國立交通大學

應用數學系

碩 士 論 文

不可約非負矩陣相似至正矩陣的問題探討 Irreducible nonnegative matrices that are similar to positive matrices

研 究 生:王信元

指導教授:王國仲 教授

中 華 民 國 一○○ 年 七 月

不可約非負矩陣相似至正矩陣的問題探討

Irreducible nonnegative matrices that are similar to positive matrices

研 究 生:王信元 Student:Hsin-Yuan Wang

指導教授:王國仲 Advisor:Kuo-Zhong Wang

國 立 交 通 大 學

Submitted to Department of Applied Mathematics *MITTLE*

College of Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Applied Mathematics July 2011

Hsinchu, Taiwan, Republic of China

中華民國一○○年七月

不可約非負矩陣相似至正矩陣的問題探討

研究生:王信元 指導教授:王國仲

國立交通大學應用數學系(研究所)碩士班

摘 要

我們所要探討的是不可約非負矩陣相似至正矩陣的問題,我們 將探討二個主要問題。一是對於 n 階不可約非負矩陣且有 n+2 個零元 素和對角線元素皆相異的條件之下,會相似至正矩陣。二是對於 n 階 不可約非負矩陣且有 n+2 個非零元素的條件之下,會相似至正矩陣。

Irreducible nonnegative matrices that are similar to positive matrices

student: Hsin-Yuan Wang Advisors: Kuo-Zhong Wang

Department of Applied Mathematics National Chiao Tung University

ABSTRACT

We study the questions in which the irreducible nonnegative matrices are similar to positive matrices.We will solve the problems for n×n irreducible nonnegative matrices with exactly $n+2$ zeros, and all the entries of diagonal are distinct, and for $n \times$ n irreducible nonnegative matrices with exactly n+2 nonzero elements are similar to positive matrices.

時光匆匆,在研究所的求學階段也即將告一段落。首先我要感謝我的指 導教授王國仲老師,在我學習上遇到困難時,總是能夠適時地給我一些指點,老 師做研究的嚴格態度,相信對我將來會有極大的幫助,同時也要感謝幫我口試的 兩位老師,林敏雄教授和蔣俊岳教授,感謝他們在口試時給我的寶貴意見,讓我 的論文能更完善。

最後我想要感謝我的父母,在我感到無力有他們的鼓勵,讓我倍感溫馨, 也更有動力向前邁進。還有我的研究所師長,同學,及好友們,願將我的成果與 你們一同分享。

1 Introduction

For a matrix $A = [a_{ij}]_{i,j=1}^n$, we say that A is **nonnegative** is all its entries a_{ij} are nonnegative. We say that A is **positive** $(A > 0)$ if all its entries a_{ij} are positive. A nonnegative matrix A is called **reducible** matrix if there is a permutation matrix Q such that

$$
Q^T A Q = \left[\begin{array}{cc} B & C \\ 0 & D \end{array} \right],
$$

where B, C are square matrices, and it is called **irreducible** if it is not reducible.

We are interested in irreducible nonnegative matrices that are similar to positive matrices. This question was first studied in the paper of Borobia and Moro[1], where they obtained several results on the problem. Recently, in [2], Laffey, Loewy, and \tilde{S} migoc proved two main theorems:

- LLS 1. Let A be an $n \times n$, $n \geq 4$, irreducible nonnegative matrix with exactly n zero elements. Then either A has trace zero or it is similar to a positive matrix.
- LLS 2. Every irreducible $n \times n$ nonnegative matrix A with positive trace and exactly $n + 1$ zeros is similar to a positive matrix for all $n \geq 3$.

In this paper, we consider the following problems:

Question 1. For $n \geq 4$, is every irreducible $n \times n$ nonnegative matrix A with positive trace and exactly $n + 2$ zeros similar to a positive matrix ? Question 2. Is every irreducible $n \times n$ nonnegative matrix A with positive trace and exactly $n + 1$ or $n + 2$ nonzeros similar to a positive matrix ?

In Question 2, if "exactly $n + 1$ or $n + 2$ nonzeros" replaces by "exactly n+3 nonzeros", then the answer is false.

