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Topics on Linear Parabolic Partial

Differential Equations

Student : Ding-San Chen Advisor : Dr. Jong-Eao Lee

Department of Applied Mathematics

National ChiaoTung.University

Abstract

We study the linear parabolic partial differential equations. First, we give a
practical example whose mathematical model is a parabolic PDE. Next, we apply
some classical methods to solve the linear parabolic PDEs in one and higher
dimension. For the same equation, we will identify the solutions if they are derived by
different methods.

In numerical analysis, we use finite difference method to obtain the numerical
solution of the parabolic PDE. We will use Mathematica 6 to find the numerical
solutions, to approach the exact solutions, and to compare between those solutions.
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I. Introduction

The parabolic equations are often the mathematical models in applied science.
Before we introduce the models, we classify the partial differential equation first.

1-1. Classification of L:inear. Partial Differential

Equations

A linear second-order partial differential'equation has the form

Au,, +2Bu, +Cu, +Du, + Eu + FU=6

where A, B, C, D, E, and F are function of (x,y). The equation is called
homogeneous if G =0. We classify the equations into three types, depending on the
second-order coefficients A, B, and C:

If AC —B? >0, the equation is elliptic.
If AC —B? <0, the equation is hyperbolic.
If AC —B? =0, the equation is parabolic.

The standard homogeneous equations are

1. U, +U,, =0 (the elliptic equation),

2. U, —U, =0 (the hyperbolic equation),



3. U, —Ku, =0 (the parabolic equation).

1-2. The Linear Parabolic PDE as model for the

Practical Problem

This model is excerpted from Mathematical Models and Their Analysis [2].
Consider a straight rod of length L, mass density ( per unit volume) p,

and uniform cross-sectional area A. The cylindrical surface of the rod is insulated
form heat flow. The rod is sufficiently slender so that the temperature distribution is
uniform over a cross section at any point along the central axis of the rod. Let the
central axis be positioned along the x extending from x=0 to x=L. To discuss the
temperature distribution u(x,t) inthe rod, we look at a segment of the rod between
x=a(>0) and x=Db(<L) attimet. Let ¢, bethe specific heat of the rod material
defined to be the amount of heat energy needed to raise the temperature of a unit mass
of material by one degree Kelvin ( 1 K). The.specific heat is a material property and
can be measured experimentally.

The rate of change in the heat (thermal) energy H(x,t) in this segment is given
by

dH d ¢»
—=—1 c,u(x,t) pAdx
prali L U(x,t) pAdx (1.2.1)

There is another way of calculating the same rate of change of heat energy. Let
#(x,t) be the amount of heat per unit time flowing from left to right across a unit
area of the cross section at location x and at time t. Let F(x,t) be the rate of heat
generated by a unit mass of the rod within the insulated cylindrical surface by
chemical, electrical, or other processes. In that case, we have



dH

=A@ - pb.01+ [/ F(xt)pAdx. (12.2)

The two expressions (1.2.1) and (1.2.2) for OL—T must be identical. The rate

of increase in heat in the segment ( calculated by way of the temperature of the
segment ) must be equal to the rate of heat gained (calculated by the net heat flow
across the two cross sections of the segment plus the rate of heat generated inside the
segment. We have

%Jb cu(x ) pAdx = Alg(at)—g(b.]+ [ F(xt)pAdx.  (123)

We suppose u and ¢ are both smooth functions and o is independent of t. In that
case, the equation (1.2.3) becomes into

Lb [Cou, (X, 1) o+ (%.1) — F (X, 1) pldx = 0. (L.2.4)

If the integrand is continuous in x and the segment (a,b) =is arbitrary, we have the
conclusion that

CopU, =@, + pF . (1.2.5)

Equation (1.2.5) holds for all xin (0,L) andall t>0. Equation (1.2.5) is a equation
for two unknowns: uand ¢. And by the Fourier law:

¢ =-Kou,. (1.2.6)

where the coefficient of thermal conductivity K, isa measure of the ability of a
material to diffuse or conduct heat. K, has to be determined experimentally and it

varies from material to material. Substituting (1.2.6) into (1.2.5), we obtain a second
order PDE for u(x,t):

c,ou, = (Kyu,), + pF . (1.2.7)



If the rod is homogeneous in its ability to conduct heat, K, is a constant and (1.2.7)
becomes to

Coput = Kouxx +pF .

II. Methods of Solving the
Linear Parabolic PDE

In this chapter, we willuse some methods te*solve.one=dimensional heat equations
and multiple dimensional heat equations. After the methods, we will apply these
methods to the same problem.

2-1. One-Dimensional Heat Equation

In one-dimensional equations, we use methods to solve the heat equation with
different initial conditions, boundary conditions and domains. If we solve the same
equation by two or more different methods, we will identify the answers.

2-1-1 The Method of Separation of Variables

The method of separation of variables is a fundamental technique for obtaining
solutions of homogeneous partial differential equation when the solutions in the form
u(x,y)=a(x)b(y).

We consider a homogenous one-dimensional heat equation problem



2
ou Kau_o

E_ y— for O<x<z , t>0, (2.1.1a)
u(x,0) = f(x) for 0<x<r& , (2.1.1b)
u(0,t)=0 for t>0 : (2.1.1c)
u(z,t)=0 for t>0 . (2.1.1d)

Suppose that u(x,t) = X (X)T (t), then the equation (2.1.1a) has the form

T X' )
T X
or
LIRS (2.1.2)
T X

The left-hand side of the equation (2.1.2) depends-only on t. But the right-hand
side of the equation depends only onx. We say the equation (2.1.1a) is separable.

Now, we take the partial derivative with respect to t in two sides. We obtain

d T
a[?] 0 (2.1.3)

That means the both sides are constant. Then we have two ordinary differential

equations.

T4 K7"=_z . X(0)=X(z)=0 (2.1.4)

where A isa constant .
If 12>0 ,the general solutions of these ordinary differential equations are

X(x)= Alsin\/ZXJFAzcos\/zx,
K K

T(t)=Ae™.

If 2=0 , the general solutions of these ordinary differential equations are



X(X)=Ax+ A,
T(M)=A.

If 2<0 ,the general solutions of these ordinary differential equations are
_ A L
X(x)=Ae g +Aze£ :
T(t) = Ae™.

And we have the boundary condition
X(0)=X(@)=0.
For 1<0 , X(0)#0 and X(1)#0 since A ~ A, #0 .For 4=0, by the

boundary condition, we have X =0. Itis a trivial solution. For 1 >0, by the
boundary condition, we obtain A,=0. and

sin\/zzo 1 (2.1.5)
K

for X is not identically zero..That is

A=n’c , N=123.
The A is called the eigenvalues of this problem (2.1.1). And the functions

X, (X) =sinnx (2.1.6)
are the eigenfuctions corresponding to eigenvalues A = n’k .

Now, the equation (2.1.4) becomes to

T4+n*KT =0 |,

(2.1.7)

then

T,(t)=e""" (2.1.8)



By equation (2.1.6) and (2.1.8), we have the particular solutions of equation (2.1.1a)

2 .
u (x,t)=e"" sinnx. (2.1.9)

The u, (x,y) satisfies the problem (2.1.1), and the any finite linear combination of
u,(x,y) also satisfies the problem (2.1.1). We attempt to represnt the solution of
(2.1.1) has the following form:

u(x,t) ~ ane‘“z’“t sinnx. (2.1.10)

n=1

We need to determine the coefficients b, by the initail condition
u(x,0) = f(x).

We have

f(x)~ > bysinnx.
n=1
The b, are the Fourier coefficients determined-by
2 (7 :
b, =—I f (x)sin nxdx
7 90

The Fourier series of f(x) convergesto f(x) uniformlyif f(x) is
continuous for —z<x<xz, f(-x)=f(r),and f f 2 dx is finite. Then we have

the solution

u(x,0) = f(x) = ibn sin nx

If f(x)el', by the Weierstrass M-test the series converges absolutely and
unifomly.



u(x,t)=>"be™"* sin nx

n=1

In (2.1.1), we only talk about the one kind of boundary condition. We want to
discuss some different boundary conditions. First we talk about

u(,t)=u, (z,t)=0. (2.1.11)

Then the eigenvalue problem (2.1.4) becomes

X"+ AX =0 | (2.1.12)
X(0)=0 ,
X (7)=0.

We can find the eigenvalues A =(n +%)2/<, n=0,12, --- with the corresponding

eigenfuctions X, =sin(n +%)x. Then we get the solution

u(x,t) = by Tsin(n +%)x 2.1.13)

n=1
of problem (2.1.1) with the boundary condition'(2.1.11)

Then we look the another boundary condition
u,(0,t) =u(z,t)=0, (2.1.14)

then the eigenvalue problem (2.1.4) becomes

X" AX =0 , (2.1.15)
X'0)=0 |,
X(7)=0

We can find the eigenvalues A =(n +%)2K' , n=0,12,--- with the corresponding

eigenfuctions X, =cos(n +%)x Then the solution



u(x,t) = ane*”ZK‘ cos(n +%)x (2.1.16)

1
of problem (2.1.1) with the boundary condition (2.1.14)
At last, we look the boundary condition
u, (0,t)=u,(rz,t)=0. (2.1.17)
Then the eigenvalue problem (2.1.4) becomes

X"+ AX =0 | (2.1.18)
X'(0)=0 |,
X'(z)=0 .

