass conversion is efficient), » — 0 (the

W(J)f(J) = oo.

intrinsic rate of increase in the prey population is low), or & — oo (predation rate
being high). K, is also far enough from K..; when h'(J) — oo, meaning that
the predation rate increases quickly with increasing prey population size, which is

equivalent to the predation rate being high.

11



4 Three species food chain model

In this section, let us discuss the Lotka-Volterra equation for a food chain of three

species [22]. Consider the system of differential equations are given by

dN

d_tl = Ni(r1 — a;1 N1 — a1aNs),

d.V:

d_tz = NQ(T’Q + CL21N1 — Cl22N2 - a23N3)7 (41)
d.N-

d_t?’ = N3(r3 + azs Ny — azsN3).

where r; > 0 and a;; >0,V 1 <14,j <3.

In this model, ¢ is time, N; is the population of species 7, r; is the intrinsic
growth rate of the species i, and a;; is the competitive impact of species j on species
1. Moreover, N7 and N, have a negative effect on the growth rate of Ny ; N; has a
positive effect and Ny and N3 have a negative effect on the growth rate of Ny ; Ny
has a positive effect and N3 have a negative effect on the growth rate of N3. That
is why this model is said to be a food chain.

In order to give a manageable exposition, we henceforth reduce the number
of parameters in this three species food chain model by making the symmetry as-
sumptions that (i) 7 = ry = r3 = 1 ; (ii) with respect to species, 2 affects 1 as 3
affects 2, i.e. ajp = ag3 = v ; (iii) with respect to species, 1 affects 2 as 2 affects 3,

ie. ag =as = ; (iv) a;3 = ag = asg = 1, to arrive at

dN

d—tl = Ny (1 — N, — alNs),

dN.

d_z€2 = Ny(1+ Ny — Ny — aNs), (4.2)
dN.

d—t?’ = Ny(1 + BN, — Ny).

The study of equilibria plays a central role in ordinary differential equations
and their application. At first, let us find the conditions for existence of the equilib-
ria of this system. It can be computed that there exist eight nonnegative equilibria
for this model:

(i) no-species equilibrium: Ey = (0,0, 0).
ii) single species equilibrium: E; = (1,0,0), E, = (0,1,0), Ey = (0,0,1).

(i
(iii) two-species equilibrium: Ey = (1,0,1), E, = (0, ll—l-__aaﬁ7 %) , By = (f;—aaﬁ, %, ).
(

1+af—ata® 1+6—a 1+a[3+ﬁ+ﬁ2)
1+2a8 ' 14+2a8°  14+2ap

iv) three species equilibrium: E3 = (

12



Existence conditions of these equilibria of this model are summarized in proposition
4.1.

Proposition 4.1:

(a) Eo, En, Ey, Ey, and Es exist and for all values of a, 8 > 0.
(b) E, and E, exist for 0 < o < 1 and § > 0.

(c) Ej exists for a« — § < 1.

Proof:

(a) We know that

Ey = (0,0,0), B, = (1,0,0), By = (0,1,0), E, = (0,0,1), E, = (1,0,1). Hence,
no-species equilibrium FEj, single species equilibria E/, El, F, and two-species equi-

librium Ej5 exist for all values of «, 5 > 0.

(b) Since
~ l—a 1+
E2 = (OJ ) 6 )7
1+ab 1+ ap
Fy = (11;)%, 11++fg= 0), two-species equilibria By, B, exist for 0 < < 1 and 3 > 0.

(c) We know that the three species equilibrium

l+af—a+a? 1+8—a 1+aB+ 6+
1+ 2ap " 1+2a8 1+ 2ap

E3 = ( )7
so there is the three species equilibrium E5 when 14+3—a > 0 and 1+a8—a+a? > 0.
Since 1 +afB —a+a?=(a—1/2)>+aB +3/4 > 0, for all a, 3 > 0, therefore, the

three species equilibrium Fj3 exists for o — 5 < 1.

It is in general a routine, although often algebraically messy, matter to study
the stability of such equilibria. For convenience, at first we only verify the local
stability of the equilibria of this system when § = 1. Afterward we focus on stability
of the three species equilibrium Fj for various parameters. Local stability conditions

of these equilibria of this model when 8 = 1 are summarized in proposition 4.2.

Proposition 4.2: Let g = 1.

