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                      摘要 

        
    這篇論文中我們討論線性拋物偏微分方程。首先舉出關於此方程的一個實際

例子。其次，我們介紹不同方法來解析此類型偏微分方程，包含一維度和多維度

的問題。當我們用不同方法解決同一個方程時，將會證明這些方法所得之結果會

是一致的。 

  還有，在數值分析方面，我們用有限差分法來求數值解。我們用數學軟體 

Mathematica 6 來展示用有限差分法所得的解以及探討實際解之趨近值，最後比

較兩者之的差距。 
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                            Abstract 
        
    We study the linear parabolic partial differential equations. First, we give a 

practical example whose mathematical model is a parabolic PDE. Next, we apply 

some classical methods to solve the linear parabolic PDEs in one and higher 

dimension. For the same equation, we will identify the solutions if they are derived by 

different methods.  

    In numerical analysis, we use finite difference method to obtain the numerical 

solution of the parabolic PDE. We will use Mathematica 6 to find the numerical 

solutions, to approach the exact solutions, and to compare between those solutions. 
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Ⅰ.  Introduction 
    

   The parabolic equations are often the mathematical models in applied science.  

Before we introduce the models, we classify the partial differential equation first. 

 

 

1-1. Classification of Linear Partial Differential 

Equations 
 

    A linear second-order partial differential equation has the form 

 

           2xx xy yy x yAu Bu Cu Du Eu Fu G       

 

where A, B, C, D, E, and F are function of ( , )x y . The equation is called 

homogeneous if . We classify the equations into three types, depending on the 

second-order coefficients A, B, and C: 

0G 

     

            If , the equation is elliptic. 2 0AC B 
            If , the equation is hyperbolic. 2 0AC B 
            If , the equation is parabolic. 2 0AC B 
 

The standard homogeneous equations are 

 

           1.  (the elliptic equation), 0xx yyu u 

           2.   (the hyperbolic equation), 0tt xxu u 
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           3.   (the parabolic equation). 0t xxu Ku 

 

 

1-2. The Linear Parabolic PDE as model for the 

Practical Problem 
    This model is excerpted from Mathematical Models and Their Analysis [2]. 

Consider a straight rod of length L, mass density ( per unit volume)  ,  

and uniform cross-sectional area A. The cylindrical surface of the rod is insulated 

form heat flow. The rod is sufficiently slender so that the temperature distribution is 

uniform over a cross section at any point along the central axis of the rod. Let the 

central axis be positioned along the x extending from 0x   to x L . To discuss the 

temperature distribution  in the rod, we look at a segment of the rod between 

 and 

( , )u x t

)( 0)x a  (x b L   at time t. Let  be the specific heat of the rod material 

defined to be the amount of heat energy needed to raise the temperature of a unit mass 

of material by one degree Kelvin ( 1 K). The specific heat is a material property and 

can be measured experimentally.  

0c

 

 

The rate of change in the heat (thermal) energy  in this segment is given 

by 

( , )H x t

 

             0 ( , )
b

a

dH d
c u x t Adx

dt dt
  .                         (1.2.1) 

 

 There is another way of calculating the same rate of change of heat energy. L

( , )

     et 

x t  be the amount of heat per unit time flowing from left to right across a unit 

area of the cross section at location x and at time t. Let ( , )F x t  be the rate of h

generated by a unit mass of the rod within the insulated cylind

eat 

rical surface by 

hemical, electrical, or other processes. In that case, we have 

 

c
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           [ ( , ) ( , )] ( , )
b

a

dH
A a t b t F x t Adx

dt
      .               (1.2.2) 

 

      The two expressions (1.2.1) and (1.2.2) for 
dH

dt
 must be identical. The rate 

of increase in heat in the segment ( calculated by way of the temperature of the 

segment ) must be equal to the rate of heat gained (calculated by the net heat flow 

across the two cross sections of the segment plus the rate of heat generated inside the 

segment. We have 

  

           0 ( , ) [ ( , ) ( , )] ( , )
b b

a a

d
c u x t Adx A a t b t F x t Adx

dt
       .     (1.2.3) 

 

We suppose u and   are both smooth functions and   is independent of t. In that 

case, the equation (1.2.3) becomes into 

           .               (1.2.4) 0[ ( , ) ( , ) ( , ) ]
b

t xa
c u x t x t F x t dx    0

 

If the integrand is continuous in x and the segment  is arbitrary, we have the 

conclusion that 

( , )a b

 

            0 t xc u F     .                                  (1.2.5) 

 

Equation (1.2.5) holds for all x in  and all . Equation (1.2.5) is a equation 

for two unknowns: u and 

(0, )L 0t 
 . And by the Fourier law: 

 

            0 xK u   .                                        (1.2.6) 

 

where the coefficient of thermal conductivity  is a measure of the ability of a 

material to diffuse or conduct heat.  has to be determined experimentally and it 

varies from material to material. Substituting (1.2.6) into (1.2.5), we obtain a second 

order PDE for : 

0K

0K

( , )u x t

 

             0 0( )t x xc u K u F   .                               (1.2.7)   
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If the rod is homogeneous in its ability to conduct heat,  is a constant and (1.2.7) 

becomes to 
0K

             0 0t x xc u K u F   . 

 

 

 

 

 

 

 

 

Ⅱ.  Methods of Solving the 

Linear Parabolic PDE 

 

   In this chapter, we will use some methods to solve one-dimensional heat equations 

and multiple dimensional heat equations. After the methods, we will apply these 

methods to the same problem. 

 

 

2-1. One-Dimensional Heat Equation 
 
   In one-dimensional equations, we use methods to solve the heat equation with 

different initial conditions, boundary conditions and domains. If we solve the same 

equation by two or more different methods, we will identify the answers. 

 

2-1-1 The Method of Separation of Variables 
 

   The method of separation of variables is a fundamental technique for obtaining 

solutions of homogeneous partial differential equation when the solutions in the form 

. ( , ) ( ) ( )u x y a x b y

 

We consider a homogenous one-dimensional heat equation problem 
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2

2
0

u u
K

t x

 


 
      for   0 x    ,  ,           (2.1.1a)  0t 

                  for   0( ,0) ( )u x f x x    ,                 (2.1.1b) 

          (0, ) 0u t              for        ,                 (2.1.1c)   0t 
          ( , ) 0u t              for        .                 (2.1.1d) 0t 

 

   Suppose that , then the equation (2.1.1a) has the form ( , ) ( ) ( )u x t X x T t

 

          
' "

0
T X

K
T X
   

or                  

      
'T X

K
T X


"

 .                                          (2.1.2) 

    

The left-hand side of the equation (2.1.2) depends only on t. But the right-hand 

side of the equation depends only on x. We say the equation (2.1.1a) is separable. 

 

   Now, we take the partial derivative with respect to t in two sides. We obtain 

 

          
'

[ ] 0
d T

dt T
  .                                         (2.1.3) 

 

  That means the both sides are constant. Then we have two ordinary differential 

equations. 

 

          
'T

T
     ,   

"X
K

X
      ,  (0) ( ) 0X X           (2.1.4)  

 

where   is a constant .  

 

If 0   , the general solutions of these ordinary differential equations are 

1 2( ) sin cosX x A x A x
 
 

  , 

 3( ) tT t A e  . 

If 0   , the general solutions of these ordinary differential equations are 
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           , 1 2( )X x A x A 

           3( )T t A . 

If 0   , the general solutions of these ordinary differential equations are 

           1 2( )
x x

X x A e A e
 
 


  , 

           3( ) tT t A e . 

And we have the boundary condition 

 

           . (0) (1) 0X X 
 

For 0   ,  and (0) 0X  (1) 0X   since 、1A 2 0A   . For 0  , by the  

boundary condition, we have 0X  . It is a trivial solution. For 0  , by the 

boundary condition, we obtain 2 0A   and  

 

sin 0


  ,                                        (2.1.5) 

 

r X is not identically zero .That is  fo

 

2n               ,  1, 2,3......n  . 

 

The   is called the eigenvalues of this problem (2.1.1). And the functions 

          

 

 ( ) sinnX x n x                                        (2.1.6)  

 

are the eigenfuctions corresponding to eigenvalues 2n  . 

