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Models with Domain Decomposition

Student : Yung-Chieh Chang Advisors:Hung-Chi Kuo,
Ming-Chih Lai

Department (Institute) of Applied Mathematics

National Chiao Tung University
Abstract

The spectral methods seek the numerical solutions by a set of known
polynomials. The main advantage of using spectral methods for solving
atmospheric problems is the high efficiency and conservations of important
quadratic quantities such as kinetic.energy and enstrophy. Namely, we can get
very high accuracy through the exponential convergence. The conservation of
the quadratic quantities are important to model the turbulence under strong
rotation and stratification. In this paper, we introduce the domain
decomposition method to speed up the Chebyshev collocation method. The
domain decomposition is to divide the domain into many sub-domains to run
the computation in parallel and to exchange the information through the
sub-domain boundaries during the time integration. We implement the
domain decomposition Chebyshev collocation method with overlapping the
sub-domains in one grid spacing interval for 1-D tests such as advection,
diffusion and inviscid Burgers equations. We show the exponential
convergence property and error characteristics in these tests. In a more
realistic atmospheric modeling, we study the spectral method with 2-D
shallow water equations. The domain decomposition results compared
favorably with that of the single domain calculations. Thus, Chebyshev
domain decomposition method may be an efficient alternative method for the
atmospheric/oceanic limited area modeling.
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1 Introduction

With the advent of the fast Fourier transform(FFT) and the spectral transform method
([1]), spectral methods have been used successfully in global atmospheric models(e.g., [2]
and [3]). Comparing with finite difference and finite element methods, global spectral
models can eliminate pole problems and have high accuracy and efficiency that comes
from the “exponential-convergence” property. The spectral methods also offer the dis-
crete conservations of kinetic energy and enstropy, which are very important for the
two-dimensional turbulence modeling. In addition to the popularity of spectral method
for global models, finite difference or finite element methods are usually used to deal with
limited-area models in atmospheric sciences. The main barrier of spectral methods used in
limited area models is the time-dependent boundary conditions. Some discussions about
computing atmospheric model which are restricted in smaller-scale and limited domain
can be found in [4], [5] and [6]. Domain decomposition method is one of the efficient
ways for improving the computational efficiency through the parallel processing. After
the domain being divided, the information in sub-domains can be calculated in parallel
with different Central Processing Units(CPUs) simultaneously thus increase the efficiency.
Appendix B give a general discussion of parallel computing and Amdahls Law.

A suitable spectral method for the limited ‘area atmospheric and oceanic modeling
is the Chebyshev spectral method ([5]-and [[6]).. The method handles successfully the
time dependent boundary conditions.while retain all the advantage of the global spectral
methods. The earliest reference that to maintain the exponential convergence with domain
decomposition for spectral methods, is [7]. ' Later, Kopriva proposed an idea which is
making hyperbolic equations on complicated geometries to be on squared sub-domains
thus easier to execute spectral methods([8] and [9]). Kopriva also developed a conservative
staggered-grid Chebyshev multi-domain method for compressible flows in papers [10] and
[11]. Others, in the paper [12], the Chebyshev pseudospectral(collocation) method with
domain decomposition is applied to deal with viscous flow calculation for lessening the
influence of Gibbs phenomena on entire domain. These previous jobs about performing
spectral methods with domain decompositon, were solving problems such as hyperbolic
equations([8], [9]), viscous flow([12]), and compressible flows([10], [11]). None of these
applications is directly related to the atmospheric science modelings.

In this paper, we implement Chebyshev collocation method with domain decompo-
sition in the atmospheric sciences, based on [8] and [9]. We solve the shallow water
equations in a limited-area of [6]. In Section 2, the Chebyshev collocation method is
introduced briefly. We also talk about the way to demonstrate the domain decomposition
and the advantages. In Section 3, we study 1-D cases using the Chebyshev collocation
method with domain decomposition for advection equation, diffusion equation and invis-
cid Burger’s equation. The error characteristics as well as exponential convergence are
discussed. In Section 4, we present the shallow water equations and its numerical results.
The MPI programming is employed to solve some multi-domain conditions here. The
discussion on the time-splitting method for the model is also in this section. Section 5

gives concluding remarks.



2 Chebyshev Collocation Method and Domain De-

composition

2.1 Chebyshev Collocation Method

2.1.1 Analysis of boundary effects for limited domain

Spectral methods seek solutions in term of a series of known basis functions. Spectral
methods are global type of method where the computation at given points depend not only
on information at neighboring points, but on the entire domain. On the other hand, finite
difference methods are local methods. The local refers to the use of nearby grid-points to
approximate the function of its derivative at given points.

