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摘      要 

數位搜尋樹(digital search trees, DSTs for short)與桶型數位搜

尋樹(bucket DSTs,每個的節點最多可儲存 b筆資料,b-DSTs for short)為

電腦科學中基本的資料結構。這兩種資料結構由具有 0-1 數列的儲存資料

所組成。此篇論文中，我們考慮隨機生成的 DSTs。 

在這十年來，幾乎所有關於隨機 DSTs 的重要參數(parameters)都有研

究結果出現。如：深度(Depth)，距離(Distance)，外部-內部節點

(External-internal nodes)，內節點路徑長度(Internal path length)和

大小(Size)。這些研究結果中有用到許多的分析方法，其中最主要都在解

析組合的範疇內。 

在此論文中，我們主要著重於探討 DSTs 的內節點路徑長度。我們將介

紹近年發展出來之研究結果，與其使用到之分析技術。除此之外，還會介

紹一個全新的方法，此法將由 Fuchs、Hwang 和 Zacharovas 在以後的研究

中發表。此方法將會改進對 b-DST 上內節點路徑長度的分析。 

這份論文的主要目地有兩個：第一，我們給出近年來關於 DSTs 之內節

點路徑長度的分析方法與研究結果，和其他參數的研究結果整理。此外我

們也給了一些分析技術上的改進。第二，我們提出一個全新的分析方法，

也得到一個對於 b-DSTs 上內節點路徑長度更加簡單的結果。 

論文組織如下：第一章介紹內節點路徑長度研究使用之分析技術。第



二章為內節點路徑長度與其他參數的期望值(mean)與變異數(variance)之

研究結果整理。第三章中介紹新的方法並給出我們的主要結果。 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Preface

Digital search trees (DSTs for short) and their generalizations such as bucket digital search
trees (b-DSTs) are fundamental data structures in computer science. These trees are built
from records whose keys consist of 0-1 strings. In this thesis, we will consider random
DSTs which are obtained by assuming that the bits of the keys are randomly generated.

Characteristic parameters of random DSTs are random variables and their analysis
has attracted a lot of attention in recent decades. Examples of parameters considered in
previous works include: the depth of a random node [5, 12, 15, 17, 18, 19, 20, 22], the
distance of two random nodes [1], the number of external-internal nodes [5, 9, 15, 21, 13],
the internal path length [5, 8, 10, 14], and the size of the tree [4, 9]. For the analysis,
several interesting methods have been proposed, most of them belonging to the field of
analytic combinatorics.

In this thesis, we focus on the internal path length of DSTs. We will introduce the
techniques which have been devised for the analysis of the internal path length. Moreover,
we will give a new method, which will appear in a forthcoming work of Fuchs, Hwang,
and Zacharovas, to improve the analysis of the internal path length of b-DSTs.

The purpose of this thesis is twofold. First, we want to give a self-contained survey
of the techniques used in the analysis of DSTs and the results achieved. Here, we will
mainly follow previous works, but also introduce some technical improvements. Secondly,
we are going to use the new approach of Fuchs, Hwang, and Zacharovas mentioned above
to obtain exact and numerical results concerning the leading constant in the asymptotic
expansion of the variance. In particular, our results will simplify and improve previous
results.

This thesis is organized as follows: in Chapter 1, we introduce the techniques which are
of importance in the analysis of DSTs. In Chapter 2, we present results concerning mean
value and variance of the internal path length and explain how they can be proved with
the methods from Chapter 1. Moreover, we also give a short survey of results concerning
other parameters. In Chapter 3, we introduce the new method and explain our new
findings concerning the leading constant of the variance.
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Chapter 1

Some techniques

In this chapter, we collect some analytic techniques, such as Rice method [6] (in Section
1.1), Mellin transform [2] (in Section 1.2), Poisson transform [11] (in Section 1.3) and
singularity analysis [3] (in Section 1.4). These methods will be the main tools for deriving
our results in Chapter 2 and Chapter 3.

1.1 Rice Method

Rice method is fruitful for finding the asymptotic expansion of sums of the form

n∑
k=0

(
n

k

)
(−1)kf(k). (1.1)

The starting point is the integral representation:

Lemma 1. Let C be a positive oriented closed curve encircling the points 0, 1, · · · , n, and
let f(z) be a function which is analytic with in C. Then, we have

n∑
k=0

(
n

k

)
(−1)kf(k) =

(−1)n

2πi

∫
C

f(z)
n!

z(z − 1) · · · (z − n)
dz.

Proof. This follows by an application of the residue theorem: The integral equals 2πi
times the sum of the residues of the simple poles at the points 0, 1, · · · , n. For each k, we
have

Res
z=k

f(z)
n!

z(z − 1) · · · (z − n)
= (−1)n−k

n!

k!(n− k)!
f(k).

1



Remark. The kernel of the integral could be written as

n!

z(z − 1) · · · (z − n)
=

Γ(n+ 1)Γ(z − n)

Γ(z + 1)
= (−1)n−1B(n+ 1,−z),

where B(x, y) is the classical Beta function.

Remark. Sometimes the sum might be taken over the integers from n0, · · · , n. Then
Lemma 1 still holds when C is changed to enclose just those points.

Rice method. Suppose we have an explicit sum of type (1.1). Then the Rice method
allows us to compute an asymptotic expansion by using the following steps:

Step 1. Extend fk which is defined only on the integers to an appropriate meromorphic
function f(z) which is analytic at the points 0, 1, · · · , n.

Step 2. Choose a suitable contour C which encircles the points 0, 1, · · · , n and consider
the integral

∆ =
(−1)n

2πi

∫
C

f(z)
n!

z(z − 1) · · · (z − n)
dz.

Step 3. By the residue theorem we obtain

∆ =
n∑
k=0

(
n

k

)
(−1)kf(k) + {Contributions from the other

poles inside the contour C. }

Step 4. Estimate ∆.

To carry out Step 4 one often needs growths properties of f(z). Therefore, we give
the following definition:

Definition 1. A function f(z) is said to be of polynomial growth in an unbounded domain
Ω if it is analytic in Ω and satisfies

|f(z)| = O(|z|r), (1.2)

for some non-negative integer r as z →∞ in Ω.

Remark. Suppose f(z) is of polynomial growth. Then, the integral∫
C

f(z)
n!

z(z − 1) · · · (z − n)
dz → 0

as C becomes large (for instance if we choose larger and larger circles).

2



The following are two examples to demonstrate the Rice method.

Example 1. Consider the sum

Sn =
n∑
k=1

(
n

k

)
(−1)k

k
.

Step 1. f(z) = 1/z is obviously a suitable extension of the sequence 1/k.

Step 2. We choose the curve C to be a circle with radius larger than n centered at 0.

Step 3. The kernel of ∆ has a double pole at 0, simple poles at 1, 2, · · · , n, and is analytic
everywhere else. Thus

∆ =Sn + (−1)nRes
z=0

[ n!

z2(z − 1) · · · (z − n)

]
=Sn + (−1)n

[ n∑
k=1

n!

(z − 1) · · · (z − k)2 · · · (z − n)

]
z=0

=Sn +
n∑
k=1

1

k
.

Step 4. Clearly, f(z) is of polynomial growth, thus ∆ converges to 0 as soon as C becomes
large.

Hence, we have

−Sn =
n∑
k=1

1

k
= Hn = log n+ γ +O(n−1),

where Hn are the harmonic numbers and γ = 0.57721 · · · is the Euler number. The
asymptotics of the harmonic numbers is well-known (see Example 5 in Section 1.2 for a
proof).

Example 2. Consider the sum

An =
∑
k=2

(
n

k

)
(−1)kQk−2, n > 1.

where Qn =
∏

1≤j≤n (1− 2−j).

3



Step 1. We introduce the function

Q(x) =
(

1− x

2

)(
1− x

4

)(
1− x

8

)
· · · .

Note that Qn = Q∞/Q(2−n) where Q∞ := Q(1) = limn→∞Qn = 0.288788 · · · ,
and Q∞/Q(2−z+2) is analytic on [2,∞) which gives the appropriate extension.

Step 2. Take as C a large segment of the line <(s) = 1/2 closed to the right by a large
semi-circle which encloses the points 2, 3, · · · , n.

Step 3. Note that the zeros of Q(2−z+2) all satisfy 2−z+j = 1 with j ≤ 1. Thus, the
kernel of ∆ has poles at 1 ± (2πik)/ log 2 (one double pole at k = 0 and single
poles for all k with k 6= 0) inside C. To find the contribution at 1 we use Taylor
expansion.

Here the following fact will turn out to be useful:

If G(z) =
∏

k∈R gk(z), then G′(z)/G(z) =
∑

k∈R g
′
k(z)/gk(z). From this it follows

that if F (z) =
∏

j∈ R

(
1− fj(z)

)−1
for some index set R, then the Taylor series

expansion of F at a, if it exists, is given by

F (z) = F (a)
(

1 +
∑
j∈R

f ′j(a)

1− fj(a)
(z − a) +O(z − a)2

)
.

Consequently we obtain the series expansions

n!

z(z − 1) · · · (z − n)
=

1

z(z − 1)

∏
2≤ j≤n

(1− z/j)−1

=
n

z − 1

(
1 + (Hn−1 − 1)(z − 1) +O

(
(z − 1)2

))
=

n

z − 1
+ n(Hn−1 − 1) +O(z − 1).

And

Q∞/Q(2−z+1) =Q∞
∏
j<1

(1− 2−z+j)−1

=1− log 2
∑
j<1

2j−1

1− 2j−1
(z − 1) +O(z − 1)2

=1− α log 2(z − 1) +O(z − 1)2,

4



where α = 1 + 1
3

+ 1
7

+ · · · . Thus, we obtain

Q∞
Q(2−z+2)

n!

z(z − 1) · · · (z − n)
=

1

1− 2−z+1

Q∞
Q(2−z+1)

n!

z(z − 1) · · · (z − n)

=
( 1

(z − 1) log 2
+

1

2
+O(z − 1)

)
× (1− α log 2(z − 1) +O(z − 1)2)

×
( n

z − 1
+ n(Hn−1 − 1) +O(z − 1)

)
.

The residue at z = 1 is the coefficient of 1/(z − 1) in the above product:

n

log 2
(Hn−1 − 1)− n

(
α− 1

2

)
= n log2 n+ n

(γ − 1

log 2
− α +

1

2

)
+O(1).

The poles at 1 ± 2πik/ log 2 with k 6= 0 add a small contribution δ(n) to the
linear term [5], where

δ(n) =
1

log 2

∑
k 6=0

Γ
(
− 1− 2kπi

log 2

)
e2kπi log2 n.

Step 4. On the right semi-circle, ∆ converges to 0 as C becomes large since

|Q−1(2−z+2)| =
∏
j≤1

(1− 2−|z|+j)−1 = O(|z|0)

as |z| → ∞. On the left segment we have the bound

O
(∫ ∞
−∞

Γ(n+ 1)

Γ(n+ 1/2− iy)
dy

)
= O(n1/2).

Thus we have

An = n log2 n+ n

(
γ − 1

log 2
− α +

1

2
+ δ(n)

)
+O(n1/2). (1.3)

1.2 Mellin Transform

The Mellin transform (Hjalmar Mellin 1854–1933, Finish mathematician) is the most
popular transform in the analysis of algorithms.

Definition 2. Let f(x) be a continuous function over (0,∞). Its Mellin transform f∗(s)
is defined by

f∗(s) =M[f(x); s] =

∫ ∞
0

f(x)xs−1 dx.

5



Table 1.1: Some common Mellin transforms.

f(x) f∗(s) 〈α, β〉
e−x Γ(s) 〈0,+∞〉
e−x

2 1
2
Γ(1

2
s) 〈0,+∞〉

1
1+x

π
sinπs

〈0, 1〉
log(1 + x) π

s sinπs
〈−1, 0〉

H(x) ≡ 10<x<1
1
s

〈0,+∞〉
xα(log x)kH(x) (−1)kk!

(s+α)k+1 〈−α,+∞〉, k integer

Basic properties. The following lemma gives the conditions for the existence of the
Mellin transform of a given function f(x).

Lemma 2. The conditions

f(x) =
x→0+

O(xu); f(x) =
x→+∞

O(xv),

when u > v, guarantee that f∗(s) exists in the strip −u < <(s) < −v.

Proof. From the decomposition∣∣∣∣∫ ∞
0

f(x)xs−1 dx

∣∣∣∣ ≤ ∫ 1

0

|f(x)|x<(s)−1 dx+

∫ ∞
1

|f(x)|x<(s)−1 dx

≤ α

∫ 1

0

xu+<(s)−1 dx+ β

∫ ∞
1

xv+<(s)−1 dx,

where α, β are some constants. The first integral exists for u+ <(s) > 0 and the second
for v + <(s) < 0. Thus f∗(s) exists in the strip −u < <(s) < −v.

Remark. From the above lemma we see that the domain of existence of a Mellin transform
is a complex strip, and the largest one is called the fundamental strip. We introduce the
notation 〈α, β〉 for the open strip of complex numbers s such that α < <(s) < β.

Table 1.1 presents some common Mellin transforms with their corresponding funda-
mental strips. These formulas are simple and easy to check.

Moreover, some basic transformation rules are given in Table 1.2. These rules are also
easy to confirm.
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Table 1.2: Functional properties of Mellin transform.

f(x) f∗(s) 〈α, β〉
F1 xνf(x) f∗(s+ v) 〈α− ν, β − ν〉 Shift

F2 f(xρ) 1
ρ
f∗( s

ρ
) 〈ρα, ρβ〉 ρ > 0 Multiple

f(1/x) −f∗(−s) 〈−β,−α〉
F3 f(µx) 1

µsf
∗(s) 〈α, β〉 µ > 0∑

k λkf(µkx) (
∑

k λkµ
−s
k ) · f∗(s) By linearity

F4 f(x) log x d
ds
f∗(s) 〈α, β〉 Differential

F5 Θf(x) −sf∗(s) 〈α′, β′〉 Θ = x d
dx

d
dx
f(x) −(s− 1)f∗(s− 1) 〈α′ + 1, β′ + 1〉∫ x

0
f(t) dt −1

s
f∗(s+ 1)

Inversion. We can see that the Mellin transform is closely related to the Fourier trans-
forms (as well as the Laplace transform): Let x = e−y and s = σ + it, we obtain

f∗(s) =

∫ ∞
0

f(x)xs−1 dx =

∫ ∞
−∞

f(e−y)e−σye−ity dy.