(a) Eo, Ei, Ey, and E; are unstable for all values of a.
(b) Es is stable for v > 2 and is unstable for o < 2.
(c) E, and F, are unstable for o < 1.

(d) Ej is stable for oo < 2.

13



Proof:

First, we compute the Jacobian matrix at (Ny, Ny, N3)

1—2N1—OZN2 —OéNl 0
N2 ]-+N1 —2N2—O./N3 —OéNQ
0 N3 14+ Ny —2N;

Thus, we obtain the Jacobian matrix for each equilibrium of this system.
(a) (i) At Ep, the Jacobian matrix is

1 00
010
00 1
Hence, its eigenvalues are given by
A=1,1,1.
Thus, Ej is always unstable.
(ii) At Ey, the Jacobian matrix is
-1 —a 0
Opy g i)
Elf = A

Therefore, its eigenvalues are given by

A=-—1,21.
Therefore, F, is always unstable.
(iii) At By, the Jacobian matrix is
l—a 0 0
1 -1 —«
0 0 2
Thus, its eigenvalues are
A=1—a,—1,2
Therefore, E; is always unstable.
(iv) At By, the Jacobian matrix is
1 0 0
0 1—a 0
0 1 -1

14



So, its eigenvalues are

A=1,1-a,—1.

Thus , E, is always unstable.
(b) At Es, the Jacobian matrix is

-1 —« 0
0 2—a O
0 1 —1

So, one eigenvalue is positive when o < 2 and all of its eigenvalues are negative

when « > 2. Therefore, F, is stable for @ > 2 and is unstable for a < 2.
(¢) (i) At E,, the Jacobian matrix is

l—«
! _l?aH__a 1—040 2 Ol—a
o 1720~ O
0 a 1+ 358 — 217a
So, there is an eigenvalue
l-a 1+a?
A=1—q« 0.
e |5 1+«
Therefore, Es is unstable for v < 1.
(ii) At E,, the Jacobian matrix is
e 2 11—
B L G
Tta 1+ 5. =255 —ong
0 0 1+ 25
So, there is an eigenvalue
2
A=14+——>0.
1+«
Therefore, E, is unstable for a < 1.
(d) At Ej, the Jacobian matrix is
1+a?
_11+2a ?+ ) 02
14-_3 _O‘I-Sa _a1+20<;
0 3+a _ 34«
1+2c 1+2«
So, we can compute its eigenvalues
\ 1+a? a?—a+3 3+a
=— o — )
1+ 2a’ 1+2a 142«

15



Since all of its eigenvalues are negative, Fs is stable for a < 2.

From now on, we concentrate our attention on the stability of the three species
equilibrium FEj3 for various parameters. Here, we introduce an useful method to de-
termine the stability of the three species equilibrium Fs5 for various parameters. The
method is as follows. Given A € R™", ReA(A) = max{Re\ : A is an eigenvalue of A}.
How do we verify analytically A is a stable matrix, i.e. ReA(A) < 0 7 Suppose that

the characteristic polynomial of A is
g(z) = det(z] — A) = apz" + a12"" + - 4 an(ag > 0).

The Routh-Hurwitz Criterion provides a necessary and sufficient condition for
a real polynomial to have all roots with negative real parts. We list the conditions

for n = 2,3 which are frequently used in applications.

(i) Assume that n = 2. Then g(z) = apz* + a1z + ag with a; > 0 and ay > 0 if

and only if A is a stable matrix.

(i) Assume that n = 3. Then g(z) = agz® + a12* + azz + az with a; > 0, ag > 0,

and ajas > agas if and only if A is a stable matrix.

A more thorough treatment are given in [10, 21].
By Routh-Hurwitz Criterion, we will analyze the stability of the three species

equilibrium FEj3 for various parameters. The result is as follows.

Proposition 4.3: If there exists the three-species equilibrium Fs, then Ej3 is always

an asymptotically stable equilibrium.

