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ABSTRACT

In this paper we consider the additive'cellular-automata with any finite
states, we take the properties of the-topological conjugate and measure
isomorphic to give a formula for'topological entropy and measure-theoretic
entropy with Bernoulli measure. After-having the measure-theoretic entropy
formula and the topological entropy formula, we can find the maximum measure

such that satisfy the Variational Principle, and more apply in physics.
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1 Introduction

One-dimensional Cellular Automata(CA) consists of infinite lattice with finite states and a
local rule. Although the additive CA and the ergodic properties of the additive CA have
been investigated, there are still strong connection between the additive CA and the ergodic
properties.

In this paper, the ergodic properties are measure-theoretic entropy, topological entropy.
Let F' be an additive CA, i.e., the local rule of f is a linear function, which is defined with
finite state. Akin [1] compute the additive CA of measure-theoretic entropy with uniform
Bernoulli measure. Ban et al. [2] calculate a measure-theoretic entropy formula to permutive
CA with Bernoulli measure. Our investigation give a measure-theoretic entropy formula
to any additive CA. Ward [6] gives a formula for the calculation of the additive CA with
prime states’ topological entropy. But additive CA with prime states is a proper subset
of permutive CA, Ban et al. [2] extend Ward’s formula to permutive CA. D’amico et al.
[3] demonstrate an algorithm for the computation of topological entropy for any finite states’
CA. Our investigation extends Ward’s and Ban’s formula but different method with D’amico’s
method for any additive CA.

After having the measure-theoretic entropy formula and the topological entropy formula,
we can find the maximum measure such that satisfy the Variational Principle, and more apply
in physics.

2 Basic definition

In this section, we introducessome.basic definition and.state some known results about CA.

2.1 Cellular automata

Form > 2,let S = {0,1,--- ,m%S1}m € N be a finite-alphabet and let X = SZ be the space
of infinite sequence = = (z,) _ ., &, €8 For one dimension cellular automata, we use a

simplified notation. A local rule f : 8"~ — § is denoted by f(z;,- -+ ,z,). The associated
global rule F': 8% — 8% is defined by

[F(2)); = f(xiss, -+, Tiy) where z € S¥ i€ Z

where [F(z)]; means the ith component of F'(x).

Denote by f,, be the local rule f taken modulo m; similar to the global rule F;,. To
sequence, denote by z,,; be the ith component of the sequence z, modulo m. For integers,
denote by x,, be the integer x taken modulo m. In this paper, we consider the linear local
rule f(z, -+ ,2,) = > a;x; (mod m) denoted by f(x;,---,x,.) = > a;z;, and we called the

' i=1

1=l
CA of the linear local rule be additive CA. Define the dipolynomial of fis T(z) =Y. a;x™".
i—=l

And we use the Bernoulli measure.
Let P, Q be collections, define

PVQ={PNQ:PecP, Qe Q)

Definition 2.1. The local rule f : S~ — S for a given CA is said to be leftmost (respec-
tively rightmost) permutive if there exists an integer i,l < i < —1 (respectively 1 < 1 < r)
such that



(1) f is a permutation at x;;
(ii) f does not depend on x; for j < i (respectively j > 1i).

where x = (x;)5_, € S

Proposition 2.2. Let f(z,--- ,2,) =Y a;x;, f is permutive in the jth variable if and only

if ged(aj,m) = 1.

Definition 2.3. The local rule f : S"'*' — & is called bipermutive if f is both leftmost and
rightmost permutive. f is called permutive provided f is one of the following three cases:

(1) f is leftmost permutive and does not depend on x; for i > 0;
(ii) f is rightmost permutive and does not depend on x; for i < 0;

(iii) f is bipermutive.

2.2 Measure-theoretic Entropy of Cellular Automata

Definition 2.4. A partition of (X, B, 1) is a disjoint collection of elements of B whose union

is X. Thatis, |J A=X.
AEB

Definition 2.5. Let (X, B, 1) b€ a probability-space and o be a partition of X, define

=42 30 (A) Tog (A

Aca

Definition 2.6. Let (X, B, u) be a probability space, F! :.X — X be a measure-preserving
transformation and « be a partition. of Xsdefime

h,(Foe)= nh—>nolo’n,H (\/ F-m) :
The measure-theoretic entropy is

h,(F) =sup h,(F, a).

