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Abstract

In this thesis, we would like to find out the stability of the solution which linearized
around the special solution of the nonlinear Schrodinger equation. Here, we consider
nonlinear Schrodinger equations with the potential part, optical lattices form and elliptic
form. In the first part of thesthesisy we introduce roughly the nonlinear Schrodinger
equation and two kinds of trap potentials. Then, we show the mathematical analysis of
the numerical method that we used. At<the end, we give some numerical results of our
numerical experience.
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1 Introduction

In this thesis, we consider the nonlinear Schrodinger equation (NLS) with focusing pa-
rameter e,

0 = —eAy + V(2)y — m(z)[[*y,
where ¥(t,z) : R x R*> — C is the wavefunction, V() is the trap potential, m(z) is the
mass and s-wave scattering length term, and € > 0. We would like to consider two kinds
of trap potentials and domains in this problem.

Firstly, we introduce nonlinear Schrodinger equations and the two kinds of trap po-
tentials first.

1.1 Nonlinear Schrodinger Equations

The Schrodinger equation is a basic equation in quantum theory. The study of Schrodinger
equations plays an important role in modern physics. In 1926, an Austrian physicist Erwin
Schrodinger constructed the Schrodinger equation for explaining the active of particles.
The famous Schrodinger equation is the form: Hy = ih%—f, where H is a Hamiltonian
operator, 1 is the wavefunction, h represents Planck’s constant over 27, ¢ is the imagi-
nary unit. The Schrodinger equation is an equation to describe the possible distribution
of atoms. Solutions to Schrodinger’s equation describe not only atomic and subatomic
systems, electrons and atoms, but also macroscopic systems, possibly even the whole
universe.

The nonlinear Schrédinger equation, (NLS)fis a nonlinear version of Schrodinger’s
equation in theoretical physics: In-mathematical point of view, the NLS equation is a
Schrodinger equation with nonlinear terny. " The nonlinear Schrodinger equation is the
partial differential equation

N

for the complex field 1. There are many kinds of nonlinear Schrodinger equations. One
general form of such equations [12] would be

These equations (particularly the cubic NLS equation) arise as model equations from
several areas of physics: nonlinear optics, quantum condensates.
Here, we review some properties of NLS equations. Let’s consider the equation

0+ A = £,

The sign “—” on the right hand side is focusing nonlinearity, and the sign “+” is defo-
cusing. When we add the potential part to the NLS equation, then it becomes

O + A = —m|Y [P + Vi, (1)

where V' is real and time independent. The equation (1) is sometimes referred to as a
Gross-Pitaevskii equation. We can look at the dynamics of the Bose-Einstein condensate
from the time-dependent Gross-Pitaevskii equation.

The behavior of ¥ is determined by the potential V' of the NLS equation. There is a
special case of potential V' = #|x|?, this can be used to model a confining magnetic trap
for Bose-Einstein condensation.

«



1.2 Trap Potential V

In the previous subsection, we have introduced some property of NLS equation. Now, we
introduce the trap potential. Trap potential is to trap atoms on the minima potential.
The following are two forms of trap potentials in this study, which are optical lattices and
elliptic form.

1.2.1 Optical Lattices

An optical lattice is essentially an artificial crystal of light. A periodic intensity pattern
that is formed by the interference of two or more laser beams. The shape of optical lattices
looks like an egg carton in Fig. 1(figure reference: [6]). It is called an optical lattice, since
the periodic arrangement of trapping sites resembles a crystalline lattice. In Fig. 1, atoms
are cooled and congregate in the minimal potential. The well depth and the periodicity
are two important parts to affect the potential shape.

Figure 1:-Optical Lattices.

Besides trapping cold atoms, optical lattices are also use in sorting microscopic parti-
cles [11] recently.

1.2.2 Elliptic Potential

Let d x d matrix M be symmetric, positive define. Let v € R? and ¢ € R be arbitrary.
The elliptic potential [2] defines as
1

V(u) = §uTMu +ulv +e,

where u is a column vector in R?. Because M is symmetric and psoitive definite, M2

exists. Therefore, we can also write V(u) = [[M2u|> + uv + ¢. In R2, the elliptic

)
potential can be rewritten as
V(z,y) = ax® +bxy +cy* +dr +ey+ f, a,b,c,de, f €ER

with > — 4ac < 0. The shape of this potential looks like a bowl.



