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Preface

This thesis is concerned with metric Diophantine approximation for formal Laurent

series over a finite base field. More precisely, we will discuss an analogue of the famous

Duffin-Schaeffer conjecture for formal Laurent series and prove it in some special cases.

An outline of the thesis is as follows. In Chapter 1, we will briefly introduce Dio-

phantine approximation and metric Diophantine approximation over the real number

field and state some results which are important for our work. In Chapter 2, we will

give an introduction into the theory of Diophantine approximation for formal Laurent

series over a finite base field. More precisely, Section 2.1 will collect the definitions,

notations and results we are going to use throughout this work. Then, in Section 2.2

we will give a survey on recent research activities in Diophantine approximation for

formal Laurent series. Apart from such results, this section will also be used to state

the Duffin-Schaeffer conjecture in our context and explain the goal of this thesis in

more details. Finally, Section 2.3 will contain our findings concerning this conjecture.

In Chapter 3, we will give details of the proof of our main result. Roughly speaking,

we will follow the classical path which is concerned with estimating the measure of the

intersection of two events, and applying the generalized Borel-Cantelli lemma.

In Chapter 4, we will consider the conjecture from a different angle and prove some

analogous results of Harman.

Finally, we will end the thesis with a conclusion in Chapter 5.
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Chapter 1

Introduction

We know that the set of rational numbers Q is a dense subset of R. That is for each

a ∈ R and for each n ∈ N, there exists rational number rn such that |a− rn| < 1
n
. An

important task both in theory and praxis is to approximate real numbers by rational

numbers with good accuracy, where the accuracy is measured in terms of the size

of the denominator. The area which is concerned with such investigations is called

Diophantine approximation. The following is one typical result.

Theorem 1.1 (Dirichlet). Let α be an irrational number. Then

∣∣∣α− m

n

∣∣∣ < 1

n2
, m, n ∈ Z, n 6= 0, (m,n) = 1

has infinitely many solutions
m

n
.

A subarea called metric Diophantine approximation asks for properties which hold

for almost all real numbers (in the sense of Lebesgue measure). Again, we give a typical

result.

Theorem 1.2 (Khintchine). Let ψ(x) be a positive continuous function and suppose

that xψ(x) is non-increasing. Then

∣∣∣α− m

n

∣∣∣ < ψ(n)

n
, m, n ∈ Z, n 6= 0, (m,n) = 1 (1.1)

has infinitely many solutions
m

n
for almost all α ∈ R if and only if

∞∑
n=1

ψ(n) =∞.

1
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The inequality (1.1) is called Diophantine inequality. Finding which conditions

make this inequality have infinitely many solutions for almost all numbers is the main

goal of metric Diophantine approximation. By using the Borel-Cantelli lemma, one

can easily obtain:

Theorem 1.3. Let ψ(n) be a non-negative-valued function such that

∞∑
n=1

ψ(n)
ϕ(n)

n
<∞.

Then ∣∣∣α− m

n

∣∣∣ < ψ(n)

n
, m, n ∈ Z, n 6= 0, (m,n) = 1

has only finitely many solutions
m

n
for almost all α ∈ R.

The most famous unsolved conjecture in metric Diophantine approximation is:

Conjecture (Duffin-Schaeffer Conjecture (1941)). Let ψ(n) be a non-negative-valued

function such that
∞∑
n=1

ψ(n)
ϕ(n)

n
=∞. (1.2)

Then ∣∣∣α− m

n

∣∣∣ < ψ(n)

n
, m, n ∈ Z, n 6= 0, (m,n) = 1

has infinitely many solutions
m

n
for almost all α ∈ R.

Vaaler made an important contribution to this conjecture.

Theorem 1.4 (Vaaler). The Duffin-Schaeffer conjecture is true when ψ(n) = O
(

1
n

)
and ψ(n) satisfies (1.2).

In this thesis, we will study this kind of problems for the formal Laurent series field

and give some analogous results.



Chapter 2

Metric Diophantine Approximation
for Formal Laurent Series

In this chapter, we will give the precise definitions of the notations we are going to use,

and some historical discussion and recent results about this research.

2.1 Fundamental Properties

Let q = pn where p is a prime number and n ∈ N. We use the standard notation Fq

from algebra to denote the (unique) finite field with q elements. Moreover, we denote

by Fq[X] the set of polynomials with coefficients in Fq, and by Fq(X) the quotient field

of Fq[X]. Finally, we denote by Fq((X−1)) the set of formal Laurent power series, that

is

Fq((X−1)) =
{
f = alX

l + al−1X
l−1 + · · · : l ∈ Z, each ai ∈ Fq, al 6= 0

}
∪ {0}

Next, we equip Fq((X−1)) with an addition and multiplication, where both operations

are defined as for polynomials. With these rules, we have the following property:

Proposition 2.1. (Fq((X−1)),+, ·) is a field.

Proof. First, it is easy to see that (Fq ((X−1)) ,+, ·) is a commutative ring with identity

3
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element. Hence, we only need to check that every f ∈ Fq((X−1)) of the form

f =
∞∑
i=−l

a−iX
−i, al 6= 0

has a multiplicative inverse.

Therefore, we claim that

f−1 :=
∞∑
i=l

b−iX
−i ∈ Fq((X−1)),

where bi can be determined recursively as follows:
b−l = a−1

l

b−l−k = −
k∑
j=1

a−1
l · (al−jb−l−k+j) , k ≥ 1.

The claim is easily checked. This concludes the proof.

For f = alX
l + al−1X

l−1 + · · · ∈ Fq((X−1)), al 6= 0, consider the field Fq((X−1))

with the following

ν (f) = deg f = l

and deg 0 = −∞ as usual.

Define |f | = qν(f). We have the following properties:

Proposition 2.2. For f, g ∈ Fq((X−1)), | · | satisfies the following

(1) |f | = 0⇔ f = 0

(2) |fg| = |f ||g|

(3) |f − g| ≤ max {|f |, |g|} (ultra-metric property).

That is, | · | is a valuation on Fq((X−1)).
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Proof.

(1) |f | = 0⇔ ν(f) = −∞⇔ f = 0.

(2) |fg| = qν(fg) = qdeg f+deg g = qdeg f · qdeg g = qν(f) · qν(g) = |f | · |g|.

(3) |f − g| = qν(f−g) = qdeg(f−g) ≤ qmax{deg f,deg g} = max
{
qν(f), qν(g)

}
= max {|f |, |g|} .

This concludes the proof.

Remark 2.1. As it is well-known from the theory of evaluated fields, the function

d : Fq((X−1))× Fq((X−1))→ R defined by d(f, g) = |f − g| is a metric on Fq((X−1)).

The following subset of Fq((X−1)) can be viewed as the analogue of the interval

[0, 1) in the field of formal Laurent series

L =
{
f = a−1X

−1 + a−2X
−2 + · · · : ai ∈ Fq for i ≤ −1

}
.

By restriction of the valuation of Fq((X−1)) on L one gets a compact Abelian topolog-

ical group.

Proposition 2.3. L is a compact Abelian topological group with the metric d(f, g) =

|f − g|.

Proof. We need to prove the following two things:

Abelian topological group:

First, it can be easily checked that L is an Abelian subgroup of Fq((X−1)). More-

over, if fn, gn, f, g are in L for each n and fn → f, gn → g, then by the properties

of the product topology, we have:

|fn+gn−(f+g)| ≤ max {|fn − f |, |gn − g|} = max {d(fn, f), d(gn, g)} = d ((fn, gn) , (f, g)) .

That is, (f, g) 7→ f + g is continuous.
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On the other hand, since fn → f ,

| − fn − (−f)| = |fn − f | → 0.

Hence, f 7→ −f is continuous as well. Overall, we have proved that L is a topological

group.

Compact group with the metric d:

Since a metric space is compact if and only if it is sequentially compact, we only

have to show the latter. Therefore, let fn be a sequence in L. We have to show that

there exists a convergent subsequence. First, denote by A1 an infinity subset of {fn}

with the same first digit (the coefficient of X−1 ). This is possible due to the finiteness

of the base field. Now, assume that A1, A2, . . . , Ai are already defined such that the

first i digits of all elements in Ai are the same and that every Ai contains infinitely

many elements. Define Ai+1 as the infinity set of elements from Ai with the same first

i+1 digits (again this is possible due to the finiteness of the base field). This recursively

defines a sequence of non-empty sets A1, A2, A3, . . .. Now, pick one element from every

set (which is possible by the axiom of choice). This obviously gives a sequence that

converges.

Remark 2.2. The part in proposition 2.3 that L is compact with d can also be proved

as follows:

Proof. Consider the finite base field equipped with the discrete topology. Form the

infinity product space. Since the product topology on FN
q has as basis all sets of the

form
∏
Uα, where Uα is a basis of Fq for finitely many α (which equals singleton due to

the discrete topology) and Uα equals Fq for infinitely many values of α, it is easy to see

that the resulting topology is the same as the topology on L induced by our valuation.

Next, note that the finite base field with the discrete topology is trivially compact.

Hence, the infinity product space is compact as well by Tychonoff’s theorem.
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Remark 2.3. Compact topological groups are important because they have a unique,

normalized, translation-invariant measure called the Haar measure.

We denote by m the normalized Haar measure on L and for g ∈ L, r ≥ 1 define

B(g, q−r) =
{
f ∈ L : |g − f | < q−r

}
.

Then, we have the following important property:

Proposition 2.4. For any b1, b2, . . . , br ∈ Fq, g ∈ L and r ≥ 1,

m
({
f = a−1X

−1 + a−2X
−2 + · · · : a−1 = b1, a−2 = b2, · · · , a−r = br

})
=

1

qr

and

m
(
B
(
g, q−r

))
= q−r.

Proof. Assume

g = b1X
−1 + b2X

−2 + · · ·+ brX
−r.

