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A Study of DNA Graphs

Student: Shun-Ting Yu Advisor: Hung-Lin Fu
Department of Applied Mathematics Department of Applied Mathematics
National Chiao Tung University National Chiao Tung University
Hsinchu, Taiwan 30050 Hsinchu, Taiwan 30050
Abstract

Molecular biology aims to study DNA and protein structure, that is the recogni-
tion of DNA primary structure. In order to do that, a mathematical model based on
graph theory has been developed in recent years. Mainly, suitably defined digraphs
are presented. A digraph built from the spectrum (a set of some k-long oligonu-
cleotides) as follows: each oligonucleotide from the spectrum becomes a vertex, two
vertices are connected by an arc if the ¢ rightmost nucleotides of the first point over-
lap with the ¢ leftmost nucleotides of 'the se¢ond one. We refer to these graphs as
DNA graphs and DNA labelled ,;graphs depending, on whether the oligonucleotides
used are distinct or not. In thig-thesis, 'we study. the digraphs mentioned above and
characterize DNA labelled graphswhich are‘also'DNA graphs, especially when the
order (number of vertices) is small.
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1 Introduction and Preliminaries

It is well known that DNA (deoxyribonucleic acid) is a double helix in which the two
coiled strands (chains) are composed of only four different molecule types—nucleotides.
Every nucleotide consists of phosphate, sugar and one of the following bases: adenine
(abbreviated A), thymine (T), guanine (G) and cytosine (C). The two chains are held
together by hydrogen bonds which exist only between the pairs of complementary bases,
which are A-T and G-C. It follows that knowing one chain, the other (complementary)
can be easily reconstructed.

A DNA sequence in molecular biology may be viewed as a sequence of characters from
the DNA alphabet {A, T, G, C}. One of the methods of recognition of the primary
structure of DNA sequences is hybridization. This method consists of two phases: bio-
chemical and computational. In the biochemical phase a set of (possibly all) subchains
constituting the DNA chain which s to be read, igi:found. Then, in the computational
phase these subchains are to be put in-order to form-the desired chain. The first approach
to reconstructing an unknown sequenge-based on graph theory has been described by
Lysov et al.[4, 6, 7]. In order to begin.the computational phase with the approach, one
needs a digraph which is built from the spectrum (a set of some k-long oligonucleotides)
as follows: each oligonucleotide from the spectrum becomes a vertices, two vertices are
connected by an arc if the ¢ rightmost nucleotides of the first point overlap with the ¢
leftmost nucleotides of the second one. In such graphs either Hamiltonian [4] or Eulerian
paths [6] corresponding to the DNA chains, are looked for. We will refer to these graphs
as DNA graphs or DNA labelled graphs. By definition of DNA graph and DNA labelled
graph in the following, a DNA graph is a DNA labelled graph but a DNA labelled graph
is not necessary a DNA graph. In [9], Wang et al. give some conditions to characterizes
which DNA labelled graphs are DNA graphs. We also give some discussions about this
problem in section 4.

The following definitions will be used.

Definition 1.1. A graph is a p-graph if given any pair z, y of vertices (x possibly equal



to y), there are at most p parallel arcs from z to y.

For integers k > 2 and a > 1, let Z, = {0,1,...,a — 1} and ZF = {(ay, ..., ax)|a; €

T, 1< j <k}

Definition 1.2. Let £ > 2, 1 < i < k and a > 1 be three integers. We say that a 1-
graph D can be (k,i; o) — labelled if there exists a mapping | : © — I(z) = (l1(z), ..., lk(x))
from V(D) to ZF such that

(2,9) € E(D) & (lheis1 (@), s 1o(@)) = (1Y), ... Li(y).

We call such a mapping a (k,i; «)—labelling of D and use Si; to denote the class of

1-graphs that can be (k,i; o) —labelled.

Since DNA uses only four letters { A, T',C, G}, we consider the special case o = 4. We

give the definition of DNA labelled graph in the following:

Definition 1.3. A digraph is a DNA labelled graph if and only if there are k, i (k > 2,

1 <i < k) such that D € S ;.

o k

This implies that |J |J S,ii is the set’ of all DNA labelled graphs. Moreover, in 2008,
k=2 i=1

Wang et al.[9] prove that every graph in Sk 1s a DNA labelled graph where k, i, € N

satisfying k > 2,1 <i <k and a > 1.

Definition 1.4. Let £ > 2 and a > 1 be two integers. We say that a 1- graph D can be
(k,a)—labelled if there exists an mapping [ : © — I(z) = (l1(x), ..., [g(x)) from V(D) to
ZE such that

(a). lis a (k,k — 1;a)—labeling of D;

(b). all labels are different; (i.e. I(x) # l(y) if z £y ¥V z,y € V(D)).

We call such a mapping a (k, a)—labelling of D and use S§ to denote the class of 1-graphs
that can be (k, a)—labelled.

Definition 1.5. A digraph D is a DNA graph if and only if there exists some k > 2 such
that D € S.



Definition 1.6. The directed de Bruijn graph B(k,«) is a digraph which has vertices
labelled by words of length k over a certain alphabet of cardinality « (there are o vertices

in such a graph) such that

(z,y) € BE(B(k, ) & (l2(2), ... lk(2)) = (L(y), -, k1 (y))-

In fact, Sy is the set of induced subgraphs of B(k, «). Notice that if D can be (a, k)-
labelled and has o vertices, then D is the de Bruijn graph B(k,«). In 2002, Jacek et

al.[3] prove that we can recognize de Bruijn graph in polynomial time.

Definition 1.7. The adjoint L(D) of a digraph D is the 1-graph with vertex set F(D)
such that there is an arc from a vertex z to a vertex y in L(D) if and only if the head of

the arc x in D is the tail of the tail of the arc y in D.

A graph D’ is an adjoint if there exists'somie graph D such that D’ is the adjoint of
D.

Definition 1.8. A graph is a directed line-graph if-and only if it is the adjoint of a

1-graph.

We give some notations in the following:

Notations Let D be a digraph. For x € V(D), let 't (z) = {y € V(D)|(z,y) € E(D)},
I'(x) ={y € V(D)|(y,z) € E(D)}. The outdegree of x, denoted by d*(x), is the number
of vertices in I'*(z), i.e. d*(x) = [['"(x)|. The indegree of x, denoted by d~(z), is the
number of vertices in I'"(z), i.e. d () = |[I'"(z)|. The minimum outdegree (minimun
indegree) of D is 67(D) = min{d*(z)|z € V(D)} (6~ (D) = min{d (z)|z € V(D)}).
The minimum semidegree of D is §°(D) = min{d* (D), (D)}. The maximum outdegree
(maximum indegree) of D is AT (D) = max{d"(z)|x € V(D)} (A~ (D) = max{d (x)|z €
V(D)}). The maximum semidegree of D is A°(D) = max{A*(D),A(D)}.