1.3 Goals

In this thesis, we consider nonlinear Schrodinger equations with focusing parameter e,

00 = —eAp + V(2)y — m(z) [, (2)

where ¥(t,z) : R x R?> — C is the wavefunction, V(z) is the trap potential, m(z) is
the mass and s-wave scattering length term, and € > 0. Such equation occurs in many
physics, including nonlinear optics, quantum physics, and water waves.

In this thesis, we consider two kinds of different trap potentials and domains as follows:

Case 1. (w case)
V(z) = (w171)* + (wor2)?,

where wy,wy > 0 and wy,we = 1,2,...,5, and m(z) =1+ %sin(27rx1) with unit disk
domain Q = {(z1, z3)|2? + 23 < 1}.

Case 2. (u case)
V(z) =1+ sin®(puyzy) + sin?(uazs),

where ju,p2 = 1,2,...,5 and m(z) = 1+ 1 cos(27wz;) with square domain Q =
{($1,£L‘2)| —l<ax < 1,—1 < Ty < 1}

Here, we have two kinds of trap potentials and function m(z) in Fig. 3 and Fig. 2 respec-
tively. We focus on different situation in w case and p case. We concentrate on the well
depth of the potential by varying the pasametersw, and w, for the elliptic trap potential.
And then we control the periodic for the-optical lattices trap potential by changing the
two parameters, p; and us. For'keeping the shapeés of trap potentials, we use different
types of domains for w case and u case.

The NLS equation has a special solution:  1(t, z) = e*'¢(x). The aim of this thesis
is to find out the spectra of linearized operator which arises when the equation (2) is
linearized around the special solution . "The goal is to study the stability of the solution
by the spectrum of its linear operator.

There are many literature on NLS equation. The necessary condition for orbital sta-
bility and instability of single-spike bound state can be obtained in [9, 10].

Next, in Section 2 we will present the mathematical analysis about the NLS equation.
And then in Section 3 we will discuss the numerical method. At last, some numerical
results will be shown in Section 4.
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2 Mathematical Analysis

2.1 Perturbation in NLS

Recall the nonlinear Schrédinger equation:

0 = —eAp + V(2)y) — m(z) [ (3)

We consider the special solutions of NLS equation (3): 9(t,z) = e?¢(z), where \ =
0,1, and general case. ¢(x) is a real-valued function independent of time. Substitution
Y(t,z) = e™Mp(x) into (3) and the ¢ satisfy the nonlinear elliptic equation:

—eAp+ Vo —m|p[’d = =)o,
that is
(—eA+V —m|p]*)p = —A¢ (4)
or
(—eA + (V 4+ X)) —ml¢[*)¢ = 0. (5)

Equation (4) and (5) will be used in different solution form and algorithm.
To study the stability of the special solution form, we consider solutions of the NLS
equation of the form

U(t,z) = e™(d(2) + h(t,2)). (6)

The perturbation h(t,z) € R satisfies an equation:
Ogh =/ £h -+ (nonlinear terms),

where

h =—i{(£eNF (VI +X) — 3mp?)h}. (7)

Remark. To explain how to obtain (7):
In equation (3), replace ¥(x) by e (Y(z) + h(t,x)) then the left hand side of (3):

0 = i0,(e™ (¢ + h))
= i(ixe™ (¢ + h) + e O,h)
(=M@ + h) +i0:h).
And the right hand side of (3):
—eAY + V() —m(x) [Py = eN(—eAd —eAh+V(2) + he —m|¢ + h|*(¢ + 1))
= M —eAp+Vp—eAh+ ho
—m(|¢[*¢ + ¢*(h + h) + ¢hh + ¢*h + ¢(h + h)h + h*h)}
= e (—edd + Ve —mlg[*9)
+e(—eAh + Vh —m|@|*(h + h) — m|¢|*h) + eMO(h?).
Notice that |¢ + h|* = (¢ + h)(¢ + h) = |¢|*> + ¢(h + h) + hh. Then

zAt( (q§+h)+lat ) = Mt( eAp+ Vo — mW (b)
e (—eAh + Vh —m|g|2(h + h) — m|¢|*h) + O(h?).



So

i0h = (—eA¢+ (V +XN)¢ —m|p[)
+(—eAh + (V 4+ Nh — m|d*(h + h) —m|¢|*h) + O(h?)
= —eAh+ (V4 Nh —m|é*(h+ h) — m|p|*h + O(R?).