Proof:
We will apply Routh-Hurwitz Criterion to prove stability of the three-species equi-
librium E3. Hence, we desire to acquire the coefficients ag, a1, as, az of the charac-

teristic polynomial of the Jacobian matrix at F3. From the system (4.2), we have
the Jacobian matrix at E3=(Ni, Ny, N3)

1—2N; —aN, —aM; ) 0
A= /6N2 1+6N1—%N2—06N3 —QéNQ B
0 3N, 1+ BN, — 2N,

N a0

BNy —Nz —065\772
0 BN3  —Nj

16



Since

1—2]\71—06.]\72:1—2'1+aﬂ_a+a2—a'1+ﬁ—_a
1+ 203 1+ 208
1+afB—a+a?
N 14 2ap
= -,
_ _ _ l1+af—a+a? 1+ 08—« 1+af+ B+ 32
1+ 06N —2Nys —aN3 =14 (- 15200 -2 17200 —«- 11900
1+08—«
_1—1-2045
W,
7 _ oN 1+8 -« 1+af+ 6+
LHANy = 2Ny = 1475 1+ 2ap - 1+ 2ap
l+af+ 08+ 05°
N 14 2ap

= _N37

So, the characteristic polynomial of the Jacobian matrix at Ej is

1=3
det(A — A) = [T\ + No) + aBN1Na(A -+ N3) + a3No N3(A + Ny)
=1

)\3 (Nl -+ N2 -+ Ng)/\2 [(1 -+ O[ﬁ)NlNQ —+ (1 + @5)]\72]\73 + NgNl]/\
+ (]_ —|— 2aﬁ)N1N2N3.

It is easy to see the coefficients ag, a1, as, as of the characteristic polynomial of the

Jacobian matrix at F3 are

ag =1,

a; = Ny + Ny + N3 > 0,

az = (1+ afB)N1Ny + (1 + af) NNy + N3Ny,
as = (1 +2aB)N1 Ny N3 > 0.

17



Therefore, we have

ara — agaz = (Ny + Na + N3)[(1 + af) N1 Ny + (1 4+ aff) NoN3 + N3Ni| — (1 + 208) N1 Ny Ny
= N2 (N3 + N3) 4+ Na(Ns + Ny) + N3°(Ny + Na) + 3N, Ny Ny + 203N, No Ny
+ 045(1\712]\72 + ]\71]\722 + N22N3 + ]\72]\732) — N1N3N3 — 23N Ny Ny
= Ni*(Ny + N3) 4+ No2 (N3 4+ Ny) + N3* (N7 + No) + 2N, Ny Ny
+ aB(N,°Ny + N1 N;* + Ny° Ny + NyNj°)
> 0.

By Routh-Hurwitz Criterion, the assertion follows.

Next, we perform some numerical simulations for various «, 3, to explore global
dynamics for the system. The numerical computations provide us some observation

and motivation to justify more dynamical properties for the three-species equilibrium

Es.

18



Example 4.1: If « =1 and 3 = 2, i.e., the system is

dN;
— =N (1—N; — N
" 1 ( 1 — No)
dN.
_dt2 = N, (1+2N; — Ny — N3) (4.3)
dN.
— 3 = Ny(1+ 2N, — N3)
dt
then E3:<%, %, g) is an asymptotically stable equilibrium for the above system. (See

Figure 5, Figure 6.)

Figure 5: A solution trajectory with initial value (0.8,1.5,1.1) for (4.3).

15

\
\
0.5 F\
T

Figure 6: x, y, z components with initial value (0.8,1.5,1.1) for (4.3).

19



Example 4.2: If « =2 and 3 = 3, i.e., the system is

AN,
—L = N, (1 - N; — 2N,

dt 1( 1 2)
dN.
d—; = Ny (14 3N; — Ny — 2Ns) (4.4)
dN.
d—;=N3(1+3N2—N3)

then Egz(%, %, %) is an asymptotically stable equilibrium for the above system.

(See Figure 7, Figure 8.)

24
23
22
21

1.9
N

18

17

16

15

14

04 13
11 12

02 09 1
08
06 07

Figure 7: A solution trajectory with initial value (1.3,0.7,1.7) for (4.4).

25F

0.5

Figure 8: x, y, z components with initial value (1.3,0.7,1.7) for (4.4).
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Example 4.3: If a = 3 and § = 5, i.e., the system is

dN,
—L - N, (1-N; - 3N
dt 1( 1 2)
dN.
_d; = N, (1 +5N; — Ny — 3N3) (4.5)
dN.
d—t?’ = N3 (145N, — N3)

then Egz(%, %, g—?) is an asymptotically stable equilibrium for the above system.

(See Figure 9, Figure 10.)

Figure 9: A solution trajectory with initial value (1,0.6,1.2) for (4.5).

