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Multi-H Phase-Coded Modulations with Asymmetric 
Modulation Indexes 

Abstract-Multi4 phase-coded modulation (MHPM) is a bandwidth 
efficient modulation scheme which offers substantial coding gain over 
conventional digital modulations. In this paper, a new concept of 
MHPM with asymmetric modulation indices corresponding to the bi- 
polar data + 1 and - 1 is considered, and numerical results of the min- 
imum Euclidean distances for such asymmetric binary multi-h schemes 
are provided. It is shown that performance improvements on the error 
probability are gained over conventional MHPM with essentially the 
same bandwidth and a very slight modification in implementation. The 
upper bounds of error probabilities as functions of observation inter- 
vals and received E b / N o  are also investigated in detail. 

I. INTRODUCTION 
NUMBER of power and bandwidth efficient modu- A lation techniques have received wide attention during 

recent years. Constant envelope continuous phase modu- 
lation (CPM) techniques [2], [3] provide a class of sig- 
naling schemes for the transmission of digital information 
over bandlimited channels with higher efficiency in using 
bandwidth than phase shift keying (PSK) or frequency 
shift keying (FSK) formats. The constant envelope makes 
these techniques fairly immune to nonlinear channel ef- 
fects and useful in satellite and terrestrial radio links, 
while the approach of combined modulation and coding 
provides good potential for further power and bandwidth 
efficiencies at the price of increased complexity [9]. 
Multi-h phase-coded modulation (MHPM) , described in 
detail by Anderson and Taylor [l] ,  represents one trend 
in this area toward the development of efficient signaling 
schemes for the transmission of digital data as compared 
to techniques such as minimum shift keying (MSK) or 
quaternary phase shift keying (QPSK) [4]-[8]. In the 
MHPM schemes, cyclically varying modulation indexes 
are used in a prescribed manner, such that the transmitted 
signal has phase slope variation changing from one sym- 
bol interval to the next in response to the data symbols 
being transmitted. As a special class of CPM systems, the 
information-carrying phase in MHPM signals is always 
continuous at the data transitions, which provides very 
attractive features including spectral behaviors. Since the 
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phase function is altered in such a manner that unequal 
phase changes can result from transmission of the same 
data symbol in different contiguous intervals, the phase 
change that occurred in the first interval cannot be undone 
during the second. The delays in the merge of neighbor- 
ing phase trellis paths will thus result in longer minimum 
Euclidean distances for MHPM schemes than those for 
MSK and hence provide the coding gain [ 101. 

Although the modulation indexes for MHPM could be 
any value smaller than 1, practically the nonrational in- 
dices will lead to extremely complicated phase trellis and 
very difficult maximum likelihood decoding due to the 
lack of well defined periodicity in the phase trellis. This 
is why the modulation indexes for MHPM are always re- 
stricted to be multiples of l / q  where q is an integer; fi- 
nitely many phase states can therefore be used to demod- 
ulate the data in the receiver. In conventional MHPM 
schemes, the phase states at the transition times are mul- 
tiples of r / q ,  but not all possible phase states are used, 
i.e.,  only even or odd multiples of r / q  are used at any 
transition time t = nT. However, if all the phase states of 
multiples of 7r/q can be used, we could have more flex- 
ibility in finding interesting signaling schemes even if the 
constraint length [ 11 in which the neighboring phase trel- 
lis paths merge may remain unchanged, as will be clear 
later in examples. In this paper, we propose to use asym- 
metric modulation indexes corresponding to the bipolar 
data + 1 and - 1, as compared to the symmetric indexes 
used in conventional MHPM schemes. In this new ap- 
proach, the modulation indexes h+i for the data + 1 and 
h-i for the data - 1 are not necessarily equal; better flex- 
ibilities are therefore available for the designers to opti- 
mize the system performance, and longer minimum Eu- 
clidean distance and hence further performance 
improvements are thus possible. It is also shown in this 
paper that essentially the same bandwidth and only a slight 
modification in implementation will result. The coding 
gain improvement over MHPM with symmetric modula- 
tion indexes using a full response linear phase function 
for binary multi-h schemes are investigated in great de- 
tail. 

The basic concept for MHPM with a symmetric indexes 
together with examples of two simple types of such 
schemes for 3-h and 4-h cases are described in Section 11. 
The results of an extensive search and calculation for the 
minimum Euclidean distances of these asymmetric 
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MHPM schemes with the best combinations of modula- 
tion indexes are then presented in Section 111. The anal- 
ysis in Section IV which pertains to the implementation 
of such asymmetric MHPM then reveals that only a slight 
modification to the modulator and demodulator of con- 
ventional MHPM is necessary. For coherent detection of 
binary multi-h schemes, the upper bounds on error prob- 
ability as a function of observation interval and received 
&/No are further investigated and the optimum modula- 
tion indices are determined in Section V. Simulation 
methods are then employed in Section VI to find the power 
spectrum of an asymmetric MHPM signal. Finally, some 
concluding remarks are given in Section VII. 

11. MHPM WITH ASYMMETRIC MODULATION INDEXES 
MHPM is a class of digital modulation schemes with 

constant envelope and continuous phase. The general form 
for an MHPM signal is 

S ( t ,  U) = J2E/T COS (w,t + cp(t, a )  + cpo) ( 1 )  
where E is the symbol energy, T i s  the duration of a sym- 
bol, w, is the camer angular frequency and p0 is an ar- 
bitrary carrier phase which can be set to be zero. The in- 
formation-carrying phase function cp(t, a)  can be ex- 
pressed as 

m 

cp(t, a) = 2 n ,  u,hif(t - ( i  - l ) T )  
I = -m 

( 2 )  - - o o I t I - o o  

where a = { - - ao, a l ,  a2, - - - } represents 
the sequence of data symbols, hi is the cyclically varying 
modulation index corresponding to the i th symbol taken 
from a chosen set as described below, a n d f ( t )  is a phase 
pulse function. In practice, the modulation indexes are 
often obtained from a set of rational values of the form 
{ Zo/q, l , / q ,  - * , 1,- l / q }  where l j  < q for 0 I i 5 K 
- 1, li and q are all integers, and K is the number of 
different modulation indexes. These indexes are used cy- 
clically so that 

, uP2,  a -  

hnk+j = h / q ,  0 I j 5 K - 1 and 

n = 0 ,  1,2, . 
The phase pulse function can be expressed as 

where g ( t )  is a frequency pulse shape function with du- 
ration LT, i.e.,  it is zero for t < 0 and t > LT where L 
is an integer. L = 1 yields a full response signal, while L 
> 1 corresponds to a partial response signal. As an ex- 
ample, for a full response linear phase function scheme, 
f ( t )  is 

t < O  

[:/2 t 1 T 
f ( t )  = t /2T 0 I t I T. (4) 

This phase pulse function will be used in all the following 
numerical results in this paper. 