If we consider h(t,z) as a complex perturbation, ie. h(t,z) € C, then

Lh = L(Reh+ilIm h)

= —i{(=eA+ (V+ ) —me¢?) Re h+i(—eA + (V + ) — m¢p?) Im h — 2m¢* Re h}

= (—eA+ (V+X)—mep?) Im h+i{—(—eA + (V + \) — 3m¢?) Re h}.

And we rewrite £ as a matrix acting on Re h ,
Im h
0 L_
= 95 ©
where
Ly =—eA+(V+A) —3m¢* L. =—eA+ (V+)) —mg¢®. 9)

L, and L_ are self-adjoint.

In the following Lemma, we will.explaiiihow we could rewrite the linerization term as
(8). Are eigenvalues and eigenveetors of (8) and-the original form the same or not?

% LO_ ] and Lh = =eAh + (V + Nh — m|¢|*(h + h) —
—Ly

m|¢|?h, where L, and L_ are defined-by—~9). Ifp is an eigenvalue of L and [u” vT]"
be the eigenvector, then p is also an eigenvalue of L and u + v is an eigenvector of L
corresponding to p.

Lemma 1. Let L = [

Proof. Since p is an eigenvalue of L, that is,

[0t
So
ERINEN

Then

—(—eA+ (V +X) = 3me*)u = pw (11)
. (—eA+ (V 4+ A) — m¢®)w = pu. (12)
(12)+ix(11), therefore

plu+iw) = —i(—eA+ (V4N =3mg*)u+ (—eA+ (V + ) —mg>)w

= —i{(—eA+ (V+X) = 3mg®)u+i(—eA+ (V + ) — mg®)w}
= —i{(—eA(u+iw) + (V + N (u + iw) — mg*(u + iw) — 2mqg*u}.

Hence u + iw is an eigenvactor of £ corresponding to p. [



2.2  Stability

Our aim of this thesis is to study the stability of these solutions. We show the stability
by solving eigenvalue problem. So in this subsection, we recall the definition of some
stability, and the relation between eigenvalues and stability [4, 5].

At first, we give some notations and definitions. Consider an ODE

d
—=i=f() TR, (13)
where f: R" — R" and = = [z, Z9, ..., x,|T. If f(2*) = 0 for all t, the point x* is called
an equilibrium point.

Definition 1. x* is a Lyapunov stable equilibrium if for every neighborhood U of x* there
is a neighborhood V- C U of x* such that every solution x(t) with x(0) = zo € V is defined
and remains in U for allt > 0.

Definition 2. If V' can be chosen above so that, in addition to the properties for stability,
we have lim; o, x(t) = x* then we say that x* is asymptotically stable.

An equilibrium is called neutrally stable if it is Lyapunov stable but not asymptotically
stable.

In studying the stability of z*,sWe' cousider x* plus a small perturbation h(t), ie,
x(t) = z* + h(t), where |h(t)| < 1. Subtitute @(t) into (13) and expand f(x) by Taylor
series: i* +h = f(z*+h) = f(2%) £ DF@)RAEOh?]). The notation D f(z*) is the n xn
Jacobian matrix of partial derivative of a vector-valued function f.

The eigenvalues and eigenvectors of the matrix D f (z*) determine the general solution.
In studying stability we want to know whether the solution grows, stays constant, or decay
to 0 as t — oo. It can be answered by evaluating the eigenvalues.

If X\ is a real eigenvalue with eigenvector v, then there is a solution to the linearization
equation of the form: h(t) = cveM. If A = a 4 ib is a complex conjugate pair with
eigenvectors v = u + jw (where u,w are real), then hy(t) = e®(ucosbt — wsinbt) and
ho(t) = e™(ucosbt + wsinbt) are two linearly independent solutions. In both cases, the
real part of A almost determines stability. Any solution of the linearized equation can
be written as a linear combination of terms of these forms. We can obtain the following
conclusions:

1. If all eigenvalues of D f(x*) have negative real parts, then |h(t)| — 0 as t — oo for
all solutions.

2. If there exists one eigenvalue of D f(z*) has a positive real part, then there is a
solution h(t) with |h(t)| — +o0 as t — oo.

3. If some pair of complex-conjugate eigenvalues have zero real parts with distinct
imaginary parts, then the corresponding solutions for |h(t)| oscillate as ¢ — oo and
neither decay nor grow as t — co.