The essence of the choice of basis function is the property of the “completeness”.
Namely, the solution can be represented by the set of the functions. Practical consider-
ation of the spectral methods are the basis functions are orthogonal and the projection
or inner product can be calculated efficiently. The typical projection operators to find
the spectral coefficients of the expansion are Galerkin, and tau methods. The basis func-
tions often satisfy the prescribed boundary conditions in the Galerkin method. The tau
method is more flexible in that the boundary condition need not be satisfied by the basis
functions.

The “orthogonality” property~of basis functions for spectral methods is practically
useful in the computations. It makes the coefficients in the expansion independent of
each other. The eigenfunctions of Sturm-Liouville equation are often chosen to be the
basis. For demonstrating atmospheric spectral modeling, Spherical harmonics, Chebyshev
and Fourier series are often used in the atmospheric spectral models. The Chebyshev and
Fourier series allows a fast transforms to find spectral coefficients. These spectral methods
get great accuracy and efficiency by the rapid convergence of fast transform.

The follow discussions are on the convergence property of the series expansion based
on the Sturm-Liouville equation. More detailed analysis can be found in [15], [16], and
[5].

Consider the Sturm-Liouville equation in limited domain [a,b]

Lo(z) = =[p(z)¢ (z)]" + q()d(x) = Mw(z)d(x) (2.1)
with determined equations p(z),q(x) and w(z). The prime represents the differentiation
with respect to x. Eq.(2.1) has infinite and countable set of solutions ¢ ()5, correspond-
ing to eigenvalues \)° ;. The eigenfunctions ¢,, form an complete and orthonormal system

under the inner product

b
(61, 61)u = / 61 () () w(a)dz = b (2.2)

where 0;; = 1 if i = j and 0 otherwise. Therefore, any suitable smooth function u(z) can
be expanded by proper coefficients with basis {¢,}>°, as

u(a) =Y iindn(z) (2.3)
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where
Up, = (U, Pp)op- (2.4)

To estimate the magnitude of u,,, we substitute for ¢,, in @, = (u, ¢y, ), from Eq.(2.1), i.e.,

Gn(r) = )‘r_Llw_l(x)Lan(x)

-1, -1 / / (25)
= A, w (@){=[p(x) ¢, (2)] + q(z)dn(2)}-
Then we get 4, = A\, (u, w 'L¢,),. Next, doing integration by parts twice,
N L) = W o @bl @] oo ute)ny

=\ [B(u, ¢n) + (v, Bn)).

Here B(u, ¢,) = p(x)[u(2)gn(x) — u(w)d),(2)][:=, and v = w™! Lu.

The Chebyshev polynomials are the solutions of Chebyshev differential equation where
this is a special case of the Sturm-Liouville equation with p(z) = (1 —22)"/2, ¢(z) = 0 and
w(x) = (1—22)"2. About this case in domain [—1, 1] and p(—1) = p(1) = 0, that means
B(u, ¢y,) equals to 0 no matter what bounded function u is. Thus we can do integration
by parts for the A\ '[(v, ¢,).] term repeatedly as long as the function is smooth enough
after each integration. From the property that (v, ¢, )., term is bounded independent of
n and the asymptotic behavior of eéigenvalues -\, = O(n?) and eigenvectors ¢, (x) = O(1),
¢ (x) = O(n) as n — oo, by [17]s we get @, < O(n17) if u is m times differentiable. It
satisfies the definition of exponential convergence, i.e.;-the convergence rate of Chebyshev
series only depends on the smoothness of the expanded function and has nothing to do
with the boundaries.

On the other hand, consider the case of the Fourier series where p(z) = 1 # 0.
Here the function u must be periodic and smooth enough to maintain the exponential
convergence property. Usually the v does not satisfy the periodic condition and it causes
the convergence rate to be B(u,¢,) = O(n) and 4, = O(n~!) which is very slow. If
we give the boundary conditions to be u(a) = u(b) = 0, the convergence rates must be
B(u, ¢,) = O(1) and 4, = O(n™?). The slow convergence rate is because of the reflection
of the Gibbs phenomenon since the boundary conditions of u at a and b do not satisfy by

the expansion function ¢,,.

2.1.2 Chebyshev polynomial

From the previous discussion, Chebyshev polynomials 7,,(x) are appropriate basis func-
tion for boundary independent problems. There are n zeros of the Chebyshev polynomial
T, defined on [—1,1] by

T, (z) = cosn#, where cosf = x (2.7)

Thus, the Chebyshev points are

._’_l
x; = cos(6;), with 0; = u, 0<j<n-1. (2.8)



T,
o

-1 -0.5 0 0.5 1

Figure 1: The Chebyshev polynomials of order 0 to 5.
(', ) denotes the Chebyshev inner product

(f,9) = /1 %daz (2.9)

and the Chebyshev polynomials have the orthogonality property

(T, Th)) = gcnémn, Cy = { ? Z:g. (2.10)
If a function can be expanded in Chebyshev series
Pl@y= iiﬂnTn(x) (2.11)
n=0
then we get the spectral coefficients @/AJ” by the relation
&n:%w,n% n=0,1,.. (2.12)

Hence, a function ¢(x) for which we would like to find an approximation of its solution,
the truncated Chebyshev series can be written as

ov(x,t) = ¢ Tu(). (2.13)

Eq.(2.11) and eq.(2.12) can be performed efficiently by the Fast Chebyshev Transform.
Similar to the Fast Fourier Transform, the Fast Chebyshev Transform can perform N
degree of freedom transformation in O(Nlog/N) operations.