An instructive way to appreciate MHPM schemes is in 
terms of the phase trellis which indicates the possible paths 
followed by the process of the modulation. An example 
of phase trellis with paths emanating from phase = 0 using 
the full response linear phase function for 3-h scheme with 
code { 6 / 8 ,  4/8, 5 / 8 }  is shown in Fig. 1. It should be 
noted that similar paths can emanate from any of the 16 
phases shown. With proper choice of the modulation in- 
dices, no pair of phase trellis paths for different symbol 
sequences will merge before some interval defined by an 
integer called the constraint length U [ I ] ,  which is depen- 
dent on the number of different modulation indexes K and 
the chosen index set. It can be easily seen that the con- 
straint length is 4 for the phase trellis in Fig. 1. An im- 
portant result is that the “separation” between two pos- 
sible paths in the trellis for MHPM is greater than that for 
MSK, and consequently a receiver that bases its decision 
on a longer observation inverval can yield improved per- 
formance. 

For conventional binary MHPM schemes, the modu- 
lation indexes h, have only one value for the i th symbol 
no matter whether it is + 1 or - 1, so that the phase trellis 
of the binary MHPM is always symmetric. The phase dif- 
ferences between any two possible phase states at the 
symbol transition instants t = nT are multiples of 2 a / q  
rad. Let {ha,  hb, h, } be the modulation index set for such 
a binary 3-h scheme where h,, hh, and h, are multiples of 
l / q  and smaller than 1 , and h+,, h-, represent the in- 
dexes h, for the ith symbol being + 1 and - 1 ,  respec- 
tively. The modulation indexes can then be written as 

i: 1 2 3 4 5 6 - - * .  

h+z: ha, hb, hc, ha, hb, h,, . . * . . ( 5 )  

h-,: ha, hb, h,, h,, hb, h,, * 

Assume two phase trajectories diverge from a given state 
at time t = 0; the phase difference at time t = Twill be 
n ( h + ,  + h - l )  = 7r(2ha) and q(2ha)  will be an even 
number. In this paper, a new concept of MHPM with 
asymmetric modulation indexes corresponding to the bi- 
polar data + 1 and - 1 is proposed, i.e., h+, and h-, are 
not necessarily equal. This new asymmetric MHPM con- 
cept can provide an additional degree of freedom in 
choosing indices with better performance, because the 
separations among phase trajectories and the resulting 
minimum Euclidean distances depend on the values h+,, 
h-, and (h+,  + k,). For conventional MHPM, although 
q ( h + , )  and q ( h - , )  could be any chosen number, q(h,, 
+ h-,) will always be an even number, and this constraint 
will limit the possibilities to maximize the minimum Eu- 
clidean distance. This is the basic idea for the asymmetric 
MHPM concept. 

A simple approach to realize the asymmetric MHPM 
concept described above is to use the same set of the mod- 
ulation indices for both h,, and h-,. One way to accom- 
plish this based on the 3-h scheme described in (5) is sim- 
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Fig. 1 .  Phase trellis of S-type MHPM with code { 6/8, 4/8, 5 / 8 )  

ply to shift h - ;  with respect to h + ;  by one symbol interval 
T. We can represent the modulation indexes in this case 
as 

i :  1 2 3 4 5 6 - - * a  

h+t: ha, hb, hc, h,, hb. he, * * * (6)  
h-j: hb, h,, h,, hb, h,, h,, * * * 

i.e., h -  = h+( i  + Let the MHPM scheme with modu- 
lation indexes shown in (6) be referred to as A-type and 
that with modulation indexes shown in (5) as S-type. An 
example of phase trellis of such an A-type MHPM scheme 
for the same set of modulation indexes and linear phase 
function as in Fig. 1 ,  i.e., ( h , ,  hb, h e )  = (6 /8 ,  4 / 8 ,  
5 / 8 ) ,  is shown in Fig. 2. We can find from this figure 
that the constraint length of this A-type MHPM is equal 
to that of S-type in Fig. 1; however, for A-type MHPM 
scheme, since q ( ha + h b )  is not necessarily an even num- 
ber, the phase values at any symbol transition time t = 
nT will be in general a multiple of r / q  as shown in Fig. 
2. This gives more flexibility for A-type MHPM than 
S-type, and hence provides better opportunities to make 
the minimum Euclidean distance closer to the upperbound 
[ 1 1 1 .  

To shift h - ;  with respect to h,;  is attractive for 3-h 
asymmetric MHPM, but this approach cannot be directly 
applied to 2-h schemes. In such an A-type MHPM 
schemes with K = 2 ,  there are two different values for 
the modulation indices only, and h - ,  = h+*,  h-2 = h + 3  
= h+, .  The sum of the two possible modulation indexes 
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Fig. 2 .  Phase trellis of A-type MHPM with code { 6/8, 4/8, 5 / 8 } .  

in the first interval is h , ,  + h - ,  = h - 2  + h + 2 ,  which is 
equal to that of the second interval, and this will appar- 
ently degenerate the 2-h scheme back to an 1-h scheme. 

For 4-h schemes, on the other hand, to shift all h _ ;  with 
respect to h + ;  by one symbol interval Twill limit the con- 
straint length to 4 ,  because the phase trajectories for two 
data sequences ( + 1 ,  - 1 ,  + 1 ,  - 1 )  and ( - 1 ,  + I ,  -1, 
+ 1 ) will merge after 4 symbol periods no matter what the 
values of the modulation indexes are. Similarly, to shift 
all h - ;  with respect to h,;  by 2T and 3T for 4-h schemes 
will also limit the constraint length to 4. This is in fact a 
phenomenon for a more general situation, i.e., to shift h - ;  
with respect to h+; by one symbol interval T is not very 
helpful for K-index asymmetric MHPM when K is an even 
number, because it will always divide the values of { h,;  
+ h - ; }  into two identical groups and limit the constraint 
length to K .  

Despite the above observation, there do exist simple 
approaches to design asymmetric MHPM for even K .  
Consider a special type of 4-h asymmetric MHPM rep- 
resented as 

i: 1 2  3 4 5 6 7 8 - - - *  

h+;: h , ,  hb, he, hd. ha, hb, h,, hd, * ‘ . (7) 

h-j: h,, he, hd, hb, h,, hc, hd, hb, * . . 
and let this type be referred to as G-type MHPM. Here 
ha, hb, h,, and hd are four different multiples of 1 / q ,  and 
in a cycle one h P i  is equal to h + ;  and the other three h - , ’ s  
are shifted cyclically by one symbol interval. Such an ar- 
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rangement cannot only extend the constraint length to K TABLE I 
+. 1 for G-type MHPM with even K ,  i.e., 5 in this 4 4  MINIMUM EUCLIDEAN DISTANCES AND CODING GAINS O V E R  MSK FOR 

MULTI-h PHASE-CODED MODULATIONS WITH K = 2 case, but it also leads to better free distance. 