Thus the Mellin transform turns into a Fourier transform, and the inversion theorem for
the Mellin transform follows from that for the Fourier transform.

Theorem 1. Let f(x) be continuous on (0,∞) and assume that its Mellin transform has
fundamental strip 〈a, b〉. Then

f(x) =
1

2πi

∫ c+i∞

c−i∞
f∗(s)x−s ds, (1.4)

where a < c < b.

Asymptotic properties. The usefulness of the Mellin transform comes from its asymp-
totic properties as we will see below. In particular we have two important results, namely,
the direct and converse mapping theorem.

Before we can give these results, we give the notation of the singular expansion: For
a meromorphic function φ(s) with poles in Ω, the singular expansion is

φ(s) �
∑
k∈Ω

4k(s),

7



where 4k(s) is the Laurent expansion of φ around s = k up to at most O(1) term. For
example, since

1

s(s− 1)
= −1

s
− 1 +O(s) (s→ 0), and

1

s(s− 1)
=

1

s− 1
− 1 +O((s− 1)) (s→ 1),

then we write

1

s(s− 1)
�
[
−1

s
− 1

]
s=0

+

[
1

s− 1
− 1

]
s=1

for the singular expansion of 1/s(s− 1).
The prototype of the direct mapping is the function e−x: we know its Taylor expansion

at 0 is

e−x =
∞∑
k=0

(−1)k

k!
xk,

and its Mellin transform∫ ∞
0

e−xxs−1 dx = Γ(s) =
Γ(s+ k + 1)

s(s+ 1)(s+ 2) · · · (s+ k)
.

That means Γ(s) has poles at the points s = −k with positive integer k, and hence we
have the singular expansion

Γ(s) �
∞∑
k=0

(−1)k

k!

1

s+ k
(s ∈ C).

We can observe that one can map the Taylor expansion to coincide with the singular
expansion by the rule

xk 7→ 1

s+ k
.

In fact, this is a general phenomenon.

Theorem 2. Let f(x) be continuous with its Mellin transform f∗(s) having nonempty
fundamental strip 〈α, β〉.

(i) [Asymptotics for x → 0] Assume that f(x) has the following asymptotic expansion
as x→ 0

f(x) =
∑
ξ,k

cξ,kx
ξ(log x)k +O(xγ), (1.5)

8



where −γ < −ξ ≤ α and k is non-negative. Then f∗(s) is continuable to the strip
〈−γ, β〉 and

f∗(s) �
∑
ξ,k

cξ,k
(−1)kk!

(s+ ξ)k+1
(s ∈ 〈−γ, β〉). (1.6)

(ii) [Asymptotics for x → ∞] Assume that f(x) has the asymptotic expansion of form
(1.5) where now β ≤ −ξ < −γ as x → ∞. Then f∗(s) is continuable to the strip
〈α,−γ〉 and

f∗(s) � −
∑
ξ,k

cξ,k
(−1)kk!

(s+ ξ)k+1
(s ∈ 〈α,−γ〉). (1.7)

Proof. Since M[f(1/x); s] = −M[f(x);−s], we only need to prove the case x → 0. By
assumption, the function

g(x) = f(x)−
∑
ξ,k

cξ,kx
ξ(log x)k

is O(xγ). In the fundamental strip we also have

f∗(s) =

∫ 1

0

g(x)xs−1 dx+

∫ 1

0

∑
ξ,k

cξ,kx
s+ξ−1(log x)k dx+

∫ ∞
1

f(x)xs−1 dx.

The first integral is analytic in 〈−γ,∞〉 and the third one in 〈−∞, β〉. Thus the sum of
those two is analytic in the strip 〈−γ, β〉. After integrating the second integral becomes

∑
ξ,k

cξ,k
(−1)kk!

(s+ ξ)k+1
.

Hence, f∗(s) exists in 〈−γ, β〉 and has the singular expansion of the form (1.6).

Remark. From the proof of Theorem 2, we can see that there is a principle: Let g(x)
be a truncated asymptotic expansion of a given function f(x) at either 0 or ∞. Then
the Mellin transform of f(x) − g(x) does not change, but only the fundamental strip
gets shifted. For example, M[ex − 1; s] = Γ(s) with the fundamental strip 〈−1, 0〉, and
M[ex − 1 + x; s] = Γ(s) with the fundamental strip 〈−2,−1〉.

The following example appears in the Table 1.1.

9



Example 3. The function f(x) = (1 + x)−1 has fundament strip 〈0, 1〉 and its Mellin
transform is

f∗(s) =

∫ ∞
0

(1 + x)−1xs−1 dx = Γ(1− s)Γ(s) =
π

sin πs
.

Then the two expansions

1

1 + x
=
∞∑
n=0

(−1)nxn (x→ 0), and

1

1 + x
=
∞∑
n=1

(−1)n−1x−n (x→ +∞),

translate into

f∗(s) �
∞∑
n=0

(−1)n

s+ n
(s ∈ 〈−∞, 1〉), and

f∗(s) �
∞∑
n=1

(−1)n−1

s− n
(s ∈ 〈0,∞〉).

This is consistent with the known form,

f∗(s) =
π

sin πs
�
∑
n∈Z

(−1)n

s+ n
(s ∈ C). (1.8)

The next question that arises is whether or not a converse of the direct mapping
theorem still holds. Under some conditions the answer is yes as the following theorem
demonstrates:

Theorem 3. Let f(x) be continuous with its Mellin transform f∗(s) having nonempty
fundamental strip 〈α, β〉.

(i) [Asymptotics for x→ 0] Assume that f∗(s) admits a meromorphic continuation to
the strip 〈γ, β〉 for some γ < α with a finite number of poles there, and is analytic
on <(s) = γ. Assume also that there exists a real number η ∈ (α, β) such that with
r > 1,

f∗(s) = O(|s|−r), (1.9)

when |s| → ∞ in γ ≤ <(s) ≤ η. If f∗(s) admits the singular expansion for s ∈
〈γ, α〉,

f∗(s) �
∑
ξ,k

dξ,k
1

(s− ξ)k+1
, (1.10)
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then an asymptotic expansion of f(x) at 0 is

f(x) =
∑
ξ,k

dξ,k
(−1)k

k!
x−ξ(log x)k +O(x−γ). (1.11)

(ii) [Asymptotics for x → ∞] Similarly assume that f∗(s) admits a meromorphic con-
tinuation to the strip 〈α, γ〉 for some γ > β and is analytic on <(s) = γ. Assume
also that the growth condition (1.9) holds in 〈η, γ〉 for some η ∈ (α, β). If f∗(s)
admits the singular expansion (1.10) for s ∈ 〈β, γ〉, then an asymptotic expansion
of f(x) at ∞ is

f(x) = −
∑
ξ,k

dξ,k
(−1)k

k!
x−ξ(log x)k +O(x−γ). (1.12)

Proof. As above it suffices to prove the case x→ 0. Let Ω be the set of poles in 〈γ, β〉, and
set a large rectangle R(T ) with corners at the four points η ± iT , γ ± iT in the direction
of counter-clockwise. Assume that T is large enough such that R(T ) contains all poles in
Ω. Consider the integral

J(T ) =
1

2πi

∫
R(T )

f∗(s)x−s ds,

we know J(T ) is equal to the sum of residues by Cauchy’s theorem, which is

J(T ) =
∑
ξ,k

dξ,k Res
s=ξ

(
x−s

(s− ξ)k+1

)
=
∑
ξ,k

dξ,k
(−1)k

k!
x−ξ(log x)k.

Now let T tend to +∞. By assumption J(T ) along the top and bottom lines of R(T ) is
bounded by O(T−r) which vanishes as T → ∞. On the left we have the bound of the
form ∣∣∣∣ 1

2πi

∫ γ+i∞

γ−i∞
f∗(s)x−s ds

∣∣∣∣ ≤ O(1)

∫ ∞
0

x−γ

(1 + t)r
dt = O(x−γ).

On the right the integral converges to f(x) by the inverse theorem (1.4) since f(x) is
continuous. This proves the claim.

From Theorem 2 and Theorem 3 we know that the poles of f∗(s) are in a one-to-one
correspondence with the terms in the asymptotic expansion of f(x) at either 0 or ∞.
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Example 4. The function

f∗(s) = Γ(1− s) π

sin πs

is analytic in the strip 〈0, 1〉. Note that π/ sin πs = O(e−π|=(s)|) as |s| → ∞, and a similar
exponential decay holds for Γ(1− s) by the complex version of Stirling’s formula:

Γ(σ + it) ∼
√

2π|t|σ−1/2e−π|t|/2 (t→∞).

The singular expansion of π/ sin πs was already considered in (1.8). Thus for <(s) < 1,
we have the singular expansion

f∗(s) �
∞∑
n=0

(−1)n
n!

s+ n
.

Then the asymptotic expansion of the original function is

f(x) ∼
∞∑
n=0

(−1)nn!xn (x→ 0).

Sometimes f∗(s) has a vertical line of regularly spaced poles. In this case, we need
the following weaker form of the growth condition (1.9).

Corollary 1. The conclusions of Theorem 3 remain valid assuming only a weaker form
of the growth condition (1.9) along a countable set of horizontal segments |=(s) = Tj|
where Tj → +∞.

Proof. Restrict T to belong to the discrete set Tj which must avoid the poles of f∗(s) in
the proof of Theorem 3.

Applications. Mellin transform is effective in the asymptotic analysis of harmonic
sums.

Definition 3. 1. A harmonic sum F (x) is a sum of the form

F (x) =
∑
k

λkg(µkx), (1.13)

where λk are called “amplitudes”, µk are called “frequencies”, and g(x) is called the “base
function”.

2. The Dirichlet series of the harmonic sum is the sum

Λ(s) =
∑
k

λkµ
−s
k . (1.14)
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Remark. A Dirichlet series (1.14) has a half-plane of absolute convergence 〈σa,∞〉 and a
half-plane of simple convergence 〈σc,∞〉 where σa − σc ≥ 0.

Remark. The property of polynomial growth (1.2) in a closed strip holds for many Dirichlet
series.

From F3 in Table 1.2, we have

M
[∑
k∈K

λkg(µkx); s
]

=
(∑
k∈K

λkµ
−s
k

)
· g∗(s)

where K is a finite set. This formula can be extended to the harmonic sums (infinite
sums) as defined above:

Lemma 3. The Mellin transform of the harmonic sum (1.13) is defined in the intersection
of the fundamental strip of the transform of the base function and the domain of absolute
convergence of Dirichlet series, and it is given by

F∗(s) = Λ(s) · g∗(s). (1.15)

Proof. Since both g∗(s) and the Dirichlet series are analytic in the corresponding conver-
gence regions, the interchange of summation and integration is valid by Fubini’s theorem.

To apply the converse mapping theorem for harmonic sums (1.13), we have to give
another definition of controlled growth (we have already introduced polynomial growth
in Definition 1).

Definition 4. A function φ(s) is said to be of exponential decrease in a closed strip if for
any r > 0,

φ(s) = O(|s|−r), (1.16)

as |s| → ∞ in the strip.

Now we suppose that the Mellin transform of the base function is of exponential
decrease and the Dirichlet series of the harmonic sum is of polynomial growth in an
extended region of the complex plane.

Theorem 4. Consider the harmonic sum F (x). Let the transform of the base function
have the fundamental strip 〈α, β〉, and the domain of simple convergence of Dirichlet
series is 〈σc,∞〉. Assume that

(i) σc < β and let α′ = max(α, σc);
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(ii) g∗(s) and Λ(s) admit a meromorphic continuation in 〈γ, β〉 and are analytic on
<(s) = γ, for some γ < α;

(iii) on the closed strip 〈γ, (α′ + β)/2〉, g∗(s) is of exponential decrease and Λ(s) is of
polynomial growth.

Then F (x) converges for all x > 0 on (0,∞). An asymptotic expansion of F (x) as x→ 0
till an error term O(x−γ) is obtained by termwise translation of the singular expansion of
F∗(s) = Λ(s)g∗(s) according to the rule

C

(s− ξ)k+1
7→ C

(−1)k

k!
x−ξ(log x)k.

Proof. By Theorem 3 it suffices to show that the fundamental relation F∗(s) = Λ(s)g∗(s).
First we select an arbitrary σ in (α′, β) and take σ0 such that α′ < σ0 < σ. Then the
inversion theorem provides

N∑
n=1

λng(µnx) =
1

2πi

∫ σ0+i∞

σ0−i∞

N∑
n=1

λn
µsn
g∗(s)x−s ds.

Since |Λ(s)| ≤ C(|s|+ 1) for some constant C (see [2]) we have

∣∣∣ N∑
n=1

λn
µsn
g∗(s)x−s

∣∣∣ ≤ C(|s|+ 1) · |g∗(s)| · x−<(s) = O(x−<(s)),

which permits to apply the dominated convergence theorem and we obtain

G(x) =
1

2πi

∫ σ0+i∞

σ0−i∞
Λ(s)g∗(s)x−s ds.

Thus, the strip 〈α′, β〉 is included in the fundamental strip of G(x). On the other hand,
since ∣∣∣ N∑

n=1

λng(µnx)
∣∣∣ ≤ 1

2π

∫ σ0+i∞

σ0−i∞

∣∣∣ N∑
n=1

λn
µsn
g∗(s)x−s

∣∣∣ ds = O(x−<(s)),

then the dominated convergence theorem applies once more

F∗(s) = lim
N→∞

∫ ∞
0

N∑
n=1

λng(µnx)xs−1 dx = Λ(s) · g∗(s).

This means that F∗(s) = Λ(s)g∗(s).
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Remark. Similarly, a symmetric result holds near x → ∞. Thus under the condition of
Theorem 4, ∑

k

λng(µnx) ∼ ±
∑
p

Res
s=p

(
g∗(s)Λ(s)x−s

)
,

As x → 0 the sum is over the poles to the left of the fundamental strip and the sign is
+; and as x→∞ the sum is over the poles to the right of the fundamental strip and the
sign is −.

Example 5. The harmonic number Hn is

Hn =
n∑
k=1

1

k
=
∞∑
k=1

[1

k
− 1

k + n

]
.