2.2 Domain Decomposition
2.2.1 Time speeding factor

The primal thought for us to develop methods for domain decomposition is saving
computation time. Not only for paralleling computing, but for the larger At. After the

4



degree of freedom being decided in a fixed domain, the speed of demonstrating numerical
method is mainly bounded by the At since the constrain of Courant-Friedrichs-Lewy
condition. After doing domain decomposition, the At can be larger even keeping the
same degree of freedom for whole domain since the domain has been cut to several sub-
domains.

After setting up the Chebyshev grids, the minimal Ax is proportional to L/N?, where
L is the length of domain, N is the degree of freedom. Denote that At, and At,, are
the ideal time step for implementing some certain numerical methods in single domain
and m sub-domains with domain decomposition, respectively. Since the time steps are
proportional to the minimal Az, it leads to

Aty x (2.14)

N2’
For keeping the same degree of freedom N of the whole single domain, it should be set up
for N/m Chebyshev grids at each sub-domain where the single domain has been cut to
m sub-domains. Note that the length of each sub-domain is L/m, and the minimal Ax
in sub-domains is proportional to 1/(£)2. These cause that

i L
At X (5)2 St (2.15)

It implies that we can use the time step which is m times larger after doing domain
decomposition than the original time step at single domain, and keep the stability still.
For the idealist condition, if we put the data in-each-sub-domain in different computers
separately, the speed of computing are just 1/m? than we put data in single domain in one
computer where the computers are with the same equipments. This is the main advantage
of domain decomposition. In our preliminary tests, the At (the additional speed up factor)
can be up to 4 in 8 sub-domains. In the following section, we will concentrated mainly
on the spatial discretization errors of domain decomposition.

2.2.2 The overlapping boundaries

We have to introduce a proper method for exchanging the information of the bound-
aries between sub-domains at first. Here we use the overset method at those overlapped
boundaries. It causes the importance of setting up the grids for dealing with domain
decomposition and overset boundary problems. The grids can be set after L, N,, Np and
N are given where L is the length of the whole domain, N,+1 is the number of overlapped
grids between sub-domains and N, > 1, Np is the number of sub-domains and N is the
degree of freedom for each sub-domain. After these parameters being decided, the length
of each sub-domain is

L

Np —0.5(Np — 1)(1 — cos(far))

Lo = (2.16)

Note that the setting makes the grids match well at the overlapped boundaries. x,s, is
donated to be the N** Chebyshev collocation point at M sub-domain. The information



exchange in the overlapping boundaries simultaneously. Namely we assign u(zaz,, ) value
to u(z(m41)y) and assign u(T(v41)y_y,,) t0 w(zas). The scheme of assignments is shown

in Figure 2.
o I - - - L L
* = » * * » LS

Figure 2: The information exchange at the overlapped boundary with N, = 1.

3 1-D Test Problems

3.1 1-D Linear Advection Equation

Consider the one-dimensional linear advection equation as following

ou  Ou
—+ =0 3.17
ot * Ox (8:17)
in the domain [—1,1]. The initial and beundary conditions have been determined under
the given analytical solution

T —xy—1t

u(z,t) = Aexpl—( h

)7 (3.18)

where h = 0.2, 7y = —0.5 and A = h-"/?(7/2)~/4 Those conditions are mainly from
[5]-

For discussing the accuracy of Chebyshev collocation method, the finite difference
fourth-order scheme(FD4) is introduced to do the comparison with it where the FD4
scheme about advection equation is

@ —7?(/]'+2 + 8'&j+1 - 8'66]'71 + {Lj72 _ ]E
dt Ax 7

(3.19)
Note that (~) i denotes the values at the grid points Z; = —1 + jAz. At boundary points
where N =0, 1, N — 1, and N, we use the fourth-order one-sided finite differences where
the derivation can be get by the idea of Taylor series.

The up in Figure 3 shows the results of analytical solution and the approximation
by Chebyshev collocation method and FD4 with domain decomposition at time ¢ = 1.0.
Here the domain is divided into two sub-domains and the number of overlapped grids
are two points, e.g., overlapped with one grid width, as Figure 2. The degree of freedom
of each sub-domain is 24. It makes that the degree of freedom of the whole domain is
double. As Figure 2, the approximation of Chebyshev collocation method with domain
decomposition is identical to the analytic solution about 1-D advection problem.