2 DNA Graphs

2.1 Characterization of directed line-graph
In this section, we have directed line-graph can be recognized in polynomial time.

Theorem 2.1. [2] Let H be the adjoint of graph G. Then there is an Eulerian path/circuit

in G if and only if there is a Hamiltonian path/circuit in H.
Since directed line-graphs are special cases of adjoint, we have the following corollary:

Corollary 2.2. [2] Let H be the directed line-graph of a 1-graph G. Then there is an

FEulerian path/circuit in G if and only if there is a Hamiltonian path/circuit in H.

Since finding Eulerian path/circuit in a graph can be done in polynomial time, finding

Hamiltonian path/circuit in an adjoint also can be done in polynomial time.

Theorem 2.3. [1] A 1-graph H is thesadjoint of a.graph if and only if the following holds

for any pair x,y € V(H):
[*(z) T (y) #o=T" () =T"(y).

By definition 1.6 and 1.7, a directed line-graph is an adjoint but an adjoint is not
necessary a directed line-graph. As an example, one can easily check that the graphs G,

G5 and G3 of Figure 1 are adjoints but not directed line-graphs.

X X
<\ X
[ ]
e /
y y
G, G, G,

Figure 1: The graphs G, G2 and Gj.

The next theorem characterizes which adjoints are directed line-graphs and we give

an alternative proof in the following:



®
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Figure 2: The graphs Dy, Dy and Ds.

Theorem 2.4. [2] An adjoint is a directed line-graph if and only if it contains none of

the digraphs G1, G and Gz as its subgraph.

Proof. (=) Assume H is the directed line-graph of a 1-graph G. Suppose that H
contains one of GG1, Gy and Gg as its subgraph. It is easy to check that G must contains
one of Dy, Dy and Djs as its subgraph. It contradicts to that G is a 1-graph. Hence, if an
adjoint is a directed line-graph, then it contains none of the digraphs G, G5 and G3 as
its subgraph.
(<) Let H be the adjoint of a graph G and assume that H contains none of Gy, G

and (3 as its subgraph.
Case 1 : If G is a 1-graph, then the proof is completed.
Case 2 : If G is not a 1-graph, then we only need to construct a 1-graph G’ such that H
is also the adjoint of G’. This is done in the following way: We first set G’ equal to G.
Then, as long as G’ is not a 1-graph, we consider any pair x,y of vertices in G’ with at
least two parallel arcs linking x to y. Since (G5 is not a subgraph of H, these two vertices
x and y are distinct. Moreover, since G; and G are not subgraphs of H, I'"(x) = ¢ or
I'*(y) = ¢. Therefore, we can apply the following changes to G’, where ey, e, ...€, (p > 1)
are the parallel arcs from x to y:
if I'"(z) = ¢ then

replace z by x1, ..., x, and each arc e; by an arc (z;,y), i =1,...,p;

replace each arc (x, z), with z # y, by an arc (z;, z) for some i;
else (I'"(y) = ¢)

replace y by v, ..., y, and each arc e; by an arc (z,v;), i =1, ..., p;



replace each arc (z,y), with z # z, by an arc (z,y;) for some i;
After these changes, H is still the adjoint of G’. Indeed, the above changes do not
disconnect two arcs of G’ that formed a path. Moreover, the number of parallel arcs is
strictly decreased; thus after a finite number of steps, the graph G’ will be the 1-graph

we are looking for. The proof is completed. [

Corollary 2.5. [2] A I-graph H is a directed line-graph if and only if the following holds

for any pair z,y € V(H)
(@) NTH(y) # o= (I(2) =TT (y) AT (2) NI (y) = ).

We give an alternative proof in the following:
Proof. (=) Since the graph H is a directed line-graph, it is also an adjoint and
therefore, by Theorem 2.3. I't(2)NI'* (y) # ¢ already implies I'* (z) = I'* (y). Suppose, on
the contrary. It is easy to check that ififor'a pair@yy € V(H) we have I'"(z) N[~ (y) # ¢,
then the graph must contains at least one of GGy, G3.and G5 as its subgraphs. It contradicts
to Theorem 2.4.

(<) By Theorem 2.3, we know that the graph.niust be an adjoint. Moreover, since
all three graphs G, G5 and G3 there is a pair =,y such that I'"(z) NT"(y) # ¢ and
I~ (x) NT(y) # ¢, the given graph can not have G, Gy and Gj3 as its subgraph. Hence

by Theorem 2.4 we have the graph is a directed line-graph. [
It follows from Corollary 2.5 that recognizing directed line-graphs can be done in O(n?)

time.

2.2 Some properties of the classes S;°

In this section, we will only consider 1-graphs. Moreover, we use S;° to denote the class

of 1-graphs H for which there exists an integer o > 0 such that H can be (k, a)—labelled.

Theorem 2.6. [2] Let k > 2 be an integer, G be a graph belonging to Sy° and H be its

directed line-graph. Then H belongs to Si3,.

We give an alternative proof in the following:

Proof. Let G € S;° and H be its directed line-graph, then by definition, there exists

6



an integer a € N and a mapping [ : # — I(z) = (I1(2), ..., [x(z)) from V(G) to ZF such
that

(z,9) € E(G) & (l2(), ... k() = (L(y), - le-1(y))-
We assign a new mapping " : (x,y) — I'(z,y) = (l{(2,y), ..., [, 1 (2, y)) = (lLi(2), (), ...,
(@), le(y)) form V(H) = E(G) to ZE™.
Claim: ' is a (k + 1, 00)—labeling of H.
(1). Since G € Sp°, it follows that all labels in H are different.

(2). Let v, = (x1,x2) and v, = (z3,x4) be two vertices of H. It remains to prove that
(Uaavb) S E(H) <~ (l,Q(Ua)v ) ;c-i-l(va)) = (lll(vb)’ >l;<:(vb))

Since (z1,22), (23, 24) € E(G), (Ia(1), .., lx(z1)) = (l1(22), ..., l_1(x2)) and (lo(x3), ...,
I(23)) = (L(24), oy l—1(24)). We now have the following equivalences:

(va, ) € E(H)
& 29 = 13
S () = (1 (vp), oy g (00)) = (Ba(23); ooy leleg) 1 (24))

= (I1(22), .oy l(2), L (2 =l @D (), 1 (22), Ik (24)).