By the translation-invariant property of m,

m
(
B
(
g, q−r

))
= m

(
B
(
h, q−r

))
, for any h ∈ L.

Clearly, for f ∈ L

f ∈ B
(
g, q−r

)
⇔ a−j = bj, for j = 1, 2, . . . , r.

Thus,

{
f = a−1X

−1 + a−2X
−2 + · · · : a−1 = b1, a−2 = b2, · · · , a−r = br

}
= B

(
g, q−r

)
which inherits the translation-invariant property. Consequently,

m
({
f = a−1X

−1 + a−2X
−2 + · · · : a−1 = b1, a−2 = b2, · · · , a−r = br

})
= C(r) a function of r.
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As a result,

1 = m (L)

= m

 ⋃
b1,b2,...,br∈Fq

{
f = a−1X

−1 + a−2X
−2 + · · · : a−1 = b1, a−2 = b2, · · · , a−r = br

}
=

∑
b1,b2,...,br∈Fq

m
({
f = a−1X

−1 + a−2X
−2 + · · · : a−1 = b1, a−2 = b2, · · · , a−r = br

})
= qr · C(r).

Note that the disjoint property was used to obtain the third equality. Hence, for any

b1, b2, . . . , br ∈ Fq and g ∈ L, r ≥ 1

1

qr
= m

({
f = a−1X

−1 + a−2X
−2 + · · · : a−1 = b1, a−2 = b2, · · · , a−r = br

})
= m

(
B
(
g, q−r

))
which completes the proof.

Remark 2.4. Let ψ be a {q−n : n ∈ N ∪ {0}} ∪ {0}-valued function defined on the set

of normed (monic) polynomials in Fq[X] of the form

X l + al−1X
l−1 + · · ·+ a1X + a0, ai ∈ Fq, i = 0, 1, . . . , l − 1.

With this setting, for any f ∈ L and Q ∈ Fq[X] with Q normed, we have

m

(
B

(
f,
ψ(Q)

|Q|

))
=
ψ(Q)

|Q|
.

So far, we have established some properties of Fq((X−1)). Next, we also need some

analogue definitions and results of number theory, where now Fq[X], Fq(X), Fq((X−1))

play the roles of integers, rational numbers and real numbers, respectively.

As usual in algebra, we use capital letters to denote polynomials of Fq[X] and ”I”

for irreducible normed polynomials.
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Definition 2.1 (Euler’s phi function). The function ϕ(Q) : Fq[X] \ {0} → N ∪ {0} of

Q is defined to be the number of polynomials in Fq[X] with degree less than Q that are

coprime to Q.

Remark 2.5. We use (P,Q) = 1 to denote that P,Q are coprime, whereas 〈·, ·〉 will

be reserved for pairs.

Definition 2.2 (Möbius function). µ(Q) is defined for all Q ∈ Fq[X] \ {0} and has its

values in {−1, 0, 1} depending on the factorization of Q into distinct normed irreducible

factors. More precisely, write Q = c · Ia1
1 I

a2
2 · · · I

ak
k for some c ∈ Fq and Ij 6= Ik for all

j 6= k. Then

µ(Q) =

{
(−1)k, if a1 = a2 = · · · = ak = 1;

0, otherwise.

As in classical number theory, we have the following results for Euler’s phi function

and Möbius function in Fq[X].

Proposition 2.5. All capital letters in the following denote normed polynomials in

Fq[X]. We have

|D| =
∑
L|D

ϕ(L),

∑
M |U

µ(M) =

{
1, if |U | = 1;

0, if |U | > 1,

ϕ(N) = |N | ·
∏
I|N

(
1− 1

|I|

)
.

Proof. The claims follow with a similar method as in classical number theory.

Proposition 2.6. For N ∈ Fq[X], N normed, we have

1

2

√
|N | ≤ ϕ(N) ≤ |N |. (2.1)
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Proof. First,

ϕ(N) = |N | ·
∏
I|N

(
1− 1

|I|

)
≤ |N |,

we get one side of (2.1). On the other hand, assume

N = Ik11 I
k2
2 · · · I

kl
l , ki ∈ N, i = 1, 2, · · · , l,

where Ij 6= Ik for all j 6= k. Then,

ϕ(N) = |I1|k1−1 · |I2|k2−1 · · · |Il|kl−1 · (|I1| − 1|) · · · (|Il| − 1).

Case 1: q > 2.

Since |I| − 1 > |I|
1
2 and k − 1

2
≥ k

2
,

ϕ(N) ≥ |I1|
k1
2 · |I2|

k2
2 · · · |Il|

kl
2 =

√
|N |.

Case 2: q = 2. In this case,

ϕ(N) =

 ∏
deg Ij=1

|Ij|kj−1

( ∏
deg Is≥2

|Is|ks−1 (|Is| − 1)

)

≥
∏

deg Ij=1

|Ij|kj−1
∏

deg Is≥2

|Is|ks/2

=
∏

deg Ij=1
kj>1

|Ij|kj−1
∏

deg Is≥2

|Is|ks/2

≥
∏

deg Ij=1
kj>1

|Ij|kj/2
∏

deg Is≥2

|Is|ks/2

=
(
2−1/2

)#{kj : deg Ij=1, kj=1}√|N |
≥ 1

2

√
|N |.
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Note that for q = 2, the number of irreducible normed polynomials with degree 1 is 2.

This proves the desired result.

Later on, we will need a result about the number of irreducible normed polynomials:

Proposition 2.7. Let Nn denote the number of irreducible normed polynomials of

degree n over Fq. Then N1 = q and

Nn ≤
qn − q
n

, for n ≥ 2.

Proof. See [1, Chapter 3].

Now, let ω(Q) denote the number of distinct normed irreducible divisors of the

normed polynomial Q. That is,

ω(Q) =
∑
I|Q

1.

We obtain a bound of ω(Q) in the following proposition:

Proposition 2.8. For Q ∈ Fq[X] be normed, we have

ω(Q) ≤ logq |Q|.

Proof. Assume

Q = I l11 I
l2
2 · · · I lnn , lj ≥ 1, j = 1, 2, . . . , n,

where Ij 6= Ik for all j 6= k. Then, it follows that

|Q| = |I l11 I l22 · · · I lnn | ≥ qn ⇒ ω(Q) = n ≤ logq |Q|.

We obtain the desired result.

Finally, we introduce a useful notation and a well-known theorem from probability

theory (or measure theory) which plays a crucial role in this research.
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Definition 2.3. Suppose f(x) and g(x) are defined for x large enough. We say

f(x) = O (g (x)) , as x→∞,

or

f(x)� g(x)

if there exists a positive real number M and a real number x0 such that

|f(x)| ≤M · |g(x)| for x > x0.

Lemma 2.1 (Borel-Cantelli Lemma). Let En be a sequence of events in a probability

space. The Borel-Cantelli lemma states:

(1)
∞∑
n=1

P (En) <∞⇒ P

(
lim sup
n→∞

En

)
= P (En i.o.) = 0.

(2) If the sequence En is independent, then

∞∑
n=1

P (En) =∞⇒ P

(
lim sup
n→∞

En

)
= P (En i.o.) = 1.

Proof. See [4, Lemma 3.14, p.41]

Moreover, we have a generalized Borel-Cantelli lemma without the condition of

independence in part (2) above:

Lemma 2.2. Let Ω be a measure space with measure m such that m(Ω) is finite. Let

En be a sequence of measurable subsets of Ω such that

∞∑
n=1

m(En) =∞.

Then the set E of points belonging to infinitely many sets En satisfies

m(E) ≥ lim sup
N→∞

(
N∑
n=1

m(En)

)2( N∑
n,l=1

m(En ∩ El)

)−1

.
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Proof. See [10, Chapter 2, Lemma 2.3].

Remark 2.6. For any subsequence (nk)k∈N of (n)n∈N in Lemma 2.2, due to the prop-

erty of lim sup, we still have

m(E) ≥ lim sup
N→∞

(
N∑
k=1

m(Enk
)

)2( N∑
j,k=1

m(Enj
∩ Elk)

)−1

.

2.2 Previous Results

In the sequel, we will consider the following inequality∣∣∣∣f − P

Q

∣∣∣∣ < ψ (Q)

|Q|
, P,Q ∈ Fq[X], Q 6= 0, (P,Q) = 1, Q is normed. (2.2)

By Fuchs [7], we know that Khintchine’s theorem has an analogue in the field of

formal Laurent series.

Theorem 2.1 (Analogue of Khintchine’s Theorem for Formal Laurent Series). Let

ψ be a {q−n : n ∈ N ∪ {0}} ∪ {0}-valued function defined on Fq[X], such that ψ(Q)

depends only on the degree of Q ∈ Fq[X] with |Q|ψ(Q) non-increasing. Then the

inequality (2.2) has infinitely many solutions 〈P,Q〉 for almost all f ∈ L, if and only if

∞∑
k=0

qkψ
(
Xk
)

=∞. (2.3)

Remark 2.7. By ”|Q|ψ(Q) non-increasing” we mean that if degQ1 ≤ degQ2, then

|Q1|ψ(Q1) ≥ |Q2|ψ(Q2).

The proof of Khintchine’s theorem for the convergence case of (2.3) is just a simple

application of the Borel-Cantelli lemma. For the other case, the result can be obtained

by using the theory of continued fraction. See [7, Theorem 3.7].

In [11], Inoue and Nakada gave a refinement of Khintchine’s theorem:

Theorem 2.2. Let ψ be a {q−n : n ∈ N ∪ {0}} ∪ {0}-valued function defined on Fq[X]

such that ψ(Q) depends only on the degree of Q ∈ Fq[X]. For any set S of positive
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integers, the inequality (2.2) with degQ ∈ S has infinitely many solutions 〈P,Q〉 for

almost every f ∈ L if and only if

∑
k∈S

qkψ
(
Xk
)

=∞. (2.4)

We point out that the main improvement is that we can remove the monotonicity

condition ”|Q|ψ(Q) non-increasing” from Khintchine’s theorem. Moreover, the result

holds now for any set of positive integers while (2.3) only holds for N. This is an

interesting result which has a different flavor from the real number case.

