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Preface

Analyzing algorithms in order to understand their usefulness
and appropriateness is;a key task.in computer science. In
this thesis, we will use probability theory to analyze the
running time of algorithmS: In order to perform such a
probabilistic analysis; we' will first fix a suitable random
model for the input. Then,; the running time becomes a
random variable and properties such as the mean value and
the variance are sought. Once the latter properties are
understood, one also wants to clarify the limit behavior. In
recent years, the method of moments has become a standard

tool for this purpose.

In this thesis, we are interested in a data structure, called
priority trees, and their analysis. One of the goals of the
thesis is to simplify the proofs of some recent results on

priority trees by using the method of moments combined with



asymptotic transfers.
However, in doing so, some new problems will arise which we
will overcome by introducing a new variant of the method of

moments.

We give a short outline of the thesis. In Chapter 1, we are
going to introduce the method of moments. Moreover, we will
introduce priority trees and explain some recent results
concerning this data structure. Then, in Chapter 2, we will
introduce our new method and re-prove some of the results
mentioned in Chapter_ 1. In Chapter 3, we will apply our new
approach to a more‘complex example. We will end the thesis

with a short summary in Chapter 4.
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Chapter 1

Introduction

1.1 Method of moments

In basic probability theory, when proving that a sequence of random variables satisfies a
central limit theorem, we usually restrict to sequences that are independent and identically
distributed (i.i.d.) because in this situation the proofis simpler. The usual proof then
uses characteristic functions and is based on Taylor seriesiexpansion and Lévy’s continuity
theorem. However, for sequences which“do not satisfy the i.i.d. assumption, characteristic
functions might be intractable.. Then, other methods are sought. One such method, the
so called “method of moments”, proceeds by calcilating the limits of the moments. If
the resulting sequence uniquely determines a distribution, then weak convergence to this
distribution is established. The theoretical basis of this method is Theorem 30.2 in P.
Billingsley [1].

Theorem 1. Suppose that the distribution of X is determined by its moments, that the
X, have moments of all orders, and that lim, E (X)) =E(X") forr=1,2,.... Then X,

converges in distribution to X.

One example of a distribution which is uniquely determined by its moments is the

standard normal distribution N (0, 1) and the r-th moment is equal to



@m)t if r =2m,

E(N(0,1)") = { zm

0, ifr=2m+1.

Therefore, by the above theorem, if we want to prove that a sequence of random variables,
say { X, }n>0, converges in distribution to the standard normal distribution, we only have

to show that for all r > 1,

2mml)

(1.1)
0, if r=2m+1.

lim E (X7) =

n—oo

{ Gml - if = 2m,

Next, we will demonstrate this approach by discussing an example from the analysis
of algorithms in which the first order asymptotic of all moments can be obtained by in-

duction.

Example 1: Consider a sequence of random variable { X, },,> that satisfies the following

recurremnce
A R e 1, (1.2)

with initial conditions Xo-= 0 and X = 1, where [, = Unif{0,n — 1}, X,, < X*, and
{ X0} n>0, { X} }n>0 are independent (for background cencerning such sequences of random
variables we refer to H. K. Hwang and R. Neininger [7]). We will use the method of

moments to prove that
X, —E(X,)

Var (X,,)

Solution. In the following four steps, we will repeatedly use the following property:

4, N(0,1).

If we have
2 n—1
n — j bn;
a - ;CLJ -+

where {b, }n>0, ap and a; are given, then for n > 2,

—_

n—

a; +2(n+1)

n+1
3

b

m + b,. (1.3)

Ap =

<
U
N



1. From the recurrence (1.2),

=
E (Xn) T ;E (Xk‘)
Hence by equation (1.3),
0, ifn=0,
E(X,) =4 1, ifn=1, (1.4)
nELifn > 2.

=D,

2. Let z, = E(X,,) and P,(z) = E (e/*»~*»)2). Moreover, set P = =P, (z >‘z:0'

Then, again by the recurrence (1.2), we have

n—1
2
pll_ 2 plrrl o plr]

where

1 7 i i
b, = n Z ( U544 ) ZP[ 1]P'r[Lzl ok + Tpo1og — 1) (1.5)
115 12,43

i1+ig+i3=r

AT i FT
If r = 2, by equation (1.3)-and (1.5); we get Var(X,,) = Z(n + 1), for all n > 5.

3. Now, we claim: the_r-th centralized and mormalized moment of X, satisfies, as

n — oo,
E X, —3n 'l %%—0(1), if r = 2m,
2n o(1), if r=2m+ 1.

We use induction on r. By Step 1 and Step 2, we know that the claim holds for
r =1,2. Now, we assume that the claim with exponents less than r is true.
Case 1: r =2m

It is easy to see that i3 = 0 gives the main contribution of b2 Hence

2m—1

pzml 1 Z (2m> Z plil pl2m=i

=1



Then, by induction hypothesis,

ol LR [2m &= (20)! (2 \' (2(m—i)! (2 m
b, ]NEZZI (22)% 2iil (4_5k> 2m=i(m — i) <£(n_k_1)>
(m—1)2m)! [ 2\
™ om(m + 1)! (E) "
By equation (1.3), we have
- — 1 (m—1)2m)! [ 2\ .
B A ) Y G0 v 1) (%) -
(m—1)2m)! [ 2\™ .
2m(m + 1)! (E) "

2(m —1)(2m)! 2\"  (m—=1)02m)! 2\
T m—1)27(m + 1)! (4_5) T 1) (E) "

@2m)! 2\ 4
~ — | i
2mm/! \ 45

Case 2: r=2m+1
Similarly, we know i3 =10 gives the main contribution of 2™ Hence

n—1
1 2 1 i1 i
pemii L g LS (”” )}jP,L”P,Esz.
k=0

s 1y, 12
i1+10=2m+1
A2+ 1,ia#2m+1

1

Then as above,
pl2m il — <nm+§> '

Moreover, by equation (1.3), we get

P[?m—l—l] -0 (nm—&—%) )

4. From Step 2 and Step 3, we know

m E ([ o= ) ) = sty if7 = 2m,
n—00 Var (X,,) 0, if r =2m + 1.

Hence our claim follows from Theorem 1.



From the above example, we see that the method of moments is very suitable for se-
quences of random variables that satisfy a distributional recurrence relation, a situation
that is often encountered in the analysis of algorithms. In particular, no advanced theory
is needed. However, there are limitation of this method. We will demonstrate this by a

second example.

Example 2 : We consider the sequence of random variables {X,},>o satisfying the

following recurrence
X, L X, +1, Vn>0, (1.6)

with initial condition Xy = 0, where I,, = Unif{0,n — 1}. Again, we claim that
X, —E(X,)
Var (X,,)

Solution. We will prove latersthat, if we have the following recurrence

1 n
ap = bn+ Ekz_;ak—la

where ag and {b, },>0 are-given, then, fors > 1,

—L, N(0,1).

.
o bn+ZEbk_1 ). (1.7)

k=2

1. From the recurrence (1.6),

n—1
E(X,) =1+~ > E(Xx) Vo1,
k=0
Hence by equation (1.7),
H, ifn>1,
E(X,) =
0, if n=0.
2. Let z, = E(X,) and P,(z) = E (e(X"*z”)Z). Moreover set Pl = j;rPn(z)}Z:O.

Then, again by the recurrence (1.6), we have

n—1

1
P ==-3"p"+oll, vn>1
n nkzo k + n n =1,



where
n—1r—1

bl = nzz (T)P[T (1+ 25, — )" (1.8)

(2

—0 i=0
If r = 2, by equation (1.7) and (1.8), we have Var (X,,) ~ logn, for all n > 1.