25F

0.5

Figure 10: x, y, z components with initial value (1,0.6,1.2) for (4.5).
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Example 4.4: If « =4 and 3 = 6, i.e., the system is

AN,
— = N; (1 — Ny — 4N.

dt 1( 1 2)

dN:.

dN:.

d—;’:N3(1+6N2—N3)

then Egz(%, %, %) is an asymptotically stable equilibrium for the above system.

(See Figure 11, Figure 12.)

18

16

Figure 12: x, y, z components with initial value (0.3,0.9,0.5) for (4.6).
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Example 4.5: [f a =1 and =7, i.e., the system is

dN;
— =N (1—N; — N

" 1 ( 1 — No)

dN.

dt2 =N (1+ 7Ny — N2 — N3) (4.7)
dN.

— 3 = Ny(1+ 7N, — N3)

dt

then Egz(%, %, %) is an asymptotically stable equilibrium for the above system.

(See Figure 13, Figure 14.)

Figure 13: A solution trajectory with initial value (0.8,0.2,2) for (4.7).

Figure 14: x, y, z components with initial value (0.8,0.2,2) for (4.7).
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Example 4.6: If « = 0.5 and g = 1, i.e., the system is

dN
—L — Ny (1= N, —0.5N,)

dt
dN.
_dt2 = N, (14 Ny — Ny — 0.5N3) (4.8)
dN.
—dt‘”’ = N3 (14 Ny — N3)

then E3:<g, %, %) is an asymptotically stable equilibrium for the above system. (See

Figure 15, Figure 16.)

18

Figure 15: A solution trajectory with initial value (0.7,0.3,0.4) for (4.8).

02 |

Figure 16: x, y, z components with initial value (0.7,0.3,0.4) for (4.8).
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Example 4.7: If « = 3 and 3 = 3, i.e., the system is

dN,
— =Ny (1 - N; —3N.
1 1 ( 1 2)
dN.
_d; = Ny (1+3N; — Ny — 3N3) (4.9)
d N
—2 — N3 (143N, — Ny)
dt
then Egz(%, %, %) is an asymptotically stable equilibrium for the above system.

(See Figure 17, Figure 18.)

16
1.4

12

0.8

0.6

0.4

Figure 17: A solution trajectory with initial value (0.4,1.3,0.5) for (4.9).

i i i
0 5 10 15 20 25 30

Figure 18: x, y, z components with initial value (0.4,1.3,0.5) for (4.9).
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Example 4.8: If a = 0.3 and g = 0.00000000000000001, i.e., the system is

dN
—L = Ny (1= Ny —0.3N,)

dt
dN.
d—; — N, (1 4 0.00000000000000001N; — Ny — 0.3N3) (4.10)
dN;
5 = Vs (1+0.00000000000000001N; — N;)

then E3 =~ (0.79,0.7, 1) is an asymptotically stable equilibrium for the above system.
(See Figure 19, Figure 20.)

Figure 19: A solution trajectory with initial value (0.6,0.8,0.9) for (4.10).

Figure 20: x, y, z components with initial value (0.6,0.8,0.9) for (4.10).
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Example 4.9: If o = 0.00000000000000001 and = 0.3, i.e., the system is

AN
d_tl = N; (1 — Ny — 0.00000000000000001N5)

dN.

d_; — Ny (14 0.3N; — N, — 0.00000000000000001 Ns) (4.11)
dN:

d—:’ = Ny (14 0.3N; — Ns)

then F3 ~ (1,1.3,1.39) is an asymptotically stable equilibrium for the above system
(see Figure 21, Figure 22.)

. : 09 1
07 08
1.1 op 03 04 05 0.6
01 O -

Figure 21: A solution trajectory with initial value (0.1,1.3,0.4) for (4.11).

|
05
/

Figure 22: x, y, z components with initial value (0.1,1.3,0.4) for (4.11).
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According to above proposition and examples, we might apparently observe
that the three-species equilibrium is not only asymptotically stable but also globally

attracting when it exists. The following result states this more precisely.

Theorem 4.1: Assume there is an equilibrium (p;,ps,p3) for the three-species
food chain model (4.1) with p; > 0, @ = 1,2,3. Then the basin of attraction of the
equilibrium (py, pa, p3) includes the first octant {(Ny, No, N3) : Ny > 0, Ny > 0, N3 >

0}.