For the case that ψ (Q) does not only depend on the degree of Q, Inoue and Nakada

also gave a related result which is an analogue of the Duffin-Schaeffer theorem in the

field of formal Laurent series:

Theorem 2.3 (Analogue of Duffin-Schaeffer Theorem for Formal Laurent Series). Let

ψ be a {q−n : n ∈ N ∪ {0}} ∪ {0}-valued function which satisfies

∞∑
n=0

∑
degQ=n
Q:normed

ψ (Q) =∞. (2.5)

Suppose there are infinitely many positive integers n such that

∑
degQ≤n
Q:normed

ψ (Q) < C
∑

degQ≤n
Q:normed

ψ (Q)
ϕ (Q)

|Q|
(2.6)

for a constant C > 0. Then the inequality (2.2) has infinitely many solutions 〈P,Q〉

for almost all f ∈ L.

Again, the convergence of (2.5) implies that (2.2) has only finitely many solutions.

Thus, the Duffin-Schaeffer conjecture focus on the divergent part:

Conjecture (Duffin-Schaeffer Conjecture for Formal Laurent Series). Let ψ be a non-
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negative function which takes values on {q−n : n ∈ Z} ∪ {0} such that

∞∑
n=0

∑
degQ=n
Q:normed

ψ (Q)
ϕ (Q)

|Q|
=∞.

Then, (2.2) has infinitely many solutions 〈P,Q〉 for almost all f ∈ L.

Note that the approximation function ψ in this conjecture does not only depend on

the degree of Q. The main goal of the Duffin-Schaeffer conjecture is to find necessary

and sufficient condition for the solution set of (2.2) to be infinite. In some sense,

Theorem 2.2 confirms the Duffin-Schaeffer conjecture (for the situation where ψ(Q)

depends only on the degree of Q). We will further discuss this conjecture later in

Section 2.3.

There are also some deeper results about the number of solutions of Diophantine

inequalities. Now, we consider the following,∣∣∣∣f − P

Q

∣∣∣∣ < 1

q2n+ln
, degQ = n, Q 6= 0, (P,Q) = 1, Q is normed, (2.7)

where (ln) is a sequence of positive integers, that is, ψ has form ψ(Q) =
1

qn+ln
if

degQ = n. Again, we are interested in studying the solution set. Results of different

strengths made necessary different restrictions on the set of sequences (ln). The sets

which have been considered are as follows:

A =
{

(ln)n≥0 |ln > 0 and non-decreasing
}

B =
{

(ln)n≥0

∣∣∣ln > 0 and either (C1): lim
n→∞

ln = l <∞,

or (C2): lim
n→∞

ln =∞, lim
i→∞

∑
i<j≤i+li

q−lj exists

}

C =
{

(ln)n≥0 |ln > 0
}
.

Note that we have the following chain of proper inclusions A ⊂ B ⊂ C.
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Define a sequence of random variables as

ZN(f) := #

{
P

Q
: 〈P,Q〉 is a solution of (2.7), degQ ≤ N

}
.

Assuming that (ln) ∈ A,
∑∞

n=0 q
−ln = ∞ and under some further technical conditions

on (ln), Fuchs [7] proved the central limit theorem for (ZN). His approach was based on

continued fraction expansions. With a new approach, not relying on continued fraction

expansions, Deligero and Nakada [6] proved a central limit theorem for the number of

coprime solutions in the setting of the classical theorem of Khintchine, that is, for all

sequences (ln) ∈ A,
∑∞

n=0 q
−ln = ∞ but without the additional conditions in Fuchs’

version. Note that a similar result for the real number case has not been proved yet.

Remark 2.8. The meaning of ”in the setting of Khintchine” or ”Khintchine’s setting”

in the following is that the function ψ in (2.7) satisfies the condition of Khintchine’s

theorem (Theorem 2.1). Note, however that the inequality (2.7) we consider is not

equivalent to (2.2).

Besides, in [7], Fuchs obtained the invariance principle for sequence (ln) ∈ A that

satisfy
∑∞

n=0 q
−ln = ∞ and some technical extra conditions. In [5], Deligero, Fuchs

and Nakada explored further the approach of [6] in order to extend Fuchs’ result to all

sequences (ln) ∈ B with
∑∞

n=0 q
−ln =∞. Therefore, set

F (N) :=

{
q−2l−2

(
ql+1 (q − 1)− (2l + 1) (q − 1)2)N, if (C1);

q−1 (q − 1)
∑

n≤N q
−ln , if (C2)

and for t ≥ 0,

Nt :=

{
max {n |F (n) ≤ t} , if t ≥ F (0);

0, otherwise.

Let B̄ be the set of Borel sets on [0, 1] and λ the Lebesgue measure. Define on
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(L,L,m)×
(
[0, 1], B̄, λ

)
the following stochastic process

Z(t) := Z(t; f, x) := ZNt(f)−
(

1− 1

q

) N∑
n=0

q−ln .

Note that the definition does not depend on the second variable.

Theorem 2.4 (Invariance Principle for Formal Laurent Series). There exists a sequence

(Yn)n≥0 of independent, standard normal random variables on (L,L,m)×
(
[0, 1], B̄, λ

)
such that, for all ε > 0,∣∣∣∣∣Z (N)−

∑
n≤N

Yn

∣∣∣∣∣ = o
(

(N log logN)1/2
)
, a.s.

and

(m× λ)

[
1√
N

max
n≤N

∣∣∣∣∣Z(n)−
∑
k≤n

Yk

∣∣∣∣∣ ≥ ε

]
→ 0 as N →∞.

The above result implies the functional central limit theorem which generalizes the

result of Deligero and Nakada [6].

Corollary 2.1 (Functional Central Limit Theorem for Formal Laurent Series). Let

W (t) denote the standard Brownian motion. Then,{
Z (F (N) t)√

F (N)
, 0 ≤ t ≤ 1

}
→ {W (t), 0 ≤ t ≤ 1} ,

as N →∞.

Moreover, we have the functional law of the iterated logarithm.

Corollary 2.2 (Functional Law of the Iterated Logarithm for Formal Laurent Series).

The sequence of functions{
Z (F (N) t)

(2F (N) log logF (N))1/2
, 0 ≤ t ≤ 1

}
N≥0

is a.s. relatively compact in the topology of uniform convergence and has Strassen’s set

as its set of limit points.
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Remark 2.9. Invariance principles, functional central limit theorems and functional

laws of the iterated logarithm are deeper results in probability theory. See [3, Section

37] for reference.

Since the set of sequences (ln) here contains the sequences of Khintchine’s theo-

rem, we note the following consequence of the latter result which is a refinement of

Khintchine’s theorem for formal Laurent series.

Corollary 2.3 (Law of the Iterated Logarithm for Khintchine’s setting). Assume that

(ln) ∈ A and
∑∞

n=0 q
−ln =∞. Then, for almost all f ,

lim sup
N→∞

∣∣ZN (f)− (1− q−1)
∑

n≤N q
−ln
∣∣√

2F (N) log logF (N)
= 1.

Note that a similar result for the real number field has so far not been established.

Moreover, the above result also gives the optimal bound in the strong law of large

numbers:

Corollary 2.4 (Strong Law of Large Numbers for Formal Laurent Series). Let (ln) ∈

A. Then, for almost all f,

ZN(f) =
(
1− q−1

)∑
n≤N

q−ln +O
(

(G (N) log logG (N))1/2
)
,

where G(N) =
N∑
n=1

1

qln
.

For the more general case (ln) ∈ C, Nakada and Natsui [13] gave the following result

about the strong law of large numbers

Theorem 2.5. Let (ln) ∈ C. Define

G(N) =
N∑
n=1

1

qln
.
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Then, we have for almost all f

ZN(f) =
(
1− q−1

)∑
n≤N

q−ln +O
(
G(N)1/2 log3/2+εG(N)

)
.

Other types of Diophantine approximation problems have been discussed as well.

In [2], Berthe, Nakada and Natsui consider specific inequalities with restricted denomi-

nators (powers of irreducible polynomials) with an approximation function which does

not only depend on the degree of the denominator.

More precisely, they consider an inequality with restricted denominators that are

supposed to be normed irreducible polynomials and a function ψ : Fq[X] → R of

the form Q 7→
(
|Q|qlQ

)−1
where lQ takes nonnegative integer values for Q normed

irreducible, and infinite value otherwise, that is∣∣∣∣f − P

Q

∣∣∣∣ < 1

q2n+lQ
, (P,Q) = 1, degQ = n, lQ =∞ wheneverQ is not normed irreducible.

(2.8)

Theorem 2.6. Denote

H (N) =
N∑
n=1

∑
degQ=n

1

qn+lQ
.

Then, for almost all f ∈ L, the number of solutions of (2.8) with degQ ≤ N satisfies

H (N) +O
(
H1/2 (N) log3/2+εH (N)

)
for any ε > 0.

Note that Theorem 2.6 means that there exist at most finitely many solutions for

almost all f ∈ L whenever H (N) does not diverge.

Moreover, two more cases are discussed in [2]: Q is a fixed power of a normed

irreducible polynomial, and Q is some power of a normed irreducible polynomial, see

[2] for more details. The case we mentioned above is quite interesting, since it cor-
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responds to the approximation of irrational numbers by rational numbers with prime

denominators.

One other line of research was concerned with the same inequality like (2.7) but

without the coprimeness of P and Q. In [13], Nakada and Natsui proved that the

strong law of large numbers also holds in the setting of Khintchine theorem plus some

additional conditions.