111. MINIMUM EUCLIDEAN DISTANCES - 

The error probability of a coherent receiver for MHPM 
schemes is complicated to analyze. One common ap- 
proach to observe the error rate behavior for such systems 
is to calculate the minimum Euclidean distance (D',,) for 
all possible cyclic shifts of hi values over several ( N )  
symbol intervals instead where is the minimum of 

n + N - l  ( i + I ) T  

d = [ S ( t ,  a )  - S ( t ,  p ) f d t  
i = n  iT  

for two arbitrary but different data sequences a and fl 
where a = { , a-2 ,  a,, a l ,  a2, * * }, p = 
{ . . .  , 6-2, b-I ,  bo, b l ,  b2, * * } are data sequences as 
used in ( l ) ,  ( 2 ) ,  an # b,, and S ( t ,  a ) ,  S ( t ,  p )  are the 
signals as in (1). For high signal-to-noise ratios, the prob- 
ability of error ( P , )  is dominated by the minimum Eu- 
clidean distance, i.e., if the MHPM signal is contami- 
nated by white Gaussian noise of spectral density N 0 / 2 ,  
then 

Pe - Q(m) 
l r n  

Q ( x >  = j, 
for high signal-to-noise ratios where 

e - z 2 / 2  dz. 

The minimum Euclidean distances for best multi-h codes 
with K = 2 ,  3 ,  and 4 have been calculated for conven- 
tional S-type MHPM [l], and the results for K = 2 are 
listed in column 1 of Table I. By noting the fact that the 
minimum Euclidean distances for MSK and QPSK are 
four, the average coding gain with respect to the MSK and 
QPSK modulations for q varying from 4 to 13 are also 
calculated and listed in this column. Although A-type 
MHPM is not helpful for 2-h schemes, the remove of the 
restriction of using the same set of modulation indexes for 
ki and h + ;  will make the minimum Euclidean distances 
larger. We have calculated and listed the minimum Eu- 
clidean distances of such asymmetric 2-h schemes in the 
second column of Table I. From this table, we can find 
that there is some coding gain when asymmetric modu- 
lation indices are used for 2-h schemes. 

For binary 3-h schemes, the minimum distances of 
S-type MHPM are listed in the first column of Table 11. 
We can see from this column that the minimum distance 
for q = 9 is much smaller than those for the other values 
of q. The minimum distances of the A-type MHPM 
schemes using the best code of the S-type have been cal- 
culated and listed in the second column of Table 11. It is 
very clear that, with the best code of the S-type, the min- 
imum Euclidean distances of the A-type are always higher 
than those of the S-type for all values of q ranging from 
8 to 17. The minimum Euclidean distance for q = 9 is 

9 Conv. MHPM Asym. MHPM 

4 

5 

6 

! 

S 

9 

i n  
I I  

12 

5.58( 1.44dB) 

6.14( 1.86dB) 

6 . W  2.42dB) 

6.65('2.21dB) 

i.IO(2.49dB) 

6.92(2.38dI3) 

7.25(2 58dB) 

7.14(2.52dB) 

7.36(2.65dB) 

7.11(2.49dB) 

7.25(2.58dB) 

7.36(2.65dB) 

7.45(2.7OdB) 

7 51(2 74dB) 

7.57(2.77dB) 

7.61(2.79dB) 

7.64(2.81dB) 

7.67(2.83dB) 

IJ  7.28(2.60dB) 7.70(2.84dB) 

Aver  ag? 
coding 2.3"dB 2.72dB 
g a i n  

TABLE I1 
MINIMUM EUCLIDEAN DISTANCES A N D  CODING GAINS OVER MSK FOR 

MULTI-h PHASE-CODED MODULATIONS WITH K = 3 

Minimum Euclidean distances (coding gains) 

A-type A - ~ Y P  Maximum 

o f  $type) code) 
a S t Y W  (best  code ( h e s t  a c h i e v a b l e  

d i s t a n c e  

8 7.58(2.77dB) 8.22(3.13dB) 8.22(3.13dB) 8.68(3.36dB) 

9 5.52(1.40dB) 7.53(2.75dB) 8.11(3.07dB) S.l l(3.07dB) 

10 7.63(2.SldB) 7.91(2.96dB) 8.85(3.45dB) 8.85(3.45dB) 

I 1  7 46(2.71dB) 8.68(3.36dB) 8.68(3.36dB) 8.77(3.41dB) 

12 i.hJ(Y rjldt3) 7 i i (2 .89dB)  8.85(3.45dB) 8.85(3.45dB) 

1.3 8 J4(J 19dH) 9.18j3.6ldB) 9.18(3 61dB) 9.16(3.61dB) 

14 8.23(3.iJdB) 8 KE(3.43dB) 8.85(3.45dB) 8.85(3.45dB) 

1 5  7 76(% 88dB) 8.35(3.20dB) 9.28(3.65dB) 9.28(3.65dB) 

I6  8.68(3 36dU) 9 15(3.59dB) 9.15(3.59dB) 9.15(3.59dB) 

17 8 46(3.25dB) 9.23(3.63dB] 9.23(3.63dB) 9.23(3.63dB) 

.Averagr 
c o d i n g  286 dR 3.27 dB 3.44 dB 3.47 dB 
gdll i  

7 . 5 3 ,  which is substantially higher than that of S-type and 
much closer to those for other values of q when A-type 
MHPM schemes are used. Since the error probability de- 
pends essentially on Diin, the increment in Diin roughly 
indicates the improvement in error rate performance. 
There is an average 0.4 dB coding gain over conventional 
MHPM for q varying from 8 to 17. 

Although the minimum Euclidean distances have been 
improved in A-type MHPM as compared to those of the 
S-type when we use the best codes of S-type, these codes 
are still not necessarily optimal for A-type. An extensive 
search for the best combinations of modulation indexes 
for A-type MHPM is therefore performed. The results of 
the minimum Euclidean distances with the best combi- 
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nations of modulation indexes are shown in the third col- 
umn of Table 11. Comparing to the values shown in col- 
umn 2,  we find that, for q = 9,  10, 12, 14, and 15, there 
do exist better codes for A-type other than the best codes 
of the S-type as far as the minimum Euclidean distances 
are concerned. Also, the coding gains in this column are 
more than 3 dB better than MSK for all values of q vary- 
ing from 8 to 17, and the gains are actually significantly 
higher than 3 dB for most values of q. For q = 9 ,  it is 
clear that A-type MHPM provides 1.67 dB gain over 
S-type MHPM. In summary, A-type MHPM with the best 
combination of codes has on average a coding gain of 3.4  
dB with respect to MSK, which is about 0.6 dB better than 
the average coding gain of S-type. 

