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Preface

Digital search trees (DSTs for short) and their generalizations such as bucket digital search
trees (b-DSTs) are fundamental data structures in computer science. These trees are built
from records whose keys consist of 0-1 strings. In this thesis, we will consider random
DSTs which are obtained by assuming that the bits of the keys are randomly generated.

Characteristic parameters of random DSTs are random variables and their analysis
has attracted a lot of attention in recent decades. Examples of parameters considered in

previous works include: the depth of a random node [5, 12, 15, 17, 18, 19, 20, 22], the
distance of two random nodes [1], the number of external-internal nodes [5, 9, 15, 21, 13],
the internal path length [5, 8, 10, [1], and the size of the tree [/, 9]. For the analysis,

several interesting methods have been proposed, most of them belonging to the field of
analytic combinatorics.

In this thesis, we focus on the internal path length of DSTs.. We will introduce the
techniques which have been devised for the analysis of the internal path length. Moreover,
we will give a new method, which will appear in a forthcoming work of Fuchs, Hwang,
and Zacharovas, to improve the analysis of the internal path length of b-DSTs.

The purpose of this thesis is twofold. First, we want to give a self-contained survey
of the techniques used in the analysis of DSTs and the results achieved. Here, we will
mainly follow previous works, but also introduce some technical improvements. Secondly,
we are going to use the new approach of Fuchs, Hwang, and Zacharovas mentioned above
to obtain exact and numerical results concerning the leading constant in the asymptotic
expansion of the variance. In particular, our results will simplify and improve previous
results.

This thesis is organized as follows: in Chapter 1, we introduce the techniques which are
of importance in the analysis of DSTs. In Chapter 2, we present results concerning mean
value and variance of the internal path length and explain how they can be proved with
the methods from Chapter 1. Moreover, we also give a short survey of results concerning
other parameters. In Chapter 3, we introduce the new method and explain our new
findings concerning the leading constant of the variance.
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Chapter 1

Some techniques

In this chapter, we collect some analytic techniques, such as Rice method [0] (in Section
1.1), Mellin transform [2] (in Section 1.2), Poisson transform [/ 1] (in Section 1.3) and
singularity analysis [3] (in Section 1.4). These methods will be the main tools for deriving
our results in Chapter 2 and Chapter 3.

1.1 Rice Method

Rice method is fruitful for finding the asymptotic expansion of sums of the form

k=0
The starting point is the integral representation:

Lemma 1. Let C' be a positive oriented closed curve encircling the points 0,1,--- n, and
let f(z) be a function which is analytic with in C. Then, we have

z”: <Z) (=1 (k) = (;Z’n /Cf(z>z(z - 1)7!- G &

k=0

Proof. This follows by an application of the residue theorem: The integral equals 27

times the sum of the residues of the simple poles at the points 0,1, --- ,n. For each k, we
have
n! n!
R = (=" F————f(k). 1
z:elff(z)z(z—l)---(z—n) (=1) k:!(n—k;)!f( )



Remark. The kernel of the integral could be written as

n! T+ Dl(z—n) . . .
2(z—1)---(z—n) L(z+1) = (=" B(n+1,-2),

where B(z,y) is the classical Beta function.

Remark. Sometimes the sum might be taken over the integers from ng,---,n. Then
Lemma 1 still holds when C' is changed to enclose just those points.

Rice method. Suppose we have an explicit sum of type (1.1). Then the Rice method
allows us to compute an asymptotic expansion by using the following steps:

Step 1. Extend f; which is defined only on the integers to an appropriate meromorphic
function f(z) which is analytic at the points 0,1, - ,n

Step 2. Choose a suitable contour C' which encircles the points 0,1,--- ,n and consider
the integral

_ (ibe n!
o= W/Cf(z)z(z— 1)---(z—=n) dz.

Step 3. By the residue theorem we obtain

E Contributions from the other
A ( ) ) + { poles inside the contour C.

Step 4. Estimate A.

To carry out Step 4 one often needs growths properties of f(z). Therefore, we give
the following definition:

Definition 1. A function f(z) is said to be of polynomial growth in an unbounded domain
Q if it is analytic in € and satisfies

[f(2)| = O(I2]"), (1.2)
for some non-negative integer r as z — oo in Q.

Remark. Suppose f(z) is of polynomial growth. Then, the integral

/f z—ln! (z—n)dzﬁo

as C' becomes large (for instance if we choose larger and larger circles).

2



The following are two examples to demonstrate the Rice method.

FExample 1. Consider the sum

k=

[y

Step 1. f(z) = 1/z is obviously a suitable extension of the sequence 1/k.
Step 2. We choose the curve C' to be a circle with radius larger than n centered at 0.

Step 3. The kernel of A has a double pole at 0, simple poles at 1,2, ---  n, and is analytic
everywhere else. Thus

Step 4. Clearly, f(z)is of polynomial growth, thus A converges to 0 as soon as C' becomes
large.

Hence, we have

3

o =

k=1

— Hn — IOgn oo BT O(n_l)a

=

where H,, are the harmonic numbers and v = 0.57721--- is the Euler number. The
asymptotics of the harmonic numbers is well-known (see Example 5 in Section 1.2 for a
proof).

Ezxample 2. Consider the sum
A=Y (”) (~1)'Qx2,  n>1L
k )
k>2

where @, = [],<,<, (1 —277).



Step 1.

Step 2.

Step 3.

We introduce the function

Qw=(1-3)(1-7)(1-%) .