Counterexample [1, Theorem 5]:

For $a \in (0,1)$, $\sqrt{ }$ $\overline{1}$ a $0 \t 1 - a$ $1 - a$ a 0 0 $1 - a$ a \setminus is not similar to a positive matrix.

In section 3, we prove that for $n \geq 4$ and $n \neq 5$, if A is an $n \times n$ irreducible nonnegative matrix with exactly $n + 2$ zeros and distinct diagonal entries, then A is similar to a positive matrix. In section 4, we solve Question 2.

2 Priliminaries

In the section, we list some Lemma, which will be used in the proofs of our main result. The following lemmas appeared in [2, Corollary 3.4, and Lemma 3.5].

Lemma 2.1 Let A be an irreducible matrix with a positive row or column. Then A is similar to a positive matrix.

Lemma 2.2 Let

$$
A = \left[\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array} \right]
$$

be a nonnegative matrix such that A_{11} is similar to a positive matrix, $A_{12} > 0$, and $A_{21} > 0$. Then A is similar to a positive matrix.

Let P be a nonnegative pattern matrix (i.e. a matrix whose entries are either zeros or positive entries), and let $P^i, P^j(P_i, P_j)$ be two columns(rows) of P. We say that P^j dominates $P^i(P_j)$ dominates P_i , and we write $P^j \ge P^i(P_j \ge P_i)$, if $P^j(P_j)$ has positive entries in at least the same positions as $P^i(P_i)$. We denote by $P^{i} + P^{j}(P_{i} + P_{j})$ the pattern column with stars in all positions expect in those where both P^i and $P^j(P_i \text{ and } P_j)$ have zeros.

The following two lemmas were proved in [1,Theorems 2 and 4]. We need them to derive our main results. For the sake of completion, we list their proofs below. below.

Lemma 2.3 Let P be an irreducible pattern matrix with rows P_1, \ldots, P_n and columns P^1, \ldots, P^n , and suppose $P^i \leq P^j (P_i \leq P_j)$ for a certain pair of indices $i, j.$ Then any nonnegative matrix with pattern \tilde{P} is similar to a nonnegative irreducible matrix with pattern Q, where $Q_i = P_i + P_j$ and $Q_k = P_k$ for $k \neq i$ $(Qⁱ = Pⁱ + P^j$ and $Q^k = P^k$ for $k \neq i$.

Proof. Suppose that $i = 1, j = 2$, and $P^1 \leq P^2$ (the proof in the row case is completely analogous). We consider the $n \times n$ matrix

$$
(2.1) \t\t X = \begin{bmatrix} Y & 0 \\ 0 & I_{n-2} \end{bmatrix},
$$

where

$$
Y=\left[\begin{array}{cc} 1 & \epsilon \\ 0 & 1\end{array}\right]
$$

and ϵ is positive. Let A be any nonnegative matrix with pattern P. We partition

$$
A = \left[\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array} \right]
$$

conformally with (2.1). Then

$$
XAX^{-1} = \left[\begin{array}{cc} YA_{11}Y^{-1} & YA_{12} \\ A_{21}Y^{-1} & A_{22} \end{array} \right].
$$

The block

$$
A_{21}Y^{-1} = \begin{bmatrix} a_{31} & a_{32} - \epsilon a_{31} \\ \vdots & \vdots \\ a_{n1} & a_{n2} - \epsilon a_{n1} \end{bmatrix}
$$

has, for ϵ small enough, the same pattern as A_{21} , since a_{k2} can only be zero if a_{k1} is zero as well. Note that A_{22} does not change, so the row $3, \ldots, n$ keep the same pattern as before the change of variable. The same applies to the second row, since

$$
YA_{21}Y^{-1} = \begin{bmatrix} a_{11} + \epsilon a_{21} & a_{12} + \epsilon (a_{22} - a_{11} - \epsilon^2 a_{21}) \\ a_{21} & a_{22} - \epsilon a_{21} \\ a_{13} + \epsilon a_{23} & a_{1n} + \epsilon a_{2n} \\ \hline \end{bmatrix},
$$

$$
YA_{12} = \begin{bmatrix} a_{13} + \epsilon a_{23} & a_{1n} + \epsilon a_{2n} \\ \hline a_{23} & \epsilon \end{bmatrix}.
$$