P(va) = (11(Va), -+ Ly (va)) = (L (1) ble(@n) L (22))

& (15(va), s liey1 (va) = (1 (0), s Ly (v1))-

Hence, by the above argument, the proof is completed. [

Theorem 2.7. [2] A graph is a directed line-graph of a 1-graph if and only if it belongs

to S5°.

We give an alternative proof in the following:
Proof. (=) Let H be a directed line-graph of a 1-graph G. Without loss of generality,
assume V(G) = {0,1,2,...,|[V(G)| — 1}. Then each vertex = of H corresponds to an arc
(1,7) of G where i,j € V(G). Consider the mapping [ : z — I(z) = (i,7) from V(H) to
ZfV(G)‘. Since G is a 1-graph, all labels of [ are different. Hence [ is a (2, |V (G)|)—labeling
of H and H € S55°.

(<) Let H € S3°. Then there exists « € N and a mapping [ : © — [(x) from V(H) to

Z2. We now construct a graph G as follows:

7



(a). Let V(G) = Z,.

(b). There is an arc from a vertex i to a vertex j in G < there is a vertex v with label
l(v) = (z,y) in H.

Hence G is a 1-graph since all labels of H are different, and it follows from the construction

that H is the directed line-graph of G. [

Theorem 2.8. [2] Let k > 2 be an integer. Then Sp° C S for d =2,3, ...,k — 1.

We give an alternative proof in the following:
Proof. It suffices to prove that Sp° C Sp2, for k > 2. We prove Sp° C Sp°, first.
Let H be a digraph in S;°. By definition of S;°, there exists an integer o such that
H € S¢. Let [ be a (a, k)—labeling of H and ¢ be an isomorphism from Z?2 to Z,z.
We assign a new mapping I :  — l'(z) = (I}(),....l}_;(z)) from V(H) to Z';' by
U(x) = p(li(z),lix1(x)), i = 1, ..., k — Laaltis easylto verify that I is a (k — 1, a?)—labeling
of H. Hence H € S;2,. Therefore=5;°1C 5%,

Second, we show that this inclusion is strict by giving an example in the following.

Since we give the labels in Figure 3, H~&'S§%“Suppose H € S;° for some integer k > 2.

0007001""011 111
Ne s L9

Figure 3: H € S° but H ¢ Sp° for k > 4.

Since the distance between two loops is 3, k¥ < 3. Hence H ¢ S° for k > 4. Therefore,

this inclusion is strict. We have the proof. [

In [2], they give an algorithm, called PROPAGATION ALGORITHM, that when giv-
ing a graph H and an integer k > 2 this algorithm can determine whether H belongs to

Spe or not. If H € S;°, then the algorithm produced an (oo, k)—labeling of H.

PROPAGATION ALGORITHM:
1. set [;(v) = 0 for each vertex v in H and for all i =1, ..., k; set v := 0;

2. while there exists a vertex v in H with a label component equal to 0 do

8



set a == a4+ 1;
choose a label component [,(v) equal to 0 and fix [,(v) := a;
determine the set L containing all pairs (v,7) such that [;(v) = 0 and either v
has a successor w with l;_1(w) = « or v has a predecessor w with l;11(w) = o
while L # ¢ do
choose any pair (v,7) in L, set [;(v) := a and update L;
end while.
end while.

3. if two vertices have the same label then STOP: H ¢ Sp°;

4. if no arc is linking vertex v to vertex w in H while (l2(v), ..., lx(v)) = (l1(w), ..., lx_1(w))
then STOP: H ¢ Sp°;

5. STOP: a (o0, k)—labeling of H has been determined.

The complexity of PROPAGATION ALGORITHM was modified to O(n*log(nk)) in
[3] where n = |H|. Moreover, they formulate an algorithm which answers the question
whether a given graph H is a direeted*de Bruijn graph and the complexity of this algo-
rithm is O(n*log*n) where n = |H|. Therefore, we can correctly recognize directed de

Bruijn graphs in polynomial time.

1. count vertices which have a loop—the number of such vertices is the cardinality o
of the alphabet;
2. count all vertices of the graph—the number n of all vertices is used to establish the

length k of a label: k = 29 — [og,n;

loga!

if k is not an integer larger than 1
then STOP: H is not a directed de Bruijn graph;
3. apply Propagation Algorithm;
4. if PROPAGATION ALGORITHM ended with an (o/; k)—labeling of H
(that is, if it stopped at Step 5. with a = o)

then STOP: H is a de Bruijn graph;



else STOP: H is not a de Bruijn graph.

2.3 Some properties of the classes S}

In the previous section, we have studied the case where there is no upper bound for
the size of the alphabet used for the label components. In the case of DNA graphs, all
label components must be chosen in the set Z,. Notice first that by definition of S}, we
have S C S,f for all 3 > a. It follows from Theorem 2.8. that Sp C S5° for any k& > 2
and o > 0. Moreover, if a graph D with n vertices belongs to S;°, then it also belongs to

Snk_In fact, this last property can be improved as stated in the following Theorem.

Theorem 2.9. [2] If D € Si° then D € SZJFp(k_l) where n is the number of vertices and

p the number of connected components of the underlying undirected graph.

A question that naturally arises is the fellowing one: knowing that a graph D is in
Sy, which is the smallest integer aasuch thateaD.is'in S;'7? This number will be denoted
by ay(D). It has been shown in the proof of Theorem 2.8. that ay,_1(D) < a2(D). Hence

we get the following proposition:
Proposition 2.10. [2] If D € Sp°, then @S for all o < [y/ax_1(D)].

We do not know any polynomial algorithm for determining (D). However, if k = 2

the problem can be solved in polynomial time as shown below.

Theorem 2.11. [2] Let D € S5°. The problem of determining as(D) can be solved in

polynomial time.

In [2], they give some open problems. Some of these problems has been solved in [3]

and [5].

e Given a graph D € S5°, the largest integer L such that D € S7° can be determined
in polynomial time in [3]. Moreover, they prove that L(D) = 2n is a threshold value

for which the following in true: D € Sp{p) < D € 5p° for all k > 2 where n = |D].

e In [4], they show that it is NP-hard to decide whether

10



— D e Sp, for any fixed k > 3, with D and « as the input;

— D e Sy, for any fixed o > 3, with D and k as the input;

oo

- D e Sg = | S, for any fixed o > 3, with D as the input.
k=1
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3 DNA labelled Graphs

3.1 The relationship between DNA labelled graphs and DNA
graphs
By definition of DNA labelled graphs and DNA graphs, we have that S} C Sﬁ’kfl. This

implies the following;:
Theorem 3.1. [9] If a digraph D is a DNA graph, then D is a DNA labelled graph.