Note that @, = Qu/Q(27") where Q4 := Q(1) = lim,, ., @, = 0.288788-- -,
and Q. /Q(27°7?) is analytic on [2,00) which gives the appropriate extension.

Take as C' a large segment of the line R(s) = 1/2 closed to the right by a large
semi-circle which encloses the points 2,3, -+, n.

Note that the zeros of Q(27*%2) all satisfy 27** = 1 with 7 < 1. Thus, the
kernel of A has poles at 1 £+ (27mik)/log2 (one double pole at k = 0 and single
poles for all k£ with k& # 0) inside C'. To find the contribution at 1 we use Taylor
expansion.

Here the following fact will turn out to be useful:
If G(2) = [[er 9x(2); then G'(2)/G(2) = > 1 cr 9x(2)/gr(2). From this it follows

that if F'(z) =[];c (1- fj(z))_l for some index set R, then the Taylor series
expansion of F' at a, if it exists, is given by

Consequently we obtain the series expansions

n! 1

o R e B

2<j<n
n

(1 (e =)= 1)+ O((2 — 177))

e +n(Hp — 1) +O0(z - 1).

z—1

And

Qe /Q2 ) =Qu ] — 27°%)

J<1
21 )
i<

=1—alog2(z—1) + O(z — 1)?,



Whereozzl—k%%—%—f—---. Thus, we obtain

Qoo n! B 1 Qs n!
QR z(z—1)---(z—n) 1—-22H Q2= ) z(z —1)--- (2 —n)
1 1
:<(2—1)10g2 +§+O(z—1))
x (1 —alog2(z—1) +0(z —1)?)
x ( n : +n(Hn_1—1)+(9(z—1)>.

z —

The residue at z = 1 is the coefficient of 1/(z — 1) in the above product:

n 1 ¥ - 1
A AL S SR
log2( 1—1)—nla 5 nlogyn +n log? a+tg)+ (1)

The poles at 1 £ 27wik/log2 with k£ # 0 add a small contribution 6(n) to the
linear term [5], where
1 2kmi -
) — F( . . ) 2kmlog2n.
(n) log 2 Z log 2 i

k0

Step 4. On the right semi-circle, A converges to 0 as C' becomes large since
Q'@ = [[(1 - 27497 = O(J|")
j<1

as |z| — 00. On the left segment we have the bound

y </_Z F(nFanl;Lzl_) ) dy) =O0(n'?).

y—1 1 1/2
A, =nl —_— = = : 1.
n nog2n—|—n(10g2 a+2+5(n))—|—(9(n ) (1.3)

Thus we have

1.2 Mellin Transform

The Mellin transform (Hjalmar Mellin 1854-1933, Finish mathematician) is the most
popular transform in the analysis of algorithms.

Definition 2. Let f(z) be a continuous function over (0,00). Its Mellin transform f*(s)
is defined by

F¥(s) = MIf(): 5] = /O ¥ F@)e -t dr.



Table 1.1: Some common Mellin transforms.

f(x) f*(s) (o, 8)

e ['(s) (0, 400)

e i0(3s) (0, +00)

T - (0,1)

log(1 + z) —— (—1,0)

H(z) = locpr (0, +-00)

2*(log z)*H () % (—a, +00), k integer

Basic properties. The. following lemma gives the conditions for the existence of the
Mellin transform of a given function f(x).

Lemma 2. The conditions

fg) = O | fle) = O),

20t s—too
when u > v, guarantee that f*(s) exists in the strip —u < R(s) < —v.

Proof. From the decomposition

/000 f(z)z" ' dx

1 0
< [aptotas [~ G0 0
0 1

1 oo
X CY/ qur?R(s)fl dz + 6/ z,v-%%(s)fl dl’,
0 1

where «, 3 are some constants. The first integral exists for u + $(s) > 0 and the second
for v+ R(s) < 0. Thus f*(s) exists in the strip —u < R(s) < —v. 1

Remark. From the above lemma we see that the domain of existence of a Mellin transform
is a complex strip, and the largest one is called the fundamental strip. We introduce the
notation (c, 3) for the open strip of complex numbers s such that o < R(s) < .

Table 1.1 presents some common Mellin transforms with their corresponding funda-
mental strips. These formulas are simple and easy to check.

Moreover, some basic transformation rules are given in Table 1.2. These rules are also
easy to confirm.



Table 1.2: Functional properties of Mellin transform.

() f*(s) (o, 0)
By oavf(x) f*(s+v) (a —v,B—v) Shift
Fy  f(ar) SE) {pav, pB) p>0  Multiple
f(1/z) —f*(=s) (=6, —a)
F o f(ux) S (s) (o, B) >0
Do Af (i) (0, Akpg”) - ¥ () By linearity
Fy f(z)logz 4 (s) (o, B) Differential
F Of() —sf*(s) (', B) 0ot
L f(x) —(s=1)f*(s=1) {a'= 1,68 +1)

Jo f(t)dt % )

Inversion. We can see that the Mellin transform is closely related to the Fourier trans-
forms (as well as the Laplace transform): Let x = ¢ ¥ and s = g + it, we obtain

L /0 4 f(x)z*tdz = /_ Z fle¥)e Ve ™ dy.

Thus the Mellin transform turns into a Fourier transform, and the inversion theorem for
the Mellin transform follows from that for the Fourier transform.

Theorem 1. Let f(x) be continuous on (0;00) and assume that its Mellin transform has
fundamental strip (a,b). Then

P L / T p)atds, (1.4)

218 Joioo

where a < ¢ < b.

Asymptotic properties. The usefulness of the Mellin transform comes from its asymp-
totic properties as we will see below. In particular we have two important results, namely,
the direct and converse mapping theorem.