Moreover, if z* is an equilibrium of # = f(z) and all the eigenvalues of the matrix D f(x*)
have strictly negative real parts, then x* is asymptotically stable. If at least one eigenvalue
has strictly positive real part, then x* is unstable.



We had discussed the solution of the ODE is an equilibrium. The statement of stability
may be extend to non-constant orbits of ODE.

Here, let O,(z) = x(t) and the initial value 2(0) = zo. Then the set O(x) = {Oy(x) :
0 <t} is called orbit.

Definition 3. Let two orbits O(x) and O(%). If there is a reparameterization of time t(t)
such that |O(2) — Oy (2)] < € for all t > 0,then we say two orbits O(x) and O(%) are
e-close.

Definition 4. An orbit O(x) is orbitally stable if for any € > 0, there is a neighborhood
V' of z so that, for all & € V, O(x) and O(Z) are e-close. If additionally V' may be chosen
so that, for all & € V', there exists a constant 7(Z) so that |Oy(2) — Oy_r2)(2)| < € as
t — o0, then O (x) is asymptotically stable.

The linearization skill in general orbit is similar to the the pervious linearization
method. Also discuss the eigenvalues of the linearization operator.

3 Numerical Method

In this section, we discretized the Laplace operator by finite-difference method first, and
we will show it on two kinds of domain:respectively. Then we present the numerical
method for solving ¢(z) from (5)Mirst. And finally, we will describe a numerical method
to compute the spectra of £ frem (7).

Now, we recall our main question: to-study the:stability of the special solution form.
For our solution form (¢, z) = e o(a);werwill solving the time-inedpent term ¢(z).
By (5), ¢ = ¢(x1, x2) satisfies

o? o?
The natural boundary condition is
|1|im (1, x2) = 0. (15)

Consider the same equation (5) in the unit disk domain Q = {(x1,z2) : 22 + 23 < 1},

applying the polar coordinate transformation,
r1 =1rcosf,ry = rsind,

where r = /22 + 22, § = tan~!(2y/11). We can rewrite (14), ¢ = ¢(r,0) in the polar
coordinate system satisfies
10, 09 1 0%
e T
with 0 <7 < 1,0 <6 < 27. And the boundary condition is

ILm o(r,0) = 0. (17)

+ (V(r,0) + N)¢ —m(r,0)¢* = 0, (16)

Here, we have two equations and boundary conditions for solving ¢ in each domain.



3.1 Matrix Form of Laplace operator

Now, we are going to describe the matrix form of the Laplace operator. In this study,
we have two kinds of domains, unit disk domain and square domain. We will show them
respectively.

3.1.1 Square Domain

The Laplace operator is a seconed order differential operator. Here, we consider the
function ¢ in R%. Then

0? 0?
AQS e —Q§ _QS‘
ox?  0y?
Here we use Finite-Difference method for the boundary value problem [1].
First step is to partition z into —1 = g < 21 < 29 < --- < xny_1 < zy = 1, and
partition y into —1 = yo < y1 < Yo < -+ < yn—1 < yn = 1, where x; = —1 + 1Az,

y; = —1+4+ jAy and h = Az = Ay = 2/N. We use the Taylor series in the variable z,y
about z;,y; to generate the centered-difference formula

¢ _ Jicng = 2fig ot fivy

922 (Ax)? +O((A)?),
%9 ~ Jicng = 2fig + fivng
ro Bt s oayy)

for each i =1,2,..., N — 1 and ;j = 1,2, ..,N = 1 swhere f;; = ¢(x;,y;).
In difference-equation forms this result in‘the finite-difference method, with local trun-
cation error of order O((Ax)*=+ (Ay)?). Therefore

St 20 T Sl n fig—1 = 2fi; + fijn
(Ax)? (Ay)?
_fz'—l,j + firry —4fij + fij-1 + fign
h2 '

—A¢p ~

We can rewrite it as a matrix representation:

A -1 0 f;
' -1 A -I f,
7 : : = AF,
-1 A -1 fn_2
L0 -1 A | [f~—1]
where ~ .
4 -1 0
-1 4 -1
A — . ,
-1 4 -1
| 0 -1 4 J(N—1)x(N-1)

£ = [fij fogses SIno14)d = 1,2, N — 1, and T'is an (N — 1)? x (N — 1)? identity
matrix.