We can easy to check that the digraphs G, G5 and Gj3 in Figure 1 are DNA labelled
graph. Moreover, we will prove that G, G5 and G5 are not DNA graphs in the following

theorem:

Theorem 3.2. [9] Let D be a DNA graph. Then D contains none of the digraphs G, G

and G as its subgraph.

Proof. [9] Let D be a DNA graph? By defmition 1.5, there exist an integer k > 2
such that D € St. Let | : v — I(&) = (Li(@); w; k(%)) be a (k,4)—labeling of D. This
implies that all labels of [ are different. Suppeose, on'the contrary, that D contains at
least one of the digraphs G, Gy and (3 as its subgraph. Without loss of generality,
assume that D contains G, as its subgraph!"Consider the point x,y shown in Figure
1. Since Tt (z) NTT(y) # ¢ and T (x) N T~ (y) # ¢, (l2(x), ... Ik(x)) = (l(y), .-, k(y))
and (I1(x), ..., lk_1(x)) = (l1(y), ..., lk_1(y)), respectively. It follows that I(x) = I(y). It is
contrary to that all labels of [ are different. Therefore, D contains none of the digraphs

G4, Go and (3 as its subgraph. The proof is completed. [

By Theorem 3.2., we know that none of the digraphs G, G5 and G35 is a DNA graph.
Combining Theorem 3.1. and Theorem 3.2., we can conclude that S; € Sy, _,. That is a
DNA graph is a DNA labelled graph but a DNA labelled graph is not necessary a DNA
graph. The next theorem characterizes which DNA labelled graphs under some conditions

are DNA graphs.

Theorem 3.3. [9] Let k > 2 and a > 1 be two integers and D be a digraph in Sy, _, with
§°(D) > 1. Then D belongs to Si if and only if it contains none of the digraphs Gy, G

and Gs as its subgraph.

12



We give an alternative proof in the following:

Proof. (=) If D € S}, then D is a DNA graph. The necessity follows from Theorem
3.2.

(<) Assume D € Sj;_, with 0°(D) > 1 and D contains none of the digraphs G,
Go and (3 as its subgraph. Let [ be a (k,k — 1;4)—labeling of D. It is enough to prove
that all labels are different. Suppose, on the contrary, that there exist two distinct points
z,y € V(D) such that I(x) = I(y). Then I'(z) = ' (y) and T'"(x) = ' (y). Since
§%(D) > 1, we have 't () # ¢ and '~ (z) # ¢.

Case 1: If x € I'"(x). Since I't(z) = ' (y), x € T'F(y). Moreover, since x € I'"(x) N
I'*(y) and I(z) = l(y), x,y € x € TT(x) NI (y). This is implies that G3 is a subgraph of
D, a contradiction.

Case 2: If x ¢ T'"(x). Since 6°(D) > 1, let u,v € V(D), v € ' (z) and u € T~ ().
Subcase 1: If v # u, then G is a subgraph of D, a contradiction.

Subcase 2: If v = u, then G, is assubgraphl of \Ds a econtradiction.

The proof is completed. n

The following example shows that there exist DNA labelled graphs which contain none

of the digraphs GG1, G2 and (3 as the partial subgraph which are not DNA graphs.

O

V,:2323

Figure 4: D is a DNA labelled graph but not a DNA graph.

Example 3.4. The graph D shown in Figure 4 is a DNA labelled graph. It is easy to
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verify that D contains none of the digraphs G, G5 and Gj3 as its subgraph. Suppose D
is a DNA graph. By definition 1.5, there exists some integer k¥ > 2 such that D € S}.
Therefore, there exist a mapping [ :  — I(x) = (Iy(), ..., l1(z)) from V(D) to Z% such
that :
(a). lis a (k, k — 1;4)—labeling;
(b). all labels are different; that is {(x) # (y) if z # y.

Since (v, v2), (v, v1) € E(D) and (vy,v1) ¢ E(D), there exists two distinct integers

a,b € Z, such that

{ ll(Ul) = lg(’Ul)
lg(l}l) = l4(U1)

o =1a(vg) =l(v2) = ... = a

w=1h(v) =l3(ve) =...=b (3.1)

Similarly, there exists two distinct integers ¢, d € Z4 such that

li(vg) =l3(v3) = ... = la(vy) = lu(vy) = ... = ¢
{ lo(vg) = lg(v3) = ... =Li(vs) = l3(vg) = ... =d (3.2)

Suppose k > 3. Since (vs,v1), (vs, v§) € E(@D)ywe have

{ (lg(?)5),...,lk(’l}5)) (ll(vl),...,lk_l(vl))
l2<U5),...,lk(U5)) (ll(l}g),...,lk_1<1}3))

Hence l;(v1) = li(v3) and lp(v1) = la(wz). Combining this with (3.1) and (3.2) we can

conclude that I(v;) = I(v3). This is contrary to (b) in definition 1.4. So 2 < k < 3.
Assume k = 2. Clearly, the point with loop must have the label [(v;) = (I1(v;), l2(v;))
satisfying {1 (v;) = lo(v;) where i = 6,7. Without loss of generality, assume [(vg) = (0,0)
and [(v7) = (1,1). Since vg and vy are isolated points with loop, {(v;) must belong to
the set S = {(2,2),(2,3),(3,2)} where j = 1,2,3,4,5. It is easy to verify that D ¢ S3.
Therefore, D ¢ S} for all k > 2. Hence D is a DNA labelled graph but not a DNA graph.

3.2 Some properties of DNA labelled graphs

We will give some properties of DNA labelled graphs in this section. And use these
properties to prove that every graph in Sg; is a DNA labelled graph where k,i,a € N

satisfying k > 2, 1 <i <k and a > 1.

Theorem 3.5. [9] Let k > 2 and 1 < i < k be two integers. If k > 2i — 1, then

Sii € Sitay for any a € N.
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We give an alternative proof in the following:
Proof. It is enough to prove that Sp, C Si, ;. Let D € Sp,, then there exist a

mapping [ : z — I(z) = (l1(z), ..., lg(x)) from V(D) to Z such that

(z,y) € E(D) & (lh—is1(2), ., le(2)) = (L(y), -, Li(y))-

We assign a new mapping

UVie—1U(z) = (), . Ly (2) = (@), ooy lmigr (@), leiga (), s Lo (@)

from V(D) to ZE™. Claim: " is a (k+1,i; 4)—labeling of D in the following. By definition

of I’, we have

U(z) =1li(x), je{l,2,.,k—i+1}
U(z) =1l(z), jelk—i+2,..,k+1}

Since k > 2i — 1, k — 1+ 1 > 1. It follows that
(z,y) € E(D) & (l-isp(@)iabe(7)) = (L (y), - i(y))-
& (@)l (1) = (G(Y), - Ly).
Therefore, I’ is a (k + 1,14;4)—labeling of D which implies that D € S,‘§+M. The proof is

completed. 1

Theorem 3.6. [9] Let k > 2 and 1 < i < k be two integers. Then S,ii C S% . Further-

24,1°

more, Sy ; = Sy;; when k > 2.

