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The singularity problem of the resolved-acceleration control scheme can be solved by
the damped least-squares method. This approach, however, does suffer from one serious
drawback: oscillations of the end-effector when the target is outside the workspace and
self-motion of the manipulator when it is at the orientation degeneracy. In this paper,
we present a hybrid-damped resolved-acceleration control scheme (HDRAC), which is
capable of damping both the accelerations and the velocities to overcome this drawback.
The main advantage of the present approach is that the control system need not plan
the path to avoid the infeasible region of the manipulator, since the controller will
automatically command the end-effector to move along the boundary of the workspace
with a minimum trajectory error. Thus this approach renders the resolved-acceleration
control scheme a much more practical control for the industry. The stability of the
proposed control scheme is also proved in this paper. Incorporated with the concept
of the degenerated-direction damped least-squares method (DDDLSM), this new control
scheme can also apply only to the degenerated directions, which scheme is simulated
on the PUMA 560 manipulator to verify its usefulness.  1997 John Wiley & Sons, Inc.
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1. INTRODUCTION with the corresponding singular value. Kirćanski et
al.9 implemented this technique to resolve accelera-

The resolved-acceleration control scheme1 is a general
tion control on a two-link manipulator. Lin and Wu10

proposed yet another method to find the degenerated
approach for robot Cartesian control. When it is incor- directions of the manipulator, and then applied the
porated with the computed-torque method, its capa- damped least-squares method only to them to retain
bility for both low- or high-speed motion control and the accuracy of the motion along the other directions.
force control is satisfactory. However, this control It is then named the degenerated-direction damped
scheme will break down when the Jacobian matrix is least-squares method (DDDLSM).
singular. An effective strategy is to combine the On the other hand, if a fixed damping factor is
scheme with the damped least-squares method origi- used, the error still remains in the damped least-
nally proposed by Nakamura and Hanafusa2 and squares solution when the manipulator is far away
Wampler.3,4 For the sake of simplicity, this control from the singular point. So several varying damping
scheme is termed damped-acceleration resolved-accelera- factors were adopted in the literature, such as the
tion control (DARAC) in this article. However, this linear function2,7,11–16, the second-order function6,17,
approach has two problems: (1) the undesirable errors and the normal-like function.10,18 These damping fac-
in the damped least-squares solution; and (2) oscilla- tors vary with the smallest singular value, the manip-
tions of the end-effector (when the target is outside ulability measure19, or the singularity parameter.10

the workspace) or self-motion of the manipulator There was little discussion about the second prob-
(when the target is at the orientation degeneracy). lem mentioned above. Our experiments in the work10

For the first problem, some researchers have pro- showed that oscillations of the end-effector will occur
posed several variant approaches to reduce the error. when the target is outside the workspace and self-
One way is to damp only the small singular values motion of the manipulator will appear when the tar-
of the Jacobian matrix, i.e., only the commands in the get is at the orientation degeneracy. Note that the
degenerated directions are sacrificed. Maciejewski et workspace boundary of the redundant or nonredun-
al.5 used the numerical filtering method to estimate dant manipulator contains the singular points. We
the smallest singular value and the corresponding have previously proposed the damped-rate resolved-
singular vector (the degenerated direction), and then acceleration control scheme (DRRAC)18 to damp the
apply the damped least-squares method in the degen- joint velocities, instead of the joint accelerations, to
erated direction only. However, when the two small- prevent the oscillations and the self-motion from oc-
est singular values cross, there is a sudden rotation curring. By using the singular value decomposition
of the singular vector, associated with the smallest (SVD) it is shown that the oscillations and the self-
singular value, which may cause a significant error motion are due to the unnecessary nonzero joint ve-
in the estimate. So a modified method was proposed locities in the degenerated directions when the ma-
in the work of Chiaverini6 to estimate not only the nipulator is at the singularity. Conceivably, the
smallest singular value but also the second smallest DRRAC scheme eliminates the unnecessary joint ve-
one. Kirćanski and Borić7,8 used the package MATHE- locities in the deceleration region to overcome the
MATICA to derive a symbolical singular value de- disadvantage of the DARAC. However, the DRRAC
composition for the manipulator with a spherical raises another problem: the convergent rate of this
wrist, such as PUMA and Stanford manipulators. control scheme will be slower than that of the

DARAC, when the end-effector moves to a neigh-This technique reduces the numerical error as well as
the computation burdens, and only the small singular boring region of a singular point (i.e., the decelera-

tion region).values are damped by the damping factor that varies
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This article presents the hybrid-damped re- where ṙ and v are the end-effector velocity and the
angular velocity, respectively; q̇ is the joint rate vec-solved-acceleration control scheme (HDRAC) to

overcome both the drawbacks of the DARAC and the tor; and J is the Jacobian matrix. Differentiating (1),
we getDRRAC. When a 6 degrees-of-freedom (DOF) manip-

ulator is at a singular configuration, it loses some
DOF, assumed as k, in the task space. The controller
thus has k redundant joint acceleration outputs if the a ;F r̈

a
G5 Jq̈ 1 J̇q̇ (2)

resolved-acceleration control scheme is used. Fortu-
nately, the unnecessary joint velocities and the redun-

where r̈ and a are the end-effector acceleration anddant joint accelerations have the same dimensions,
the angular acceleration, respectively.thus the proposed control scheme applies the redun-