3. Now, we claim: the r-th centralized and normalized moment of X, satisfies, as

E((Xn_logny): ml1o(1), ifr=2m,
Viegn 0(1), if r =2m+ 1.

We use induction on r. By Step 1 and Step 2, we know that the claim holds for

n — 090,

r = 1,2. Now, we assume that the claim with exponents less than r is true.
Case 1: » =2m

From equation (1.8),

'n12m1

S 3 Lol o

k=07 1=0
In this step, we havessome trouble. By inductionthypothesis, we have, for the term

with ¢ = 2m — 1,

n—1
1 ( 2m ) [2m—1] 1 _1
—E /" (TFzr — ) :0<logm 2n>.
ne— 2m —l

All other terms are smaller.-Hence,
pEmiiz o <logm7% n) .
By (1.7), this then yields P =, <logm+% n) . Hence

E (X, —2.)") =0 (long’% n) :
But this approximation is too large for our purpose.

The latter situation is typical for sequence of random variables that satisfy a “one-
side” recurrence of the type (1.6). It is the main task of this thesis to provide a new
variant of the method of moments which can be applied to such sequences. Moreover,
we will apply our method to some examples from the analysis of priority trees, a data

structure which will be introduced next.



1.2 Priority trees and their probabilistic analysis

1.2.1 Priority trees

If a college wants to save the information of thousands of students applying for scholar-
ships, they need a suitable data structure. Assume the college has a formula to calculate
the priority of the persons who apply for scholarships. Of course, they may need to insert
new information or delete existing information. Now, we will introduce a data structure,
called “priority queue”, which is suitable for this purpose.

A priority queue is a data structure that supports the following two basic operations:
1. Add an element to the queue with an associated priority.
2. Remove the element from the queue that has the highest priority.

Priority queues are used in operating systems (e.g..job scheduling) and in discrete event
simulation models. Every element in a priority, queue has a fixed associated key value
which determines its priority. Low key values ¢orrespond to high priority. Some back-
ground on priority queues can be found.in-T. H.- Cormen, C. E. Leiserson, and R. L.
Rivest [1]. Next, we will introduce a‘data structure, called priority trees (or p-trees for
short) which is useful for implementing priority queues.

A p-tree is either empty or'itiis a sorted, non-increasing sequence of nodes, the “left
path”, such that to each node of the left: path except the last one, a p-tree (possibly
empty), the “right subtree” is associated. The nodes of the right subtree associated
with a node = on the left path, are ranked between x and the left successor of x. The
fundamental operations delete and insert for p-trees work as follows.

DELETE

The terminal node on the left path is called the “left leaf”. It is the element with the
smallest key value and hence the highest priority. Let the node z be the ancestor of the
left leaf. If we want to remove an element with the highest priority, we just delete the left
leaf, and then take the right subtree attached to x and add it to the left path.

INSERT



Inserting a new element p into a priority tree 1" works as follows:
INSERT(T, 2):

e if T = () or the key associated to the root of T is not larger than p, then let p be

the new root and T its left subtree.

e Otherwise follow the left path of T" and look for the first node = that has a key
not larger than the key of p.
e If no such node exists, then append p to the left path as a new left leaf.

e Otherwise let us denote by z the predecessor of x; thus the key of p is ranked
between the keys of x and 2. In this case algorithm INSERT will be applied

recursively to the right subtree of 2z to insert node p.

In Figure 1.1, we give an example in which we repeatedly use the algorithm INSERT

to create a priority tree starting with an empty set.

@ G
e:>®:>(i/®:>:> D o
@ (3
@

Figure 1.1: An example of a priority ‘tree of size 6 build from the permutation

(3,1,4,7,2,5,6) with the length of the left path is 4.

Deleting an element with the highest priority and inserting a new element are the main
operations on priority trees. Hence, it is important to thoroughly analyze the running time
of these operations. Therefore, we will use a random model on the input. More precisely,
we consider the model where all n! permutations of the numbers 1,...,n generating all
the p-trees of size n are equally likely. Then, characteristic parameters describing the
running time become random variables. Apart from the model proposed above (called .4

in the sequel) we will need two more models: the model obtained by generating a priority

9



tree from a random permutation starting with positive infinity ”+o00” (this model will be
called B) and the model obtained by generating a priority tree from a random permutation
starting with negative infinity ”—o0” (this model will be called C). Moreover, we make
the convention that both +00 and —oo do not count towards the size of the p-tree. The
reason for considering these three models lies in the natural decomposition obtained by
conditioning on the first element in the random permutation (where again 400 and —oo
do not count); see Figure 1.2. The idea for this decomposition is not new and seems to

have appeared first in a paper of A. Panholzer and H. Prodinger [12].

Object of ¢
with nodes
k+1,...n

Object of
Awith
nodes
k+1,...n

Object of B
with nodes
1,..k-1

Object of B
with nodes
1,..k-1

Decomposition of family 4 Decomposition of family @

Object of ¢
with nodes
k+1,...n

Object of
A with
nodes
1,..k-1

Decomposition of family C

Figure 1.2: The decomposition of family A, B and C

10



1.2.2 Previous results on priority trees
Length of the left path

In [12], A. Panholzer and H. Prodinger investigated the length of the left path in a p-tree
of size n, where the length is by definition the number of nodes (for the model C we
make the convention that —oo does not count). This parameter describes the cost of the
running time of the algorithm DELETE from the previous section. Under the random
model above, the authors obtained mean and variance and proved a central limit theorem.

We briefly sketch their method of proof.

1. Let A, Bnm, and C,, ,,, be the probabilities that a random tree of A, B, and C
with size n has a left path of length m. Then, by the decomposition from Figure

1.2, we have the following recurrences:

An,m = %i Zm: Cn—k,infl,mfi vn > 17

k=1_1=0

1
Bn,m 3 E ZBk—l,m—l vn > 17 (19)
k=1

1 n
. = : ; e V> 1.

Consider the bivariatesgenerating functions

A(Z, U) == Z Z Ammznvmv

n>0 m>0

B(z,v) = E E By mz"v™,
n>0 m>0

C(z,v) = g E Crmz"v™.
n>0 m>0

From (1.9), we have the following system of differential equations:

0
&A(Zw) = B(z,v)C(z,v),

0

aB(z,v) k. ZB(z,v), (1.10)
0 v

50(2,0) =71= ZC’(Z,U)

11



This system is easily solved and we obtain

B(z,v) = a _UZ)U,
C(z,v) = a —1z)v’
and
0 v
aA(z, v) = =

(1.11)

Az, ) = 1_12@ (1_1}_(1_”%).

. Now, denoted by A,, B,, and C,, the expectations of the length of the left paths in

objects of size n in the families A, Bresp. C. Moreover, define A(z) := 2 A(z,v) {v:p

v
B(z) :== £B(z,v) |v:1, and C(z)psa 24z, v) |v:1 which are the ordinary generating

functions of A,,, B,, and.C,,. By differentiating and reading of the coefficients of
A(z), B(z), and C(z)an (1;11);pwe have

EE L B 4 — 0,

B,=Hy+1 ¥Yn>1, B;=0,

(e V> 1,0 €y = 0.

. Differentiating equation (1.11) twice with respect to v and evaluating at v = 1
yields second factorial moments . For instance the second factorial moment A, of

the length of the left path in a p-trees of size n from random model A is given by
A, =4H? —4H, —4H™ +4 Vn>1 Ay;=0.
Consequently, the variance A, is given by

fln:fln—kAn—Ai:Qlogn—i—O(l).