10



3.1.2 Unit disk Domain
Then we consider the equation (5) over a 2-dimensional disk. We use a discretization

r—

scheme [8] for equation (16). The Laplace operator is
9l0) 1 9%
or

10

We discretize the Laplace operator in two parts. The first step is to discrstize the operator
A,¢ on r € [0,1], and then to discretize the operator Ay on 6 € [0, 27].

Firstly, we consider the operator —A,¢ on r € [0, 1],
1
son 1o, ()
r 0,

1
~, and

To partition r into 0 = rg < L < <Ty 1 <IN = 1, r; = jAr and Ar =
to partition 6 into 0 =0y < 0; < by < --- < Opy_1 < Oy = 2m, 0; = JAO and AO = i}r,

¢(r;,0;). For each 6;,

and denote f; ; =
A~ |- 1 Ti(fi-l—%,j - fi—%,j) - Ti—l(fz—%,j o z—g,j)
r 7};% (AT)Q
That is
—:—;’ %(T1+T2) —:—z f%]
1 2 2 2
<AT)2 7";\7;2 1 . TN—1
T e (ry—2 +rn_1) - fnos,
where
a1 ¢ 0 ]
1 G f%J
1 by as Co f3 .
~ . ' - 5.
A — a7 . . and f; = 2 )
bn—2 an—1 cn—1 f '
0 b1 an N=3.
1 1—1+1
ai: (’r’z_l—i—’r‘z) _1{_ :27 /L:]., .,N
i1 1= 3
2
and
i 1 i 1 .
bi:—r :—1+—, Z:_T = — 1= = ) Z:17 7N_1
Tipl 21+ 1 Tl 21—1

11

Il
>)
Rl




Now we consider the operator

on 0 € [0,27]. Then for each Tl i=1,2,..,.N

A ~ 1 f(Tz L, j+1)_2f(7”i—%76j)+f(7"i 1 J—l)
T (AG)?
Let
B — di 2 2 2 2
~ a0 (8027 2 (80)27 T2 (AG)?
and

) -1 —1 —1 -1
C = diag (r%(AQ)Q’ r3(A0)2 r2(A0)2 T2 (A@)Q) ’

2[\')

fi:[f%,j?f%,ja"‘af]\f_%d]—r fOI'jzl,Q’__,’M.

Then we can rewrite the Laplace operator as

- N - [ f]‘ |
A+B C C ;
C A+B C 2
. - : = AF.
C, A4B ' € far 1
. C 7 A+B | Y

Then the matrix A represents the Laplace operator.

3.2 Algorithm

Now, we describe a numerical method to compute the spectrum of the linear operator £
defined by (7) for € > 0. There are two steps in our numerical method: First, we will
solve the nonlinear problem (14) for ¢. Second, compute the spectrum of the discretized

linearized operator around ¢.

Step I. Compute ¢ and it is energy minimizing among all solution of (14)-(17).

Step II. Compute the spectra of the discretized linearized operator L. Since h is no
longer real, so the linearized operator is a little different from £ in the equation (7).

Here, we denote some notation of the following. For A € RM*XM 4 m ¢ RM m xq
denote the Hadamard product of m and ¢, and ¢® means the p-time Hadamard product

of ¢. And diag(q) represents the diagonal matrix of g.

In Step I. First, we represent —Agq as

Aq = A[q17q2a s 7qM]T

Y

12



where ¢ is an approximation of ¢. As for the form of matrix A, it was shown in previous
two subsections. Then the discretization of the equation (14) (and (16)) become

€Ag+ (V+ X)) xqg—mxq® =0,

where V' and m are approximation of the function V(z1,x2) and m(xq,x3), respectively.
We solve it by using an iteration method [7]:

[EA + dlag(V + A)]qnew =1m* qg?d’ <18>

where Gpew and ¢ug are unknown and known vector. The iteration step is shown in
Algorithm 1 .

Algorithm 1 Iterative algorithm for solving ¢(x)

Step 1 Choose an initial guess of gyq > 0, and ||qoall2 = 1.
Step 2 Solve (18), then obtain ey -

1 -
Step 3 Let Anew = l[dnew|lz’ Gnew = Onewlnew-

Step 4
if (converge) then
Output the solution (anew)%qnew. Stop.

else
Let Qold = Gnew-
Go to Step 2.
end if

When X in a general case, ) is no longer a.¢onstant. A varies from €, so the numerical
method has a little difference form."From(4),; the discretization form becomes

[eA + diag(V —m % ¢®)]g = —Aq. (19)

It turns into an eigenvalue problem. In Algorithm 2, it shows the iteration step.