The down in Figure 3 shows the Ly error of the numerical results of Chebyshev collo-
cation method with single domain and double domain and FD4 method with analytical
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Figure 3: Analytical solution and numerical results of eq.(3.17) under condition eq.(3.18)
and the Ly error.

solution at ¢ = 1.0. We use the norm

Ju =l = {3 = (g, 1) — (s, O]} (320)

n=0 7

to help us calculating the relative Lo error. The error in the spectral solutions are decreas-
ing like 100-N/9 as N approaches 64, while the error in FD4 decreases in order N. Note
that the property of exponential convergence of the spectral method didn’t lose where the
domain decomposition is demonstrating.

3.2 1-D Diffusion Equation

Let’s take a look of 1-D linear diffusion model with domain decomposition. The 1-D
diffusion equation is

ou 9%u

7



in the domain [-5,5], where x = 0.1. The initial condition is

2

u(z,0) = exp(—o%). (3.22)

The up in Figure 4 illustrates the comparison between the analytical solution and
Chebyshev collocation method with domain decomposition and FD4 method at time
t = 1.0. Here the FD4 scheme of diffusion equation is

du, —Ujyo + 160,41 — 300; + 16,1 — U;_2

a " 12(Az)? (3:23)

Note that the values at 7 =1, 1, N —1, and N, the fourth-order one-sided finite difference
is used here. Each time step is dt = 0.001 and degree of freedom is N = 24 x 2. We set the
overlapped boundaries condition like the advection model at previous paragraph. Namely,
they are overlapped with one grid width. The analytical solution and the numerical
approximation are identical in Figure 4.

The down in Figure 4 shows the convergence rate of demonstrating FD4, Chebyshev
collocation method with single domain, and with double domains. The same conclu-
sion we can get from the rate of convergence about advection equation, the property
of exponential convergence of error also maintain very well when we demonstrating the

Chebyshev collocation method with double domain.

3.3 1-D inviscid Burgers Equation

Consider the inviscid Burgers equation

ou adu N

o Fus-=0 (3.24)

in the limited domain [—1, 1] with the initial condition

u(z,0) = f(x) =u — tan " (z — x). (3.25)

The boundary conditions at = —1 and = 1 are decided by the general solution of
eq.(3.24) which is

u(z,t) = flx —u(z,t)t). (3.26)

Thus, the analytical solution under the initial condition eq.(3.25) is
u=71—tan *(z — ut — x). (3.27)

Furthermore, we differentiate eq.(3.27) with respect to x to get the time of scale-collapse

which gives
Ju 1-— tg—z

0r 1+ (x—xg—ut)?

Consider x = xy + ut and u = u, we obtained

ou ou

(a_x)m=x0+m =—(1- t(%)x:z(ﬂrﬂt) (3.28)
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Figure 4: Analytical solution and numerical results of eq.(3.21) under condition eq.(3.22)
and the Ly error.

and then we have 9 ]
(%)x:xomt =y s t—1 (3.29)
From the above derivation, the time of scale-collapse of u is 1 with the position of scale-
collapse at xo + w. Given the decided parameters uw and x(, the analytical solution of
eq.(3.24) with the determined initial condition and boundary condition at certained z
and ¢ is found numerically for desired accuracy by fixed point iteration on eq.(3.27).
Figure 5 to 7 shows the numerical approximation of domain decomposition method
could sketch the general picture of the analytical solution even though the degree of
freedom is just 16 x 2 and the general error of numerical approximation for t = 1 at
double domains is smaller than it at single domain with different w and x,. For these
case, the numerical errors are mainly from the position of scale-collapse at x = ¢ + .
About x¢p = 0 and uw = 0, the collocation grids at single domain have the lowest density

at this location. If we use double domains, the collocation grids have the highest density
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Figure 5: Analytical solution and numerical results in double domains of equation
eq.(3.24) with 2o = 0 and @ = 0 under conditions eq.(3.25) and eq.(3.27).

at x = 0 which cause the general error is smaller than it at single domain.

Let’s take a look with another case w = 0.5 and xy = 0. It means the scale-collapse
moving with a background advection at speed w = 0.5 from the initial position x = 0.
There are more oscillations about the numerical approximation in this case. The general
error of numerical approximation at double domains is larger than it at single domain,
which is the opposite result to u = 0 and xy = 0. It is because that the scale-collapse
moving to x = 0.5 at t = 1 where the grids density at double domains is lower than it at
single domain since w = 0.5. About the case w = 0.5 and zy = —0.5, the scale-collapse
moves to x = 0 at ¢ = 1. The error of results in double domain is smaller than in single
domain has the same reason as the case w =0 and zo = 0.