We can find the eigenvalues 1 =n’% \, n=0,1,2;-- with the corresponding
eigenfuctions X, =cosnx Then the solution

u(x,t) = ane‘“z"1 COS NX (2.1.19)

n=1
of problem (2.1.1) with the boundary condition’(2.1.17)..

Three things are needed to apply the methad'to the problem in two variables x and

y [1]:
(1) The differential operator L must be separable. That is, there must be a function
#(X,y) such that the expression

XV,
S XOY (y) W)

where P(x) isa function of x only and Q(y) isa function of y only.

(2) All initial and boundary conditions must be on lines x = constant and y =
constant.

(3) The boundary conditions at x = constant must involve no partial derivatives of
u with respect to y, and their coefficients must be independent of y. Those aty =



constant must involve no partial derivatives of u with respect to x, and their
coefficients must be independent of x.

The method of separation of variables also can be used in two dimensional
problems as shown in the next chapter.

Here we give one example solving by separation of variables.
Examplel.l (Using separation of variables)

2
a_u_ka_ljzo for O<x<z , t>0 ,
ot OX

u(0,t)=0, t>0,
u(z,t)=0, t>0,
u(x,0)=sin>x, 0<x<rx.

Solution
By the equation (2.1.10), we obtain

u(x,t) = ane‘”z"t sinnx

n=1

Now, we have to determine b,

sin® x=u(x,0) = >_b, sinnx.

n=1

We have b,
1
b =—, b3:—z,other b,=0.

Then the solution is

-9kt

u(x,t) = 3esinx—Lesinax.
4 4

-10 -



2-1-2 Finite Fourier Transform with Nonhomogeneous Problem

In the 1-1, the heat equations are homogeneous. Here we use finite Fourier
transform to solve the nonhomogeneous problems.

Now, we look the nonhomogeneous problem corresponding to (2.1.1),

6—u—Kil::F(x,t) for O<x<z, t>0 , (2.2.1a)
ot OX

u(x,0) = f(x) for 0<x<7z (2.2.1b)
u0,t)=0 , t>0 (2.2.1¢)
u(z,t)=0 , t>0. (2.2.1d)

First, we expand the solution into a Fourier sine series for fixed t
u(x,t) ~ > b, (t)sinnx (2.2.2)
n=1

due to the boundary conditions. -u(0,1) =0 and=u(l,t) =0 . For other boundary
conditions we have different Fourier series forms:

LU0 =u(rt)=0 = u(x,t)~ibn(t)sin(n+%)x,
U0 =u(rt)=0 = u(x,t)~ibn(t)cos(n+%)x,

u, (0, =u(7,t)=0 = u(x,t)~> b (t)cosnx.
n=1
In (2.2.2), the {b,(t)}are the sine coefficients
2 ¢ .
b, (t) == [ u(x,t)sin nxdx. (2.2.3)
7[ O

These integrals determine the u (x,t) uniquely called the finite sine transform of
u(x,t).

-11 -



2

If g—l: is integrable, its finite sine transform is
X

Ox? T

T OX

=-n’b.(t).

Let

B, (t) = %L F (x,t)sin nxdx .
Then the equation (2.2.1a) becomes
b, (t) + n*Kb, (t) =B (t) .
Multiply a integrating factor p(t) —defined as p(t) = "™ on (2.2.5)
" b (t) + e"Mn?Kh. (t) =& B (D)
Solving the ODE. (2.2.7), we obtain
b, (t) = j; e "KIB (£)dr+e"KC,
where the C; is determined by the initial condition

C, =b,(0) :Eru(x,O)sin nxadx .
T 0
SO

C, = EIO” f (x) sin nxdx .
T

Substituting the b, (t) to the equation (2.2.2)

-12 -

2 (7 0% . 2[ou . T, 2
_J.o sin nxdx = —| —sin NX — un cos nx -N _J.o usin nxdx
T
0

(2.2.4)

(2.2.5)

(2.2.6)



uxt) ~ 3 ([le "N EIB, (dr e % [ f pgsinxdsinnx. (2.2.7)
n=1

There are still two things to be verified:

1. The sum converges in entire domain , that means u(x,t) = an (t)sinnx.

n=1

2. The sum can be term by term differentiated , that means

U, (X,t) =" (b, (t)sinnx),, and u,(x,t)=">" (b, (t)sinnx), .
First we show 1. By the Schwarz’s Inequality for integrals we have
2 (' a-2n’(t-0) th2 I S L
b, F< (J,e " dr)([ B (@)do) = 5 [[Bdr
By Schwarz’s inequality for sums and Parseval’s equation

1Y b, (t)sin nx|zs%( 3= i)(j; > Bd7)

2
n=M +1 n=m+1 n=M +1
1 STt o
<= > S]] Flx2)dxdr.
2JoJo
Tl N

For some t, >0, Iot.foﬁ F(x,7)*dxd7  converges’, and by M-test z b, (t)sin nx

n=1
converges uniformly in domain [0, 7] x[0, ] . That means it is independent of
(x,1). So (2.2.2) becomes

u(x,t) = ibn(t)sin nx.

Next, we show 2. Here, F(x,t), F,F, arecontinuous, F(0,t)=F(z,t)=0,
2
and .[O Z—gdx uniformly bounded in t . Then the sum can be term by term
X

differentiated.

Examplel.2 (Using finite Fourier transform)

-13 -



2
6_u_K8_l:=tsin3X for O<x<m , t>0,
ot OX

u(0,t)=0, t>0,
u(z,t)=0, t>0,
u(x,00=0, 0<x<r.

Solution
We can find

B, (1) =£j”tsin3xsin nxax.
72' 0

Bl(t)=§ . By(t)=—=t , B (t)=0.

I

By the equation (2.2.7)

u(xt)=>( j; e "KEIB. (1dz)sin nx
n=1

=§(t—1+e"“)sin x—i(t—l+le‘9Kt
4 36 9

sin 3x.
5 )

2-1-3 Fourier Transform

A 2r -periodic function: f(x) in [-z,z]} can be expanded in Fourier series

As
f(x)~%a0 +(a,cosnx+b, sinnx),
n=1
where
_ < f(x),cosnx> :lr £ () cos nxdlx
" <cosnx,cosnx> xi7 ’
b, = = T(x),5|.nnx> =1J‘” f (x)sin nxdx .
<sinnx,sinnx> 7o~
Using

. i i 1 inx —inx
smnx=%(e'"x—e'"x) , cosnx:a(e“ +e ™).
i

-14 -

(2.3.1)



We define

%(a”+z'bn} nz=0
o 1_3('-'3-”—153'-”} R<0
Then
1)~ i C”e_inx ’ (2.3.2)
n=—o
where

1 ¢r _
C =—|[" f(x)e™dx.
" 27['.:” ()

If f(x) iscontinuous and piecewise continuously differentiable on [-7, 7], and if
f(-7)= f(x), then

fr(x)~ Y. d.er™, 233)
where

1 ¢~ :
d, == Ti(x)e"dx
" 27rLf )

= f(X)einx]f_rﬁ_iJ‘” f(x)(in)einxdx
2T
i 1 ¢~ inx
=—IHZJ‘_”f(x)e dx

=—inC,.
Then the (2.3.3) becomes
fr(x)~ i—incnemx .
If f(x) istwice continuously differentiable, then
| f"(e™dx = (=in)’C, =—n’C,

-15 -



We obtain

f N(X) - Z (_HZ)Cne—inx.

Next, we consider the f(x) in [-L,L] and g(X) in [-z,x] whereLis

a constant. We letX = % X.

9(x)

[-L, L] >, [-7,7] 5 RorC

X e X

Then we have

F(x)= g(R) 2 C.e ™™

where
C, =—[ glmear===] ) £ (%) dx
" 2zt 279-L L
_ 1 L inT”x
T [ F 0o ex (2.3.4)
So, we have
f~>Ce b . (2.3.5)

Next, we consider the f(x) in(—oo,).We can determine the f(x) onany
subinterval (—L,L) interms of the coefficients C, in (2.3.4).We extend the f(x)
on the whole interval (—o0,0) by taking limiton L — .

The (2.3.4) can be written as

L in—ﬂx
2LC, = j_L f(x)e & dx.

-16 -



For any fixed n

lim2LC, = lim [ f(xe - dx=[" f(x)dx.