Before we can give these results, we give the notation of the singular expansion: For
a meromorphic function ¢(s) with poles in €2, the singular expansion is

= Z Ak(s)

ke



where Ag(s) is the Laurent expansion of ¢ around s = k up to at most O(1) term

. For
example, since
! ! 1+0 0 d
m L +0(s) (s—0), an
1 1

oo so1 1Tole-1) =),

then we write

1 1
SRS T I
s(s —1) s o Ls—1 a1
for the singular expansion of 1/s(s — 1).

The prototype of the direct mapping is the function e™*: we know its Taylor expansion
at 0 is

oo =3 7
e T — ( ) .Tk,

k!

k=0

and its Mellin transform

R S i [(s+k+1)
MR BT e

That means I'(s) has poles at the points s = —k with positive integer k, and hence we
have the singular expansion

o0

P(s) =3 (_;:') — < )

jou, | =5+ k

We can observe that one can map the Taylor expansion to coincide with the singular
expansion by the rule

1
s+ k

.’Ekl—>

In fact, this is a general phenomenon.

Theorem 2. Let f(x) be continuous with its Mellin transform f*(s) having nonempty
fundamental strip {(«, ).

(i) [Asymptotics for  — 0] Assume that f(x) has the following asymptotic expansion
asx — 0

flz) = Z cex2*(log )" + O(27), (1.5)
€k



where —y < —& < « and k is non-negative. Then f*(s) is continuable to the strip
<_77ﬁ> and

Zcf’“ (s +&) 1154'-1 (s € (=7, 8)). (1.6)

(71) [Asymptotics for © — oo| Assume that f(x) has the asymptotic expansion of form
(1.5) where now 3 < —§ < —v as © — oo. Then f*(s) is continuable to the strip
<Oé, _7> and

chk S—l—f l]i'q (S € <057_PY>)- (1.7)

Proof. Since M[f(1/x);s]. = —M|f(x); —s], we only need to prove the case x — 0. By
assumption, the function

= Z cex 7 (log )"
&k

is O(z7). In the fundamental strip we also have
il 1 .
f*(s) — / g(IL’)IL‘s_l dz —|—/ ch,kx”g_l(log l‘)k da +/ f(l‘)l‘s_l de.
e 0 ¢k 1

The first integral is analytic in (—;00)-and the third one in (—oo, ). Thus the sum of
those two is analytic in the strip (=, ). After integrating the second integral becomes

—1)kE!
Z Cg,k#.

&k

Hence, f*(s) exists in (—v, 3) and has the singular expansion of the form (1.6). |

Remark. From the proof of Theorem 2, we can see that there is a principle: Let g(z)
be a truncated asymptotic expansion of a given function f(z) at either 0 or co. Then
the Mellin transform of f(x) — g(z) does not change, but only the fundamental strip
gets shifted. For example, M[e* — 1;s] = I'(s) with the fundamental strip (—1,0), and
Me* — 1+ z;s] = T'(s) with the fundamental strip (—2, —1).

The following example appears in the Table 1.1.



Ezample 3. The function f(z) = (1 + x)~! has fundament strip (0,1) and its Mellin
transform is

(e

f*(s) = /000(1 + ) 2 de = T(1 — s)I(s) =

sinms’

Then the two expansions

14z —
Lo i(—l)”_lx_" (# — +00)
I+ & ’

translate into

_1)n71

S—n

B
S
)

NE

(s € (0,00)).
This is consistent with the known form,

F5(s) = Shfm 2 i‘j)n (s € C). (1.8)

The next question that arises is whether or not a converse of the direct mapping
theorem still holds. Under some conditions the-answer is yes as the following theorem
demonstrates:

Theorem 3. Let f(x) be continuous with its Mellin transform f*(s) having nonempty
fundamental strip {a, [3).

(i) [Asymptotics for x — 0] Assume that f*(s) admits a meromorphic continuation to
the strip (v, 3) for some v < '« with a finite number of poles there, and is analytic
on R(s) = . Assume also that there exists a real number n € (o, 3) such that with

r>1,
fH(s) = 0O(s[™"), (1.9)
when |s| — oo in vy < R(s) < n. If f*(s) admits the singular expansion for s €
(7, ),
1
* -
f (8) - gzkdf,k (S _ €>k+17 (110)

10



then an asymptotic expansion of f(x) at 0 is

—_1)*
ZL‘) = Zd§7k< k')
&k

¢ (log )" + O(z77). (1.11)

(ii) [Asymptotics for x — oo| Similarly assume that f*(s) admits a meromorphic con-
tinuation to the strip («,v) for some v > [ and is analytic on R(s) = . Assume

also that the growth condition (1.9) holds in (n,) for some n € (o, B). If f*(s)
admits the singular expansion (1.10) for s € (8,7), then an asymptotic expansion

of f(x) at oo is

- Z dg,k%xg(log )" 4+ O(x™). (1.12)

Proof. As above it suffices to prove the case x — 0. Let £ be the set of poles in (v, ), and
set a large rectangle R(T') with corners at the four points i+ i7", v =47 in the direction
of counter-clockwise. Assume that 7" is large enough such that R(7") contains all poles in
Q2. Consider the integral

J@ =L aeds,

271 R(T)

we know J(7') is equal to the sum of residues by Cauchy’s theorem, which is

ngkRes< k+1) Zdﬁ’f z ¢ (log )"

Now let T tend to +e0. By assumption J(T') along the top and bottom lines of R(T) is
bounded by O(T~") which vanishes as T — oco. On the left we have the bound of the

form
1 Yy+1i00
— / f*(s)z™*ds

20 oo

< 0(1)/0 T =06,

On the right the integral converges to f(z) by the inverse theorem (1.4) since f(z) is
continuous. This proves the claim. |

From Theorem 2 and Theorem 3 we know that the poles of f*(s) are in a one-to-one
correspondence with the terms in the asymptotic expansion of f(x) at either 0 or co.