 

Now, the equation (2.1.4) becomes to 

 

          
2'T n KT 0    ,                                   (2.1.7) 

then 

            .                                       (2.1.8) 
2

( ) n Kt
nT t e
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By equation (2.1.6) and (2.1.8), we have the particular solutions of equation (2.1.1a)        

 

            .                              (2.1.9) 
2

( , ) sinn Kt
nu x t e nx

 
The  satisfies the problem (2.1.1), and the any finite linear combination of 

 also satisfies the problem (2.1.1). We attempt to represnt the solution of 

(2.1.1) has the following form: 

( , )nu x y

( , )ynu x

 

            .                             (2.1.10)  
2

1

( , ) ~ sinn t
n

n

u x t b e nx







 

We need to determine the coefficients  by the initail condition  nb

 

            . ( , 0) ( )u x f x
 

We have 

            
1

( ) ~ sinn
n

f x b



 nx . 

 

The  are the Fourier coefficients determined by nb

 

            
0

2
( )sinnb f x n




  xdx  

      

    The Fourier series of ( )f x  converges to ( )f x  uniformly if ( )f x  is 

continuous for x    , ( ) ( )f f   , and 2'f dx


  is finite. Then we have 

the solution 

 

               
1

( ,0) ( ) sinn
n

u x f x b nx




 

     

    If ( 1)f x L ,  by the Weierstrass M-test the series converges absolutely and 

unifomly.  
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2

1

( , ) sinn t
n

n

u x t b e nx






 

 

   In (2.1.1), we only talk about the one kind of boundary condition. We want to 

discuss some different boundary conditions. First we talk about  

            (0, ) ( , ) 0xu t u t 

0

.                                 (2.1.11)   

Then the eigenvalue problem (2.1.4) becomes  

   

            "X X   ,                                      (2.1.12) 

             ,                                         (0) 0X 
            '( ) 0X   .                                         

We can find the eigenvalues 21
( )

2
n   , 0,1, 2,n  … with the corresponding 

eigenfuctions
1

sin( )
2nX n  x . Then we get the solution  

 

            
2

1

1
( , ) sin( )

2
n t

n
n

u x t b e n x






                             (2.1.13)  

 

of problem (2.1.1) with the boundary condition (2.1.11)  

 

   Then we look the another boundary condition  

 

            (0, ) ( , ) 0xu t u t 

0

,                                 (2.1.14) 

 

then the eigenvalue problem (2.1.4) becomes 

 

            "X X   ,                                      (2.1.15) 

              ,                                        '(0) 0X 
            ( ) 0X     .                                           

We can find the eigenvalues 21
( )

2
n    , 0,1, 2,n  … with the corresponding 

eigenfuctions 
1

cos( )
2nX n  x  Then the solution  

 

 - 8 -



        
2

1

1
( , ) cos( )

2
n t

n
n

u x t b e n x






                            (2.1.16) 

 

of problem (2.1.1) with the boundary condition (2.1.14)  

 

    At last, we look the boundary condition 

 

            (0, ) ( , ) 0x xu t u t 

0

.                                (2.1.17) 

 

Then the eigenvalue problem (2.1.4) becomes 

 

"X X   ,                                       (2.1.18) 

'(0) 0X   ,                                     

'( ) 0X    .                                     

 

We can find the eigenvalues 2n   , 0,1, 2,n  … with the corresponding 

eigenfuctions cosnX nx  Then the solution 

 

                              (2.1.19) 
2

1

( , ) cosn t
n

n

u x t b e nx






 
 

of problem (2.1.1) with the boundary condition (2.1.17) .  

 

   Three things are needed to apply the method to the problem in two variables x and 

y [1]: 

(1) The differential operator L must be separable. That is, there must be a function 

( , )x y  such that the expression 

 

         
[ ( ) ( )]

( ) ( )
( , ) ( ) ( )

L X x Y y
P x Q y

x y X x Y y
   

 

where  is a function of x only and  is a function of y only. ( )P x ( )Q y

 

 

   (2) All initial and boundary conditions must be on lines x = constant and y = 

constant. 

   (3) The boundary conditions at x = constant must involve no partial derivatives of 

u with respect to y, and their coefficients must be independent of y. Those at y = 

 - 9 -



constant must involve no partial derivatives of u with respect to x, and their 

coefficients must be independent of x. 

 

   The method of separation of variables also can be used in two dimensional 

problems as shown in the next chapter. 

 

   Here we give one example solving by separation of variables.  

 

Example1.1 (Using separation of variables) 

 

             
2

2
0

u u
k

t x

 
 

 
        for  0 x    ,  , 0t 

             ,  , (0, ) 0u t  0t 
             ( , ) 0u t  ,  , 0t 

             ,  3( ,0) sinu x x 0 x   .  

 

Solution 

     By the equation (2.1.10), we obtain 

 

            . 
2

1

( , ) sinn t
n

n

u x t b e nx






 

 

Now, we have to determine  nb

 

            3

1

sin ( ,0) sinn
n

x u x b nx




  . 

 

We have                    nb

 

            1

3

4
b  , 3

1

4
b   , other 0nb  . 

 

Then the solution is 

 

            93 1
( , ) sin sin 3

4 4
kt ktu x t e x e x   . 
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2-1-2 Finite Fourier Transform with Nonhomogeneous Problem 
 
    In the 1-1, the heat equations are homogeneous. Here we use finite Fourier 

transform to solve the nonhomogeneous problems.  
 

     Now, we look the nonhomogeneous problem corresponding to (2.1.1), 

 

           
2

2
( , )

u u
K F x

t x

 
 

 
t        for   0 x   ,  ,       (2.2.1a) 0t 

                       for   ( , 0) ( )u x f x 0 x      ,          (2.2.1b)  

             ,                                   (2.2.1c) (0, ) 0u t  0t 
          ( , ) 0u t     ,   .                               (2.2.1d) 0t 

 

First, we expand the solution into a Fourier sine series for fixed t    

 

                                          (2.2.2) 
1

( , ) ~ ( )sinn
n

u x t b t nx





 

due to the boundary conditions (0, ) 0u t   and (1, ) 0u t  . For other boundary 

conditions we have different Fourier series forms: 

 

. (0, ) ( , ) 0xu t u t      
1

1
( , ) ~ ( )sin( )

2n
n

u x t b t n x




 , 

(0, ) ( , ) 0xu t u t       
1

1
( , ) ~ ( ) cos( )

2n
n

u x t b t n x




 , 

(0, ) ( , ) 0x xu t u t       . 
1

( , ) ~ ( ) cosn
n

u x t b t nx





 

In (2.2.2), the are the sine coefficients { ( )}nb t

 

           
0

2
( ) ( , ) sinnb t u x t nxdx




  .                               (

 

2.2.3) 

hese integrals determine the  uniquely called the finite sine transform of T ( , )u x t

( , )u x t . 
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f 
2

2

u

x




      I is integrable, its finite sine transform is 

   

 
2

2
20 0

0

2 2 2
sin sin cos sin

u u
nxdx nx un nx n u nxdx

x x


 

  
          

                                                      (2.2.4) 

et   

    

2 ( )nn b t  .

 

L

0

2
( ) ( , ) sinnB t F x t nxdx




  .             

  

n (2.2.1a) becomes 

          n .                               (2.2.5) 

Multiply a integrating factor 

           

Then the equatio

 

' 2( ) ( ) ( )n nb t n Kb t B t  

( )p t  defined as  on (2.2.5) 

n .            

ing the ODE. (2.2.7), we obtain 

                                (2.2.6) 

here the is determined by the initial condition 

           

2

( ) n Ktp t e

 

           
2 2 2' 2( ) ( ) ( )n Kt n Kt n Kt

n ne b t e n Kb t e B t 

   

Solv

 

 
2 2( )

00
( ) ( )

t n K t n Kt
n nb t e B d e C     

 
w 0C  

 

0 0

2
(0) ( ,0)sinnC b u x nxdx




   . 

so  

0 0

2
( ) sinC f x n




  .            xdx                  

ting the to the equation (2.2.2)  

      

Substitu ( )nb t  
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2 2( )

0 0
1

2
( , ) ~ ( ( ) ( )sin )sin

t n K t n Kt
n

n

u x t e B d e f x nxdx nx
  




  



   . (2.2.7) 

 

here are still two things to be verified: 

ain , that means 

2. The sum can be term by term differentiated , that means 

T

1

( , ) ( )sinn
n

u x t b t nx




 . 1. The sum converges in entire dom

( , ) ( ( )sin )xx n x tx in )t n nxu x t b t nx  and ( , ) ( ( )su x t b t . 