Definition 2.7. Define = (po,p1,- -+ ,Pm—1) be a Bernoulli measure, if

/,L(a[sa,"‘ 7Sb]b> :psa”'psba fOT a[saa"' 7Sb]b C X and Di > 0 VZ = Say° ", Sb-

Theorem 2.8. (/2]) R
If f be permutive and depends only on z;,--- ,x;, where i < j, i,j5 € Z. Denote by i =

—~ ~ o m—1
—min{i,0} and j = max{j,0}, then h,(F)=—(i+j) > prlogpy. i.e.,
k=0

_m—1
(i) If f is leftmost permutive and i < j <0, then h,(F) = —i > pglogpk;
k=0
m—1
(ii) If f is rightmost permutive and 0 < i < j, then h,(F) = —j > pilogpk;
k=0
~ o m—1
(iii) If f is bipermutive, then h,(F) = —(i+j) >, prlogpy.
k=0



2.3 Topological Entropy of Cellular Automata
Definition 2.9. Let (X, F') be a continuous function and P be an open cover of X, define

H(P) = inf{log cardP}

where the infimum s taken over the set of finite subcover P of P and cardP is the cardinality

of P.

Definition 2.10. If F' be a linear 1-dimension CA over X and P be the open cover of X,
define the topological entropy of P is

n—1
1 i
hiop(F,P) = lim —H (\_/OF P) .
The topological entropy of F is

hiop(F) = s%p hiop(F, P).

Theorem 2.11. (/2]) R
If f be permutive and depends only omwai-= # s, where 1 < j, i, € Z. Denote by i =
—min{i, 0} and j = max{j,0}, thén hi,,(F) = (i+j)logm. i.e.,

(i) If f is leftmost permutiveland 4 < 7150, then hy.,(F) =i logm;

(ii) If f is rightmost permutiveland 0 < i < jysthen hi.,(F) = Jlogm;

PN

(iii) If f is bipermutive, them by, (F ) =A@+ j)logm.

2.4 Variational Principle

Theorem 2.12 (Boltzmann; Variational Principle).

hiop(F) = sup b (F)
“w

In general, we know that hy.,(F) > h,(F) for any probability measure p. To consider
the Variational Principle, we give the following definition:

Definition 2.13. If (X, B, 1) be a probability space, and F' : X — X be a measure preserving
transformation. If there exist a probability measure p such that h,(F) = hyp(F), then p is
the maximum measure.

3 Entropy

In this subsection, we consider the entropy of the additive CA. By reprove some results from

[1] with different method, we have the entropy formula of the additive CA. By [6] we have

the following lemma:

Proposition 3.1. If f(z;,--- ,2x,) = > a;x;, and the dipolynomial of f is T(f) = > a;z ™,
1=l i=l

then T s bijective.



Proof. Denote by £ be the collection of additive local rules. For each f € £, define T : £ —

Loz, 7] by T(f) = > a;x™", i € Z. We may check:
i=l

(i) linear:
V=3 aivi,g =7 bz € &,
1=l =l

T(af +g) = T(x Z ;i + Z biz;)
il i=l

T

= T(Z(aai + b;)x;)

1=l

T '
=« E a;x” "+ E bx™"
i=l i=l

= aT(f) +T(g)-

(ii) one-to-one:
iQ

VT(f) # T(g), we havey. qyz=p= f # g = Y.bx~" and a; # b; for some i, so
' =

i=l

r r
i=l 1=l

(iii) Onto:

‘v’iaix_i € L[z, z7 Y]} 3f= iaixi such that T(f) = i a;z "
i=l

1=l i=l
Hence, T is bijective.

The following proposition is easy to check.

Proposition 3.2. If f(z,---,z,) =
i=l

S° bixt, V(b,) € SE. Then X is a bijection.

1=—00

Proof. Similar to the proof of Proposition 3.1.