11



Ezxample 4. The function

™

fH(s) =T(1~5s)

sin s

is analytic in the strip (0,1). Note that 7/sin7s = O(e~™%®)) as |s| — oo, and a similar
exponential decay holds for I'(1 — s) by the complex version of Stirling’s formula:

D(o 4 it) ~ V2r|t|7Y2e ™2 (t = o0).

The singular expansion of 7/sin7s was already considered in (1.8). Thus for R(s) < 1,
we have the singular expansion

> n!
FAs) =D (=" :
20

Then the asymptotic expansion of the original function is

o0

flx) ~ Y (=) ala . (2= 0):

n=0

Sometimes f*(s) has a vertical line of regularly spaced poles. In this case, we need
the following weaker form of the growth condition (1.9).

Corollary 1. The conclusions of Theorem 3 remain valid assuming only a weaker form
of the growth condition (1.9) along a countable set of horizontal segments |3(s) = Tj]
where T; — +00.

Proof. Restrict T to belong to the discrete set 7; which must avoid the poles of f*(s) in
the proof of Theorem 3. |
Applications. Mellin transform is effective in the asymptotic analysis of harmonic

sums.

Definition 3. 1. A harmonic sum F(x) is a sum of the form

F(z) =Y Mgluz), (1.13)

where Ay, are called “amplitudes”, uy are called “frequencies”, and g(x) is called the “base
function”.
2. The Dirichlet series of the harmonic sum is the sum

A(s) = Z)\k,u,;s. (1.14)
!

12



Remark. A Dirichlet series (1.14) has a half-plane of absolute convergence (o,,00) and a
half-plane of simple convergence (., c0) where g, — g, > 0.

Remark. The property of polynomial growth (1.2) in a closed strip holds for many Dirichlet
series.

From F3 in Table 1.2, we have
M [Z Mg (i) S] = ( > Aku;5> g% (s)
kek kek

where K is a finite set. This formula can be extended to the harmonic sums (infinite
sums) as defined above:

Lemma 3. The Mellin transform of the harmonic sum (1.13) is defined in the intersection
of the fundamental strip of the transform of the base function and the domain of absolute
convergence of Dirichlet series, and it is given by

F*(s) = A(s) - g (s). (1.15)

Proof. Since both g*(s) and the Dirichlet series are analytic in the corresponding conver-
gence regions, the interchange of summation and integration is valid by Fubini’s theorem.

To apply the converse mapping theorem for harmonic sums (1.13), we have to give
another definition of controlled growth (we have already introduced polynomial growth
in Definition 1).

Definition 4. A function ¢(s) is said to be of exponential decrease in a closed strip if for
any r > 0,

¢(s) = O(|s| "), (1.16)
as |s| — oo in the strip.

Now we suppose that the Mellin transform of the base function is of exponential
decrease and the Dirichlet series of the harmonic sum is of polynomial growth in an
extended region of the complex plane.

Theorem 4. Consider the harmonic sum F(x). Let the transform of the base function
have the fundamental strip {c, ), and the domain of simple convergence of Dirichlet
series is (0., 00). Assume that

(i) 0. < [ and let o/ = max(«,0.);

13



(ii) g*(s) and A(s) admit a meromorphic continuation in {7y,3) and are analytic on
R(s) =, for some v < «;

(iii) on the closed strip (v, (/' + 3)/2), g*(s) is of exponential decrease and A(s) is of
polynomial growth.

Then F(x) converges for all x > 0 on (0,00). An asymptotic expansion of F(x) asx — 0
till an error term O(x~7) is obtained by termwise translation of the singular expansion of
F*(s) = A(s)g™(s) according to the rule

1\
¢ C'( 1 ¢

T o (log x)*.

Proof. By Theorem 3 it suffices to show that the fundamental relation F*(s) = A(s)g™(s).
First we select an arbitrary o in'(/, 8) and take oy such that o/ < o9 < 0. Then the
inversion theorem provides

oo+i00o N
ang i) = / . ZA—ZQ*(S)deS-

~ 2mi o—ico o3 Hn

Since |A(s)| < C(|s| + 1) for some constant C' (see [2]) we have

N
)\ 8
2

which permits to apply the dominated convergence theorem and we obtain

< C(lsl £1). g (8)] - 2= = O(™*)),

e / P ielsyg () ss:

270 J oy —ico
Thus, the strip (o/, 5) is included in the fundamental strip of G(z). On the other hand,
since

op+ioco

= 0(z™™),

St 5 220

then the dominated convergence theorem applies once more

F*(s) = lim Z/\”g )zt da = A(s) - g*(s).

N—o0
n=1

This means that F*(s) = A(s)g*(s). 1

14



Remark. Similarly, a symmetric result holds near + — oo. Thus under the condition of

Theorem 4,
Z )\ng(,unx) ~ * Z 133; (g*(s)A(S>gj—s)’
k p

As © — 0 the sum is over the poles to the left of the fundamental strip and the sign is
+; and as * — oo the sum is over the poles to the right of the fundamental strip and the
sign is —.