Finally, the first row can only increase its pattern, and this will only happen in those positions where $a_{1k} = 0, a_{2k} > 0$. In other words, the pattern of the first row becomes $P_1 + P_2$ and the rest remain invariant. Г

1896

Lemma 2.4 Let $A = [a_{ij}]_{i,j=1}^n$ be a nonnegative irreducible matrix with $a_{ij} =$ $0, i \neq j$, and suppose that $a_{kj} > 0$ for $k \neq i$ $(a_{ik} > 0$ for $k \neq j)$. If $a_{ii} < a_{jj} (a_{ii} > 0)$ a_{jj}). Then A is similar to a positive matrix.

Proof. Suppose again that $i = 1, j = 2$, and satisfies $a_{k2} > 0$ for $k \neq 2$ (the proof with $i = 1, j = 2$, and satisfies $a_{1k} > 0$ for $k \neq 1$ is carried out analogously). Hence, A is the form

$$
A = \begin{bmatrix} a_{11} & 0 & \cdots \\ & a_{22} & \\ & & a_{32} & \\ & & \vdots & \\ & & & a_{n2} \end{bmatrix}.
$$

with $a_{12} = 0, a_{k2} > 0$ for $k \neq 1$, and $a_{11} < a_{22}$. We consider again the change of variables (2.1). One can check, as in the proof of Lemma 2.4, that for ϵ small enough the matrix XAX^{-1} is nonnegative and its pattern strictly dominates

the pattern of A. Thus, XAX^{-1} is irreducible, and its second column

 $\sqrt{ }$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \end{array}$ $\epsilon(a_{22}-a_{11}-\epsilon a_{21})$ $a_{22} - \epsilon a_{21}$ $a_{32} - \epsilon a_{31}$. . . $a_{n2} - \epsilon a_{n1}$ 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \begin{array}{c}$

.

is positive. Hence, according to Lemma 2.2, XAX^{-1} is similar to a positive matrix.

3 Matrix with exactly $n+2$ zeros

Proposition 3.1 For $n \geq 6$, let $A = [a_{ij}]_{i,j=1}^n$ be an irreducible $n \times n$ nonnegative matrix with exactly $n + 2$ zeros and let the diagonal entries be all distinct . If $a_{n1} = a_{n2} = a_{n3} = 0$, then A is similar to a positive matrix.

Proof. First, suppose that zeros in rows 1, 2, 3 does not appear in the same column. Since there is a column in the first three columns with exactly a zero, we may assume that it is the third column. Then $A^3 \geq A^1, A^3 \geq A^2$. By Lemma 2.3, we know that \overline{A} is similar to a nonnegative irreducible matrix Q , where $Q_1 = A_1 + A_3, Q_2 = A_2 + A_3$, and $Q_k = A_k, k \neq 1, 2$. Moreover, Q has exactly k zeros, where $k \leq n+2$. Hence, we apply LLS 1 and LLS 2 to show that Q is similar to a positive matrix, and this implies that A is similar to a positive matrix. Next, we consider the situation when zeros in rows 1, 2, 3 appear in the

same column.

(1) If column *n* has only a zero, we may assume that $a_{14} = a_{24} = a_{34} = 0$. Then A is permutationally similar to the form

$$
A = \left[\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array} \right],
$$

where A_{11} is a $k \times k$ matrix with the pattern

$$
\begin{bmatrix} + & + & + & 0 & + & \cdots & + \\ + & + & + & 0 & + & \cdots & + \\ + & + & + & 0 & + & \cdots & + \\ + & + & + & + & 0 & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \ddots & + \\ + & + & + & + & \cdots & + & 0 \\ 0 & 0 & 0 & + & \cdots & \cdots & + \end{bmatrix},
$$

 A_{22} is an $(n-k)\times(n-k)$ matrix with $n-k$ zeros, and A_{12} , A_{21} are positive matrices. Since $a_{(k-1)k} = 0$ with $a_{ik} > 0, i \neq k-1$ and $a_{(k-1)j} > 0, j \neq k$, by Lemma 2.4, we have A_{11} is similar to a positive matrix. By Lemma 2.2, this implies that A is similar to a positive matrix.