Proposition 3.3. If f(z, -+ ,z,) = > a;x;, and
i=l

S” S”
A I

where T and X is defined as Proposition 3.1 and Proposition 3.2, and T = g-T, Yg(x) =

;2" € L[z, x7]]. Then the diagram commute.
i=l

4

a;v;, define X @ S* — Ly[[r,27]] by X(bn)



Proof. Vb, € 8%,
r+n oo T+n
E(b,) =>z{< > b>] = Y b

i=l+n n=—o00 i=l4+n
TX(by) =T - ( 3 bnx"> =Y ax" ( > bna:”)
n=—00 1=l n=-—o00
r+k
Vk € N, for the component z* of YF(b,) the coefficient is > a;_b;, and the component z* of
=tk
~ r+k ~
TX(b,) the coefficient is > a;_xb;, so XF(b,) = TX(b,). Hence, the diagram commute. [
=1tk

We give an example for Proposition 3.3

Example 3.4. If f(x_1,z0,71) = x1, m = 2, then T(f) = 71, and we have the following
diagram

SZ

) € 8% R () = Xbw) = 55 bintiyand T = T+ ( 55 ') = § bt =

i=—"% i=—00 i=—00
XF(b,), so the diagram commutes And by [/] we have X is bijective, hence F' and T have
bijective relation.

3.1 Measure-theoretical Entropy

Theorem 3.5. Let F be thé 1-dimension"OA over SZ with local rule f(x;,--- ,x,) = > a;z;
i=l
and let m = p’fl - pkn denote the:prime’ factor décomposition of m. Fori=1,--- n define
pi = {0} U {y : ged(ajip)= 1}, 1 min p;, 7; = max pj.

If u is F-invariant and p € § where § = {p: (X, B, u, F) = (ka1 REERRI kan,Bpkl X o X
1 n 1

B rny fboky X oo X gy ey X oo X FlLi, )}, then

Pn V2 Pn V2 Pn

n pfifl
h,(F) = — Z(ﬁ — ;) Z pi; log pi .-
i=1 =0

m;—1
. m

where p;; = Y pj + lpfi, m; = 4.
1=0

D,

To proof our main Theorem 3.5, we may prove the following lemma.
Lemma 3.6. Let I be a I-dimension CA over 8%, where S = {0,1,--- ,p* — 1} and p is a

prime with local rule f(xy, -+ ,x,) =Y. a;r;, m = p*. Let
i=l

p={0}U{j: (aj,p) =1}, I =minp, 7 = maxp
Then,

pF-1

hu(F) = =(F=1) ) _ pilogp;
i=0

5



Proof. By Proposition 3.3, we associate to the dipolynomial of f is T(f) = Z a;x~". Then the
dipolynomial associated to f™(z) is T™(f). Let T(f) = T1(f) + pTa2(f), where T1(f) contains

all monomials whose coefficiets are coprime with p.

Claim. : (T,(f) + pT2(f))" = (Ti(f))”  (mod pi*!)
when ¢ = 1, then

)+ Ay = 3 ( )(Tl(f)) (PTa(f))~

i () PET(N) (mod p?)

= ( L()P ' Ta(f) + (To(f))”
= (Tv(f )) (mod p?)

Suppose when ¢ = k,
(Ti(f) +pTa(f))”" = (T1 ()" (mod p**1) (1)
when i =k + 1,
(T1(f) + pTa(f))"
{( < $6Talf ]’”

[qp’“+1+ } by(1)
=§;(§’> B [

p—1

= [( pk] + p(gp™t) [<T1<f>>p’“]
= (Tu(/)""" (mod p*?)

By Induction, we have

(Ti(f) + pTo(f))P = (To(f))”  (mod p™'), Vie N

Take n = p*~!, so that
T*(f) = T{(f)  (mod p*)

It is easy to see that f™ is permutive. i.e., f™(xu, -, Tpr) = Z bix; with (b 7,p) =1 =
i=nl
pF—1

(b7, p). By Theorem 2.8, we have h,(F"™) = —n(7 — l) Z pilogp;. Hence,

hu(F) = hulE7) —(?—IA)pri log p;



In general, if f is a additive local rule CA then 3n > 1 such that f" is permutive.
From the proof of Lemma 3.6, we know that n = p*~!. The following is a simple example
of Lemma 3.6.