Ezxample 5. The harmonic number H,, is

n

Thus the function

satisfies h(n) = H,, and is a harmonic sum with Ay = ux = 1/k and g(z) = z/(1 + ). Its
Mellin transform.is

h*(s) :M[ (dilog ] st .

™

=i C(]_—S),

SIN 7T$s

with fundamental strip (—1,0). Note that for fixed o < 0, one has
¢(o +it) = O(]t]1/27),

see [21, p. 95|, and the exponential decay holds for 7/sinzs (see Example 4). The
singular expansion to the right of this fundamental strip is

h*(sx——v Z kél— )

Thus we have the expansion at co:

H, =logn+~v+0O(n™).

1.3 Poissonization and De-poissonization

Poisson transform was introduced by Kac (1949). Sometimes a Poisson version of a
problem (called Poisson model) is easier to solve than the original one (called the Bernoulli
model). The purpose of this section is to introduce the basics of this important method.

15



Table 1.3: Some Poisson transforms and their properties

9n G(Z)

Constant Constant
(_1)n 6_2Z

a™ e(a—l)z

o 2k 2*

" =

9n = >0 P (fr + k), p+q=1  F(pz) + H(qz)
Gn = ZZ:O (Z)pkqn_kfkhnfka ptqg=1 F(pz)H(qz)

Poisson transform. Consider a sequence (g,), we define the Poisson transform (or
Poissonization) G(z) as follows:

Definition 5. Let (g,) be a sequence. ‘Then the Poisson transform é(z) of (gn) is defined
as

G(z) = Zezgn;—T (1.17)

n>0
for arbitrary complex z.

Some Poisson transforms and their properties are presented in Table 1.3. Next, we
give an example that is important in applications.

FExample 6. Consider the recurrence
“ (n
= ay, k _n—k e 2 1
gn = a +ﬁk§0 (k>p q" (g + Gu-k); n

with initial value go. Then, we find

G(2) = A(2) + B(G(p2) + G(42)) — goe ™,
where G and A are the Poisson transforms of gn and a,, respectively.

General de-poissonization theorems. Now we consider a sequence (g,) and its Pois-
son transform G(z) (we also assume that G(z) is entire). If G(z) is well-known, then one

16



can extract the coefficient g, = n![2"](G(2)e?) directly. Our aim is to extract asymptoti-
cally g, from G(z). Our starting point for this will be Cauchy’s formula:

~ z | m . : ;
g = G(z)e ds — L/ G(ne™) exp(ne™)e ™" dt. (1.18)

271 ntl nn2m

n!

—T
Next, we give the definition of a linear cone:

Definition 6. The region in the complex plane
Ly={z:]argz| <0},
where |0| < /2 is called a linear cone.

Moreover, we need the following two lemmas. The first one is well-known, and the
second one is a simple extension of the Cauchy estimate.

Lemma 4. The following identities are true:

| TR r— 0, k=135, ..
—/ 2Fe " da'=
V27 ) o R B 020 . .

(k/2)12k+1/2)

and

/OO xkefax2 dr = 0(67(1/2)0492)
0

where 0 s a positive number.

Lemma 5. Let 6y < 7/2 and § > 0. Moreover, let W(2) be a slowly varying function
(that is, for fived t, lim, oo (¥(tz)/¥(z)) = 1) and assume that

2] > € = 1G(2)] < Bl2|7¥(|2]) (1.19)

for all z € Ly,, where (3 is a real constant. Then, for all < 0y there exist B' and & > &
such that for all positive integers k the following holds in Ly

2] > € = [GW ()] < KB 2" 0(l2]). (1.20)
Proof. See [11]. 1

Now, we first give a basic de-poissonization result that holds for G (z) with a polynomial
bound in a linear cone:

17



Theorem 5. Let CNJ(Z) be the Poisson transform of a sequence (g,) that is assumed to be
entire. Suppose that in a linear cone Ly (0 < 7/2) both of the following two conditions
hold for some real numbers A, B,R > 0, § and o < 1:

(I) Forz e Ly
2| > R = |G(2)| < B|#|"
(O) Forz¢ Ly
12| > R = |G(2)e?] < Ae?
Then
gn = G(n) +0(n"™)
for large n.

Proof. The proof relies on the equation (1.18). By Stirling’s approximation n! = n"e™"/2mn (1+

O(n™')), we have
=(1+0(n! \/;/ (ne®) exp(n(e — 1 —it)) dt
=(1+0(n"

e LA TR = 1 | F
E,=4/ o /|t|e e G(ne") exp (n(e 1 zt)) dt

n e \/27rn e®

z"+

where

dt,

ltle [0

L, ~ it or . R
I, —”27r /_GG(ne )exp n(e 1 zt)) dt.

By condition (O) we obtain that E, decays exponentially to zero for o < 1. Now, we
turn to I,,. First we replace t by t/y/n and let h,(t) = exp (n(e“/\/ﬁ —-1- zt/ﬁ)) Next,

we split 7, into two parts, I}, and I/ (in order to find the Taylor expansion of A, (t)) such
that

logn

V2 / logn

I :—/ é(neit/\/ﬁ> hy,(t) dt
V2T te[—0y/n,— logn|

(ne”/*f) hn(t) dt.

neit/\/ﬁ) hy(t) dt,

G
V2T /te [log n,0/n]

18



Observe that |h,(t)| < e for t € [—0+/n,0\/n], where p is a constant. Then by
condition (I) and Lemma 4 we obtain I}/ = O(nﬁe*"log%). Now, we estimate I). For
t € [—logn,logn] we have the Taylor expansion of h,(t)

ha(t) = e—t2/2(1 - Git\/sﬁ + ;jn + O(ﬁ%)).