(2) Suppose that $a_{1n} = a_{2n} = a_{3n} = 0$. Then A is permutationally similar to the form

$$
A = \left[\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array} \right]
$$

,

 \blacksquare

where A_{11} is a 4×4 matrix with the pattern

$$
\left[\begin{array}{cccc} +&+&+&0\\ +&+&+&0\\ +&+&+&0\\ 0&0&0&+ \end{array}\right]
$$

 A_{22} is an $(n-4) \times (n-4)$ matrix with $n-4$ zeros, and A_{12} , A_{21} are positive matrices. If $n \geq 8$, then A_{22} is irreducible with nonzero trace. By LLS 1, A_{22} is similar to a positive matrix. Hence, by Lemma 2.2, A is similar to a positive matrix.

For $6 \leq n < 8$, there is an $a_{ik} = 0$, $4 < i, k \leq n$ and $i \neq k$, satisfying $a_{ij} > 0, j \neq k$ and $a_{jk} > 0, j \neq i$. By Lemma 2.4, A is similar to a positive matrix. positive matrix.

Theorem 3.2 For $n \geq 4$ and $n \neq 5$, let $A = [a_{ij}]_{i,j=1}^n$ be an irreducible $n \times n$ nonnegative matrix with exactly $n+2$ zeros. If the diagonal entries are distinct, then A is similar to a positive matrix.

Proof. By Lemma 2.1, we may assume that A has at least a zero in every row and column. It only need to consider that row n has three zeros or two zeros. **Case 1.** Row n has three zeros:

From Proposition 3.1, we only need to consider the case $a_{n1} = a_{n2} = a_{nn} = 0$. If there exist $a_{i1j} = a_{i2j} = a_{i3j} = 0$ and $a_{jj} > 0$. Then we can replace A by A^T and use the arguments from Proposition 3.1 to finish the proof. Next, if zeros in rows 1, 2, n appear in the same column and a zero of them is on the main diagonal. Since the diagonal entries are distinct, we have $a_{1n} = a_{2n} = a_{nn} = 0$. Then $A^1 \geq A^n$. By Lemma 2.3, A is similar to a nonnegative irreducible matrix Q, where $Q_n = A_1 + A_n$ and $Q_k = A_k$ for $k \neq n$. Moreover, Q has exactly k zeros, where $k < n + 2$. Thus A is similar to a positive matrix. Finally, We consider the situation when zeros in rows $1, 2, n$ do not appear in the same column. In the situation, if $n \geq 6$, then there is an $a_{ij} = 0, 3 \leq j \leq 5$, $i \neq j$ such that

 $a_{kj} > 0$ for $k \neq i$ and $a_{il} > 0$ for $l \neq j$. By Lemma 2.4, A is similar to a positive matrix. For $n = 4$, applying Lemma 2.4, we only need to consider the pattern:

$$
\left[\begin{array}{cccc} + & + & 0 & + \\ + & + & 0 & + \\ + & + & + & 0 \\ 0 & 0 & + & 0 \end{array}\right].
$$

By Lemma 2.3, we know that it is similar to a nonnegative irreducible matrix with exactly k zeros, where $k < n+2$. Hence it is similar to a positive matrix.

Case 2. Two zeros in row n are off the main diagonal. We may assume that $a_{n1} = a_{n2} = 0$:

1. There are two additional zeros in the first two columns:

If $n \geq 6$, then there is an $a_{ij} = 0, 3 \leq j \leq 5$, $i \neq j$ such that $a_{kj} > 0$ for $k \neq i$ and $a_{il} > 0$ for $l \neq j$. By Lemma 2.4, A is similar to a positive matrix. For $n = 4$, using Lemma 2.4, we only need to consider the following patterns:

$$
\left[\begin{array}{ccc|c} + & + & 0 & 0 & + & + & + \\ 0 & + & + & + & + & + & + & + \\ + & 0 & + & + & + & + & + & + \\ 0 & 0 & + & + & + & + & + \\ 0 & + & + & + & + & + & + \\ 0 & + & + & + & + & + \\ 0 & + & + & + & + & + \\ 0 & + & + & + & + & + \\ 0 & + & + & + & + & + \\ 0 & + & + & + & + & + \\ 0 & + & + & + & + & + \end{array}\right],
$$