Thus the function

h(x) =
∞∑
k=1

[1

k
− 1

k + x

]
=
∞∑
k=1

1

k

x/k

1 + x/k

satisfies h(n) = Hn and is a harmonic sum with λk = µk = 1/k and g(x) = x/(1 + x). Its
Mellin transform is

h∗(s) =M
[
x(

d

dx
log (1 + x)); s

]
·
∞∑
k=1

ks−1

=− π

sin πs
ζ(1− s),

with fundamental strip 〈−1, 0〉. Note that for fixed σ < 0, one has

ζ(σ + it) = O(|t|1/2−σ),

see [24, p. 95], and the exponential decay holds for π/ sin πs (see Example 4). The
singular expansion to the right of this fundamental strip is

h∗(s) � 1

s2
− γ

s
−
∞∑
k=1

(−1)k
ζ(1− k)

s− k
.

Thus we have the expansion at ∞:

Hn = log n+ γ +O(n−1).

1.3 Poissonization and De-poissonization

Poisson transform was introduced by Kac (1949). Sometimes a Poisson version of a
problem (called Poisson model) is easier to solve than the original one (called the Bernoulli
model). The purpose of this section is to introduce the basics of this important method.
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Table 1.3: Some Poisson transforms and their properties

gn G̃(z)

Constant Constant

(−1)n e−2z

αn e(α−1)z

n!
(n−k)!

, n ≥ k zk

n! e−z

1−z

gn =
∑n

k=0

(
n
k

)
pkqn−k(fk + hn−k), p+ q = 1 F (pz) +H(qz)

gn =
∑n

k=0

(
n
k

)
pkqn−kfkhn−k, p+ q = 1 F (pz)H(qz)

Poisson transform. Consider a sequence (gn), we define the Poisson transform (or

Poissonization) G̃(z) as follows:

Definition 5. Let (gn) be a sequence. Then the Poisson transform G̃(z) of (gn) is defined
as

G̃(z) =
∑
n≥0

e−zgn
zn

n!
(1.17)

for arbitrary complex z.

Some Poisson transforms and their properties are presented in Table 1.3. Next, we
give an example that is important in applications.

Example 6. Consider the recurrence

gn = an + β

n∑
k=0

(
n

k

)
pkqn−k(gk + gn−k), n > 1

with initial value g0. Then, we find

G̃(z) = Ã(z) + β
(
G̃(pz) + G̃(qz)

)
− g0e

−z,

where G̃ and Ã are the Poisson transforms of gn and an, respectively.

General de-poissonization theorems. Now we consider a sequence (gn) and its Pois-

son transform G̃(z) (we also assume that G̃(z) is entire). If G̃(z) is well-known, then one
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can extract the coefficient gn = n![zn](G̃(z)ez) directly. Our aim is to extract asymptoti-

cally gn from G̃(z). Our starting point for this will be Cauchy’s formula:

gn =
n!

2πi

∮
G̃(z)ez

zn+1
dz =

n!

nn2π

∫ π

−π
G̃(neit) exp(neit)e−nit dt. (1.18)

Next, we give the definition of a linear cone:

Definition 6. The region in the complex plane

Lθ = {z : | arg z| ≤ θ},

where |θ| < π/2 is called a linear cone.

Moreover, we need the following two lemmas. The first one is well-known, and the
second one is a simple extension of the Cauchy estimate.

Lemma 4. The following identities are true:

1√
2π

∫ ∞
−∞

xke−αx
2

dx =

{
0, k = 1, 3, 5, . . .
α−1/2−k/2k!
(k/2)!2k+1/2 , k = 0, 2, 4, . . .

and ∫ ∞
θ

xke−αx
2

dx = O
(
e−(1/2)αθ2

)
where θ is a positive number.

Lemma 5. Let θ0 < π/2 and ξ > 0. Moreover, let Ψ(z) be a slowly varying function
(that is, for fixed t, limx→∞

(
Ψ(tx)/Ψ(x)

)
= 1) and assume that

|z| > ξ ⇒ |G(z)| ≤ B|z|βΨ(|z|) (1.19)

for all z ∈ Lθ0, where β is a real constant. Then, for all θ < θ0 there exist B′ and ξ′ > ξ
such that for all positive integers k the following holds in Lθ

|z| > ξ′ ⇒ |G〈k〉(z)| ≤ k!(B′)k|z|β−kΨ(|z|). (1.20)

Proof. See [11].

Now, we first give a basic de-poissonization result that holds for G̃(z) with a polynomial
bound in a linear cone:
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Theorem 5. Let G̃(z) be the Poisson transform of a sequence (gn) that is assumed to be
entire. Suppose that in a linear cone Lθ (θ < π/2) both of the following two conditions
hold for some real numbers A,B,R > 0, β and α < 1:

(I) For z ∈ Lθ
|z| > R⇒ |G̃(z)| ≤ B|z|β;

(O) For z /∈ Lθ
|z| > R⇒ |G̃(z)ez| ≤ Aeα|z|.

Then

gn = G̃(n) +O(nβ−1)

for large n.

Proof. The proof relies on the equation (1.18). By Stirling’s approximation n! = nne−n
√

2πn
(
1+

O(n−1)
)
, we have

gn =
(
1 +O(n−1)

)√ n

2π

∫ π

−π
G̃(neit) exp(n(eit − 1− it)) dt

=
(
1 +O(n−1)

)
(In + En),

where

En =

√
n

2π

∫
|t|∈ [θ,π]

G̃(neit) exp
(
n(eit − 1− it)

)
dt

=
nne−n

√
2πn

2πi

∫
|t|∈ [θ,π]

G̃(z)ez

zn+1
dt,

In =

√
n

2π

∫ θ

−θ
G̃(neit) exp

(
n(eit − 1− it)

)
dt.

By condition (O) we obtain that En decays exponentially to zero for α < 1. Now, we

turn to In. First we replace t by t/
√
n and let hn(t) = exp

(
n(eit/

√
n−1− it/

√
n)
)

. Next,

we split In into two parts, I ′n and I ′′n (in order to find the Taylor expansion of hn(t)) such
that

I ′n =
1√
2π

∫ logn

− logn

G̃
(
neit/

√
n
)
hn(t) dt,

I ′′n =
1√
2π

∫
t∈[−θ

√
n,− logn]

G̃
(
neit/

√
n
)
hn(t) dt

+
1√
2π

∫
t∈[logn,θ

√
n]

G̃
(
neit/

√
n
)
hn(t) dt.
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Observe that |hn(t)| ≤ e−µt
2

for t ∈ [−θ
√
n, θ
√
n], where µ is a constant. Then by

condition (I) and Lemma 4 we obtain I ′′n = O
(
nβe−µ log2 n

)
. Now, we estimate I ′n. For

t ∈ [− log n, log n] we have the Taylor expansion of hn(t)

hn(t) = e−t
2/2
(

1− it3

6
√
n

+
t4

24n
+O

( log5 n

n
√
n

))
.

Using condition (I) and Lemma 5 for |z| > Cξ with constant C and z ∈ Lθ′ for θ′ < θ,

we have |G̃′(z)| ≤ C1|z|β−1 and |G̃′′(z)| ≤ C2|z|β−2 for some constants C1 and C2. Thus

we can expand G̃
(
neit/

√
n
)

around t = 0 as

G̃
(
neit/

√
n
)

= G̃(n) + it
√
nG̃′(n) +4n(t)t2,

where |4n(t)| ≤ (C1 + C2)nβ−1. Finally, the integral I ′n becomes

I ′n =
1√
2π

∫ logn

− logn

e−t
2
(
G̃(n) + it

√
nG̃′(n)

)(
1− it3

6
√
n

+
t4

24n

)
dt

+
1√
2π

∫ logn

− logn

e−t
24n(t)t2hn(t) dt

+
1√
2π

∫ logn

− logn

e−t
2
(
G̃(n) + it

√
nG̃′(n)

)
O
( log5 n

n
√
n

)
dt.

From Lemma 4 and Lemma 5 the first integral is equal to G̃(n) +O(nβ−1). The absolute
value of second integral is smaller than (C1 + C2)nβ−1 by using the above estimate on

4n(t). Finally the third integral is O(nβ−3/2 log5 n). Thus we have I ′n = G̃(n) +O(nβ−1)
as desired.

The next theorem extends the above one to a full asymptotic expansion of gn:

Theorem 6. Consider a linear cone Lθ (θ < π/2). Let the following two conditions hold
for some numbers A,B,R > 0, and α > 0, β, and γ:

(I) For z ∈ Lθ,

|z| > R⇒ |G̃(z)| ≤ B|z|βΨ
(
|z|
)
,

where Ψ(x) is a slowly varying function.;

(O) For all z = ρeiθ with θ ≤ π such that z /∈ Lθ,

ρ = |z| > R⇒ |G̃(z)ez| ≤ Aργ exp
(

(1− αθ2)ρ
)
.
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Then, for every non-negative integer m,

gn =
m∑
i=0

i+m∑
j=0

bi,jn
iG̃〈j〉(n) +O

(
nβ−(m+1)Ψ(n)

)
=G̃(n) +

m∑
k=1

k∑
i=1

bi,k+in
iG̃〈k+j〉(n) +O

(
nβ−(m+1)Ψ(n)

)
, (1.21)

where bi,j = [xi][yj] exp
(
x log(1 + y)− xy

)
. Note that bi,j = 0 for j < 2i.

Proof. The proof can be found in [11].

Remark. We present the expansion (1.21) above for m = 3:

gn =G̃(n)− 1

2
nG̃〈2〉(n) +

(1

3
nG̃〈3〉(n) +

1

8
n2G̃〈4〉(n)

)
−
(1

4
nG̃〈4〉(n)− 1

6
n2G̃〈5〉(n)− 1

48
n3G̃〈6〉(n)

)
+O(nβ−4Ψ(n)).

Mean and variance. Let (Xn) be a sequence of integer random variables, and denote
by Fn(y) = E[yXn ] the probability generating function. Let

L̃(z, y) =
∞∑
n=0

Fn(y)
zn

n!
e−z

be the Poisson transform of the probability generating function. We introduce the Poisson
mean X̃(z) and the Poisson variance Ṽ (z) as

X̃(z) =L̃y(z, 1),

Ṽ (z) =L̃yy(z, 1) + X̃(z)− X̃(z)2,

where L̃y(z, 1) and L̃yy(z, 1) denote respectively the first and the second derivative of

L̃(z, u) with respect to y at y = 1.

There is the following relationship between the Poisson mean X̃(z) and variance Ṽ (z)
of Xn, and the Bernoulli mean E[Xn] and variance V[Xn].

Theorem 7. Let X̃(z) and Ṽ (z) + X̃(z)2 satisfy condition (O), and X̃(z) and Ṽ (z)

satisfy condition (I) of Theorem 6 with β ≤ 1, e.g., X̃(z) = O
(
|z|βΨ(|z|)

)
, and Ṽ (z) =

O
(
|z|βΨ(|z|)

)
in a linear cone Lθ and appropriate conditions (O) outside the cone, where

Ψ(z) is a slowly varying function. Then, the following holds

E[Xn] =X̃(n)− n

2
X̃〈2〉(n) +O

(
nβ−2Ψ(n)

)
, (1.22)

V[Xn] =Ṽ (n)− nX̃ ′(n)2 +O
(

max
(
nβ−1Ψ(n);n2β−2Ψ2(n)

))
, (1.23)

for large n.
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Proof. From Theorem 6, we have directly (1.22) for m = 1. Since V[Xn] = E[X2
n]−E[Xn]2,

we observe that the Poisson transform of E[X2
n] is Ṽ (z) + X̃(z)2. Thus by Theorem 6

again

E[X2
n] =Ṽ (n) + X̃(n)2 − n

2

(
Ṽ 〈2〉(n) + 2nX̃ ′(n)2 + 2nX̃(n)X̃〈2〉(n)

)
+O

(
n2β−2Ψ2(n)

)
=Ṽ (n) + X̃(n)2 − nX̃ ′(n)2 − nX̃(n)X̃〈2〉(n) +O

(
nβ−1Ψ(n)

)
+O

(
n2β−2Ψ2(n)

)
,

where the last error term is a consequence of nṼ 〈2〉(n) = O(nβ−1Ψ(n)) (see Lemma 5).
Thus the result follows from V[Xn] = E[X2

n]− [EXn]2.

1.4 Singularity Analysis

In this section, we restrict our attention to functions with a unique dominant singularity.
By the scaling rule g(z) = f(zξ) if f(z) has singular at z = ξ, we may always assume that
the sole singularity occurs at z = 1, and we consider functions f(z) of the form

f(z) = (1− z)−α
(

log
1

1− z

)γ
, (1.24)

with non-negative real numbers α and γ. Our general objective is to translate an approxi-
mation of a function near a singularity into an asymptotic approximation of its coefficients.
More precisely, when all h0(z), · · · , hk(z), g(z) are as (1.24), then

f(z) = h0(z) + h1(z) + · · ·+ hk(z) +O
(
g(z)

)
(1.25)

with h0(z)� · · · � hk(z)� g(z) for z → 1, will imply

[zn]f(z) = h0,n + h1,n + · · ·+ hk,n +O
(
gn
)

with h0,n � · · · � hk,n � gn for n→∞. We omit all the proofs in this section since they
can be found in [3].

From the binomial expansion, we have, with α 6= 0,

[zn](1− z)−α =

(
n+ α− 1

n

)
=

Γ(n+ α)

Γ(α)Γ(n+ 1)
.

Then from Stirling’s formula [zn](1− z)−α has the asymptotic expansion, as n→∞,

[zn](1− z)−α ∼ nα−1

Γ(α)

(
1 +

∑
k≥1

ek
nk

)
, (1.26)

where ek is a polynomial in α of degree 2k.
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Table 1.4: Some commonly functions and the asymptotic forms of their coefficients.

f(z) [zn]f(z)

1 0

log(1− z)−1 1
n

(1− z)−1 1

(1− z)−1 log 1
1−z log n+ γ + 1

2n
− 1

12n2 + 1
120n4 +O(n6)

(1− z)−1
(

log 1
1−z

)2
log2 n+ 2γ log n+ γ2 − π2

6
+O

(
logn
n

)
(1− z)−2 n+ 1

Remark. In particular:

[zn](1− z)−α ∼ nα−1

Γ(α)

(
1 +

α(α− 1)

2n
+
α(α− 1)(α− 2)(3α− 1)

24n2

+
α2(α− 1)2(α− 2)(α− 3)

48n3
+O

( 1

n4

))
.