 

irst we show 1. By the Schwarz’s Inequality for integrals we have 

 

           

F

22 2 ( ) 2 2
20 0 0

1
| ( ) | ( )( ( ) )

2

t t tn t
n nb t e d B d B d

n
 n        . 

 

By Schwarz’s inequality for sums and Parseval’s equation 

 

2 2
2 0

1 1

1 1
| ( )sin | ( )(

2

N N Nt

n n
n M n M n M

b t nx B d
n 1

)
     

    

2
2 0 0

1

1 1
( , )

N t

n M

F x dxd
n


 

  

                              . 

 

or some 0 0t  , 2

0 0
( , )

t
F x dxd


    

ly in domain [0,

F converges , and by M-test 
1

( ) sinn
n

b t nx



  

converges uniform ] [0, ]   . That means it is independent of 

( , )x t . So (2.2.2) becomes  

 

           . 

 

ext, we show 2. Here, are continuous , 

1

( , ) ( )sinn
n

u x t b t nx




 

( , )F x t , , XF F  (0, ) ( , ) 0F t F t  , N

and 
2 u 

differentiated. 

 

20
d x

x  uniform Then the sum can be term

xample1.2

ly bounded in t .  by term 

 

E  (Using finite Fourier transform) 
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2
3

2
sin

u u
K t

t x

 
 

 
x      for    0 x              , 

 ,    

0t  , 

                   (0, ) 0u t  0t  ,

            ( , ) 0u t  ,   , 0t 
            ,  0( ,0) 0u x  x   . 

olution

 

S  

an find      We c

3

0

2
( ) sin sinnB t t            x nxdx




  . 

            1

3
( )

4
B t   , 3

1
( )

4
B t t   , ( ) 0nB t  . 

  

           

                 

By the equation (2.2.7)

 

2 ( )

0
1

( , ) ( ( ) )sin
t n K t

n
n

u x t e B d nx  


 



    

93 1 1 1
( 1 )sin ( )sin 3

4 36 9 9
Kt Ktt e x t e       .x  

 

-1-3 Fourier Transform
 

2   

   A 
 

2 - periodic function ( )f x  in [ , ]   can be expanded in Fourier series  

          

As 

 

0
1

1
( ) ~ ( cos sin )

2 n n
n

f x a a nx b n




  x ,                     (2.3.1) 

 

here  

    

w

( ),cos 1
( )cos

cos ,cosn

f x nx
a f

nx nx



 

 
 
          x nxdx , 

            
( ),sin 1

( )sin
sin ,sinn

f x nx
b f

nx nx



 

 
 
   . x nxdx

Using  

 

1
sin ( )

2
inx inxnx e e

i
   , 

1
cos ( )

2
inx inxnx e e             . 
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We define 

         

 

. 

Then  

            

 

( )f x ~ inx
n

n

C e





 ,                                 (2.3.2) 

where 

      1
( )

2
inx

n f x e dxC


 
  .       

 

 ( )f x  If is continuous and piecewise continuously differentiable on [ , ]  , and if 

( ( )f f)  , then  

 

( )f x ~ inx
nd e ,                                           (2.3.3) 

      

where 

1
'( )

2
inx

n f x e dxd


 
         

1
( ) ( )( )

2
]inx inxf x e f x in e dx


  

                   

               
1

( )
2

inxin f x e dx


 
    

ninC                . 

hen the (2.3.3) becomes  

          .   

 

 

T

 

( ) ~ inx
n

n

inC ef x






  

 ( )f x  If is twice continuously differentiable, then 

           

 

2 2( ) ( )inx
n nf x e dx in C n C




     .  
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We obtain 

2( ) ~ ( ) inx
n

n

f x n C






          e . 

Next, we consider the 

 

( )f x  in ][ ,L L  and ( )g x  in ][ ,   where L is 

a constant. We let x x
L


 . 

 

[ , ]L L  
1 1
 [ , ] 

( )g x

      R or C 

                        x  x

 

Then we have 

 

( ) ( ) ~ inx
nf x g x C e






  ,                 

where 

 

1 1
( ) ( ) ( )

2 2

n
L i xinx L

n L
C g x e dx f x e

L






  

                dx

               
1

( )
2

n
L i x

L

L
f x e dx

L




  .                              (2.3.4) 

 

So, we have  

 

( ) ~
n

i x
L

nf x C e
 


 .                                               (2.3.5) 

onsider the 

 

Next, we c ( )f x  in ( , )  . We can determine the ( )f x  on any 

subinterval in terms of the coef  in (2.3.4).We( , )L L  ficients nC  extend the ( )f x  

on th

an be w

          

e whole interval ( , it on L  . 

The (2.3.4) c ritten as  

 

)  by taking lim

2 ( )
n

L i x
L

n L
LC f x e dx



 .  
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For any fixed n 

 

l
L

            im 2 lim ( ) ( )
n

L i x
L

n LL
LC f x e dx f x dx




  
   . 

 

The series {
L

}
n

dense on R if L is large enough where 0, 1 2n ,   …. So we may 

place discontinuous { }
n

L


 by continuous variable w R  re

~
n

w


           
L

,   

           ~n wC C L



. 

  

           

And we define

 

1
( )

2
iwx

w


LC f x e dx



 
  . 

 

1
( )

2
iw x

w LC f x e



  

( )f xFor each w  we have an unique dx . Suppose that   is  

bsolutely integrable, then the integral  a

 

            | ( ) |f x dx
  


 

converges, and 

 

1
| | | ( )

2

n
L i x

L
n L

C f x e
L




               |dx

              1
| ( ) |

2
f x dx

L




  . 

 

           

 

Now we define  

ˆ ( ) lim 2 lim ( )
L iwx

wL LL L
f w LC f x e


 

     dx

                ( ) iwxf x e dx



  .                                 (2.3.6)   
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For ) , 1( ,f L   ˆ ( )f w exists for w R  .The integral (2.3.6) is called the Fourier 

Transform of ( )f x , and denoted as ]f . 

 

( ,x )     ( )  Here, we want to see how to impose conditions for f x ,  such 

that ( )f̂ w  ha e good property e Fs sam as th ourier coef

  

ficients. The property we hope 

is

 

           '( ) ~ [ '( )] ( ) [ ( )]f x f x iw f    .x

ose that 

                     (2.3.7) 

 

Supp ( )f x  is continuous and piecewise continuously differentiable, then 

      

 

( ) iwxf x e dx


  

 

converges for each w, and  

 

                   as     | ( ) | ( ) 0iwxf x e f x  x  , 

.            lim ( ) 0f x 
x

 

By definition  

[ '( )] '( ) iwxf x f x e



    dx

  ( ) ( )( )]iwx iwxf x e f x iw e dx


 
    

                    ]                             (2.3.8) 

 

Hence (

( ) [ ( )iw f x   .

)f x  has the Fourier Transform [ ]iw f  . 

 

 operational for    There are some other mulas for Fourier Transform [1]: 

[ ( )] [ ]x f
dw

 . 
d

ixf 1.

1 ˆ[ ( )] ( )
| |

f ax b e f
a a

.                            (shif
b

iw
a w

   t formula) 2.
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ˆ[ ] (icxe f f w c   ) . 3.

1 ˆ ˆ ( )]f w c   . [cos ( )] [ ( )
2

cxf x f w c 4.

1 ˆ (f 5. ˆ[sin ( )] [ ) ( )]
2

cxf x w c f w c
i

   . 

 

Inversion formula is [1] 

 

     
1 ˆ( ) lim ( )

2

L iwx

LL
f x f w e





  dw . 

 

ˆ ( )f w determines ( )f x uniquely.  

 

    The convolution theorem  for Fourier transform is useful tool. 

 

Convolution Theorem 

 

     If ( )f x and ( )h x are both absolutely integrable and square integrable, and if 

ˆ ˆ ˆ( ) ( )f w h w( )f w and are their ˆ( )h w Fourier transforms, then the product  is the 

ourier transform of the convolution product *f hF .[1] 

           

 

ˆ ˆ[ * ( )]( ) ( ) ( )f h x w f w h w . 