Proof:
Suppose there is an equilibrium (py, pa, p3) for three species food chain model with
pi>0,i=1,2,3. Then

p1(r1 — a1pr — azp2) =0
pa(ra + a21p1 — G2ep2 — ag3ps) =0
p3(rs + aseps — assps) =0

1 = a11pP1 + a12pP2
= To = —QA21P1 + Q2aP2 + A23P3
r3 = —agzP2 + a33D3

Let 1 = r1 —a11 N1 — a12Na, 3 = 19+ a91 N1 — a2e No — as3 N3, and x5 = r3+azeNo —
az3N3. Then, we set
r1 = (aupr + a12p2) — a1 Ny — a1 Ny
= a11(p1 — N1) + a12(p2 — M),
Ty 1= (—axp1 + APz + az3ps) + az Ny — az Ny — ax N3
= —ag(p1 — N1) + ag2(pa — Na) + asz(ps — N3),
r3 1= (—azapy + azsps) + azeNo — azzN3
= —aza(p2 — Na) + asz(ps — N3).

Now, we define a function L by
L(N1, N2, N3) = c1[N1 — p1 In (N1)] + e2[N2 — pa In (N2)] + ¢3[N3 — p3 In (IN3)]

3
= a[N; = piln ()],
=1

where 2 = #2 % = %3 and ¢; > 0, for ¢ = 1,2,3. Then L(Ny, Ny, N3) >

a1’ c2 as2

L(p1, p2, p3), for all (N1, Na, N3) # (p17p27p3)
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) 1 1 1
L(Ny, N3, N3) = c1(1 — py - F) - N1y + (1 —po - F) - Nowo + c3(1 — p3 - ﬁ) - N3z3

(
1 2 3
= ¢1(N1 — p1)z1 + c2(Ng — p2)xa + c3(N3 — p3)xs
(

)
= c1(Ny — p1)[ann(p1 — N1) + a1a(p2 — N2

ca(Na — pa)[—aai(pr — N1) + agz(p2 — N2) + ags(ps — N3
c3(N3 — p3)[—azz(p2 — N2) + asz(ps — N3)
= —ayc1(Ny — p1)? — ageca(Na — p2)* — asscs(Ny — ps)°
+ (—aize1 + agic2) (N1 — p1) (N2 — p2)
+ (a2 + asac3)(Na — p2) (N3 — p3).

Since i—f = Z;i and 2 = Ziz —Q12C1 + A21Cy = —a93Cy + asacy = 0, then

L(Ni, Noy N3) = —anci(Ny — p1)? — asaca(Ny — po)? — azscs(N3 — p3)?
3
= - Z aici(Ni = pi)2
i1

ie. for all (N, Na,N3) # (p1,p2,p3), L(N1, N2, N3) < 0 and L(py, pa.ps) = 0.
Therefore, L is a Lyapunov function on {(Ny, N, N3) : Ny > 0, Ny > 0, N3 > 0}. By
Theorem 2.4, the assertion holds.

Finally, let us compute the recovery rate at the stable equilibria Fy = (1,0, 1)

_ (14+af—a+ta? 1+B—a 1+aB+B+82
and E3 = ( 11208 0 142087 14208

we only compute the recovery rate of the stable equilibria Fs, F3 when § = 1. Of

), respectively. For arithmetical convenience,

course, we can use similar method to calculate the recovery rate at the stable equi-
librium Fj5 for the other case. For § = 1, the recovery rate at the stable equilibria

L5, E5 are summarized in proposition 4.4.

Proposition 4.4: Let § = 1. Assume that Ey and Ej3 are stable equilibria. Let «y
be the solution of the equation o® — 20 + 3a — 1 = 0.

(a) The recovery rate at the stable equilibrium Es is &« —2 when 2 < a < 3. It means
the recovery rate at the stable equilibrium FEs is increasing with respect to a.

(b) The recovery rate at the stable equilibrium FEs is 1 when o > 3. It means the

recovery rate at the stable equilibrium FEj is constant.
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3a—a?+a’
1+2«

1+a?
Iroa when oy < a < 2.

(c) The recovery rate at the stable equilibrium FEj is when 0 < a < ayp.

(d) The recovery rate at the stable equilibrium FEj is

Proof:
(a)(b)Let g = 1. By Proposition 4.1, 4.2, we have Fy = (1,0, 1) exists and is stable

when a > 2. At F», the Jacobian matrix is

-1 -« 0
0 2—a O
0 1 —1
and its eigenvalues are A = —1,2 — a, —1. So, the dominant eigenvalue Ay, at Fs is
2—a if2<a<3,
-1 if > 3.