. Let A,(v) = 1[z"|Z A(z,v). From (1.11) and singularity analysis (see Chapter VI

in P. Flajolet and R. Sedgewick [5]), we obtain

12



o (n~+2@——2> (1.12)

for fixed v and n — oco. Next, let
pa-(t) = e #ntlon 4, (/o) .
By (1.12), we have
A, (€)= exp(2(e™/" — 1) logn) (1 + o(1))
=exp | 21 ni—ﬁ (1+0(1))
= exp | 2logn= 5 o(1)).

n

Then, as n — oo,

it it t?
o+ (t) =exp ['=2logn=—" exp | 2logh— — 3 (1+0(1))
o o

n n

_ e—t2/2(1 +0(1)) ™ 6_t2/2,

By Lévy’s continuity theorem, the centraldimit theorem follows from this.

We will provide another proof of the above result by using the method of moments.

In doing so, we will encounter similar problems as in Example 2 in Section 1. However,

we will overcome these problems by introducing some new ideas (for more details see the

next example below). It should be mentioned here that from a technical point of view

our proof is more complicated then the above one. So, this example will be mainly used

to introduce our new approach.

The number of key comparisons when inserting a random element:

M. Kuba and A. Panholzer [9] considered the number of key comparisons when inserting

a random element in a p-tree. This parameter describes the running time of the algorithm

13



INSERT. They authors sketched a proof of a limit law of this quantity (mean and variance

were already discussed earlier in [12]). We will repeat their arguments here.

1. Let ALI], B,[l”, and CY be the random variables that count the number of key
comparisons when inserting a randomly chosen element from {j + 3 : 0 < j < n}
into a random p-tree of the families A, B, and C with size n. Let

nIF’ [I] = 2™
=22 =

n>1 m>0

and similar we define B(z,v) and C(z,v). Then, by the decomposition from Section

1.2.1, we have the following system of differential equations:

0 1 1

&A(z7v) 1 _ 20(27 U) + (1 _ )6“ B<z7 U)?
D e, easbiing, o) + Bz

92 Z,U s Zs U — Z,V

0 1 e2v

EC(Z ’U) :C(Z 'U) WA(Z,’U),

with initial conditions A(0,v) = 1, and*B(0,v) = €'(0,v) =

By solving for A(z, v):we get the following homogeneous third order linear differential

equation for A(z,v):

0 3+ 2v &7 g v 0
— — — —A
8z3A(Z’ v) 11—z 822A(z P ((1 =22 (1- z)““) 0z (z,v)
202
+ (G Z)v+2A(Z’U) =0,
with initial conditions A(0,v) =0, £ A(z, U){z:() = v, g—;A(z,v) = 2v(v+1).

2. Let H,(z) := 2-H(z,v), where H(z,v) = 2 ((1 — 2)A(z,v)). Then from the above
equation we get the following differential equation:
HY(2) — —2HI(2) — — 2 H.(2) = S,(2)
" 11—z " (1—2)2"" T

where S,.(z) is the inhomogeneous part. Using variation of parameters then yields

the following solution

14



1 z 1—2z [~ Cra

H.(2) = —— [ (1 =1)3S,(t)dt — S.(t)dt + ———— + C,5(1 — 2),
)= g [, (=080 = 5= [ S0+ 72+ Gt =)
(1.13)

where C,; and C, 5 are suitable constants.

3. By using induction, H,(z) is shown to exhibit the form
2r 1 2r—2
_ (m) 2r—m (m)1 _ 2r—2—m

H(2) = 30 G T D00 - AR (1

where o™ and 8™ are some constants which satisfy some recurrences and L(z) :=

log (1)

4. Let A.(2) := %A(z,v)hzl 2 Y et T ((A,[{])£> 2", where E ((ALLI]>£> denote
the r—th factorial monient. By equation (1.14), A,(z) satisfies the same type of
expansion as H,(z). ;Therefore by-reading of the:coefficients of ﬁL(Z)%_m, we

obtain

E () - i(log n)z’”_mgcm (727: _ j) o (nll—) ’

m=0, J

where ¢, , are some constantsiand e is a small econstant.

5. Finally, the central moments are obtained from
m_ L1, 9 ' — (T e T 2r—2k [\ *
E (A - glog n = Z 5 (—1) 3 (log n)E((An) >
k=0

and

() = o { e ().

by using the expansion from Step 4 ({f} denotes the Stirling numbers of first kind).

The limits of the central moments are then computed via these exact expressions.

The most complicated step in the proof of A. Panholzer and M. Kuba is the fifths one.

This is due to the appearance of many cancellations in the central moments. Hence, the

15



authors needed a rather precise knowledge of the coefficients in the expansion from Step
4. This part can be simplified by shifting the mean as in the Examples from Section 1.1
and using induction. Then, we however encounter again the same problem as in Example
2 from Section 1.1. Therefore, we will first study the (non-central) moments. In order
to do so, we will again use induction. Once the behavior of the non-central moments is
clear, we will use this as input for the second induction. This will help us to overcome
the problem observed in Section 1.1.

Overall, our method will turn out to be structurally easier than the one used by A.
Panholzer and M. Kuba. Carrying out all details is, however, still rather messy. Therefore,
as already mentioned before, we will introduce our method by analyzing first the length

of the left path.

16



Chapter 2

Length of the Left Path

2.1 Statement of the result

As already mentioned in Chapter 1, in this chapter we will use the method of moments to

give a second proof of the results on-the length of thedeft path from Section 1.2.2. Even

though this new proof will be much more complicated, this example is technically easier

than the one considered m the next chapter. Hence, we will use this example as a kind

of warm up in order to explain details €oncerning out new approach.

Now, let AlF ], B resp. O be the lengthof the left path in a random size-n priority

tree of the families A, B resp: C..Then, from the decomposition of Section 1.2.1, we

obtain
Al L g ot >,
BH L 14 B wn>1,
chLircM  wvn >,

where A([)L} =0, B([)L} =1, C’[g” = 0 and the distribution of I,, is given by
. 1 .
P(l,=j)=—, foralll<j<n.
n

From this probabilistic description, we will deduce the following result.

17



Theorem 2. The length of the left path AP in a random size-n priority tree is asymp-

totically Gaussian distributed:

Al g (A1)

Var <A L])

—%, N(0,1).

Moreover, the mean value and variance satisfy

E (ALLL]) ~2lnn, Var (A%]) ~ 2lnn.

2.2 Proof of the result - Theorem 2

The steps of this proof are similar to Example 1 in Chapter 1. In order to get all the

central moments, first we need to.find the mean values of ALL], BLL], and CIH. Let

P,(t) = E(e A%”t),

Qi) =E(eBH),
To(t) ;= E(e™).

By the distributional recutrences formiSection 271, we get

Pu(t)= %ZQk_l(t)Tn_k(t) n > 1, (2.4)
k=1
Qn(t) = letZQk_l(t) Vn > 1, (2.5)
k=1
Tu(t) = %etzn:Tkl(t) Wn > 1, (2.6)
k=1

with initial conditions Py(t) = 1, Qo(t) = €' and Ty(t) = 1.

Let Pl = 4 p

r dT
dt?" ‘t 0’ - dtTQ" ‘t

r] _ ‘
o and Tn" = 4= 1o+ Hence,

r 1 ¢ m\ © i r—i
Rty (Z.) S QT w1 27)
=0 k=1

18



T 1 - r 1 - r - r—i
Q=13 I () et 28
k=1 =1 k=1

T 1 . r 1 . r r—i
=L 123 () o e 29)
k=1

i=1 k=1

S

with initial conditions P(gi] =0, Qg] =1 and Tom =0foralli>1and P(go} = Q([)O] = TAO} =
1.

Note that by (2.8) and (2.9), all moments of B and CF satisfy a recurrence of
the same type. Later on we will see that the same recurrence is satisfied by the central

moments as well. Hence, we first study this recurrence in the next lemma.

Lemma 1. Consider the recurrence a, = b, + % Y pey Gk—1, where ag, {by}n>0 are given.

