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摘 要       

 
 

本篇論文介紹使切比雪夫排列法加速的分解定義域方法。我們將定義

域分割成許多子定義域，使其可以進行平行運算，並且在完成每一時步

的積分後在子定義域之間的邊界進行資訊的交換。我們先使用此方法運

作在三個一維的方程做為例子，分別是傳導方程、擴散方程以及 inviscid 

Burgers 方程，並且提供了指數收斂的計算結果。另外再延伸至更實際的

二維淺水方程做為例子，並且獲得與未分割定義域之前十分相近的計算

結果。因此我們也得到結論，對於大氣或海洋的模式，分解定義域的切

比雪夫排列法是一個十分有效率的數值方法。 
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Models with Domain Decomposition 

 
 

Student：Yung-Chieh Chang 

 

Advisors：Hung-Chi Kuo, 
Ming-Chih Lai 

Department (Institute) of Applied Mathematics 
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Abstract 
 
 
The spectral methods seek the numerical solutions by a set of known 

polynomials. The main advantage of using spectral methods for solving 
atmospheric problems is the high efficiency and conservations of important 
quadratic quantities such as kinetic energy and enstrophy. Namely, we can get 
very high accuracy through the exponential convergence. The conservation of 
the quadratic quantities are important to model the turbulence under strong 
rotation and stratification. In this paper, we introduce the domain 
decomposition method to speed up the Chebyshev collocation method. The 
domain decomposition is to divide the domain into many sub-domains to run 
the computation in parallel and to exchange the information through the 
sub-domain boundaries during the time integration. We implement the 
domain decomposition Chebyshev collocation method with overlapping the 
sub-domains in one grid spacing interval for 1-D tests such as advection, 
diffusion and inviscid Burgers equations. We show the exponential 
convergence property and error characteristics in these tests. In a more 
realistic atmospheric modeling, we study the spectral method with 2-D 
shallow water equations. The domain decomposition results compared 
favorably with that of the single domain calculations. Thus, Chebyshev 
domain decomposition method may be an efficient alternative method for the 
atmospheric/oceanic limited area modeling. 
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1 Introduction

With the advent of the fast Fourier transform(FFT) and the spectral transform method

([1]), spectral methods have been used successfully in global atmospheric models(e.g., [2]

and [3]). Comparing with finite difference and finite element methods, global spectral

models can eliminate pole problems and have high accuracy and efficiency that comes

from the “exponential-convergence” property. The spectral methods also offer the dis-

crete conservations of kinetic energy and enstropy, which are very important for the

two-dimensional turbulence modeling. In addition to the popularity of spectral method

for global models, finite difference or finite element methods are usually used to deal with

limited-area models in atmospheric sciences. The main barrier of spectral methods used in

limited area models is the time-dependent boundary conditions. Some discussions about

computing atmospheric model which are restricted in smaller-scale and limited domain

can be found in [4], [5] and [6]. Domain decomposition method is one of the efficient

ways for improving the computational efficiency through the parallel processing. After

the domain being divided, the information in sub-domains can be calculated in parallel

with different Central Processing Units(CPUs) simultaneously thus increase the efficiency.

Appendix B give a general discussion of parallel computing and Amdahls Law.

A suitable spectral method for the limited area atmospheric and oceanic modeling

is the Chebyshev spectral method ([5] and [6]). The method handles successfully the

time dependent boundary conditions while retain all the advantage of the global spectral

methods. The earliest reference that to maintain the exponential convergence with domain

decomposition for spectral methods is [7]. Later, Kopriva proposed an idea which is

making hyperbolic equations on complicated geometries to be on squared sub-domains

thus easier to execute spectral methods([8] and [9]). Kopriva also developed a conservative

staggered-grid Chebyshev multi-domain method for compressible flows in papers [10] and

[11]. Others, in the paper [12], the Chebyshev pseudospectral(collocation) method with

domain decomposition is applied to deal with viscous flow calculation for lessening the

influence of Gibbs phenomena on entire domain. These previous jobs about performing

spectral methods with domain decompositon, were solving problems such as hyperbolic

equations([8], [9]), viscous flow([12]), and compressible flows([10], [11]). None of these

applications is directly related to the atmospheric science modelings.

In this paper, we implement Chebyshev collocation method with domain decompo-

sition in the atmospheric sciences, based on [8] and [9]. We solve the shallow water

equations in a limited-area of [6]. In Section 2, the Chebyshev collocation method is

introduced briefly. We also talk about the way to demonstrate the domain decomposition

and the advantages. In Section 3, we study 1-D cases using the Chebyshev collocation

method with domain decomposition for advection equation, diffusion equation and invis-

cid Burger’s equation. The error characteristics as well as exponential convergence are

discussed. In Section 4, we present the shallow water equations and its numerical results.

The MPI programming is employed to solve some multi-domain conditions here. The

discussion on the time-splitting method for the model is also in this section. Section 5

gives concluding remarks.
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2 Chebyshev Collocation Method and Domain De-

composition

2.1 Chebyshev Collocation Method

2.1.1 Analysis of boundary effects for limited domain

Spectral methods seek solutions in term of a series of known basis functions. Spectral

methods are global type of method where the computation at given points depend not only

on information at neighboring points, but on the entire domain. On the other hand, finite

difference methods are local methods. The local refers to the use of nearby grid-points to

approximate the function of its derivative at given points.

The essence of the choice of basis function is the property of the “completeness”.

Namely, the solution can be represented by the set of the functions. Practical consider-

ation of the spectral methods are the basis functions are orthogonal and the projection

or inner product can be calculated efficiently. The typical projection operators to find

the spectral coefficients of the expansion are Galerkin, and tau methods. The basis func-

tions often satisfy the prescribed boundary conditions in the Galerkin method. The tau

method is more flexible in that the boundary condition need not be satisfied by the basis

functions.

The “orthogonality” property of basis functions for spectral methods is practically

useful in the computations. It makes the coefficients in the expansion independent of

each other. The eigenfunctions of Sturm-Liouville equation are often chosen to be the

basis. For demonstrating atmospheric spectral modeling, Spherical harmonics, Chebyshev

and Fourier series are often used in the atmospheric spectral models. The Chebyshev and

Fourier series allows a fast transforms to find spectral coefficients. These spectral methods

get great accuracy and efficiency by the rapid convergence of fast transform.

The follow discussions are on the convergence property of the series expansion based

on the Sturm-Liouville equation. More detailed analysis can be found in [15], [16], and

[5].