 

     The following, we solve the infinite-slab heat flow problem. 

           
2

2
0

u u

t x

 
 

 
      for   x     , , 0t 

            ( ,0) ( )u x f x      for   x    , 

             bounded.             ( , )u x t

 

, and
2

2

u

x




 If ( )f x  is abso able. Making t sislutely integr he hypothe  that , u
u

t




, 
u

x




are continuous i d t, and absolutely integrabn x an le in x, uni y in t. Then  and forml u
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u

t




 as 0 x  . 

By (2.3.6) and (2.3.8), we obtain 

 

ˆ
            ˆ ( ) ( ,t tu w u x


) ( , )iwx u

t e dx w t
t

 
 

 , 

.  

 with respect to x to the problem. We have an ODE. in t 

2ˆ ˆ( ) ( , ) ( , )iwx
xxu x t e dx w u x t




  xxu w            

 

Taking the Fourier transform

 

            tu w u2ˆ ˆ 0  , 

ˆ0) ( )f w            ˆ( ,u w

ˆû f

ke the inversion formula 

. 

 this ODE is 

            

Ta  

 

The solution of

 

            e .  
2w t

 

 

21 ˆ            ( ,

rier t

  

)
2

u x t
  ( ) w t iwxf w e e dw

  


 .                      (2.3.9)   

ransform of 

    

 
2w t

     

e  is the Fou
 



 
2

41

4 t
x

te


, 

tely integra e and bounded for t >0. By the convolution theorem

 

which is absolu bl  

of Fourier transform  

 
2( )

41
( , ) ( )

x y
tu x t f y e dy

 
  .                          

4 t 
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Example1.3 (Us
 

ing Fourier transform) 

          
2

2
0

u u

t x

 
 

 
x    ,  , 0t      for  

           
2

( ,0) xu x e      for  x   ,   
           bounded. 

 
( , )u x t 

Solution 
2xe       We take  with respe the Fourier transform ct to x to 

 
2

2
4

wx iwxe e dx e
 


 .            

 

By (2.3.9) we have 

 
2w

           
2

4
1

( , )
2

w t iwxu x t e e e dw


   


   

                
1

1 42(1 4 )
x

tt e


  .  

 

2-1-4 Sine and Cosine Transform
 

 

  If 
 
 ( )f x  is given for . The Sine transform of 0 x   ( )f x  defined as 

 

           [ ] ( )sin
0s f f x wxdx


   . 

e extend the 

 

( )f x  to the domain x     W as an odd function, i.e. 

( ) ( )f x f   x . The Fourier transform of ( )f x  can be written as 

 

            ( ) )(cos sin )ˆ( ) (iwxf w x f x
 


  f x e d wx i wx dx

   

( )sini f x wxdx


                 

    x

] . 


   

0
2 ( )sini f x wxd


                

2 [si f                  
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By the inversion form

 

ula  

1
( ) iw 2 [ ]

2
x

sf x              e i f dw




 .                      (2.4.1) 

ince the Sine transform

 

S  is an odd function of . The (2.4.1) becomes to 

           

w

 

0

1
( ) 4sin [ ]

2 sf x wx



    f dw

                 
0

2
sin [ ]wx f dw


  s

 

    
2

[ ]]s s f


   . 

nsform

             

 

We define the Cosine tra  as 

           

 

0
[ ] ( )cosc f f x wxdx


   .  

 

( )f x  to the domain x     as an even function, i.e. We extend the 

( ) ( )f x f x  . Similarly, the Fourier transform of ( )f x  becomes to  

 

            c
ˆ ( ) 2 [ ]f w f  . 

 

y the inversion formula 

           

B

 

0

2
( ) cos [ ]cf x wx




   f dw 

                 
2

[ ]]c c f


   . 

sine transform

 

    Sine and Co  are useful in solving problems with the boundary 

condition only at .We note that 0x 
 

           
0

[ '] '( ) sins f f x wxdx                

                 


 

0 0
( )sin ] ( )cosf x wx w f x wxd


   x       
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                 ,   

           

[ ]cw f  

2"] (0) [ ]s sf f w w f     ,                          (2.4.2a) 

           2"] '(0) [ ]c cf f w      f ,                         (2.4.2b)  

 

provides ( )f x  and  as '( ) 0f x  x  . By (2.4.2a) and (2.4.2b), the sine 

transform is pa )rticul hearly useful w n (0f  is given. The cosine transform is useful 

when '  is given. 

    The following is a heat conduction problem in a semi-infinite slab and use the 

form

(0)f

 

 

sine trans  to solve it. 

  

 
2u u 

 
2

0
t x 

         for   0 x    , 

,   

0t  , 

           (0, ) 0u t  ,  0t  , 

           ( ,0) (u x f x ) 0 x   , 

            bounded.                                     (2.4.3) 

 

( , )u x t 

, and 
2

2
u

x



 is absolutely integrable, and that , u u

t


 , u
x


( )f x  Suppose that 

are continuous ly int  x and absolute egrable in  for any fixed t. Taking the sine transform 

cwith respect to e the (0, ) 0u t   is given and put ( , )U w t  = [ ]s u . The  x sin

problem (2.4.3) becomes to 

 

            2 0
U

w U



t



. 

he solution 


,  

            ( ,0) [sU w  

 

]f

T

 

            ](
2

( , ) [ ) w t
sU w t f w e  . 

on formula (2.4.1) 

 

By the inversi
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2

0
( , ) su x t

 
2

[ ]( ) sinw tf w e wxdx
   .                  (2.4.4)             

 

 

Example1.4 (Using sine or cosine transform) 

          
2

2
0

u u 
 

t x
       for   

 
0 x   ,  

           ,  

0t  , 

(0, ) 0u t  0t  , 

( ,0) xu x e           , 

            bounded. 

0t  ,     

( , )u x t

 

Solution 

   The initial condition (0, )u t  is given. Using the sine transform0   to solve this 

roblem. Putting [ ]s ( , )f U w t  , p

 

           2U
w U

t


0  ,  

          



20
( ,0) sin

1
x w

U w e wxdx
w

  
 . 

 

f this ODE The solution o

 

2

2
( , )

1
U w t


w tw

e
w

 . 

on formula 

           

 

By the inversi

 

2

20

2
( , ) sin

1
w tw

u x t e wxdw
w

           


 
 . 

ransform

 

 

2-1-5 Laplace T  

   We consider the function 

 

( )f x  which becomes to zero for any negative value 

  

 

of x. That means  

 

            ( ) 0f x      for 0x  . 

 - 24 -



 

If is absolutely integrable, so is  for . It follows that the 

rm

1 ( )s xe f x  ( )sxe f x
1s s

Fourier transfo  ˆ ( )f   of such a tio func r exists alytic in a 

a

n (if it eve ) is an

lf-plane Im 1sh 

Lapla

. 

 

    We define the ce transform 

 

                                                   

e properties of Laplace transform:

[ ]( ) [ ]( )L f s f is 
or 

           . 

 

0
[ ] ( )sxL f e f x dx

  

By the integration by parts, we have som  

          , 

If 

 

[ '] [ ] (0)L f sL f f  

           2[ "] [ ] (0) '(0)L f s L f sf f         

 

( )f x  and  vanish when ( )g x 0x  ,  

 

           
0

) ( ) (* ( )f g y d


x f y g x y     for                      

nd 

     for    

0x  ,

a

           0* ( ) 0f g x  x  .       

 

The convolution theorem for Laplace transform follows from that for the Fourier 

transform. 

 

   

By inversion theorem for the Fourier transform

         [ * ] [ ] [ ]L f g L f L g  . 

 

, we have the inversion formula for 

rmLaplace transfo  [1]. 