Four patterns above, by Lemma 2.3, we know that these are similar to nonnegative irreducible matrices with exactly k zeros, where $k < n + 2$. Hence these are similar to positive matrices.

2. There is an additional zero in the first two columns:

We may assume that column 1 has two zeros. First, we consider the situation when zeros in rows 1, 2 do not appear in the same column. Since $A^2 \geq A^1$, by Lemma 2.3, A is similar to a nonnegative irreducible matrix Q, where $Q_1 = A_1 + A_2$, $Q_k = A_k$ for $k \neq 1$. Then Q has exactly m zeros, where $m < n + 2$. Hence, Q is similar to a positive matrix and this implies that A is similar to a positive matrix.

Next, we consider the situation when zeros in rows 1, 2 appear in the same column. If $n \geq 6$, then there is an $a_{ij} = 0, 3 \leq j \leq 5$, $i \neq j$ such that $a_{kj} > 0$ for $k \neq i$ and $a_{il} > 0$ for $l \neq j$. By Lemma 2.4, A is similar to a positive matrix. For $n = 4$, by Lemmas 2.3 and 2.4, we only need to consider the following patterns:

$$
A(1) = \begin{bmatrix} + & + & 0 & + \\ + & + & 0 & 0 \\ 0 & + & + & + \\ 0 & 0 & + & + \end{bmatrix}, A(2) = \begin{bmatrix} + & + & 0 & + \\ 0 & + & 0 & + \\ + & + & + & 0 \\ 0 & 0 & + & + \end{bmatrix}, A(3) = \begin{bmatrix} + & + & + & 0 \\ 0 & + & + & 0 \\ + & + & 0 & + \\ 0 & 0 & + & + \end{bmatrix}.
$$

All of the above patterns are discussed in Proposition 3.3.

3. The first two columns are both a zero:

First we consider the situation when zeros in rows 1, 2 do not appear in the same column. Since $A^2 \geq A^1$. By Lemma 2.3, A is similar to a nonnegative irreducible matrix Q such that Q has exactly k zeros, where $k < n+2$. Hence A is similar to a positive matrix. Next, suppose that $a_{1r} = a_{2r} = 0$. If $r = n$, from Lemmas 2.2 and 2.4, our analysis reduces to the situation:

By LLS 2, B is similar to a positive matrix. If $3 \leq r < n$, we may assume that $r = 3$ and $n \ge 6$. By the hypothesis, there is an $a_{ij} = 0, 4 \le j \le n$, $3 \leq i < n, i \neq j$ such that $a_{kj} > 0$ for $k \neq i$ and $a_{il} > 0$ for $l \neq j$. By Lemma 2.4, A is similar to a positive.

Case 3. Row n has two zeros and a zero in row n is on the main diagonal: We may assume that $a_{n1} = a_{nn} = 0$. Then there exist $a_{i1j} = a_{i2j} = 0$ for some $1 \leq i_1, i_2 \leq n$ and $i_1, i_2 \neq j$. Replace A by A^T . By Case 2, we obtain the proof. Ē

Proposition 3.3 For $1 \leq i \leq 3$, $A(i)$ is defined as in the proof of Theorem 3.2. Then $A(i)$ is similar to a positive matrix.

Proof. Let E_{ij} denote a $(0, 1)$ matrix with element (i, j) equal to one and all other elements equal to zero. We define

$$
F_{ij}(\epsilon) = I - \epsilon E_{ij}.
$$

Clearly, $F_{ij}^{-1}(\epsilon) = F_{ij}(-\epsilon)$.