Example 3.7. Let § = {0,1,2,3}, p be the Bernoulli measure and f(x_1,xo,x1,2T2) =
20y + xo + 3x1 + 2x9. If by Lemma 3.6, we have p = {0,1}, | = {0}, 7 = {1}, then
In = 2 such that f*(xo, 1, T2) = bowg+bix1 +boze. But it is easy to see that f*(xg, x1,12) =

3 3

To + 221 + x2. Then h,(F?) = =23 p;logp;, we have h,(F) = = p;logp;. Hence, that
i=0 i=0

1s the same result with Lemma 3.6. If we take p is the uniform Bernoulli measure, then

3
hy(F)=—3 tlogi=2log2.

i=0
Lemma 3.8.
X - X
o] |
X, x X, o Ey X, x X,
are diagram commute.
Proof.
Sralhl ! S

¢r—l+1 \L ld)

r—I+1 r—{+1
S, x-Sy " Sp X S,

Let S, = {0,1,--- ,p—1},S;= {0,1,--- ,qg=1}, fi : ST — S, for i =p,q.

(2

Take ¢(z) = (x,,%,) for €8, then V()i € S~

(f1 x f2)¢r_l+1(xn) =5y Xt Tl
=(fp ¥ fo)(@pX Ton)

= (Z a;x; (mod p), Zail‘z (mod CI))

i=l =l

and ¢ f(zn) = ¢ {i aixz} = (i a;x; (mod p), i a;x; (mod q))7 we have (f, x f,)o¢" "1 =
i=l i=l i=l
pof.

F

X X
o] |s
X, x X, i X, x Xy

Take [®(z)]; = ¢(z;) where z € S and z; € S, then we have (f, x f,) 0 ¢" 1 (x;) = ¢po f(xy)
for z, € 8" L., [(F, X Fy)(®(x))], = [®(F(z))],. Hence (F, x F)o® =P o f
Hence,

X a X
N -
X, x X4 ) X, x Xy
are diagram commute. O



Definition 3.9. Let (X, By, ux) and (Y, Ba, uy) be two probability space. Define py is a
push — forward measure of ux,3V : X — Y and V is onto such that E C Y : measurable iff
U1 F) C X:measurable and py (E) = ux (V"1 F)).

X Loy

onto

Lemma 3.10. § = {p: (X, B,u, F) = (X, x Xy, B, X By, pi, X pig, Fpy X F,)} is nonempty
where p, and p, are push-forward measures of .

Proof. By the proof of Lemma 3.8 we know that

F

X X
o] |s
X, x X, o Ey X, x X4

are diagram commute. And since p, and p, are push-forward measures of p, we have the
following relation:

Uy
XHXP

Yy
X i q
where U, and ¥, are onto, and p (&) = p (\I/;I(E)) and j1,(F) = p (Y 1(F)),VE C X, F C
Xy
Claim. :
X —\I,> Xp X Xq

e, 30 : X — X, x X, and V¥ is onto such that £' C X} x X,: measurable iff =!(E) C
X:measurable and px  «x, (B) = pux (¥ {E))

If we take p be the uniform Bernoullismeasure, ‘consider the cylinder set V[a] x [b] €
X, x X, by the Chinese Remainder Theorem, 3[y}€.X such that ¥([y]) = [a] x [b]. Since
pro Ut ([a] x [b]) = pu(ly]) = 5, and

tp % trg(la] x [b]) = py([a]) - p1g([0])
11
p g m

we have o U™t = p, X g, ie., w, X p, is a push-forward measure of u, ¥ is bijective
and preserve complements, countable unions and intersection, by [6] (X, B, i, F') and (X, x
Xy By X By, f1p X g, F, x F) algebras are isomorphic. Hence, (X, B, u, F) = (X, x X, B, %
By, pp X pig, F, x Fy) where p is the Bernoulli measure. Furthermore, § is nonempty. O