Using condition (I) and Lemma 5 for [z| > C¢ with constant C' and z € Ly for 6" < 0,
we have |G'(z)| < C1]z|P~1 and |G"(2)] < Cy|z|?~2 for some constants O} and Cy. Thus

we can expand G (ne“/ ﬁ) around t = 0 as

é(ne“/ﬁ) = G(n) + ity/nG'(n) + Dn(t)E2,

where | A, (t)] < (C + Co)n”7L. Finally, the integral I’ becomes

logn

V 27 / logn

(n) + it\/ﬁé’(n)) (1 , 6“;% + %) dt

logn

r= ljjg"n W+ i/idw)o( L) a

From Lemma 4 and Lemma 5 the first integral is equal to G(n) + O(n®~!). The absolute
value of second integral is smaller than (O] + C3)n”~! by using the above estimate on

A, (t). Finally the third integral is O(n”32log®n). Thus we have I’ = G(n) + O(n®™1)
as desired. 1

DN () hy (1) dt

The next theorem extends the above one to a full asymptotic expansion of g,:

Theorem 6. Consider a linear cone Ly (0 < w/2). Let the following two conditions hold
for some numbers A, B,R >0, and o > 0, 8, and ~:

(I) For z € Ly,
2| > R = |G(2)] < Bl2|"¥(]2]),
where Y (z) is a slowly varying function.;

(O) For all z = pe® with < 7 such that z ¢ L,

p=lz| > R=|G(2)e*| < ApY exp ((1 - a92)p>.
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Then, for every non-negative integer m,

m 1+m

w =33 b,niGY(n +o< <mﬂwm0

=0 7=0
m k
Gi(n) + 30D bigsin GEH) () + O (0w () ) (1:21)
k=1 i=1
where b; j = [x'][y?] exp (zlog(1 + y) — xzy). Note that b;; =0 for j < 2.
Proof. The proof can be found in [I1]. 1

Remark. We present the expansion (1.21) above for m = 3:

~ 1 ~ 1 ~ 1 .~

- (inéw(n) L én2(~}'<5> S %n?’é(ﬁ)(n)) + O (n)).

Mean and variance. Let (X,,) bea sequence of integer random variables, and denote
by F,(y) = E[y*"] the probability generating function. Let

- mez

be the Poisson transform of the probability generating function. We introduce the Poisson
mean X (z) and the Poisson variance V(z) as

X(2) =Ly(51),

V(2) =Lyl 1) +X(2) — X (2),
where Zy(z, 1) and Eyy(z, 1) denote respectively the first and the second derivative of
L(z,u) with respect to y at y = 1.

There is the following relationship between the Poisson mean X (2) and variance ‘7(2)
of X,,, and the Bernoulli mean E[X,,] and variance V[X,,].

Theorem 7. Let X(z) and V(z) + X (2)? satisfy condition (0), and X (z) and V(2)
satisfy condition (I) of Theorem 6 with 3 < 1, e.q., X(z) = O(|2°¥(|z])), and Vi(z) =
O(|z°¥(|z])) in a linear cone Ly and appropriate conditions (O) outside the cone, where
U(z) is a slowly varying function. Then, the following holds

E[X,] =X (n )—§X )(n )+(9( o~ 2\If(n)), (1.22)
V[X,] :?(n)—n)?'(n)uo(max( 51 (n); n? 202 (n ))) (1.23)

for large n.
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Proof. From Theorem 6, we have directly (1.22) for m = 1. Since V[X,] = E[X?]—E[X,]?,
we observe that the Poisson transform of E[X?] is V(z) + X(z)?. Thus by Theorem 6
again

E[X2] =V (n) + X(n)? — g (v<2> (n) + 2nX'(n)* + 2n.X (n) X (n)) +0(n*7?¥%(n))

=V (n) + X (n)? = nX'(n)? — nX (n) X (n) + O (01 (n)) + O (n?~202(n)),
where the last error term is a consequence of nV(n) = O(n®~1¥(n)) (see Lemma 5).
Thus the result follows from V[X,, ] = E[X?] — [EX,]*. 1
1.4 Singularity Analysis
In this section, we restrict our attention to functions with a unique dominant singularity.

By the scaling rule g(z) = f(z€) if f(z) has singular at z = £, we may always assume that
the sole singularity occurs at z = 1, and we consider functions f(z) of the form

2) = (1—z)_°‘(10g1iz>7, (1.24)

with non-negative real numbers o and . Our general objective is to translate an approxi-
mation of a function near a singularity into an asymptotic approximation of its coefficients.
More precisely; when all ho(z), -+, hi(2),9(2) are as (1.24), then

f(2) = ho(2) 4 ha(2) + -+ + hue(2) + O(g(2)) (1.25)
with ho(2) > -+ > hg(z) > g(2) for z — 1, will imply
(2" (2) = hopn + hig + -+ + hyn + O(05)

with hop, > - > hypn > g, for n — oo. We omit all the proofs in this section since they
can be found in [3].
From the binomial expansion, we have, with o # 0,

(1 — 2) = (n +a— 1) _ F(F(n + )

n  T'(a)(n+1)

Then from Stirling’s formula [2"](1 — z)~* has the asymptotic expansion, as n — oo,

<1+Z%), (1.26)

21— ) ~

na—l
[(a)
where e, is a polynomial in « of degree 2k.
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Table 1.4: Some commonly functions and the asymptotic forms of their coefficients.