We can further relax the restriction of using the same 
set of modulation indexes for h-;  and h+; ,  and in this way 
even better performance can be achieved. This means any 
multiples of 1 / q  can be chosen for h- ;  and h+i .  The max- 
imum achievable minimum Euclidean distances for bi- 
nary 3 4  schemes with q varying from 8 to 17 for this case 
are calculated and shown in the fourth column of Table 
11. We find that the maximum achievable minimum dis- 
tances obtained in this way are in general equal to the 
minimum Euclidean distances in column 3 except for q = 
8 and q = 1 1 ,  and the improvements for q = 8 and q = 
11 are in fact not significant. It can thus be concluded that 
A-type MHPM is still a reasonably good approach to de- 
sign MHPM with asymmetric modulation indices for 3-h 
systems. 

For binary 4-h schemes, we also calculated the mini- 
mum Euclidean distances of the A-type MHPM, G-type 
MHPM and the maximum achievable minimum Euclid- 
ean distances by choosing arbitrary set of modulation in- 
dexes as done previously for q varying from 16 to 22, and 
the results are listed in Table 111. As shown in the second 
column of Table 111, the 4-h A-type MHPM can get larger 
minimum Euclidean distances than those of S-type except 
for q = 20 and q = 22, with an averaging coding gain 
3.7 dB, although the A-type will produce the MHPM 
schemes with a constraint length equal to 4 for K = 4 as 
discussed above. 

We can also find from column 3 of Table I11 that the 
G-type MHPM has a coding gain of 4.0 dB on average, 
which is also about 0 . 6  dB higher than the average coding 
gain of S-type codes. Furthermore, by a closer look at the 
numbers in this column, it is revealed that the coding gains 
of G-type over MSK range from 3.89 to 4.11 dB for q 
varying from 16 to 22 while the gains for S-type range 
from 3.02 to 3.88 dB. In other words, the gains for G-type 
codes not only are higher than those for S-type, but have 
a much smaller variation with respect to the value of q ,  
i.e., the dependence of the minimum Euclidean distance 
on the choice of q is much less when asymmetric modu- 
lation indices are used. This phenomenon is in fact even 
clearer if we look at the numbers in column 2 of Table 111 
for A-type schemes. The fourth column of Table 111 lists 
the maximum achievable minimum Euclidean distances 
with arbitrary index set as discussed above. It can be seen 
that in this case improvements are achievable as compared 

TABLE 111 
MINIMUM EUCLIDEAN DISTANCES A N D  CODING GAINS OVER MSK FOR 

MULTI-)I PHASE-CODED MODULATIONS WITH K = 4 

Minimum Euclidean distances (coding gains) 

Maximum 
P >type A - t ~ p e  G t y w  a chi e vable 

d i s t a n c e  

16 9.29(3.66dB) 9.34(3.68dB) 9.80(3.89dB) 10.32(4.12dB) 

17 8.02(3.02dB) 9.34(3.68dB) 10.03(3.99dB) 10.21(4.07dB) 

18 8.12(3.07dB) 9.38(3.70dB) 10.21(4.07dB) 10.21(4 07dB) 

1 Y  8.83(3.44dB) 9 38(3.70dB) 9.99(3.97dB) 10.13(4.04dB) 

10 9.55(3.78dB) 9.42(3.72dB) 10.21(4.07dB) 10.35(4.13dB) 

21 8.54(3.29dB) 9.42(3.72dB) 10.07(4.01dB) 10.38(4.14dB) 

22 9.78(3.88dB) 9.45(3.73dB) 10.31(4.11dB) 10.31(4.11dB) 

Average 
coding J.45 dB 3.70dB 4.02 dB 4.10 dB 
gdl l l  

to G-type except for q = 18 and q = 22. In fact, these 
maximum achievable minimum distances are all obtained 
for the modulation indexes with q ( C f = l  ( h + i  + h - ; ) )  
being an odd number except for q = 18 and q = 22, and 
it is impossible to obtain such best achievable perfor- 
mance if the same set of indexes are used for { h + ; }  and 
{ki}. On the other hand, it was found that G-type 
MHPM is still an optimum choice if h+i and h-; are re- 
stricted to use the same set of modulation indexes. 

IV. IMPLEMENTATION COMPLEXITY OF ASYMMETRIC 
MHPM 

In binary continuous phase frequency shift keying 
(CPFSK), one modulation index is used and the transmit- 
ted frequencies are ( fr * h / 2 T )  wheref, is the nominal 
center frequency. MHPM can be conceived similarly ex- 
cept that the modulation index is one of K predetermined 
values and the indexes are used consecutively and cycli- 
cally, one in each interval. The transmitted frequencies in 
each interval are (f, , K .  
Using the same approach, the generation procedure of an 
asymmetric MHPM can be represented as in Fig. 3. The 
two sideband tones are selected by the switch depending 
on the data U;. We need two sets of shift registers for the 
generation of asymmetric MHPM instead of one for con- 
ventional MHPM. For the generation of A-type MHPM 
signals, one can get h- ;  from h+; simply by a delay unit; 
in that case, one set of shift registers is enough. 

The general form for a binary multi4 signal in one 
symbol interval is 

hi /2T)  where i = 1 ,  2 ,  

S ( l )  = -cos (U$ + 7r(t - ( i  - 1 ) T )  

* [ U ; ( h + ;  + Li) + h+i - h- ; ] /2T  + V i ]  

= -cos {U$ + a t [ (a ;  + l ) h + ;  

+ ( U ;  - l ) k i ] / 2 T  + +;] 
( i  - l ) T  5 t I iT 
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frequency 
dev i at i on 

Data input,  a Asymmetric MHPM output 

Fig. 3 .  The concept of asymmetric MHPM generator. 

where pi is the excess phase at time t = ( i  - 1 )  T due to 
previous information data and 4; = pi - n ( i  - 1 ) [ ( a ;  
+ l ) h + i  + (a ;  - l )h- ; ] /2 .  By standard trigonometric 
identities, (8) becomes 

s ( t )  = -(cos 4;) [ ( I  + a j ) /2]  

* cos (w,t + ah+; t /T )  

- (sin 4;) [(  1 + aj) /2]  

sin (wet + ah+; t /T )  ' 

+ m ( c o s 4 ; ) [ ( 1  - a;)/2] 

* cos ( w c t  - nh- ; t /T )  

- -(sin 4i) [ ( I  - a j ) / 2 ]  

sin (act - r h P i t / T ) .  (9) 

Although the first two terms and the second two terms in 
(9) form orthogonal pairs individually, terms in one pair 
are not orthogonal to terms in the other pair. It would be 
convenient to transform (9) into an orthonormal expan- 
sion. By the Gram-Schmidt orthogonalization procedure 
[ 171, the set of orthonormal functions can be assigned as 

+ , ( t )  = W c o s  (wcr  + nh+, t /T )  

\1/3(t) = [ m c o s  (U$ - r h - ; t / T )  

(10) 

+ ? ( t )  = V T s i n  (wc t  + nh+;r /T )  (11) 

- Cl,;+I(t) - C2,;\1/2(t)l/Q (12) 

+ C2.;+,(t) - Cl,i#2(t)]/Di ( 1 3 )  

+ , ( t >  = [ m s i n  (wet - n h - ; t / ~ )  

where 

cl,; = sin [ a ( h + ;  + h _ i ) ] / [ n ( h + j  + h - ; ) ]  

c*,; = { 1 - cos [a@+; + h - , ) ] } / [ n ( h + ;  + h-i)] 

D; = 1 - C:,; - Ci.i. 