 

            
0

1
( ) lim [ ]( )

2

iL s x

iL sL
f x L f e d

i
 


                       (2.5.1

  
)  

 
where 1s s . [ ]( )L f   is analytic for 1Re s  , and the path is vertical. We call 

( )f x  is the inverse Laplace transform of [ ]L f ( )s . 
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    No e  the problem of heat conduction in an infinite slab. w, w consider

 

2

2
0

u u 
t x
 

 
     for x     , 0t  ,                        (2.5.2a) 

            ,  ( ,0) ( )u x f x x    ,                         (2.5.2b) 

 bound               

ace transform 

            ed.                       (2.5.2c)( , )u x t

Taking the Lapl t and let with respect to 

   

 

            
0

( , ) ( , ) .  tsU x s e u x t dt
 

 

We have 

 

0
( , ) ( ,0) ( )ts u

e dt sU x s u x sU f
t

  
   

 x .         

 

 and 
2

2

u

x




 
u

x




are continuous and bounded, we have Suppose that 

 

           
2 2

ts u U
2 20

e dt
x x



 

 

2.5.2a) becomes to an ODE with fixed t. 

 

  
 . 

The equation (

2

2
( ) 0sU f x

U

x


  


.                                 (2.5.3) 

eans of the Fourier transform

            

 

Solving it by m . Letting 

 

            


  , ˆ ( , ) ( , ) iwxU w s U x s e dx


[ ]( , ) ( , ) iwx
xx xxU w s U x s e d




                x

                       . 2 ˆ ( , )w U w s 
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The ODE (2.5.3) becomes to  

 for  

 

2ˆˆ ˆ( , ) ( ) ( , ) 0sU w s f w w U w s   x               , .  (2.5.4) 

he solution of (2.5.4) is 

0s 

 

T

 

 

 

2

ˆ ( )fˆ ( , )            
w

s w
. 

he inverse Fourier transform

U w s 

 

2

1

s w
 is | |1

2
s xe

s
T  of . By the convolution 

theorem of Fourier transform, the solution of (2.5.3) is 

  

            | |1
( , )

2
U x s e

s

 


  . 

 

( )s x y f y dy

ng the inverse Laplace transform Usi (2.5.1), we obtain 

           

  

| |

0

1 1
( , ) lim ( ( ) )

2 2

s iL x y t

s iLL
u x t e f y dy e d

i
  

 
   

 
    

                  |1 1 1
lim

s iL x ye | ) ( )
2 2

t

s iLL
e d f y dy

i
 

  
.    (2.5.5) 

 

Now, we need the inverse Laplace transform

    

| |1 s x ye
s

  of . The function 

| |1
( ) x y   is a m anch which g e


 ultiple-valued function. We choose a particular br

 cut along the negative real axis: is arg     . To solve  

 

           
| | 1

[ ] lim ( )
2

s x y
s iL t

L

e
e g d

is
1

s iL
L  



  
    ,  0s  . 



We apply Cauchy’s theorem to the integral of 

 

( )te g   over the contour C which is 

shown in Figure (2.5.1)     
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                            Figure (2.5.1)  Contour C. 

 

We know that ( )g   is analytic inside this contour. We obtain  

 

 , 
6

2

( ) ( ) ( ) 0
n

s iLt t t

c s iL C
n

e g d e g d e g d       





    
6

( ) ( )
s iL t te g d e g d 

2 ns iL C
n

   


 

 .                         (2.5.6) 

Contour

 

 

   

           

2C

   from   
2

is Le     to  , 

id iLe d            . 

 

hen  T

 

           
2

( ) (Le te g s Le
2

( ) )
it s i i

C
e g d iLe d

       . 

Since 
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1 1
| ( ) | | | 0i

i
g s Le

s Le s L


  
 

              as  . 

’s lemma, the integral over  becomes zero.  

ontour

L 

 

By the Jordan 2C

 
C  6C  

             from    to 
3

2


, is Le   

           id iLe d  . 

’s similarly to contour We have that the integral over becomes zero. 

 

2C . 6C  It

 
Contour 4C  

 

           ie       from     to - , 

           id i e d   , 

4

( ) ( )
C

e g d e g e i e d


it e i i        


 .                  (2.5.7)            

 

We know 

 

1 1
| ( ) | | |i

i
g e

e







            .  

nd  

          

 

a

| |
ie t te e
  . 

(2.5.7) becomes to 

     

 

 

4

1
| ( ) | 2t t

C
e g d e   


 .                                 (2.5.8) 

e let 

 

W 0  , then the integral in (1.5.8) approaches zero. 

ontour
 
C  and 3C  5C  

2   , then We put 
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| |1
( ) i x yg e arg  ,        

i
         for   

| |1
( ) i x yg e

i



 


     for   arg         , 

       2d d    . 

 

The integrals over and  become to 

 

            

3C  5C

2 | |t i x y

3

0
( ) ( 2 )t

C

e
e g d d

i


 

   
  , 

  

 
2

            
5 0

( ) (
C

e d
i

| |

2 )
t i x y

t e
g d

 
   

  
  

  . 

, 

 

L  0   By (2.5.6) and letting 

 
2 2| | | |0

0
           li

L
dm ( ) ( 2 ) ( 2 )

t i x y t i x ys iL t

s iL

e e
e g d d

i i

   
      

 

      

 
    

                   

      
2 2| | | |

0
( 2 ) ( 2 )

t i x y t i x ye e
d d

i i

   
0

                       
 

     
    

    

               



2 | |

( 2 )
t i x ye

d
i

 

 


  


  

              

2

0

4
cos | |te x y

i
 d 

 
  .  

 
| |s x ye

s

 

 The inverse Laplace transform of 

 

            
2

| |
1

0

2
[ ] cos ( )

s x y
te

L e x y d

s
 

 
   . 

at the Fourier transform of 
2


 



 is 4

w

te
t

 
te Recalling th . Then  

 

2 2

0

2
cos ( ) cos ( )t te x y d e x y  d  


  


                 

                                 
 2 | |t i x ye e d   


    
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2( )
41 x y

te
t

 
 .                                    

 

Hence,  
2(1

( , ) ( )
x y

u x t f y e
 


 

)
4

2
tdy

t
.                      (2.5.9)            

ison of Separation of Varia

             

 

 

2-1-6 Compar bles and Finite Fourier 
Transform 

    We use separation of variables

 

  to solve homogeneous problem and use finite 

Fourier transform to solve nonhomogeneous problem. If ( , ) 0F x t  , we identif

answers. 

y the 

    

 

     Here we consider a homogeneous problem. 

        
2

2
0

u u

t x
 

 
 

     for  0 x    , 0t  , 

            ( , 0) ( )u x f x        for  0 x   , 

            ,   (0, ) 0u t  0t  , 

( , ) 0u t             ,   

 

eparation o -1 

                               

where  determined by 

            

t  0 . 

The answer by s f variables in 1

 

2

1

( , ) sinn t
n

n

u x t b e nx






  ,            

 

 nb 

 

0

2
( )sinnb f x nxd




  . x

sing finite Fourier transform

 

U  to solve this problem by letting ( , ) 0F x t   

 

2 2( )

0 0
1

2
( , ) ( ( ) ( ) sin )sin

t n t n t
n

n

u x t e B d e f x nxdx n
   




  



    x .   (2.6.1)  
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where 

            
0

2
( ) ( , ) sinnB t F x t nxdx




  .     

    

. We have 

 

( , ) 0F x t  ( ) 0nB t Since . Then (2.6.1) becomes to 

            

 

2

0
1

2
( , ) ( ) sin sinn t

n

u x t e f x nxdx nx









   . 

 

Let 

            

  

0

2
( )sinnb f x nxd




  . x

n 

 

The

            n
2

1

( , ) sinn t
n

n

u x t b e x






 , 

1

( ) sinn
n

f x b




  . nx

2-1-7 Comparison of Fourie Transform and Sine and Cosine 

 

 

r 
Transform 

   In general, we use sine and cosine transform

 

  to solve half-infinity slab heat 

conduction problem. But if we extend the ( )f x  to the full-line domain x    

as an odd or even function., we can also use the Fourier transform to solve it. 

 

    Here we consider an half-infinity problem, and extend the ( )f x  to x 

as an odd function. 

   

            
2u u 

2
0

t x
     for    

 
x     , , 

,  

0t 

            ( , 0u x ) ( )f x x    , 

            ( )f x  is an odd function. 

Since (

 

)f x  is an odd function, we have 
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ˆ ( ) 2 [ ]( )sf w i f w  .             