Lo L—ood—

The series {nT”} dense on R if L is large enough where n=0,%1,+2 ---. SO we may

. : n . .
replace discontinuous {Tﬁ} by continuous variable we R

L~ H
C,~C

n wL -

T

And we define

1 ¢~ ;
C,=—1| f(xe™dx.
W7L 2r Lf ()

Foreach w we have an unique C :%j” f (x)e™dx . Suppose that f(x) is
WL el

s

absolutely integrable, thenthe integral

[ 18 0x) ldx
converges, and
1 L in7y
1€, =5 1], FO0e - ax]
1 rw
SZU f(x)|dx.
Now we define

fw)=limaLC,, = lim j_LL f (x)e™dx

T

= J:Z f (x)e"*dx . (2.3.6)

-17 -



For f e L (—o0,0), f(w) exists for Vw e R.The integral (2.3.6) is called the Fourier

Transform of f(x), and denoted as3[ f].

Here, we want to see how to impose conditions for f (X), X € (—o, ) such
that f (w) has same good property as the Fourier coefficients. The property we hope
is

f'(X)~J[f'(X)]=(=iw)I[ f(x)]. (2.3.7)

Suppose that f(x) is continuous and piecewise continuously differentiable, then

j °‘; f (x)e™dx

converges for each w, and

| f(x)e™ |= fi(x) >0 as X —> o0,
Iirp f(x)=0.

By definition
SLEe01= " fi(x)etdx

= f(e™ ]2~ [ f(0(iw)e™dx
= (-iw) 3 (X)]. (2.3.8)

Hence f(x) hasthe Fourier Transform —iwJ[f].

There are some other operational formulas for Fourier Transform [1]:

1. J[ixf (x)] =;—W3[f].

- 1w w .
Z.J[f(ax—b)]:me af(g). (shift formula)

-18 -



3.3[e*f]= f(w+c).
4. J[coscxf (X)] =%[f(w+c)+ f(w—c)] :

5. 3[sin oxf (X)] =%[f(w+c)— fw—c)].
Inversion formula is [1]
f — | l L .F —iwxd
(x)= L'L?OZJ._L (w)e ™ dw.
f(w) determines f (x) uniquely.

The convolution theorem for. Fourier transform is useful tool.

Convolution Theorem

If f(x)and h(x)are bothabsolutely integrable and'square integrable, and if

f (w) and ﬁ(w)aretheir Faurier transforms, then the proeduct f (w)ﬁ(w) is the

Fourier transform of the convolution product f *h.[1]

I[f*h(x)](w) = f (W)h(w).

The following, we solve the infinite-slab heat flow problem.

ou  o°u . 0
— = or —o<x<w , t>0,
ot ox?
u(x,0) = f(x) for —o<x<w,
u(x,t) bounded.
2
If f(x) isabsolutely integrable. Making the hypothesis that u, aat_u Z—u,and%
X X

are continuous in x and t, and absolutely integrable in x, uniformly int. Then u and

-19 -



ou
— >0 as x> w,

By (2.3.6) and (2.3.8), we obtain

~ o0 iwx aa
u, (w) = I_w u, (x,t)e"™dx = E(W’t) ,

. (w)= J._Z u (x,t)e™dx =—wG(x,t).

Taking the Fourier transform with respect to x to the problem. We have an ODE. in t

0 +widi=0

G(w,0) = f(w).

The solution of this ODE is

Take the inversion formula
1 (=2 SWAt A —iwx
u(x,t):—j f(w)e™™ e ™ dw . (2.3.9)
27 Y

wt

e " is the Fourier transform of

1 e_ X%’[ ,
A7t

which is absolutely integrable and bounded for t >0. By the convolution theorem
of Fourier transform

© —(x-y)?
u(x,t):ﬁjwf(y)e Wiy

-20 -



Examplel.3 (Using Fourier transform)

du o4 . 0
— = or —wo<X<ow, t>0,
ot ox®

u(x,0)=e™* for —o<x<o,

u(x,t) bounded.

Solution
We take the Fourier transform with respect to x to e

[ e edx = Jre
By (2.3.9) we have
u(x,t) = ijw \/;efv%e‘wzte*”“dw
27 I

L,
— (1-dt) 26

2-1-4 Sine and Cosine Transform

If f(x) isgivenfor 0<X<oo:The Sinetransform of f(x) defined as

ss[f]zjo‘” f (x)sin wxdx .

We extend the f(x) tothe domain —wo < x <o asan odd function, i.e.
f (—x) =—f(x). The_Fourier transform of f(x) can be written as

fw) =" f()e"™dx=[" f(x)(coswx+isinwx)dx
=i[ " f(x)sinwxdx
= ZiI: f (x) sin wxdx

=2i3,[f].
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By the inversion formula

£ (x) :i [~ e 2is, [ fldw. (2.4.1)

—00

Since the Sine transform is an odd function of w. The (2.4.1) becomes to

1 o, . -
f(x):gjO 4sinwx3 [ f ]dw
2 o . -
=;L sinwx3[ f Jdw

= 25030,
T

We define the Cosine transform as

3 [f]= .[Ow f{(X) cos wxdx

We extend the f(x) tothe domain —eo<:X< o0 asan even function, i.e.
f (=x) = f(x). Similarly, the Fourier.transform of f (x).becomes to

f(w)=23[f].
By the inversion formula

f(x):gj‘”coswxsc[f]dw
T 0

= 23,0101,
T

Sine and Cosine transform are useful in solving problems with the boundary
condition only at x =0.We note that

3[f1]= jo‘” f '(x) sin wxdx

= f(x)sinwx]; — W_[: f (x) cos wxdx
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=-w3,[f].

3 [f"=fOw-wI[f], (2.4.2a)

3. [f"=-1'0)-w’3 [f], (2.4.2b)

provides f(x) and f'(x) >0 as x— . By (2.4.2a) and (2.4.2b), the sine
transform is particularly useful when f(0) is given. The cosine transform is useful

when f'(0) is given.

The following is a heat conduction problem in a semi-infinite slab and use the

sine transform to solve it.

a—u—ilzjzo fori s O<x<oo , t>0,

ot ox

u(0,t)=0, t>0,

u(x,0)=f(x);, " 0<x<w,

u(x,t) bounded. (2.4.3)

i - ou/ ou o°u
Suppose that f(x) is absolutely integrable;andthat u, Gt éx,and sz

are continuous and absolutely integrable in x for any fixed t. Taking the sine transform
with respect to x since the u(0,t) =0-Is givenand put U(w,t) = 3 [u]. The
problem (2.4.3) becomes to

The solution

@—FWZU:O,
ot

U(w,0)=3[f].

U (w,t) =3 [ fI(w)e™".

By the inversion formula (2.4.1)
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u(x,t) :EIst[f](w)eWZtsin wxdx . (2.4.4)
T 0

Examplel.4 (Using sine or cosine transform)

ou  o°u . . 0
— - = or <X<w, t>0,
ot Ox?

u(0,t)=0, t>0,

u(x,0)=e™, t>0,
u(x,t) bounded.

Solution
The initial condition u(0,t) =0 is given. Using the sine transform to solve this

problem. Putting I [f]=U(w,t),

Y Lwu =0,
ot

U(w,0) = j:e‘x sinwxdx = vl

The solution of this ODE

w e—wzt
1+ w?

U(w,t) =
By the inversion formula

22 W 2 .
u(x,t)=—| ——e """ sinwxdw
2

T 1+w

2-1-5 Laplace Transform

We consider the function f(x) which becomes to zero for any negative value

of x. That means

f(x)=0 for x<0.
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If e™*f(x) isabsolutely integrable, sois e ™ f(x) for s>s,. It follows that the

Fourier transform 1?(5) of such a function (if it ever exists) is analytic in a
half-plane Im¢é > s, .

We define the Laplace transform

L[f]1(s) = 3[£](is)

or

L[f]= j:e f (x)dXx.

By the integration by parts, we have some properties of Laplace transform:

L[fT=sL[f]- f(0),
L[ "] = s2L[ f ]<sF(0) - f (0)

If f(x) and g(x) vanishwhen x<0,

f*g(x) = [ “F(y)g(x=y)dy - for x>0,
and

f*g(x)=0 for X <0u

The convolution theorem for Laplace transform follows from that for the Fourier
transform.

L[f*g]=L[f]-L[g].

By inversion theorem for the Fourier transform, we have the inversion formula for
Laplace transform [1].

—iL+s

f(x):ziﬂm L f1(0)e ™ do 2.5.1)

where s>s,.L[f](o) isanalytic for Reo >s,, and the path is vertical. We call
f(x) isthe inverse Laplace transform of L[f](s).
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Now, we consider the problem of heat conduction in an infinite slab.

ou o
T, = for —o< X< , t>0,

ot oxt

u(x,0)=f(x), -wo<x<ow,
u(X,t) bounded.

Taking the Laplace transform with respect to t and let

U(x,s) = j: e Su(x, t)dt .
We have
© 5 OU
jo e Edt:su (X, 8)=u(x,0)=sU - f(x) .