Substitution and rearrangement of terms in (9) gives 

where 

Al.;  = (cos 4;) [(  1 + 4 / 2 1  + cl,; (cos 4;) 

. [ (1  - a;)/2] + ~ 2 . ;  (sin 4;) [ (1  - ai)/2] 

' [ ( I  - 4 / 2 1  - cl,; (sin 4;) [ ( I  - 4 2 1  

A ~ , ;  = - (sin 4;) [ ( 1 + a j ) /2]  + c2,; (cos 4;) 

~ 3 . i  = (COS 4i) [ ( I  - a i ) / 2 ] ~ ,  

= - ( s i n + i ) [ ( l  - a , ) / 2 ] D j .  

The demodulator based upon the use of the above or- 
thonormal functions is shown in Fig. 4. Any received 
multi4 signal can be expressed as a linear combination 
of these basis functions. The first signal path uses #I  ( t )  
as reference and the resulting integrator output is A I ,  ;. 
Similarly, the multiplier/integrator output for the second 
path is A2,  ;. A 3 , ;  is then derived by combining paths 1, 2, 
and 3 with appropriate weightings, because +3 ( t )  is not 
specifically used as a input reference for the third path, 
and therefore an equivalent operation as shown in (12) is 
required. Similar situation occurs for A4, ;. These outputs 
A , ; ,  A2;, A3i ,  A,; can be used together to calculate the 
branch metrics in a Viterbi processor to determine the 
transmitted data [18]. The reference carriers at the sig- 
naling frequenciesf, f hj/2Tare required for the receiver 
to produce in-phase and quadrature baseband compo- 
nents. Comparing the above receiver structure to that for 
conventional MHPM signals [ 181, the only differences are 
the values of C1, ;, C2, and the fact that the reference sig- 
nals are dependent on both h +; and h -; instead of h; only. 
Therefore, the implementation complexity for the asym- 
metric MHPM is essentially the same as that for the con- 
ventional MHPM systems, except that some modifica- 
tions are needed. 

There are three levels of synchronization required in the 
demodulation of MHPM signals. These are 1) carrier 
phase synchronization, 2) symbol timing, and 3) interval 
synchronization for modulo K .  The technique for acquir- 
ing these in conventional MHPM systems is to pass the 
signal through a q th power-law device [ 121, [ 131, which 
can be similarly used directly for the synchronization of 
asymmetric MHPM signals. 

v. PERFORMANCE BOUNDS FOR COHERENT DETECTION 
The optimum coherent receiver can observe the re- 

ceived MHPM signal with additive white Gaussian noise 
over several bit intervals and then make a decision on the 
first bit in this interval. The error probability performance 
of such a receiver is in fact very complicated to analyze, 
but there are some bounds which can be used to determine 
optimum signal parameters [ 141, [ 151. Although the min- 
imum Euclidean distance itself can be used to determine 
the bit error probability at high SNR as discussed previ- 
ously, it is really not sufficient to describe the overall sys- 
tem performance. This is because in the calculation of 
minimum Euclidean distance as in Section 111, we always 
calculate the minimum distance of two paths merging at 
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A3,1 

A4J 

Fig. 4. The determination of the signal components in the orthonormal 
basis for demodulation of asymmetric MHPM. 

the constraint length, but there do exist, for all the cases 
examined previously, some phase paths which are not yet 
merged at the constraint length but have smaller distances 
between them than the minimum Euclidean distances 
found. If the length of observation interval at the demod- 
ulator is not long enough, these smaller distances will ac- 
tually dominate the error probability. 

For large values of Eb/N, ,  the upper bound of the prob- 
ability of error for coherent reception of MHPM signals 
for an n-bit observation interval is given by [14] 

(15 )  
where K is the number of different modulation indices, h' 
denotes the sequence of modulation indexes over the n-bit 
interval, the summation E,- is over all K possible shifts of 
h,  n is the length of the observation interval and the se- 
quence correlation function p i (  m, j ) is evaluated using 

p,-(m, j )  = - S S' i ' ( t ,  -1, A , ) S ( h ) ( r ,  + I ,  A,) dt 

where S"'( r ,  - 1, A , )  is the signal as in (1) containing a 
datum - 1 in the decision bit interval and A,, is the ( n  - 
1 )-tuple ( a 2 ,  * , a,,). From (15), we can find that the 
error probability bound is a function of the received 
& / N o ,  the modulation index set {hi;  i = 1, * * , K }, 
and the length of observation interval n. For a given phase 
function, given observation interval and suitably high 
E b / N , ,  the modulation index set which should be chosen 
is quite obviously the one which minimizes the error 
probability bound in (15), and this set could be different 
from the optimum modulation indexes obtained for the 
minimum Euclidean distance as calculated in Section 111. 

The upper bounds (15) have been searched extensively 
for a large number of combinations of modulation in- 

1 nT 

nEb o 
(16) 

dexes, and the optimum modulation indexes in the sense 
of error bounds were found for E b / N ,  varying from 6 to 
12 dB and observation intervals 5T, 8T, 11T for 3 4  
schemes and 6T, 9T, 12T for 4-h schemes. In the calcu- 
lation of the upper bounds of the error probability, shift- 
ing h-;  with respect to h,; by one symbol interval T and 
two symbol intervals 2T will give different distances for 
two paths which do not merge within the observation 
length. It is therefore necessary to calculate and compare 
the error probability bounds for these two shifts. Some 
numerical results for the logarithm of error probability 
bounds and the optimum modulation indexes are listed in 
Tables IV and V. 

From these two tables, we find that the optimum mod- 
ulation indexes { h i }  are functions of received E , / N ,  and 
the length of observation interval n. Since Q ( . ) is not a 
linear function and the probability distributions of the dis- 
tances between phase paths are different for different sets 
of modulation indexes, the optimum modulation index set 
may be different for different Eh / N o  or different obser- 
vation length n with given q. For example, for the S-type 
3-h scheme with q = 12 and observation length 5T, the 
optimum codes for & / N o  = 6 dB and 8 dB are different 
from those for 10 dB and 12 dB. Similarly, for the S-type 
4-h scheme with q = 17 and E b / N o  = 6 dB, the optimum 
codes for observation intervals 6T, 9T, and 12T are dif- 
ferent. It is also interesting to note from Table IV that for 
3-h schemes with q = 8, the error probability bounds are 
equal for A-type and S-type systems when observation in- 
tervals are 8T and 11 T. This means the observation inter- 
val is not long enough for A-type MHPM. 