Therefore, the recovery rate p = |Re(Agom)| at Eo is
a—2 if2<a<3,
1 if o > 3.

(c)(d) Similarly, F3 = (}igju 2o L) exists and is stable when a < 2. At E, the

Jacobian matrix is

_ 14a?
1+2« 0 3 0
=@ | ) PN — o
1t AT
0 3+a _ 34«
1+2« 1+2a

and its eigenvalues are
1+a0?> 3a—a?’+a® 3+«
1420’

© 142’ 1+2a
Since (i) 1+a? <3+afor 0 <a<2;(ii) 3a—a?>+a® <1+a? for 0 < a < ap;
(iii) 3o — a? 4+ a® > 1+ a? for ap < a < 2, where qy is the solution of the equation
a® —a? + 3a — 1 = 0. By Maple, we can compute ag ~ 0.4301597088. So, the

dominant eigenvalue Ay, at Fj3 is

_ 3a—a?+a3
{ o if 0 < a < ap,

14+ :
— it if g < a0 < 2.

Therefore, the recovery rate p = |Re(Agom)| at E3 is

14+2a

1+ :
e if o < v < 2.

2 3 .
{?W“—JFO‘ if 0 < a < ayg,

The result follows.
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5 Genetic control system

In this section, we mention a basic model in genetic control system. The following
system has been discussed by [16] as a model for a genetic control system. The
activity of a certain gene is assumed to be directly induced by two copies of the
protein for which it codes. In other words, the gene is stimulated by its own product,
potentially leading to an autocatalytic feedback process. In dimensionless form, the

equations are

dx

EZ_MC_HJ (5.1)
dy 2 '
dt 1+ 22 y

where x and y are proportional to the concentrations of the protein and messenger
RNA from which it is translated, respectively, and a,b > 0 are parameters that

govern the rate of degradation of x and y.

First, we shall prove a simple result toward the system (5.1). The result is as

follows. It can be proved from Bendixson’s Negative Criterion.

Proposition 5.1: There does not exist periodic solution in the first quadrant
{(z,y) : 2 > 0,y > 0} for the system (5.1).

Proof:

On {(z,y) : > 0,y > 0}, the divergence of the vector field is
0 g, x*
2 (- g —by)=—a—b=—(a+b) <0.
895( ax+y)+ay(1+x2 ) a (a+0b) <

By Theorem 2.5, the assertion holds.

Next, we will show that the system (5.1) has three equilibria when a < a4,
where a..;; is to be determined. Moreover, two of these equilibria coalesce in a
saddle-node bifurcation when a = a..;;. Then we will sketch the phase portrait
for a < aqit, and give a biological interpretation. These results are summarized in

proposition 5.2, 5.3.

Proposition 5.2 [15]: The system (5.1) has three equilibria when a < a4, where
aerit = 1/2b. In particular, two of these equilibria coalesce in a saddle-node bifurca-

tion when a = agpi.
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Proof:

One of the most useful tools for analyzing nonlinear systems of differential equa-
tions (especially planar systems) are nullclines. If we determine all of the null-
clines of the system (5.1), then the intersections of the z- and y-nullclines yields

the equilibria. From the system (5.1), we have the nullclines are given by the

2

line y = ax and y = Wi To find a..;, we compute the equilibria directly
2

and find where they coalesce. Since the nullclines intersect when axr = m,

the equilibrium (0, 0) always exists for any parameters a,b > 0 and there are equi-

S x %\ (14+v/1—4a2b2 14+/1—4a2b2 1—v1—4a2b2 1—/1—4a2b2\ : 212 :
libria (z*, y*) =55, ), (e, ) if 1 —4a’b® > 0, i.e.

ab < 1/2. So, these two equilibria coalesce when ab = 1/2 and therefore a..;; = 1/2b.

The assertion follows.

The nullclines also provide a lot of information about the phase portrait for
a < aeq- The vector field is vertical on the line y = ax and horizontal on the curve
Yy = 1;(%212) It appears that the equilibrium (1’\/;3“%2, 1"/12;4“21’2) is a saddle and
the other two are sinks. To confirm this, we turn to classify these equilibria.