We give an alternative proof in the following:
Proof.  Let D € S;;, then there exist a mapping [ : x — I(z) = (I1(x), ..., [x()) from
V(D) to Z% such that

(r,y) € E(D) & (lh-is1(2), .., lk(2)) = (L(y), -, Li(y))-
We assign a new mapping

Uix—1'(x)=(1(x), ... l(x) = (L), ... li(x), l_is1(x), ..., [ (x)).

It is easy to see that

(z,y) € B(D) & (i1 (2), .o, k() = (L(y), -, li(y)).

g (l;-i-l(x)? ) ZIQz(x)) = (l,l(y)a >l;(y))
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Therefore, I’ is a (2i,4;4)—labeling of D which implies that D € S3; ;. Hence Sy ; € S, ;.
If k = 2i, then it is trivial that S, = Sy, ;. Let k > 2i. Since 27 > 2i — 1, by Theorem
3.5. we have Sy;; C S3,,, for all a € N. Hence S3,; € S, Combining the above

argument we have Sy ; = Sy, ; when k > 2i. ]

It is possible that S ; € S5;; when i < k < 2i. For example, the digraph D we give in
Figure 4 is in Sj,. Suppose D € S3,, and [ be a (2,2;4)—labeling of D. Since (v5,v1) €
E(D), we have (I;(vs),l2(vs)) = (I1(v1),la(v1)). So (vi,v5) € E(D), a contradiction
implying that D ¢ S3,. Suppose D € S5, and [ be a (3,2;4)—labeling of D. Without
loss of generality, assume I(vg) = (0,0,0), {(v7) = (1,1,1) and I(vs) = (2,2,2). It is easy
to verify that [(vy) = l(vy) = l(v3) = l(v4) = (2,2,2). This implies that (vs, v4), (v4,v3) €
E(D), a contradiction. Hence D ¢ Sj,. Therefore both Sj, and S3, are the proper
subset of Sj,.

By Theorem 3.6. and Definition 1.3, we immediately have the following corollary.

Corollary 3.7. [9] A digraph D=is"a DNA labelled graph if and only if there exists a

positive integer i such that D € Séi,i'

Theorem 3.8. [9] Let k > 2, 1 <1 <'kfand'a > 1 be three integers. If D € Si,, .10

then there exists a digraph D' such that D is a spanning subgraph if D’.

We give an alternative proof in the following:

Proof. It is enough to prove that if D € S;,, , then there exists a digraph D’ such
that D is a spanning subgraph if D'. Let D € S, ., and [ be a (k+1,i+1;4)—labeling
of D. We construct a digraph D’ as follows:

(a). V(D) = V(D)

(b). (x,y) € E(D) < l—itj(x) +lk—ivjr1(x) = 1j(y) + 11 (y) (modd) for any j € {1, ...,i}.
If (x,y) € E(D), then ly_;1;(x) = [;(y) for any j € {1,...,4}. This implies that l_;,;(z)+
li—ivjr1(x) = [i(y) + Lis1(y)(modd) for any j € {1,...,i} and hence (z,y) € E(D’).
Therefore, D is a spanning subgraph of D’. Now, we need to claim D € Sﬁ,r Assign

a new mapping I : x — I'(x) = ([j(z),...,l}(z)) form V(D') to Zj such that lj(x) =
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Lj(x) 4+ lis1(x)(modd) for all j € {1,2,....k}. It is easy to see that

(z,y) € E(D') & (lh—ig1(x) + lmiga (), s [ (@) + g1 ()
= (L(y) + (), . li(y) + liya(y))-
& (i (@), L) = (1Y), - L)

Therefore, " is a (k,i;4)—labeling of D’ which implies that D' € S,ii. The proof is

completed. 1

Theorem 3.9. [9] Let k> 2,1 < i <k and m > 1 be three integers. Then Sy, ;.. = Sp; -

We give an alternative proof in the following:
Proof. The main technique of this proof is using quaternary transformation. Let
Y :p— o(p) = (p1,p2, -, Pm) be a quaternary bijection from Zym to Z}", D € Sﬁ? and [
be a (k,i;4™)—labeling of D. We assign.améwimapping l' : x — l'(x) = (I} (2), ..., [}, (x))

from V(D) to ZE™ by (1) xmr1 (@) - U@ = (x)). for any j € {1,2,....k}. It
is easy to verify that I is a (knzem;4)—labéling of “D. Hence D € S};. Therefore,

S,;*jj C st

kmyim-*

Similarly, we can-use anotherquaternary bijection from ZJ' to Zsm to

prove that S C Sﬁz Therefore, 'S¢

kmjim

Q4™
= Spi- ]

m,im

Corollary 3.10. [9] Let k > 2 and 1 < i < k be two integers. Then Sg; € Si, i, for

any o, m € N satisfying 4™ > «.

Proof. [9] Since v < 4™, Si; € S It follows that Sg; C S}, ;,, from Theorem 3.9.

S4

Corollary 3.11. [9] Let m € N. Then S} k(m-a) i(m-a)

for any a € N.

km,im

Proof. [9] S}

km,im

— q4m gmta g4
Sk,i - Sk,z' - Sk(m+a),i(m+a)'

Corollary 3.12. [9] For integers k,i,« satisfying k > 2, 1 < i < k and a > 1, every

graph in Sy, is a DNA labelled graph.

N3

Proof. [9] Let D € Sg;. Choose an integer m such that 4™ < a. By corollary 3.10.,

D € Si,,im- Hence D is a DNA labelled graph. ]
o k co oo k
By the above argument, we have (J U Si, = U (U U Si.)-
k=2 i=1 a=1 k=2i=1
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3.3 The relationship between DNA labelled graphs and adjoints
Lemma 3.13. [9] A digraph D is the adjoint of some digraph H if and only if D € S%(H)'.

Proof.  The proof is similar to the proof of Theorem 2.7. [

Theorem 3.14. [9] A digraph D is the adjoint of some digraph H if and only if D €
54

2m,m>

where 4™ > |V (H)]|.

We give an alternative proof in the following:
Proof. (=) If D is the adjoint of some digraph H, then by Lemma 3.13. D € S|2‘7/1(H)‘.
Since 4™ > |V(H)|, D € S3;. It follows that D € S5, . from Corollary 3.10.