Consider the Sturm-Liouville equation in limited domain [a,b]

𝐿𝜙(𝑥) = −[𝑝(𝑥)𝜙′(𝑥)]′ + 𝑞(𝑥)𝜙(𝑥) = 𝜆𝑤(𝑥)𝜙(𝑥) (2.1)

with determined equations 𝑝(𝑥),𝑞(𝑥) and 𝑤(𝑥). The prime represents the differentiation

with respect to 𝑥. Eq.(2.1) has infinite and countable set of solutions 𝜙(𝑥)∞𝑛=0 correspond-

ing to eigenvalues 𝜆∞𝑛=0. The eigenfunctions 𝜙𝑛 form an complete and orthonormal system

under the inner product

(𝜙𝑖, 𝜙𝑗)𝑤 =

∫ 𝑏

𝑎

𝜙𝑖(𝑥)𝜙𝑗(𝑥)𝑤(𝑥)𝑑𝑥 = 𝛿𝑖𝑗 (2.2)

where 𝛿𝑖𝑗 = 1 if 𝑖 = 𝑗 and 0 otherwise. Therefore, any suitable smooth function 𝑢(𝑥) can

be expanded by proper coefficients with basis {𝜙𝑛}∞𝑛=0 as

𝑢(𝑥) =
∞∑
𝑛=0

�̂�𝑛𝜙𝑛(𝑥) (2.3)
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where

�̂�𝑛 = (𝑢, 𝜙𝑛)𝑤. (2.4)

To estimate the magnitude of �̂�𝑛, we substitute for 𝜙𝑛 in �̂�𝑛 = (𝑢, 𝜙𝑛)𝑤 from Eq.(2.1), i.e.,

𝜙𝑛(𝑥) = 𝜆−1
𝑛 𝑤−1(𝑥)𝐿𝜙𝑛(𝑥)

= 𝜆−1
𝑛 𝑤−1(𝑥){−[𝑝(𝑥)𝜙′

𝑛(𝑥)]
′ + 𝑞(𝑥)𝜙𝑛(𝑥)}.

(2.5)

Then we get �̂�𝑛 = 𝜆−1
𝑛 (𝑢,𝑤−1𝐿𝜙𝑛)𝑤. Next, doing integration by parts twice,

𝜆−1
𝑛 (𝑢,𝑤−1𝐿𝜙𝑛)𝑤 = 𝜆−1

𝑛 {
∫ 𝑏

𝑎

𝑢(𝑥)𝑤−1(𝑥){−[𝑝(𝑥)𝜙′
𝑛(𝑥)]

′ + 𝑞(𝑥)𝜙𝑛(𝑥)}𝑤(𝑥)𝑑𝑥}

= 𝜆−1
𝑛 [𝐵(𝑢, 𝜙𝑛) + (𝑣, 𝜙𝑛)𝑤].

(2.6)

Here 𝐵(𝑢, 𝜙𝑛) = 𝑝(𝑥)[𝑢′(𝑥)𝜙𝑛(𝑥)− 𝑢(𝑥)𝜙′
𝑛(𝑥)]∣𝑥=𝑏

𝑥=𝑎 and 𝑣 = 𝑤−1𝐿𝑢.

The Chebyshev polynomials are the solutions of Chebyshev differential equation where

this is a special case of the Sturm-Liouville equation with 𝑝(𝑥) = (1−𝑥2)1/2, 𝑞(𝑥) = 0 and

𝑤(𝑥) = (1−𝑥2)−1/2. About this case in domain [−1, 1] and 𝑝(−1) = 𝑝(1) = 0, that means

𝐵(𝑢, 𝜙𝑛) equals to 0 no matter what bounded function 𝑢 is. Thus we can do integration

by parts for the 𝜆−1
𝑛 [(𝑣, 𝜙𝑛)𝑤] term repeatedly as long as the function is smooth enough

after each integration. From the property that (𝑣, 𝜙𝑛)𝑤 term is bounded independent of

𝑛 and the asymptotic behavior of eigenvalues 𝜆𝑛 = 𝑂(𝑛2) and eigenvectors 𝜙𝑛(𝑥) = 𝑂(1),

𝜙′
𝑛(𝑥) = 𝑂(𝑛) as 𝑛 → ∞, by [17], we get �̂�𝑛 < 𝑂(𝑛−𝑚) if 𝑢 is 𝑚 times differentiable. It

satisfies the definition of exponential convergence, i.e., the convergence rate of Chebyshev

series only depends on the smoothness of the expanded function and has nothing to do

with the boundaries.

On the other hand, consider the case of the Fourier series where 𝑝(𝑥) = 1 ∕= 0.

Here the function 𝑢 must be periodic and smooth enough to maintain the exponential

convergence property. Usually the 𝑢 does not satisfy the periodic condition and it causes

the convergence rate to be 𝐵(𝑢, 𝜙𝑛) = 𝑂(𝑛) and �̂�𝑛 = 𝑂(𝑛−1) which is very slow. If

we give the boundary conditions to be 𝑢(𝑎) = 𝑢(𝑏) = 0, the convergence rates must be

𝐵(𝑢, 𝜙𝑛) = 𝑂(1) and �̂�𝑛 = 𝑂(𝑛−2). The slow convergence rate is because of the reflection

of the Gibbs phenomenon since the boundary conditions of 𝑢 at 𝑎 and 𝑏 do not satisfy by

the expansion function 𝜙𝑛.

2.1.2 Chebyshev polynomial

From the previous discussion, Chebyshev polynomials 𝑇𝑛(𝑥) are appropriate basis func-

tion for boundary independent problems. There are 𝑛 zeros of the Chebyshev polynomial

𝑇𝑛 defined on [−1, 1] by

𝑇𝑛(𝑥) = cos𝑛𝜃, where cos𝜃 = 𝑥 (2.7)

Thus, the Chebyshev points are

𝑥𝑗 = cos(𝜃𝑗), with 𝜃𝑗 =
(𝑗 + 1

2
)𝜋

𝑛
, 0 ≤ 𝑗 ≤ 𝑛− 1. (2.8)

3
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Figure 1: The Chebyshev polynomials of order 0 to 5.

⟨ , ⟩ denotes the Chebyshev inner product

⟨𝑓, 𝑔⟩ =
∫ 1

−1

𝑓(𝑥)𝑔(𝑥)√
1− 𝑥2

𝑑𝑥 (2.9)

and the Chebyshev polynomials have the orthogonality property

⟨𝑇𝑚, 𝑇𝑛⟩ = 𝜋

2
𝑐𝑛𝛿𝑚𝑛, 𝑐𝑛 =

{
2 , 𝑛 = 0

1 , 𝑛 > 0.
(2.10)

If a function can be expanded in Chebyshev series

𝜓(𝑥) =
∞∑
𝑛=0

𝜓𝑛𝑇𝑛(𝑥) (2.11)

then we get the spectral coefficients 𝜓𝑛 by the relation

𝜓𝑛 =
2

𝜋𝑐𝑛
⟨𝜓, 𝑇𝑛⟩, 𝑛 = 0, 1, ... (2.12)

Hence, a function 𝜙(𝑥) for which we would like to find an approximation of its solution,

the truncated Chebyshev series can be written as

𝜙𝑁(𝑥, 𝑡) =
𝑁∑

𝑛=0

𝜙𝑛𝑇𝑛(𝑥). (2.13)

Eq.(2.11) and eq.(2.12) can be performed efficiently by the Fast Chebyshev Transform.