In Step II. Now we discretize £ of (8) into an eigenvalue problem.
u u
AR L (20

0 €A + diag(V + \) — diag(m * ¢°)
—eA — diag(V + \) + diag(3m * ¢*) 0

where
L =

g and A\ are obtain from Step I. We use ARPACK in MATLAB version R2007a to solve
the linear algebraic eigenvalue problem and obtain eigenvalues p of L near origin.

4 Numerical Simulation

For each potential case, we summary the numerical results for three solution forms. Con-
sider the solution form: (¢, x) = ¢*'¢(z), A = 0,1, and general case.
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Algorithm 2 Iterative algorithm for solving ¢(z) in general solution

Step 1 Choose an initial guess of gyq > 0, and ||qall2 = 1.

Step 2 Solve
(614 + dlag(V — m * qg)d))gnew = _)\(jneun

where —\ is the smallest eigenvalue of €A + diag(V — m qg?d). Then obtain Geq-

[=Al _ ~
a2’ Gnew = Onewlnew-

Step 3 Let ¢ = (A + diag(V — m * G2,))Gnew, Cnew =

Step 4
if (converge) then
Output the solution g, and \. Stop.

else
Let dold = Gnew-
Go to Step 2.
end if

4.1 Setting

In w case, the discretized matrix of Laplace operator has size NT by NT with N = r/Ar
and T'= 27 /Af. Here we use zero, boundary condition and r =1, N = 32, T'= 64. And
in p case with square domain, thie discretized nétrix of Laplace operator has size N? by
N? with N = 2/h and here N:= 64.- And so the atrix size of the operator L are 2NT
by 2NT and 2N? by 2N? respectively.

In our numerical method, we use finite-difference method to solve NLS equation. The
finite-difference method has tfuncation“error Q(h?), where h is the grid size. In our
experiment, O(h?) ~ ¢ - 1073,

The region of € that we consider About'is larger than 1075, that is because the value
is smaller than 1075 we treat it as zero. We should control the region of € to satisfy the
boundary condition, which means the region of ¢ would not be large. In the region that
we considered, the boundary mean values of all cases are less than 107°. In Fig. 4, we
plot the mean value of the boundary of ¢ for € from 0 to 0.003. We can see the mean of
boundary will be less than 107 as e smaller than 0.0024. So in that case, we only try
€ € [107°,0.0024] in our numerical experiment.

Besides the boundary condition, we also take care of the shape of ¢, here we narrow
down the focus on the solitary solution for this part only. As e goes larger, sometimes the
shape would change. The following statement like €* are all in the region of e.

In the following table(Table 1), we write down the region of e for each case. In each
potential case, for our converient, we choose the intersection of € region for different
parameters.

In this thesis, we focus on the parameter ¢ changing, and to study when the solution
of the NLS would be unstable or stable. The notation ¢* denote as the bifurcation of
stable and unstable.

We find that a pair of purely imaginary eigenvalues will collide at the origin and split
into a pair of real eigenvalues for € < ¢*. That is, when € less than €¢*, the spectrum of
the linearized operator are all pure imaginary. As e larger than €*, the spectrum of the
linearized operator has at least one pair of eigenvalue with nonzero real part. That means

14



The logarithm of boundany ©

Table 1: The region of e.

| casep | casew
=0 |[10°5,0.016] | [10°7,0.0024]
A=1 |[107,0.025] | [10~%,0.005]
general A | [107°,0.001] | [107°,0.001]

Point " ** denotes the logarithm of boundary 4 for o, =w,=5

and point "." denotes the ogarithm of boundary 4 for o =w,=1.
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Figure 4: Boundary ¢ in w case for A = 0.
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Figure 5: Boundary ¢ in w case for A = 1.
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Figure 7: Boundary ¢ in u case for A = 1.
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w1=1, r.u2=1J a=0.001

Figure 8: Solution of ¢ for w; = 1,wy = 1,¢ = 0.001, A = 1.

the solution is stable while € < €*, unstable when ¢ > €*.