To confirm our idea, Figure 8 shows the convergence rates while the scale-collapse at
xo = 0 with w = 0.5 at each time respectively. Apparently, since the time of scale-collapse
of u is 1, the convergence rates are getting worse as the time approaching to 7" = 1
generally. Otherwise, the convergence rates at double domain are better than the results

10
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Figure 6: Analytical solution and numerical results in double domains of equation
eq.(3.24) with 2y = 0 and @ = 0.5under conditions eq.(3.25) and eq.(3.27).

at single domain. It verifies our idea that the magnitude of error is determined by the
density of grids and the results of double domain condition is more excellent than of single

domain under this condition.
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Figure 7: Analytical solution and numerical results in double domains of equation
eq.(3.24) with g = —0.5 and @ = 0.5 under conditions eq.(3.25) and eq.(3.27).

4 2-D Nonlinear Shallow Water Model

For testing the Chebyshev collocation method on a more realistic atmospheric model
in two-dimensional, we introduce the nonlinear shallow water equations in Cartesian co-

ordinates (z,y) :

ou ou ou o oh_
ot or ey TV T ar
ov ov ov oh
oh oh oh  — ou Ov
E+u%+va_y+(h+h)(£+8_y)_Q(m’y)

Here v and v represent the velocity components in  and ¥y directions. A is a constant
basic state of geopotential and h is the deviation from h . Note that the gradient of h
causes the acceleration of gravity from the first and second equations. f is the Coriolis

12



Convergence Rate of Inviscid Burgers Equation{ubar=0.5)
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Figure 8: Convergence rate of eq.(3.24) while the scale-collapse at xo = 0 with w = 0.5 at

each time respectively.

force from the rotation of earth. Q(z,¢) represents the outer force of this system.

4.1 Chebyshev spectral discretizations

On the domain z, < x < xp, Yo < Y < Yy, We demonstrate the Chebyshev collocation

method based on the expansion

u((l},y,t) uMN(x>y7t)
U(Ql,y,t) ~ UMN(x7y7t>
h(l’, Y, t) hMN(x7 Y, t)

Here M, N are spectral truncations in x and y respectively, Umn, Umn, Runn are spectral
coefficients, T,, denotes the Chebyshev polynimial of degree n, and =’ = 2(z — x,)/(x, —
Za), ¥V = 2(y — Ya)/(Up — ¥a). We introduce the Chebyshev collocation points Z;, 7,
corresponding to @ = cos(jm/M) where j = 0,- -+, M and ¥ = cos(kn/N) where k =
0,---, N. From those previous things, the collocation equations of shallow water system

eq.(4.30) can be written as

d; + Jkugk ) + vjkugk fvjk + h =0
dv; ik
7,30 4 Tt + e+ B =0 (4.31)
dﬁk (10 _01 —_— — (1,0 _(0,1 _
g Ty A0+ ()@ +750Y) = @

dt
13



where the subscript jk denotes a value at the collocation point (7;,7,), and the super-
scripts (1,0) and (0,1) denote the = and y derivative, respectively. The procedures of
demonstrating Chebyshev collocation method about shallow water model are transform-
ing items to spectral space, doing the derivative there, and then transforming back to
physical space. About this model, there are 12 Chebyshev transforms at each time step.
All the transforms are one-dimensional.

4.2 Overlapping boundaries

The handling of boundaries which are overlapping by sub-domains is similar to the
1-D problem, we give the overset boundary condition with one-grid width to exchange the
information at those joints. Note there are two ways for us to divide the whole domain
into sub-domains and we show both results to do comparison in following figures. One is
dividing x—axis to two domain, then the 2-D single domain becomes 2x 1 sub-domains(DD
2 x 1); the other is dividing y—axis additional than the previous way, namely, the original
domain is cut to be 2 x 2 sub-domains(DD 2 x 2).

\

r'“)('“)'f )

7
\

B

Figure 9: The information exchange at the overlapped boundary in 2-D shallow water
model with double domain.

4.3 Numerical results

Here u and v represent the velocity components in  and y directions. A is a constant
basic state of geopotential where gh = ¢? is 2500m?/s> and h is the deviation from h.
Note that the gradient of h causes the acceleration of gravity from the first and second
equations. f is the Coriolis force from the rotation of earth and we consider the g—effect
(f = fo+ By where fy and § are both constants) of model. All the results are presented at

the domain [z, 23] X [Ya, yp] = [—2000km, 2000km| x [—2000km, 2000km]|. We set in y = 0
means located at 30°N which makes fo = 2Qsing and 3 = %cos% where €) = ﬁ is

the rotating rate of earth and R = 6378100m is the radius of earth. Q(x,y) represents
the outer force of this system. We give

T — T,

)2 — (L Yey2)qp24530 200 (4.32)

Q<x7y7t) = QO%P[—( To Yo

14
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Figure 10: The information exchange at:the'overlapped boundary in 2-D shallow water
model with DD2 x 2.

where the amplitude ¢y = 6250m%s~2, time scale to = 6 hours = 21600 sec, e-folding
width zp = yo = 200km and centered at (Ze,ye) = (1000 km, —1000 km). Note that
Q(z,y,t) reaches its maximum when .= ¢, at each‘point.