Then, forn > 1,

1
Q. =10y + Z Ebk_l + ag.

k=2
Proof. Because

na, = (n — Da,-y =mnb, ~'(n—"1b,_1 + an_1.
Therefore

n—1

n = bn R bnfl Fa,lr n 2> 1

— 1
:bn—I—ZEbk_l—I—CLO. |
k=2

We use Lemma 1 to obtain asymptotic expansions of the mean values.

Lemma 2. The mean values of ALL], B and clP satisfy, as n — 0o,

1
E(ALL]):ann—l—?y—l—l—O(Ogn),
n
L]y — 1
E(B,)") =lnn+~y+1+0 (|,
n

E(CH) =Inn+y+0 (l> :
n
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Proof. Taking r = 1 in equation (2.7), (2.8) and (2.9),

1 n
E(AH = P (0) = EZ(]E(B,EL_]l)JrE(C,LL_]l)) Vn > 1, (2.10)
k=1
E(BI) = Q(0) =1+~ S E(BY,) vn>1, (2.11)
n
k=1
1 n
E(CEY =T () =1+ =Y ECY > 1 2.12
() =T,(0) +n; (Cy21) Vo >1, (2.12)

where ]E(AEL}) =0, ]E(B([)L]) =1 and E(C’([)L]) =0

Hence, by Lemma 1,

1
E(BI) _1+Zk+1_H +1_lnn+7+1+0(n) Vn > 1,

1 1
E(CnL})zleZ——H 1nn+’y-|—(9<n) Vn > 1.

From equation (2.10), we have

E(A) = (ZIE D+ E( C,Lﬂ))
_ L 1+221 kX4 2941+ 0 !
n 1 - ’ k—1

By Euler-Maclaurin summation” formula;

n—1 .
E(AF)=2</ 1nxdx+w+c—l—(’)(l)>%—27—1—1—1—(’)(1%;71)7
n \J; " -

where ¢ is a constant. Then,

E(AY) =2lnn+2y— 140 <1°g”) 1
n

The next lemma extends the expansions from Lemma 2 to all higher moments. In
particular, this lemma will be the crucial new tool for overcoming the problem we have
countered in Step 3 of Example 2 of Chapter 1.

Let Pol, () represent a polynomial in x with maximum degree < n and Bol(x) rep-

resent a polynomial in x without any restriction to the degree.
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Lemma 3. The expansions of the r-th moments of ALL}, B and CF satisfy, as n — oo

=)
=)

E (CIH)" = Pol(logn) +(9< — )

E (AM)" = Pol(logn) + (

E (B = Pol(logn) + (

where € denotes an arbitrarily small constant € > 0.

T
Proof. First, we will prove the result for E (BT[LL]> . We use induction on r. By Lemma
2, r =1 is true. Now,we assume that the claim with exponents less than r is true. By

equation (2.8),

r_ln [r] [r—1]
QL]—n;Qk_lJr ”()Z@ .

-'bn

By induction hypothesis, Q[T ! = Pol(log k)4 O (kl%) foralli = 1,...,r, where € denotes

an arbitrarily small constant ¢ > 0. Therefore,

bn:%<z(7;> Qb= ’]+Z‘Bollogk o(k11_6)>

:_Z‘Bollogk Zo<k1 ) (1)

1
= Pol(logn) + O (nle) .

Then, we know

Q= b+ D i 41
k=2
1 "1 1

1 . 11

+

¥
[\




(]

= Pol(logn) + O (nll) 30 (%ﬁ)

k=2
= Pol(logn) + ( >+ZO( ) Z (’)( ﬁ)
5:2 k=n+1
. —=constant
= Pol(logn) + O ( 16) .
n

The claims for E <A£LL])T and E (C’,[LL]>T are proved similarly. 1

Now, we turn to central moments. Therefore, let ®,(t) := e Pr'P,(t), V,(t) =
e~ Q,(¢) and Q, (1) := e~T,(t) where p, = E(AF), ¢, = E(B) and ¢, = E(CI),
Let ®f1 = & (0), ¥l = w{(0) and QI = Q5(0). Then by equation (2.4), (2.5) and
(2.6), we have

1 i i i
(1)7[:] - ﬁ Z Z <Z1 io 13) \I]LI—]1QLZ)—}k(A;{Z,k)Z3 vn 21, (2'13)
i1+ioFig=rk=1 ; 2

e r—l

1 < A
=S SRR et e
k=1 1=0

Qb = %gggl ii ( ) (AL Y1, (2.15)

kle

with initial conditions tbg] = \Ifg] = Q[i] = 0, foralls > 1 and CID([JO} = \II[O] = Q([)O} = 1, where
Af,k = Qk—1 +tn—k — Pn; Ank =1—¢n +qr—1 and Ank =1—t,+t,1.

First we consider the variance.

Lemma 4. The variances of ALL], B ana ol satisfy, as n — oo,
Var(AF) ~ 2logn, Var(BIH) ~logn, and Var(CH) ~ logn.
Proof. First, we consider Var(BLL]). Since Wi = 0 and by equation (2.14), we obtain
Var(BIH) = w2l = Z ol 4= Z (A2
bri—
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Next, we have

k=1
1 n
- - Z(l —qn + Qkfl)
k=1
1 n
~ = Z(l —logn + log(k — 1))?
"=
1
N/ (1+logz)? dx
0
~ 1.

Hence by Lemma 1,

1
Var(BIE) sale 4 Z ™ log n.
k=1

Similarly,

Var(CH) ~log n.

By the relation between @El, vl logn, and Q- login, we have

Var(AlL)) = o2
SO SRS )
k=1 k=1 k=1

1 n n
~ ; 2log(k — 1) + ;(le + k1 — Pn)2>

1 n n

~ = Z 2log(k — 1) + Z(log(k; —1)+log(n —k+1) —2log n)Q)
" \i= k=2

~ 2logn. 1

So far, we have treated means, variances, and all moments. So what is left is to consider
r-th central moments with » > 1. From equation (2.13), the r-th central moment of Al
is a combination of the central moments of BT[LL} and C’T[LL}. Therefore, we first consider

central moments of the latter two random variables.
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Lemma 5. The r-th centralized and normalized moments of B,, and C,, satisfy, asn — 0o,
BIH —logn ' %%—0(1), if 1 = 2m,
E —_— = m (2.16)
Viogn (1), if r =2m + 1.

C%L]—logn ' ;2,,1—7%4—0(1), if = 2m,
O I =R = : ‘ (2.17)
Viogn o(1), if r=2m+1.

Proof. First, we consider ¥l We use induction on 7. By Lemma 2 and Lemma 4, we

Q

know that the claim holds for » = 1 and » = 2. Now, we assume that the claim with
exponents less than r is true. We consider the two cases r is even and 7 is odd in equation
(2.14).

Case 1: If r = 2m, then

n 2

" 1

. 1 o 2m i m—i

wi = S gy (2wl canes
k=1 =0

J/

k=1 1

(3=

bpn:=

where Ay, p =1 — ¢ + Q=i

We consider two parts_accordingto“whether-: is even or not,

m—1 n
1 2me\ (] i
=305 (T Aty

~ 3 () S0 LSt 1)1 g+ ol — 0.

J/

g

=T;
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Now, we just consider T; for 1 <7 < m — 1. By integral approximation,

1< E—1\\" .
T, = = ] log [ —— 1-1 log(k — 1))2(m=1)
2> (1o 1o (1) ) (1~ tog(n) + gk~ 1)

k=2
1

~ login/ (1 +logz)*™= dz
0
~ ¢;log' n,

where ¢; is a constant. Hence, we know that ¢ = m — 1 gives the main contribution of a,.