Similar to the Fast Fourier Transform, the Fast Chebyshev Transform can perform 𝑁

degree of freedom transformation in 𝑂(𝑁 log𝑁) operations.

2.2 Domain Decomposition

2.2.1 Time speeding factor

The primal thought for us to develop methods for domain decomposition is saving

computation time. Not only for paralleling computing, but for the larger Δ𝑡. After the

4



degree of freedom being decided in a fixed domain, the speed of demonstrating numerical

method is mainly bounded by the Δ𝑡 since the constrain of Courant-Friedrichs-Lewy

condition. After doing domain decomposition, the Δ𝑡 can be larger even keeping the

same degree of freedom for whole domain since the domain has been cut to several sub-

domains.

After setting up the Chebyshev grids, the minimal Δ𝑥 is proportional to 𝐿/𝑁2, where

𝐿 is the length of domain, 𝑁 is the degree of freedom. Denote that Δ𝑡𝑠 and Δ𝑡𝑚 are

the ideal time step for implementing some certain numerical methods in single domain

and 𝑚 sub-domains with domain decomposition, respectively. Since the time steps are

proportional to the minimal Δ𝑥, it leads to

Δ𝑡𝑠 ∝ 𝐿

𝑁2
. (2.14)

For keeping the same degree of freedom 𝑁 of the whole single domain, it should be set up

for 𝑁/𝑚 Chebyshev grids at each sub-domain where the single domain has been cut to

𝑚 sub-domains. Note that the length of each sub-domain is 𝐿/𝑚, and the minimal Δ𝑥

in sub-domains is proportional to 1/(𝑁
𝑚
)2. These cause that

Δ𝑡𝑚 ∝
𝐿
𝑚

(𝑁
𝑚
)2

= 𝑚
𝐿

𝑁2
. (2.15)

It implies that we can use the time step which is 𝑚 times larger after doing domain

decomposition than the original time step at single domain, and keep the stability still.

For the idealist condition, if we put the data in each sub-domain in different computers

separately, the speed of computing are just 1/𝑚2 than we put data in single domain in one

computer where the computers are with the same equipments. This is the main advantage

of domain decomposition. In our preliminary tests, the Δ𝑡 (the additional speed up factor)

can be up to 4 in 8 sub-domains. In the following section, we will concentrated mainly

on the spatial discretization errors of domain decomposition.

2.2.2 The overlapping boundaries

We have to introduce a proper method for exchanging the information of the bound-

aries between sub-domains at first. Here we use the overset method at those overlapped

boundaries. It causes the importance of setting up the grids for dealing with domain

decomposition and overset boundary problems. The grids can be set after 𝐿, 𝑁𝑎, 𝑁𝐷 and

𝑁 are given where 𝐿 is the length of the whole domain, 𝑁𝑎+1 is the number of overlapped

grids between sub-domains and 𝑁𝑎 ≥ 1, 𝑁𝐷 is the number of sub-domains and 𝑁 is the

degree of freedom for each sub-domain. After these parameters being decided, the length

of each sub-domain is

𝐿𝑎 =
𝐿

𝑁𝐷 − 0.5(𝑁𝐷 − 1)(1− 𝑐𝑜𝑠(𝑁𝑎𝜋
𝑁

))
(2.16)

Note that the setting makes the grids match well at the overlapped boundaries. 𝑥𝑀𝑁
is

donated to be the 𝑁 𝑡ℎ Chebyshev collocation point at 𝑀 𝑡ℎ sub-domain. The information

5



exchange in the overlapping boundaries simultaneously. Namely we assign 𝑢(𝑥𝑀𝑁𝑎
) value

to 𝑢(𝑥(𝑀+1)𝑁 ) and assign 𝑢(𝑥(𝑀+1)(𝑁−𝑁𝑎)
) to 𝑢(𝑥𝑀0). The scheme of assignments is shown

in Figure 2.

Figure 2: The information exchange at the overlapped boundary with 𝑁𝑎 = 1.

3 1-D Test Problems

3.1 1-D Linear Advection Equation

Consider the one-dimensional linear advection equation as following

∂𝑢

∂𝑡
+
∂𝑢

∂𝑥
= 0 (3.17)

in the domain [−1, 1]. The initial and boundary conditions have been determined under

the given analytical solution

𝑢(𝑥, 𝑡) = 𝐴𝑒𝑥𝑝[−(
𝑥− 𝑥0 − 𝑡

ℎ
)2] (3.18)

where ℎ = 0.2, 𝑥0 = −0.5 and 𝐴 = ℎ−1/2(𝜋/2)−1/4 . Those conditions are mainly from

[5].

For discussing the accuracy of Chebyshev collocation method, the finite difference

fourth-order scheme(FD4) is introduced to do the comparison with it where the FD4

scheme about advection equation is

𝑑�̃�𝑗
𝑑𝑡

+
−�̃�𝑗+2 + 8�̃�𝑗+1 − 8�̃�𝑗−1 + �̃�𝑗−2

Δ𝑥
= 𝑓𝑗. (3.19)

Note that (̃ )𝑗 denotes the values at the grid points �̃�𝑗 = −1 + 𝑗Δ𝑥. At boundary points

where 𝑁 = 0, 1, 𝑁 − 1, and 𝑁 , we use the fourth-order one-sided finite differences where

the derivation can be get by the idea of Taylor series.

The up in Figure 3 shows the results of analytical solution and the approximation

by Chebyshev collocation method and FD4 with domain decomposition at time 𝑡 = 1.0.

Here the domain is divided into two sub-domains and the number of overlapped grids

are two points, e.g., overlapped with one grid width, as Figure 2. The degree of freedom

of each sub-domain is 24. It makes that the degree of freedom of the whole domain is

double. As Figure 2, the approximation of Chebyshev collocation method with domain

decomposition is identical to the analytic solution about 1-D advection problem.

The down in Figure 3 shows the 𝐿2 error of the numerical results of Chebyshev collo-

cation method with single domain and double domain and FD4 method with analytical

6



Figure 3: Analytical solution and numerical results of eq.(3.17) under condition eq.(3.18)

and the 𝐿2 error.

solution at 𝑡 = 1.0. We use the norm

∥𝑢− 𝑢𝑁∥2 = { 2

𝑁

𝑁∑
𝑛=0

1

𝑐𝑗
[𝑢(�̃�𝑗, 𝑡)− 𝑢𝑁(�̃�𝑗, 𝑡)]}1/2 (3.20)

to help us calculating the relative 𝐿2 error. The error in the spectral solutions are decreas-

ing like 10(−𝑁/4) as 𝑁 approaches 64, while the error in FD4 decreases in order 𝑁 . Note

that the property of exponential convergence of the spectral method didn’t lose where the

domain decomposition is demonstrating.