For demonstrating the following cases; we set the initial condition to be

Y —Ya
]

4.33
Yo — Ya ( )

u(z,y,0) = —Ucos|m
with U = 7.5ms™! and v(z,y,0) = 0. The vortex which caused mainly from Q-force has
variation as time goes by and the advection from v and v. We make h in geopotential
balance on f—plane, i.e.,

S .0,0) = ~(fa+ B (4.3)
If we set Q(x,y,t) = 0 and this initial condition for h, the system is in geostrophic balance
state on a S—plane continuously. About the boundary conditions, we set periodic overset
condition for one grid width at = x, and x = x;,. Namely we assign the u, v and h values
at x; to the values at xy, and the values at xy_; to the values at xy. The wall-condition
is applied at y =y, and y = 1y, i.e., v =0 at y = y, and y = yp.

In this simulation, we pay attention to the vortex formation by the Q-forcing at
(1000 km, —1000 km). The forced vortex is like the typhoon atmosphere. We will observe
the vortex drift from the easterly background flow to the westerly background flow in our
calculations.

The Chebyshev collocation method is used to calculate the derivatives which are

ou/0x, du/dy, Ov/dx, Qu/dy, Oh/dx, Oh/Oy. Once the derivatives have been calculated,

15



we use the RK4 method to do the integration of time.

The results in Figure 11 to 16 are computed by the Chebyshev collocation method
about the eq.(4.30) at 1.5, 3, 4.5, 6, 7.5 and 9 days respectively as labeled. The contour
lines represent the geopotential field h/c. Figure 17 to 19 shows the analysis of the average
velocity, vorticity, and pressure respectively at 3, 6, 9 days as labeled.

Since the shallow water equations are nonlinear with chaos, the model cannot be stable
integrated forever. The model in single domain and DD2 x 2 blow up after 9 days and in
DD 2 x 1 blows up after 10 days. We use 96 x 96 in single domain as a benchmark and
compare with the degree of freedom (48 + 48, 96) in double domain and (48 + 48, 48 4 48)
in DD2 x 2. We found the L, error of the domain decomposition with respect to single
domain are order of 10~* in these calculations.
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T=36hr, NX=96, NY=96
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Figure 11: The results for shallow water model when T=36 hr. Up to down : single
domain, DD 2 x 1, DD 2 x 2.
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T=72hr, NX=96, NY=96
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Figure 12: The results for shallow water model when T=72 hr. Up to down : single
domain, DD 2 x 1, DD 2 x 2.
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T=108hr, NX=96, NY=96
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Figure 13: The results for shallow water model when T=108 hr. Up to down : single
domain, DD 2 x 1, DD 2 x 2.
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Figure 14: The results for shallow water model when T=144 hr. Up to down
domain, DD 2 x 1, DD 2 x 2.
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T=180hr, NX=96, NY=96
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Figure 15: The results for shallow water model when T=180 hr. Up to down
domain, DD 2 x 1, DD 2 x 2.
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T=216hr, NX=96, NY=96
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Figure 16: The results for shallow water model when T=216 hr. Up to down : single
domain, DD 2 x 1, DD 2 x 2.
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Figure 17: The comparison of average velocity near the vortex at 7' = 72 hr, T' = 144 hr,
T = 216 hr.
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X 10-4 Average vorticity at T=72hr
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Figure 18: The comparison of average vorticity near the vortex at 7' = 72 hr, T" = 144
hr, 7" = 216 hr.
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Figure 19: The comparison of average pressure near the vortex at T'= 72 hr, T = 144 hr,

T = 216 hr.
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4.4 MPI implementation

To test and implement our numerical results on an MPI(Message-Passing Interface)
environment, we use the DD 4 x 2 and DD 4 x 4. We initialize the MPI system in the
beginning then the calculations are in different CPUs by the assignment of program. The
information has to be exchanged between different CPUs after the integration of each
time step has been finished. Here is the basic pseudo code of exchanging information at
overlapping boundaries between southern and northern sub-domains:

call MPI_SENDRECV(un(0,ny-numOver) ,nx+1,MPI_REAL8,south,1,
+ un(0,0) ,nx+1,MPI_REALS,north,1,MPI_COMM_WORLD,
status,ierr)

call MPI_SENDRECV(un(0,numQOver) ,nx+1,MPI_REALS8,north,1,
+ un(O,ny),nX+1,MPI_REAL8,South,1,MPI_COMM_WORLD,
status,ierr)

About the overlapping boundaries between western and eastern sub-domains, because
of the structure of Fortran array, we have-to-define a datatype first aimed to exchange
information appropriately.

call MPI_TYPE_VECTOR(ny+1,1,nx+2 ,MPI_REAL8,column,ierr)
call MPI_TYPE_COMMIT (column,ierr)