It is well-known that the dynamics of a manipula-dant joint acceleration outputs to remove the unneces-
tor can be modelled in the form ofsary joint velocities in the deceleration region. Further-

more, the size of the deceleration region can be
M(q)q̈ 1 f(q̇, q) 5 t (3)adjusted by a factor. It will be proved by the Lyapunov

second method that the proposed control scheme is
where M(q) is the positive definite, symmetric inertiaasymptotically stable and the manipulator is finally
matrix; f(q̇, q) is the vector comprising Coriolis, cen-stationary whether the target is inside the workspace
trifugal, and gravity force, t is the vector of actuatoror not. Some simulations are undertaken on the PUMA
force; and q is the vector of joint displacements. The560 manipulator using the HDRAC incorporated with
second-order nonlinear coupled dynamic equationthe degenerated-direction damped least-squares
(3) can be linearized and decoupled by inputting themethod10 and a normal-like damping factor.10,18

inverse dynamicsThe new control scheme HDRAC is significant
for it is capable of making the resolved-acceleration

t 5 M(q)q̈* 1 f(q̇, q) (4)control scheme a much more practical scheme. In the
factory, the robot operators usually do not know what

where q̈* is the vector of the desired joint accelerationsthe singular point is, and where it is. They may ask the
so thatend-effector to bypass the outside of the workspace;

oscillations or the self-motion will then occur around
the singular point and will result in some damage if q̈ 5 q̈* (5)
the DARAC is used.

This article is organized as follows: The resolved- That means, adding the inverse dynamics as a com-
acceleration control scheme and the damped least- pensator in the conventional controller, the trajectory
squares method are reviewed in Section 2. Section tracking in the joint coordinates is then guaranteed.
3 investigates the motion problem of the DARAC. This technique is called the computed-torque scheme.
Section 4 presents the HDRAC and the stability proof Luh et al.1 proposed the resolved-acceleration
of the proposed control scheme. The degenerated- control scheme as
direction damped least-squares method and a nor-
mal-like damping factor are also discussed in this q̈* 5 J21a* (6)
section. The simulations about motion near the singu-
larity are reported in Section 5. Conclusions are with
drawn in the final section.

a* 5F r̈d

ad
G1 KDF ṙd 2 ṙ

vd 2 v
G1 KPF«r

«e
G2 J̇q̇ (7)2. BACKGROUND

2.1. Resolved-Acceleration Control
where KD and KP are gain matrices; subscript d de-The relationship between the end-effector velocities
notes the desired value; «r 5 rd 2 r is the positionand the joint rates for the robotic manipulators can
error; and «e is the orientation error. Although thebe represented as
orientation error20 can be ueue , ue tan ue/2 (Rodrigues
parameters), ue sin ue (the parameters of Luh et al.),
or ue sin ue/2 (Euler parameters), where ue is the rota-v ;F ṙ

v
G5 Jq̇ (1)

tional angle, ue is the unit vector of the rotational axis,
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it is recommended to use the parameters of Luh et
J†

r 5 VS†
rUT 5 O6

i51

si

s 2
i 1 r2 viuT

i (13)al. according to the work of Lin.20 Unfortunately, this
control scheme breaks down when J21 does not exist,
which occurs at a singular configuration. where S†

r 5 diag[s1/(s 2
1 1 r2), . . . , s6/(s 2

6 1 r2)].
Suppose that r is moderately small. When the

manipulator is far from singularity (i.e., si @ r), then
2.2. Damped Least-Squares Method si/(s 2

i 1 r2) P 1/si , which implies that J†
r P J21 [see

(13)]. When the manipulator is in the neighborhoodThe damped least-squares method (DLSM)21 for the
of a singular point, it can be seen from (13) that theinverse problem of (1) is applied to solve the follow-
solutions of joint velocities q̇ are not infinitely large.ing optimization problem2,3

J21 in (6) is replaced by J†
r to obtain the following

control scheme9,10

min
q̇

(iJq̇ 2 vi2 1 r2iq̇i2) (8)

q̈*da 5 J†
ra* 5 O6

i51

si

s 2
i 1 r2 (uT

i a*)vi (14)
or

We shall name the control scheme (14) the damped-
acceleration resolved-acceleration control scheme

min
q̇
IF J

rI6
G q̇ 2Fv

0
GI2

(9) (DARAC). The vector q̈*da in (14) is actually the solu-
tion to the optimization problem of

min
q̈*

(iJq̈* 2 a*i2 1 r2iq̈*i2) (15)where i ? i denotes the Euclidean norm; r is a positive
scalar; and Ii is the i-dimension identity matrix. By
calculus, the solution to (9) is Note that if the ideal computed-torque control is

used, the joint acceleration q̈ is equal to q̈*da by (5).
q̇r 5 J†

rv (10)

3. PROBLEM STATEMENT
where

In this section, we state the motion problem of the
DARAC in the neighborhood of the singularity andJ†

r 5 (JTJ 1 r2I6)21JT (11)
investigate the causality.