Lemma 3.11. Let S = {0,1,--- ,m — 1} be a finite alphabet with m = pq and ged(p,q) = 1,
F be a linear 1—(1;2'mension CA over 8% with local rule

flzy, - ) = > aixy. If p € § is F-invariant and
=

§={p: (X,B, /UL:F) = (X, x X, B, X By, iy X fiq, F, X Fy) } where p, and yu, are push-forward
measures of u, then

hu(F) = hup(Fp) + hup(Fq)
Proof. By [5], and (X, B, 1, F') = (X, x X, B, x By, i, X pg, F,, X Fy). So,
hu(F> = hupxuq(Fp X Fq) = hup(Fp) + hup(Fq)



Example 3.12. Let S = {0,1,--- ,5} and f(x_o,x_1,20,21) = z_5 + 4x_1 + 220 + b1y,
6

i = (po, p1, P2, P3, P, Ps) be the Bernoulli measure, from Theorem 2.8 h,(F) = —3 " p;logp;.
i=0

And 3Xo, X3 and ps = (py, i), s = (py, Py, ps) are push-forward measures of .
So, we have

Po="DPo+Pp2+ps Po =Dpo+Ds3
pi=p1+p3+ps and pi=p+ps
Py = D2 + s
and fo(z_g,m1) =x_9+ 21, f3(T 2, ,21) = 2_ 2 + x_1 + 2x0 + 221 are permutive.
1

then hy,(F») = —3 Zp; log p; and h,,(F3) = =3 Zp logp?. We have

Py (F2) =+ by (F) ‘—-—3j£:ln10gpz—-3j£:Z)Ing

—3[(100 + p2 + pa) log(po + p2 + pa) + (p1 + p3 + ps) log(pr + ps + ps)]
— 3[(po + p3) log(po + p3) + (p1 + pa) log(p1 + p4) + (P2 + ps) log(pz + ps)]
where (X, B, p, F') =2 (Xg x X3, By X Bs, 1o X sz, Fy X F3). It is evidently Lemma 3.11.

Example 3.13. Let m = 6, f(r_2,2_1,%0,%1) = 2x_9 + dx_1 + 4x¢ + 371, and p =

(p07p17p27p37p47p5) be Bernoulli Measure, then EIXQ) X3 and Mo = (pé)apll)a M3 = (p{)laplllapg)
are push-forward measures of .
So, we have

Do = po+p2 F pa Do =Do + D3
Py =p1+pP3+ psand pi =1 + ps
Py =2+ Ds

and fo(x_1,21) = v_1 + 1, and fy(r=, 2 1,x0) = 2xlo+ 20_1 + 19 are permutive. Then

1
hy, (Fy) = —2 ;)pg log p and g (F3)'= =2 Zp log pf. Hence,

hy(F) = hy, (FE)+-hmAFE)

:—Qszlogpz—QZp log pj/

= —2[(]90 + pa2 + pa) 108;(1?0 + p2 + pa) + (p1 + ps + ps) log(pr + ps + ps)]
— 2[(po + p3) log(po + p3) + (p1 + pa) log(p1 + pa) + (p2 + ps) log(pa + ps)]

Proof of Theorem 3.5: The proof easily follows from Lemma 3.6 and Lemma 3.11.

Example 3.14. Let m = 22x3x5 = 60, p be the Bernoulli measure, py = (p), pi, py, ), pa =

/11 1

(o, P py), and ps = (py, - -+, p)') be the push-forward measure of pu. Suppose f(x_o, -+ ,x4) =
32x_o + 18x_1 + Txg + 4311 + x9 + 2523 + 5Txy. S0, fa(x_1,--- ,$4) = 2x_1 + 3wy + 321 +
Tot+ w3+ x4, f3(T o, ,23) = 2x,2+x0+x1+x2—|—x3, and fs(x_g,- -+ ,x4) =20 _9+3x_1 +

2z + 31 + x2 + 224. Then we have hy,, (Fy) = —4 sz log pl, hy,(F3) = =5 Zp logp?, and
hys(F5) = —6 Zp’” log p!’. Hence,

h#(F?=:fhu(Ph)+-hmxf%)-%fh%(P%)

==—4§:pJogﬂ-—5§:p bgp-—6§:p”k%p”



If i be the uniform Bernoulli measure, then g, s, and ps are also uniform Bernoulli measure.
Hence, h,(F) = 8log2 + 5log3 + 6log5.