3.2 1-D Diffusion Equation

Let’s take a look of 1-D linear diffusion model with domain decomposition. The 1-D

diffusion equation is
∂𝑢

∂𝑡
= 𝜅

∂2𝑢

∂𝑥2
(3.21)
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in the domain [-5,5], where 𝜅 = 0.1. The initial condition is

𝑢(𝑥, 0) = 𝑒𝑥𝑝(− 𝑥2

0.64
). (3.22)

The up in Figure 4 illustrates the comparison between the analytical solution and

Chebyshev collocation method with domain decomposition and FD4 method at time

𝑡 = 1.0. Here the FD4 scheme of diffusion equation is

𝑑�̃�𝑗
𝑑𝑡

= 𝜅
−�̃�𝑗+2 + 16�̃�𝑗+1 − 30�̃�𝑗 + 16�̃�𝑗−1 − �̃�𝑗−2

12(Δ𝑥)2
(3.23)

Note that the values at 𝑗 = 1, 1, 𝑁−1, and 𝑁 , the fourth-order one-sided finite difference

is used here. Each time step is 𝑑𝑡 = 0.001 and degree of freedom is 𝑁 = 24×2. We set the

overlapped boundaries condition like the advection model at previous paragraph. Namely,

they are overlapped with one grid width. The analytical solution and the numerical

approximation are identical in Figure 4.

The down in Figure 4 shows the convergence rate of demonstrating FD4, Chebyshev

collocation method with single domain, and with double domains. The same conclu-

sion we can get from the rate of convergence about advection equation, the property

of exponential convergence of error also maintain very well when we demonstrating the

Chebyshev collocation method with double domain.

3.3 1-D inviscid Burgers Equation

Consider the inviscid Burgers equation

∂𝑢

∂𝑡
+ 𝑢

∂𝑢

∂𝑥
= 0 (3.24)

in the limited domain [−1, 1] with the initial condition

𝑢(𝑥, 0) = 𝑓(𝑥) = 𝑢− 𝑡𝑎𝑛−1(𝑥− 𝑥0). (3.25)

The boundary conditions at 𝑥 = −1 and 𝑥 = 1 are decided by the general solution of

eq.(3.24) which is

𝑢(𝑥, 𝑡) = 𝑓(𝑥− 𝑢(𝑥, 𝑡)𝑡). (3.26)

Thus, the analytical solution under the initial condition eq.(3.25) is

𝑢 = 𝑢− tan−1(𝑥− 𝑢𝑡− 𝑥0). (3.27)

Furthermore, we differentiate eq.(3.27) with respect to 𝑥 to get the time of scale-collapse

which gives
∂𝑢

∂𝑥
= − 1− 𝑡∂𝑢

∂𝑥

1 + (𝑥− 𝑥0 − 𝑢𝑡)2
.

Consider 𝑥 = 𝑥0 + 𝑢𝑡 and 𝑢 = 𝑢, we obtained

(
∂𝑢

∂𝑥
)𝑥=𝑥0+𝑢𝑡 = −(1− 𝑡(

∂𝑢

∂𝑥
)𝑥=𝑥0+𝑢𝑡) (3.28)

8



Figure 4: Analytical solution and numerical results of eq.(3.21) under condition eq.(3.22)

and the 𝐿2 error.

and then we have

(
∂𝑢

∂𝑥
)𝑥=𝑥0+𝑢𝑡 =

1

𝑡− 1
→ −∞ as 𝑡→ 1 (3.29)

From the above derivation, the time of scale-collapse of 𝑢 is 1 with the position of scale-

collapse at 𝑥0 + 𝑢. Given the decided parameters 𝑢 and 𝑥0, the analytical solution of

eq.(3.24) with the determined initial condition and boundary condition at certained 𝑥

and 𝑡 is found numerically for desired accuracy by fixed point iteration on eq.(3.27).

Figure 5 to 7 shows the numerical approximation of domain decomposition method

could sketch the general picture of the analytical solution even though the degree of

freedom is just 16 × 2 and the general error of numerical approximation for 𝑡 = 1 at

double domains is smaller than it at single domain with different 𝑢 and 𝑥0. For these

case, the numerical errors are mainly from the position of scale-collapse at 𝑥 = 𝑥0 + 𝑢.

About 𝑥0 = 0 and 𝑢 = 0, the collocation grids at single domain have the lowest density

at this location. If we use double domains, the collocation grids have the highest density

9



Figure 5: Analytical solution and numerical results in double domains of equation

eq.(3.24) with 𝑥0 = 0 and 𝑢 = 0 under conditions eq.(3.25) and eq.(3.27).

at 𝑥 = 0 which cause the general error is smaller than it at single domain.

Let’s take a look with another case 𝑢 = 0.5 and 𝑥0 = 0. It means the scale-collapse

moving with a background advection at speed 𝑢 = 0.5 from the initial position 𝑥 = 0.

There are more oscillations about the numerical approximation in this case. The general

error of numerical approximation at double domains is larger than it at single domain,

which is the opposite result to 𝑢 = 0 and 𝑥0 = 0. It is because that the scale-collapse

moving to 𝑥 = 0.5 at 𝑡 = 1 where the grids density at double domains is lower than it at

single domain since 𝑢 = 0.5. About the case 𝑢 = 0.5 and 𝑥0 = −0.5, the scale-collapse

moves to 𝑥 = 0 at 𝑡 = 1. The error of results in double domain is smaller than in single

domain has the same reason as the case 𝑢 = 0 and 𝑥0 = 0.

To confirm our idea, Figure 8 shows the convergence rates while the scale-collapse at

𝑥0 = 0 with 𝑢 = 0.5 at each time respectively. Apparently, since the time of scale-collapse

of 𝑢 is 1, the convergence rates are getting worse as the time approaching to 𝑇 = 1

generally. Otherwise, the convergence rates at double domain are better than the results

10



Figure 6: Analytical solution and numerical results in double domains of equation

eq.(3.24) with 𝑥0 = 0 and 𝑢 = 0.5under conditions eq.(3.25) and eq.(3.27).

at single domain. It verifies our idea that the magnitude of error is determined by the

density of grids and the results of double domain condition is more excellent than of single

domain under this condition.
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Figure 7: Analytical solution and numerical results in double domains of equation

eq.(3.24) with 𝑥0 = −0.5 and 𝑢 = 0.5 under conditions eq.(3.25) and eq.(3.27).