Consequently,

T Z <2m 2) 21712?(1—_3);); log™ ' (k)(1 — log(n) + log(k))*
( 2m > (2m —2)! log™" ! (2m)!
~ M E e

S UDL .
2m —2) 2m1(m — 1)] " omm o1y %"

(2.18)

Now, we consider (3,

1 2m, 24 1 —i
o 2 5 (Gl Juld s,

Similarly as above, for i <sm — 1/we‘obtain the bound o <10gm7% n) So what is left is to

m | -n
=1 k=1

look at the contribution of 7.=um which is

22 WEIAY,

By Lemma 3, \IJ[ m s a polynomial in logn. Therefore by induction hypothesis, we
know that \1151"1 1} ~ SV eilogl(k — 1), where the ¢;’s are suitable constants for all 4.

Consequently,
TN—Z<chlog >A;fk
— (Z cilog'(k — 1)) (1 —log(n) + log(k — 1)).
=2 \i=0

Using integral approximation,
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1
T ~ clog™™* n/ (I+logz)dz = T =o(log" "n). (2.19)
0

J/

R

=0
Overall, 8, = o (logn”“1 n) Next, by equation (2.18) and (2.19),
(2m)!

bn = Up n " — 1 ml
O B ™ o — 191 198

By Lemma 1,

"1 (2m)!
2m] __ - ~ m
WP =0+ Y b~ o log™ .

k=2

Therefore,

Viogn

Case 2: If r = 2m + 1, then

\Ijgm—i-l] _ 1 Z\I,[2m+1] =i ZZ <2m m 1> z] (A\If )2m+1—2
n
fa=l

k 172=0

2m
B 1 2m)!
E <ﬂ> :m—i—o(l), as n — oo.

J/

by =
where A, = 1 — ¢, + g1 We considerragainytwo parts according to whether 7 is even

or not:

1 o= (2 1 : ,
b= 33 () e

First, we will treat «,,. Similarly as in Case 1, we only have to consider the term i = m.

Hence by using the induction hypothesis, we have

L1 Z (2m + 1) )! log™ (k — 1) (1 — log n + log(k — 1)).
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Again by integral approximation, we have

2 1\ (2m)! 1

For f3,,, we can argue similarly:

I o= 2m+1\ . pm_1
B> (om el
k=1

By using induction hypothesis, we have

S (o 1o (log 0k = 1)) (2 = o (105" ).

k=2

Therefore, we know
b, = Gt On =0 (logm_% n) )

By Lemma 1,

Hence, as n — oo,

Similarly, as n — oo,

E C’LL]—logn ' B %4—0(1), if r = 2m, .
Viogn o(1), if r=2m+1.

Lemma 6. The r-th centralized and normalized moment of Al satisfies, as n — o0,
A[nL]—Zlogn ' %—l—o(l), if r=2m,
E|[2 =250 ) = ! (2.20)
Vv2logn o(1), if r=2m+ 1.
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Case 1: If r = 2m, then
1 , .
(1)[2"1] - _ 9[12] A<I> 13
n n Z Z (ZI, 22’ Z3> -1 nfk( n,k) )
i1+ig+iz=2m k=1

where An,k = k-1t thr — Dn-
Then, we consider three parts according to whether 41,75 € odd, i3 = 0 or i1, 75 € even,

2.3:001'7;37&0.

- 1 "L 2m i) i
ol =~ Z <22~1>‘1’£_11]QL_2;1
1

J/

3

1 2m [2i141] ([ 2i2+1]
— e O
a Z (2z‘1 + 1) b=l Wik

t1+io=m—1 k=1

o=

1 il Olis] (AD i
- E § Qbzl (AP yis
+ n (21’ 227 23) -1 n—k( n,k)

i1+io+iz=2m k=1
Py

(- J/

First, we consider «,,

By Lemma 5, we have

21+12 m k=1

Then, we have

o~ 17 L22) o
“ 2 (2¢1> 20iyl 2hipt 2"

i1+i2=m

_ i (2m)! (20)! (2m — 2i)!
P (2m

| 1
o)l 204l 2 im — )1 8 "

2m
log™ nzzl o—
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@m) . om

=—log"n—

2m m!
2

= _ 2m)! ——2"]og" n.
2mm)!

Now, we consider 3, and ,,

1 g2+ o Ria+1]
n — E E Q2
ﬁ n (2’l1 4 1) k—1 n—=k

i1+ia=m—1 k=1
1 i1+1/2 ia+1/2
= Z 2(221+1>0(10g1 (k —1)log™ (n—k))
i1+io=m—1 k=2

= o(log™n)

For 7, 11 + i3 = 2m — 1 gives the main contribution. Consequently,

1 11 i3
W=D Z() wlol, (az),)

i1+i0+i3=2m k=1
1370

D Z() (ogi2(k'=1) log™/*(n — k) ) (A%,)"

i1+io+iz=2m"k=2
150

=0 <10gm_% n> '

Therefore,

(2m)!

2m 1
. og™ n.

O™ = a4 By A ~

Hence,

2m
E AP —2logn (2m)! +o1)
— = —= +o(1).
v2logn 2mm]

Case 2: If r=2m+1,

m 1 2m + 1 ;
LRSI DI M ity LT NI R

11,109,1
i1+ig+iz=2m—+1 k=1 1552, %3
where A, p = qx—1 + tn—r — Pn. Now, we consider two parts according to whether i35 = 0

or not,
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1 " /2 1\ _ g ,
ofrei= LY (M el
i1+io=2m+1 k=1 1

'

L ~ (2m A1 ial gl a0y
+ — U O (A% )3
n.. Z Z (il,ig,ig) k=1 n—k( n,k)

i1+i2+i3=2m—+1 k=1
~ 7‘3#0 v
Bai=

First let us consider «,,. By Lemma 5 we have the following equation:

n—1
SR> () NEETI Y
1

11+i2=2m+1 k=2

=0 <logm+%(n)> :

For (3, the main contribution s given by ¢; +i5 =2m. Consequently,

1 - 2m + i " i
=y Y (PR (8,

i14+io+iz=2m+1 k=1 ey
i3£0

= % Z z”: (Zm # 1> (@) (logilm(k —=1)log™?*(n — k’)) (A;'Il’vk)i3

i1 -+ig+iz=2m+ 1 V. \ P
i37£0

= 0O (log"n).

Therefore,
LM — o, + 3, =0 (longr%(n)) .

Then,

v2logn

By equation (1.1), this concludes the proof. 1

Al 2logn o
O Y e C——E =o0(l) asn— oc.

The proof of Theorem 2 now follows from the last proposition together with Theorem

1 from Chapter 1.
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Chapter 3

Number of key comparisons when

inserting a random node

3.1 Statement of the result

We will use once more the. approach-introduced in the last chapter to re-derive the result
on the number of key comparisons when anserting a random node from Section 1.2.2. As
explained before, our proof'will be structurally easier than the previous proof.

Now, let AL{], BI' and C’,[ZI] be'.the random variables that count the number of key
comparisons when inserting a randomly chosen‘element p in {j + % :0 < j <n}into a
random size-n tree of the families A, B'and C. Moreover, let I be the first element in the
random permutation (where +o00 and —oco do not count in model B and C, respectively)
and denote by A (or B or C) the tree under consideration. Finally, let B and C' (or A
and C or A and B) be the trees in the decomposition from Section 1.2.1. Then, we have

the following distributional recurrences,

2 ci if I =kandpe C
"’ B", +L, ifI=kandpeB.

1] . i
i 4 { A 49 i I=Fkandpe A, 51)

" B,[ﬂl—i—l, if I =k andpe B.
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i 4 cih if I =kandpe C
A 4L 42 ifT=kandpe A,

with initial conditions A[ I = =0, B C’m = 1, where L = left path of C' and the
distribution of I, is given by

1
P(]:j):E, forall 1 <j <mn.

We will again use this to prove the following result.