2m,m

(<) Suppose D € S;

2m,m*

By Corollary 3.10. we have D € 53:. Hence by Lemma
3.13, there exists a digraph H with |V (H)| = 4™ such that D is the adjoint H. The proof

is completed. [

By Corollary 3.7. and Theorent 3.14., we have.the following Theorem:

Theorem 3.15. [8] The digraph D is a.DNA labelled graph if and only if D is an adjoint

of some graph H.

Moreover, by Theorem 2.3. and Theorem 3.15., we have recognizing DNA labelled

graphs can be done in polynomial-time.

3.4 An equivalence relation of DNA labelled graphs

We start with a very useful definition. Let D be a given digraph. We define a relation ~
(called a friend relation) on E(D) as follows. For every two arcs e; = (x1,¥y1), €2 = (22, y2)
in D, e; ~ ey if x1 = x5 or y; = Yo or (x2,41), (z1,y2) € E(D). Clearly, we have the
following:

(a) e ~ e for any e € E(D);

(b) €1 ~ €y = €9 ~ €e7.

Theorem 3.16. [8] Let D be a DNA labelled graph. Then the friend relation is an

equivalence relation on E(D).
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The following algorithm will be used.
Algorithm 3.[§]
Input: A digraph D = (V(D), E(D)).
Output: S ={Ey,..., E,} and n.
Step 0. Set S := ¢, n:=0and £ := E(D).
Step 1. If £ = ¢, then stop; Otherwise n :=n + 1.
Step 2. (Find E,.)
(0) Let e € E.
(1) Find F® for e. (F® contains e. F) is an arc subset of F(D), the head of each arc
in which is the same to the head of the given arc. F'® is also an arc subset of E(D), the

tail of each arc in which is the same to the tail of the given arc.)

(2) For every e € F®  find F) and set FY .= |J FO.

eeF(Q)
(3) Set E,, := FOUF® S .={F, . 6,Y F:<2F — E, and go to Step 1.
It is easy to verify that Algorithm:3 is/a polynomial-time one. We have the following:
Theorem 3.17. [8] The output S = { By, En} of Algorithm 3 is a partition of E(D)
for a given DNA labelled graph D. Moréover, for any i € {1,...,n}, F; is an equivalence

class under the friend relation.

Let D be a DNA labelled graph with E(D) # ¢ and let {E, ..., E,,} be the output of
Algorithm 3 for D. For i =1,...,n, let

A; = {zx € V(D) : there exists a pointysuch that(z,y) € E;},
B; = {z € V(D) : there exists a pointysuch that(y, z) € E;}.

For two sets A, B, let A x B = {(a,b)|a € A,b € B}. Therefore, we have the following

lemma immediately.

Lemma 3.18. [9] Let D be a DNA labelled graph and E; be an equivalence class under
the friend relation. Then E; = A; X B;.

Theorem 3.19. (9] Let D be a DNA labelled graph without loops and isolated points.
Then D has exactly one equivalence class under the friend relation if and only if there

exists a partition (A, B) of V(D) such that E(D) = A x B.
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Now, we regard a point and a loop as a path and a cycle respectively.

Theorem 3.20. [9] Let D be a DNA labelled graph. Then D has |E(D)| equivalence

classes under the friend relation if and only if every component of D is a path or a cycle.

Let D be a DNA labelled graph. Denote the set {1,...,n} by I ,where n is the output

of Algorithm 3 for D. We have the following:

Theorem 3.21. [9] Let D be a DNA labelled graph with 6°(D) < 1. Then {A;}icr and
{Bi}ier are two partitions of V(D) such that E(D) = |J A; x B;.

i€l
Let D be a DNA labelled graph. By Section 3.2 we have there exists a positive integer
a such that D € 53,. Clearly, the fact that D € S5, implies that D € Sgl for any integer
£ > a. A question that naturally arises is the following one: knowing that D is a DNA
labelled graph, which is the smallest integen e such that D € 55,7 This number will be
denoted by a(D).

Theorem 3.22. [9] Let D be a DNA labelled graph and let n be the output of Algorithm
3 for D. Then

n if 8°(D) >1;
a(D)=< n+1 ifd%D)=0, and 67(D)>1 or 6= (D) > 1;
n+2 if6°%D) =0, and 6~ (D) = 0.

Let D be a DNA labelled graph. By Corollary 3.7., there exists a positive integer i

such that D € Sém-. Moreover, by Corollary 3.11., it D € Sém», then D € S3

9m.m LOT any

integer m > i. We use (D) to denote the smallest integer i such that D € Sé‘i’i.
Theorem 3.23. [9] Let D be a DNA labelled graph. Then i(D) = [logsa(D)].
Theorem 3.21. and 3.22. imply the following.

Corollary 3.24. [9] Let D be a DNA labelled graph and let n be the output of Algorithm
3 for D. Then

[Togan] if (D) = 1
i(D) =< [loga(n+1)] if6°(D)=0, and 67 (D) >1 or 6 (D) > 1;
[logs(n +2)] if 8°(D) =0, and 6~ (D) = 0.
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4 Main Results

Lemma 4.1. If D is a DNA graph, then A°(D) < 4.

Proof.  Since D is a DNA graph, let [ be a (k,4)-labelling of D. Suppose A%(D) > 5.
W.L.O.G. assume AT (D) > 5 then there exists a vertex « in D such that d*(z) > 5. Let
[ (x) = {v1, v9, v3, 04, Vs, ... }. By the definition of DNA graph, we have (I3(x), ..., lx(z)) =
(l1(v), ooy lk—1(v;)) and U (v;) € Zy where i = 1,2,3,4,5. By the Pigeonhole Principle, we
have I(v;) = [(v;) where v;,v; € I'*(z). This is contrary to that D is a DNA graph. The

proof is complete. [

In [9], they give an open problem:

Open Problem Give a characterization of DNA labelled graphs which are not DNA
graphs.