In Figs. 5-8, the upper bounds of error probability per- 
formance versus E b / N o  are plotted with q = 9 and q = 
15 for 3-h schemes and with q = 16 and q = 21 for 4 4  
schemes. From Fig. 5, we find that although the perfor- 
mance of A-type MHPM are equal to that of S-type when 
n = 5, A-type MHPM with observation interval 8Thas in 
fact a performance better than that of S-type with an 11 T 
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TABLE IV 
THE UPPER BOUNDS OF ERROR PROBABILITY FOR 3-h MHPM SYSTEMS WITH 

OBSERVATION INTERVALS 5T, 8T, AND 1 1  T ( n  = 5 ,  8, 1 1  ), and E,/N,, = 
6-12 dB WITH OPTIMUM CODE { h , ,  h 2 .  h , }  = { l , / q ,  1 2 / q ,  l , / q } .  (a) 

S - T Y P E .  (b) A-TYPE 

TABLE V 

OBSERVATION INTERVALS6T,  9T, A N D  12T(n = 6, 9 ,  12) ,  and E,,/N, = 
6-12 dB W I T H  OPTIMUM CODE { h , ,  h 2 ,  h,, h 4 }  = { l , / q ,  12/q,  13 /q ,  

1 4 / q } .  (a) S-TYPE. (b) G-TYPE 

THE UPPER BOUNDS OF ERROR PROBABILITY FOR 4-h MHPM SYSTEMS WITH 

~ ~ 

(4  %type 

Logarithm of error probability bound and (11, h,  18) 

Eb/No=6 dB 8 dB 10 dB 12 dB 
4 n  

(a) S-type 

Logarithm of error probability bound and (ll,h,13,1~) 

Eb/No=6 dB 8 dB 10 dB 12 dB 
0 "  

8 5 -3.507 -5.141 -7.456 -10.964 

-14.014 
(4, 5 ,6 )  (4 ,6 ,  5)  

-9.352 
(4,6,  5)  

4 270 
(4 ,6 ,  5) 

8 4 145 

-5.826 -8 660 -12.863 

9 4 . 0 9 9  4 .104  -8.984 -13.244 

12 4 . 2 8 6  4 . 4 2 7  -9.490 -14.044 

16 6 -3.838 
(9,12,10,13) (9,12,10,13) (9,12,10.13) (9,12,10,13) 

(9,12,10,13) (8,13,10.12) (8,13,10,12) (8,13,10,12) 

(8,13,10,12) (8,13.10.12) (8,13.10,12) (8,13,10,12) 

9 5  

8 

11 

-11.919 

-11.966 

-11.997 

(5. 7. 6)  

( 5 ,  7, 6) 

( 5 ,  7, 6)  

l i  6 -3 825 

Y 4 138 

12 4 . 3 4 7  

(9,12.10.13) 

(9,12,10,14) 

(8.1 1,Y,13) 

-13 008 

-13 975 
(9.14,10,13) 

-.5 3nq -11.919 

-13.180 

-14.501 

(7, 10, 8) 

(7, 10, 8) 

(6 ,  9, 8) 

IC: 6 -3.850 -5.885 4 . 8 4 2  -13.170 

9 4 . 1 7 4  -6 292 -9.259 -13.686 
(10,13,11,14) (9.12.10.13) (9,12,10,13) (9,12,10,13) 

19.12.10.131 19.12.10.13) 19.12.10.13) 19.12.10.131 
4 . 4 4 3  -9.598 441359 12 4 . 3 3 7  

(10,13,11,14) (9,12,14,11) (8,12,10,13) (8,12.10,13) 

(11,l5,12,16) (11,15,12,16) (11,15,12,16) (10,13,l1,14) 

(10,13,11,15) (10,13,11,l4) (10,13,11,14) (10,17,11,l5) 

(10,1~3,11,15) (10,13,11,15) (10,17,11,15) (10,17.11,15) 

20 6 -3.868 -5.855 -8 789 -13.289 

9 4 196 4 . 3 8 4  -9 504 -14.232 

12 4 4 0 8  4 . 6 0 9  -9.659 -14.330 

14 5 -3.581 -5 314 -7.805 -1 1.61 7 

x nfi? -fi on9 -8 878 -13 128 
(8. 11, 10) (8, 11 10) (8, 11 10) ( 7 .  9, 11) 

.. ~ .. ~~. ~ ~~~ 

17. 10. 9 )  iiTib. 9) (7, 9, 1 1 )  (7, 9, 11) 

(7. I O ,  9 )  (7. lO,9) (7 .9 ,  11)  ( i ,Y ,  11) 
I 1  4 3'0 4 . 4 1 9  -9 489 -14 157 

5 

8 

11 

-.1.601 
19. 12. 111 

-7.940 
18. 12. 101 

-11.784 

-12.554 

-13.461 

(8, 12 10) 

(8, 11, 10) 

(8, 11, 10) 

LI 6 -3.834 

9 4 186 

I ?  4 Ihb 

(1'2.16.13.17) 

( 1 2 , 1 5 , I ~ J , l i )  

(12.15.13,17) 

-5.S48 

4 . 2 8 5  

d 444 

(10.14.11.15) 

( l0 ,14,11,1~)  

(11.14,12,15) 

-8.821 (10.14.11.15) 

-9 361 

-Y.495 
(10,14,1l,15) 

(lO.l4,11,1.5) 

-13 251 

-13.912 

-14 05.5 

(10,14,11,15) 

(10.14,11.15) 

(10.14.11.15) 

-3981 ' 
(8. 11. 9)  

4 225 
(8. 11.9)  

17 5 -3 629 -5.489 -8.30" -12 590 

S 4 107 -6.141 -9.083 -13.550 

11 4 3 3 7  4 . 4 7 0  -9.535 -14.191 

(9. 13. 11) ( I O ,  14, 12) (IO. 14. 12) (10, 14. 12) 

(9. 13, 11) (9, 13, 11) (10, 14, 12) (10, 12, 14) 

(9. 13. 11) (9, 13. 11) (9, 13, 11) (9, 13, 11) 

( b )  &type 

Logarithm of error probability bound and ( l ~ . h . l ~ . l ~ )  

Eb/No=6 dB 8 dB 10 dB 12 dB 
q n  

16 6 -3.862 -5.915 4 . 8 6 4  -13.211 

9 4 . 2 1 8  -6.443 -9 578 -14.161 

12 4 . 4 1 6  -6.703 -9.999 -14.918 

(9,15,8,11) (9,15,8,Il) (9,15,8,11) (9,15,8,11) 