 

By (2.3.9)  

          

 

 
21

( , ) [ ]( ) (cos sin )w t
su x t i f w e wx i wx dw


 


     

2

0

2
[ ]( ) sinw t

s f w e wxdw


                    . 

 

Since [ ]( )s f w  and are odd functions of w and is even function of 

Compar f F

sinwx coswx 

w.  

 

 

2-1-8 ison o ourier Transform and Laplace Transform 
 

     In 1-3 and 1-5, we use Fourier transform and Laplace transform to solve the 

full-line slab heat conduction problem. Here we want to identify the answers  

 

21 ˆ( , ) ( )
2

w t iwxu x t f w e e dw


  


  ,                         (2.3.9) 

and 

            

 

2( )
41

( , ) ( )
2

x y
tu x t f y e dy

t

 


                           (2.5.9) 

 

 

21 ˆ( , ) ( )
2

w t iwxu x t f w e e dw


  


   

21
lim ( ( ) )

2

L iwx w t iwy

LL
e e f y e dy dw


 

 
                      

2 ( )1
( )(lim )

2

L w t iw y x

LL
f y e e dw


  

 
   . dy

rier transform

                  

 

We have shown the Fou  of is 
2axe

2

4

w

ae
a

 

 in 1-5. 

Then   
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2( )
4

1
( , ) ( )u x t f y e dy

  
           

2

x y
t

t 
 

          
2( )

41
( )

2

x y
tf y e dy

t

 


  .         

 

      For Fourier transform we need the domain is full-line. So we usually take 

Fourier transform on P.D.E. with respect to x since the domain of x is x    . 

 And for Laplace transform we need the domain is half-line. So we usually take on 

.D.E. with respect to t since the domain of t is . 

-2. Higher-Dimensional Heat Equation

0t P

 

 

2  

   In this chapter, we use two methods: separation of variables

 

   and Fourier 

transform.  

 

 

2-2-1 The Method of Separation of Variables in Cylindrical 
Coordinates 

    In 2-1-1 we have shown using the method of separation of variables

 

  in one 

eat 

drical coordinates, independent of z [3].  

dimensional problem. Here we won’t do it in detail. Now we consider the h

equation in cylin

            2

2 1 1
( )tu k u k u u u   

     , 

            0 1  ,  0 2   ,  0t  .   

( , ,0) ( , )u f                                      (2.9.1) 

We let 

 

1( , , ) ( ) ( ) ( )u t f f f2 3 t               . 

 

Substituting into (2.9.1) and dividing by ( , , )Ku t  , we obtain 
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2 21 1
3            

3 1( ) 2

11 ( ) "" ( ) ''( )
ff ff t

f
 

  .                          (2.9.2) 

By (2.9.2) we can obtain three ODEs. 

            

Kf t f

 

 

3 3'( ) ( ) 0f t Kf t  ,                                   (2.9.3) 

            2 2" 0f f  ,                                          (2.9.4) 

            
1 1 12

1
" ' ( ) 0f f f


 

    ,                                  (2.9.5)  

 

where   and   are constant. The solution of (2.9.3) is 

 

3 ( ) Ktf t e             . 

inc

 

e 2 ( )f  -periodic function, the solution of (2.9.4). The  is a 2  must be S

positive. 

 

            2 ( ) cos sinf A m B m      ,  0,1, 2.....m   

 

here . 

s equation form is 

2m w

 

    The general Bessel’

 

2

'
" ( 1) ( ) 0

y
y d y

x x

      

 

And the equation (2.9.5) is a Bessel’s equation in two dimensional form.  

 

1 1 12

1
" ' ( )f f f 0


 

     

 

We use Frobenius method. Using power series to solve the Bessel’s equation with 

singular point 0   
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n            
0

n
n

a x 


  y


And we have th te solu ion is the Bessel’s function 

 

( )mJ   .             

where  
2

2
0

( )
( )

2 ( )!

n n m

m m n
n

J
m n n

  








 !
            . 

The separated solutions of the heat equation [3

 


 

]. 

( , , ) ( )( cos sin ) Kt
mu t J A m B m e       

.             

 

If | ( , ) |f d d      is finite. The series converges uniformly. 

 

K

,

( , , ) ( )( cos sin ) n t

m n

u e  


  

Example 2.1

m n mn mnt J A m B m    
 

 (Using separation of variables) 

 

            tu K u2          for     0 1  , 

            (1, , ) 0u t  ,  , 0t 
2( , ,0) 1u                ,  0 1  . 

 

Solution 

     The requi utiored separated sol ns are 

 

( )( cos sin ) Kt
mJ A m B m e       . 

ondition requires that 

            

 

( )m
nR x ( )mJ R  0 . W  let eThe boundary c , a positive 

ero of the Bessel function The solution becomes to z mJ . 
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( ) 2

2

( )( )

,

( )( cos sin )

m
nx Ktm

n R
m mn mn

m n

x
J A m B m e

R

  


 . 

To satisfy the initial condition 

           

 

 

 
( )

,

1 ( )( cos sin
m

n
m mn mn

m n

x
 )A m B m

R


J    . 

This is a Fourier series in (

 

cos ,sinm m  ), whose coefficients are Fourier-Bessel 

expansion with 
2

  . Here we use the Fourier-Bessel expansion. We have  

 

2
0

1

1 (n n
n

)x A J xx


    

 

where  and  0 ( ) 0nJ x 

 

1 2 1

0 00 0
(1 ) ( ) ( )n n n

2x xJ xx dx A J xx xdx               ,   1, 2...n  . 

 

We compute the nt xx  left side integral by letting and use integration by parts 

ice. 

      

tw

 

       
1 2 2

0 040 0

1
(1 ) ( ) ( ) ( )

nx

n n
n

2x xJ xx dx x t tJ t dt
x

     

                              13

4
( )n

n

J x
x

 . 

The right side integral 

 

 

1
(A J xx           2

0 10
) ( )

2
n

n n n

A
xdx J x . 

 

The required expansion is 
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           2 0
3

1 1

( )
1 8

( )
n

n n n

J xx
x

x J x





   . 

 

herefore the solution of the initial-value problem is  

           

T

 

2

20
3

1 1

( )
( , , ) 8

( )

nx Kt
n R

n n n

J xx
u t e

x J x
 





  . 

 

-2-2 Multiple Fourier Transform

 

 

 

2  

   We use Fourier transform

 

  to solve heat conduction problem in one dimension. 

           

Here we use it in two dimension. We consider an initial value problem. 

 
2 2

2 2
( )

u u u

t x y

  
 0  

  
  for ,x y     ,           (2.10.1a)  

 

0t ,

             ( , ,0) ( , )u x y f x y , ,x y              (2.10.1b)   ,        

 bounde            

uppose that u , 

            d.                      (2.10.1c) ( , , )u x y t  

 

, 
2

2

u

x




, and 
2

2

u

y




 
u

t




S are continuous and absolutely integrable with 

respect to x  y and  Taking the Fourier transformand uniformly in t.  with respect to x

into (2.10.1a). We obtain 

 

 

           
2

2
2

ˆ ˆ
ˆ( )

u u
w u

t y

 
0   

 
 ,                               (2.10.2a) 

            .                                 (2.10.2b)    

In one dimension, we take the Fourier transform 

ˆˆ( , ,0) ( , )u w y f w y

 

one time and have the problem 

become into an ODE. But here it is still a PDE. We take the Fourier transform again 

with respect to y. The equation (2.10.2) goes to be 

 

2 2
1 2

ˆ̂
ˆ ˆˆ ˆ( )

u
w u w u

t


0   


,                              (2.10.4a)             
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                                          (2.10.4b) 1 2 1 2

ˆˆ ˆˆ( , ,0) ( , )u w w f w w .

 

After taking twice Fourier transform, 

.10.4) is 

                        (2.10.5) 

 

he function  is the Fourier transform with respect to y of 

 

            

we obtain an O.D.E.. The solution of the 

(2

          
2 2

1 2( )ˆˆ ˆˆ( , , ) ( , ) w w tu w w t f w w e 1 2 1 2 .

2 2
1 2( )w w te T

2y2
1 41

4
w t te e

t
 . 

 and t fixed. Ta on the equation (2.10.5) with 

spect to And use the convolution. We have 

 

We keep the king inversion formula 1w

2 . re w

 

            
2

1
( )1 ˆˆ( , , ) ( , )

w t
u w y t f w e 4

1 1
4

y

t d
t



 




 . 
 