From (14), we know that any acceleration vectorswhich always exists for r ? 0, since (JTJ 1 r2I6) is
in Cartesian space can be represented as a linear com-positive definite and symmetric. This solution is a
bination of the left singular vectors u1 , . . . , u6 andcompromise between the residual error, Jq̇ 2 v, and
any joint acceleration vectors can be represented asthe magnitudes of the joint velocities, q̇, by the damp-
a linear combination of the right singular vectorsing factor r.
v1 , . . . , v6 , since hu1 , . . . , u6j spans a 6-dimensionalThe singular value decomposition (SVD) can pro-
space, so does hv1 , . . . , v6j. Thus, in (6), a* can bevide insight into the singularities of the inverse Jacob-
represented asian.16 In this paper, we consider nonredundant manip-

ulators, so J is a 6 3 6 matrix. By the theory of SVD22,
there are two orthogonal matrices U 5 [u1 ? ? ? u6] a* 5 O6

i51
liui (16)

and V 5 [v1 ? ? ? v6], such that

where li 5 uT
i a*. Substituting (13) and (16) into (14),J 5 USVT 5 O6

i51
siuivT

i (12)
we get

where S 5 diag[s1 , . . . , s6], si are the singular values
of J, and s1 $ s2 $ ? ? ? $ s6 $ 0. The vectors ui and q̈*da 5 O6

i51
civi (17)

vi are the i-th left singular vector and the ith right
singular vector, respectively. Substituting (12) into
(11), we obtain where ci 5 sili/(s 2

i 1 r2).
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Figure 1. The motion of a two-link arm from (a), (b), (c), to (d) through the singular point B.

If the manipulator is at the singularity, we assume the components of q̈ along the directions vi (i.e.,
ci), i 5 k 1 1, . . . , 6, are damped to zero, implyingthe rank of the Jacobian matrix is k; then si 5 0 and

ci 5 0 since ci 5 sili/(s 2
i 1 r2), i 5 k 1 1, . . . , 6. that the components of q̇ along the directions vi ,

i 5 k 1 1, . . . , 6 stop to accelerate, yet they cannotThis implies that the components of q̈*da along the
directions vi , i 5 k 1 1, . . . , 6, are zero [see (17)]. decelerate to zero. These nonzero components of

q̇ are unnecessary and will create some problems,Thus, the components of q̈ along the same directions
are zero by (5). This results in that the components which are stated as follows.

We shall classify degeneracy (or singularity) of aof q̇ along the directions vi , i 5 k 1 1, . . . , 6,
are uncontrollable, i.e., we cannot change the values manipulator with a spherical wrist into two parts:

wrist-center degeneracy and orientation degeneracy.of q̇ along these directions. In general, if the target
is outside the workspace or there is an infeasible In the nonredundant robots, whereas the wrist-center

degeneracy always occurs at the workspace boundaryregion between the initial position and the target,
the components of q̇ along the direction vi , i 5 k of the manipulator, the orientation degeneracy occurs

virtually any place inside the workspace. In the fol-1 1, . . . , 6, are nonzero when the end-effector
reaches the workspace boundary containing the lowing discussion, we shall state the problems at

these two degeneracy configurations.singular points. This occurs because, when the end-
effector reaches the singular point, the acceleration The wrist-center degeneracy: We consider a two-

link arm shown in Fig. 1(a). Its symbolic singularcommands, a*, in the direction ui (i.e., li), i 5 k 1
1, . . . , 6, are still nonzero. However, in this case, value decomposition of the Jacobian matrix7 is
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J 5 USVT

5Fsign(S2)sign(p)C12u22 2 S12u21 2sign(S2)sign(p)C12u21 2 S12u22

sign(S2)sign(p)S12u22 1 C12u21 2sign(S2)sign(p)S12u21 1 C12u22
G (18)

3Fs1 0
0 s2

G Fsign(p)v22 2sign(p)v21

v21 v22
GT

where Si 5 sin ui ; Ci 5 cos ui ; S12 5 sin(u1 1 u2); As this happens, the controller will command the arm
to return to the target; first link then moves in aC12 5 cos(u1 1 u2); p 5 l1 1 l2 ; u21 5 s1Ïl2

2 2 s 2
2/

(l2Ïs 2
1 2 s 2

2); u22 5 s2Ïs 2
1 2 l2

2/(l2Ïs 2
1 2 s 2

2); v21 5 clockwise direction and second link in a counterclock-
wise direction. When the tip returns to the singularÏl2

2 2 s 2
2/Ïs 2

1 2 s 2
2; v22 5 Ïs 2

1 2 l2
2/Ïs 2

1 2 s 2
2; and

the singular values are s1 5 Ïh 1 (h2 2 4l2
1l2

2S 2
2)1/2/ point B [Fig. 1(d)], the velocities of the two links

will remain nonzero, and the tip will then leave theÏ2 and s2 5 Ïh 2 (h2 2 4l2
1l2

2S 2
2)1/2/Ï2 with h 5 l2

1 1
2l2

2 1 2l1l2 cos u2 . s1 is never zero, while s2 5 0 for singular point B again. Consequently, some oscilla-
tions will occur around the singular point B.u2 5 nf, n 5 0, 61, 62, . . . . Note also that u21 5 1;

u22 5 0; v21 5 l2/s1 ; and v22 5 l1 6 l2 when s2 5 0. The orientation degeneracy: We consider a
spherical twist which is shown in Figure 2. The singu-Equations (16) and (17) are rewritten as
larity occurs when the first and third rotational axes

a* 5 l1u1 1 l2u2 (19) are colinear, i.e., the angle of the second joint is zero.
In this configuration, the component of the angular

q̈*da 5
s1l1

s 2
1 1 r2 v1 1

s2l2

s 2
2 1 r2 v2 (20) velocity of the wrist along the first rotational axis can

be achieved by an infinite combination of the joint
velocities of the first and third axes, since one of theseThe tip of the two-link arm will move from a
two joint velocities can be vanished by the other inpoint A on the y-axis to a target point that is also on
the opposite direction.the y-axis and outside the workspace. When the tip