Next, we consider logarithmic factors, that is, f(z) = (1 − z)−α
(

log (1− z)−1
)γ

with
α 6= 0. Similarly, we have the asymptotic expansion

[zn]f(z) ∼ nα−1

Γ(α)
(log n)γ

(
1 +

∑
k≥1

Ck

logk n

)
,

where Ck =
(
γ
k

)
Γ(α) dk

dsk
1

Γ(−s)

∣∣∣
s=α

.

Next, we want to establish our claim in (1.25). Therefore, we have to give conditions
under which the following holds:

f(z) = O(g(z)) ⇒ [zn]f(z) = O([zn]g(z)).

We first need a definition.

Definition 7. Let 4 := 4(φ, η) denote the closed domain

4(φ, η) = {z
∣∣ |z| < η, z 6= 1, | arg(z − 1)| ≥ φ},

where η > 1 and 0 < φ < π/2.

Then, we have the following theorem:
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Theorem 8. Assume that f(z) is analytic in 4 = 4(φ, η), where η > 1 and 0 < φ < π/2,
and that as z → 1 in 4,

f(z) = O
(

(1− z)−α
(

log
1

1− z

)γ)
,

for some non-negative integers α, γ with α 6= 0. Then one has

[zn]f(z) = O
(
nα−1(log n)γ

)
.

Finally, by the linearity

f(z) = f1(z) + f2(z) ⇒ [zn]f(z) = [zn]f1(z) + [zn]f2(z).

We have the following theorem:

Theorem 9. Assume that f(z) is analytic in 4 = 4(φ, η), where η > 1 and 0 < φ < π/2,
and that as z → 1 in 4,

f(z) = (1− z)−α
(

log
1

1− z

)γ(m−1∑
j=0

cj

(
log

1

1− z

)−j
+O

((
log

1

1− z

)−m))
,

for non-negative real numbers α, γ with α 6= 0 and γ ≥ m. Then as n→∞,

[zn]f(z) =
nα−1

Γ(α)
logγ n

(m−1∑
j=0

c′j log−j n+O(log−m n)
)

with some suitable constants c′j.
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Chapter 2

Results for Digital Search Trees

In this chapter, we first introduce digital search trees and their generalizations such as
bucket digital search trees. Next, we present the results concerning the internal path
length and explain how the results are proved. We also present results concerning other
parameters of DSTs in Section 2.5.

2.1 Digital Search Trees

Digital trees are a general data structure to manipulate sequences which are built over
a binary alphabet {0, 1}. There are three kinds of digital trees: “tries”, “Patricia tries”
and “digital search trees”. In this thesis we only consider digital search trees and omit
the others.

Suppose now we have an ordered set of records, say n of them, and each record has
a key being an infinite sequence over {0, 1}. Then these records are stored in a digital
search tree in the following way: Set k to 1. If n = 1, then the only record is put in a
node and we are finished. If n > 1, then

• The first record is saved in a node (which becomes the root of the tree).

• According to the kth bit of the records in the remaining set:

0: It goes to the left subtree where it is linked as a left child of the root.

1: It goes to the right subtree where it becomes a right child of the root.

We can split the remaining set into two subtrees.

• Finally, the subtrees are constructed by the same process recursively and set k to
k + 1.
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Figure 2.1: Examples of generalized digital search trees for b = 1, 2, 3 built from 12
records.

Thus we can see that digital search trees are build up of nodes, each node has a record
containing a key and 2 links which point to subtrees. Obviously, the order in which the
keys are inserted is relevant.

Next we equip the set of all digital search trees with a random model. Therefore we
assume that each bit {0, 1} is generated independently with probability p and q = 1− p.
For p 6= q this leads to the asymmetric (biased) DST, where if p = q = 1/2, we obtain
the symmetric (unbiased) DST.

Many generalizations of digital search trees have been considered. One of them are so
called bucket digital search trees, where every node can hold up to b records.

The internal path length of a tree is the sum of the lengths of the paths to every
node. More precisely, it is the sum of the number of edges on the path from the root to
each node. In this work we denote by Ln the internal path length of a DST built from n
(sufficiently long) records comprised of random digits.

Digital search trees have been quite thoroughly investigated in recent decades. Knuth
[15] and Flajolet and Sedgewick [5] introduced analytical methods for the analysis of
digital search trees. Their research was continued by Flajolet and Richmond [4], Louchard
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[17], Szpankowski [22], Jacquet [10], Kirschenhofer and Prodinger [12] and others.

2.2 Internal Path Length for Symmetric DSTs

Now we are discussing the internal path length of a symmetric DST. Let π(n, k) be the
splitting probability which is the probability that the left subtree holds k records (and the
right subtree holds n− 1− k records). Clearly π(n+ 1, k) =

(
n
k

)
/2k. Under the condition

of {π(n + 1, k)} we have the recurrence Ln+1
d
= Lk + Ln−k + n, which implies that the

corresponding probability generating functions Fn(z) = E[zLn ] satisfy for n ≥ 0

Fn+1(z) = zn2−n
n∑
k=0

(
n

k

)
Fk(z)Fn−k(z), F0(z) = 1. (2.1)

Mean. Knuth [15] first used an approach suggested by Koheim and Newman [16] to
derive the mean, but his approach is not useful for the analysis of other parameters.
Flajolet and Sedgewick [5] gave another approach to analyze the mean which we will
discuss here.

The expectation fn = E[Ln] can be obtained from the probability generating functions
(2.1) by fn = F ′n(1). Consequently,

fn+1 = n+ 21−n
n∑
k=0

(
n

k

)
fk (n > 0), f0 = 0.

The above recurrence falls into the general type discussed in the following lemma:

Lemma 6. Let (xn) be a sequence of numbers satisfying x0 = x1 = 0,

xn+1 = an+1 + 21−n
n∑
k=0

(
n

k

)
xk (n > 1),

where (an) is any sequence of numbers with a0 = a1 = 0;. We define the binomial inverse
relations

ân =
n∑
k=0

(−1)k
(
n

k

)
ak and an =

n∑
k=0

(−1)k
(
n

k

)
âk. (2.2)

Then the solution is given by

xn = −
n∑
k=2

(−1)k
(
n

k

)
x̂k−2,
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where Qn =
∏

1≤j≤n (1− 2−j) and

x̂n = Qn

n+1∑
i=1

âi − âi+1

Qi−1

.

Proof. See [14].

Thus we obtain an explicit formula for fn:

fn =
n∑
j=2

(−1)k
(
n

k

)
Qk−2.

This is exactly Example 2 discussed in Section 1.1. Thus, we have the following theorem.

Theorem 10 (Flajolet and Sedgewick). The average internal path length of a symmetric
digital search tree built from n records is

E[Ln] =n log2 n+ n

(
γ − 1

log 2
+

1

2
− α + δ1(log2 n)

)
+ log2 n

+
2γ − 1

2 log 2
+

5

2
− α + δ2(log2 n) +O(log n/n),

where γ = 0.577216 · · · is Euler’s constant, α = 1 + 1
3

+ 1
7

+ · · · = 1.606695 · · · , and δ1(x)
and δ2(x) are continuous periodic functions of period 1, mean 0, and very small amplitude
(< 10−6). The approximate value of the coefficient of the linear term is −1.7155 · · · .

Proof. Collecting all contributions as in Section 1.1. gives the expansion. The pole at
z = 0 yield a contribution of log2 n+ γ

log 2
+ 5

2
−α, and the poles z = 2kπi

log 2
yield a periodic

contribution of order n0 and so on.

Variance. By applying the same technique, Kirschenhofer, Prodinger and Szpankowski
[14] derived the variance of the internal path length. More precisely, they used that the
variance satisfies V[Ln] = sn + fn − f 2

n with sn = F ′′n (1). From (2.1) we get the following
recurrence for n ≥ 0,

sn+1 =n22−n
n∑
k=0

(
n

k

)
fk + n(n− 1) + 21−n

n∑
k=0

(
n

k

)
fkfn−k + 21−n

n∑
k=0

(
n

k

)
sk
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and s0 = 0. We split it into three parts. Let sn = un + vn + wn, where

un+1 =2n(fn+1 − n) + 21−n
n∑
k=0

(
n

k

)
uk (n > 0), u0 = 0, (2.3a)

vn+1 =n(n− 1) + 21−n
n∑
k=0

(
n

k

)
vk (n > 0), v0 = 0, (2.3b)

wn+1 =21−n
n∑
k=0

(
n

k

)
fkfn−k + 21−n

n∑
k=0

(
n

k

)
wk (n > 0), w0 = 0, (2.3c)

All of the above three recurrences are of the type as discussed in Lemma 6. Thus, the
solutions of (2.3a)–(2.3c) follow from the binomial relations (2.2), where

ûk =2Qk−2

(
4 +

k−2∑
j=1

1

2j − 1
−

k−2∑
j=1

j

2j − 1
− 2k

2k−2 − 1

)
(k > 3), û0 = û1 = û2 = 0;

(2.4a)

v̂k =− 4Qk−2 (k > 3), v̂0 = v̂1 = v̂2 = 0; (2.4b)

ŵk =−Qk−2

k−1∑
j=4

21−j

Qj−1

j−2∑
i=2

(
j

i

)
Qi−2Qj−i−2 (k > 5), ŵ0 = · · · = ŵ4 = 0. (2.4c)

Next we focus on the asymptotics of un. In order to find an appropriate analytic
continuation of ûk, we can rewriting the sums appearing in (2.4a) as follows:

k−2∑
j=1

1

2j − 1
=α−

∑
j≥1

1

2k−2+j − 1
;

k−2∑
j=1

j

2j − 1
=
∑
j≥1

j

2j − 1
−
∑
j≥1

k − 2 + j

2k−2+j − 1
,

where α is as defined in Theorem 10. Thus we may continue ûk via the function

û(z) =
2Q∞

Q(22−z)

(
4 + α−

∑
j≥1

1

2z−2+j − 1
−
∑
j≥1

j

2j − 1

+
∑
j≥1

z − 2 + j

2z−2+j − 1
− 2z

2z−2 − 1

)
,

where Q∞ = 0.28878809 and Q(z) =
∏

j≥1(1− t/2j). Now, we can apply the Rice method
to obtain the asymptotics of un.

28



Next, the recurrence for vn is easier. After simple algebra one proves

vn = 4

(
n

2

)
− 4fn,

and it is easy to get the asymptotics of vn.
The appropriate extension of ŵn is intricate. From (2.4c) we have

ŵk+1 = −Qk−1

k∑
j=4

ξ(j + 1)

2j−1Qj−1

with ξ(j + 1) =

j−2∑
i=2

(
j

i

)
Qi−2Qj−2−i.

Since ξ(j + 1) ∼ 2jQ2
∞, let η(j + 1) = ξ(j + 1)− 2jQ2

∞. Then

ŵk+1 = −Qk−1

k∑
j=4

η(j + 1) + 2jQ2
∞

2j−1Qj−1

= Qk−1

(
− 2Q∞(k − 3)−

∑
j≥3

η(j + 2)

2jQj

+
∑
j≥0

η(k + j + 2)

2k+jQk+j

+ 2Q2
∞

(∑
j≥0

( 1

Qk+j

− 1

Q∞

)
−
∑
j≥3

( 1

Qj

− 1

Q∞

)))
.

All series are absolutely convergent, we may sum them up term-by-term and get

ŵk+1 = Qk−1

(
− 2Q∞k +

ξ(k + 2)

2kQk

+
ξ(k + 3)

2k+1Qk+1

+
∑
j≥2

(ξ(k + j + 2)

2k+jQk+j

− ξ(j + 2)

2jQj

))
.

From an appropriate interpretation for ξ(z + 1) (see [14])

ξ(z + 1) =
∑
r≥0

(−1)r2−(r+1
2 )

Qr

· Q∞
Q(23−z−r)

·

(
2z − 2

1− 21−z−r −
2z

1− 22−z−r + 2
∑
k≥2

(
z

k

)
1

2r+k−1 − 1

)
,

we immediately obtain the representation for ŵ(z):

ŵ(z + 1) = Qz−1

(
− 2Q∞z +

ξ(z + 2)

2zQz

+
ξ(z + 3)

2z+1Qz+1

+
∑
j≥2

(ξ(z + j + 2)

2z+jQz+j

− ξ(j + 2)

2jQj

))
with Qz = Q∞/Q(2−z), where Q(z), Q∞ are defined as above. Then, we again can obtain
the asymptotics of wn by Rice method.

Finally, from the relation V[Ln] = (un + vn + wn) + fn − f 2
n we obtain the theorem:

29



Theorem 11 (Kirschenhofer, Prodinger and Szpankowski). The variance of the internal
path length of symmetric digital search trees built from n records is

V[Ln] = n ·
(
C + δ(log2 n)

)
+O(log2 n/n),

where C is a constant with C = 0.2660 . . . and all four digits after the decimal point are
significant. The explicit form of C is

C =− 28

3L
− 39

4
− 2

∑
n≥1

n2n

(2n − 1)2
+

2α

L
+

π2

2L2
+

2

L2
− 2

L

∑
k≥3

(−1)k+1(k − 5)

(k + 1)k(k − 1)(2k − 1)

+
2

L

∑
r≥1

(−1)r2−(r+1
2 )
(
L(1− 2−r+1)/2− 1

1− 2−r
−
∑
k≥2

(−1)k+1

k(k − 1)(2r+k − 1)

)
+

2

L
ŵ′(3)− 2δ0 − δ1 (2.5)

with L = log 2, the fluctuating function δ(x) is a continuous with period 1, mean zero,
and |δ(x)| ≤ 10−6, δ0, δ1 are two non-zero numbers with |δ0| ≤ 10−10 and |δ1| ≤ 10−10,
and ŵ(z) is defined above.

2.3 Internal Path Length for Asymmetric DSTs

From the last section, we know that Kirschenhofer et al. [14] obtained an asymptotic
expression for the variance of the internal path length in the symmetric DST model.
However, they did not extend their results to the asymmetric model. Jacquet and Sz-
pankowski devised another approach to give the mean and variance of the internal path
length of the asymmetric model in a DST [10]. We will introduce this method in this
subsection.