Theorem 3. The number of key comparison, ALI], m a random size-n priority tree s

asymptotically Gaussian distributed:
T

Var (A ”)

) 2 N(0,1).

Moreover, the mean valuesand variance satisfy

E (A[I]) ~ %log2 n, Var (ALI]) ~ ;—(1) log® n.

n

3.2 Proof of the result - Theorem 3

By the distributional recurrences from Section 3.1, we get

1] " ) In—k+1 < @ N1 K
E () = SR () E (A0 ) B () Do W,
© Z ¢ n n+1 +Z nn—+1 "=

(3.2)
n In—k+1 < 1k
E (637[{]”) = Z 2R (eAn— ) in—k+l + e’E <€B’[£1U> — Vn>1, (3.3)
— n n+1 pt nn+1
E (cH) = g (ectar) In—k+1 §~ o () B (e 1ok
1 n n+1 o1 nn-+1
Vn > 1, (3.4)
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with initial conditions [E (eAt[)I]”> =1, E (eBéI]“> =E <ec§f]v> =c’and E (eLt()c)> =1
Let A(z,v), B(z,v) and C(z,v) be the generating functions of Al B ana ¢,

A(z,v) == Z(n + DHE (eALI]”> 2",

n>0

B(z,v) := Z(n + 1E <eB£‘I]”> 2",

n>0

Clzv) =3 (n+1E <ecn”v) o,

n>0

By (3.2), (3.3) and (3.4), we get the following system of linear differential equations:

0 1 1
&A(Z,U) = :C(Z,U) + WB(Z,U),
D By = a0+ B
8, VY T L gy T T,

0 T e?v

- Ll s 4
620(27/0) 1_ZO(Z’U)+(1_Z)6U (Z,U),

with initial conditions A(0yw) = 1, and B(0,v) = € (0,0) = €".

This yields the following homogeneous third order linear, differential equation for A(z,v),

0? 3+ 2¢v i a— e 0
gAY - T pndlH2e (a_zy i <1_z)ev+l) g: 4 v)
+ LA( ) =0
(1_z)ev+2 ZJU - 9

(3.5)

with initial conditions A(0,v) = 1, 2 A(2,v)|,_, = 2¢°, 25 A(2,0)|,_y = 2¢" + 4e?".

Y 822

. : : (1)
Our goal is to investigate E (eA"I t). Hence let

1]

an(v) = ["A(z,0) = [z Y (n+ 1)E (eA" ) 2= (n+ 1)E (eA%”v) .

n>0
We can rewrite equation (3.5) to
0 3+ 2" 07 ., 2 0 ?
@A(z7 U) T 1 ﬁA(za U) —2e (1 — Z)Q @A(za U) + ﬁg(zu U)? (36)
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3 621} 621}
where Z5g(z,v) := W%A(z,v) - u_zzwA(z,v).

Because equation (3.6) is a Cauchy Euler differential equations, by [3] we have the recur-

rence,

a,(v) = i Zq(v)‘%%ak(v) + by, (3.7)

where ¢;(v) = —4e?, co(v) = 34 2¢¥ and b, := [2"]g(z,v). Hence,

i) =S (Z o0 ()50 | 2em (7R = (0 ))) ). (38

k=0 \j=1 : (g) 3! (g)

Next, we will prove that r-th moments are polynomial in logn. Therefore, we need to

differentiate equation (3.8) r times with respect to v. In order to do so, we first proof the

following lemma.

Lemma 7. We have,

d™ (et +n (n+ Dn 1 1

o (n B 1) » I~ = log™n +%Boal,,, 'y (logn) + O . , (3.9)
& (e

atm\  n

Hence, we also have
d™ (et +n
—e
dtm n—1

d™ o, (et +n
—e
dtm n

Proof. First consider equation (3.9). We use induction on m. For, m = 1, we have

d (et +n
dt\n—1

and

" B (logm ol A fogn) + O (ml—)) | (3.10)

t=0

1
— w <logmn + Pol,,_;(logn) + O <n11_€>) ’

t=0

and

=(n+1) (logmn + Bol,,,_,(logn) + O (nll_ﬁ)) :

t=0

d(+n)(e+n—1)---(e"+2)

o dt (n—1)!

t=0 t=0
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C(etn)(ettn—1) (e +2)
(n—1)! — et +1 o
C(n+ D& 1
2 Z;Hi
1 1
= @ (logn+ﬂ30[0(logn) +0 (ﬁ)) :

Therefore, m = 1 is true. Now, we assume that the claim with exponent less than m is

true.

d™ (e +n)(e"+n—1)---(e"+2)

dam (et +n B
dm\n—1)|_, dtm (n—1)! o
odmt (et+n)(et+n—1)---(et+2)i el
o dtm! (n—1)! et o

mi (m]— 1) ((et E)e! ?nn—_lif (et + 2))@

=0
n (m_l_ )
o)

et +1

=2

t=0

m— . n (m—1—73)
5 : m —1 et +n () Z €t ’
J n—1 et 4

=1

m—1
_ (nEDn (e
2 Zzet-i-i

By the induction hypothesis,
t ()
1 , 1
et :(n—i-—)n log’ n + Pol,_,(logn) + O :
n—1 J nl—e

2
and we can use induction to get the following equation,

t=0

L ot | g n
1=2

n (m—j)
t 1
(E € > zlogn+‘,po[0(logn)+(’)( ) forall j=0...m—1.

t=0
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Hence, we know T, gives the main distribution. Then
(n+1)n

d™ (e +n m 1
dt_m(n B 1) =—a (log n + Pol,,_,(logn) + O (nlﬁ)) .

Similarly, we can prove that
d™ (et +n
dtm n

We can use the binomial expansion to get the following equation,

d™ o, (et +n “ [(m et +m\ ¥
- — 2m—7/
dtm© <n—1 o ZO i n—1

t=0
n

1 1
= (n+1n <logmn+‘130[m_1(logn) +0 < — )) :
2 n'—e

t=0

=(n+1) <10gmn + Pol,,_,(logn) + O <n11—6>> .

t=0

Similarly, we can prove that

d™ o, (et +n 1
— & 1) (flog™ L, (1 O |
e (T St (ot o s+ 0
Let al]' = n+r1 “ an(v)iv:o' Differentiating equation’ (3.8) r times with respect to v

and evaluating at v = 0 leads then [to.the following recurrence,

(n+ 1)l = ni (iﬁ ﬂM) (k+ 1al + by, (3.11)

k=0 \j=0 3! (g)

where 7y = =2, T = —2, my = 5, and

S () (<, O e (- () )
=33 (;) 20j<v>§<ﬂ)<(n)f>+23l< - )

k=0 i=1 3 3

Jj=1
t=0

(k+ 1)ag_i].
Lemma 8. The mean value of Al satisfies, as n — oo,

1 1
E (AL{]) = §log2n + Pol, (logn) + O <n1—€> ,

where € denotes an arbitrarily small constant € > 0.

36



Proof. Let r = 1 in equation (3.11),

1] _ — 2 J_‘ (?) (n;i;k) [1]
(n+a!=> "1 = ENOE. (k 4+ ay’ + by,

k=0 \j=0 ’ (3
where
n—1 2 o (k) (n—1-k eV +n—k—2 eV+fn—k—2 (1)
_ ' J_'(j>( 2—j ) 2e2" (( n—k—2 )k_( n—k—3 ))
b, = (Z ¢i(v)3; o) + ) (k+1).
k=0 j=1 3 3 V=0
Now, we divide b,, into two parts,
bn =an + ﬁm
where
n—1 2 o (kY (n—1—ky\ (D
(5"
an=> (Z%(Wﬁ% (k+1),
k=0 ;\g=1 3 _—
and

parfl | (3)

For a,,, by Euler-Maclairin summation formula,

Wenfeeol)).

n—1 X e’4+n—k—2 (e’ +n=k—2 (1
ﬁnzz <2€2 (( n—k—2 )k ( k-3 ))) (k + 1).

where ¢ is some constant.