Yet, another line of research investigate the inhomogeneous Diophantine approxi-

mation problem: for f, g ∈ L consider the Diophantine inequality

|Qf − g − P | < 1

qn+ln
, Q is normed, degQ = n (2.9)

whose solutions are pairs of polynomials 〈P,Q〉 ∈ Fq[X] × Fq[X] with Q 6= 0. Here,

ln is a sequence of non-negative integers. In particular, note that ln just depends on

the degree of Q like before. In a recent paper, C.Ma and W.-Y.Su [12] investigated

the above problem and proved a Khintchine type 0-1 law for the number of solutions

if both f and g are chosen randomly (with respect to m) from L. This situation is

sometimes called the ”double-metric” case. Moreover, fixing f and choosing a random

g ∈ L or fixing g and choosing a random f ∈ L gives two ”single-metric” cases. Fuchs

has lately done some research on this topic, see [8].
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2.3 Main Results

Recall the Duffin-Schaeffer Conjecture from Section 2.2. Our main result is an analogue

of Vaaler’s theorem, namely that the conjecture is true when ψ (Q) = O
(

1

|Q|

)
. This

condition means that there exists M > 0 such that ψ(Q) ≤M
1

|Q|
for |Q| large enough.

We can prove that

Theorem 2.7. Let ψ be a non-negative function which takes values on {q−n : n ∈ Z}∪

{0} with ψ(Q) = O
(

1

|Q|

)
such that

∞∑
n=0

∑
degQ=n
Q: normed

ψ(Q)
ϕ(Q)

|Q|
=∞.

Then for almost all f ∈ L, there are infinitely many solutions 〈P,Q〉 to∣∣∣∣f − P

Q

∣∣∣∣ < ψ(Q)

|Q|
, P,Q ∈ Fq[X], Q 6= 0, (P,Q) = 1, Q is normed.

Note that the approximation function ψ here does not only depend on the degree

of Q.

This result is an analogue of Vaaler’s theorem in the field of formal Laurent series. It

is a refinement of Theorem 2.2 from the introduction, since the approximation function

of this result does not only depend on the degree of Q.

In Chapter 3, we will prove this theorem. The proof will follow along the lines of the

classical proof given by Harman (see [10]). It will involve a technical lemma (Lemma

3.1) that is obtained from Selberg’s sieve method (see [9], Chapter 3). Moreover,

suitable estimates of the measure of certain intersections of events (see Lemma 3.4)

will turn out to be crucial. Apart from this, we will use the generalized Borel-Cantelli

lemma (Lemma 2.2) and an analogue of Gallagher’s theorem for the field of formal

Laurent series.
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In Chapter 4, we will give an equivalent statement of the Duffin-Schaeffer conjecture

and develop some further results which are similar to the real number case as in [10,

Section 2.6].

First, we will show that the Duffin-Schaeffer conjecture is equivalent to this one:

Conjecture. Let Fn be a sequence of distinct normed polynomials of Fq[X], and ψ (Fn)

a {q−n : n ∈ Z} ∪ {0}-valued function. Then if

∞∑
n=1

ψ(Fn)
ϕ(Fn)

|Fn|
=∞,

there are infinitely many solutions 〈P, Fn〉 to∣∣∣∣f − P

Fn

∣∣∣∣ < ψ(Fn)

|Fn|
, P ∈ Fq[X], (P, Fn) = 1

for almost all f ∈ L.

Then, we will prove that the latter conjecture is true for the following sequences:

Theorem 2.8. Let Fn be a sequence of distinct normed polynomials of Fq[X]. If there

is an absolute bound c ∈ N such that

# {Fn | degFn = j } ≤ c, for all j ∈ N

and
∞∑
n=1

ψ(Fn)
ϕ(Fn)

|Fn|
=∞,

then there are infinitely many solutions 〈P, Fn〉 to∣∣∣∣f − P

Fn

∣∣∣∣ < ψ(Fn)

|Fn|
, P ∈ Fq[X], (P, Fn) = 1

for almost all f ∈ L.



Chapter 3

Analogue of Vaaler’s Theorem

3.1 Preliminary Lemmas

Lemma 3.1. For Q ∈ Fq[X] be a normed polynomial, denote by I(Q) an irreducible

normed factor of Q with the highest degree. If N ∈ Fq[X] with |I(Q)| < |N |, then we

have ∑
|P |<|N |
(P,Q)=1

1� |N | ·
∏
I|Q

I:normed

(
1− 1

|I|

)

where the sum is over P ∈ Fq[X].

Remark 3.1. The constant implied in� above is independent of any quantity involved

in the lemma. In the sequel, the � notation will always have this property.

Proof. All polynomials in this proof are assumed to be normed, we will mention it for

those which are not. First, we define I(n) =
∏
|I|<qn

I|Q

I, n ∈ N. Moreover, let λ1 = 1

and λD be arbitrary real numbers corresponding to the polynomial D with degD ≥ 1.

Finally, [D1, D2] will denote the least common multiple of D1, D2, and

R[D1,D2] =
∑
|P |<|N |

[D1,D2]|P

1− |N |
|[D1, D2]|

= max

{
1,

|N |
|[D1, D2]|

}
− |N |
|[D1, D2]|

.
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Then, note that

∑
|P |<|N |
(P,Q)=1

1 ≤ |{P ∈ Fq[X] : |P | < |N |, (P,
∏
|I|<qn

I|Q

I) = 1}|

≤
∑
|P |<|N |

( ∑
D|P
D|I(n)

λD

)2

=
∑

Di|I(n)
i=1,2

λD1λD2

∑
|P |<|N |

[D1,D2]|P

1

= |N |
∑

Di|I(n)
i=1,2

λD1λD2

1

|[D1, D2]|
+
∑

Di|I(n)
i=1,2

λD1λD2 |R[D1,D2]|

:= |N |
∑

1

+
∑

2

where P,N need not to be normed. Note that the second inequality is true without

any further conditions on the numbers λD; for if |P | < |N | and (P, I(n)) = 1, D = 1

is the only divisor appearing on the right and it makes a contribution 1 since λ1 =

1; moreover, all the other terms on the right, namely those associated with |P | <

|N |, (P, I(n)) > 1, are non-negative because of the square. Since |D| =
∑
L|D

ϕ(L),

∑
1

=
∑

D1|I(n)

∑
D2|I(n)

λD1λD2

|(D1, D2)|
|D1D2|

=
∑

D1|I(n)

∑
D2|I(n)

λD1

|D1|
λD2

|D2|
∑
L|D1

L|D2

ϕ(L)

=
∑
|L|<qn

L|I(n)

( ∑
D|I(n)
L|D

λD
|D|

)2

.
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Now, choose

λD =
µ(D)∏

I|D

(
1− 1

|I|

)
∑

|S|<qn/|D|
(S,D)=1

µ2(S)

ϕ(S)

∑
|W |<qn

W |I(n)

µ2(W )

ϕ(W )

.

Then, for |L| < qn, L|I(n)

∑
D|I(n)
L|D

λD
|D|

=
∑
M |I(n)

(M,L)=1

µ(LM)

ϕ(LM)

∑
|S|<qn/|LM |

(S,LM)=1

µ2(S)

ϕ(S)

∑
|W |<qn

W |I(n)

µ2(W )

ϕ(W )

=
µ(L)

ϕ(L)

1∑
|W |<qn

W |I(n)

µ2(W )

ϕ(W )

∑
M |I(n)

(M,L)=1

µ(M)

ϕ(M)

∑
|S|<qn/|LM |

(S,LM)=1

µ2(S)

ϕ(S)

=
µ(L)

ϕ(L)

1∑
|W |<qn

W |I(n)

µ2(W )

ϕ(W )

∑
|U |<qn/|L|

(U,L)=1
U |I(n)

µ(U)

ϕ(U)

∑
M |U

µ(M)

=
µ(L)

ϕ(L)

1∑
|W |<qn

W |I(n)

µ2(W )

ϕ(W )

.

We used the fact
∑
M |U

µ(M) =

{
1 if |U | = 1,

0 if |U | > 1
to obtain the last equality.

Thus, with the λD we have

∑
1

=
1( ∑

|W |<qn

W |I(n)

µ2(W )

ϕ(W )

)2

∑
|L|<qn

L|I(n)

µ2(L)

ϕ(L)
=

1∑
|W |<qn

W |I(n)

µ2(W )

ϕ(W )

.
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Note that

∑
|W |<qn

µ2(W )

ϕ(W )
=
∑
L|K

∑
|W |<qn

(W,K)=L

µ2(W )

ϕ(W )

=
∑
L|K

∑
|H|<qn/|L|
(H,K/L)=1

(H,L)=1

µ2(LH)

ϕ(LH)

≤
∑
L|K

µ2(L)

ϕ(L)

∑
|W |<qn

(W,K)=1

µ2(W )

ϕ(W )

≤
(∑
L|K

µ2(L)

ϕ(L)

) ∑
|W |<qn

W |I(n)

µ2(W )

ϕ(W )

(
choose K =

∏
|I|<qn

I-Q

I
)
.

Let K(M) denote a squarefree divisor of M with the highest degree.

Since ∑
L|K

µ2(L)

ϕ(L)
=
∏
I|K

(
1 +

1

|I| − 1

)
=
∏
I|K

(
1− 1

|I|

)−1

and ∑
|W |<qn

µ2(W )

ϕ(W )
=
∑
|W |<qn

µ2(W )

|W |
∏
I|W

(
1− 1

|I|

)−1

≥
∑

|K(M)|<qn

1

|M |

≥
∑
|M |<qn

1

|M |
=

n−1∑
a=0

∑
degM=a

1

|M |
= n.