2

Suppose that Z—u and Z—l: are continuous and bounded, we have
X X

2 2
oS-t
0 OX OX

The equation (2.5.2a) becomes to an ODE with fixed t.

U

PV 0.

sU - f(x)—

Solving it by means of the Fourier transform. Letting

U(w,s) = J:U (x,s)e™ dx,
U, 1(w,s) = jjouxx(x, s)e™dx

=—wU(Ww,s).
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The ODE (2.5.3) becomes to
sL](w,s)— f(w)+w20(w,s) =0 for -w<x<ow, $s>0. (2.5.4)

The solution of (2.5.4) is

L](w,s): f(W)Z.
S+W
The inverse Fourier transform of 1 =~ s L e-vei, By the convolution
S+ W 2-/s

theorem of Fourier transform, thessolution of (2.5.3) is

U0s)= = e FrE0ty-

Using the_inverse Laplace transform (2.5.1), we obtain

s+|L

Sim
27Z'| L—>0 sl 2\/—

:ijwi_lim s“L%e@X-Ye“da)f(y)dy. (2.5.5)
O

290 2| Lo ds-iL

u(x,t) = [ &Y (y)dy)e'do

Now, we need the inverse Laplace transform of ie*ﬁ'H'. The function
s

9(o) :%e-ﬁlx-vl is a multiple-valued function. We choose a particular branch which
o

is cut along the negative real axis: —z <argo <. To solve

e—\/g\x yl s+ilL
]_ lim LILe”tg(a)da , s>0.

\/g | L—>o

L

We apply Cauchy’s theorem to the integral of e”'g(c) over the contour C which is
shown in Figure (2.5.1)
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&
b s+il
Ci
‘ » ReZ
1‘ 5
Branch cut
s-il
Figure (2.5.1) . Contour C.
We know that g(o) is analytic inside this‘Contour. e obtain
ot d 1 S+HL: ot d 6 ot d .
Sf)ce g(o) G—L_iLe g(o) 0+nz_2:(j>che g(o)do=0,
s-+L ot _ 6 o
[ e g(a)da_—;gScne g(o)do.

Contour C,
o=s+Le”  from % to 7,

do =iLe’dd.

Then

<J§C e’'g(o)do = _[Ze‘s“eig"g(s +Le')iLe"do .
2 2

Since

-28 -
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ti9|£ ! —->0 a L—ow.
+Le

Js—L

|g(s+Le"”) H S

By the Jordan’s lemma, the integral over C, becomes zero.

Contour C;
: 3
oc=s+Le’ from o« to 77[,

do =iLe“dd.

I’s similarly to contour C,. We have that the integral over C, becomes zero.

Contour C,
o =¢ce" from 7 to-rx,
do =ice’dég,
gSC e”g(0)dg= [, e gleel)ice"dg. (2.5.7)
We know
i 1 1
el& N | il
| g(ee”)| I\/geﬁl i
and

| eseigt |: egt .
(2.5.7) becomes to

1§, e"g(o)dol< 27ze” ! (25.9)

N
We let ¢ — 0, then the integral in (1.5.8) approaches zero.

Contour C, and C;
We put o =-y7, then
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g(o) = _ie*iﬂxfyl for argo=nr,
ly

g(o) :ie-iﬂx-ﬂ for argo=-r,

do=-2ydy.
The integrals over C, and C, become to

e -7 t-iylx-y|

<j'> e”'g(c)do = j—y( 2ydy),

e —yPtiylx-yl

§, e"g(o)do = [ ————(-2ydy).

By (2.5.6) and letting L >, £ —>0

Yot=iylx-yl e’ 2ttiy|x-y|

im [ e 9(@)de = = =) [ S —(2dp)

L—o Js—iL

0o a7’ iy Xyl e’ “triylx-y|

:_LT( 2ydp)- | —y( 2ydy)

g’ 2riylx-yl

e

__4 * =R
—Tjoe cosy|x—y|dy.

(=2rdy)

efﬁ|xfy|

Js

The inverse Laplace transform of

e—ﬁ\x—w

L[ 7 1= %I:e/‘ cosy(x—y)dy .

-W

Recalling that the Fourier transform of e’ s \/%e‘“.Then

ije‘yzt cosy(x—y)dy = r@ e 7" cos y(x—y)dy
T 0 —o0

_ J'j:o o7 tairvlg ¥
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Nt
Hence,
1 o —(x—y)7
u(x,t) = f(y)e “tdy 25.9
(= [ty y (25.9)

2-1-6 Comparison of Separation of VVariables and Finite Fourier
Transform

We use separation of variables to solve homogeneous problem and use finite
Fourier transform to solve nonhomogeneous problem. If F(x,t) =0, we identify the

anNSWErs.

Here we consider a homogenéeous problem.

ou Kﬁzu 5 e 0
TAr W 0 1 1
PV o O N it >
u(x,0) = f (% for 0<x<r,

u(0,t)=0," t>0,
u(r,t)=0, « t>0.

The answer by separation of variabfes in 1-1
u(x,t)y=>y, b.e " sinnx,
n=1
where b, determined by

2 o7 .
b, =;L f (x)sinnxdx.

Using finite Fourier transform to solve this problem by letting F(x,t)=0

u(x,t) = i (J'Ot e‘”z”‘t‘T)Bn (r)dr+e ™™ %Lﬁ f (x)sinnxdx)sinnx.  (2.6.1)
n=1
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where

B, (t) :EI” F(x,t)sin nxdx .
T 0
Since F(x,t)=0.We have B, (t)=0. Then (2.6.1) becomes to
N 2t 2 (7 . .
,t — -n“xt & .I: d .
u(x,t) nZ:;e 7,.[0 (x) sin nxdxsin nx
Let
b _2 " f (x)sin nxdx
p == ], TOosinnxax.

Then

u(x,t) = ane‘"z"‘ sinnx,

n=1

f(x)=>_bgsinnx.
n=1

2-1-7 Comparison of Fourier Transform and Sine and Cosine

Transform

In general, we use sine and cosine transform to solve half-infinity slab heat
conduction problem. But if we extend the f(x) to the full-line domain —oo < X <

as an odd or even function., we can also use the Fourier transform to solve it.

Here we consider an half-infinity problem, and extend the f(Xx) to —co<X<o0

as an odd function.

ou o
E_W: for —o<X<w , t>0,

u(x,0)=f(x), —-oo<x<w,
f(x) isan odd function.

Since f(x) isan odd function, we have

-32-



f(w) = 2i3 [f](w).
By (2.3.9)

u(x,t) =1j"° i3, [ f1(w)e ™" (cos wx — i sin wx)dw
JT Y

_2 [ 3.[F3w)e" sin wxdw.
7T O

Since J3[f](w) and sinwx are odd functions of w and coswx is even function of
W.

2-1-8 Comparison of Fourier Transform and Laplace Transform

In 1-3 and 1-5, we use Fourier transform and Laplace transform to solve the
full-line slab heat conduction problem. Here we want to identify the answers

u(x,t)=ijw f (w)e e ™dw, (2.3.9)
272
and
1 o —(x—y)7
N=——=| f(ye 4d 2.5.9
u(x,t) 2\/HL° (v) y (25.9)

u(x,t) = ij: f (w)e™"te ™ dw

= Lgim [ e e ([ (yedy)dw

27[ Lo d-L

— 1 * H L —w’t iw(y—x)
_zjﬂf(y)(mj{e eI dw)dy .

—_ 2 _
We have shown the Fourier transform of € ° is \/Ee 42 in 1-5.
a

Then
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1 = ~(x-y)?
u(xt) :Zj—w f(y)\/;e 4dy

1 e —(x—y)7
=——| f(ye “dy .
2[nt L” ) d

For Fourier transform we need the domain is full-line. So we usually take
Fourier transform on P.D.E. with respect to x since the domain of X is—0 < X < 0.

And for_Laplace transform we need the domain is half-line. So we usually take on
P.D.E. with respect to t since the domain of tis t>0.

2-2. Higher-Dimensional:Heat Equation

In this chapter, we use two methods: separation of variables and Fourier
transform.

2-2-1 The Method of Separation of Variables in Cylindrical
Coordinates

In 2-1-1 we have shown using the method of separation of variables in one
dimensional problem. Here we won’t do it in detail. Now we consider the heat
equation in cylindrical coordinates, independent of z [3].

1 1
— kV2y =
u =kVu=k(u,+—u,+—u,),
P P

O<p<l, 0<@p<27r, t>0.
u(p,¢,0)=f(p,9) (2.9.1)

We let

u(o,e,t) = f,(0) f,(0) (1)
Substituting into (2.9.1) and dividing by Ku (o, ¢,t), we obtain
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o SO " (2.9.2)
Kf, (t) f, f,

By (2.9.2) we can obtain three ODEs.

() + AKE,(6) =0, (2.9.3)

£ "% uf, =0, (2.9.4)

el g (-t =0 (2.9.5)
P P

where A4 and u are constant. The solution of (2.9.3) is
f(t)=e .