3.2 Topological Entropy

Theorem 3.15. Let I be the 1-dimension CA over 8% with local rule f(zy, -+ ,x.) = > a;x;
i=l

and let m = p’fl -« pkn denote the prime factor decomposition of m. Fori=1,--- n define
P = {0}y U {j : ged(ay, p;) = 1}, I; = minp;, 75 = maxp;.
Then

n

heop(F) = 3 ki(7 — 1;) log(p).

i=1
To proof our main Theorem 3.15, we may prove the following lemma.
Lemma 3.16. Let S = {0,1,--- ,p*—1} be a finite alphabet with p is a prime, and f(x;, -+, z,) =

Zaixi be any linear local rule defined over S%. Let F be the 1-dimension global transition
Zrzlap associated to f. Let D, ?,lAare defined as Lemma 3.6. Then

Fugp(F) = k(7 = D)og(p).
Proof. By the proof of Lemma 3.6, jwe have Jn > 1 such’that the local rule f" associated to
F™ has the form

F (@t 5 ) = Y by with (b5, pY= 1= (byr, p).
i=nl

~

That is, f" is permutive. By"Theorem 2.11., we have hi,,(F") = nk(7 — [)logp. Hence,
hop(F) = 22t = (7 — 1) log p O

Example 3.17. Let S = {0,1,2,3} and f(x_1, xo, x1,22) = 20_1+xo+321+225. By Example
3.7 and Theorem 2.11, we have hy,(F?) = 2logd. So hy,(F) = % = log4 = 2log 2, the
result 1s same as Lemma 3.16.

Lemma 3.18. F' and F, x F;, are topological conjugate.

Proof.

Sr—l+1 S

¢rl+1l \ng

r—I+1 r—I+1
Sy X 8] S, xS,

Ipxfq
Let SP:{0717"' 7p_1}78q:{0717"' 7q_]—}7 fi:S‘T_H_I_)Siv forizp,q.

(2

(i) By Lemma 3.8, we have

X X
X, x X, ) X, x X4

the diagram commute.
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(ii) Y(z,), (yn) € S%, x, # yn, then x; # y; for some i € Z we have [®(x)]; = ¢(x;) #
o(y;) = [®(y)]i, so ® is one-to-one. And Va,b € Sf X S(]Z where a = (a,) € SE, b=
(bn) € SF, (ai)i—y x (bi)i—, € S~ % §~H1 by the Chinese Remainder Theorem,
Je = (¢,) € SE, ()i, € 8" such that [®(c)]; = ¢[(c;)i_] = (a;)i_; x (b;)5_,;, so ® is
onto. Therefore, ® is bijective.

(iii) Define the metric on 8%
. - |~Tz - yil 7
d(z,y) = ._E T Ve, yeS

and the metric on 87 X SF, V(pn, Tgn ) (Ypin: Ygin) € ST X S

|Zpsi — Ypsi |Zgi — Yail
dp X dg ((Tpin: Tn ), Ypin, Ygsn)) = Z %"’ Z q—|q

1=—00 1=—00

ifd(z,y)= > %;‘f{" < 0, then

1=—00

dp X dg(®(), P(y)) = dp X dg (@parTgn), (?/pmyqn))

Z 'xpz ypz Z |qu yqz

. yA _
Given z, y € 8% Ve >0, 36 = -+,

i=-+00 1=-00

Pl Q|$z yz
Z e Z
1=—00 1=—00

(since, |37p;i =Ypiil <oplr; — il and [vg — ygil < gl — yil)