Therefore, we suppose the binary digital search tree model is asymmetric with the
probabilities p, q (p + q = 1). Similar as in the last section, we have P(π(n + 1) = k) =(
n
k

)
pkqm−k and the probability generating functions Fn(y) = E[yLn ] of Ln satisfy for n ≥ 0,

Fn+1(y) = zn
n∑
k=0

(
n

k

)
pkqn−kFk(y)Fn−k(y), F0(y) = 1.

Now, define L(z, y) =
∑

n≥0 Fn(y)zn/n!. Then one has

∂

∂z
L(z, y) = L(pzy, y)L(qzy, y), L(z, 0) = 1.

Finally, we consider the Poisson generating function L̃(z, y) = L(z, y)e−z and obtain

L̃(z, y) +
∂

∂z
L̃(z, y) = e(y−1)zL̃(pzy, y)L̃(qzy, y). (2.6)
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Next, denote by X̃(z) = L̃y(z, 1) and Ṽ (z) = L̃yy(z, 1) + X̃(z)− X̃(z)2 the Poisson mean
and Poisson variance as already defined in Section1.3.

Poisson model. Consider first X̃(z). From (2.6) we obtain the following recurrence

X̃(z) + X̃ ′(z) = X̃(pz) + X̃(qz) + z, X̃(0) = 0. (2.7)

Let X∗(s) denote the Mellin transform of X̃(z). Note that X̃(z) = O(z2) as z → 0 and

X̃(z) = O(|z| log |z|) as z → ∞ in a linear cone (see the appendix in [10]). Thus the

fundamental strip of X∗(s) is 〈−2,−1〉 and the Mellin transform of X̃ ′(z) − z is also
defined in the same strip. Then (2.7) translates into

X∗(s)− (s− 1)X∗(s− 1) = (p−s + q−s)X∗(s) (2.8)

in terms of the Mellin transform. Next, we set X∗(s) = ξ(s)Γ(s) where Γ(s) is the gamma
function, and ξ(s) satisfies the following recurrence:

ξ(s)− ξ(s− 1) = (p−s + q−s)ξ(s).

After some algebra one obtains

ξ(s) =
∞∏
k=0

1− pk+2 − qk+2

1− p−s+k − q−s+k
=
Q(−2)

Q(s)

for s ∈ 〈−2,−1〉, where Q(s) =
∏

k≥0(1 − p−s+k − q−s+k). We need a lemma to find the
singularities:

Lemma 7. Let sk for k ∈ Z be solutions of

p−s+r + q−s+r = 1,

where p+ q = 1 and s is complex.

(i) For all k ∈ Z

−1 + r ≤ <(sk) ≤ σ0 + r,

where σ0 is a positive solution of 1 + q−s = p−s. Furthermore,

(2k − 1)π

log p
≤ =(sk) ≤

(2k + 1)π

log p
.
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(ii) If <(sk) = −1 + r and =(sk) 6= 0, then log p/ log q must be rational. More precisely,
if log p

log q
= w

t
, where gcd(w, t) = 1 for w, t ∈ Z, then

−1 + r +
2mwπi

log p
, m ∈ Z,

are all zeros with <(sk) = −1 + r.

Inverting the Mellin transform then yields the the following asymptotic expansion of
the Poisson mean:

X̃(z) =
z

h

(
log z + γ − 1 +

h2

2h
− α− δ1(log z)

)
+ o(z) (z →∞), (2.9)

where h = −p log p − q log q is the entropy of the alphabet, γ = 0.577 . . . is the Euler
constant, h2 = −p log2 p− q log2 q,

α = −
∞∑
k=1

pk+1 log p+ qk+1 log q

1− pk+1 − qk+1
, (2.10)

and δ1(log z) is a fluctuating function for log p/ log q rational with small amplitude, and
zero otherwise.

The variance is more intricate. Let W̃ (z) = Ṽ (z)− X̃(z). From (2.6) we observe that

W̃ (z) satisfies the recurrence

W̃ (z) + W̃ ′(z) = W̃ (pz) + W̃ (qz) + 2pzX̃ ′(pz) + 2qzX̃ ′(qz) + X̃ ′(z)2, W̃ (0) = 0.

This functional equation is harder to solve due to the last term for which there is no
closed-form expression for the Mellin transform, but it can be proved that the last term
only contributes O(z). Let W̃ (z) = W̃1(z) + W̃2(z) where

W̃1(z) + W̃ ′
1(z) =W̃1(pz) + W̃1(qz) + 2pzX̃ ′(pz) + 2qzX̃ ′(qz), W̃1(0) = 0,

W̃2(z) + W̃ ′
2(z) =W̃2(pz) + W̃2(qz) + X̃ ′(z)2, W̃2(0) = 0.

Then, it was shown that in [10] that W̃2(z) satisfies W̃2(z) = O(z) for z tends to infinity.

Note that W̃1(z) = O(z3) as z → 0 and W̃1(z) = O(|z| log |z|) as z →∞ in a linear cone.

Hence the fundamental strip of W∗1 (s) is 〈−3,−1〉 and the Mellin transform of W̃ ′
1(z) is

defined in 〈−2, 0〉. For s ∈ 〈−2,−1〉, the Mellin transform W∗1 (s) becomes

W∗1 (s) + g∗(s) = (p−s + q−s)W∗1 (s)− 2(p−s + q−s)sX∗(s),

where g∗(s) =M[W̃ ′
1(z); s]. Solving it, we obtain

W∗1 (s) =
−g∗(s)

1− p−s − q−s
− 2(p−s + q−s)sX∗(s)

1− p−s − q−s
.
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Since g∗(s) is analytic on 〈−2, 0〉, g∗(s)/(1 − p−s − q−s) only contributes terms up to

O(z). Next, we can manipulate W̃1(z) similar as the Poisson mean and get the asymptotic
expansion of the Poisson variance

Ṽ (z) =
z log2 z

h2
+

2z log z

h3

(
γh+ h2 −

h2

2
− αh− hδ1(log z)− hδ′1(log z)

)
+O(z).

(2.11)

Bernoulli model. From the two asymptotic expansions (2.9) and (2.11), we can observe
that they satisfy the condition (I) of Theorem 7. To verify condition (O), we consider

Y (z) = X̃(z)ez and get

Y ′(z) = Y (pz)eqz + Y (qz)epz + zez, Y (0) = 0.

Observe that the above equation can be represented as

Y (z) =

∫ z

0

(
Y (pw)eqw + Y (qw)epw + wew

)
dw.

We can apply mathematical induction over increasing domains and get a bound for Y (z) =

X̃(z)ez (see [11] for more details), as needed to verify condition (O) of Theorem 7. In a

similar manner we can handle Ṽ (z) + X̃(z)2. Thus we have the following theorem of the
mean and the variance of the internal path length (see [10]):

Theorem 12 (Jacquet and Szpankowski). Consider a digital search tree built from n
records under the asymmetric DST Bernoulli model. Then asymptotically the average
value E[Ln] and the variance V[Ln] of the internal path length of the digital search tree
become

E[Ln] =
n

h

(
log n+

h2

2h
+ γ − 1− α + δ0(log n)

)
+ o(n),

V[Ln] ∼c2n log n, (2.12)

where h = −p log p − q log q is the entropy of the alphabet, γ = 0.577 . . . is the Euler
constant, h2 = p log2 p + q log2 q, and c2 = (h2 − h2)/h3, α is defined in (2.10) and
δ0(log n) is a fluctuating function for log p/ log q rational with small amplitude, and zero
otherwise.

2.4 B-DSTs

Now we consider a b-DST, which is similar to the DST but now up to b records are stored
in the nodes (the bucket capacity is b). The random model is as before. Flajolet and
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Richmond [4] devised a method to give the average size of a digital search tree under the
symmetric model. Hubalek [8] further developed the approach by Flajolet and Richmond
to give the mean and variance of the internal path length of a symmetric b-DST.

From now on we fix the capacity b as an integer, and consider a b-DST built from
n records (n ≥ 0). Let Ln be the internal path length of a symmetric b-DST built
from n records. Since we know that the first b records are stored in the root, thus the
corresponding probability generating functions Fn(z) = E[zLn ] satisfy for n ≥ 0

Fn+b(z) = zn
n∑
k=0

2−n
(
n

k

)
Fk(z)Fn−k(z), F0(z) = · · · = Fb−1(z) = 1.

Mean. As before, the expectation is fn = E[Ln] = F ′n(1). Hence,

fn+b = n+ 21−n
n∑
k=0

(
n

k

)
fk, f0 = f1 = · · · = fb−1(z) = 0. (2.13)

Again similar as before, we first investigate the general recurrence:

xn+b = an+b + 21−n
n∑
k=0

(
n

k

)
xk, x0 = a0, x1 = a1, . . . , xb−1 = ab−1.

One of the innovations in [4] is to consider the ordinary generating function. If we set the
ordinary generating function X(z) =

∑
n≥0 xnz

n and A(z) =
∑

n≥0 anz
n with respect to

the sequences (xn) and (an), we derive the following lemma.

Lemma 8. The generating function X(z) is given by X(z) = 1
1−z X̃( z

1−z ), where X̃(z)
satisfies

(1 + z)bX̃(z) = (1 + z)bÃ(z) + 2zbX̃(
z

2
) (2.14)

and Ã(z) = 1
1+z

A( z
1+z

).

Proof. Consider the Poisson transform x̃(z) and ã(z) of the sequences (xn) and (an),
respectively. Then, we obtain for the coefficients x̃n = n![zn]x̃(z) and ãn = n![zn]ã(z)

b∑
j=0

(
b

j

)
x̃n+j =

b∑
j=0

(
b

j

)
ãn+j + 21−nx̃n, x̃0 = x̃1 = · · · = x̃b−1 = 0. (2.15)

From the equivalent relations (similar to the sequence (an) and (ãn))

xn =
n∑
k=0

(
n

k

)
x̃k ⇐⇒ x̃n =

n∑
k=0

(
n

k

)
(−1)n−kxk,
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we have

F (z) =
1

1− z
F̃
( z

1− z

)
and Ã(z) =

1

1 + z
A
( z

1 + z

)
, (2.16)

where X̃(z) =
∑

n≥0 x̃nz
n and Ã(z) =

∑
n≥0 ãnz

n. Finally, multiplying zn+b to (2.15) and
summing over n we obtain the relation

(1 + z)bX̃(z) = (1 + z)bÃ(z) + 2zbX̃(z/2).

Remark 1. In Lemma 8, let X̂(t) = X̃(t−1), Â(t) = Ã(t−1) and

φ(t) =
∏
j≥0

(1 + 2−jt). (2.17)

Then, by iterating:

X̂(t) =Â(t) +
2

(1 + t)b
X̂(2t) =

∑
j≥0

2jÂ(2jt)

(1 + t)b · · · (1 + 2j−1t)b

=φ
( t

2

)b∑
j≥0

2j
(1 + 2jt)bÂ(2jt)

φ(2jt)b
. (2.18)

Thus, we obtain the harmonic sum Φ(t) =
∑

j≥0 2jP̂ (2jt)/φ(2jt)b, where P̂ (t) = (1 +

t)bÂ(t). Since φ( t
2
)b = 1 + bt+O(t2) (the Taylor expansion at 0), it suffices to know the

asymptotic behavior of Φ(t) whose Mellin transform is given by

Φ∗(s) =
1

1− 21−s ·
( P̂ (t)

φ(t)b

)∗
(s). (2.19)

Now, we will turn to the mean. From (2.13) and Lemma 8:

(1 + z)bF̃ (z) = zb+1 + 2zbF̃ (z/2).

Using Remark 1 one has

F̂ (t) =φ
( t

2

)b(1

t

∑
j≥0

2j

2jφ(2jt)b

)
=φ
( t

2

)b
H(t). (2.20)

35



From the integral relation
∫∞

0
log(1 + z)zs−1 dz = π

s sinπs
for <(s) ∈ 〈−1, 0〉, we have

log φ(t) =
∑
j≥0

log(1 + 2−jt)

=
1

2πi

∫ 1/2+i∞

1/2−i∞

π

(1− 2s)s sinπs
t−s ds

∼ log2 t

2 log 2
+

log t

2
, (2.21)

uniformly for |t| → ∞ in the linear cone Lθ for any fixed θ ∈ (0, π). Thus,

φ(t)−b =

{
1− 2bt+O(t2), t→ 0,

O
(

exp(−(b/2 log 2) log2 t)
)
, t→∞,

(2.22)

in the cone. This guarantees the existence of the Mellin transform of H(t) which is

H∗(s) =
1

1− 21−s I
∗(s− 1) (<(s) > 1), (2.23)

where

I∗(s) =

∫ ∞
0

φ(t)−bts−1 dt (2.24)

converges in the strip 〈0,∞〉.
Remark. I∗(s) is exponentially small as =(s)→ ±∞ for <(s) > 0 [4]. Moreover, one can
prove

I∗(s) =
π

sin πs
J(s), with J(s) =

1

2πi

∫
H

1

φ(t)b
(−t)s−1 dt, (2.25)

where H is a Hankel-type contour starting at +∞−0 ·i, turning around 0 clockwise before
returning to +∞+ 0 · i. Flajolet and Richmond [4] also give the representation

J(s) = A0(2s) + (s− 1)A1(2s) + · · ·+ (s− 1)(s− 2) · · · (s− b+ 1)Ab−1(2s), (2.26)

where Ak(x)’s are entire functions, thus J(k) = 0, for all k ≥ 1. Furthermore, (2.22)
implies that I∗(s) ∼ s−1 as s → 0 and I∗(s) ∼ −2b(s + 1)−1 as s → −1. Thus we can
obtain the singular expansion of I∗(s).