Since f,(p) isa 2z -periodic function; the solution of (2.9.4). The x must be
positive.

f,(p) = ACOSme+Bsimma =777 m=0,1,2.....

where 1 =m?.

The general Bessel’s equation form is
yrd-nL+(a-Lyy=o0
X X
And the equation (2.9.5) is a Bessel’s equation in two dimensional form.
el (-t =0
p p

We use Frobenius method. Using power series to solve the Bessel’s equation with
singular point p=0
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— n+y
y=> ax
n=0

And we have the solution is the Bessel’s function

J.(pV2).
where

Jm(p\/z) _ i (_ﬁ)np2n+m

& 2™ (m+n)In!

The separated solutions of the heat equation [3].

u(p,@.t) = J_(o~A)(Acosmep+ Bsinme)e <.

If ”l f(p,¢)|dpdg isfinite. Theseries converges.uniformly.

u (o0, t)= 2% 3 (o4, )(Ar, cosme + By, sinmgp)e
Example 2.1 (Using separation-of'variables)

u, = KV for 0< p<1,

ULpt)=0, t=0,
u(p,@,0)=1-p*, 0<p<1.

Solution
The required separated solutions are

J._(pN ) (Acosme+ Bsin mg)e <.

The boundary condition requires that Jm(R\/Z) =0.Welet RVA = x ™, a positive

zero of the Bessel function J_ . The solution becomes to
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_(Xn(m))Z Kt

px (™ )
> 3 F”{ )(A,, cosmp+B_ sinmp)e R

To satisfy the initial condition

(m)
1= Z\Jm(pxl; )(A,, cosme+ B, sinmg) .

This is a Fourier series in (cosme, sinmg ), whose coefficients are Fourier-Bessel

expansion with g = % Here we use the Fourier-Bessel expansion. We have

1-x* =D Ao (xx,)
n=1
where J,(x,)=0 and
1 1
_[O(l—xz)xJo(xxn)dx:A]IOJO(xxn)zxdx, n=12...

We compute the left side integral by letting t = xx:" and use integration by parts
twice.

'[: (L—x*)xJ, (xx,)dx = %J‘OX" (x,? —t*)td, (t)dt

4
:F‘]l(xn) .

n

The right side integral
1
A1 35007k = 23,01,

The required expansion is

-37-



Jo(xX,)
- ‘8;x3a )

Therefore the solution of the initial-value problem is

u(p,@,t) = 82 JBEXE(X)) A /

2-2-2 Multiple Fourier Transform

We use Fourier transform to solve heat conduction problem in one dimension.
Here we use it in two dimension. \We consider an‘initial value problem.

u@z

2
E_( ay) 0—for —e0 <X, J<o, t>0, (2.10.1a)
u(x,y,0) ="f(x,y), -0 <Xy <o, (2.10.1b)
u(x,y,t) ‘bounded. (2.10.1¢c)
2 2
Suppose that u, Z—Ltj %,and % are continuous and absolutely integrable with
X

respect to x and uniformly iny and t. Taking the Fourier transform with respect to x
into (2.10.1a). We obtain

~ 2;\
G—l:—(—w“ 8—) 0, (2.10.2a)

G(w, y,0) = f (w,y). (2.10.2b)

In one dimension, we take the Fourier transform one time and have the problem
become into an ODE. But here it is still a PDE. We take the Fourier transform again
with respect to y. The equation (2.10.2) goes to be

——( w20 —w,’0) =0, (2.10.4)
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G(w,, w,,0) = f (w,w,). (2.10.4b)

After taking twice Fourier transform, we obtain an O.D.E.. The solution of the
(2.10.4) is

GOwy, w,,t) = T (w, w,)e ™, (2.10.5)

The function e ™™t s the Fourier transform with respect to y of

et L e_y74t :
Vart

We keep the w, and t fixed. Taking inversion formula on the equation (2.10.5) with
respect to w,. And use the convolution. \We have

y-¢)

a(w,, y,t) =ﬁﬁ f(wl,f)e_w12t L déE,

By the step again.

(x=n)#(y=¢)

uey. = [ ber 8 dedy.

Example2.2 (Using multiple Fourier transform)

o
0

ou
a ‘ot or

=0 for —o<X,y<owo , t>0,
p ) y

u(x,y,0)=e ", —o<x y<om,

u(x,y,t) bounded.

Solution
Taking Fourier transform with respect to x. We obtain
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A 2
Nz 2Y —o,
at oy

, —
a(w,y,0)=e” NI

Taking Fourier transform with respect to y.

—(w?+w,”)

a(w,w,,0)=7ze *

The solution
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. Numerical Method for

Parabolic Equation

In this chapter, we use finite difference methods to have the data of problem by
Mathematica 6. We can draw the graph of the heat conduction problem by
Mathematica 6. The following are two problems: one-dimensional and
two-dimensional problems.

3-1 Finite Difference Method of one-dimensional problem

Here we consider a one-dimensional heat conduetion problem.

2
N TUg for 0<x<1; 20, (3.1.1a)
ot OX
u(0,t) =u(Lt) =0, " +50, (3.1.1b)
u(x,0) =x@1=x), = 0<xX<L. (3.1.1c)

The definition of the partial derivative L iIs the limit of a difference quotient

OX

8_u(xlt)=”mu(x+h,t)—u(x,t)_

OX h—0 h
We have

a—u(x,t)~ u(x+h,t)—u(x,t)

OX h
e . o%u ou
if h is small enough. And it’s similar to pva and re We have

X
2_1:()(',[) _ u(x,t+|?—u(x,t) (3.1.2)
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and

u(x+h,t)—2u(x,t)+u(x—h,t)

e (3.1.3)

o
W(X,t) ~

We let the domain of tis 0<t <1. Dividing the domain into some partitions by
letting

where

h—— -

1
m+1' n

Now, we fix the i and j. Substituting (3.1.2) and (3:1.3) into (3.1.1a).

ui,j+1 _ui,j o ui+1,j _2ui2,j +ui—1,j (3.1.4)
I h
where
u,; =u(ih, jl)’
The relation
|
U g = Uy | +FK(U”“ -2u +ui_11j).

That means u;;,, can be obtained by linear combination of u u;,and u ;.

i+1,j?

We have the initial condition u(x,0) = x(1-x) . So we can obtain each u, ;.

Method:
We make a linear system f =Tu
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2(m+1)* m +1)?
-k 2, )
0
2(m+1)? m+1)°
-k 2,k P v,
0
2(m+1)? m+1)?
(1_K ( n ))um—l,0+K%(um,0+um—2,0)
0
0

U,
U,

Unn Jmnxl
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mnxmn
1 0 0
2
Azl o (M+D” 4 0
n
2
0 o (M+D)” 4
n mxm
0 0 0 0
2
_(m:l) K 0 0 0
2
B = 0 Ul RV
n
2
0 . 0 _(mn”) K 0

We have each u;; from u=T7f with the initial condition u(x,0)=x(1-x) .
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Herewe put m=4, n=40,and k=1 for this problem. Here are some figures
of solution to problem (3.1.1) by Mathematica 6..

Mumerical salution(Finite Difference IMethod)

Figure 3.1 Numerical solution of equation (3.1.1) with k=1.

L ¥ s

Murnerical solution(Finite Difference Ivlethod)

Figure 3.2 Numerical solution of equation (3.1.1) with k=1.
We have the exact solution of this problem (3.1.1)

8 & 1 (201 2kt
—(ZW (@n-1) ’d5|n(2n—1)7Z'X) .
-1 -

u(x,t) =—
T n

The following are some figures of truncation of exact solution up to 1000 and the
campare between numerical solution and truncation of exact solution up to 1000 of
problem (3.1.1)
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Trancation of exact solution up to 1000

Figure 3.3 Truncation of exact solution of problem (3.1.1) up to 1000
with k=1.

Trumeation of exact solution g to 1000

Figure 3.4 Truncati..ori of exact solution of problem (3.1.1) up to 1000
with k=1.

The difference between numerical solution and Trancation of exact solution

Figure 3.5 The difference of Numerical solution of problem (3.1.1) with
Truncation of exact solution of problem (3.1.1) up to 1000 with
k=1.
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The difference between numerical solution and Trmeation of exact solution

Figure 3.6 The difference of Numerical solution of problem (3.1.1) with
Truncation of exact solution of problem (3.1.1) up to 1000 with
k=1.

Corapare Murnerical with exact solution

Figure 3.7 Comparfson between Numerical' with Truncation of Exact
solution up to 1000. Yellow is numerical solution. Blue is
Truncation of exact solution.

X Cornpare Mugnetical with exact solution

Figure 3.8 Comparison between Numerical with Truncation of Exact
solution up to 1000. Yellow is numerical solution. Blue is
Truncation of exact solution.
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Here is the table for the data of the difference of numerical solution of problem
(3.1.1) and truncation of exact solution of problem (3.1.1) up to 1000.