 

By the step again. 

 
2 2( ) ( )

41
( , , ) ( , )

4

x y

tu x y t f e d d
t

 

  


  
 

 
               .  

xample2.2

 

 

E  (Using multiple Fourier transform) 

 

            
2 2

( ) 0
u u u  

2 2t x y
       for  

  
,x y     ,  0t , 

            
2 2

( , ,0) x yu x y e  , ,x y    , 

              bounded. ( , , )u x y t

 

Solution 

    Taking Fourier transform with respect to x. We obtain 
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2
2

1 2

ˆ
ˆ( )

u u
w u

t y

 
            0   

 
,     

            
2

1
2

4
1ˆ( , ,0)

w
yu w y e e


 . 

aking Fourier transform with respect to y. 

            

 

T

 

2 2
1 2

ˆ̂
ˆ ˆˆ ˆ( )

u
w u w u

t


0   


, 

2 2
1 2( )

4
1 2

ˆ̂( , ,0)
w w

u w w e
 

            . 

he solution 

            

 

T

 
2 2

1 2
2 2

1 2

( )
( )4

1 2
ˆ̂( , , )

w w
w w tu w w t e e

 
  .       

y the convolution  

            

 

B

2 22 2 ( ) ( )

44
1

( , , )
4

x y

tu x y t e e d d
t

  

 


     

 
   . 
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Ⅲ

 

   In this chapter, we use finite difference methods

.  Numerical Method for 

Parabolic Equation  

 

 

  to have the data of problem by 

-1 Finite Difference Method of one-dimensional problem

Mathematica 6. We can draw the graph of the heat conduction problem by 

Mathematica 6. The following are two problems: one-dimensional and 

two-dimensional problems.  

 

 

3  

   Here we consider a one-dimensional heat conduction problem. 

 
 

 
2

2
0

u u

t x
 

 
 

   for  0 1x             ,                  (3.1.1a) 

,       

0t  ,

            0u t  ,   t                      (3.1.1b) (0, ) (1, )u t 0

               0 1( ,0) (1 )u x x x  , x  .                         (3.1.1c) 

 

u

x




 The definition of the partial derivative is the limit of a difference quotient 

           

 

0

( , ) ( ,
( , ) lim

h

u u x h t u
x t

x h

 



.  

)x t

e have  

           

 

W

 

( , ) ( ,
( , ) ~

u u x h t u x
x t

x h

  


 
)t

   

if h is small enough. And it’s similar to 
2

2

u

x




 and 
u

t




. We have 

           

 

( , ) ( , )
( , ) ~

u u x t l u x t
x t

t l

  


                            (3.1.2)   
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and 

 
2

2 2

( , ) 2 ( , ) ( ,
( , ) ~

u u x h t u x t u x h
x t

x h

   


            
)t

.                (3.1.3) 

in of t is . Dividing the domain i

tting 

      

 

We let the doma nto some partitions by 0 1t 
le

  

      ix ih ,  l ,   jt j 0,1....., 1i m  ,   0,1......,j n , 

where  

 

1

1
h

m



, 

1
l

n
 .  

 

   Now, we fix the i and j. Substituting (3.1.2) and (3.1.3) into (3.1.1a).  

           

 

, 1 , 1, , 1,

2

2u u u u u  i j i j i j i j i j

l h
                        (3.1.4)  

. 

 

 

where  

            , ( , )i ju u ih jl

The relation 

 

, 1 , 1, , 1,2
( 2i j i j i j i j i j

l
u u u u u

h
               ) . 

That means can be obtained by linear combination of , and 

 

, 1i ju   1,i ju  , ,i ju 1,i ju  . 

We have the initial condition ( ,0) (1 )u x x x  . So we can ob ea ,i ju . 

 

tain ch 

Method: 

  We make a linear system f =Tu  
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2 2

1,0 2,0 0,0

2 2

2,0 3,0 1,0

2 2

1,0 ,0 2,0

2( 1) ( 1)
(1 ) ( )

0

2( 1) ( 1)
(1 ) ( )

0

2( 1) ( 1)
(1 ) ( )

0

0 1

m m m

m m
K u K u u

n n

m m
K u K u u

n n

m m
K u K u u

n n

mn

f

 

  
   

 
 
 
 
  

   
 
 
 
 
  

   
 
 
 
 
 
  







     

1,1

1,2

1,

2,1

1,

,1

, 1

n

m n

m

m n

u

u

u

u
u

u

u

u mn



 
 
 
 
 
 
 
  
 
 
 
 
 
  
  






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0

0
mn mn

A B

T B B

B A


 
 

  
 
 


     

 

 

2

2

1 0

( 1)
2 1 0

( 1)
2 1 1

0

0
m m

m
A K

n

m
K

n 

 
 
 

   
 

  
 


 

 

 

2

2

2

0 0 0

( 1)
0 0 0

( 1)
0 0

0

( 1)
0 0

m m

m
K

n

mB K
n

m
K

n 

 
 
  

 
   
 
 
 
  
 
 





 

   



0

0

 

 

 

 

 

We have each  from  with the initial condition  . ,i ju 1u T f ( ,0) (1 )u x x x 
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   Here we put , , and 4m  40n  1k   for this problem. Here are some figures 

of solution to problem (3.1.1)  by Mathematica 6.. 

 
          Figure 3.1  Numerical  solution  of  equation  (3.1.1)  with  k=1.Numerical solution of equation (3.1.1) with k=1.  

             

          Figure 3.2  Numerical solution of equation (3.1.1) with k=1. 

We have the exact solution of this problem (3.1.1) 

 

            
2 2(2 1)

3 3
1

8 1
( , ) ( sin(2 1) )

(2 1)
n t

n

u x t e n x
n

  



 



 
 . 

 

The following are some figures of truncation of exact solution up to 1000 and the 

campare between numerical solution and truncation of exact solution up to 1000 of 

problem (3.1.1) 
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         Figure 3.3  Truncation of exact solution of problem (3.1.1) up to 1000  

with k=1. 

 

            

   

        Figure 3.4  Truncation of exact solution of problem (3.1.1) up to 1000  

with k=1. 

                 
 

      Figure 3.5  The difference of Numerical solution of problem (3.1.1) with 

Truncation of exact solution of problem (3.1.1) up to 1000 with 

k=1. 
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      Figure 3.6  The difference of Numerical solution of problem (3.1.1) with 

Truncation of exact solution of problem (3.1.1) up to 1000 with 

k=1. 

 

 
Figure 3.7  Comparison between Numerical with Truncation of Exact  

solution up to 1000. Yellow is numerical solution. Blue is  

Truncation of exact solution. 

 

 Figure 3.8  Comparison between Numerical with Truncation of Exact  

solution up to 1000. Yellow is numerical solution. Blue is  

Truncation of exact solution. 
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Here is the table for the data of the difference of numerical solution of problem 

(3.1.1) and truncation of exact solution of problem (3.1.1) up to 1000. 

 

 

Table 3.1  The difference of numerical solution of problem (3.1.1) and truncation 

of exact solution of equation (3.1.1) up to 1000. 
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We change the thermal conduction coefficient K from 1 to
1

4
. 

.  
 

            Figure 3.9  Numerical solution of problem (3.1.1) with k=1/4  

 

           Figure 3.10  Numerical solution of problem (3.1.1) with k=1/4. 

 

 

     

            Figure 3.11  Truncation of exact solution of problem (3.1.1) up to 

1000 with k=1/4 . 
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   We can find that if the thermal coefficient k becomes smaller, is decreasing 

slowly. And if k becomes bigger,  is decreasing fast.  

( , )u x t

( , )u x t

 

 

3-2 Finite Difference Method of two-dimensional problem 
 

    Here we consider a two-dimensional heat conduction problem. 

 

            
2 2

2 2
( )

u u u
k

t x y

  
yx0  

  
  for     ,    , , (3.2.1a) 0t

            (0, , ) ( , , ) 0u y t u y t    for  y    , ,        (3.2.1b) 0t 
            ( ,0, ) ( , , ) 0u x t u x t    for  x    , ,         (3.2.1c) 0t 
            ( , ,0) ( ) ( )u x y x x y y    .                          (3.2.1d) 

 

    The definition of the partial derivative 
u

x




 is the limit of a difference quotient 

 

            
0

( , , ) ( , ,
( , , ) lim

h

u u x h y t u x y t
x y t

x h

  



)

. 