Since the numerical result of eigenvalues are approximartion of the exact mathematical
values. There exist some error of the result. We determined that the eigenvalue has
nonzero real part when the absolate value ofithe real part of eigenvalus is larger than
1073,

Since the regions of € are small, and the specttum of lineraization operation changes
so fast. We move € in a small step for each case. de= 107°. To prevent losing some pairs
of pure complex eigenvalue from turnming-to-real eigenvalues, we also move the target of
the algorithm for finding eigenvalues:

This method is not an efficient methoed but an easy way to catch the changing of
spectra.

4.2 w case

In w case, the maxima of ¢ is not at center of the disk; instead, it is on the right of the
center. As e go larger and the potential change, the maxima of ¢ seem to moving to the
center of domain. In figure 10, we fix ¢ = 0.0002 and changing the well depth of potential
V(z). We find that the location of maxima ¢ changes. It moves to the center of the
domain.

We know trap potential V' (z) and m(z) would effect the solution ¢. The NLS equation
in our model is an focusing case, that is the atoms would stay near the maxima of m(x),
ie, xy = 1/4.

1. A = 0: Testing € in the region that we mentioned before, and find that the eigen-
values of the linearized operation £ are all pure imaginary.

2. X =1: We find there is an €* in this solution case. The ¢* represent the bifurcation
of pure imaginary to has a pair of eigenvalue with nonzero real part. In Fig. 11
shows the spectrum of £ . And in Fig. 12, it shows the €* of the parameters
wy,we = 1,2, ..,5
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0= 3.5453e-08

Figure 9: Solution of ¢ for w; = 1,wy = 1,¢ = 0.001, A = 0.

3. In elliptic potential case, we can find €* in e®*¢(X) this solution form in our numerical
method, but we can not find the €* in other solution form. At first we guess €* in
e ¢(z) form of solution can be found in smaller €. But we do not find that in the
region of € as we mentioned.before.

4. \is general case: In this solution c¢ase, we.can not find the €*. When ¢ is quite small,
the value of X is alreadymegative. That meatis the trap potential is not positive at
all, V(z) < 0 on the center of the'disk. In'Figure 13 it shows the value of A as ¢
changes.
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Figure 11: Spectrum of w case for A = 1.
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Figure 12: €* of w case for A = 1.
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Figure 13: Value of X in w case.
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Figure 14: Spectrum of p case for A = 0.

[t case

1. A =0, we can find €* in'this solution case. For py,pus = 1,2,....5, we find that the

eigenvalues are pure imaginary whene:.< €*;and turn into a pair real value. Figure
14 plot the eigenvalues aréund original: *And in Figure 15 show the €* for every

1, f2.

. A=1, we also find €*. Figure 16, 17 show the eigenvalues and values of €* for each

M1, H2-

Consider the same p; and g9, these two solution forms can be seen as changing
the well depth of potential (from (5)). The €* are different. So we know that the
potential well depth may change the stability of solution.

In optical lattices potential case, changing p; or s for different periodic of potential.
We can see that the value of ¢* increasing when pq, s go larger. To comparison
e'@(x) and e¢(z) these two forms of solutions, we can see that the second kind
of €" is less than the other ones.

A is general case, there is no €* in this solution case. When € is quit small( less
than 1.2 x 107%), the value of X is positive(In Figure 18). This result is consistent
with the condition of Lin in [9]() is positive for small enough €). But A become
negative when e gets larger, and the value of A gets smaller as € gets larger. When
€ < 3.3 x 1074, X is smaller than —1. And the minimum of trap potential is 1, that
means the trap potential is no longer positive value.
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Solution form: wixh= 4= 8

Figure 15: €* of u case for A = 0.
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Figure 16: Spectrum of y case for A = 1.
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Solution form ; e"d[x] gk

2.2

2.1

Figure 17: €* of u case for A = 1.
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Figure 18: Value of X in pu csae.
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5 Conclusions

In this thesis, we consider the NLS equation with the special solution e*¢(x). We
mainly show the spectrum of the linerization operator £. By numerical computation,
we can conclude some results: when € < €* the eigenvalues are pure imaginary, and the
eigenvalues turn to real as ¢ > ¢*. That is, there is a bifurcation of stable and unstable,
when A = 0,1 in optical lattices potential case and A = 1 in elliptic potential case.

Here, we use Matlab code to find the spectrum of the linearization operator. It is a
convenient way to solve the eigenvalue problem. Since the method of finding eigenvalue
in Matlab is to search some eigenvalues which are near the target. And the distribution of
eigenvalues changes fast when € near €*. For future work, we are interested in improving
the method of finding the spectrum of the linearization operator.
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