4 2-D Nonlinear Shallow Water Model

For testing the Chebyshev collocation method on a more realistic atmospheric model

in two-dimensional, we introduce the nonlinear shallow water equations in Cartesian co-

ordinates (𝑥,𝑦) :

∂𝑢

∂𝑡
+ 𝑢

∂𝑢

∂𝑥
+ 𝑣

∂𝑢

∂𝑦
− 𝑓𝑣 +

∂ℎ

∂𝑥
= 0

∂𝑣

∂𝑡
+ 𝑢

∂𝑣

∂𝑥
+ 𝑣

∂𝑣

∂𝑦
+ 𝑓𝑢+

∂ℎ

∂𝑦
= 0

∂ℎ

∂𝑡
+ 𝑢

∂ℎ

∂𝑥
+ 𝑣

∂ℎ

∂𝑦
+ (ℎ+ ℎ)(

∂𝑢

∂𝑥
+
∂𝑣

∂𝑦
) = 𝑄(𝑥, 𝑦)

(4.30)

Here 𝑢 and 𝑣 represent the velocity components in 𝑥 and 𝑦 directions. ℎ is a constant

basic state of geopotential and ℎ is the deviation from ℎ . Note that the gradient of ℎ

causes the acceleration of gravity from the first and second equations. 𝑓 is the Coriolis
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Figure 8: Convergence rate of eq.(3.24) while the scale-collapse at 𝑥0 = 0 with 𝑢 = 0.5 at

each time respectively.

force from the rotation of earth. 𝑄(𝑥, 𝑦) represents the outer force of this system.

4.1 Chebyshev spectral discretizations

On the domain 𝑥𝑎 ≤ 𝑥 ≤ 𝑥𝑏, 𝑦𝑎 ≤ 𝑦 ≤ 𝑦𝑏, we demonstrate the Chebyshev collocation

method based on the expansion⎡⎢⎣𝑢(𝑥, 𝑦, 𝑡)𝑣(𝑥, 𝑦, 𝑡)

ℎ(𝑥, 𝑦, 𝑡)

⎤⎥⎦ ≈

⎡⎢⎣𝑢𝑀𝑁(𝑥, 𝑦, 𝑡)

𝑣𝑀𝑁(𝑥, 𝑦, 𝑡)

ℎ𝑀𝑁(𝑥, 𝑦, 𝑡)

⎤⎥⎦
=

𝑀∑
𝑚=0

𝑁∑
𝑛=0

⎡⎢⎣�̂�𝑚𝑛(𝑡)

𝑣𝑚𝑛(𝑡)

ℎ̂𝑚𝑛(𝑡)

⎤⎥⎦𝑇𝑚(𝑥′)𝑇𝑛(𝑦′).
Here 𝑀 , 𝑁 are spectral truncations in 𝑥 and 𝑦 respectively, �̂�𝑚𝑛, 𝑣𝑚𝑛, ℎ̂𝑚𝑛 are spectral

coefficients, 𝑇𝑛 denotes the Chebyshev polynimial of degree 𝑛, and 𝑥′ = 2(𝑥− 𝑥𝑎)/(𝑥𝑏 −
𝑥𝑎), 𝑦

′ = 2(𝑦 − 𝑦𝑎)/(𝑦𝑏 − 𝑦𝑎). We introduce the Chebyshev collocation points 𝑥𝑗, 𝑦𝑘
corresponding to 𝑥′ = cos(𝑗𝜋/𝑀) where 𝑗 = 0, ⋅ ⋅ ⋅,𝑀 and 𝑦′ = cos(𝑘𝜋/𝑁) where 𝑘 =

0, ⋅ ⋅ ⋅, 𝑁 . From those previous things, the collocation equations of shallow water system

eq.(4.30) can be written as

𝑑𝑢𝑗𝑘
𝑑𝑡

+ 𝑢𝑗𝑘𝑢
(1,0)
𝑗𝑘 + 𝑣𝑗𝑘𝑢

(0,1)
𝑗𝑘 − 𝑓𝑣𝑗𝑘 + ℎ

(1,0)

𝑗𝑘 = 0

𝑑𝑣𝑗𝑘
𝑑𝑡

+ 𝑢𝑗𝑘𝑣
(1,0)
𝑗𝑘 + 𝑣𝑗𝑘𝑣

(0,1)
𝑗𝑘 + 𝑓𝑢𝑗𝑘 + ℎ

(0,1)

𝑗𝑘 = 0

𝑑ℎ𝑗𝑘
𝑑𝑡

+ 𝑢𝑗𝑘ℎ
(1,0)

𝑗𝑘 + 𝑣
(0,1)
𝑗𝑘 + (ℎ+ ℎ𝑗𝑘)(𝑢

(1,0)
𝑗𝑘 + 𝑣

(0,1)
𝑗𝑘 ) = 𝑄𝑗𝑘

(4.31)
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where the subscript 𝑗𝑘 denotes a value at the collocation point (𝑥𝑗, 𝑦𝑘), and the super-

scripts (1, 0) and (0, 1) denote the 𝑥 and 𝑦 derivative, respectively. The procedures of

demonstrating Chebyshev collocation method about shallow water model are transform-

ing items to spectral space, doing the derivative there, and then transforming back to

physical space. About this model, there are 12 Chebyshev transforms at each time step.

All the transforms are one-dimensional.

4.2 Overlapping boundaries

The handling of boundaries which are overlapping by sub-domains is similar to the

1-D problem, we give the overset boundary condition with one-grid width to exchange the

information at those joints. Note there are two ways for us to divide the whole domain

into sub-domains and we show both results to do comparison in following figures. One is

dividing 𝑥−axis to two domain, then the 2-D single domain becomes 2×1 sub-domains(DD

2×1); the other is dividing 𝑦−axis additional than the previous way, namely, the original

domain is cut to be 2× 2 sub-domains(DD 2× 2).

Figure 9: The information exchange at the overlapped boundary in 2-D shallow water

model with double domain.

4.3 Numerical results

Here 𝑢 and 𝑣 represent the velocity components in 𝑥 and 𝑦 directions. ℎ is a constant

basic state of geopotential where 𝑔ℎ = 𝑐2 is 2500𝑚2/𝑠2 and ℎ is the deviation from ℎ.