For (3,, by Lemma 7,

n—1

ﬂn:ZﬁOg(n—k—l) (log(n—k—2)+cl+0(<n_kl_2>1_e)>

k=0 3

_(n—k—l)Q(n—k—Q) (log(n—k_2)+c2+0((n_k1_2)1—6>)) (k+1).

where ¢y, ¢o are constants. By Euler-Maclaurin summation formula,

1 1
Bn=n <Elog2n+i]30[1(logn) +0 (nl_e)) :
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Hence,

b, =n (1—1210g2n—|—2730[1(10gn) —|—(’)( L )) .

nl—e

By [3], we know

(n+ al! =n <%10g2n+‘l§o[1(logn) +0 ( ! )) .

nl—e

Then,

1 1
E(Al) =alll = glogzn—l—‘ﬁoll(logn) + 0O ( ) |

nlfe

Lemma 9. The expansion of the moments satisfy, as n — oo,

E ((ALI])T> = Pol(logn) + O ( ! ) :

nl—e

where € denotes an arbitrarily small constant € > 0.

Proof. We will use induction on r. Byt Léemma 8, » = 1 is true. Now,we assume that the

claim with exponents less than « is true. We againdivide b,, into two parts

bn:an—i_ﬂn?
where
n—1 r 2 Y1k (@) .
=31 ( w%%) Gk + af
k=0 i=1 j=1 ' 3 v=0
and

-1 r e’+n—k—2 e’+n—k—2 (@)
< r 2€2U n—k—2 k— n—k—3 r—1i
e ] e e

For «,, by induction hypothesis,

S5 0) (S | oo (s o)

k=0 i=1 3
=n (Z Pol(logn) + O <n11€>>
=1

o (ttoeny +0 ().

—1
J v=0
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For (3, by induction hypothesis,

n-1 r 90 ((vtn—k—=2\1. _ (vn—k—2 (@)
£() (o),

1 3
k=0 i= =0

1
(‘Bo[(log k)+ O <k16>) :
By Lemma 7, we know,

n—1 r (k‘(n —k—1) <i]30[((logn -k-2)+0 (W))

B=2.2. n(n—1)(n — 2)

k=0 i=1
(n—Fk—=1)(n—k—2)(Pol(log(n — k —2))+O
n(n —1)(n — 2)

nk2)1E

(k+1) <‘Bo[(log k) +

o (ttoeny + o (AD)):

Hence,
1
by, = n (‘Bo[(logn) +0O <n1—6>) :
By [3], we know,
(n+ 1)a£f} =) (‘Bo[(log n)+ O (n11—6>) ,
then,

1
= Pol(logn) + O <n1—6> .

By Lemma 9, we know that the central moments are polynomials in logn as well.
Now, let W, () := e_“"tE(eAwt), where p,, = IE(ALH). Then,

1
\Ijn(t) = E <€(A["I]_“")t> = " + 1an(t>€_unt.

Using equation (3.8), we get
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(k4 1)U (t)eln—rnt
(3.12)
where ¢q(v) = —4e?; co(v) = 3 + 2¢e”.
Let Wl = \II(T)(O). Then by equation (3.12), we have the following recurrence

n—1

(n+ 10l = Z(Z f;;()(nn) )>(k:+1)\11["]+bn, (3.13)

where 79 = —2, m = =2, m, = 5, and
n—1
X % (i)

Q1,19,1
k=0 i1 +igfig=r > 17 2"3
i3F£T

where ¢; = ¢;(0) for j =1, 2"
Lemma 10. The variance of Al satisfies, asn — oo,
10
Al ~ —1og® n.
Var(A;) TRl
Proof. Take r = 2 in equation (3.13)
n—1
”
= 2 (i)

i1, 09,1
k=0 i1 +ig+izg=2 \ 117253
1372

A s (C7k— (k) ) "

t=0
(i — )™k + 1),
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We divide b,, into two parts,

b, = o, + Bn
where
n—1 . (k) (n 1_1c) (41) .
= ¢j e (e — i) (ke + 1) T,
i1+z’zz+:z‘3:2 (11722; 23> — (Z J 3' (3) ) k
1372 — t=0 ,
ﬁnlzlg
and
2
on = i1+;3:2 (il, i2, i3>
G372

= m(@ﬁﬁfﬁ—ﬁﬁiﬁQ

=0 (5)

) (i1)
) (s — ) (e + D)WL

t=0

J/

= pon.
11219,13

For «,,, we first considemis =2 and i3 = 0,

. | (k)(”zljk) e 1, N’
k=0 j=1 3
13

~ ——1944n10g n.

For the other terms in «,, we ecan use the same'idea to obtain the bound O (nlogn).

Therefore,
13 |
ay, Toaa" og? n.

For (3, we first consider 13 = 0,

et+n—k—2 et+n—k—2 (i1)
E 2 On — (( n—k—2 )k B ( n—k—3 )>
(ila iz) Pilino~ 2 <@1,22) Zo 5

i1+12=2 i1+12=2

t=0

L o Lo, \"
glog k—glogn (k+1)

A L loe?n+ Lnl
~N —— — —n 10 n —MnN 10 n
1044 nlog’n 108 g’ 12 g
_ 108
"1944”/°g -
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For the other terms in 3, we can also use the same idea to obtain the bound O (nlogn).

Therefore,

103
ﬂn ~ @n log n.

Hence,

13 103 5

by ~ ———nlo ——nlog’n = —nlog?

Togq" 108" " qgpynloan = qaenlog’n

Then by [3], we know
10

Var(All) ~ 8—1109;3 n. |

Lemma 11. The r-th centralized and normalized moments of Al satisfy, as n — o0,

E 3 — 2mm]
/10 1.,3 fr =
Oiog®n o(1), if r=2m+ 1.

Proof. We use induction on r. By.iemma 8 andrLemma 10, we know that the claim holds

AL]}—ll 2 T (2m)+ 17 . ) ;
og°n o(1), ifr=2m (3.14)

for r =1 and r = 2. Now, we assume_that the claim with exponent less than r is true.

We divide b, of equation (8:13) into twe parts,

bn ="y, + ﬂm
where,
n—1 2 (kY =1k \ (1)
-2 Z:( )(Z% fﬂf”) (e — ) (k- )WL
50 i1Histig=r 1 2, b3 j=1 3 (3) B
i3F£T t=0
and

e o (i1)
Sy () (A R nry)

k=0 i1-Fiotig=r i, 12,13 3! (g)
13T t=0

(s = 1) (1)W1

Then we will consider two cases according to whether r is even or not.

Case 1: r=2m.