0 it e’ 3| i e
awn |0 0. = 1077 0. = 107* 0, w1077 1]
2y i 0 —0.0000704261 —1.57581 = 10~ —0.0000704261 O
o | 0 000324 565 — 000001 059546 0000324565 0
‘?-'51:::3 ] 0.000R16433 0000113504 0000616433 0
gy | 0 0O0OTOLEES 0.000336501 0000704568 O
ﬂfs 1] 0005071 00005025818 00005071 1]
g | 0 0096792 0000541 193 0000936792 0
wyr | O 0. 00105045 000106255 0001050453 1]
wp | 0 000110557 000125198 0001105857 ]
ag | 0 000115477 000140857 000115477 1]
tgqp | 0 000119867 00153658 0.0011 %367 1]
wygy | 0 000123713 001635854 000123713 1]
g 10 1] 0,001 269585 000171933 0,001 26956 ]
tggs | O 0,001 20687 000175131 0.001 20667 1]
g | 0 000131754 000182755 000131754 1]
ugis| 0 00013326 000156036 00013326 0
uge | 0 000134211 000153160 000134211 0
5 1] 0001346541 0001580313 000134541 1]
ugs | 0 000134592 0,001 50505 000134592 0
wyqg | O 000134104 000155155 000134104 0
wyon| 0O 000133221 000153075 000133221 0
"-i:;m 1] 0001319586 0001586435 0001219386 1]
g [ 0 000130430 000154323 000130430 0
wgom | 0 000123615 000151797 000123618 1]
ugs | 0 0,001 2656 000173915 00012656 1]
g o 1] 0,001 242401 000175741 0001242958 ]
tigos | 0O 000121561 000172300 000121541 1]
gy [ 0 000119279 0. (0163667 0001192759 1]
wyom | 0 000116576 000164551 000116576 1]
iy 00 1] 000113775 0. 001 E0E95 000113775 ]
tigan | 0O 0,001 1 =00 O] 5ER20 00011 =0 1]
wgd | 0 000107964 00015268 000107964 0
g | 0O 000104955 000143473 000104958 0
wyag | 0 000101956 000144220 0001019586 0
"-i:;:q. 1] 0000089722 0,001 39967 0000930722 1]
w0 0.000G595T6 000135704 0000950676 1]
g [ 0 0000929531 000131455 0000920531 0
wyar | 0 00003009652 000127234 0000800652 0
u‘;;ﬂ 1] 0000870 10 000123052 QL0008 TOLO0S 1]
wggn | 0O 0000540555 000115919 0L0M0540RE5 1]
wigdn | 0O 0000512072 000114544 0000512072 1]

Table 3.1 The difference of numerical solution of problem (3.1.1) and truncation

of exact solution of equation (3.1.1) up to 1000.
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We change the thermal conduction coefficient K from 1 to%.

TMumerical solution(Finite Difference Ilethod)

Figure 3.9 Numerical solution of problem (3.1.1) with k=1/4

Mrnerical sahition(Findte Difference Iiethad)

Figure 3.10 ijmerical solution of problem (3.1.1) with k=1/4.

Trumecation of exactly solutyom up to 1000
X

Truneation of exactly solution up to 1000

Figure 3.11 Truncation of exact solution of problem (3.1.1) up to
1000 with k=1/4 .
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We can find that if the thermal coefficient k becomes smaller, u(x,t) is decreasing
slowly. And if k becomes bigger, u(x,t) is decreasing fast.

3-2 Finite Difference Method of two-dimensional problem

Here we consider a two-dimensional heat conduction problem.

a—u—k(@+ig):0 for-r<x<zn, —w<y<nz, t>0,(3.2.1a)
ot ox® oy

u(,y,t)=u(r,y,t)=0 for -z<y<z, t>0, (3.2.1b)
u(x,0,t)=u(x,7,t)=0 for —-z<x<z, t>0, (3.2.1c)
u(x,y,0)=x(x-x)y(z-vy). (3.2.1d)

The definition of the partial derivative g_u is the limit of a difference quotient
X

u(x+h, yst) =u(x, y,t)

ou -
&(X, y,t) = Ll_l')TO'I

h
We have
ou u(x+hy, t) —u(x, y;t
My, y.1) ~ YOG, —u(x, .07
OX h
o’u  o%

if h is small enough. And it’s similarto —-, — and a . We have
X oy ot

8—u(x, y,t) ~ Lyt -ulx .9 : (3.2.2)
ot r

o%u u(x+h,y,t)=2u(x,y,t)+u(x—=h,vy,t

C v (x+h y,1) (hzy )+ulx=hy.t) (3.2.3)
o%u u(x, y+1,t)=2u(x,y,t)+u(x,y—1.t

o i) - (x,y+1,1) (|2y) Xy )_ (3.2.4)

Since the domain is half-infinity with respect to t. We let the domain of t is
0<t<1. Dividing the domain into some partitions by letting
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x=ihz, y=jlz, t=pr,
i=01...m+1, j=01..,n+1, p=0,1.,s.
1

where h:L, l=——,and r==.
m+1 n+1 S

We fix i, j, and p. Substituting (3.2.2), (3.2.3), and (3.2.4) into (3.2.1a), we have

Uipa Yo Mnp =2 p e  Ujnp =0t
=i J | : ).
r h I
where
U ;, =u(ihz, jlz, pr).
The relation
2K K
Uiipa=Uijp (1_?((”1 +1)% +(n+1)?%)) +;(m +1)2(ui+1,j,p +U )

K
+;(n +1)2(ui,j+1,p +ui,j—1,p) .

That means u;; ,,, can be obtained by linear combination ofu; , ; ,, U,y Uy,

U 1,0 and U, . We have the initial condition (3.2.1d). So we can obtain each

ij.p-

Method:
We make a linear system  f=Tu
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(1-2K

0

(12K (m+1)? ;r (n +1)2) -

0

(1-2K

(M+1)?+(n +1)2)
S 1,n,0

0

(Mm+1)? +(n+1)? U, +K

g (7 Uy U )
ot 0o+l

(m+1)? (TP +u010)+

K
U, +?(m+1)2(u2,2,0 020)+

(n+1)? (Uyp+Uggo)

(n+1)* (Upgo+Ups)

K
? (n + 1)2 (ul,n+l,0 + ul,n—l,o)

m+1)° +(n+1)° K K
-2k T Km0 000+ S 047 U+ 00)

0

(12K (m+1)? : (n +1)2)u

m,n,0

0

ul,l,l
ul,l, 2
u1,1,s
u1,2,1
ul, n,s

u 211

Unns mnsx1

+£(m+1) (um+1n0+u0n0)+
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A B (

T=|B -. B
O B mnsxmns
0 0 0
—(m+1)2K 0 0
S
5 - 0 —(m+1)2K 0
S
0 N 0 —(m+1)°
S
C D
D C D
D C D
A=

nsxns
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1 0 0 0 0
1—2—5 [(M+2)° +(n+1)°] 1 0 0 0
0 1=K me+ (011 1 0 .. 0
co S
0 0 1—2—5[(m+1)2+(n+32] 1
0
0 0 0 1%[(m+])2+(n+])2] 1
0 0 0 0
. 2
(n+1)" 0 0 0
S
2
D= 0 S, 0
S
: 0
2
0 0 _(”:1) K 0

We have the each u,; , from w=Tf_with.the initial condition

u(x,y,0) =x(z-x)y(r-y).

Hereweput m=4, n=4, s=80,and k=1 for this problem. We have the
exactly solution of this problem

iy =33

n=1l m=1

imﬁ x(7r = X)y(z — y)dxdy)e ™™ sin nxsin my
T 0 Jo

The following are some figures of solution to this problem by Mathematica 6. Since
this solution u(x,y,t) is three dimensional type. We fix the t to show the solution.

We fix t=0.
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Iurnerical solition(Finte Difference Ivlethad)

Figure 3.13 The numerical solution of problem (3.2.1) att = 0.

Figure 3.14 The numerical solution 'of problem (3.2.1) att = 0.

Truncation of exact solution up to 20

X

a Truncathon of exact solutio® up to 20 3

i

Figure 3.15 The truncation of exact solution of problem (3.2.1) up to 20
at t=0.
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Here is the table for the data of the difference of numerical solution of problem
(3.2.1) and truncation of exact solution of problem (3.2.1) up to 20 at t =0

Wio Wia Ui,z Ui .2 U .¢
g, 0 0 0 0 0
W,y | 0O -0.000799293451  -0.000242560062 -0.0007992293451 0
Wiy | O -0.00024z560062  0.000773941452 -0.000242560062 0
U5 [0 -0.000799293451 -0.000242560062  -0.000799293451 0
g, 0 0 0 0 0

Table 3.17 The difference between numerical solution and truncation of

exact solution-of problem:(3.2.1)-up to 20 at t=0.

The difference hetweln rreeticgl solution and tramcation of exact solution
]

Figure 3.17 The difference between numerical solution and truncation of exact

solution of problem (3.2.1) up to 20 at t=0.