=(p+4 Z Joe="y| _Ay"’

so ® is continuous. Similarly, x, y € S%, Ve > 0, 30 = < if

X 7 y l € [ y Z
dp X dg ((Tpin, Tain)s Ypins Ygin)) Z | Er Z | L

i=—00 i=—00

then

d(q)il(xp;na x(ﬁn)v (I)il(yp;na yq;n)) < Z mﬂxp;i — yp;i| + |xq;i — yq;i|}

“ mM
_ Z ‘Ipz ypz Z |qu yqz
<mod =e€
so @' is continuous.
By (i)(ii)(ili) £ and F, x F; are topological conjugate. O
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Lemma 3.19. Let S = {0,1,--- ,m — 1} be a finite alphabet with m = pq and ged(p,q) = 1,
F be a linear Z—dTimension CA over 8% with local rule

f(xh e 7xr) = Zale Then
=l

htOP(F) = htOP(Fp) + htoz)(Fq)
Proof. From Lemma 3.18, F' and F), x F, are topological conjugate. Hence,

htOp<F) = hmp(F X F)
= hiop(Fp) + huop(Fy)

]

Example 3.20. Let S = {0,1,--- ,5} and f(zr_2, 1,70, 1) = T_o+4x_1+2x0+521, then we
have fo(x_o,x_1,x0,21) = x_o +x1 (mod 2) and f3(x_9,x_1,20,71) = T_9 + x_1 + 230 + 211
(mod 3). Since f, fo and fs3 are permutive, by Theorem 2.11 we have h,,(F) = 3log6,
hiop(Fs) = 3log 2 and hiy(F3) = 3log3. So hiop(F) = 3log6 = 3log 2 + 3log3 = hyp(Fa) +
hiop(F3). It is evidently Lemma 3.19.

Example 3.21. Let m =6, f(x_o,x_1,20,%1) = 2x_9 + bx_1 + 4z + 3x1. Then, we have
fa(x_1, 1) = 21+ 21, and f3(x_o, T 9980) 52 20 o + 201 + 2o are permutive. So, iy, (Fy) =
2log 2 and hyp(Fs) = 210g 3. hiop(E) = hiop(F2) =+ b (F3) = 21log 2 4 21og 3.

Compare with Example 3.13, we have

h,(F) = = 2[(po + p2 +pa)log(po + p2 + paf+ (pr + P53 + ps) log(p1 + ps + ps)]
— 2[(po + p3) log(po +p3) + (P + pa) log(py =& pa) + (p2 + ps) log(pa + ps)]

and we have the probability measure constraint pg -+ pi +p2 + p3 + ps + ps = 1. We use the
method of Lagrange Multipliers, we have

1 1 1 1 1
5 Po=r D1, 3 Do, 3 P, 6
then h,(F) = hyp(F). Since p is isomorphic to ps X ps, p([0]) = p2([0]) x ps([0]) and

p([1]) = p2([1]) x ps([1]).
We have

(Pos p1, P2, P3; P4, P5) = (Poy Prs +po — p1)-

p1 = (p1 +p3 +Dps5) X (p1 + pa)

SO, pg =Dp1 =P2=DP3 =Py = P5 = %. Hence, the uniform Bernoulli measure is a maximum
measure.
Proof of Theorem 3.15: The proof easily follows from Lemma 3.19 and Lemma 3.16.

{ Po = (Po + P2 + pa) X (po + p3)

Example 3.22. Let m = 2% x 3 x 5 = 60, consider the local rule f(x_o, -+ ,14) = 320_5 +
1811+ Two + 4371 + 23 4 2523 + 57y. From Theorem 3.15. we have py = {O, 1,2,3,4}, p3 =

{-2,0,1,2,3}, p5 = {—2,—1,0,1,2,4}, l4—0 l3——2 l5——2 Ta=4, 73 =23, 5 =4 So,
htop(F4) = 8log?2, htop(Fg) = 5log 3, hip(F5) = 6logh, and then hi,(F) = 9log2 + 101og 3.

This example compared with Example 3.14, if we take the uniform Bernoulli measure
we have hyop(F) = h,(F). The uniform Bernoulli measure is the maximum measure.

Now, we know that the uniform is the maximum measure. And by the above discussion,
we give a conjecture that the maximum measure is unique.
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4 Conclusion

e We give a formula for the measure-theoretic entropy and the topological entropy of the
additive CA. After having the formula, there is more question to consider about the
additive CA and the ergodic properties.

e The uniform Bernoulli measure is a maximum measure. We guess that the unique
maximum measure is uniform Bernoulli measure.
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