For $i = 1, 2, 3, A(i) = [a_{ij}]_{i,j=1}^4$, if $a_{22} < a_{44}$, $F_{42}(\epsilon)A(i)F_{42}^{-1}(\epsilon)$ is nonnegative and has positive column 2 for all sufficiently small $\epsilon > 0$. If $a_{22} > a_{44}$, $F_{42}(-\epsilon)A(i)F_{42}^{-1}(-\epsilon)$ is nonnegative and has positive column 2 for all sufficiently small $\epsilon > 0$. Thus $A(i)$ is similar to a positive matrix. П

4 Matrix with exactly n+2 nonzero entries

Suppose that A is an $n \times n$ irreducible nonnegative matrix with $tr(A) > 0$. In this section, we show that A is similar to a positive matrix when A has exactly $n + 1$ or $n + 2$ nonzeros entries.

Proposition 4.1 Let A be an $n \times n$ irreducible nonnegative matrix with exactly $n+2$ positive elements and $tr(A) > 0$. Suppose that A is permutationally similar to a matrix of the form

,

where the positions of positive diagonal entries are $(i - 1, i - 1)$ th and (i, i) th, and we replace + of diagonal entries by \oplus . Then A is similar to a positive **THEFT** matrix.

Proof. Obviously, $A^{i-1} \geq A^{i-2}$. By Lemma 2.3, A is similar to a nonnegative irreducible matrix B with pattern

Using similar step, we get that A is similar to a nonnegative irreducible matrix C with pattern

C = + + + · · · + + + + + + + · · · + + + + + · · · + + + + + + + + + + + ⊕ + ⊕ + 0 0 0 + 0 ,

by observing this pattern, we have $C^1 \geq C^n$, and then it is similar to a nonnegative irreducible matrix \overline{P} with pattern

P = + + + · · · + + + + + + + · · · + + + + + · · · + + + + + + + + + + + ⊕ + ⊕ + 0 + 0 + + + · · · + + + 0 · · · + +

Using similar step, by Lemma 2.3, P is similar to a nonnegative irreducible matrix with pattern

 + + + · · · + + + + + + + · · · + + + + + · · · + + + + + + + + + + + ⊕ + ⊕ + + + + + + · · · + + + 0 · · · + + ,

where it has positive column i − 1. By Lemma 2.1, it is similar to a positive matrix. matrix. Ē

From the proof of Proposition 4.1, the diagonal entry of position (i, i) can be zero. Hence we have the following theorem.

Theorem 4.2 Let A be an $n \times n$ irreducible nonnegative matrix with exactly $n+1$ positive elements and $tr(A) > 0$. Then A is similar to a positive matrix.

Proof. From the hypothesis, A is permutationally similar to a matrix of the form

,

where $a_1, \dots, a_n, a_{n+1} > 0$. From the proof of Proposition 4.1, we show that A is similar to a positive matrix. Ē

Proposition 4.3 Let A be an $n \times n$ irreducible nonnegative matrix with exactly $n + 2$ positive elements and $tr(A) > 0$. If A is permutationally similar to a

matrix of the form

where the positions of positive diagonal entries are (i, i) th and $(i + k, i + k)$ th, and we replace + of diagonal entries by \oplus . Then A is similar to a positive E matrix. $|\mathsf{S}|$

Proof. Using the method of Proposition 4.1 and Lemma 2.3, A is similar to the following pattern matrix 75

P ≡ + + + + 0 + + + + + 0 + ⊕ 0 + 0 + 0 0 0 + ⊕ + 0 + 0 + 0 . . . 0 + + + + 0 + +

Since $P_i \ge P_{i+1}$, by Lemma 2.3, P is similar to the following pattern matrix

By the discussion above, Q is similar to a nonnegative irreducible matrix with pattern

.

It has positive column $i + k - 1$ and then A is similar to a positive matrix. ■

Proposition 4.4 Let A be an $n \times n$ irreducible nonnegative matrix with exactly $n + 2$ positive elements and $tr(A) > 0$. If A satisfies the following properties:

- (i) The diagonal entries have a nonzero element.
- (ii) There is a positive (i, j) position with $i \neq j$, and ith row and jth column have an additional positive element respectively.