Suppose that we order the spherical wrist to stayreaches the singular point B on the boundary of the
in the singular configuration. When the angle of theworkspace [see Fig. 1(b)], u2 5 (0 21)T and l2 is
second joint approaches zero, the joint accelerationsnonzero since the position error along the direction
of the first and third joints also approaches zero byu2 is nonzero. However, the component of q̈*da along
the DARAC. At the same time, the joint velocities ofthe direction v2 is forced to zero since s2 5 0 [see
both these joints are uncontrollable. If one of these(20)]; the component of q̈ along the direction v2 also
two joint velocities is nonzero, due to the externalbecomes zero by (5). The component of q̇ along the
torque or the numerical error of the controller compu-direction v2 is nonzero, so that first link moves contin-
tation, the other joint will rotate with the same perioduously in a counterclockwise direction and second
in the opposite direction. The controller cannot stoplink moves in a clockwise direction. Thus the tip is
them since they are uncontrollable, so these two jointsdrawn from the singular point B to point C [Fig. 1(c)].
will rotate indefinitely in the singular configuration.
These motions of the joints that produce no move-
ment of the end-effector are generally referred to as
self-motions.

According to the above discussions, we know
that the DARAC cannot adequatelys solve the prob-
lem of robot Cartesian control near a singular point.

4. HYBRID-DAMPED CONTROL SCHEME

4.1. Control Scheme

The analysis in Section 3 implies that a good robot
Cartesian control scheme should simultaneously re-Figure 2. The spherical wrist.
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strict the velocities and the accelerations of the joints. We rewrite q̈*c in terms of the singular value de-
composition of J asIn this paper, we consider nonredundant manipula-

tors only. Suppose that a 6-DOF manipulator is at
the singular configuration, and its rank of the Jacobian

q̈*c 5 2rr O6

i51

r2

s 2
i 1 r2 (vT

i q̇)vi (24)matrix is k. The manipulator will lose 6 2 k DOF in
task space. At the resolved-acceleration controller,
only k DOF joint acceleration outputs are needed, but If the manipulator is far away from any singular
6 2 k DOF joint acceleration outputs are redundant, point, i.e., si @ r, i 5 1, . . . , 6, then r2/(s 2

i 1 r2) P
i.e., these redundant joint accelerations cannot gener- 0, i 5 1, . . . , 6. Thus q̈*c is zero, the HDRAC is
ate the accelerations of the end-effector in any direc- identical to the DARAC. If the manipulator is near
tion. On the other hand, 6 2 k components of q̇ along the singular point, si P 0, i 5 k 1 1, . . . , 6, then
the degenerated directions is unnecessary and that r2/(s 2

i 1 r2) P 1, for i 5 k 1 1, . . . , 6; hence (24)
was stated in the last section. These two facts moti- can be rewritten as
vated us to propose a control scheme that uses the
6 2 k redundant DOF joint acceleration commands

q̈*c 5 2rr O6

i5k11
(vT

i q̇)vi (25)to remove the 6 2 k unnecessary components of
q̇. The original optimal problem (15) will become
as follows:

In discrete-time control, we always use the back
difference to approximate the derivative, so thatmin

q̈*
(iJq̈* 2 a*i2 1 r2iq̈* 1 rrq̇i2) (21)

q̈*[k] 5
1

Dt
(q̇*[k] 2 q̇*[k 2 1]) 5

1
Dt

(q̇*[k] 2 q̇[k]) (26)where r is the damping factor that represents the
weighting of the constraint iq̈* 1 rrq̇i. The joint accel-
eration commands q̈* have to minimize the addi- where Dt is the sampling time. Note that, by the as-
tional constraint sumption of the ideal computed-torque control, the

measured value of q̇[k] in this sampling interval is
iq̈* 1 rrq̇i2 (22) equal to the command q̇*[k 2 1] in the last sampling

interval. For convenience the index k is dropped in
rr is a variable dependent on the smallest singular the subsequent expressions; hence (26) becomes
value or singular parameter of the Jacobian matrix.
When the manipulator is far away from the singular

q̈* 5
1

Dt
(q̇* 2 q̇) (27)point, no joint velocity is unnecessary, thus rr will be

zero. If the manipulator is at a singular point, how-
ever, the unnecessary joint velocities along the degen- Suppose that the unnecessary components of q̇
erated directions have to be removed by the joint exist when the manipulator is at a singular point
acceleration commands; thus rr must be specified. where si 5 0, i 5 k 1 1, . . . , 6, and we want these
The redundant components of the joint acceleration components of q̇ to be removed in the next sampling.
commands q̈* will be equal to the unnecessary com- That means the components of the desired joint veloc-
ponents of q̇ multiplied by 2rr to minimize the con- ities q̇* along vi , i 5 k 1 1, . . . , 6, should be zero,
straint (22). or vT

i q̇* 5 0, i 5 k 1 1, . . . , 6. By multiplying both
By calculus, we get the solution to the optimiza- sides of (27) by vivT

i , i 5 k 1 1, . . . , 6, summing up
tion problem (21) as the results, and setting vT

i q̇* 5 0, i 5 k 1 1, . . . , 6,
we obtain

q̈*hd ; q̈*da 1 q̈*c

5 (JTJ 1 r2I6)21JTa* 2 rrr2(JTJ 1 r2I6)21q̇ (23) O6

i5k11
vivT

i q̈* 5
21
Dt O6

i5k11
vivT

i q̇ (28)