We change t from 0 to %
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Ntmérj::al solutiny (Finite Difference hlethod)
p]

LTS

Figure 3.18 The numerical solution of problem (3.2.1) at t =1/10

JFruncating of exact solution up to 20

0.6
ifos
(1]

0.0

Figure 3.19 The'truncation of-exact'solution of problem (3.2.1) up to 20
at t=1/10.

The difference betweln nu.r;rwricd solution and trancation of exact solation
3

Figure 3.20 The difference between numerical solution and truncation
of exact solution of problem (3.2.1) up to 20 with t = 1/10.
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Here is the table for the data of the difference of numerical solution of problem
(3.2.1) and truncation of exact solution of problem (3.2.1) up to 20 at t =1/10.

Wia Wi U,z U2 Ui 4
Wi, ] ] ] 1] 0
.4 o 0.000337067 0.000451116 0.000337%087 0
Ui 4 o 0.000451116 0.000693333 0.00043111e O
Uz 4 o 0.000337067 0.000431116 0.000337067 0
g4 u] u] ] 1] 0

Table 3.20 The difference between numerical solution and truncation

of exact solution of problem (3.2.1) up to 20 with t = 1/10.
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IV. Summary

We have some conclusions of the methods we show above

Similarity:

For the all method, its make the PDE become to one or more ODEs. And we
solve the simple ODEs to obtain the solution. In the method of separation of variable
we have two or three solutions from ODE systems and obtain the particular solution.
About the transform, we take the transform to the PDE and make it become an ODE.

To obtain the solutions of PDEs by taking the inversion formula on the solution of
ODE.

Difference:

Different methods.apply to different domain and-equation. Separation of
variables applies to bounded domain.and the‘equation is‘homogeneous. The finite
Fourier transform applies to bounded domain and-the'equation is nonhomogeneous.
The Fourier transform applies to the full-line domain. The sine and cosine transform
applies to the half-line domain. The finite difference method applies to irregular
domain.

The method of separation of variables in cylindrical coordinates is harder
than in one dimensional. It generate the Bessel’s equation.

There are some restrictions on boundary condition for the sine and cosine

transform. Sine and cosine transform are only useful in solving problem with the
boundary condition with x=0
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Appendix

The mathematica 6 code of problem (3.1.1)

Clear[m, n, k, &, B]:

m=39;

n=3;
1

k= —;
4

s =Tahle[It[i+ (ma+1) = (m+1) *n&&i- (m+1) = 0&&Mod[i, (m+1)] -1, {{i, i} -1},
If[:i.+ Mm+1) s (M+1) +n&&i - (m+1) = 0&& Mod[i, (m+1)] =1,

(n+ 1)° L
ﬁwk,{1,1+m}—>
e

— apee —(n+1)?
{{1;1}—>1, {1,1—1}—)—[1—2\1 —wk},
m+1
If[i+(m+1)s (Mm+1) »n&Li > (m+ 1) &&Mod[i, {m+1)] --1, {{i,i} -1},
If[i+(m+1)5 fm+1)7n&&i=(Mm+1)&&Mod[i, (m+1)] =1,

2 _ 2 B 2
ﬁwk], fi,i+mdo ﬁ,k, {i,i—m—2}—>ﬁwk},
m

 H | 1 i,i-1 -|1-2
fa, 1301, 0,1-15 [ — —

It[i+ (m+1y > (m+1) +n&Ei > (m+1)&EMod[i, {(m+1)] =1, {{i, i} 1},
If[i+ Mm+1) > (M+1) vn&&i > {m+ 1) L& Mod[i, (m+1)] =1,

(n+1)°

*
m+1

k], (i,i-m-2} = ka}, u]]]]]] (i, 1, (m+1)wn}]:

{{i,i}—)l, {1,1-1}_)-[1-2 s
R=1{}k

For[i=1, i« Length[S]+1, i++, A =Join[d, S[[i1111:

L = Inverse[Sparsehrray[A]]:

B-

kw mel k

m+1l n+l

Tahle[If[Mod[r, (m+13] =1, [

n+l n+l

(z-1) (z-1)

n+ 12 +2) —+2] n o+ 132
(+: * 1 wil gl +[1—2(+)w
m+ n+

(1) {1 (%d)]
* * - +

; n], {r, (m+1)wn}];

(z-1) (=-1)
[(n+1)2 'k]' =) G
m+ 1 n+1 n+1l

T = H[L.B1;
ULx , £ 1 :=If[x== 0lx==n+1,0,

If[t:: e [1_ i ],T[[(m+1)w(x—1)+t]]]]:

n+l n+l
Ullx , £ 1:=U[{n+1)rx, (m+1) »£];

pic = Tahle[{x, ¥, H[UL[x, ¥1, 51}, {x, 0,1, 1:1}' {]', 0,1, nﬁ}]

picdoin={}:

For[i=1,1i< 6, i++, picdoin =Join[picdoin, pic[[i]1]1]1];

ListPlot3D[picdoin, PlotStyle — ¥Yellow, PlotRange — {0, 0.3}

; hxesLabel — {Style[x, Large], Style[t, Large], Style[u, Large]}, PlotLabel - "Humerical solution{Finite Difference Method}"]:
1 1

{2n-1)° " Exp[(2n-1)?nr vkn 2]

8
u2 i il
[a_, z_] =

Sl.nn[ #Sin[{2n-1y w7 wg], {n, 1, lﬂl]l]}]]:

pic? = Tahle[{x, ¥, H[U2[x, ¥1, 51}, {x, 0,1, nil}’ {y, 0,1, mtl}]:

picdoin? = {}:

For[i=1,1i+6,i++, picdoin? = Join[picdoin?, pic2[[i]111]:

ListPlot 3D [picdoin?, PlotStyle — Yellow, PlotRange — {0, 0.3}

. AxesLabel — {Style[x, Large], Style[t, Large], Style[u, Large]}, PlotLabel - "Truncation of exact solution uwp to 1000"]:

pic3 - Tahle[{x, ¥, N[U1[x, v1, 11 - H[U2[x, ¥1, 11}, {x, 0,1, nii}, {y, 0,1, mi 1}]:

pic3idoin={};
For[i=1,1i+6,i++, pic3Join = Join[pic3Join, pic3[[i]111]:
ListPlot3D[pic3doin, FlotStyle — Green, hxesLahel — {Style[x, Large], Style[t, Large], Style[u, Large]},
PlotLabel - "The difference hetween numerical solution and Truncation of exact solution "];
ListPlot3D[{picdoin, picJoin2}, PlotStyle — {¥ellow, Blue}, PlotRange — {0, 0.3}
, AxesLabel — {Style[x, Large], Style[t, Large], Style[u, Large]}, PlotLahel — "Compare Humerical with exact solution"]
Clear[i, j1:

Tn - TahleI‘om[Tahle[N[Ui[x, ¥1, 11 - N[V2[x, ¥1, 11, {y, o, 1, mil}, {x, 0,1, n:1}]’

TableHeadings — {Table[Subscript[u, i, i1, {i, 0, m+ 1}], Table[Subscript[u, i, 31, {i, 0, n+1}]}, TableSpacing — {1, 2}]
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The mathematica 6 code of problem (3.2.1)

Clear[m, n, £, k]:

m=3;
n=3;
5=19;
k=1;
W:Tahle[If[is (5+1) && Mod[i, {(s+1)]=-1, {{i, i} =1},
If[- = - - - . k 2 2 - - -k 2
1s(s+1)&&llcwl[1,(s+1)]¢1,{{1,1}—>1, fi,1-1}—=-1+2x w((m+1) +{n+ 1) ),{1,1+s}—> +{n+1),
s+1 £+1

. -k 2
fi,i+nw(s+1) -1} — (m+1) }
5+1
If[i>s+1&&is -1y v (s+ 1) &EMod[i, (s+13]=-1, {{i, i} »1},

If[i>s+1&&is (n-1) v (s+1) &&Mod[i, (s +1)] =1,

-k A -k 2
w{n+1), {i,i-5-2}~ 1w(1‘l+1),

w((m+1)2+{n+1)2),{i,i+s}—>s+1 =

[, 13510, 45, 3 131424
2+1

o -k 2
fi,i-1+nx{s+1))} > —— (m+1) };
s+1
If[:i.> (n-1) (5+1)&&i <n (s + 1) && Mod[i, (s +1}] == 1, {{i, i} =1},