The following main results is aiméd at this'epen problem. We start from Theorem
3.3. Recall the Theorem 3.3. The proef of Theorem 3.3. is not very hard. But if we
want to omit the conditions D € S, or.0’(D) > 1 of D, then the characterization will
be difficult. That is, there exist infinite graphs such that there graphs are DNA labelled

graphs but not DNA graphs.

e It is difficult to characterize DNA labelled graphs which are not DNA graphs when
we omitting the condition D € Sj,_; in Theorem 3.3.
The graph we shown in Figure 4 is the example that omitting the condition D €
Sis_1 in Theorem 3.3. That is, D is a DNA labelled graph with §°(D) > 1 but D

is not a DNA graph.

e It is difficult to characterize DNA labelled graphs which are not DNA graphs when
we omitting the condition §°(D) > 1 in Theorem 3.3.
First, we define a graph D; in the following. Assume ¢ > 2 be an integer. Let D;
be a digraph with V(D;) = {v1,...,v;,vi11} and E(D) = {(v1,v1), (Vig1,viz1)} U
{(vj,vj41)lj = 1,2,..,i}. Suppose D; € Si for some integer k& > 2. Since the

distance between the loops vy and v;1; is d(vy,v;11) = ¢, k < i. If we add enough
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isolated points without loop to each D;, then the new graph D will be an example
which belonging to S;fi_l with 6°(D) = 0 but not belonging to S}. Therefore, there
exists infinite graphs such that these graphs belong to S,ik_l for some integer k > 2

but not belong to Sj.

Vi Vs Vi  Vin

Figure 5: The graph D;.

00 01 11 00 01 11
> > > @ >
\ v, V3 vV, vV, \Y
-

23 @ ® 23 23é } 32
v, Ve

Figute 6:D € .55, but D¢ S;.

We take D, as an example in the following.
Example 1: Let D be the graph that we add two isolated points without loop to Ds.
It is easy to verify that D € S, (We shown the labels in Figure 6). Suppose D € Sj.
Without loss of generality, let I(v1) = (0,0), {(ve) = (0,1) and [(v3) = (1,1). Since vy and
vy are isolated points without loop in D, only can use S = {(2,3),(3,2)} to label them,
a contradiction. Hence D ¢ S5.

If we only consider the graph D with |D| < 6, then omit the condition 6°(D) > 1 of
D is allowed.

Theorem 4.2. Let k > 3 be an integer and let D be a digraph in S, with |D| <6 and
D contains none of Gy, Ga, and G3 as its subgraph. Then D belongs to Si if and only if
A%(D) < 4.

Proof. (=)Let D € S}, then D is a DNA graph by definition. The necessity follows

from Lemma 4.1.
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(<) Let A%(D) <4 and [ be a (k, k — 1;4)—labelling of D.

Claim: D € S}.

It’s sufficient to prove that all labels are different. If 6°(D) > 1, then by Theorem 3.3.
the proof is completed. Hence, assuming that §°(D) = 0. Suppose D ¢ S} and minimize
the repetition of labels, then there exists two distinct vertices xz,y € V(D) such that
l(x) =1(y). Hence I't(2) =T*(y) and I'"(z) = ' (y). Since D contains no Gy, Gs, and
(G5 as its subgraph, I' (z) = ¢ or T~ (z) = ¢.

Case 1: If I'f(z) = ¢ and ' (z) # ¢.

Subcase 1: Let v € I'"(z) and v ¢ T'"(v).

Without loss of generality, let I(v) = (I1(v), ..., lk(v)) = (0,0,...,0,1) and I(z) = (li(z), ...,
lp(x)) = (0,...,0,1,0) = (l1(y), ..., l(y)) = {(y).Then there must exist a point v; whose
label is {(v1) = (I;(vy), ..., lk(v1)) = (0,...,0,1,1) or (0,...,0,1,1,4) where i € Z4. Other-
wise, we can change the label of y to l(y)'= (0,240, 1,1). This is contrary to that I(z) =
[(y). Similarly, there must exists a point wy whose label is [(v) = (I1(v2), ..., lx(v2)) =
(0,...,0,1,2) or (0,...,0,1,2, ) where 7 € Zg If |D| <5, then we can always change the
label of y to I(y) = (0, ..., 0, 1, 3) such thatl(z)<A1(y). Hence all labels are different, we are
done. If | D| = 6, then there must exist a pointwg whose label is [(v3) = (11 (v3), ..., lg(v3)) =
0,...,0,1,3) or (0,...,0,1,3,p) where p € Zy. Hence V(D) = {v,x,y, v, v2,v3}.

(1). If & > 4, then I(v;) = (0,..0,1,7) ¥V i = 1,2,3. Suppose, on the contrary, that there
exist i such that [(v;) = (0,...,0,1,4,%) where * € Zy and i = 1,2,3. Then I't(v;) = ¢

and I'"(v;) = ¢. We can change the label of v; and y to

I(v)) = (1,...,1,2,i + 1(mod4), * + 1(mod4)) i=1,2,3
l(y) = (07 ) "-7Oa 17Z) for some 1

such that [ preserves arcs and nonarcs. This is contrary to that [(z) = I(y). Hence
l(v;) = (0,...,0,1,4) Vi = 1,2,3. Therefor I'"(v) = {x,y, v1,vs,v3}. This is contrary to
that A%(D) < 4. Thus, in this case we have D € S}.

(2). If £ = 3, then [(v;) = (0,1,7) Vi = 1,2,3. Suppose, on the contrary, that there exist

i such that I(v;) = (1,4,%) where x € Z4 and i = 1,2,3. Since (vy,v,) and vy, v3) might
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belong to (D), we change the label of v; and y in the following way:

l(v;) = (2,i+ 1(mod4), * + 1(mod4)) ifi=1,2
l(Ug) = <2a 0, 2)
I(y) = (0,1,4) for some i

such that [ preserves arcs and nonarcs. This is contrary to that [(z) = I(y). Hence
l(v;) = (0,1,i),a = 1,2,3. Therefor I'*(v) = {x,y,v1,v9,v3}. This is contrary to that
A% D) < 5. Thus, in this case we have D € S}.

Subcase 2: Let v € I'"(z) and v € T""(v).

Without loss of generality, let I(v) = (I1(v), ..., lk(v)) = (0,0, ...,0,0) and I(z) = (l1(z), ...,
lp(x)) =(0,...,0,1) = (I1(y), ..., l(y)) = l(y). There must exists a point v; whose label is
l(v1) = (I1(v1), ey lk(v1)) = (0,...,0,2) or (0,...,0,2,7) where i € Z,. Otherwise, we can
change the label of y to [(y) = (0, ...,0,2). This is contrary to that I(x) = I(y). If |D| < 4,
W.L.O.G. we can assume V(D) = {v,x,y,v;}, then we can always change the label of y
to l(y) = (0, ...,0,3) such that I(z) #(y). Hence all labels are different, we are done. If
|D| = 5, there must exists a point @y whose label is L(vs) = (11 (v2), ..., lk(v2)) = (0, ..., 0, 3)
or (0,...,0,3,j) where j € Z,. By the similar argument in Subcasel(1), we have I'*(v) =
{v,z,y,v1,v2}. This is contrary to that A°(D) <. Thus, in this case we have D € S}.