(8,14,7,10) (8,14,7,10) (8,14,7,10) (8,14,7,10) 

(8,14,7,10) (8,14,7,10) (8,14,7,10) (8,14,7,10) 

17 6 -3.855 -.5 919 -8.905 -13.351 

9 4 . 2 5 2  4.565 -9.938 -15.021 

12 4 . 4 5 9  4 . 8 0 6  -10.246 -15.526 

(14,7,12,13) (14,7,12,13) (14,7,12,13) (9.15,10,7) 

(9,15,10,7) (9,15,10,7) (9,15,10,7) (9,15,10,7) 

(9,15,10,7) (9,15,10,7) (9,15,10,7) (9,15,10,7) 

( 4  A - t w  

9 "  
Logarithm of error probability bound and ( I l ,  12, 13) 

Eb/ .v0=6 dB 8 dB 10 dB 12 dB 

8 5 -3.588 -5.362 -7.873 -11.544 

-9.352 -14.014 

-15.135 

(4, 6, 7) 

(3, 5, 7)  

(4, 6, 7) (4 ,  6, 7)  

(3. 7, 5) ( 3 ,  5, 7)  

(3, 5. 7)  (3, 5, 7)  (3, 5, 7) (3, 7, 5) 

(4,6, 8) ( 4 , %  8) (4 ,& 8) 

(3, 6 ,  8) (3 ,6 ,  8) (3, 6, 8) 

(3, 6, 8) (3 ,6 ,  8) (3,6, 8) (3, 8, 6 )  

(4, 6, 7)  
4 . 2 7 0  

11 4 . 4 9 7  4 . 8 0 9  

8 4 . 1 4 5  

(31 5' 7, -10.124 

9 5 -3.618 -5.411 -8.007 -11.919 

-12 895 -8.709 

-9.961 -15.060 

( 4 , 6  8) 

(3, 6, 8) 
-5.942 

4 . 6 3 9  

8 -3 994 

11 4 3 5 2  

IC: 6 -3.872 -.5 918 4 . 8 6 2  -13.414 

Y 4 229 4 533 -9 912 -15.000 

I2 -4.439 4 774 -10 193 -15.431 

(10,17,9,1'2) (10,17.9,12) (15.6,14,13) (15,6,14,13) 

(9,15,8~11) (9,15,S,Il) (9,15,8,11) (9,15,8,11) 

(9,15,S,lI) (9,15,E311) (9,15,8,11) (9,15,8,1l) 

12 5 

S 

I I  

-3 614 

4 115 

4.J93 

(6 ,  8. 11) 

(5. 8. I O )  

( 5 .  i .  I O )  

-5.416 

4 . 1 5 7  
( 5 ,  8, 10) 

-8.067 

-9.096 
(5,8, 10) 

-12.099 

-13.514 

-14.960 

(6, 9, 11) 

(5, 7, 10) 

( 5 ,  7. 10) 

(7. 10, 13) 
-12.579 

-1 4.070 

20 6 -3.873 -5.911 -8 898 -13.469 

Y 4 . 2 3 4  4 . 5 2 0  -Y 843 -14.821 

12 4 440- 4 . 7 2 0  -10.093 -15.234 

(I2,l9.13,10) (12,19,13.10) (10,17,9,12) (I0,17,9,12) 

(l0,17,9,12) (10,17.9.12) (10,17,9,12) (10,17.9,12) 

(11,1t.12.9) (10.17,9,12) (10,17,9.12) (10,17,9,12) 

(5, 8 .  10) 

(5. 7. I O )  

(7, 10, 13) 

(6, 9, 12) 

(6. 9, 12) 

-9.950 

-8.317 

-9.378 

-10.01 I 

14 5 

8 

11 

-3.633 

4 . 1 5 4  
(6, 9. 12) 

16. 9. 121 

"1 6 

9 

11' 

-3 877 

4 . 2 2 8  

4 . 4 4 0  

(l?,'20.11,14) 

(11,19.13,8) 

-5.927 

-6.513 

4 . 7 6 6  

(12,20,11,14) 

(11,19,13,8) 

(11,19,13,8) 

4 . 9 2 7  

-9.798 

-10.158 

( 1  1,19,12.9) 

(11,19,13,8) 

(11,19,13,8) 

-13 375 

-14 640 

-15.352 

(lI,lY,12,Y) 

(11,19,13,8) 

(11,19,13,8) 

15 5 -3.616 -5.446 -8.162 -12.308 

8 4 . 1 7 0  -6.337 -9.535 -14.444 
(6 ,  10, 13) (6, 10, 13) (6 ,  10, 13) (7, I 1  14) 

(6 .  9, 13) (6 ,  9, 13) (6, 9, 13) (6, 9, 13) 

(6 ,  9, 13) (6 ,  9, 13) (6, 9, 13) (6, 9, 13) 
11 4 . 4 9 9  4 8 8 8  -10.313 -15.468 interval. Also, it can be observed on the same figure that 

for S-type MHPM the difference in coding gain between 
(7, 11. 15) (8, 12, 16) (8, 12, 16) (8, 12, 16) n = 8 and n = 11 is very small, so the increment of ob- 
(7.  11. 14) (7. 11, 14) (7. 10, 15) (7. 10, 15) servation interval does not improve the performance very 
(7. 11. 1 4 )  (7, 11, 14) (7. 10, 15) (7. 10, 15) much, but this difference in the error probability for A-type 

17 5 -3.629 -5.489 4 . 3 0 2  -12.590 

8 4 . 1 7 0  4 . 2 8 3  -9.328 -13 970 

I! 4 468 4 . 7 7 6  -10.156 -15 298 

MHPM is apparently significant, which implies the incre- 
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Fig. 5. Error probability bounds for 3-h MHPM with q = 9 and n = 5, 
8, and 11. 