The new datatype culumn specifies the method of picking data. Then the basic peudo
code of southern and northern sub-domains is given here:

call MPI_SENDRECV (un(numOver,0),1,column,east,1,

+ un(nx,0),1,column,west,1,MPI_COMM_WORLD, status,ierr)
call MPI_SENDRECV (un(nx-numOver,0),1,column,west,1,
+ un(0,0),1,column,east,1,MPI_COMM_WORLD, status,ierr)

The results in Figure 20 to 25 are computed by the Chebyshev collocation method
about the eq.(4.30) at 1.5, 3, 4.5, 6, 7.5 and 9 days respectively as labeled with MPI
programming. They are very similar with Figure 11 to 16. Thus, we conclude our domain
decomposition method is suitable for MPI environment.
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Figure 20: The results for shallow water model when T=36 hr. Up to down : single
domain, DD 4 x 2, DD 4 x 4.
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Figure 21: The results for shallow water model when T=72 hr. Up to down
domain, DD 4 x 2, DD 4 x 4.
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Figure 22: The results for shallow water model when T=96 hr. Up to down : single
domain, DD 4 x 2, DD 4 x 4.
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Figure 23: The results for shallow water model when T=144 hr. Up to down : single
domain, DD 4 x 2, DD 4 x 4.
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Figure 24: The results for shallow water model when T=180 hr. Up to down : single
domain, DD 4 x 2, DD 4 x 4.
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Figure 25: The results for shallow water model when T=216 hr. Up to down : single
domain, DD 4 x 2, DD 4 x 4.
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4.5 Time splitting method

In this thesis, we mainly discuss the domain decomposition method which could save
the computation time. The shallow water equation allows multiple scales of oscillations
in the model. There are slow type of motions such as vortex drifting (e.g., 7.5ms™!),
Rossby waves and fast type of motion such as gravity waves (e.g., 50ms™'). We are
usually interested in the slow motion and yet the fast motion limit the use of our time
step size. In another words, the time step, as far as the slow type of motion is concerned,
is limited by the stability and not by the accuracy. It is often treated in the atmospheric
cloud models with the time splitting method for the efficiency. The essence of the time
splitting is that use small time step for the terms in the equation govern the fast motion
and use a larger time step for the terms govern the slow motion. Consequently, the
time splitting method, in addition to the domain decomposition, can also improve our
efficiency. Discussion on the time splitting method can be found in [14].

For the implementation of the time-splitting method in the shallow water model, we
divided the equations into two parts : advection and gravity waves parts. eq.(4.30) can

be written as

ou
— aldars.U
ot 1774,
o
e 4.35
3 Ve (4.35)
oh
— =H;+H
ot N
where the U,, V,, H, dominate the-advection, and
du ou
U, —Us = va—y + fo
v ov
Vo=—u——v—— 4.
s vay fu (4.36)
oh oh
H,=—-u——v— —
a uax v ay (.CC, y)?
the Uy, V;,, H, are about gravity waves, and
__on
9 Oz
oh
V,= ——
g oy (4.37)
— Ju Ov
H,=—(h+h)(=———

Thus, we introduce two different time steps At and A7 where AT = At/n,. After
the number n; is decided, about the terms 0h/dxz, Oh/dy, Ou/dx, Ov/Ox which cause the
gravity waves, the smaller time step A7 is used to do the integration. While the integration
has been done for nyA7, the advection terms add to them and do the integration together.
When t = jAt + kA7 and k is not divisible by ng, we use the results of the advection
term at t = jAL.
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Unfortunately, the predictability of this model by time-splitting method is weaken
than without time-splitting, i.e., all the models blow up earlier than the previous results
which with no time-splitting. All of them blow up earlier than 4 days.

There is also an important observation that why the time-splitting method for shallow
water model could not be very efficient. In this model, 6 terms have to be calculate
by Chebyshev collocation transform, they are 0h/0x, Oh/dy, Ou/0x, Ov/dy, Ou/dy and
Ov/Ox. But there are 4 terms belonged to the gravity waves. Even though the time-
splitting method can implemented, the time saving is just 1/3 and additional complication
cause the model to loses the stability at the same time. It is recommended that the use
of the time splitting method required carefully analysis in future.