Note that the gradient of ℎ causes the acceleration of gravity from the first and second

equations. 𝑓 is the Coriolis force from the rotation of earth and we consider the 𝛽−effect

(𝑓 = 𝑓0+𝛽𝑦 where 𝑓0 and 𝛽 are both constants) of model. All the results are presented at

the domain [𝑥𝑎, 𝑥𝑏]× [𝑦𝑎, 𝑦𝑏] = [−2000km, 2000km]× [−2000km, 2000km]. We set in 𝑦 = 0

means located at 30∘𝑁 which makes 𝑓0 = 2Ω𝑠𝑖𝑛𝜋
6
and 𝛽 = 2Ω

𝑅
𝑐𝑜𝑠𝜋

6
where Ω = 2𝜋

86400 sec
is

the rotating rate of earth and 𝑅 = 6378100m is the radius of earth. 𝑄(𝑥, 𝑦) represents

the outer force of this system. We give

𝑄(𝑥, 𝑦, 𝑡) = 𝑞0𝑒𝑥𝑝[−(
𝑥− 𝑥𝑐
𝑥0

)2 − (
𝑦 − 𝑦𝑐
𝑦0

)2]4𝑡2𝑡−3
0 𝑒−2𝑡/𝑡0 (4.32)
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Figure 10: The information exchange at the overlapped boundary in 2-D shallow water

model with DD2× 2.

where the amplitude 𝑞0 = 6250𝑚2𝑠−2, time scale 𝑡0 = 6 hours = 21600 sec, 𝑒-folding

width 𝑥0 = 𝑦0 = 200km and centered at (𝑥𝑐, 𝑦𝑐) = (1000 km,−1000 km). Note that

𝑄(𝑥, 𝑦, 𝑡) reaches its maximum when 𝑡 = 𝑡0 at each point.

For demonstrating the following cases, we set the initial condition to be

𝑢(𝑥, 𝑦, 0) = −𝑈𝑐𝑜𝑠[𝜋 𝑦 − 𝑦𝑎
𝑦𝑏 − 𝑦𝑎

] (4.33)

with 𝑈 = 7.5m𝑠−1 and 𝑣(𝑥, 𝑦, 0) = 0. The vortex which caused mainly from Q-force has

variation as time goes by and the advection from 𝑢 and 𝑣. We make ℎ in geopotential

balance on 𝛽−plane, i.e.,
∂ℎ

∂𝑦
(𝑥, 𝑦, 0) = −(𝑓0 + 𝛽𝑦)𝑢. (4.34)

If we set 𝑄(𝑥, 𝑦, 𝑡) = 0 and this initial condition for ℎ, the system is in geostrophic balance

state on a 𝛽−plane continuously. About the boundary conditions, we set periodic overset

condition for one grid width at 𝑥 = 𝑥𝑎 and 𝑥 = 𝑥𝑏. Namely we assign the 𝑢, 𝑣 and ℎ values

at 𝑥1 to the values at 𝑥𝑁 , and the values at 𝑥𝑁−1 to the values at 𝑥0. The wall-condition

is applied at 𝑦 = 𝑦𝑎 and 𝑦 = 𝑦𝑏, i.e., 𝑣 = 0 at 𝑦 = 𝑦𝑎 and 𝑦 = 𝑦𝑏.

In this simulation, we pay attention to the vortex formation by the Q-forcing at

(1000 km,−1000 km). The forced vortex is like the typhoon atmosphere. We will observe

the vortex drift from the easterly background flow to the westerly background flow in our

calculations.

The Chebyshev collocation method is used to calculate the derivatives which are

∂𝑢/∂𝑥, ∂𝑢/∂𝑦, ∂𝑣/∂𝑥, ∂𝑢/∂𝑦, ∂ℎ/∂𝑥, ∂ℎ/∂𝑦. Once the derivatives have been calculated,
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we use the RK4 method to do the integration of time.

The results in Figure 11 to 16 are computed by the Chebyshev collocation method

about the eq.(4.30) at 1.5, 3, 4.5, 6, 7.5 and 9 days respectively as labeled. The contour

lines represent the geopotential field ℎ/𝑐. Figure 17 to 19 shows the analysis of the average

velocity, vorticity, and pressure respectively at 3, 6, 9 days as labeled.

Since the shallow water equations are nonlinear with chaos, the model cannot be stable

integrated forever. The model in single domain and DD2× 2 blow up after 9 days and in

DD 2 × 1 blows up after 10 days. We use 96× 96 in single domain as a benchmark and

compare with the degree of freedom (48+48, 96) in double domain and (48+48, 48+48)

in DD2 × 2. We found the 𝐿2 error of the domain decomposition with respect to single

domain are order of 10−4 in these calculations.
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Figure 11: The results for shallow water model when T=36 hr. Up to down : single

domain, DD 2× 1, DD 2× 2.
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Figure 12: The results for shallow water model when T=72 hr. Up to down : single

domain, DD 2× 1, DD 2× 2.
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Figure 13: The results for shallow water model when T=108 hr. Up to down : single

domain, DD 2× 1, DD 2× 2.
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Figure 14: The results for shallow water model when T=144 hr. Up to down : single

domain, DD 2× 1, DD 2× 2.
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Figure 15: The results for shallow water model when T=180 hr. Up to down : single

domain, DD 2× 1, DD 2× 2.
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Figure 16: The results for shallow water model when T=216 hr. Up to down : single

domain, DD 2× 1, DD 2× 2.
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Figure 17: The comparison of average velocity near the vortex at 𝑇 = 72 hr, 𝑇 = 144 hr,

𝑇 = 216 hr.
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Figure 18: The comparison of average vorticity near the vortex at 𝑇 = 72 hr, 𝑇 = 144

hr, 𝑇 = 216 hr.
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Figure 19: The comparison of average pressure near the vortex at 𝑇 = 72 hr, 𝑇 = 144 hr,

𝑇 = 216 hr.
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4.4 MPI implementation

To test and implement our numerical results on an MPI(Message-Passing Interface)

environment, we use the DD 4 × 2 and DD 4 × 4. We initialize the MPI system in the

beginning then the calculations are in different CPUs by the assignment of program. The

information has to be exchanged between different CPUs after the integration of each

time step has been finished. Here is the basic pseudo code of exchanging information at

overlapping boundaries between southern and northern sub-domains:

call MPI_SENDRECV(un(0,ny-numOver),nx+1,MPI_REAL8,south,1,

+ un(0,0),nx+1,MPI_REAL8,north,1,MPI_COMM_WORLD,

+ status,ierr)

call MPI_SENDRECV(un(0,numOver),nx+1,MPI_REAL8,north,1,

+ un(0,ny),nx+1,MPI_REAL8,south,1,MPI_COMM_WORLD,

+ status,ierr)

About the overlapping boundaries between western and eastern sub-domains, because

of the structure of Fortran array, we have to define a datatype first aimed to exchange

information appropriately.

call MPI_TYPE_VECTOR(ny+1,1,nx+2,MPI_REAL8,column,ierr)

call MPI_TYPE_COMMIT(column,ierr)