From the above remark and (2.23), we know that H(s) has a double pole at s = 1
and simple poles at s = 1 +χk, where χk = 2kπi/L (k ∈ Z) with L = log 2. Applying the
inversion formula

H(t) =
1

2πi

∫ 3/2+i∞

3/2−i∞
H∗(s)t−s ds,
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we have the asymptotic expansion of H(t) as t→ 0 (the remainder term is due to a simple
pole at s = −1) [8]

H(t) = − 1

L
t−1 log t+

( 1

L
J ′(0) +

1

2

)
t−1 +

1

L

∑
k 6=0

I∗(χk)t−1−χk + 2b+O(t), (2.27)

where

J ′(0) =

∫ 1

0

( 1

φ(t)b
− 1
)
t−1 dt+

∫ ∞
1

t−1

φ(t)b
dt. (2.28)

Remark. First we rewrite

J ′(0) =

∫ 1

0

( 1

φ(t)b
− 1
)
t−1 dt+

∫ ∞
1

t−1

φ(t)b
dt

=− b
∫ ∞

0

φ(t)−b
φ′(t)

φ(t)
log t dt,

then

J ′(0) ∼ −2b

∫ ∞
0

e−2bt log t dt = 2b
d

ds
(2b)−sΓ(s)|s=1 = − log b− γ − L

as b→∞.

Equations (2.20) and (2.27) give

F̂ (t) =− 1

L
t−1 log t+

( 1

L
J ′(0) +

1

2

)
t−1 +

1

L

∑
k 6=0

I∗(χk)t−1−χk (2.29)

− b

L
log t+

( b
L
J ′(0) +

5b

2

)
+
b

L

∑
k 6=0

I∗(χk)t−χk +O(t log t),

and by the elementary substitution (2.16) we obtain the asymptotics of F (z). Finally,
using Theorem 9 we obtain the following theorem for the mean of symmetric b-DSTs.

Theorem 13 (Hubalek). The expected generalized internal path length of a b-digital search
tree built from n records satisfies as n→∞

E[Ln] =n log2 n+
( 1

L
J ′(0) +

1

2
+
γ

L
− 1

L
+ δ1(log2 n)

)
n+ b log2 n

+
( b
L
J ′(0) +

5b

2
+
bγ

L
− 1

2L
+ δ2(log2 n)

)
+O(

log n

n
),

where L = log 2, γ denotes Euler’s constant, J ′(0) is defined in (2.28), δ1(x) and δ2(x)
are analytic, periodic functions with mean 0 and period 1.
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Variance. To compute the variance, we use the formula V[Ln] = sn − f 2
n + fn where

sn = F ′′n (1) as for the classical symmetric DST. Then,

sn+b = n22−n
n∑
k=0

(
n

k

)
fk + n(n− 1) + 21−n

n∑
k=0

(
n

k

)
fkfn−k + 21−n

n∑
k=0

(
n

k

)
sk

with s0 = s1 = · · · = sb−1 = 0. We again split the above recurrence into three components,
sn = un + vn + wn, where

un+b =n22−n
n∑
k=0

(
n

k

)
fk + 21−n

n∑
k=0

(
n

k

)
uk, u0 = · · · = ub−1 = 0; (2.30a)

vn+b =n(n− 1) + 21−n
n∑
k=0

(
n

k

)
vk, v0 = · · · = vb−1 = 0; (2.30b)

wn+b =21−n
n∑
k=0

(
n

k

)
fkfn−k + 21−n

n∑
k=0

(
n

k

)
wk, w0 = · · · = wb−1 = 0. (2.30c)

Applying Lemma 8 to (2.30a)–(2.30c) yields

(1 + z)bŨ(z) =4zb+1F̃
(z

2

)
+ 2zb+1F̃ ′

(z
2

)
+ 2zb+2F̃ ′

(z
2

)
+ 2zbŨ

(z
2

)
; (2.31a)

(1 + z)bṼ (z) =2zb+2 + 2zbṼ
(z

2

)
; (2.31b)

(1 + z)bW̃ (z) =2zbM̃(z) + 2zbW̃
(z

2

)
; (2.31c)

where

m̃n = [zn]M̃(z) = 2−n
n∑
k=0

(
n

k

)
f̃kf̃n−k (n > 0). (2.31d)

Now we again apply Remark 1 to (2.31a) to obtain the expression for Û(t) with

P̂ (t) = 4t−1F̂ (2t)− 8F̂ ′(2t)− 8tF̂ ′(2t)

as (2.18). Next, let Υ(t) = P̂ (t)/φ(t)b. From the derivative of F̂ (2t) = φ(t)bH(2t), we get

Υ(t) =4t−1H(2t)− 4b
(
T (t)− 2

)
H(2t)− 8bH(2t)

− 8H ′(2t)− 4btT (t)H(2t)− 8tH ′(2t),

where T (x) = φ′(x)/φ(x) =
∑

j≥0 2−j/(1 + 2jx) and Φ∗U(s) = Υ∗(s)/(1− 21−s). Since,

T (x) =

{
2 +O(x), x→ 0,

O
(
x−1
)
, x→∞,

38



then T (x) is a harmonic sum with Mellin transform

T∗(s) =
1

1− 2s−1

π

sin πs
(s ∈ 〈0, 1〉),

and M[T (x)− 2; s] = T∗(s) for s ∈ 〈−1, 0〉. The Mellin transform of Υ(t) is

Υ∗(s) = s23−sH∗(s− 1)− 4bΥ∗0 (s)− b23−sH∗(s)− 4bΥ∗1 (s) + s22−sH∗(s)

for s ∈ 〈2,∞〉, where Υ∗0 (s) =M[(T (t)− 2)H(2t); s] and Υ∗1 (s) =M[T (t)H(2t); s] exist
for s ∈ 〈0,∞〉. For asymptotic analysis of Φ∗(s), we have to take Υ∗0 (1) and Υ∗1 (1) into
account. One of the innovations in [8] is the use of the Mellin convolution formula.

Remark. The Mellin’s convolution formula is

M[F (t) ·G(t); s] =
1

2πi

∫ c+i∞

c−i∞
F∗(τ) ·G∗(s− τ) dτ, (2.32)

valid for c and s− c in the fundamental strip of F∗ and G∗, respectively.

From (2.32), we obtain for j = 0, 1 respectively,

Υ∗j (s) =
1

2πi

∫ 1/2+i∞

1/2−i∞
T∗(τ + j) · 2−(s−τ)H∗(s− τ) dτ.

First we compute Υ∗0 (1) by splitting

T∗(τ)2−(1−τ)H∗(1− τ) =
π

sin πτ

2τ−1

(1− 2τ−1)(1− 2τ )
I∗(0− τ)

=− T∗(τ + 1)I∗(0− τ)− T∗(τ)I∗(0− τ).

Then the first part is

1

2πi

∫ 1/2+i∞

1/2−i∞
T∗(τ + 1)I∗(0− τ) dτ =M[tT (t)I(t); s = 0]

=− 1

b
M[I ′(t); s = 0] =

1

b
,

and the second part yields

1

2πi

∫ 1/2+i∞

1/2−i∞
T∗(τ)I∗(0− τ) dτ =M[(T (t)− 2)I(t); s = 0]

=lim
s→0

{
− 1

b
M[T (t)I(t); s]− 2I∗(s)

}
=

1

b
J ′(−1)− 2J ′(0)− 2.
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Thus Υ∗0 (1) = −1
b
− 1

b
J ′(−1)+2J ′(0)+2. It is more difficult to compute Υ∗1 (1), for which

it can be proved that

Υ∗1 (1) = − 1

4b

∫ ∞
0

t−1 Λ(t)

φ(t)b
dt ∼ −2 (b→∞)

with Λ(t) = 2
∑

j≥0 j2
−jt/(1 + 2−jt). Thus, we can manipulate the expansion for U(z) as

z → 1 similar as for F (z) and get the asymptotics of un as n→∞.
The asymptotic of vn is simple. Again applying Remark 1 to (2.31b), we obtain V̂ (t)

with P̂ (t) = 2t−2 and Φ∗V (s) = 2I∗(s−2)/(1−21−s). We immediately get the asymptotics
of vn as n→∞ from the properties of I∗(s).

Because of the appearance of the “binomial convolution” (2.31d), it is non-trivial
to apply the same method to (2.31c). But, since the exponential generating function

m̃(z) =
∑

N≥0 m̃Nz
N/N ! satisfies m̃(z) = f̃(z/2)2, it can be proved that

M̂∗(s) = 2−s · 1

2πi

∫ 3/2+i∞

3/2−i∞

(
s

τ

)
F̂∗(τ)F̂∗(s− τ) dτ, (2.33)

where
(
s
τ

)
= Γ(1 + s)/Γ(1 + τ)Γ(1 + s− τ) is the complex binomial coefficient. Next, from

the singular expansions of F̂ and the Taylor series of complex binomial coefficients, we
obtain the asymptotics of M̂∗(s) as s→ 2. Similarly, one treats the case s→ 1.

From (2.31c) we have Ŵ (t) = φ(t/2)bΦW (t), where ΦW (t) = 2
∑

j≥0 2jP̂ (2jt) with

P̂ (t) = M̂(t)I(t). Presupposing some properties of P̂ , then Φ∗(s) = 2P̂∗(s)/(1 − 21−s)
where

P̂∗(s) =
1

2πi

∫ 1/2+i∞

1/2−i∞
I∗(τ)M̂∗(s− τ) dτ,

for s ∈ 〈5
2
, 2b+ 5

2
〉. Now shifting the contour to the left yields the analytic continuation

P̂∗(s) = M̂∗(s)− 2bM̂∗(s+ 1) +
1

2πi

∫ −3/2+i∞

−3/2−i∞
I∗(τ)M̂∗(s− τ) dτ.

in s ∈ 〈1
2
, 2b + 1

2
〉. Thus we get the Laurent series of P̂∗(s) as s → 2 and s → 1. After

hard calculating, we obtain the asymptotics of wn. Overall, the following theorem for the
variance of the internal path length over a b-DST holds:

Theorem 14 (Hubalek). The variance of the generalized internal path length of a b-digital
search tree built from n records satisfies as n→∞,

V[Ln] =
(
C + δ(log n)

)
n+O(log2 n), (2.34)
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where

C =
2b

L2
J ′(0) +

1

L
[δ1ϕ0]0 +

23b

6
+

1

2L
F̄∗0 (0)− 3

2L
J ′(−1)− π2b

3L2
− 9b

L
J ′(0)

+
3b

2L
F̄∗1 (1) +

1

12
+

6b

L
J ′(−1) + 2b[δ2

1]0 +
3

L
− b

L2
J ′′(0) +

1

L
J ′′(0)2

− 1

L2
J ′(0)2 +

π2

6L2
− 2b

L
[δ1ϕ2]0 +

1

L
K ′(0)− 2b

L2
− [δ2

1]0 −
b

L2
J ′(0) · F̄∗1 (1)

+
1

L2
J ′(0) · J ′(−1) +

b

L2
F̄∗1 (1) +

1

L
[δ1ϕ1]0 +

b

L2
F̄∗
′

1 (1) +
1

L2
J ′(0) · F̄∗0 (0)

− 4b

L
M̄∗2 (2)− 1

L2
F̄∗0 (0)− 1

L2
J ′(−1)− 1

2L2
J ′′(−1)− 1

L2
F̄∗
′

0 (0)

+
2

L
Φ∗1 (1)− 3b

L
− 2[δ1δ2]0. (2.35)

The constants and functions are defined in [8].

Remark. Hubalek gives the following values of C for b = 1, . . . , 5.

b 1 2 3 4 5

C 0.26600 0.13285 0.08883 0.07032 0.06109

Later on we will see that most of the digits are incorrect.

2.5 Other Parameters

Now we are going to introduce results on other parameters which have been studied for
digital search trees of size n. Our main emphasis will again be on mean and variance. First
let us fix some notation: set L = log 2, α is given in Theorem 10, β =

∑
k≥1(2k − 1)−2 =

0.788343 · · · , γ is the Euler number, the constants h, h2 and c2 are given in Theorem 12,
and ĥ2 = p2 log p+ q2 log q.

Depth. The depth of a node is the number of nodes on the path from root to the
selected node. Let Dn be the depth of a randomly selected node in a digital search tree.
Knuth [15] first gave an approach to the mean value of the symmetric DSTs which later
was improved by Flajolet and Sedgewick [5]. Kirschenhofer and Prodinger used Flajolet
and Sedgewick’s approach to give the variance in the symmetric DSTs [12]. Szpankowski
used a method which is also similar to Flajolet and Sedgewick to give all moments in the
asymmetric DSTs [22].
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Theorem 15. 1. The asymptotics of the mean E[Dn] and the variance V[Dn] of the depth
of the symmetric digital search tree built over n records are

E[Dn] = log2 n+
γ − 1

L
+

1

2
− α + σ1(n) +O

(
n−1/2

)
,

V[Dn] =
1

12
+

π2

6L2
+

1

L2
− α− β + σ2(n),

where σ1(x) and σ2(x) are small fluctuating functions in [12].
2. Under the asymmetric Bernoulli model, the mean and the variance become

E[Dn] =
1

h

{
log n+ γ − 1 +

h2

2h
− θ + σ3(n)

}
+O

(
n−1/2

)
,

V[Dn] =c2 log n+ C + σ4(z) +O(n−1 log2 n),

where C is a constant, σ3(x) and σ4(x) are small fluctuating functions in [22]

As for limit results, Louchard used a probabilistic technique to give the asymptotic
distributions of the depth in a symmetric DST [17]. Moreover, Louchard and Szpankowski
proved the normal limiting distribution of the depth in the asymmetric DSTs [19]. Fi-
nally, in the generalized b-DSTs, Louchard, Szpankowski and Tang derived the mean, the
variance, and the limiting distribution for the symmetric and asymmetric b-DSTs [20].

Distance. The distance between two nodes is the number of nodes on the path connect-
ing the selected two nodes. Let dn be the distance between two randomly selected nodes
in a digital search tree. Aguech, Lasmar and Mahmoud used the methods developed for
the depth to determine the moments and to obtain the limit law of the distance in a DST
[1]. We only give their results concerning mean and variance.

Theorem 16. 1. Consider an asymmetric digital search tree built from n records. Then
asymptotically the average value E[dn] and the variance V[dn] of the distance between two
random nodes in the digital search tree become

E[dn] =
2

h
log n+

1

h

( ĥ2

pq
+
h2

h
− 2(1− γ) + log(pq)− 2Lα

)
+ 2− 2δq(n) +O

(
n−0.49999

)
,

V[dn] =2c2 log n+O(1),

where δq(n) is a small fluctuating function in [1].
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2. Now, consider the digital search tree under the symmetric Bernoulli model. Then

E[dn] =2 log2 n− 1 +
2(γ − 1)

L
− α− 2δ 1

2
(n) +O

(
n−0.49999

)
,

V[dn] =
6 + π2

3L3
+

22

3
− 2(α + β) +

4(γ − 1)

L
δ 1

2
(n)− 2δ2

1
2
(n)

+
4

L
δ̂(n) +O

(
n−0.49999

)
,

where δ̂(x) is another small fluctuating function in [1].