5 Concluding Remarks and Future Works

We have introduced the Chebyshev collocation method with domain decomposition
in the atmospheric modelings. The sub-domain boundary information exchange is by
overlapping the sub-domains in one grid spacing interval. By the property of Cheby-
shev grids setting and consider the relation between Az and At with CFL condition, we
can enlarge the At with Chebyshev domain decomposition compared with single domain.
Our domain decomposition Chebyshey collocation method indicates the exponential con-
vergence property in 1-D linear adyection and diffusion models. In the test of inviscid
Burgers equation, we integrate the model up to the shock formation time. We show that
the domain decomposition spectral method in general yields a smaller errors when com-
pared to the single domain calculations. In a more realistic atmospheric modeling with
a 2-D shallow water model, we find our domain decomposition Chebyshev method gives
results identical to the single domain spectral method with a Ly error on the order of 10~
when 96 degree of freedom is considered. The domain decomposition spectral method is
capable of a stable integration of 9 days in our test. It is prominent, considering the fact
that the predictability of the typical atmospheric model is about 10 to 12 days. We also
argued that the time-splitting method is not well applicable to the 2-D shallow water
equation.

Our future work will be evaluate the overhead or the additional cost of the boundary
information exchange in domain decomposition. We also may implement the method in
the oceanic modeling by incorporating the immerse boundary condition method in the
lateral continental shelf and using the Chebyshev domain decomposition method.
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Appendix

A Verticle Transform and Shallow Water Equation

In this appendix we will show that hydorstatic atmosphere is equivalent to a set of

shallow water equation by the vertical transform.

gy = 2P0 Py
s=sp) == "1 -())

R
K= —
Cp

-9
b_eoe

Linearized equation in s coordinate (with J represents diabatic heating).

ov |
WJrka?_—v@

05
V'?‘F%—O

GRamd

ob
2L N? =
6t+8 J

Boundary condition: w = dz/dt'=0'at s = 0,8 =dp/dt =0 at s = H.

%—‘% is the local height change that can'be resulted from diabatic heating.

Boundary condition derivation.

000,
- Os Ot
Substitute A.6 and A.8 into A.7 we could obtain:

1o ob
N20s" Ot ot

At s =0, w=dz/dt =0,

dd
E—O
8<I>+ 0D 0
I S

ot 0s
0 )
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Substitute A.9 into A.12, and with %—% =0 at s = 0 we could obtain:

(8_@_@)_ g@_@_@)
ot o’ “os‘or ot
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where

b
o= FOQ (A.14)
At s=H, s =dp/dt =0, )
0,00 0P
g(ﬁ — E) =0. (A.15)

Inner product:

—/ w ds = (u,v) (A.16)
(Lu,v) = (u, Lv) (A.17)

Based on the Sturm-Liouville theorem, the basis function is complete, orthogonal, and
the eigenvalue is real.

LY, =NV, (A.18)
ov
v, — = = Al
0s 0 (A-19)
ov,
=0 A.20
P (A.20)
If\, = C% > (0, we could obtain the shallow water equation.
a—>
¥/ Ytk x oy = V9, (A.21)
D 0D
— = — A.22
a0 4+ VU= 5 ( )

The above derivation demonstrates that a hydrostatic atmosphere with suitable ver-
tical boundary conditions may support free oscillations with several different structurs.
The eigenvalue of each free oscillation is ¢ = gh, which is related to the depth of the
shallow water equation.

B Amdahl’s Law

In this appendix, we will discuss the Amdahl’s law in parallel computing. Let W be
the amount of work to be done for a particular job, and let r be the rate at which it can
be done by one processor. Then the computer time required for one processor to do the
job is T}, given by

T =— (B.1)

Now suppose that f fraction of the job, by time, must be done serially and the remaining
1 — f fraction can be done perfectly parallelized by p processors. Then the time, T, for
parallel computation is given by

wo A=W

T, = B.2
p= (B.2)
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Figure B.1: Amdahl speedup as a function of f.

The above equation indicates that if the entire calculation can be parallelized, that is,
f =0, then all the work will be done in p fraction of the time. We then claim the speedup

SU is p, and

Ip
This is the well known linear speedup. But as the equation indicate, the speedup in general
will be

SU =p (B.3)

T1 W/T’
SU=-1t=
Lo ey #4554 (B.4)
N p
fo=1)+1

This relation is known in the field of Parallel Computing as the Amdahl’s Law. We
are interested from the above equation the speed up SU as a function of numbers of
processors p. In particular, we want to know how the SU behave as a function of p
and f. Figure B.1 shows the Amdahls speed up as a function of f for various p. It
is obvious that the steepness near f = 0 means that the speedup falls off rapidly for
the increase of f. For example, the SU does not change much with p processors for
f = 0.2. Namely, the SU becomes insignificant when percentage of code that cannot be
parallelized is about 20%. It may appear that the Amdahl’s Law gives a bleak picture as
far as the speedup is concerned. However, the fraction f is defined by computational time
and not by computational code. As a matter of fact, most scientific programs spend the
majority of their execution time in a few loops within the program. Thus if these loops
parallelize (or vectorize), then Amdahl’s Law predicts that the efficiency will be high. On
the other hand, if we employed the domain decomposition method, the theoretical SU will
be almost proportional to the number of processors p with the overhead of information
exchange through the decomposed boundaries. The SU in the domain decomposition in
general is not a function of the f. More details are on [18].
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