The new datatype culumn specifies the method of picking data. Then the basic peudo

code of southern and northern sub-domains is given here:

call MPI_SENDRECV(un(numOver,0),1,column,east,1,

+ un(nx,0),1,column,west,1,MPI_COMM_WORLD,status,ierr)

call MPI_SENDRECV(un(nx-numOver,0),1,column,west,1,

+ un(0,0),1,column,east,1,MPI_COMM_WORLD,status,ierr)

The results in Figure 20 to 25 are computed by the Chebyshev collocation method

about the eq.(4.30) at 1.5, 3, 4.5, 6, 7.5 and 9 days respectively as labeled with MPI

programming. They are very similar with Figure 11 to 16. Thus, we conclude our domain

decomposition method is suitable for MPI environment.
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Figure 20: The results for shallow water model when T=36 hr. Up to down : single

domain, DD 4× 2, DD 4× 4.
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Figure 21: The results for shallow water model when T=72 hr. Up to down : single

domain, DD 4× 2, DD 4× 4.
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Figure 22: The results for shallow water model when T=96 hr. Up to down : single

domain, DD 4× 2, DD 4× 4.
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Figure 23: The results for shallow water model when T=144 hr. Up to down : single

domain, DD 4× 2, DD 4× 4.
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Figure 24: The results for shallow water model when T=180 hr. Up to down : single

domain, DD 4× 2, DD 4× 4.
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Figure 25: The results for shallow water model when T=216 hr. Up to down : single

domain, DD 4× 2, DD 4× 4.
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4.5 Time splitting method

In this thesis, we mainly discuss the domain decomposition method which could save

the computation time. The shallow water equation allows multiple scales of oscillations

in the model. There are slow type of motions such as vortex drifting (e.g., 7.5𝑚𝑠−1),

Rossby waves and fast type of motion such as gravity waves (e.g., 50𝑚𝑠−1). We are

usually interested in the slow motion and yet the fast motion limit the use of our time

step size. In another words, the time step, as far as the slow type of motion is concerned,

is limited by the stability and not by the accuracy. It is often treated in the atmospheric

cloud models with the time splitting method for the efficiency. The essence of the time

splitting is that use small time step for the terms in the equation govern the fast motion

and use a larger time step for the terms govern the slow motion. Consequently, the

time splitting method, in addition to the domain decomposition, can also improve our

efficiency. Discussion on the time splitting method can be found in [14].

For the implementation of the time-splitting method in the shallow water model, we

divided the equations into two parts : advection and gravity waves parts. eq.(4.30) can

be written as

∂𝑢

∂𝑡
= 𝑈𝑎 + 𝑈𝑔

∂𝑣

∂𝑡
= 𝑉𝑎 + 𝑉𝑔

∂ℎ

∂𝑡
= 𝐻𝑎 +𝐻𝑔

(4.35)

where the 𝑈𝑎, 𝑉𝑎, 𝐻𝑎 dominate the advection, and

𝑈𝑎 = −𝑢∂𝑢
∂𝑥

− 𝑣
∂𝑢

∂𝑦
+ 𝑓𝑣

𝑉𝑎 = −𝑢∂𝑣
∂𝑥

− 𝑣
∂𝑣

∂𝑦
− 𝑓𝑢

𝐻𝑎 = −𝑢∂ℎ
∂𝑥

− 𝑣
∂ℎ

∂𝑦
−𝑄(𝑥, 𝑦),

(4.36)

the 𝑈𝑔, 𝑉𝑔, 𝐻𝑔 are about gravity waves, and

𝑈𝑔 = −∂ℎ
∂𝑥

𝑉𝑔 = −∂ℎ
∂𝑦

𝐻𝑔 = −(ℎ+ ℎ)(
∂𝑢

∂𝑥
− ∂𝑣

∂𝑦
)

(4.37)

Thus, we introduce two different time steps Δ𝑡 and Δ𝜏 where Δ𝜏 = Δ𝑡/𝑛𝑠. After

the number 𝑛𝑠 is decided, about the terms ∂ℎ/∂𝑥, ∂ℎ/∂𝑦, ∂𝑢/∂𝑥, ∂𝑣/∂𝑥 which cause the

gravity waves, the smaller time step Δ𝜏 is used to do the integration. While the integration

has been done for 𝑛𝑠Δ𝜏 , the advection terms add to them and do the integration together.

When 𝑡 = 𝑗Δ𝑡 + 𝑘Δ𝜏 and 𝑘 is not divisible by 𝑛𝑠, we use the results of the advection

term at 𝑡 = 𝑗Δ𝑡.
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Unfortunately, the predictability of this model by time-splitting method is weaken

than without time-splitting, i.e., all the models blow up earlier than the previous results

which with no time-splitting. All of them blow up earlier than 4 days.

There is also an important observation that why the time-splitting method for shallow

water model could not be very efficient. In this model, 6 terms have to be calculate

by Chebyshev collocation transform, they are ∂ℎ/∂𝑥, ∂ℎ/∂𝑦, ∂𝑢/∂𝑥, ∂𝑣/∂𝑦, ∂𝑢/∂𝑦 and

∂𝑣/∂𝑥. But there are 4 terms belonged to the gravity waves. Even though the time-

splitting method can implemented, the time saving is just 1/3 and additional complication

cause the model to loses the stability at the same time. It is recommended that the use

of the time splitting method required carefully analysis in future.

5 Concluding Remarks and Future Works

We have introduced the Chebyshev collocation method with domain decomposition

in the atmospheric modelings. The sub-domain boundary information exchange is by

overlapping the sub-domains in one grid spacing interval. By the property of Cheby-

shev grids setting and consider the relation between Δ𝑥 and Δ𝑡 with CFL condition, we

can enlarge the Δ𝑡 with Chebyshev domain decomposition compared with single domain.

Our domain decomposition Chebyshev collocation method indicates the exponential con-

vergence property in 1-D linear advection and diffusion models. In the test of inviscid

Burgers equation, we integrate the model up to the shock formation time. We show that

the domain decomposition spectral method in general yields a smaller errors when com-

pared to the single domain calculations. In a more realistic atmospheric modeling with

a 2-D shallow water model, we find our domain decomposition Chebyshev method gives

results identical to the single domain spectral method with a 𝐿2 error on the order of 10−4

when 96 degree of freedom is considered. The domain decomposition spectral method is

capable of a stable integration of 9 days in our test. It is prominent, considering the fact

that the predictability of the typical atmospheric model is about 10 to 12 days. We also

argued that the time-splitting method is not well applicable to the 2-D shallow water

equation.

Our future work will be evaluate the overhead or the additional cost of the boundary

information exchange in domain decomposition. We also may implement the method in

the oceanic modeling by incorporating the immerse boundary condition method in the

lateral continental shelf and using the Chebyshev domain decomposition method.
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Appendix

A Verticle Transform and Shallow Water Equation

In this appendix we will show that hydorstatic atmosphere is equivalent to a set of

shallow water equation by the vertical transform.