External-internal nodes. A node with both links null is called an external-internal
node. Knuth gave the open question in [15] to analyze the number of such nodes in random
DSTs (Prodinger showed that Knuth could have solved it himself in [21]). This question
was solved by Flajolet and Sedgewick who gave the mean value in a symmetric digital
search tree. Moreover, the variance in the symmetric DSTs was derived by Kirschenhofer
and Prodinger [13]. Since the latter result is very messy we just give the result for the
mean.

Theorem 17. The average number of external-internal nodes in a symmetric digital
search tree built from n records is

n
(
β + 1− 1

Q∞

( 1

L
+ α2 − α

)
+ δ(n)

)
+O(n1/2),

where Q∞ =
∏

k≥1(1− 2−j) = 0.288788 . . . ,

β =
∞∑
k=1

k · 2k(k−1)/2

1 · 3 · 5 · · · (2k − 1)
·
( k∑
j=1

1

2j − 1

)
= 7.74313 · · · ,

and δ(x) is a small fluctuating function in [5]

As for b-DSTs, mean, variance and limit laws in the symmetric b-DSTs were derived
in Hubalek, Hwang, et al. [9].

The Size. The size of a tree is the number of nonempty nodes. For a classical DST,
the size is equal to the number of nodes, but this does not hold for the b-DSTs. Flajolet
and Richmond gave the expected value of the size of a symmetric b-DST [4]. Moreover,
variance and limit distributions were derived in Hubalek, Hwang, et al. [9]. Again we just
give the result for the mean.
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Theorem 18. The expected number of nonempty nodes in a symmetric b-DST built from
n records satisfies

n(q0 + S(n)) +O(n1/2)

where

q0 =
1

L

∫ ∞
0

(1 + t)b−1

φ(t)b
dt,

where φ(t) is defined in (2.17), S(x) is a periodic function with mean 0 and the following
are few values of the leading constant q0:

b 2 3 4 5 10

q0 0.5747 0.4069 0.3159 0.2585 0.1360
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Chapter 3

New Method for Internal Path
Length

In this chapter, we explain a new method which will appear in a forthcoming paper
of Fuchs, Hwang, and Zacharovas to improve the analysis of the internal path length of
symmetric b-DSTs. Moreover, we will use the method to derive some exact and asymptotic
results.

3.1 Introduction

Let Ln be the internal path length of the b-DSTs built from n records. Let Pn(y) = E[eLny]
be the moment generating function of Ln. Then Pj(y) = 1 with j ≤ b and

Pn+b(y) = eny2−n
n∑
j=0

(
n

j

)
Pj(y)Pn−j(y) (n > 1).

Next, we define P (z, y) =
∑

n≥0
Pn(y)
n!

zn. This gives

∂b

∂zb
P (z, y) = P

(eyz
2
, y
)2

.

Now we consider the Poisson generating function P̃ (z, y) = e−zP (z, y). Then

b∑
j=0

∂j

∂zj
P̃ (z, y) = e(ey−1)zP̃

(eyz
2
, y
)2

.
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Thus, if we set P̃ (z, y) =
∑

m≥0
f̃m(z)
m!

ym, then we obtain the following relations for the
Poisson transforms of the first two moments

b∑
j=0

(
b

j

)
f̃

(j)
1 (z) =2f̃1(z/2) + z, (3.1)

b∑
j=0

(
b

j

)
f̃

(j)
2 (z) =2f̃2(z/2) + 2f̃1(z/2)2 + 4zf̃1(z/2) + 2zf̃ ′1(z/2) + z + z2 (3.2)

with initials f̃
(j)
k (0) = 0 for 0 ≤ j ≤ b and k = 1, 2.

New method. First, we consider the recurrence of the general type:

b∑
j=0

(
b

j

)
f̃ (j)(z) =2f̃(z/2) + g(z), (3.3)

with initials f̃ (j)(0) = 0 for 0 ≤ j ≤ b. By using the Laplace transform, we can deduce
a more simpler recurrence. More precisely, we denote the Laplace transform of f(z) by
F (s) and obtain

b∑
j=0

(
b

j

)
sjF (s) = 4F (2s) +G(s), (3.4)

where G(s) is the Laplace transform of g(z). Define

ϕ(s) =
∏
j≥1

(1 + 2−js)b (3.5)

and write

F̂ (s) =
F (s)

ϕ(s)
.

Then, we have

F̂ (s) = 4F̂ (2s) +
G(s)

ϕ(2s)
,

and by iteration

F̂ (s) =
∑
j≥0

4j
G(2js)

ϕ(2j+1s)
. (3.6)
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Obviously, this is a harmonic sum. Therefore, we use the Mellin transform and get

F∗(w) =
G∗(w)

1− 22−w ,

where F∗(w) =M[F̂ ;w] and

G∗(w) =

∫ ∞
0

sw−1

ϕ(2s)

∫ ∞
0

e−szg(z) dz ds.

If g(z) = O(zβ) for large z, where β < 1, then G(s) = O(|s|−max{β+1,0}) as |s| → 0.
From (2.22) (φ(s)b = ϕ(2s)), we know 1/ϕ(s) is very small at infinity. Thus, the Mellin
transform G∗(w) is well-defined in <(w) > max{β + 1, 0} and from the inverse Mellin
transform we have

F̂ (s) =
1

2πi

∫ 3+i∞

3−i∞

G∗(w)

1− 22−w s
−w dw.

Thus, by moving the line of integration to <(w) = max{β + 1 + ε, ε}, and adding all
residues at the poles at w = χj = 2jπi/ log 2, we obtain

F̂ (s) =
1

log 2

∑
j∈Z

G∗(2 + χj)s
−2−χj +O

(
|s|−β−1−ε + |s|−ε

)
as |s| → 0. From (2.22) we know

ϕ(s) = 1 + bs+O(|s|2)

as |s| → 0. Then we have

F (s) =
1

log 2

∑
j∈Z

G∗(2 + χj)s
−2−χj +

b

log 2

∑
j∈Z

G∗(2 + χj)s
−1−χj +O

(
|s|−β−1−ε + |s|−ε

)
as |s| → 0. Finally, by the inverse Laplace transform, we get

f̃(z) =
1

log 2

∑
j∈Z

G∗(2 + χj)

Γ(2 + χj)
z1+χj +

b

log 2

∑
j∈Z

G∗(2 + χj)

Γ(1 + χj)
zχj +O

(
|z|β+ε + |z|ε−1

)
.

(3.7)

From this we obtain the asymptotics of fn via de-poissonization.
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Mean. From (3.1), we know that for the expected internal path length we have g(z) = z,
and by the process above we get

G∗(w) =

∫ ∞
0

sw−3

ϕ(2s)
ds,

which has a simple pole at w = 2 (see (2.24)). Then, we can write

G∗(w) =
1

w − 2
+G∗1 (w),

where

G∗1 (w) =

∫ 1

0

( 1

ϕ(2s)
− 1
)
sw−3 ds+

∫ ∞
1

sw−3

ϕ(2s)
ds,

and deduce that

F̂ (s)s2 =
1

2πi

∫ 3+i∞

3−i∞

G∗(w)

1− 22−w s
2−w dw

= log2

1

s
+

1

2
+
G∗1 (2)

log 2
+

1

log 2

∑
j∈Z\{0}

G∗(2 + χj)s
−χj +O(|s|) (3.8)

as |s| → 0 (in fact, G∗1 (2) is equal to J ′(0) as (2.28)). Then we obtain

f̃1(z) =z log2 z + z
(γ − 1

log 2
+

1

2
+
G∗1 (2)

log 2
+

1

log 2

∑
j∈Z\{0}

G∗(2 + χj)

Γ(2 + χj)
zχj

)
+ b log2 z +O(1). (3.9)

Thus, using Theorem 7 we obtain

E[Ln] =f̃1(n) +O(1)

=n log2 n+
( 1

log 2
G∗1 (2) +

1

2
+

γ

log 2
− 1

log 2
+ δ1(log2 n)

)
n+O(1).

This coincides with the expansion obtained in Theorem 13.

Variance. To compute the variance, we consider the function

Ṽ (z) := f̃2(z)− f̃1(z)2 − zf̃ ′1(z)2. (3.10)

The advantage of using this function is

Ṽ (n) = f̃2(n)− f̃1(n)2 − nf̃ ′1(n)2,
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whose right hand side corresponds to the right hand of (1.23) in Theorem 7. From (3.2),

Ṽ (z) satisfies the general type (3.3)

b∑
j=0

(
b

j

)
Ṽ (j)(z) = 2Ṽ (z/2) + g(z), (3.11)

where

g(z) =

( b∑
j=0

(
b

j

)
f̃

(j)
1 (z)

)2

+ z

( b∑
j=0

(
b

j

)
f̃

(j+1)
1 (z)

)2

−
b∑

j=0

(
b

j

)((
f̃ 2

1 (z)
)(j)

+
(
zf̃ ′1(z)2

)(j)
)
. (3.12)

Remark. (1) Note that from (3.9), we have

g(z) =
b

z

( 1

log 2
+
∑
j∈Z

cjz
χj

)2

+O
(
|z|−2

)
(3.13)

as |z| → ∞.

(2) g(z) = gb(z) is given by (for simplicity, we set φj = f̃
(j)
1 (z))

g1(z) =zφ2
2,

g2(z) =z(2φ2
2 + 4φ2φ3 + φ2

3) + φ2
2,

g3(z) =z(3φ2
2 + 12φ2φ3 + 6φ2φ4 + 9φ2

3 + 6φ3φ4 + φ2
4)

+ 3φ2
2 + 6φ2φ3 + φ2

3,

g4(z) =z(4φ2
2 + 24φ2φ3 + 24φ2φ4 + 8φ2φ5 + 30φ2

3

+ 48φ3φ4 + 12φ3φ5 + 16φ2
4 + 8φ4φ5 + φ2

5)

+ 6φ2
2 + 24φ2φ3 + 12φ2φ4 + 16φ2

3 + 8φ3φ4 + φ2
4.

Now, by the same process as for the mean, we get

V[Ln] =Ṽ (n) +O(1)

=
G∗(2)

log 2
n+

1

log 2

∑
j∈Z\{0}

G∗(2 + χj)n
1+χj +O(1),

which is as same as (2.34), where

G∗(2)

log 2
=

1

log 2

∫ ∞
0

s

ϕ(2s)

∫ ∞
0

e−szg(z) dz ds.

Note that the last expression is much easier than the corresponding expression in Theorem
14. In particular, we can use Maple to obtain the values for small b (see Table 3.1). We
will do this in Section 3.3.
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Table 3.1: Some values of the leading constant G∗(2)/ log 2.

b 1 2 3 4 5

G∗(2)/ log 2 0.26600 0.13260 0.09004 0.06958 0.05781

3.2 Exact Results

b=1. First, we consider the case b = 1. By (3.4) and iteration, we obtain that the

Laplace transform F̃1(s) of f̃1(z) satisfies

F̃1(s) =
∑
j≥0

1

s2

1

(s+ 1) · · · (2js+ 1)
.

Now, by partial fraction expansion, we have

1

(s+ 1) · · · (2js+ 1)
=
∑

0≤h≤j

(−1)j−h2−(j−h
2 )−j

(s+ 2−h)QhQj−h
,

where Qn =
∏

1≤j≤n(1− 2−j), Q0 = 1. Thus,

F̃1(s)s2 =
∑
j≥0

∑
0≤h≤j

(−1)j−h2−(j−h
2 )−j

(s+ 2−h)QhQj−h

=
∑
h≥0

1

Qh(2hs+ 1)

∑
j≥0

(−1)j2−(j+1
2 )

Qj

.

By the Euler identity

1 +
∑
j≥1

q(
j
2)zj

(1− q) · · · (1− qj)
=
∏
k≥0

(
1 + qkz

)
,

we can see that ∑
j≥0

(−1)j2−(j+1
2 )

Qj

= Q∞ = lim
n→∞

Qn ≈ 0.288788 . . .

This gives

F̃1(s) =
Q∞
s2

∑
h≥0

1

Qh(2hs+ 1)
,
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and then by inverse Laplace transform

f̃1(z) = Q∞
∑
h≥0

2h

Qh

(
e−z/2

h − 1 +
z

2h

)
. (3.14)

Next, from (3.12) we have g1(z) = zf̃ ′′1 (z)2 for b = 1. By (3.14), we have

f̃ ′′1 (z) =
∑
h≥0

Q∞
Qh2h

e−z/2
h

,

and thus, letting G1(s) be the Laplace transform of g1(z), we get

G1(s) =
∑
h,k≥0

Q2
∞

QhQk2h+k
· 1

(s+ 2−h + 2−k)2
.

Then, we have

G∗1 (w) =M[G1(s)/ϕ(2s);w]

=
∑
h,k≥0

Q2
∞

QhQk2h+k

∫ ∞
0

sw−1

ϕ(2s)(s+ 2−h + 2−k)2
ds.

Hence, By the identity

1

ϕ(2s)
=
∑
j≥0

(−1)j2−(j
2)

QjQ∞(s+ 2j)
,

we have the explicit form for G∗1 (w):

G∗1 (w) = Q∞
∑

j,h,k≥0

(−1)j2−(j
2)

QjQhQk2h+k

∫ ∞
0

sw−1

(s+ 2j)(s+ 2−h + 2−k)2
ds.