(23) is called the hybrid-damped resolved-acceleration
control scheme (HDRAC). The first term on the right- If we choose rr in (25) to be 1/Dt, then q̈*

c 5 o6
i5k11

(vT
i q̈*)vi in (28), which is the additional desiredhand side in (23) is equal to the solution of the

DARAC. The second term, q̈*c , is an additional term joint accelerations to accomplish vT
i q̇* 5 0, i 5 k 1

1, . . . , 6. Note that q̇ in the next sampling will beand is used to remove the unnecessary components
of q̇, which is explained in the following. equal to the desired q̇* if an ideal computed-torque
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scheme is used. Thus, q̈*c in (25) with rr 5 1/Dt where ue and ue are, respectively, the rotational axis and
angle from the current orientation to the desired one, andwill remove the unnecessary components of q̇ along

vk11 , . . . , v6 in the next sampling, while q̈*da in
(23) make the unnecessary components of q̈ along
vk11 , . . . , v6 zero.

For the nonredundant manipulators, the wrist-
center degeneracy occurs only when the end-effector

f (ue) 55
ue ,

tan
ue

2
,

sin ue ,

sin
ue

2

is on the workspace boundary. So the unnecessary
joint velocities will be removed only in a neighbor-
hood of the boundary. q̈*c is of no effect when the
motion of the end-effector is inside the workspace.
For the redundant manipulators, the singularities oc-
cur everywhere. q̈*c will remove the redundant joint

Suppose that r . 0 and rr . 0 when the manipulator isvelocities but it does not affect the motion of the
at the singular point. A sufficient condition for the globalend-effector.
asymptotic convergence of the HDRAC in the whole work-From the above discussions, we choose rr as
space of the robot under the situation of r̈d 5 ṙd 5 0 and
ad 5 vd 5 0 is that KD is a positive-definite matrix and

rr 5 5 1
Dt S1 2

smin

d D for 0 # smin , d

0 for smin $ d

(29)
KP 5FkprI3 0

0 kpeI3
G

where smin is the smallest singular value or singular kpr and kpe are positive. The equilibrium is the point of
parameter of the Jacobian matrix. d denotes the decel- q̇ 5 0.
eration region. The unnecessary joint velocities will

Proof: Let the Lyapunov function bebe removed when smin is in this region.
To make a comparison between the HDRAC and

the DRRAC, we state the optimal problem of the V(q, q̇) 5
1
2

kpr«T
r «r 1 kpe Eue

0
f (f) df

DRRAC18 as follows:

1
1
2

q̇T(JTJ 1 r2I6)q̇ (32)
min

q̈*
(iJq̈* 2 a*i2 1 r2iq̇i2) (30)

where
and its solution is

«r 5 rd 2 r (33)
q̈*dr 5 (JTJ 1 r2I6)21JTa* 2 r2(JTJ 1 r2I6)21q̇ (31)

There is no additional parameter rr in the second term
on the right-hand side of (31). The deceleration region
is not adjustable, and is slightly larger than that of Eu e

0
f (f) df ;5

u 2
e

2
, for f (f) 5 f,

22 ln Ucos
ue

2 U , for f (f) 5 tan
f

2
,

1 2 cos ue , for f (f) 5 sin f,

2 S1 2 cos
ue

2D , for f (f) 5 sin
f

2
,

(34)
the HDRAC. Thus if the target is in the deceleration
region, the convergent rate of this control scheme is
slower than that of the DARAC when the end-effector
moves into this region. By contrast, the HDRAC uses
rr to specify the proper deceleration region.

It is clear that V(q, q̇) $ 0. Evaluating ­V/­t along
solutions of (32) yields:4.2. Stability Analysis

The following theorem shows that the HDRAC is
­V
­t

5 kpr«T
r (ṙd 2 ṙ) 1 kpe f (ue)uT

e (vd 2 v)asymptotically stable.

Theorem 1. Let the orientation error be «e 5 f (ue)ue , 1 q̇T(JTJ 1 r2I6)q̈ 1 q̇TJ̇TJq̇ (35)
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If the ideal computed-torque control is used, q̈ 5 ated direction. The position error cannot con-
tinue to decrease.q̈*hd , then we can substitute (23) into (35) to obtain

4.3. Degenerated-Direction Damped­V
­t

5 kpr«T
r ṙd 1 kpe«T

e vd 1 q̇TJTF r̈d

ad
G Least-Squares Method

We briefly review the degenerated-direction damped
least-squares method10 (DDDLSM) and extend it to1 q̇TJTKDSF ṙd

vd
G2 Jq̇D2 rrr2q̇Tq̇ (36)

the new control scheme, HDRAC.
A degenerated direction is the direction along

which the component of the velocity of the end-If r̈d 5 ṙd 5 0 and ad 5 vd 5 0, then
effector cannot be generated by the joint velocities
when a singular point is encountered. The DDDLSM­V

­t
5 2q̇TJTKDJq̇ 2 rrr2q̇Tq̇ (37) is to apply the damped least-squares method only to

the degenerated directions, so that the accuracy of
the components of the velocity of the end-effectorSince KD is a positive-definite matrix, ­V/­t # 0 for
along the other directions is retained.10 A geometri-all q̇ and ­V/­t 5 0 only for q̇ 5 0.
cally appealing idea is to transform the representationCombining the above results and V(q, q̇) $ 0, we
of the Jacobian matrix to the one with respect to thecan say, by the Lyapunov theorem, that the control
frame whose axes are in alignment with the degener-scheme (23) is asymptotically stable and the equilib-
ated directions of the manipulator.rium solution is q̇ 5 0. n