Otherwise, we can change the label of v; and y to

I(v;) = (0,...,0,i + 1(mod4),*) i=1,2,and % € Z4
l(y) =(0,,...,0,i+1) for some ¢

such that [ preserves arcs and nonarcs. This is contrary to that I(z) = I(y). If |D| = 6,
then let V(D) = {v,z,y,v1,va, u}.

(1). T (u) = ¢ =T (u), then let I(u) = (I1(u), ..., lr(u)) = (3,...,3,1). By the similar
argument, we have I'*(v) = {v,z,y,v1,v2}. This is contrary to that A%(D) < 4. Thus,
in this case we have D € Sj.

(2). If Tt (u) # .

(2.a). If {v,z,y} C T'f(u), then let l(u) = (l1(u),...,lk(u)) = (0,...,0,%) where * €
{1,2,3}. Since we minimize the repetition of labels, * # 0. Otherwise I(u) = [(v). By
the similar argument, we have I' (v) = {v, z,y, v1,v2} = I'"(u). This is contrary to that

A°(D) < 4. Thus, in this case we have D € S.
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(2.b). If {v,z,y} € I'"(u), then p v;, i = 1,2 such that I(v;) = (0,...,0,i 4+ 1,*) and v; €
I'*(u). Otherwise, I'*(u) = ¢. W.L.O.G. let I(v1) € T (u) and I(u) = (l1(u), ..., lx(u)) =

(p,0,...,0,2) where p € Zy. If p # 0, then we can change the label of u, v; and y to

(W)= (p+1,1,..,1,3)
l(v1) =(1,...,1,3, %+ 1)
l(y) =(0,,...,0,2)

such that [ preserves arcs and nonarcs. This is contrary to that I(z) = [(y). Hence p = 0.

Therefor I(vs) = (0, ...,0,3). Otherwise, we can change the label of v, and y to

{ I(vy) = (1,...,1,0,% 4+ 1)
I(y) = (0,,...,0,3)

such that [ preserves arcs and nonarcs. This is contrary to that I(z) = I(y). Hence
I't(v) = {v,x,y,u, v }. This is contrary to that A°(D) < 5. Thus, in this case we have
D e S

(3). I T~ (u) # ¢.

(3.a). If v € ' (u). Since we minimize the repetition of labels, [(u) # I(z) = I(y). Let
l(u) = (Iy(u), ..., lg(u)) = (0,...,0,%) wheres€{2, 3} W.L.O.G. let [(u) = (0,...,0,2),
then l(v1) = (0,...,0,2,%") where ¥, € Z4s. Then'l(vy) = (0,...,0,3). Otherwise, let

l(vg) = (0,...,0,3, "), then we can change the label of vy and y to

{ l(vg) = (1,...,1,0,%" + 1)
l(y)=(0,,...,0,3)

such that [ preserves arcs and nonarcs. This is contrary to that [(z) = I(y). Hence
I'*(v) = {v,2,y,u,v9}. This is contrary to that A°(D) < 5. Thus, in this case we have
D e S

(3.b). If v ¢ I'"(u). Since I'*(z) = I'*(y) = ¢, x,y ¢ ' (u). Hence one of v; and
ve will belongs to I'"(u). Otherwise, I'"(u) = ¢. W.L.O.G let v; € I'"(u). Then
l(v1) =(0,...,0,2), l(u) = (0,...,0,2, %) and [(vg) = (0, ...,0,3). Otherwise, we can change
the label of u, vy, vy and y such that [ preserves arcs and nonarcs and [(z) # [(y). This
is contrary to that I(z) = l(y). Hence I'"(v) = {v,z,y,v1,v5}. This is contrary to that
A%(D) < 4. Thus, in this case we have D € S}.

Case 2: f I'f(z) # ¢ and ' (z) = ¢.
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It is similar to casel, hence D € S.

Case 3: If I'"(x) = ¢ and I'" () = ¢, then z, y are isolated points without loop. Suppose
|D| = 6 and k = 3. Let V(D) = {x,y,v1,v0,v3,v4}. Since k = 3, there are 43 = 64
different labels. Consider {z, vy, v2,v3,v4}. There are 64 —5—4 x 5 x 2 —4 = 15 different
labels such that if we change the label of y to one of these fifteen labels, then y is still an
isolated point without loop and I(z) # I(y). Hence D € S{. If |[D| < 6 and k > 3, then
we can use the same argument to fine a different label for y such that all labels of D are

different. Hence D € S. The proof is completed. [

If we consider the cases |D| > 6, then there must be quite a few isolated vertices
without loop, the proof will be very tedious. If we only consider the case that D is
weakly connected, then there still exist infinite graphs such that these graphs satisfying
the sufficient condition of Theorem 4.2. but not belonging to S for all k > 2.

We give examples in the following
Example 2: See Figure 7. It is easy to verify that D-contains none of G, Gs, G3 as its
subgraphs and A°%(D) < 4. We shown thelabels in Figure 6. Hence D € S;{l. Since Dy
is an induced subgraph of D, suppese D € S7 then.k = 2. We can easily check that no
matter how we change the labels of D either there exists two different vertices with the
same labels or there exists two vertices x,y such that lr(x) = [;(y) but (x,y) ¢ E(D).
Hence D ¢ S3. Therefor, D is not a DNA graph.

11
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> @ >
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03 03 21

Figure 7: D is weakly connected and satisfying the sufficient condition of Theorem 4.2,
but D is not a DNA graph.

For each D;, ¢ > 3, we construct a new graph D as follows: first, add two vertices to

['*(v1) and two vertices to I'(v;41) to form a new graph Dj. Second, if d*(z) =1 , then
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Figure 8: D is weakly connected and satisfying the sufficient condition of Theorem 4.2,
but D is not a DNA graph.

add four vertices to I'"(z). If d~(x) = 1, then add four vertices to I'(x). Update D;
and repeat the second step enough times, we will get D. Figure 8 is the example where
Ds is it induced subgraph and use the same argument as Example 2, we have the graph

shown in Figure 7 is weakly connected andssatisfying the sufficient condition of Theorem

4.2, but not a DNA graph.
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5 Concluding Remarks

Through this study, we have the following three remarks.
1. If D is a DNA graph, then A°(D) < 4.

2. It is difficult to characterize DNA labelled graphs which are not DNA graphs when

we omit the condition D € S, _, or 6°(D) > 1 in Theorem 3.3.

3. It is difficult to characterize DNA labelled graphs which are not DNA graphs when

considering D is weakly connected.

Therefore, for future study, we might have to find some more criterions (on graph

structures) in order to settle this problem.
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