This explicit form is more simpler than (2.5) and (2.35).

b=2. For b = 2, we have

F̃1(s) =
∑
j≥0

1

s2

1

(s+ 1)2 · · · (2js+ 1)2
,

which, by partial fraction expansion,

1

(s+ 1)2 · · · (2js+ 1)2
=
∑

0≤l≤j

(
4j

1(l)

2ls+ 1
+
4j

2(l)

(2ls+ 1)2

)
,
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where

4j
1(l) =

2−(j−l+1)(j−l)

Q2
lQ

2
j−l

j∑
q=0,q 6=l

−2

(2l−q − 1)
,

4j
2(l) =

2−(j−l+1)(j−l)

Q2
lQ

2
j−l

,

has the form

F̃1(s) =
1

s2

∑
j≥0

j∑
l=0

(
4j

1(l)

2ls+ 1
+
4j

2(l)

(2ls+ 1)2

)
=

1

s2

∑
l≥0

A(l)

Q2
l (2

ls+ 1)
+

1

s2

∑
l≥0

A

Q2
l (2

ls+ 1)2
,

where

A(l) =
∑
j≥0

2−j(j+1)

Q2
j

j+l∑
q=0,q 6=l

−2

(2l−q − 1)
,

A =
∑
j≥0

2−j(j+1)

Q2
j

≈ 2.113388773 . . .

Thus, we have

f̃1(z) =
∑
l≥0

A(l)2l

Q2
l

(
e−z/2

l − 1 +
z

2l

)
+
∑
l≥0

A

Q2
l

(
ze−z/2

l

+ 2l+1e−z/2
l − 2l+1 + z

)
. (3.15)

Similarly, from (3.12) and (3.15), we get a more complicated form

G2(s) =
∑
h,l≥0

1

Q2
hQ

2
l 2

2h+2l

4∑
k=1

αk(h, l)

(s+ 2−h + 2−l)k
,

where

α1(h, l) =2h+lA(h)A(l),

α2(h, l) =A2 + (2h+13− 2)AA(h) + (21+h+l − 22+h + 1)A(h)A(l),

α3(h, l) =(10− 21−h − 21−l)A2 + (23+h + 22−l − 23+h−l − 23)AA(h),

α4(h, l) =6(1 + 2−h−l − 22−h)A2.
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By the identity

1

ϕ(2s)
=

∞∑
p,q=0

Λ(p, q)

(s+ 2p)(s+ 2q)
,

where

Λ(p, q) =
(−1)p+q2−(p

2)−(q
2)

QpQqQ2
∞

,

we have

G∗2 (w) =M[G2(s)/ϕ(2s);w]

=
4∑

k=1

( ∑
h,l,p,q≥0

αk(h, l)Λ(p, q)

Q2
hQ

2
l 2

2h+2l

∫ ∞
0

sw−1

(s+ 2p)(s+ 2q)(s+ 2−h + 2−l)k
ds

)
.

Again this is easier than (2.5) and (2.35). Moreover, by similar computations, larger
values of b can be treated as well.

3.3 Numerical Results

In this section, we discuss the computation of the numerical value of G∗(2). First, we
separate the integral into three parts∫ ∞

0

s

ϕ(2s)

∫ ∞
0

e−szg(z) dz ds =

∫ ∞
N

s

ϕ(2s)

∫ T

0

e−szg(z) dz ds

+

∫ N

0

s

ϕ(2s)

∫ T

0

e−szg(z) dz ds

+

∫ ∞
0

s

ϕ(2s)

∫ ∞
T

e−szg(z) dz ds.

Now we consider the first part of the integral. Since g(z) is given by (3.12) and

f̃
(j)
1 (0) = 0 for j ≤ b and f̃

(b+1)
1 (0) = 1, we have

g(z) = O(|z|),

as |z| → 0. Then, ∫ ∞
0

g(z)e−sz dz = O(s−2),
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for large s. Thus, from this and (2.21) we obtain for N tends to infinity,∫ ∞
N

s

ϕ(2s)

∫ T

0

g(z)e−sz dz ds =O
(∫ ∞

N

s−1−b/2e−b log2 s/(2 log 2) ds

)
=O

(
N−b/2e−b log2N/(2 log 2)

)
.

This means that if we choose N large enough, then the first part can be safely neglected.
Next, we need a good way of computing g(z) for the second integral. We first consider

f̃1(z). Since f̃1(z) = e−z
∑

n>b µnz
n/n! is an entire function, we have

f̃1(z) ≈ e−z
∑

b<n≤N

µn
n!
zn (0 ≤ z ≤ T ), (3.16)

and the error term introduced by this approximation is

e−z(logN)
zN+1

N !
≈ z logN√

2πN
e−z
(
ez

N

)N
,

which is very small if we choose T small enough, say N � eT . So, in order to compute
f̃1(z), we just have to generate µb+1, . . . , µN (this can be done via the recurrence satisfied
by µn) and then use (3.16). Since a similar approach also works for the derivatives of

f̃1(z), this can be used to compute g(z) as well.
Finally, we consider the last integral∫ ∞

0

s

ϕ(2s)

∫ ∞
T

e−szg(z) dz ds =

∫ ∞
T

g(z)

∫ ∞
0

s

ϕ(2s)
e−sz ds dz. (3.17)

We use Watson’s lemma to get an asymptotic expansion of the Laplace transform of
s/ϕ(2s):

Lemma 9. Consider a Laplace integral
∫∞

0
f(s)e−zs ds and assume

(i) f(s) has a power series expansion which converges for |s| < R.

(ii) There exists an α > 0 such that f(s) = O(eαs) as s→∞.

Then, ∫ ∞
0

f(s)e−zs ds ∼
∞∑
h=0

f (h)(0)

zh+1
.
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We still need an asymptotic expansion of g(z) for z large. Again first consider f̃1(z).
Here, we put

1

ϕ(2s)
∼
∑
h≥0

ϕhs
h.

This implies that

Ĝ∗(w) =

∫ ∞
0

sw−3

ϕ(2s)
ds =

∫ ∞
0

∑
h≥0

ϕhs
w+h−3 ds

has simple poles at w = 2− h. Then, similar as in (3.8), we obtain

F̂ (s) =
1

s2
log2

1

s
+

1

2s2
+
Ĝ∗1 (2)

log 2s2
+

1

log 2

∑
j∈Z\{0}

Ĝ∗(2 + χj)s
−2−χj −

∑
h≥1

ϕhs
h−2

2h − 1
,

as |s| → 0. Next, put

ϕ(s) ∼
∑
h≥0

ϕ̃hs
h.

From this and the expression above, we get

F (s) ≈ ϕ̃0

s2
log2

1

s
+
ϕ̃0

2s2
+
ϕ̃0Ĝ
∗
1 (2)

log 2s2
+

ϕ̃0

log 2

∑
j∈Z\{0}

Ĝ∗(2 + χj)s
−2−χj − ϕ̃0ϕ1s

−1

+
ϕ̃1

s
log2

1

s
+
ϕ̃1

2s
+
ϕ̃1Ĝ
∗
1 (2)

log 2s
+

ϕ̃1

log 2

∑
j∈Z\{0}

Ĝ∗(2 + χj)s
−1−χj

+
∑
h≥2

ϕ̃h
log 2

∑
j∈Z\{0}

Ĝ∗(2 + χj)s
−2+h−χj .

Here, we have dropped all terms with si, i ≥ 0 (their contributions to f̃1(z) is negligi-
ble). Then, by inverse Laplace transform,

f̃1(z) ∼ ϕ̃0

log 2
z(−1 + γ + log z) +

ϕ̃0

2
z +

ϕ̃0Ĝ
∗
1 (2)

log 2
z +

ϕ̃0

log 2

∑
j∈Z\{0}

Ĝ∗(2 + χj)

Γ(2 + χj)
z1+χj

− ϕ̃0ϕ1 +
ϕ̃1

log 2
(γ + log z) +

ϕ̃1

2
+
ϕ̃1Ĝ
∗
1 (2)

log 2
+

ϕ̃1

log 2

∑
j∈Z\{0}

Ĝ∗(2 + χj)

Γ(1 + χj)
zχj

+
∑
h≥2

ϕ̃h
log 2

∑
j∈Z\{0}

Ĝ∗(2 + χj)

Γ(2− h+ χj)
z1−h+χj . (3.18)
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By differentiation we obtain similar expansions for the derivatives of f̃1(z) and hence for
g(z).

Plugging this expansion together with the expansion obtained from Watson’s lemma
for the Laplace transform of s/ϕ(2s) into (3.17) and integration then yields an approxi-
mation of (3.17) up to arbitrary large order. Choosing sufficiently many terms will then
give a good approximation for very small T .

Finally, we explain how to compute Ĝ∗(2 + χj) involved in (3.18). First notice that

due to the very fast decay of Ĝ∗(2+χj) only j = 0, 1,−1 are needed. For the computation
we use the following result which is due to Flajolet and Richmond.

Lemma 10. The function J(s) defined in (2.26) admits the representation

J(s) = A0(2s) + (s− 1)A1(2s) + · · ·+ (s− 1)(s− 2) · · · (s− b+ 1)Ab−1(2s),

where Ak(x)’s are entire functions, and

Ak(x) =
(−1)k

k!
· 1

Qb
∞

∞∑
j=0

(−1)jb
2−bj(j+1)/2

Qb
j

Yb−1−k(j)(x2b−1−k)j,

with Qm =
∏m

l=1(1− 2−l), Q∞ =
∏∞

l=1(1− 2−l) and the Yβ(j) are defined by

∑
β≥0

Yβ(j)wβ = exp

(
b
∑
α≥1

(−1)αwα

α
(
∑
l 6=j

1

(2l − 2j)α
)

)
.

Overall, by incorporating all the above ideas, we obtain the following program for
computing the required values.
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> b := 2; T := 30; N := 4*T;
> µ := vector(120);

for y from 1 to b do
µ[y] := 0
end do;

> for y from 1 to 120-b do
µ[y+b] := y+2ˆ(1-y)*(sum(binomial(y, i)*µ[i], i=1..y))
end do;

> fnew := exp(-z)*(sum(µ[i]*zˆi/i!, i=1..120));
> f := vector(b);

for y from 1 to b do
f[y] := diff(fnew, z$y+1)
end do;

> evalf(evalf(Int(s*exp(-z*s)*((2*z+1)*f[1]ˆ2+z*f[2]ˆ2+4*z*f[1]*f[2])/
evalf(Product(1+s/2ˆi, i=0..60))ˆb, [z=0..T, s=0..N]))/ln(2));

0.1300797679

> with(PolynomialTools);
φ := sum(sum(b*(-1)ˆ(n-1)*sˆn/(n*(2ˆn-1)), n=1..12)ˆi/i!, i=0..12);
coeff phi := CoefficientVector(expand(φ), s);

> q := evalf(add((-1)ˆj*2ˆ(-binomial(j+1, 2)) /evalf(Product(1-2ˆ(-i), i=1..j)), j=0..60));
e := sum((-1)ˆi*wˆi*(sum(1/(2ˆd-2ˆj)ˆi, d=0..j-1)+sum(1/(2ˆd-2ˆj)ˆi, d=j+1..60
))/i, i=1..b);

> coeff y := CoefficientVector(expand(sum((b*e)ˆi/i!, i=0..b-1)), w);
> a := vector(b);

for k from 0 to b-1 do
a[k+1] := evalf((-1)ˆk*add((-1)ˆ(b*j)*2ˆ(-(1/2)*b*j*(j+1))*coeff y[b-k]*2ˆ((b-1-k)
*j)/(Product(1-2ˆ(-i), i=1..j))ˆb, j=0..60)/(k!*qˆb))
end do;

> G := (s) → evalf(Pi*(sum((product(s-j, j=1..i-1))*a[i], i=1..b))/sin(Pi*s));
> χ := (2*Pi*I)/log(2);

func vec := vector(13);
func vec[1] := z*(-1+γ+ln(z))+G(χ)*zˆ(1+χ)/GAMMA(2+χ)
+G(-χ)*zˆ(1-χ)/GAMMA(2-χ);
func vec[2] := γ+ln(z)+G(χ)*zˆχ/GAMMA(1+χ)+G(-χ)*zˆ(-χ) /GAMMA(1-χ);
for k from 3 to 13 do
func vec[k] := zˆ(-k+2)*(-1)ˆ(k-3)*(k-3)!+G(χ)*zˆ(-k+2+χ)/GAMMA(-k+3+χ)
+G(-χ)*zˆ(-k+2-χ)/GAMMA(-k+3-χ)
end do;
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> gnew := 0;
for k from 3 to 13 do
gnew := gnew+coeff phi[k]*func vec[k]
end do;
gnew := gnew/ln(2);

> g := vector(b);
for k from 1 to b do
g[k] := diff(gnew, z$k+1))
end do;

> φ2 := s*(sum((sum(-b*(-1)ˆ(n-1)*2ˆn*sˆn/(n*(2ˆn-1)), n=1..12))ˆi/i!, i=0..12));
coeff phi 2 := CoefficientVector(expand(φ2), s);

> watson := 0;
for k from 1 to 13 do
watson := watson + coeff phi 2[k+1]*k!/zˆ(k+1)
end do;

> evalf(Int(((2*z+1)*g[1]ˆ2+z*g[2]ˆ2+4*z*g[1]*g[2])*watson/log(2), z=T..∞,
method = CCquad));

0.002522975851 + 1.220918538 · 10−19I

> 0.002522975851 + 0.1300797679;

0.1326027438
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Chapter 4

Conclusion

To conclude this thesis, we briefly summarize the main contributions.
Our first goal was to give a self-contained survey of recent results in the analysis of

DSTs. These results have been widely spread across the research literature before and this
is up to our knowledge the first time that they appear in collected form. For clearance of
presentation, we started by explaining the main techniques used in the analysis of DSTs
in Chapter 1. Then, we showed applications of these techniques in Chapter 2. Therefore,
we used the internal path length as guiding example and concentrated on mean value
and variance. It should be stressed that all the results from Chapter 1 and Chapter 2
are not original. However, we improved and shortened several proofs, in particular, those
concerned with the analysis of asymmetric DSTs.

Our second goal was to introduce a new approach of Fuchs, Hwang, and Zacherovas
(which has not appeared yet) and to compare it with previous approaches from Chapter 2.
This new approach has two major improvements: one is the use of the Laplace transform
which simplifies the overall analysis and the other is the consideration of Ṽ (z) which makes
the computation of the variance more easier. Then, we applied the new approach to the
variance of the internal path length of b-DSTs and obtained more simpler expressions
for the leading constant in the asymptotic expansion for b = 1, 2 (larger values of b
can be treated as well). Finally, we explained how to obtain numerical values of the
leading constant for small values of b via Maple. Our numerical computations suggest
that previous computations contain several imprecisions.
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