If[i> (M-1) (8+1)&&i zn (s +1) &L Mod[i, (s+1)] £1,

e+ e, 1, i-5-2) g sin+1)?, {i,i—1+n(s+1)}—>i (m+1)2},
5+1 5+1

{{i, iy, {i,i-1}s-142n

=+1
+ ] n] = 1&EMod[i, {s+1)]=-1, {{i, i} =1},
+1

If[i Sn(S+1)&EQ s (m-1) vnw (5 + 1) && Mod[Ceiling[
=

1

1], n] - 16EMod[i, {s+1)] =1,

If[:i. cn(S+ 1) &EQ s (m-1) vnw {5+ 1) &KL Mod[Ceiling[
s+

-k 2 : : -k 2
afn+1), i, i-1+n{s+1)}- — (m+1)°,
s+1

w(m+ 13+ (e 1F), L4, '1+S}—>s+1

[, 431,41, 1- 135124
s+1

o s -k 2
fi,i-1-ns(8+1)}=s — (m+1) }
s5+1

If[i NS+ 1) &Ciz (M-1) xRn (S + 1)&&Mod[0eiling[ - 1], 11] = 0G&EMod[i, (5+1)]==1, {{i, i} 1},
5+

L 0 && Mod[i 1 1
el ) [, s+ D1#1,

If[i RS+ 1 LCiz (m-1) wnn (S + 1)&&Mod[Ceiling[

w(m+ D)7+ (n+ 1)), {4, i-1+n(s+1)}—>i m+ 1%,
5+1

{{i,i}—»l, (i,i-1}o-1+2x
=+1
-k

-k
{i,i-1-nr{5+1)} > — (m+1)2, {i,i-5-2}=
5+1 5+1

*n+ 1)2},
It[i RS+ 1) 6612 (m-1) vnr (S + 1) && Mod[(:eiling[si_l] I n] £14& Mod[(.‘eiling[s x -
+ +

], n] £ 0&EMod[i, (s+1)] == 1,

{{i, i} -1},

i i
If[i sn(s+1)6&iz (m-1) xnw(s+ 1) & Mod[Ceilin.g[

], n] £14L Mod[Ceiling[ ], n] £ 06
5+1 =+1

: . e - k 2 2% g s -k 2

Mod[i, (s+1)]#1,{{1,1}—;1,{1,1—1}—;-1+2ws 1w((m+1) +{n+ 1) ),{1, 1—1+n(s+1)}—>s—1(m+1),
+ +

-k

2
D },

w{n+1), {i,i+8)

{i,i—l—nw(s+1)}—>i(m+1)2,{i,i—s—2}—) -
s+1 2+1
If[i>(m—l)wnw(s+1)&&is(((m—l)wn)+1)w(s+1)&&l{od[i, (s+13]==1, {{i, i} =1},
If[i> M-y anwi{s+1) &&= ({{m-1)wn) +1) w(s+ 1) && Mod[i, (s+1)] =1, {{i, iyo1,
2 Ly 2 -k 2
rn+D?, (i, i-l-na s+l — (m+1) }
£+1

fi,i-1)>-1+2x r(m+ 1P+ (e D), {i, ies)o
s+1

s+1
If[:i.> ({m-1)*n) + L) r{8+1) &&i=z {mwn-1) (s+ 1) L&Mod[i, {s+1)] =1, {{i, i}->1},

If[i> ((m-1y+n) + D w{s+1)&kiz (mwn-1) (5+1) &&Mod[i, (s+1)] =1,

w(m+ D e n+ D), fi, i-1-nwls+ 1)} '—kl(m+1)2,
g+

T, iyo1, 6,010 102y
s+1

i -k 5w vl -k
{i,i-g8-2}> +{n+1), {i,i+8) >
s+1 s+

[ 1)2},

If[i> mwn-1) v (s+1) &EMod[i, s+ 1)1 -=- 1, {{i, i} =1},
+(m+ 1)+ m+1)?),

If[i>(mnn—l)w(s+1)&&l-[od[i,(s+1)]$1,{{i,i}—>1,{i,i—l}—>—1+2w =

=+

o -k 3w -k
fi,i-1-nv{5+1}}—- — Mm+1) , {i,1i-5-2}-=>

5+1 5+1

ITTTITTITITIG €/ 2 mens o anp]:

"+ 1)2}
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R=1{}:
For[i=1, i« Length[W] +1, i++, & = Join[&, W[[i1111;
L = Inverse [Sparsefrray[R]]:

B-
Tahle[
it ; =y i
If[l{oﬂ[i; (5 +1)] =1, [sfl]" {m+ 1)2w (CE111M[“:5;1;*“] +1)nw - [CelllngE:,;]fm +1) ] (MD [(5.;):1]1] +1)nlw
] (Mod[(s?:ln]d] ] kl]w(m+1)2w (CeilingE:s:'l}m]—l)n* - [Ceiling[n:s;ll)m] 1] I
{MOd[(s,:L)' 11] +1]n [Mod[(s‘ljl n] +1]n
n+l 4 n+ 1l
2 o [Ceiling[ﬁ]]n [Ceiling[ﬁ]]n ( [(5‘1),n]+2] (ma[%,n]+2]n
S+1wclll+ ¥ m+1 i m+1 " n+1 ik n+1
I il O e | Tl U i i
s+1w(]1+ ro m+1 il i m+1 * n+1 o s n+1
(-2 5 (e 07e o)) i vt A O i o) O W i O
s5+1 m+1 m+1 n+l
W] = u], (i, mwnw(s+1)}]:
T = H[L.B1:

Ulx , v, t1] :=If[x==ll [lx==m+1]|¥==0]]¥v==n+1,0,

ENFY VoA

It[t:: = S fh wnw(s+1)+(y—1)w(s+1)+t]]]]:
Uik, v, £ 1 :=U[(m;1) vz, (“;1) 1Y {5+ et
p:i.ct:Tahle[{x, ¥ N[Ul[x, ¥ ﬁ 'I']} {x 0, m, m+1} {y,l] o, n?-:-l}].

picdoin={};
For[i=1,1i«6,i++, picdoin = Join[picdoin, pict[[i]1]1]1]:
LiztPlot 3D [picdoin, PlotStyle — Yellow
; hxesLabel — {Style[x, Large], Style[y, Large], Style[u, Large]}, FlotLabhel - "Humerical solution(Finite Difference Method}"]
Wlx, v, E]:=
20 20
Z ey g 8 (-2 +2Cos[nn] +maSin[nn]) [n}tCus[ —] 2 Sln[ —]] Sl]‘l[ — | »Exp[- (11 +M ] £] +Sin[nxx] #Sin[ms ¥1:

n=lm=l
1
1’1|:|t.312|[lr2[xr ¥, E], {x, 0, m}, {y, 0, m}, PlotStyle — Blue, Axeslabel — {Style[x, Large], Style[y, Large], Style[u, Large]},
PlotLabel - "Truncation of exact solution wp to 20 "]

picS:Tahle[Ul[x, ¥i %] -U2[x, ¥ %], {x, 0, m, m+1} {y, 0, m, nfl}]:

ListPlot3D[pic3, PlotStyle — Red, PlotRange — A11, AxesLahel — {Style[x, Large], Style[y, Large], Style[z, Large]},

PlotLabel - "The difference hetween numerical solution and truncation of exact solution"]

Clear[i, jl:

Tn = TahleFurm[Tahle[Ul[x, ¥, %] -U2[x, ¥, %] {x, 0, w, m?:1}' {y, 0, 7w, 1:1}]’

TableHeadings — {Table [Subscript[u, i, 31, {i, 0, m+1}], Table[Subscript[u, i, 31, {i, 0, m+1}1}, TableSpacing - {1, 2}]

pict = Tahle[{x, v, H[U1[x, v, 01, 71}, {x, 0,7, —
m

Jrl-]_}’ {Y’ flaes n?:l}]:

picdoin={};
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For[i=1,1i- 6, 1++, picJoin = Join[picdoin, pict[[i]1]1]:

ListPlot3D[picdoin, PlotStyle — Yellor

, hxesLabel - {Style[x, Large], Style[y, Large], Style[u, Large]}, PlotLabel - "Humerical solution{Finite Difference Method}"]
FlotID[U2[x, v, 01, £x, 0, ;}, {v¥, 0, xt}, PlotStyle - Blue, AxesLabel — {Style[x, Large], Style[y, Large], Style[u, Large]},

PlotLabel - "Truncation of exact solution wp to 20 "]

T
pie3 = Table[ x, v, VILx, v, 01 - 20, v, 013, {x, 0,70, — L v, 0,7,
+ +

el

picdoind = {};
For[i=1,1+<6, i++, picdoin3 = Join[picdoind, pic3[[1]11]1]:
ListPlot3D[picdoin3, PlotStyle — Red, PlotRange — All, AxesLabel - {Style[x, Large], Style[y, Large], S5tyle[z, Large]},

PlotLabel - "The difference hetween mumerical solution and truncation of exact solution"]

} { ! . }]
b1
1 ¥ U ;l'l+1 ’

TableHeadings — {Table[Subscript[u, i, 31, {i, 0, m+1)}], Table[Subscript[u, i, 31, {3, 0, m+1}]}, TableSpacing {1, 2}]

m
Tn- TahleFum[Tahle[N[Ul[x, ¥, 01 -U2[x, ¥, 01, 91, {x, 7
-
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