/) =1/(2)

1 0

log(1—2)~* 1

(1—2)"1 1

(1 —2)"'log = logn +7v+ 5= — ez + ot + O(n°)
(1—2)""(log 1;)2 10g2n+2710gn+72—%2+(9<10%>
(1—2)"2 n+1

Remark. In particular:

. .., > ala—1) ala=1)a—2)(3a—1)
10 S~ 5 (1 T Bt 94n?
a? (o= 1)*(a—=2)(a = 3) 1
i) 48n3 i O(_4>>'

Next, we consider logarithmic factors, that is, f(z) = (1 —2)7®(log (1 — z)~!)” with
a # 0. Similarly, we have the asymptotic expansion

a—1

)~ Fesloan (14 ),

where Cj, = (})I'(c) B

k dsFT(=s) |,
Next, we want to establish our claim in (1.25). Therefore, we have to give conditions
under which the following holds:

We first need a definition.

Definition 7. Let A := A(¢p,n) denote the closed domain

Agm) ={z ||l <n, 2 # 1, |arg(z = 1)| = o},
wheren > 1 and 0 < ¢ < /2.

Then, we have the following theorem:
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Theorem 8. Assume that f(z) is analytic in /N = N(¢p,n), wheren > 1 and 0 < ¢ < 7/2,
and that as z — 1 in A,

fe)=0(0 -2 (1g—)").

—z
for some non-negative integers o, v with o # 0. Then one has
2"1£() = O(n"(log )").
Finally, by the linearity
f@) = h) + f(2) = [f(z) = [2"]11(2) + ["]fa(2)-
We have the following theorem:

Theorem 9. Assume that f(z) is analytic in AN = A(¢,n); wheren > 1 and 0 < ¢ < 7/2,
and that as z — 1 in' A,

£(2) = (1 £2)*(1og 1iz)7<n§‘:"(bg 1iz)_j+0(<bg liz)_m»’

=

for non-negative real numbers a, v with o # 0 and v > m. Then as n — oo,

271 (2) = F?‘;) log” n( z_: i log 7/ n + O(log™" n))

with some suitable constants c}.
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Chapter 2

Results for Digital Search Trees

In this chapter, we first introduce digital search trees and their generalizations such as
bucket digital search trees: Next, we present the results concerning the internal path
length and explain how the results are proved. We also present results concerning other
parameters of DSTs in Section 2.5.

2.1 Digital Search Trees

Digital trees are a general data structure to manipulate sequences which are built over
a binary alphabet {0,1}. There are three kinds of digital trees: “tries”, “Patricia tries”
and “digital search trees”. In this thesis we only consider digital search trees and omit
the others.

Suppose now we have an ordered set-of records, say n of them, and each record has
a key being an infinite sequence over {0, 1}. Then these records are stored in a digital
search tree in the following way: Set k to 1. If n = 1, then the only record is put in a
node and we are finished. If n > 1, then

e The first record is saved in a node (which becomes the root of the tree).
e According to the kth bit of the records in the remaining set:

0: It goes to the left subtree where it is linked as a left child of the root.
1: It goes to the right subtree where it becomes a right child of the root.

We can split the remaining set into two subtrees.

e Finally, the subtrees are constructed by the same process recursively and set k to
k+1.
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A : 101010... G : 101010...
B : 010110... H : 110101...
C : 010001... T : 010101...
D : 101111... J : 101101...
E : 000111... K : 011011...
F : 011101... L : 000110...

00
Sau
(KD

Figure 2.1: Examples of generalized digital search trees for b = 1,2,3 built from 12
records.

Thus we can see that digital search trees are build up of nodes, each node has a record
containing a key and 2 links which point to subtrees. Obviously, the order in which the
keys are inserted is relevant.

Next we equip the set of all digital search trees with a random model. Therefore we
assume that each bit {0, 1} is generated independently with probability p and ¢ = 1 — p.
For p # ¢ this leads to the asymmetric (biased) DST, where if p = ¢ = 1/2, we obtain
the symmetric (unbiased) DST.

Many generalizations of digital search trees have been considered. One of them are so
called bucket digital search trees, where every node can hold up to b records.

The internal path length of a tree is the sum of the lengths of the paths to every
node. More precisely, it is the sum of the number of edges on the path from the root to
each node. In this work we denote by L, the internal path length of a DST built from n
(sufficiently long) records comprised of random digits.

Digital search trees have been quite thoroughly investigated in recent decades. Knuth
[15] and Flajolet and Sedgewick [5] introduced analytical methods for the analysis of
digital search trees. Their research was continued by Flajolet and Richmond [], Louchard
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[17], Szpankowski [22], Jacquet [10], Kirschenhofer and Prodinger [12] and others.

2.2 Internal Path Length for Symmetric DST's

Now we are discussing the internal path length of a symmetric DST. Let 7(n, k) be the
splitting probability which is the probability that the left subtree holds k records (and the
right subtree holds n — 1 — k records). Clearly m(n + 1,k) = (})/2*. Under the condition

of {m(n + 1,k)} we have the recurrence L, 4 4 Ly, + L,_ + n, which implies that the
corresponding probability generating functions F,(z) = E[2"] satisfy for n > 0

Fra(z)=2"27"Y <Z> Fi(2)Fi(2),  Folz) = 1. (2.1)

Mean. Knuth [15] first used an approach suggested by Koheim and Newman [10] to
derive the mean, but his approach is not useful for the analysis of other parameters.
Flajolet and Sedgewick [)] gave another approach to analyze the mean which we will
discuss here.