Therefore, ∑
1

=

( ∑
|W |<qn

W |I(n)

µ2(W )

ϕ(W )

)−1

≤
(
n ·

∏
|I|<qn

I-Q

(
1− 1

|I|

))−1

.
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On the other hand, note that

∑
|W |<qn

W |I(n)

µ2(W )

ϕ(W )
=
∑
L|D

∑
|M |<qn

(M,D)=L

µ2(M)

ϕ(M)

=
∑
L|D

∑
|H|<qn/|L|
(H,D/L)=1

(H,L)=1

µ2(LH)

ϕ(LH)

=
∑
L|D

µ2(L)

ϕ(L)

∑
|H|<qn/|L|
(H,D)=1

µ2(H)

ϕ(H)

≥
(∑
L|D

µ2(L)

ϕ(L)

) ∑
|H|<qn/|L|
(H,D)=1

µ2(H)

ϕ(H)

=

∑
|H|<qn/|L|
(H,D)=1

µ2(H)

ϕ(H)

∏
I|D

(
1− 1

|I|

) .

So, the λD we have chosen satisfy λ1 = 1, |λD| ≤ 1 and λD = 0 for |D| > qn.

As a result, ∑
2

≤
∑

Di|I(n)
|Di|<qn

i=1,2

|R[D1,D2]| ≤
(
qn
)2

.

Thus, ∑
|P |<|N |
(P,Q)=1

1 ≤ |N |

n ·
∏
|I|<qn

I-Q

(
1− 1

|I|

) + q2n.
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Since |I(Q)| < |N |, we have

|Q|
ϕ(Q)

∑
|P |<|N |
(P,Q)=1

1

|N |
≤ 1∏
|I|<|N |

(
1− 1

|I|

)( 1

n
+
q2n

|N |

)
.

And

∏
|I|<|N |

(
1− 1

|I|

)−1

= exp

− ∑
|I|<|N |

ln

(
1− 1

|I|

)
= exp

 ∑
|I|<|N |

1

|I|
+O(

∑
|I|<|N |

1

|I|2
)


� exp


logq |N |−1∑

a=1

∑
degI=a

1

|I|


Proposition 2.7 � exp

{
ln(logq |N |)

}
� ln |N |.

Choose n = logq |N |
1
3 . Then, we have

|Q|
ϕ(Q)

∑
|P |<|N |
(P,Q)=1

1

|N |
� ln |N |

( 3

ln |N |
+

1

|N | 13

)
� 1.

Hence, for |I(Q)| < |N |,

∑
|P |<|N |
(P,Q)=1

1� |N | ·
∏
I|Q

I:normed

(
1− 1

|I|

)
.

We obtain the desired result.

Corollary 3.1. For Q ∈ Fq[X] be normed , P and N ∈ Fq[X],

∑
|P |<|N |
(P,Q)=1

1� |N | ·
∏
I|Q
|I|<|N |
I:normed

(
1− 1

|I|

)
.
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Proof. Say, Q = Q1Q2, where for I|Q1, |I| ≤ |N | and I|Q2, |I| ≥ |N |. Then

∑
|P |<|N |
(P,Q)=1

1 ≤
∑
|P |<|N |

(P,Q1)=1

1

Lemma 3.1 � |N | ·
∏
I|Q1

I:normed

(
1− 1

|I|

)

= |N | ·
∏
I|Q
|I|<|N |
I:normed

(
1− 1

|I|

)
.

This gives the desired result.

In the following, we define

EQ =
⋃

(P,Q)=1
degP<degQ

{
f ∈ L :

∣∣∣∣f − P

Q

∣∣∣∣ < ψ(Q)

|Q|

}

and ψ(Q) be a {q−n : n ∈ N ∪ {0}} ∪ {0}-valued function.

Lemma 3.2. Let Q ∈ Fq[X] be normed with |Q| large enough. Then

EQ =
⋃

(P,Q)=1
degP<degQ

B

(
P

Q
,
ψ(Q)

|Q|

)

where the union is disjoint.

Moreover,

m(EQ) = ϕ(Q)
ψ(Q)

|Q|
.

Proof. Let Q be fixed with |Q| large enough. Suppose there are P1, P2 ∈ Fq[X] such

that ∣∣∣∣f − P1

Q

∣∣∣∣ < ψ(Q)

|Q|
,

∣∣∣∣f − P2

Q

∣∣∣∣ < ψ(Q)

|Q|
, degP1 < degQ, degP2 < degQ.
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Then, by the ultra-metric property, we have∣∣∣∣P1

Q
− P2

Q

∣∣∣∣ < max

{∣∣∣∣f − P1

Q

∣∣∣∣ , ∣∣∣∣f − P2

Q

∣∣∣∣} =
ψ(Q)

|Q|

⇒ |P1 − P2| < ψ(Q) ≤ 1 ⇒ P1 = P2.

This implies that such balls with different centers are disjoint. Consequently,

m(EQ) = m

 ⋃
(P,Q)=1

degP<degQ

B

(
P

Q
,
ψ(Q)

|Q|

) =
∑

(P,Q)=1
degP<degQ

ψ(Q)

|Q|
= ϕ(Q)

ψ(Q)

|Q|
.

Lemma 3.3. For Q, Q′ ∈ Fq[X] be normed,

m(EQ ∩ EQ′) = K(Q,Q′) ·min

{
ψ(Q)

|Q|
,
ψ(Q′)

|Q′|

}
where

K(Q,Q′) = #

{
〈P, P ′〉 :

∣∣∣∣PQ − P ′

Q′

∣∣∣∣ < max

{
ψ(Q)

|Q|
,
ψ(Q′)

|Q′|

}
, (P,Q) = 1, (P ′, Q′) = 1

}
.

Proof. First, assume
ψ(Q′)

|Q′|
<
ψ(Q)

|Q|
.

Since

EQ =
⋃

(P,Q)=1
degP<degQ

B

(
P

Q
,
ψ(Q)

|Q|

)
, EQ′ =

⋃
(P ′,Q′)=1

degP ′<degQ′

B

(
P ′

Q′
,
ψ(Q′)

|Q′|

)

by Lemma 3.2, the balls in EQ and EQ′ are disjoint respectively.

Note that by the ultra-metric property we have for

B

(
P

Q
,
ψ(Q)

|Q|

)
∩B

(
P ′

Q′
,
ψ(Q′)

|Q′|

)
6= ∅
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f ∈ B
(
P ′

Q′
,
ψ(Q′)

|Q′|

)
⇒
∣∣∣∣f − P

Q

∣∣∣∣ =

∣∣∣∣f − P ′

Q′
−
(
P

Q
− P ′

Q′

)∣∣∣∣
≤ max

{∣∣∣∣f − P ′

Q′

∣∣∣∣ , ∣∣∣∣PQ − P ′

Q′

∣∣∣∣}

= max

{∣∣∣∣f − P ′

Q′

∣∣∣∣ , ∣∣∣∣PQ − f −
(
P ′

Q′
− f

)∣∣∣∣}

≤ max

{∣∣∣∣f − P ′

Q′

∣∣∣∣ , max

{∣∣∣∣PQ − f
∣∣∣∣ , ∣∣∣∣P ′Q′ − f

∣∣∣∣}}

= max

{
ψ(Q)

|Q|
,
ψ(Q′)

|Q′|

}
=
ψ(Q)

|Q|
⇒ f ∈ B

(
P

Q
,
ψ(Q)

|Q|

)
.

Thus, any ball in EQ′ is either contained in one of the balls in EQ or disjoint with all

the balls in EQ. The intersections of two balls is no more than the radius of the smaller.

Hence, we need to count how many balls with smaller radius are contained in those

balls with larger radius. This concludes the first case. The other case
ψ(Q)

|Q|
<
ψ(Q′)

|Q′|
is similar.

Lemma 3.4. For Q, Q′ ∈ Fq[X] be normed, we have

m(EQ ∩ EQ′)� P (Q,Q′)m(EQ)m(EQ′)

where

P (Q,Q′) =
∏

I

∣∣ QQ′

(Q,Q′)2

|I|>L(Q,Q′)

(
1− 1

|I|

)−1

, L(Q,Q′) =
max {|Q′|ψ(Q), |Q|ψ(Q′)}

|(Q,Q′)|
.

Proof. All polynomials in this proof are assumed to be normed, we will mention it for

those which are not.

Let

A = max {|Q′|ψ(Q), |Q|ψ(Q′)} , T = (Q,Q′), Ā =
A

|T |
, Q̄ =

Q

|T |
, Q̄′ =

Q′

|T |
.
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By Lemma 3.3, we wish to bound K(Q,Q′), that is the number of pairs 〈P, P ′〉 satis-

fying

|Q′P −QP ′| <A with (Q,P ) = (Q′, P ′) = 1, degP < degQ, degP ′ < degQ′

(3.1)

⇒
∣∣Q̄′P − Q̄P ′∣∣ <Ā with (Q,P ) = (Q′, P ′) = 1, degP < degQ, degP ′ < degQ′

(3.2)

where P, P ′ need not to be normed.

Say,

Q̄′P − Q̄P ′ = B, for some B ∈ Fq[X] with |B| > 1 need not to be normed. (3.3)

Let Q̄′
−1

denote the inverse of Q̄′ mod Q̄, that is Q̄′
−1
Q̄′ ≡ 1(Q̄).

We obtain,

P = BQ̄′
−1

+DQ̄, with

∣∣∣∣∣D +
BQ̄′

−1

Q̄

∣∣∣∣∣ < |T |. (3.4)

Let

W =
Q̄′
−1
Q̄′ − 1

Q̄
.

Since we must have (B, Q̄Q̄′) = 1 = (PP ′, T ) to satisfy the conditions of (3.2), we find

that the number of solutions of (3.3) is

∑
E|T

µ(E)
∑

PP ′≡0(E)

1 =
∑
E|T

µ(E)
∑
|D|

(BQ̄′
−1

+DQ̄)(BW+DQ̄′)≡0(E)

1 (3.5)

where the sum over D satisfies the conditions of (3.4).

Note that

(BQ̄′
−1

+DQ̄)(BW+DQ̄′) = D2Q̄Q̄′+D(Q̄BW+BQ̄′Q̄′
−1

)+B2Q̄′Q̄′
−1 ≡ 0(E). (3.6)

Let E = I be some irreducible normed polynomial. Then, there are three cases to

discuss in (3.6).
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Case 1: If I | Q̄Q̄′ , then (3.6) is not quadratic. Therefore, there is only one solution.