42



Contribution of «,,

ne1 (kY (n=1—ky \ (i)
e 2 () (Zwé,—i%) (i = 1)k + 10

i1+i2+1i3=2m
i37£2m _

%N

'7Ti1,i2ﬂ'3
We consider two parts according to whether ¢3 is even or not,

Qp = $£?] + ?JLQ] )
~~~

even part  odd part

where
zle) = 2m Ton
n i1 i 20 11,412,213
10t BB L 20 <3
13F£M
and
Aol . = e
n il,i2,2i3 + 1 11,12,213+

i1+i2+2i3+1=2m

First, we consider 2. By induction hypothesis we know,

n-1 [/ 2 | (RY(nisk (21) 1 1 in
T o~ c»(t)LM —log®k — =log’n
i1,i2,2i3 TN g (”) 3 3
k=0 \j=1 3 —o
(2i5)! (10, 45 \®
k+1)= — log” k
D31 \ 5118
~ Ci) g is 10gi2+3i3 n,

where ¢;, 4, i, are constants. Therefore, ¢y = 0, 73 = 2, and 73 = m — 1 gives the main

contribution. So,

« 2m [e]

43



n—1—k

- (2’2%”_ 2) - <ZQ: cj(t)%i(j>(<+)_j)> (% log? k — %logZ n>2

13 (2m)! (10
1944 27 (m — 1)1 \ 81

For y, first, we consider iy = 1 and i3 = m — 1. By Lemma 9, \I/Em_l] is a polynomial

in logn. Therefore by induction hypothesis, we know that \I/Em_l] ~ Z?Z)_Q cilog'(k),

m—1
) nlog®™ ' n.

where the ¢;’s are suitable constants for all 2. Consequently,

) n—1 / 2 . (I;) (ng:k) L o, 3m—2 i
5T om_1 ~ Z (Z cj(O)%T> <§log k— glog n) (k+1) (Z ¢; log (k))

k=0 \j=1 i=0
17 3m—1
~ ———Cgm_onlog®  n.
216 3m—2 g
For i3 < m — 1, we can use thessame idea to obtain the bound 777 ;, = o <10g3m7% n)

Therefore,

W Do Bl A (10g3m‘% n)
17 ]

~ —2—162m03m_2n IOggm_ n.

Contribution of 3,

R

i1tinFig=2m N 17203
i37£2m

i
L

et (5 = (5

ACd ()

) (i1)
) (s — 1) (e + 1)WY

(]

t=0

( =
Il

J/

v

._mBn
~—T¢1,¢2,¢3

Now, we also consider two parts according to whether i3 is even or not,

Bo= a4 g
—~ =~

even part  odd part
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where

ML 2m s,
n i1 0. 2 11,12,2137
i1+io+2i3=2m 152, 3
i3#Em
and
8 _ 2m T8
n i1 i, 2 11,12,213+1"
i1biah2igtl=2m N 1272 203

First, we consider 2. By induction hypothesis,

(i1)
n— et+n—k—2 et+n—k—2 i
- U (e (2 = (5 (11 1 )
i1,02,2i3 B n R 108 £k —glog n
1,202,423 — 3! (3) 3 3
t=0 A
(2i3)! /10, 5 \®
k+1)= —log” k| .
(4 1) 31 \ 51 1%
By Lemma 7 and Euler-Maclaurin summation. formula, we know
7—;?:;2’27;3 ety C’il,iQ,ignlogil+i2+3i3 n,

where ¢;, ;,.i, i a constant. “Fherefore, 73 = m — 1 gives the main contribution. So,

2m
8 § : TPn
.',UL} ~ (Z.l’ Z2> 11,12,2m—2

i1+1i0=2
< [ 2m
~ 2 k-1 —=-(n—k— k- iy ke —
| g E (inz) <k(n k—1) n—k—-1)(n—k 2)) log"(n —k — 2)
i1+120=2 k=0
1 1 2 (2m —2)!  [(10\"! _
| 2 . 2 N— 2 22 1 3m—3
(3 og” k 7108 n) (k + )2m—1(m—1)! (81) nlog n

2m\ —41  (2m\ —1 (2m) 1) (2m—-2)! (10 mt g1
~ — — — ) | = nlo n
0,2)1944 * \1,1)216  \2,0/ 12/ 2m=1(m — 1)! \ 81 &

103 (2m)! 10\ ..
- = log® ' n.
1944 2 (m — 1) (81) nos T
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For y,[f}, first we consider i3 = m — 1. By Lemma 9, \Ilfm_l] is polynomial in logn.

Therefore by induction hypothesis, we know that \I/Em_l] ~ ?;”0_2 cilog'(k). Conse-

quently,
< [ 2m 1
T ~ k(n—k—1)—=(n—k—1)(n —k —2
3 Tnes~ 53 ) (k1) gk D0k -2)
i1+ig= i1+i2=1 k=0

| 1 1 "
log (n — k — 2) (5 log” k — 3 log® n) (k + 1)ncgm-3log™ " n

17
~ ﬁchgm,gn log®™ ! n.

For i3 < m — 1, we can use the same idea to obtain the bound 71’?"1213 =o0 (10g3m_g n)

Therefore,

1
yBl 2—16277103771,271log?’m*1 n.

Hence, we have,

bn:an—i_ﬁn

13 (Zm)‘ 10 T el 17 -
~ — L m N _ l m
1944 27 (m — 1)! (81) nlog® s o 2mes, onlog™ ' n

103 L (Ao Ly 1T 3m-1
- 1 m b)) . 1 m

I 0L 6 CA Y
~10827(m — 1)1 \ 81 8 '

Case 2: r=2m+1

Contribution of «,,

Similarly as in Case 1, we only have to consider the term 75 = 1 and i3 = 2m. Hence by

induction hypothesis, we have
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n—1 2 . (k) (n—l—jc) (1) 1 1 io
Oy ~ Z 2m + 1 (Z C] %) <§ 10g2 k— g 10g2 n)

t=0
2m)! (10 4 \"
1 “log® k
D) (81 °8 )

17 <2m)!nlog3m+1

~ —(2 1)L =)
(@m 4 1) o S

Contribution of 3,

We can again argue similarly, i3 = m gives the main contribution. Consequently,

(41)
ﬁnan_:l Z (Qm—l—l) 262t<(6:nkk22)k_(e:nkk:az))

k=0 i1 +iz=1 i, 12 3! (g)

=0

L ok, (2m)! 5.\
(310g k 3log n) (k’+1)2 ol \ 81 log k
17( )n10g3m+ln

2m + 1
~ + >216 2mm
Hence,
bn = o, + ﬁn
17@my . 17 (2m)!
2 1 1 m+1 2 1 1 3m+1
—(2m + >2162m nlog =+ (2m + )2162’“ nlog n
=0 (n(logn)®*™ ). (3.15)
Now, by [3],
" (Zm) 10 "

and

\Ilgm-l-l} -0 ((10g n)3m+2) )

[2m+1]

By Lemma 9, we know that Uy, is a polynomial in logn. Hence,

\117[12771-&-1] -0 ((log n>3m+1) 7
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Therefore, we know, as n — oo,

AL{] — % log2 n

E
/107.,3
sTlog'n

By equation (1.1), this concludes the proof. 1
The proof of Theorem 3 follows now from the last result together with Theorem 1

@—”zﬁ—o(l) if r =2m
o(1) ifr=2m-+1.

from Chapter 1.
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Chapter 4

Conclusion

We conclude this thesis by shortly summarizing the main contributions. As explained in
Chapter 1, the method of moments which proceeds by using induction to derive the first
order asymptotic of all central ‘moments does not.work for some recurrences which are
“one-sided”. Therefore, we introduced a new variant of the method of moments which uses
two induction steps instead of only one’ The first induetion step studies the non-central
moments and is used as input‘for the second induction for the central moments.

We applied our new approach tostrederive:some recent results on the running time
of deletion and insertion im random prioritystrees. In the first case, our method was
more complicated than the previous approach. In the second case, our method, however,
simplifies the previous proof.

We expect that our method can be used to treat other examples as well. Some examples
include cost of unsuccessful search in binary search trees (see H. M. Mahmoud [10]), depths
of random nodes in binary search trees (see H. M. Mahmoud [10]), analysis of maximum-
finding algorithms for broadcast communication (see W. M. Chen, H. K. Hwang [2]),
number of collisions in the 3(2, b)-coalescents (see A.M. Tksanov, A. Marynych, M. Moehle
[8]), asymptotic laws for regenerative compositions (see A. Gnedin, J. Pitman, M. Yor

[0]), etc.
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