Fig. 7. Error probability bounds for 4-h MHPM with 4 = 16 and n = 6 ,  
9. and 12 
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Fig. 8. Error probability bounds for 4-h MHPM with q = 21 and n = 6, 
9,  and 12. 
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ment of observation interval can provide better perfor- 
mance. As another example, for the probability of error 
lo-’, a gain of about 3.06 dB over BPSK can be found 
when A-type MHPM is used with observation interval 
11 T, as compared to a gain of about 2.16 dB for S-type 
with the same conditions. In Fig. 6, we can similarly find 
that the error probability of A-type MHPM with obser- 
vation interval 8T may have performance better than that 
of S-type MHPM with an 11 T interval when E h / N ,  > 6.5 
dB. In other words, we can use the asymmetric MHPM 
to obtain the performance of conventional MHPM with 
shorter observation interval. For 4-h schemes in Figs. 7 
and 8, the bounds on error probability of asymmetric 
G-type MHPM with n = 9 are again very close to those 
of conventional S-type MHPM with n = 12. Further- 
more, a comparison of the curves of the error probability 
bounds of Figs. 7 and 8 indicates that the differences in 
upper bounds of error probability are not significant when 
q is vaned from 16 to 22, so we can choose small q to 
reduce the system complexity. By comparing the perfor- 
mance curves in Figs. 6 and 8,  we can also find that al- 
though the minimum Euclidean distances for 4-h systems 
are always higher than those of 3-h systems, if the obser- 
vation intervals are not long enough, the performances of 
3-h systems with n = 11 are usually very close to that of 
4-h systems with n = 12. Therefore, for the coherent de- 
tection of asymmetric MHPM with limited observation 
interval, 3-h schemes can be used for lower complexity. 
It is thus quite clear that there actually exists a full range 
of combinations of modulation indexes which can be cho- 
sen in the system complexity/SNR tradeoff when asym- 
metric modulation indexes are used. For example, if the 
received signal has E h / N o  = 8 dB and the observation 
interval is 6T, the G-type 4-h MHPM with q = 16 and 
modulation index set {9/16,  15/16, 8/16,  11/16} is a 
good choice. But when the observation interval is 1 1 T and 
E,,/No = 8 dB, the A-type 3-h MHPM with q = 15 and 
modulation index set (6 /15 ,  9/15, 13/15} is the best. 

VI. POWER SPECTRUM 
For the asymmetric MHPM schemes proposed in this 

paper, in most cases the same set of indexes { hi } are used 
for the modulation of + 1 and - 1, i.e.,  h,; and h - ,  have 
exactly the same set of values except in different se- 
quences. Since we assume that the data + 1  and - 1  are 
equally probable, apparently in such cases the power 
spectra of the asymmetric and conventional MHPM will 
be essentially the same. 

Because of the interdependence among the excess phase 
in different intervals of the MHPM signals, the calcula- 
tion of the power spectra of MHPM is not as simple as 
BPSK or MSK. The three principal methods for calculat- 
ing the power spectra of MHPM signals are 1) simulation, 
2) the Markov chain approach, and 3) the direct method 
1161. In the simulation method, a pseudorandom data se- 
quence generator is used, and the phase modulation pro- 
cess $ ( t ,  a )  is produced. The discrete Fourier transform 
of the signal envelope ejp(‘A) is then determined and the 

POWER (dB1 
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f T  

1 0  2 0  3 0  4 0  

Fig. 9. The power spectral density of S-type MHPM with code { 4/8, 5 / 8 ,  
6 / 8  1 

spectrum is estimated. In this research, the power spectra 
for binary S-type and A-type 3-h MHPM with { 4 / 8 ,  5 /8 ,  
6 / 8  } are simulated. 256-bit pseudorandom data se- 
quences were used, along with 16 samples of the phase 
modulation per bit, and the S-type and A-type spectra ob- 
tained by averaging the spectra of ten different data se- 
quences are shown in Figs. 9 and 10, respectively. Com- 
paring these two figures, we find that the power spectra 
for S-type and A-type are very similar as we expected, 
which means the bandwidth of MHPM with asymmetric 
modulation indexes will be almost identical to that of con- 
ventional MHPM, if the same set of modulation indexes 
are used for h,, and h- , .  

In a different approach, using the simple approximation 
proposed by Wilson [ 161 to calculate the multi-h signal 
spectra as we can obtain rough estimates for the power 
spectra of asymmetric MHPM signals by a constant-h sig- 
nal with a modulation index being the average over one 
cycle of h , ’ ~  

- h = - C h , .  l K  
K i = l  

Since the bandwidth is proportional to the modulation in- 
dex for constant-h signals, h can be used to estimate the 
bandwidth of the MHPM signals. For the best codes being 
used to get the distances in Tables 1-111, we have calcu- 
lated the h values of conventional and asymmetric MHPM 
as shown in Table VI. From this table, we can find that 
the h values of asymmetric MHPM are smaller than those 
of conventional MHPM for 2-h schemes for all q being 
used. Also, the 7; values of A-type are generally equal to 
or only slightly larger than those of S-type for 3-h systems 
with q varying from 8 to 17. For 4-h schemes, the h val- 
ues of G-type are smaller than those of S-type codes for 
q = 17 and 21, which indicates that for 4-h schemes, 
G-type MHPM will have better noise performance over 
S-type MHPM even with less bandwidth under these con- 
ditions. The average of modulation indices h for G-type 
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Fig. 10. The power spectral density of A-type MHPM with code 
{ 4 / 8 ,  5 /8 ,  6 / 8 } .  

TABLE VI 

PHASE-CODED MODULATIONS 
AVERAGE OF THE BEST SET OF MODULATION INDEXES FOR MULTI-h 

1<=2 K= 3 K=4 

q C o w .  Asym. $type A-type $type G t y p e  

4 0.63 
5 0.70 
6 0.58 
7 0.57 
8 0.56 
9 0.61 

10 0.55 
I I  0.55 
12 0.54 
13 0.54 
14 
15 
16 

l i  

1’5 

I Y  

20 
11 

2.2 

0.56 
0.55 
0.54 
0.54 
0.53 
0.53 
0.53 
0.52 
0 52 
0.52 

0.63 
0.63 
0.60 
0 64 
0.58 
0 69 
0.64 
0 62 
0 69 
0 71 

0.63 
0.70 
0.70 
0.64 
0.69 
0.69 
0.71 
0 69 
0.69 0.64 0.67 
0.71 0.6Y 0.65 

0 60 0.67 
0.65 0.67 
0.65 0.65 

0.73 0.67 
0.65 0.67 

Average 0.58 0 53 0.64 0.69 0.66 0.66 

__ 

MHPM is 0.65 for q = 17, which is the smallest for all 
values of q being calculated, but this still implies 3.99 dB 
coding gain over MSK as shown in Table 111. Because 
these asymmetric MHPM schemes can provide significant 
improvements in error performance with essentially the 
same bandwidth as shown above, this new class of 
schemes therefore is very attractive in the sense of band- 
width/power efficiency. 

VII. CONCLUSIONS 
The concept of asymmetric modulation indexes for 

MHPM has been investigated in this paper and the mini- 

mum Euclidean distances and upper bounds of error prob- 
ability are calculated. Some reasonable improvements in 
terms of error probability performance over conventional 
MHPM with symmetric modulation indexes for binary 
multi-h schemes were found with essentially the same 
bandwidth and only slight modification in implementa- 
tion. Also, less dependence of the minimum Euclidean 
distances on the values of K and q are observed when 
asymmetric modulation indexes are used. Although fur- 
ther research on the spectral behavior and implementation 
of this new modulation scheme is still needed, it can be 
concluded that the concept of asymmetric modulation in- 
dices for MHPM is attractive for bandwidth/power effi- 
cient modulations. 
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