Case 2: If I - Q̄Q̄′ but I|B , then (3.6) becomes D2Q̄Q̄′ ≡ 0(I) ⇒ D = 0. So, again

we have only one solution.

Case 3: If I - Q̄Q̄′ and I - B , then BQ̄′
−1

+ DQ̄ ≡ 0(I) , BW + DQ̄′ ≡ 0(I) have

distinct solutions. If not, then Q̄′BQ̄′
−1 − Q̄′BW ≡ 0(I). (where Q̄′Q̄ ≡ 1(I))

Since I - B, we have

Q̄′Q̄′
−1 ≡ Q̄′

′
W ≡ Q̄′

′ Q̄′Q̄′
−1 − 1

Q̄
(I)

⇒ Q̄′
−1 ≡ Q̄′

−1 − Q̄′′(I)

⇒ Q̄′
′ ≡ 0(I)⇒ 1 ≡ 0(I)

which is a contradiction.

Thus, (3.5) becomes

|T |
∏
I|T

(
1− ρ(I)

|I|

)
where ρ(I) =

{
1 if I|BQ̄Q̄′,
2 otherwise.

Moreover

|T |
∏
I|T

(
1− ρ(I)

|I|

)
= |T |

∏
I|T

I-BQ̄Q̄′

(
1− 2

|I|

) ∏
I|(T,B)

(
1− 1

|I|

) ∏
I|(T,Q̄Q̄′)

(
1− 1

|I|

)

≤ |T |
∏
I|T

I-BQ̄Q̄′

(
1− 1

|I|

)2 ∏
I|(T,B)

(
1− 1

|I|

) ∏
I|(T,Q̄Q̄′)

(
1− 1

|I|

)

= |T |
∏
I|T
I-Q̄Q̄′

(
1− 1

|I|

)2 ∏
I|(T,B)

(
1− 1

|I|

)−1 ∏
I|(T,Q̄Q̄′)

(
1− 1

|I|

)
.
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Hence, the number of solutions to (3.2) is

≤ |T |
∏
I|T
I-Q̄Q̄′

(
1− 1

|I|

)2 ∏
I|(T,Q̄Q̄′)

(
1− 1

|I|

) Ā∑
|B|=1

(B,Q̄Q̄′)=1

∏
I|(T,B)

(
1− 1

|I|

)−1

(Here B is not necessarily normed.)

= |T |
∏
I|T
I-Q̄Q̄′

(
1− 1

|I|

)2 ∏
I|(T,Q̄Q̄′)

(
1− 1

|I|

) Ā∑
|B|=1

(B,Q̄Q̄′)=1

∑
S|(T,B)

µ2(S)

ϕ(S)

= |T |
∏
I|T
I-Q̄Q̄′

(
1− 1

|I|

)2 ∏
I|(T,Q̄Q̄′)

(
1− 1

|I|

)∑
S|T

µ2(S)

ϕ(S)

Ā∑
|B|=1

(B,Q̄Q̄′)=1
B≡0(S)

1

≤ |T |
∏
I|T
I-Q̄Q̄′

(
1− 1

|I|

)2 ∏
I|(T,Q̄Q̄′)

(
1− 1

|I|

)∑
S|T

µ2(S)

ϕ(S)

Ā∑
|B′|≤Ā/|S|
(B′,Q̄Q̄′)=1

1

(Here B = B′S with B′ is not necessarily normed.)

Corollary 3.1 � |T |
∏
I|T
I-Q̄Q̄′

(
1− 1

|I|

)2 ∏
I|(T,Q̄Q̄′)

(
1− 1

|I|

)∑
S|T

µ2(S)

ϕ(S)

Ā

|S|
∏
I|Q̄Q̄′
|I|≤Ā/|S|

(
1− 1

|I|

)

Proposition 2.6 � |T |
∏
I|T
I-Q̄Q̄′

(
1− 1

|I|

)2 ∏
I|(T,Q̄Q̄′)

(
1− 1

|I|

)∑
S|T

1 · Ā · ln Ā
|S|1/2 · |S|

∏
I|Q̄Q̄′
|I|≤Ā

(
1− 1

|I|

)

� Ā|T |
∏
I|T
I-Q̄Q̄′

(
1− 1

|I|

)2 ∏
I|(T,Q̄Q̄′)

(
1− 1

|I|

) ∏
I|Q̄Q̄′
|I|≤Ā

(
1− 1

|I|

)

= A
∏
I|Q̄Q̄′
|I|≤Ā

(
1− 1

|I|

) ∏
I|T
I-Q̄Q̄′

(
1− 1

|I|

)2 ∏
I|(T,Q̄Q̄′)

(
1− 1

|I|

)
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= A
∏
I|Q̄Q̄′
|I|>Ā

(
1− 1

|I|

)−1 ∏
I|Q̄Q̄′

(
1− 1

|I|

) ∏
I|T
I-Q̄Q̄′

(
1− 1

|I|

)2 ∏
I|(T,Q̄Q̄′)

(
1− 1

|I|

)

= A · P (Q,Q′)
∏
I|Q̄Q̄′

(
1− 1

|I|

) ∏
I|T
I-Q̄Q̄′

(
1− 1

|I|

)2 ∏
I|(T,Q̄Q̄′)

(
1− 1

|I|

)

= A · P (Q,Q′)
ϕ(Q)

|Q|
ϕ(Q′)

|Q′|
.

As a result,

K(Q,Q′)� A · P (Q,Q′)
ϕ(Q)

|Q|
ϕ(Q′)

|Q′|
.

Hence, by Lemma 3.1

m(EQ ∩ EQ′)� P (Q,Q′)
ψ(Q)ϕ(Q)

|Q|
ψ(Q′)ϕ(Q′)

|Q′|
= P (Q,Q′)m(EQ)m(EQ′).

Remark 3.2. Note that

∏
I|Q̄Q̄′
|I|≤Ā/|S|

(
1− 1

|I|

)
=
∏
I|Q̄Q̄′
|I|≤Ā

(
1− 1

|I|

) ∏
I|Q̄Q̄′
|I|≤Ā/|S|

(
1− 1

|I|

) ∏
I|Q̄Q̄′
|I|≤Ā

(
1− 1

|I|

)−1

≤
∏
I|Q̄Q̄′
|I|≤Ā

(
1− 1

|I|

) ∏
I|Q̄Q̄′
|I|≤Ā

(
1− 1

|I|

)−1

≤
∏
|I|≤Ā

(
1− 1

|I|

)−1

� ln Ā.

We use the same claim as in Lemma 3.1.

Remark 3.3. If L(Q,Q′) < 1, then by the definition of Ā we have EQ ∩EQ′ = ∅, that

is m(EQ ∩ EQ′) = 0. Therefore, the result of Lemma 3.3 is trivial.
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Write g(S) for the least positive integer such that
∑
I|S

|I|>qg(S)

1

|I|
<

1

q
.

Then we have,

Lemma 3.5. For S ∈ Fq[X] be normed,

∏
I|S

|I|>qg(S)

(
1− 1

|I|

)−1

� 1 and
|S|
ϕ(S)

� g(S).

Proof.

∏
I|S

|I|>qg(S)

(
1− 1

|I|

)−1

= exp

−
∑
I|S

|I|>qg(S)

ln

(
1− 1

|I|

)

= exp


∑
I|S

|I|>qg(S)

1

|I|
+O

 ∑
I|S

|I|>qg(S)

1

|I|2




� exp

{
1

q

}
� 1.

Since,

∑
I|S

|I|≤qg(S)

1

|I|
≤

∑
|I|≤qg(S)

1

|I|
=

g(S)∑
k=1

∑
deg I=k

1

|I|
= 1 +

g(S)∑
k=2

1

k
≤ 1 + ln g(S) (3.7)

we have

∏
I|S

|I|≤qg(S)

(
1− 1

|I|

)−1

= exp


∑
I|S

|I|>≤qg(S)

1

|I|
+O

 ∑
I|S

|I|≤qg(S)

1

|I|2


� g(S).

Thus,

|S|
ϕ(S)

=
∏
I|S

(
1− 1

|I|

)−1

=
∏
I|S

|I|>qg(S)

(
1− 1

|I|

)−1 ∏
I|S

|I|≤qg(S)

(
1− 1

|I|

)−1

� g(S).
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Corollary 3.2. For Q,Q′ ∈ Fq[X] be normed. Let

w = w(Q,Q′) = max

{
g

(
Q

(Q,Q′)

)
, g

(
Q′

(Q,Q′)

)}
.

Then,

m(EQ ∩ EQ′)�
{
m(EQ)m(EQ′)w

2 ,if 1 < L(Q,Q′) < qw

m(EQ)m(EQ′) ,otherwise.

Proof. By Remark 3.3, we apply Lemma 3.5 to the following two cases:

Case 1: qw ≤ L(Q,Q′)

P (Q,Q′) =
∏

I

∣∣ QQ′

(Q,Q′)2

|I|>L(Q,Q′)

(
1− 1

|I|

)−1

≤
∏

I

∣∣ QQ′

(Q,Q′)2

|I|>qw

(
1− 1

|I|

)−1

�
∏

I

∣∣ Q
(Q,Q′)
|I|>qw

(
1− 1

|I|

)−1 ∏
I

∣∣ Q′
(Q,Q′)
|I|>qw

(
1− 1

|I|

)−1

� 1.

Case 2: qw > L(Q,Q′) > 1

P (Q,Q′) =

∣∣∣∣ QQ′

(Q′, Q)2

∣∣∣∣
ϕ

(
QQ′

(Q′, Q)2

) ∏
I

∣∣ QQ′

(Q,Q′)2

|I|≤L(Q,Q′)

(
1− 1

|I|

)−1

�

∣∣∣∣ Q

(Q′, Q)

∣∣∣∣
ϕ

(
Q

(Q′, Q)

)
∣∣∣∣ Q′

(Q′, Q)

∣∣∣∣
ϕ

(
Q′

(Q′, Q)

)

� g

(
Q

(Q,Q′)

)
g

(
Q′

(Q,Q′)

)
� w2.