𝑠 = 𝑠(𝑝) ≡ 𝑐𝑝𝜃0
𝑔

(1− (
𝑝

𝑝0
)𝜅) (A.1)

𝜅 =
𝑅

𝑐𝑝
(A.2)

𝑏 =
𝑔

𝜃0
𝜃 (A.3)

Linearized equation in 𝑠 coordinate (with 𝐽 represents diabatic heating).

∂−→𝑣
∂𝑡

+ 𝑓𝑘 ×−→𝑣 = −▽Φ (A.4)

▽ ⋅ −→𝑣 +
∂�̇�

∂𝑠
= 0 (A.5)

∂Φ

∂𝑠
= 𝑏 (A.6)

∂𝑏

∂𝑡
+ �̇�𝑁2 = 𝐽 (A.7)

Boundary condition: 𝑤 = 𝑑𝑧/𝑑𝑡 = 0 at 𝑠 = 0, �̇� = 𝑑𝑝/𝑑𝑡 = 0 at 𝑠 = 𝐻.
∂Φ̃
∂𝑡

is the local height change that can be resulted from diabatic heating.

Boundary condition derivation.

𝐽 =
∂

∂𝑠
(
∂Φ̃

∂𝑡
) (A.8)

Substitute A.6 and A.8 into A.7 we could obtain:

�̇� = − 1

𝑁2

∂

∂𝑠
(
∂Φ

∂𝑡
− ∂Φ̃

∂𝑡
) (A.9)

At 𝑠 = 0, 𝑤 = 𝑑𝑧/𝑑𝑡 = 0,
𝑑Φ

𝑑𝑡
= 0 (A.10)

∂Φ

∂𝑡
+ �̇�

∂Φ

∂𝑠
= 0 (A.11)

∂Φ

∂𝑡
+ 𝑏0�̇� = 0 (A.12)

Substitute A.9 into A.12, and with ∂Φ̃
∂𝑡

= 0 at 𝑠 = 0 we could obtain:

(
∂Φ

∂𝑡
− ∂Φ̃

∂𝑡
)− 𝛼

∂

∂𝑠
(
∂Φ

∂𝑡
− ∂Φ̃

∂𝑡
) = 0 (A.13)
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where

𝛼 =
𝑏0
𝑁2

. (A.14)

At 𝑠 = 𝐻, �̇� = 𝑑𝑝/𝑑𝑡 = 0,
∂

∂𝑠
(
∂Φ

∂𝑡
− ∂Φ̃

∂𝑡
) = 0. (A.15)

Inner product:
1

𝐻

∫ 𝐻

0

𝑢𝑣 𝑑𝑠 = ⟨𝑢, 𝑣⟩ (A.16)

⟨ℒ𝑢, 𝑣⟩ = ⟨𝑢,ℒ𝑣⟩ (A.17)

Based on the Sturm-Liouville theorem, the basis function is complete, orthogonal, and

the eigenvalue is real.

ℒΨ𝑛 = 𝜆𝑛Ψ𝑛 (A.18)

Ψ𝑛 − 𝛼
∂Ψ𝑛

∂𝑠
= 0 (A.19)

∂Ψ𝑛

∂𝑠
= 0 (A.20)

If 𝜆𝑛 = 1
𝑐2𝑛
> 0, we could obtain the shallow water equation.

∂−→𝑣𝑛
∂𝑡

+ 𝑓𝑘 ×−→𝑣𝑛 = −▽Φ𝑛 (A.21)

∂Φ

∂𝑡
+ 𝑐2𝑛▽ ⋅ −→𝑣𝑛 =

∂Φ̃

∂𝑡
(A.22)

The above derivation demonstrates that a hydrostatic atmosphere with suitable ver-

tical boundary conditions may support free oscillations with several different structurs.

The eigenvalue of each free oscillation is 𝑐2𝑛 = 𝑔ℎ, which is related to the depth of the

shallow water equation.

B Amdahl’s Law

In this appendix, we will discuss the Amdahl’s law in parallel computing. Let 𝑊 be

the amount of work to be done for a particular job, and let 𝑟 be the rate at which it can

be done by one processor. Then the computer time required for one processor to do the

job is 𝑇1, given by

𝑇1 =
𝑊

𝑟
(B.1)

Now suppose that 𝑓 fraction of the job, by time, must be done serially and the remaining

1 − 𝑓 fraction can be done perfectly parallelized by 𝑝 processors. Then the time, 𝑇𝑝, for

parallel computation is given by

𝑇𝑝 =
𝑓𝑊

𝑟
+

(1− 𝑓)𝑊

𝑝𝑟
(B.2)
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Figure B.1: Amdahl speedup as a function of 𝑓 .

The above equation indicates that if the entire calculation can be parallelized, that is,

𝑓 = 0, then all the work will be done in 𝑝 fraction of the time. We then claim the speedup

SU is p, and

𝑆𝑈 =
𝑇1
𝑇𝑝

= 𝑝 (B.3)

This is the well known linear speedup. But as the equation indicate, the speedup in general

will be

𝑆𝑈 =
𝑇1
𝑇𝑝

=
𝑊/𝑟

(𝑊/𝑟)(𝑓 + (1−𝑓)
𝑝

)

=
𝑝

𝑓(𝑝− 1) + 1
.

(B.4)

This relation is known in the field of Parallel Computing as the Amdahl’s Law. We

are interested from the above equation the speed up 𝑆𝑈 as a function of numbers of

processors 𝑝. In particular, we want to know how the 𝑆𝑈 behave as a function of 𝑝

and 𝑓 . Figure B.1 shows the Amdahls speed up as a function of 𝑓 for various 𝑝. It

is obvious that the steepness near 𝑓 = 0 means that the speedup falls off rapidly for

the increase of 𝑓 . For example, the 𝑆𝑈 does not change much with 𝑝 processors for

𝑓 = 0.2. Namely, the 𝑆𝑈 becomes insignificant when percentage of code that cannot be

parallelized is about 20%. It may appear that the Amdahl’s Law gives a bleak picture as

far as the speedup is concerned. However, the fraction 𝑓 is defined by computational time

and not by computational code. As a matter of fact, most scientific programs spend the

majority of their execution time in a few loops within the program. Thus if these loops

parallelize (or vectorize), then Amdahl’s Law predicts that the efficiency will be high. On

the other hand, if we employed the domain decomposition method, the theoretical 𝑆𝑈 will

be almost proportional to the number of processors 𝑝 with the overhead of information

exchange through the decomposed boundaries. The 𝑆𝑈 in the domain decomposition in

general is not a function of the 𝑓 . More details are on [18].
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