The only difficulty of the DDDLSM is how to
find the degenerated directions of a manipulator. For-

Consider the DARAC (14) and use the same Lya- tunately, for a manipulator with a spherical wrist, the
punov function in (32) to obtain problem can be decomposed into two parts: the wrist-

center degeneration and the orientation degeneration.
We take the PUMA 560 robot as an illustrative exam-­V

­t
5 2q̇TJTKDJq̇ (38)

ple; its normal driving-axis coordinate system23 is
shown in Figure 3. Table I shows four steps to find

When the manipulator is at a singular point of the degenerated-direction inverse velocity relation of
sk11 5 ? ? ? 5 s6 5 0 and q̇ is spanned by vi , i 5 the PUMA 560 robot.
k 1 1, . . . , 6, then ­V/­t 5 0. This implies that the It is recommended24 that the representation of the
equilibrium solution of the DARAC may be q̇ ? 0 Jacobian matrix be transformed to a special form in
when the manipulator is at the singular point. How- which the linear velocity is with respect to the body-
ever, ­V/­t for the HDRAC has an additional term, fixed frame,3 while the angular velocity is with respect
(2rrr2q̇Tq̇), to ensure that ­V/­t is zero only when to the body-fixed frame.5 This special form is much
q̇ 5 0, i.e., the equilibrium solution of the HDRAC simpler and can be seen in Step 1 of Table I. Note that
is q̇ 5 0.

The equilibrium solution q̇ 5 0 implies that
all joints are stationary as t R y and the following F ṙk3l

vk5lG5 Jsq̇ 5F 0
3R 0

0 0
5R
G Jq̇ (39)

facts.

1. If the target position is in the workspace or at where 0
i R is the coordinate transformation matrix

from frame i to frame 0 (the base frame). Superscriptthe workspace boundary, the Lyapunov func-
tion V will decrease to zero as t R y, i.e., kil denotes the representation of a vector with respect

to frame i. Step II is to reform the velocity relation inthe final position and orientation errors will
be zero. a form whose right upper 3 3 3 submatrix is zero.

This is easily achieved by elementary row operations.2. If the target position is outside the workspace,
V will decrease to a constant as t R y. This At this moment, we can find out the singular condi-

tions. The product of the determinants of the left-means that the end-effector will converge to a
singular point that is on the boundary and the upper and the right-lower 3 3 3 submatrices is the

determinant of the Jacobian matrix. It is apparent thattarget position lies in a line along the degener-
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Figure 3. Normal driving-axis coordinate system of the PUMA 560.

the following conditions make the product of the z-axis by b, where b 5 tan21(b4/d4) is the angle be-
tween the y-axis of frame 3 and the line from thedeterminants zero:
origin of frame 3 to the wrist center. We define

M ; b3(C3d4 1 S3b4) 5 0 (40)

N ; S23d4 1 C23b4 1 C2b3 5 0 (41)
3
MR ;3

cos b 2sin b 0

sin b cos b 0

0 0 1
4S5 ; sin u5 5 0 (42)

We shall name uMu, uN u, and uS5u singularity parame-
ters.10 They can be used to represent the distance of
the current position from the singular point. Frame
5 is a frame comprising the orientation degenerated-

53
d4

Ïb2
4 1 d 2

4

2b4

Ïb2
4 1 d 2

4

0

b4

Ïb2
4 1 d 2

4

d4

Ïb2
4 1 d 2

4

0

0 0 1
4

(43)

direction. According to geometrical analysis10, a frame
formed by the wrist-center degenerated-directions is
one whose z-axis is in alignment with the z-axis of
frame 3 and whose y-axis is along the direction from
the origin of frame 3 to the wrist center. That means which is the transformation matrix from the frame

of the wrist-center degenerated-directions to framethat a frame is obtained by rotating frame 3 about its
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Table I. Degenerated-direction inverse-velocity relation.
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3. In Step III, the velocity relation is expressed with prove the accuracy of the solution to these two control
schemes, some varying damping factors have beenrespect to these two degenerated frames. Step IV

shows a direct way without any matrix inverse to adopted. In general, the linear function2,7,11–16 is used
in the form ofsolve the inverse velocity problem.

To apply the HDRAC only to the degenerated
directions, (23) is rewritten as

r 5 5rmax S1 2
s

«
D for 0 # s , «

0 for s $ «

(53)q̈*hd 5 (JTJ 1 r2I6)21JT(a* 1 rrv) 2 rrq̇ (44)

To apply the result in Table I to (44), we replace the
vector [ṙk3lT

vk5lT
]T in (39) with or the second-order function6,17 is used in the form of

a* 5F 0
3R 0

0 0
5R
G (a* 1 rrv) (45)

r 5 5rmax !S1 2 Ss

«
D2D for 0 # s , «

0 for s $ «

(54)

The joint acceleration commands of the HDRAC are
then as

where rmax is the maximum value of the damping
(q̈*hd)i 5 ji 2 rrq̇i , i 5 1, . . . , 6 (46) factor, and is used to bound the norm of q̈*da when

the manipulator is in the neighborhood of the singu-
lar point. s is the smallest singular value, singularwhere (q̈*hd)i denotes the i-th component of vector

q̈*dr , and parameter, or the manipulability measure. « defines
the size of the singular region; outside this region,
q̈*da do not have the error produced by the damping

j1 5
N

N 2 1 r2
N

w3 factor, while inside the region a varying damping
factor is used to obtain the desired approximate so-
lution.j2 5