This completes the proof.

Lemma 3.6. Let L ∈ Fq[X] and t ∈ N be given. Then,

∑
|S|<|L|
g(S)≥ t

1� |L|
q2t
.

Proof. Consider those polynomials with degree smaller than the degree of L which

have at least t distinct irreducible normed factors with degree in (t, 2t]. Using the
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same argument as in (3.7), we obtain that the number of such polynomials is no more

than

|L|
t!

 ∑
qt<|I|≤q2t

1

|I|

t

� |L|(ln 2)t

t!
� |L|

t!
� |L|

q2t
.

Note that ∑
qt<|I|≤q2t

#I=t−1

1

|I|
≤ t · 1

qt
. (3.8)

Hence, for all large t, the left-hand side of (3.8) is smaller than
1

2q
.

Since,

∑
I|S

|I|>qg(S)

1

|I|
=

1

q
+O

 ∑
I|S

|I|=qg(S)

1

|I|

 =
1

q
+O

(
1

t

)

and, ∑
I|S

|I|>qg(S)

1

|I|
=

∑
I|S

qg(S)<|I|≤q2t

1

|I|
+
∑
I|S
|I|>q2t

1

|I|
.

which yields that for a polynomial |S| < |L| with g(S) ≥ t, but not having t distinct

irreducible normed factors with degree in (t, 2t], we obtain

∑
I|S
|I|>q2t

1

|I|
>

1

2q
.

Therefore,

∑
|S|<|L|
g(S)≥ t

1� |L|
q2t

+ 2q
∑
|S|<|L|
g(S)≥ t

∑
I|S
|I|>q2t

1

|I|

� |L|
q2t

+ 2q
∑
I|S
|I|>q2t

1

|I|
· |L|
|I|
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� |L|
q2t

+ 2q|L|
∑
I|S
|I|>q2t

1

|I|2

� |L|
q2t

+ 2q|L|
∫ ∞
q2t+1

1

x2
dx� |L|

q2t
.

We obtain the desired result.

Lemma 3.7. For D,Q ∈ Fq[X] normed, Q is fixed and t ∈ N, we have

∑
D|Q

g( Q
D )≤t

1

|D|
� t.

Proof. By Lemma 3.5 we have

ϕ
(
Q
D

)∣∣Q
D

∣∣ · g
(
Q

D

)
� 1⇒

ϕ
(
Q
D

)∣∣Q
D

∣∣ · t� 1 whenever g

(
Q

D

)
≤ t.

Hence, ∑
D|Q

g( Q
D )≤t

1

|D|
�
∑
D|Q

1

|D|
ϕ
(
Q
D

)∣∣Q
D

∣∣ t =
t

|Q|
∑
D|Q

ϕ

(
Q

D

)
= t.

This gives the desired result.

Lemma 3.8 (Analogue of Gallagher’s Theorem for Formal Laurent Series). For any

ψ,

m

(
∞⋂
n=1

⋃
degQ≥n

EQ

)
= 0 or 1.

This means that the Diophantine inequality (2.2) has infinitely many solutions 〈P,Q〉

for either almost all f or almost no f in L.

Proof. See [11, Theorem 4].
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3.2 Proof of Theorem 2.7

Proof. In the following assume that Q,Q′ are normed. Our aim is to prove that, for

all N ,

∑
degQ, degQ′≤N

m(EQ ∩ EQ′)�

 ∑
degQ′≤N

m(EQ′)

2

=

 ∑
degQ′≤N

ψ(Q′)
ϕ(Q′)

|Q′|

2

and then to apply Lemma 3.8 and Remark 2.6 of Lemma 2.2. In view of Corollary 3.2,

it suffices to demonstrate that

∗∑ ψ(Q)ψ(Q′)ϕ(Q)ϕ(Q′)w2

|Q||Q′|
�

 ∑
degQ′≤N

ψ(Q′)
ϕ(Q′)

|Q′|

2

where ∗ represents the conditions degQ, degQ′ ≤ N, 1 < L(Q,Q′) < qw.

There are four cases to consider. We write T = (Q,Q′) and S =
Q

T
in the following.

Case (i): w = g

(
Q

T

)
, L(Q,Q′) =

|Q|ψ(Q′)

|T |
. The sum we are dealing with is thus

≤
∑

degQ′≤N

ψ(Q′)
ϕ(Q′)

|Q′|
∑
T |Q′

g
(

Q′
T

)
≤w

∑
1<|S|<qw

g(S)=w

ψ(TS)w2

�
∑

degQ′≤N

ψ(Q′)
ϕ(Q′)

|Q′|
∑
T |Q′

g
(

Q′
T

)
≤w

∑
1<|S|<qw

g(S)=w

1

|TS|
w2

Lemma 3.6 �
∑

degQ′≤N

ψ(Q′)
ϕ(Q′)

|Q′|
∑
T |Q′

g
(

Q′
T

)
≤w

w2

|T |
1

qw

Lemma 3.7 � w3

qw

∑
degQ′≤N

ψ(Q′)
ϕ(Q′)

|Q′|
�

∑
degQ′≤N

ψ(Q′)
ϕ(Q′)

|Q′|
.

Here, we used ∑
w

w3

qw
<∞.
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Case (ii): w = g

(
Q′

T

)
, L(Q,Q′) =

|Q′|ψ(Q)

|T |
. The proof for this case is analogous to

Case (i), with the roles of Q and Q′ reversed.

Case (iii): w = g

(
Q

T

)
, L(Q,Q′) =

|Q′|ψ(Q)

|T |
. For every integer h we put

B(h) =
{
Q : qh ≤ |Q|ψ(Q) < qh+1

}
.

Since ψ(Q) = O
(

1

|Q|

)
, we have

∑
h

B(h)6=∅

qh+1 � 1.

We commence the proof for this case by fixing w and h and restricting our attention

to Q ∈ B(h). We then have

≤
∑

degQ′≤N

ψ(Q′)
ϕ(Q′)

|Q′|
∑
T |Q′

g
(

Q′
T

)
≤w

∑
1<ψ(TS)|Q′|/|T |<qw

TS∈B(h), g(S)=w

ψ(TS)w2

�
∑

degQ′≤N

ψ(Q′)
ϕ(Q′)

|Q′|
∑
T |Q′

g
(

Q′
T

)
≤w

∑
|Q′|qh/|T |2qw<|S|<|Q′|qh+1/|T |2

g(S)=w

qhw2

|TS|

Lemma 3.6 � qhw2

qw

∑
degQ′≤N

ψ(Q′)
ϕ(Q′)

|Q′|
∑
T |Q′

g
(

Q′
T

)
≤w

1

|T |

Lemma 3.7 � qhw2

qw

∑
degQ′≤N

ψ(Q′)
ϕ(Q′)

|Q′|
�

∑
degQ′≤N

ψ(Q′)
ϕ(Q′)

|Q′|
.

Again, after summing over h and w we obtain the last estimate above.

Case (iv): w = g

(
Q′

T

)
, L(Q,Q′) =

|Q|ψ(Q′)

|T |
. This case is similar to Case (iii), with

the roles of Q and Q′ reversed.
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Combining our estimates, we get

∑
degQ, degQ′≤N

m(EQ ∩ EQ′)�

 ∑
degQ′≤N

ψ(Q′)
ϕ(Q′)

|Q′|

2

+
∑

degQ′≤N

ψ(Q′)
ϕ(Q′)

|Q′|

�

 ∑
degQ′≤N

ψ(Q′)
ϕ(Q′)

|Q′|

2

.

Since Fq[X] is countable, we can order the polynomials, and then apply Remark 2.6 of

Lemma 2.2. Finally, by the zero-one law (Lemma 3.8) we obtain the desired result.

Remark 3.4. Note that the condition ψ(Q) = O
(

1

|Q|

)
in our theorem means that

there exists M > 0 such that ψ(Q) ≤ M
1

|Q|
for |Q| large enough which also implies

that ψ(Q) ≤ 1 for |Q| large enough. Hence, the previous lemmas can be applied legally

in the above proof.



Chapter 4

Further Results

4.1 Preliminary Lemmas

Lemma 4.1. The Duffin-Schaeffer conjecture is equivalent to the following state-

ment: Let Fn be a sequence of distinct normed polynomials of Fq[X], and ψ (Fn) a

{q−n : n ∈ Z} ∪ {0}-valued function. Then if

∞∑
n=1

ψ(Fn)
ϕ(Fn)

|Fn|
=∞,

there are infinitely many solutions 〈P, Fn〉 to∣∣∣∣f − P

Fn

∣∣∣∣ < ψ(Fn)

|Fn|
, P ∈ Fq[X], (P, Fn) = 1

for almost all f ∈ L.

Proof. Define

ψ̄(Q) =

{
ψ(Fn), if Q = Fn;

0, otherwise.

Then, ∑
Q:normed

ψ̄(Q)
ϕ(Q)

|Q|
=∞⇔

∞∑
n=1

ψ(Fn)
ϕ(Fn)

|Fn|
=∞,

43
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and∣∣∣∣f − P

Fn

∣∣∣∣ < ψ(Fn)

|Fn|
, P ∈ Fq[X], (P, Fn) = 1⇔

∣∣∣∣f − P

Q

∣∣∣∣ < ψ̄(Q)

|Q|
, P ∈ Fq[X], (P,Q) = 1.

The above argument and the freedom of ψ in the Duffin-Schaeffer conjecture completes

the proof.