The expectation f,, = E[L,] can be obtained from the probability generating functions
(2.1) by f, = FJ(1). Consequently,

n

frri=n+ 21_"2 (Z) fe (n=>0), Jo=0.

k=0
The above recurrence falls into the general type discussed in the following lemma:

Lemma 6. Let (z,) be a sequence of numbers satisfying o = &1 = 0,

" /n
Tptl = Apy1 + pa Z <k> zp (n>1),

k=0

where (ay,) is any sequence of numbers with ag = a; = 0;. We define the binomial inverse
relations

iy = kz;(—nk(?;) ap and a, = i(q)k(@ . (2.2)

Then the solution is given by



where Qn = [[1<;<, (1 —277) and

n+l . N
a; — Q41

jn:Qn;T-
Proof. See [11]. 1

Thus we obtain an explicit formula for f,:
= n
fo=S (1) (k) Qs
j=2
This is exactly Example 2 discussed.in Section 1.1. Thus, we have the following theorem.

Theorem 10 (Flajolet and Sedgewick). The average internal path length of a symmetric
digital search tree built from m records is

o JUR |
E[L,| =nlogyn +n (@ ot e + 91 (logy n)) + logyn
2y=1" 5
ZZogQ . i + da(logy ) + O(logn/n),
where y = 0.577216 - - - is Euler’s constant, o =143 +1 +--- =1.606695 - - - , and 6,(x)

and dz(x) are continuous periodic functions of period 1, mean 0, and very small amplitude
(< 1079). The approzimate value of the coefficient of the linear term is —1.7155 - - .

Proof. Collecting all contributions as in Section 1.1. gives the expansion. The pole at

z = 0 yield a contribution of log, n + @ + g — «, and the poles z = ?fg”; yield a periodic

contribution of order n® and so on. 1

Variance. By applying the same technique, Kirschenhofer, Prodinger and Szpankowski
[14] derived the variance of the internal path length. More precisely, they used that the
variance satisfies V[L,] = s, + f,, — f? with s, = F/(1). From (2.1) we get the following
recurrence for n > 0,

o =023 (Dt 042 5 () s+ 27 3 (1)

k=0 k=0 k=0
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and sg = 0. We split it into three parts. Let s, = u,, + v, + w,,, where

Uns1 :Qn(fn+1 . n) + 21—n Z (Z) UL (7’L 2 O), Uy = 0, (233)
k=0
Upgr =n(n — 1) + 217" Z (Z) v (n>0), vy = 0, (2.3b)
k=0
- n u n
Wp+1 :21—n Z (k‘) fkfn—k + 21—n Z (l{f) Wy, (TL > 0)7 Wy = 07 (23C)

k=0 k=0

All of the above three recurrences are of the type as discussed in Lemma 6. Thus, the
solutions of (2.3a)—(2.3c) follow from the binomial relations (2.2), where

i =20 (4+§f ! -—%f AN ) (k>3),  dy=1i =y =0;
K =2Qk—2 j:12j_1 j:12j_1 ) = 3), 0= U = uz = 0;
(2.4a)
=—4Qr2 (k=3), Vo= = s = 0; 4h
) ) i ¥ A A
W =~ Q2 Z 0 Z; (i)Qi—2Qj—i—2 (k =5), Woi=--- =1y = 0. (2.4c)
j—4 i=

Next we focus on the asymptotics of u,. In order to find an appropriate analytic
continuation of y, we can rewriting the sums appearing in (2.4a) as follows:

k-2 [ T
9 — 1 :O‘_Z ok—245 _ '

=1 i>1

e j e
2% — 1 :Zgj_l —ZQk—erj_l’

=1 i>1 =1

where « is as defined in Theorem 10. Thus we may continue #; via the function

X 20 1 J
a(z) = Q(22-7) (4 To- Z 9z—2+j _ 1 Z 2% — 1
gzl j21
z— 2 + j 2z
D e )

j>1

where Qo = 0.28878809 and Q(z) = [];5,(1—1/27). Now, we can apply the Rice method
to obtain the asymptotics of wu,,.
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Next, the recurrence for v, is easier. After simple algebra one proves

vy = 4(;‘) —4f,,

and it is easy to get the asymptotics of v,,.
The appropriate extension of w0, is intricate. From (2.4c) we have

Jj—2

1 = —@“Zjﬁg - with G+ 1) Z()@ NoT
Jj—

1=

Since £(j +1) ~27Q2%,, let n(j+ 1) =&(j + 1) — 27Q%. Then

wk+1

(j 4+ 1) +2JQ2
— Q- 1217

2=10),Z
B x B n(y +2) n(k+7+2)
_Q’“( 2l & ; 20, Z 24 Qg
2 il T W L_L )
R (Xl a2 g o)

All series are absolutely convergent, we may sum them up term-by-term and get

§k+2)  &(k+3) (h+i+2) €0U+2)
25 Qx +2k+1Qk+1+Z< %HiQry;  29Q; >)

Wit1 = Qr—1 ( — 2Qk +

i>2
From an appropriate interpretation for (24 1) (see [11])

2

_1)ro-("2) Qo
et =0 e — 0@

2 2z z 1
2° — E 2 —)
< 1 —Ql—z—r 1 — 22—=z—r + Z (k) 2r+k—1 -1 )

k>2

we immediately obtain the representation for w(z):

§(z+2) , &(z+3) §+7+2) £(U+2)
QZQZ * 2Z+1Qz+1 * ; ( 2z+jQz+j N 2j@j )>

u?(z + 1) = szl ( — QQOOZ -+

with @, = Qu/Q(277), where Q(2), Qo