M
M2 1 r2

M
(w2 2 (d4S23 2 b4C23)(d2 2 d3)j1)

(47)

In this paper, we recommend that the damping
factor be a normal-like function10, which is

j3 5
1

b2
4 1 d 2

4
(w1 1 (d4C23 1 b4S23)(d2 2 d3)j1

(48)

r 5 rmaxe
2

1
2r2

max

(s2rmax)2

(55)
2 (b3(S3d4 2 C3b4) 1 b2

4 1 d 2
4)j2) (49)

To compare (55) with other varying damping fac-j4 5
S5

S 2
5 1 r2

S5

(2g4 2 (S23C4C5 1 C23S5)j1

(50)

tors, we consider the solution of the one-dimensional
DLSM, which is written as1 S4C5(j2 1 j3))

j5 5 w6 2 S23S4j1 2 C4(j2 1 j3) (51)
q̈*da 5

s

s 2 1 r2 a* (56)
j6 5 2w5 1 (S23C4S5 2 C23C5)j1 2 S4S5(j2 1 j3) 2 C5j4 (52)

in which rN , rM , and rS5
are the damping factors, and We assume a* 5 1, and specify uq̈*dau # 25. The singular

they vary with the values of N, M, and S5 , respec- region is defined s , 0.1, i.e., « 5 0.1.
tively. We use rr as in (29) and replace smin in (29) by Substituting (55) into (56) yields that the maxi-
min(uM u, uNu, uS5u). mum value of the solution q̈*da is 1/(2rmax) at s 5 rmax ,

since all the 1st, 2nd and 3rd derivatives of (56) are
zero and the 4th derivatives of (56) are less than zero

4.4. Selection of the Damping Factor when s 5 rmax . So, we can decide rmax in (55) is 0.02.
At s 5 « 5 0.1, the value of r approximates to zero.In the DARAC and the HDRAC, r is used to damp

the joint accelerations when the manipulator is in However, rmax in (53) and (54) are difficult to find,
since we must solve a complex nonlinear equation.the neighborhood of the singularity, so that the joint

accelerations are feasible for the manipulator. To im- Four damping factors, shown in Figure 4(a), are
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Figure 4. (a) Four damping factors, (b) the solutions of q̈*da , (c) the error function e11 .
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substituted for (56). The fixed damping factor r1 is example presents a comparison of the convergent
rates for using the DARAC, the DRRAC, and the0.02. Other damping factors are defined as follows:
HDRAC. The last example shows the effects of the
four damping factors on the HDRAC. The input com-r2 5 0.02e21250(s20.02)2

(57)
mands of all simulations are step commands. The
controller parameters are set as KP 5 64 I6 , KD 5 16
I6 , and the sampling period is 3 ms.r3 5 50.02578 S1 2

s

0.1D for 0 # s , 0.1

0 for s $ 0.1

(58)
In the first four examples, the damping factors

in (47), (48), and (50) are chosen as

rM 5 0.02e21250(uM u20.02)2
(62)

r4 5 50.02041 !F1 2 S s

0.1D2G for 0 # s , 0.1

0 for s $ 0.1

(59)
rN 5 0.02e21250(uN u20.02)2

(63)

rS5
5 0.01e25000(uS5u20.01)2

(64)
These damping factors, except r1 , satisfy the condi-
tions: uq̈*dau # 25 and « 5 0.1. The results are shown i.e., the normal-like functions (55). The second damp-
in Figure 4(b). The curve of r0 represents the exact ing factor rr of the HDRAC is defined in (29) with
pseudoinverse solution, i.e., r 5 0. d 5 0.02.

A good solution to (56) is close to the pseudoin-
verse solution and satisfies the maximum q̈da is 25 and

Example 1« 5 0.1. From Figure 4(b), we know that using r2 is
a much better solution than using the others. The first example illustrates the responses of the ma-

Also, an error function defined by Nakamura and nipulator if there is an infeasible region between the
Hanafusa2 is used to make a comparison between desired position and the initial position. The initial
these damping factors. This error function is de- position is (20.1, 0.2, 0.8) and the desired position is
fined as (0.15, 20.15, 0.6), while the orientation is ignored.

Figure 5 shows the projections of the response trajec-
e11 5 J(q̈* 2 q̈*da) (60) tories of the end-effector on the x-y plane. The result

of the DARAC is in Figure 5(a). The singular circle
It denotes the end-effector acceleration error caused (N 5 0) in the figure is the boundary of the workspace,
by the difference of the pseudoinverse solution q̈* the infeasible region is inside it, and the workspace
and the damped least-squares solution q̈da . of the manipulator is outside it. When the end-effector

By applying (60) to (56), the error function can touches the circle, it leaps away from the circle imme-
be rewritten as diately. But after it has touched the singular circle

three times, the end-effector then reaches the desired
position. Figure 5(b) is the simulation result of thee11 5

r2

s 2 1 r2 (61)
HDRAC. In this figure, the trajectory has only a small
fluctuation when the end-effector first touches the

The variations of the error e11 for the four damping singular circle; then it moves along the circle until
factors (r1 , r2 , r3 , and r4) are shown in Figure 4(c). there is no infeasible region between the position of
From this figure, it is clear that the error produced the end-effector and the target.
by r2 is smaller than that produced by the others. To support our recommendation to apply the