Then A is similar to a positive matrix.

We need the following lemma to prove Proposition 4.4.

Lemma 4.5 Let $A = [a_{i,j}]_{i,j=1}^n$ be an irreducible nonnegative matrix with exactly $n + 1$ positive elements and $tr(A) = 0$. If A satisfies (ii) of Proposition 4.4. Then A is permutationally similar to a matrix of the form

Proof. Obviously.

The proof of Proposition 4.4:

Here we replace the nonzero diagonal entry (k, k) and positive (i, j) position by notation ⊕. By Lemma 4.5, we only need to consider the following two cases. **Case 1.** \oplus in the position $(i, 1)$, where $3 \le i \le k$:

A ≡ 0 0 0 + + 0 0 0 + 0 + ⊕ + 0 + ⊕ + 0 0 0 + 0

.

Since $A^k \geq A^{k-1}$, by Lemma 2.3, A is similar to a nonnegative irreducible matrix A' with $A'_{k-1} = A_k + A_{k-1}$ and $A'_{r} = A_r$ for $r \neq k-1$. Repeat this step, then A is similar to the following pattern

C ≡ 0 0 0 · · · · · · · · · 0 0 + + + + · · · · · · · · · + + + + · · · · · · · · · + + + . ⊕ + + + + ⊕ + 0 0 0 + 0 .

Since $C_k \geq C_{k+1}$, by Lemma 2.3, C is similar to a nonnegative irreducible matrix C' with $C'^{k+1} = C^k + C^{k+1}$ and $C'^r = C^r$ for $r \neq k+1$. Repeat this step, then C is similar to the following pattern E

	$\boldsymbol{0}$ $\! +$	$\boldsymbol{0}$ $^{+}$ \ddag	$\overline{0}$ \mathbf{f}	\bullet	1896	$\overline{0}$			$\overline{0}$ $\overline{+}$ \vdots	$^{+}$ ٠ \vdots	
$D \equiv$	\oplus			+		$^{+}$	\oplus			$\overline{+}$	
										$^+$	

From Lemma 2.1, D is similar to a positive matrix. **Case 2.** \oplus in the position $(i, 1)$, where $i > k$:

Since $A^k \geq A^{k-1}$, by Lemma 2.3, A is similar to a nonnegative irreducible matrix A' with $A'_{k-1} = A_k + A_{k-1}$ and $A'_{r} = A_r$ for $r \neq k-1$. Repeat this step, A is similar to the following pattern

Since $Q_k \geq Q_{k+1}$, by Lemma 2.3, Q is similar to a nonnegative irreducible matrix Q' with $A'^{k+1} = Q^k + A^{k+1}$ and $Q'^r = Q^r$ for $r \neq k+1$. Repeat this

step, Q is similar to the following pattern

R ≡ 0 0 0 · · · 0 0 0 · · · 0 + + + + · · · + + + · · · + + + · · · + + + · · · + . + + + + · · · + + ⊕ + · · · + + + · · · + + ⊕ + 0 0 0 + 0 .

Since $R^{i-1} \geq R^1$, by Lemma 2.3, R is similar to a nonnegative irreducible matrix R' with $R_1' = R_1 + R_1 - \text{and } R_r' = R_r$ for $r \neq 1$. Repeat this step, R is similar to the following pattern

which is positive column $i - 1$. From Lemma 2.1, A is similar to a positive matrix. Ē

Proposition 4.6 Let A be an $n \times n$ irreducible nonnegative matrix with exactly $n+1$ positive elements and $tr(A) = 0$. If A doesn't satisfy (ii) of Proposition

Proof. Since $A = [a_{ij}]_{i,j=1}^n$ is irreducible with exactly $n + 1$ nonzero entries, there exist ith row and jth column such that $a_{ij_1}, a_{ij_2}, a_{i_1j}, a_{i_2j} > 0$. By the

hypothesis, columns j_1, j_2 and rows i_1, i_2 are only a zero. Without loss of generality, we may assume that $i = 1, j_1 = 2$, and $j_2 = 3$. Hence if $j = 1$, then A is permutationally similar to $M(1)$. If $j \neq 1$, then A is permutationally similar to $M(2)$ or $M(3)$.