 

We have  

 

            
( , , ) ( , , )

( , , ) ~
u u x h y t u x

x y t
x h

  


y t
.   

 

if h is small enough. And it’s similar to 
2

2

u

x




, 
2

2

u

y




 and 
u

t




. We have 

 

            
( , , ) ( , , )

( , , ) ~
u u x y t r u x

x y t
t r

  


y t
,                      (3.2.2) 

            
2

2 2

( , , ) 2 ( , , ) ( , , )
( , , ) ~

u u x h y t u x y t u x h y t
x y t

x h

    


,         (3.2.3) 

            
2

2 2

( , , ) 2 ( , , ) ( , , )
( , , ) ~

u u x y l t u x y t u x y l t
x y t

y l

   




1

.          (3.2.4) 

 

Since the domain is half-infinity with respect to t. We let the domain of t is 

. Dividing the domain into some partitions by letting 0 t 
 

 - 50 -



            x ih ,  y jl , t pr ,   

0,1,..., 1i m  , 0,1,...., 1j n  , 0,1,..,p s .  

where 
1

1
h

m



, 

1

1
l

n



, and 

1
r

s
 . 

 

    We fix i, j, and p. Substituting (3.2.2), (3.2.3), and (3.2.4) into (3.2.1a), we have 

  

          
, , 1 , , 1, , , , 1, , , 1, , , , 1,

2 2

2 2
( )i j p i j p i l p i j p i j p i j p i j p i j pu u u u u u u u

r h l
        

  . 

 

where  

, , ( , ,i j pu u ih jl p )r  . 

 

The relation 

 

            

2 2 2
, , 1 , , 1, , 1, ,

2
(1 (( 1) ( 1) )) ( 1) ( )i j p i j p i j p i l pu u m n m u u

s s

 
           

                    
2

, 1, , 1,( 1) ( i j p i j pn u u
s


    ) . 

 

That means  can be obtained by linear combination of , , , 

, and . We have the initial condition (3.2.1d). So we can obtain each 

.  

, , 1i j pu 

, 1.i j pu 

1, ,i j pu  , ,i j pu 1, ,i j pu 

, 1,i j pu 

, ,i j pu

 

Method: 

   We make a linear system   f=Tu 
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2 2
2 2

1,1,0 2,1,0 0,1,0 1,2,0 1,0,0

2 2
2 2

1,2,0 2,2,0 0,2,0 1,3,0 1,1,0

2 2
2

1, ,0 2, ,0 0,

( 1) ( 1)
(1 2 ) ( 1) ( ) ( 1) ( )

0

( 1) ( 1)
(1 2 ) ( 1) ( ) ( 1) ( )

0

( 1) ( 1)
(1 2 ) ( 1) (n n

m n K K
K u m u u n u u

s s s

m n K K
K u m u u n u u

s s s

m n K
K u m u u

s s
f

  
      

  
      

  
   







2
,0 1, 1,0 1, 1,0

2 2
2 2

2,1,0 3,1,0 1,1,0 2,2,0 2,0,0

2 2
2 2

, ,0 1, ,0 0, ,0 , 1,0 , 1,0

) ( 1) ( )

0

( 1) ( 1)
(1 2 ) ( 1) ( ) ( 1) ( )

0

( 1) ( 1)
(1 2 ) ( 1) ( ) ( 1) ( )

0

0

n n n

m n m n n m n m n

K
n u u

s

m n K K
K u m u u n u u

s s s

m n K K
K u m u u n u u

s s s

 

 








  

  
      

  
      









1mns








 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 






              

1,1,1

1,1,2

1,1,

1,2,1

1, ,

2,1,1

, , 1

s

n s

m n s mns

u

u

u

u
u

u

u

u 

 
 
 
 
 
 
 
   
 
 
 
 
 
  
 






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0

0
mns mns

A B

T B B

B A


 
 

  
 
 



 

 

2

2

2

0 0 0

( 1)
0 0 0

( 1)
0 0

0

( 1)
0 0

ns ns

m
K

s

mB K
s

m
K

s

0

0


 
 
  

 
   
 
 
 
  
 
 





 

   



 

 

              

ns ns

C D

D C D

D C D
A

D C D

D C


 
 
 
 

  
 
 
  
 


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2 2

2 2

2 2

2 2

1 0 0 0

2
1 [( 1) ( 1) ] 1 0 0 0

2
0 1 [( 1) ( 1) ] 1 0

2
0 0 1 [( 1) ( 1) ] 1

0

2
0 0 0 1

0

0

[( 1) ( 1) ] 1
s s

K
m n

s
K

m n
sC

K
m n

s

K
m n

s 

 
 
    
 
 

    
 
 

    
 
 
 
     
 







 

    



 

2

2

2

0 0 0

( 1)
0 0 0

( 1)
0 0

0

( 1)
0 0

0

0
s s

n
K

s

nD K
s

n
K

s 

 
 
  

 
   
 
 
 
  
 
 





 

   



 

 

We have the each  from  with the initial condition , ,i j pu

) (x y

1u T f

( , ,0) ( )u x y x y    . 

 

 

    Here we put , , 4m  4n  80s  , and 1k   for this problem. We have the 

exactly solution of this problem 
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The following are some figures of solution to this problem by Mathematica 6. Since 

this solution  is three dimensional type. We fix the t to show the solution.  ( , , )u x y t

 

We fix . 0t 
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          Figure 3.13  The numerical solution of problem (3.2.1) at t = 0. 

 

 

Figure 3.14  The numerical solution of problem (3.2.1) at t = 0. 

 

    

        Figure 3.15  The truncation of exact solution of problem (3.2.1) up to 20  

at t=0. 
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     Here is the table for the data of the difference of numerical solution of problem 

(3.2.1) and truncation of exact solution of problem (3.2.1) up to 20 at t =0 

 

 

 

 

 

 

      Table 3.17  The difference between numerical solution and truncation of  

exact solution of problem (3.2.1) up to 20 at t=0. 

 

 

 
    Figure 3.17  The difference between numerical solution and truncation of exact 

solution of problem (3.2.1) up to 20 at t=0.  

 

We change t from 0 to 
1

10
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        Figure 3.18  The numerical solution of problem (3.2.1) at t =1/10 

 

        Figure 3.19  The truncation of exact solution of problem (3.2.1) up to 20 

at t=1/10. 

 

 

                    
          Figure 3.20  The difference between numerical solution and truncation   

                      of exact solution of problem (3.2.1) up to 20 with t = 1/10. 
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    Here is the table for the data of the difference of numerical solution of problem 

(3.2.1) and truncation of exact solution of problem (3.2.1) up to 20 at t =1/10. 

 

 

 

 

          Table 3.20  The difference between numerical solution and truncation   

                     of exact solution of problem (3.2.1) up to 20 with t = 1/10. 
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Ⅳ.  Summary 
 

 

      We have some conclusions of the methods we show above 

 Similarity: 

      For the all method, its make the PDE become to one or more ODEs. And we 

solve the simple ODEs to obtain the solution. In the method of separation of variable 

we have two or three solutions from ODE systems and obtain the particular solution. 

About the transform, we take the transform to the PDE and make it become an ODE.  

To obtain the solutions of PDEs by taking the inversion formula on the solution of 

ODE. 

 

 Difference: 

      Different methods apply to different domain and equation. Separation of 

variables applies to bounded domain and the equation is homogeneous. The finite 

Fourier transform applies to bounded domain and the equation is nonhomogeneous. 

The Fourier transform applies to the full-line domain. The sine and cosine transform 

applies to the half-line domain. The finite difference method applies to irregular 

domain. 

 

The method of separation of variables in cylindrical coordinates is harder 

than in one dimensional. It generate the Bessel’s equation. 

 

      There are some restrictions on boundary condition for the sine and cosine 

transform. Sine and cosine transform are only useful in solving problem with the 

boundary condition with x=0 
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Appendix 
The mathematica 6 code of problem (3.1.1) 
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The mathematica 6 code of problem (3.2.1) 
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