HDRAC only to the degenerated directions (i.e., the
DDDLSM version), we repeat example one with the
DLSM version of the HDRAC (i.e., all directions are5. SIMULATIONS
damped). The end-effector trajectories are shown in
Figure 6, where the dashed line denotes the result ofFive examples are given in this section. The simula-

tion object is the PUMA 560 robot. The control the DLSM version and the solid line denotes that of
the DDDLSM version. From this figure, we know thatschemes in the simulations are all applied only to the

degenerated directions (see section 4.3). The perfor- the response of the DDDLSM version is faster. This
result clearly demonstrates the advantage of themance of the HDRAC (46) is compared with that of

the DARAC10 in the first three examples. The fourth DDDLSM version over the DLSM version. The reason
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are (20.1, 0.2, 0.8) and (20.05, 0.05, 0.8), respectively.
The simulation result for the DARAC is shown in
Figure 7(a). After the end-effector has touched the
singular circle, oscillations occur around the work-
space boundary. The result of the HDRAC in Figure
7(b), however, shows that the end-effector moves
along the workspace boundary without any oscilla-
tions, after the end-effector has touched the circle.
Finally, the end-effector converges to a singular point
nearest to the target. Figure 7(c) presents the position
errors of the two control schemes and indicates that
the performance of the HDRAC is more desirable.

Example 3

Example 3 illustrates the response of the manipulator
in the orientation degeneracy. The initial position and
the target are, respectively, (20.1, 0.2, 0.94) and
(20.0203, 0.1501, 1.0049), and the orientation holds
unchanging towards the positive z-axis. At the target,
q5 is zero, i.e., a singular point. The joint displacements
of the joints 4, 5, and 6 for the DARAC are shown in
Figure 8(a). In this figure, when q5 5 0, joints 4 and
6 rotate with the same speed but in the opposite
directions. The reason is that the DARAC forces q̈*4
and q̈*6 to zero, but allows q̇4 and q̇6 to remain nonzero,
when q5 5 0. The result of the HDRAC is shown in
Figure 8(b). When q5 approaches 0, both joints then
stop at the same time, which verifies the theory in
section 4.2.

Example 4

When the target is in the deceleration region (includ-
ing the singular point), the convergent rate of the
DRRAC is slower than those of both the DARAC and
the HDRAC. In example 4, we use these three control
schemes to move the end-effector from (20.1, 0.2, 0.8)
to the singular point (0, 0.1501, 0.8). The results are
shown in Figure 9. It can be seen from this figure that

Figure 5. The trajectories for example 1: (a) with the the position errors of the DARAC and the HDRAC
DARAC, (b) with the HDRAC. converge to zero by 1.2 s, while the DRRAC still has

about 2 mm error at 1.2 s.

is that the components of the joint accelerations along
the other directions rather than the degenerated ones

Example 5are retained.
Example 5 shows the effects of the damping factors
r1 , r2 , r3 , and r4 [see (57)-(59)] on the HDRAC. The

Example 2 end-effector is asked to move from the singular point
(0, 0.1501, 0.8) (this point is a singular point ofIn example 2, the target is outside the workspace of

the manipulator. The initial position and the target N 5 0) along the degenerated direction to the point
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Figure 6. The trajectories for example 1 (DLSM, dashed; DDDLSM, solid).
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Figure 7. The trajectories projected on x-y plane for example 2: (a) with the DARAC, (b)
with the HDRAC, (c) the position errors (DARAC, dashed; HDRAC, solid).
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Figure 8. The time-history of q4 , q5 , and q6 for example 3: (a) with the DARAC, (b) with
the HDRAC.

(0, 0.2, 0.8). We selected a singular point as the movement from the time at which the controller
accepts the command. This time delay occurs be-initial position because different damping factors

have different properties in the neighborhood of cause the projection of the joint accelerations on
the degenerated direction is so small that the end-the singular point. Theoretically, the end-effector

cannot move along the degenerated direction when effector leaves the singular point slowly. The results
in Figure 10 shows the superiority of the normal-it is at the singular point. However, the end-effector

is not precisely at the singular point since the like damping factor r2 to the other damping factors.
These phenomena can be explained by Figure 4(b),computations of the controller have very small nu-

merical errors. Thus, in the simulation, the end- which shows that r2 has the largest joint accelera-
tions in the neighborhood of the singular point toeffector can leave the singular point along the degen-

erated direction, but there is a time delay in the render the end-effector to move more quickly.
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Figure 9. The position errors of the DARAC, the DRRAC, and the HDRAC for exam-
ple 4.

necessary nonzero joint velocities along the degener-6. CONCLUSIONS
ated directions. The proposed control scheme re-

In this paper, we have proposed a hybrid-damped moves these unnecessary joint velocities, so that the
resolved-acceleration control (HDRAC) to overcome undesirable phenomena are totally eliminated. The
the drawbacks of damped-acceleration resolved- main advantage of the HDRAC is that the control
acceleration control (DARAC) and damped-rate re- system need not plan the path to avoid the infeasible
solved-acceleration control (DRRAC). We have region, since the controller will automatically com-
shown that, if the DARAC is used, oscillations of the mand the end-effector to move along the boundary
end-effector will occur when the target is outside the of the workspace with a minimum trajectory error.
workspace and self-motion of the manipulator will The convergent rate of the DRRAC is slower
appear when the manipulator is at the orientation when the end-effector moves to a neighboring region

of a singular point, and this region is slightly large.degeneracy. These phenomena are due to some un-

Figure 10. The position errors of r1 , r2 , r3 , and r4 for example 5.
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