Proposition 4.7 Let $A = [a_{ij}]_{i,j=1}^n$ be a nonnegative irreducible matrix with exactly $n + 2$ positive elements and $tr(A) > 0$. If A doesn't satisfy (ii) of Proposition 4.4 and the diagonal entries have a nonzero element, \oplus . Then A is similar to a positive matrix.

Proof. By Proposition 4.6, we only need to consider the cases $M(i) + \bigoplus E_{kk}$, where $1 \leq i \leq 3, 1 \leq k \leq n$, and E_{kk} is defined as in Proposition 3.3. The case $M(1) + \bigoplus E_{kk}$: Suppose that $a_{i1} \neq 0$.

(1) For $k = 1, 2, 3$, by Lemma 2.3 (column), $M(1) + \bigoplus E_{kk}$ is similar to a nonnegative irreducible matrix with positive column k. Hence $M(1) + \bigoplus E_{kk}$ is similar to a positive matrix.

(2) For $4 \leq k \leq i+1$, if k is odd, by Lemma 2.3 (column), $M(1) + \bigoplus E_{kk}$ is similar to a nonnegative irreducible pattern matrix $B(1)$ with the form

B(1) = 0 + + . . . 0 0 0 · · · + + 0 0 0 · · · + + . . . 0 + + 0 + + 0 0 + ⊕ 0 + 0 0 + + 0 0 0 + 0 + + 0

 $B(1)^k \geq B(1)^{k-1}$. Then $B(1)$ is similar a nonnegative irreducible pattern matrix $B(2)$ with the form

B(3) = . . . 0 0 0 · · · + + 0 0 0 · · · + + . . . 0 + + 0 + + 0 + + + ⊕ 0 + + 0 + + 0 0 + + 0 0 0 + 0 + + 0

 $B(3)^k \ge B(3)^{k+2}$, and keep on repeating these steps. Then $B(3)$ is similar to a nonnegative irreducible pattern matrix $B(4)$ with the form

 $B(4)^k \geq B(4)^1$, and keep on repeating these steps. Then $B(4)$ is similar to a nonnegative irreducible pattern matrix $B(5)$ with the form

 $B(5)$ has positive column k and than $B(5)$ is similar to a positive matrix.

Suppose that k is even. its proof will be omitted, since it is similar to the proof above.

(3) For $i + 2 \leq k \leq n$, by Lemma 2.3 (column), $M(1) + \bigoplus E_{kk}$ is similar to a nonnegative irreducible pattern matrix P with the form

Since $P_n \ge P_{k-1}$, then P is similar to a nonnegative irreducible pattern matrix P', where $P'^{k-1} = P^n + P^{k-1}$, $P'^{l} = P^l$ for $l \neq k-1$. Repeat these steps, it is similar to a nonnegative irreducible pattern matrix with the form

It has positive row n. Hence $M(1) + \bigoplus E_{kk}$ is similar to a positive matrix. The cases $M(2) + \bigoplus E_{kk}$ and $M(3) + \bigoplus E_{kk}$: Its proof will be omitted, since it is similar to the proof above.

From Propositions 4.1, 4.3, 4.4, and 4.7, we obtain the following theorem.

 \blacksquare

Theorem 4.8 Let A be an $n \times n$ nonnegative irreducible matrix with exactly $n+2$ positive elements and $tr(A) > 0$. Then A is similar to a positive matrix.

References

- [1] A. Borobia, J. Moro, On nonnegative matrices similar to positive matrices. Linear Algebra Appl., 266 (1997), pp. 365–379.
- [2] T. J. Laffey, Raphael Loewy, Helena \check{S} migoc, Nonnegative matrices that are similar to positive matrices. SIAM. J. Matrix Anal. Appl., 31 (2009), pp. 629–649.
- [3] T. J. Laffey, Extreme nonnegative matrices, Linear Algebra Appl., 275/276 (1998), pp. 349–357.
- [4] H. Minc, Nonnegative matrices, Wiley, New York, 1988.