Lemma 4.2 (0-1 Law). Let ψ(Fn) be a {q−n : n ∈ Z}∪{0}-valued function. Then, the

inequality ∣∣∣∣f − P

Fn

∣∣∣∣ < ψ(Fn)

|Fn|
, P ∈ Fq[X], (P, Fn) = 1

has infinitely many solutions 〈P, Fn〉 for either almost all f or almost no f in L.

Proof. As in Lemma 4.1, we define

ψ̄(Q) =

{
ψ(Fn), if Q = Fn;

0, otherwise.

Then the inequality is equivalent to∣∣∣∣f − P

Q

∣∣∣∣ < ψ̄(Q)

|Q|
, P ∈ Fq[X], (P,Q) = 1.

Then Lemma 3.8 guarantees that it has infinitely many solutions for either almost all

f or almost no f in L.

We begin with the simple observation that we can assume ψ(Fn) ≤ c for some

suitable c > 0 small enough. To see this, note that at least one of

∑
ψ(Fn)>c

ψ(Fn)
ϕ(Fn)

|Fn|
,
∑

ψ(Fn)≤c

ψ(Fn)
ϕ(Fn)

|Fn|

must diverge. If the former sum diverges, we discard those Fn for which ψ(Fn) ≤ c
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and relabel the remaining sequence. Since (ab)1/2 ≤ max(a, b),

P (Fn, Fk) =
∑

I

∣∣ FnFk

(Fn,Fk)2

|I|>L(Fn,Fk)

1

|I|

<
∑

I

∣∣ FnFk

(Fn,Fk)2

|I|> c

(
|FnFk|
|(Fn,Fk)|2

)1/2

1

|I|

≤ c ·
(
|(Fn, Fk)|2

|FnFk|

)1/2

·
∑

I
∣∣∣ FnFk

(Fn,Fk)2

1

≤ 2c.

We use the fact that for D,Q ∈ Fq[X] normed,
∑

D|Q 1 ≤ 2
√
|Q| to obtain the last

inequality. This property can be easily checked.

Therefore, P (Fn, Fk) given in Lemma 3.4 is� 1. If the latter sum diverges, we can

replace ψ(Fn) by min(ψ(Fn), 1/2).

We shall use Lemma 3.4 with the simplification of replacing L(Fn, Fk) by

E(n, k) =

(
|FnFk|
|(Fn, Fk)2|

ψ(Fn)ψ(Fk)

)1/2

which is no larger than L(Fn, Fk). We write

L1(n) = ln

(
1

ψ(Fn)

)
, L2(n, k) = ln(−2 ln(ψ(Fn)ψ(Fk)),

A(n, k) =
|(Fn, Fk)2|
|FnFk|

L1(n)L1(k)

ψ(Fn)ψ(Fk)
.

Note that L2(n, k)� L1(n)L1(k), since we can choose a suitable c. With this setting,

we have
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Lemma 4.3. For Q ∈ Fq[X] be normed and degQ ≥ 1,

∏
I|Q

|I|>ln |Q|

(
1− 1

|I|

)−1

� 1.

Proof. As in the proof of Lemma 3.1, we know that

∏
I|Q

|I|>ln |Q|

(
1− 1

|I|

)−1

= exp

− ∑
I|Q

|I|>ln |Q|

ln

(
1− 1

|I|

)

� exp

 ∑
I|Q

|I|>ln |Q|

1

|I|


≤ 1

ln |Q|
∑
I|Q

1� 1.

Proposition 2.8 was used to obtain the last estimate. This completes the proof.

The next lemma establishes the required property of A(n, k).

Lemma 4.4. If

A(n, k) < 1, (4.1)

then

m(EFn ∩ EFk
)� m(EFn)m(EFk

). (4.2)

If (4.1) fails, then

m(EFn ∩ EFk
)� m(EFn)m(EFk

)L2(n, k) (4.3)

� m(EFn)m(EFk
)L1(n)L1(k) (4.4)
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Proof. If

E(n, k) ≥ ln

(
|FnFk|
|(Fn, Fk)2|

)
(4.5)

then (4.2) follows from Lemma 3.4 with Lemma 4.3. We may suppose that (4.5) fails.

Since, for s < ln |F | with degF ≥ 1,

∏
I|F
|I|>s

(
1− 1

|I|

)−1

� exp

 ∑
I|F

s<|I|≤ln |F |

1

|I|

 by Lemma 4.3

≤ exp

 ∑
s<|I|≤ln |F |

1

|I|



= exp

 blogq ln |F |c∑
n=max{1,dlogq se}

∑
deg I=n

1

|I|


� ln ln |F |

max {1, ln s}
,

by choosing F = FnFk
(Fn, Fk)

2 , s = E(n, k), we have

P (Fn, Fk)�
ln ln

∣∣∣∣ FnFk
(Fn, Fk)2

∣∣∣∣
max {1, lnE(n, k)}

. (4.6)

Now suppose that (4.1) fails. Then∣∣∣∣ FnFk
(Fn, Fk)2

∣∣∣∣ ≤ L1(n)L1(k)

ψ(Fn)ψ(Fk)
≤ ψ(Fn)−2ψ(Fk)

−2.

Hence, (4.6) gives P (Fn, Fk) � L2(n, k) and so (4.3) follows from Lemma 3.4. Of

course, (4.4) is an immediate consequence of (4.3).

Now suppose that (4.1) holds. We must distinguish two cases:

(i) If ∣∣∣∣ FnFk
(Fn, Fk)2

∣∣∣∣ ≥ (ψ(Fn)ψ(Fk))
−2 , (4.7)
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then

E(n, k)2 ≥
(∣∣∣∣ FnFk

(Fn, Fk)2

∣∣∣∣)1/2

≥ ln

(∣∣∣∣ FnFk
(Fn, Fk)2

∣∣∣∣) .
It then follows from (4.6) that P (Fn, Fk)� 1, which gives (4.2).

(ii) If (4.7) does not hold, then

ln

(∣∣∣∣ FnFk
(Fn, Fk)2

∣∣∣∣) < −2 ln (ψ(Fn)ψ(Fk))

� L1(n)L1(k)

by (4.1) ≤
∣∣∣∣ FnFk
(Fn, Fk)2

∣∣∣∣ψ(Fn)ψ(Fk)

= E(n, k)2.

Hence P (Fn, Fk)� 1 from (4.6), and this completes the proof.

Lemma 4.5. Let c > 1 be given. Then, for any non-negative function f(x), we have

∑
1≤k<n≤N

f(n)f(k)ck−n ≤
∑

1≤n≤N

f(n)2(c− 1)−1.

Proof.

∑
1≤k<n≤N

f(n)f(k)ck−n ≤ 1

2

∑
1≤k<n≤N

(
f(k)2 + f(n)2

)
ck−n

=

(
N−1∑
k=1

N∑
n=k+1

f(k)2ck−n +
N∑
n=2

n−1∑
k=1

f(n)2ck−n

)

≤

(
N−1∑
k=1

f(k)2

∞∑
n=k+1

ck−n +
N∑
n=2

f(n)2

∞∑
k=1

c−k

)

≤
N∑
n=1

f(n)2

∞∑
j=0

c−j =
N∑
n=1

f(n)2(c− 1)−1.

This gives the desired result.
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4.2 Proof of Theorem 2.8

Proof. Without loss of generality, we assume that the degree of {Fn} is nondecreasing.

For σ > 0, define

∑
σ

=
∑

1≤k<n≤N

Aσ(n, k)
ϕ(Fn)ϕ(Fk)

|FnFk|
ψ(Fn)ψ(Fk)L2(n, k).

It follows from Lemma 4.4 that

∑
1≤k<n≤N

m (EFn ∩ EFk
)�

(
N∑
n=1

ψ(Fn)
ϕ(Fn)

|Fn|

)2

+
∑
σ

.

To prove Theorem 2.8, we take σ = 1
4
, which gives

∑
1
4

�
∑

1≤k<n≤N

(
|(Fn, Fk)|2

|FnFk|

)1/4
ϕ(Fn)ϕ(Fk)

|FnFk|
(L1(n)L1(k))5/4 (ψ(Fn)ψ(Fk))

3/4 (4.8)

�
∑

1≤k<n≤N

(
|(Fn, Fk)|2

|FnFk|

)1/4

(ψ(Fn)ψ(Fk))
1/2 ϕ(Fn)ϕ(Fk)

|FnFk|
. (4.9)

Note that

|(Fn, Fk)|2

|FnFk|
≤ |Fk|2

|FnFk|
=
|Fk|
|Fn|

≤ q−b(n− k + 1)/cc � q(k − n)/c.

By Lemma 4.5, the sum (4.9) is

�
N∑
n=1

ψ(Fn)

(
ϕ(Fn)

|Fn|

)2

�

(
N∑
n=1

ψ(Fn)
ϕ(Fn)

|Fn|

)2

.

Again, by Remark 2.6 of Lemma 2.2 and Lemma 4.2 we complete the proof.



Chapter 5

Conclusion

We conclude this thesis with some remarks.

Theorem 2.2 of Inoue and Nakada was the first result in the field of formal Laurent

series concerning the Duffin-Schaeffer conjecture without the monotonicity condition

”|Q|ψ(Q) non-increasing”. In particular, most of the results in real number case also

involve some monotonicity condition. Hence, from the result of Inoue and Nakada

one might guess that the Duffin-Schaeffer conjecture is maybe easier to solve in the

field of formal Laurent series. Therefore, we began our exploration by obtaining some

analogous results of Vaaler (Theorem 2.7) and Harman (Theorem 2.8).

However, in the proof of the above results, no real simplifications arising from the

more simpler metric structure of the formal Laurent series were achieved. Hence, it

seems that our original guess was wrong and the Duffin-Schaeffer conjecture in the

formal Laurent series field is as hard as the original one. Apart from the results of the

thesis from Chapter 3 and Chapter 4, this observations is also one of the contributions

of this work.

Overall, the quest for proving the conjecture unfortunately does not end with this

thesis. It seems that there is still a long road in front of us.
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