Proposition 5.3 [15]: If the system (5.1) has three equilibria, i.e. @ < a4 then the

.1 . —A4a2}b2 —4a2}p2 _ —4a2h2 — —A4a2b2
equilibria (0,0) and (1+‘/§af‘1 o) 1+‘/12b4“ %) are stable and (1 ‘/éagm 1 ‘/1%4“ Ly

is unstable.

Proof:

From the system (5.1), we find the Jacobian matrix at (z,y) is

—a 1
A= o .
((1—3902)2 _b>

A has trace 7 = —(a +b) < 0, so all equilibria are either sinks or saddles by
theorem 2.2. At (0,0), the determinant A = ab > 0, so the origin is always a stable
equilibrium. In fact, it is a stable node, since 7% — 4A = (a — b)? > 0 (except in the

degenerate case a = b). For the other two fixed points, we can compute that

2z 2 —1+ (2)?
1+ (2)?] 1+ (2) 1+ ()
At (1_‘/2;“25’2, 1"/12;4“%2), the determinant A < 0 since 0 < 1=Y1=1a%b" Vé;gw < 1. Hence,
we have the equilibrium (1"/53“2”2, 1’\/12’1)4‘121’2) is a saddle. At (1“/;;“2”2, 1“/12’1)4“21’2),

the determinant A = ab — ityi-da b V;;‘“sz > 1. So,

[H?—f)gp = ab[l — ﬁ] < ab since
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NG (z)

1+‘/§;b4“2b2, 1+‘/12_b4“2b2) is a stable node. This completes the proof.

72 —4A = (a + b)* — 4ab 2—5‘)2]2:(&—6)24—[1+8—%]2>(a—b)2>0. Thus, the

equilibrium (

The phase portrait and the nullclines for the system (5.1) when a = 0.92 and
b = 0.5 are plotted in Figure 23. And we plot the bifurcation diagram for (5.1) when
b= 0.5 in Figure 24.

X'=-—ax+y
Yy ==by+x1+xd) b=05

i I L
2 25 3

Figure 23: The phase portrait and the nullclines for the system (5.1) when a = 0.92
and b = 0.5.

5 2!

Figure 24: The bifurcation diagram for the system (5.1) when b = 0.5.
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More importantly, the stable manifold separates the plane into two regions,
each a basin of attraction for a sink. The biological interpretation is that the system
can act like a biochemical switch, but only if the mRNA and protein degrade slowly
enough-specifically, their decay rates must satisfy ab < 1/2. In this case, there are
two stable steady states: one at the origin, meaning that the gene is silent and

there is no protein around to turn it on; and one where x and y are large, i.e.

13252 1252
(x,y> — <1+\/;a£1a b 71Jr\/12b4a b )

the high level of protein. The stable manifold of the saddle acts like a threshold;

it determines whether the gene turns on or off, depending on the initial values

, meaning that the gene is active and sustained by

of x and y. Finally, let us compute the recovery rate at the stable equilibrium

(1+\/1—4a262 14+v/1—4a2b2
2ab ) 2b

1/2. Of course, we can use similar method to calculate the recovery rate at the

stable equilibrium (A=W VISV fo the other case. When b = 1/2, the

characteristic equation of A is

). For arithmetical convenience we only investigate for b =

—1+2?
\2 D)) W A
+(a+1/2) +2(1+x2) 0

So, its eigenvalues are given by

—a2 \/_7,122
o —(a+%)i\/(a+%)2—2a[%]
= 3 ]

Therefore, the dominant eigenvalue

—a2+(1+v1—a?)2
—(a+§)+\/(a+§)2—2a[%]

)\dom = 5 .
At the stable equilibrium (1“/;;“21’2, 1+\/12_b4“2b2), the recovery rate
1 1 —a?+(1+v1—a?)?
R = T V0ot 32— 2al g
P = dom 9 .
Let f'(a) = (a+3) — \/(a+ 32— Qa[ﬁﬁf—fg‘gf]. By Matlab, we calculate

f'(a) = 0 only when a = a, ~ 0.4676, f'(a) > 0 when a < a,, and f'(a) < 0
when a > a,. Then f has a local maximum at a = a, ~ 0.4676. Therefore, the
maximum recovery rate occurs for a = a, &~ 0.4676. To sum up, if we are using
the recovery rate as an indicator of the system (5.1), we will have more warning of
the upcoming transition when a, is far enough from a..;;. So far, we have seen that
aerit = 1 and a, ~ 0.4676 when b = 1/2, it will help us judge the dynamics of the
system (5.1) when b = 1/2.
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