國 立 交 通 大 學

應用數學系

碩 士 論 文

超立方體及局部扭轉超立方體之獨立擴張樹之建造

Constructing independent spanning trees for hypercubes and locally twisted cubes

研 究 生：劉宜君
指導教授：陳秋媛 教授

中 華民國九十八年六月

致 謝

求學過程中，每進一個新的階段都會到不同縣市就讀，新竹市是我唯一例外的縣市！倒也不是因為新竹市有多迷人，而是國立交通大學應用數學系真的是個相當棒的學習環境。系上的教授個個學識淵博，關心學生，而且同學之間都會相互關心照應。兩年，如白駒過隙般的短暫！還記得大家一起修課，一起在教室討論著作業該如何寫，問題該如何解。當我們想破了一顆又一顆的腦袋後還是想不透時，大家就默默的跑去找教授討論的情景。在這様常常一起討論的日子裡，大家一個一個上台發表自己的想法與解法的同時，累了休息打屁聊天的同時，一起唸書準備考試的同時，我感覺到了同學之間牢不可破的情誼與學習的快樂。感謝組合組所有的同學讓我覺得修課是如此的開心，與同學的聯繫是如此的緊密。還要感謝系上所有的教授細心的指導，尤其是傅恆霖教授總是能簡單明瞭的傳授所有的知識！還有符麥克教授，我修課期間常常去研究室打擾到很晩，但教授還是很開心且不厭其煩的講解與指導，真的非常的感恩。也有幾次不小心模仿了教授被發現但卻笑笑的就過了，所以在此也要感謝教授的寬宏大量呢！

再來要感謝我的指導教授陳秋媛以及同門的學長，同學與學弟們。秋媛教授非常關心我們的生活與態度，也很耐心的指導我們研究！以前學習課内知識對我來說就只是容易與不容易的分別而已。然而在教授的指導之下學習與研究居然變的有趣，讓我願意主動去想更多而不只是單純接收知識而已。有些原本對我來說不容易且也不喜歡的部份，也讓我不害怕進而願意主動去學習，而不只是被動消極的認為自己的能力就只能如此。以上的經驗與成長對我來說都是相當重要的！還要感謝國元學長不吝於討論與幫忙，看到覺得不錯且適合我的論文還會印給我；感謝釬傑學長常常跑來研究室關心我們的研究，還會暬忙看或提供想法！感謝志文，子宏，信昌，松育，慧蔡，士慶，思綸，思賢與健峰，研究路上的討論與相伴。還有其他的研究生們，舜婷，帥氣簡科科文昱大哥，小張，阿華田，娃娃音，光祥，哲皓，冠霖與廷彰等，平常都受到你們的照顧了。

還要感謝諮商中心的志工們！在學期間常會跑到中心的沙發打滾，哀嚎還有休息，中心的大家總是能給予關心與支持，讓我又充滿了向前的力氣。尤其是怡文，小翊常陪我聊天，還有丙丙跟我組成的研究生支持團體。你們是我在這段最忙亂，最低潮的時間裡最重要的支柱，當然也還要感謝三不五時就會被我吵的輔國與敬達還有我那去當兵的好姐妹豆丞，你們都是很重要的朋友。當然不能忘了常常會為大家带來三餐的柏佑啦。

也要感謝一直都關心與掛念著我的國高中朋友們，謝死豬，玉米，小狐貍，俞秀，秀貞，淑煖，静蘭還有懷升；感謝大學好友中偶而想到會來找我的笨大樹還有會带食物給我的小賢。還有佔了很重～份量的，常常镮胖我，但少少带我出去玩樂運動的小馬，雖然當兵變笨後偶而會覺得有點煩，但平常都很照顧，關心與包容我。

最後要感謝我父母的支持讓我無後顧之憂的念書，也把我養的頭好壯壯使我擁有耐操健壯的身心面對未來的路。還有常會稍來問候的姐姐，三不五時就很愛找我聊天的妹妹還有悶騒愛装酷的帥弟，你們是我最大的後盾。雖然當我們發現論文要改的東西實在太多了卻不能改天，不過當要感謝的人太多了，總是可以謝天的吧！感謝上天賜給我這麼多關心我的人還有這麼好的環境讓我成長學習。在此謹以寥寥數句表達感謝之意！

超立方體及局部扭轉超立方體之獨立擴張樹之建造

研究生：劉宜君

指導老師：陳秋媛 教授

國立交通大學

應 用 數 學 系

摘 要

在網路中使用多棵獨立擴張樹對於資料廣播有相當多的好處，例如：可以提高容錯以及頻寬等；因此，在各種的網路結構上，建造多棵獨立擴張樹，一直以來都被廣泛地研究。 Zehavi 和 Itai 在文獻［26］中，對於建造多棵獨立擴張樹提出了兩個猜測。「點猜測」闃述的是：在一個點連通度為 n 的圖上，能以圖中任一點為樹根，產生 n 棵點獨立擴張樹；「邊猜測」闡述的是：在一個邊連通度為 n 的圖上，能以圖中任一點為樹根，產生 n 棵邊獨立擴張樹。在文獻［16］中，Khuller 和 Schieber 證明了點猜測能涵蓋邊猜測。局部扭轉超立方體是超立方體的變形。最近，Hsieh 和 Tu 在文獻［10］中，提出了一個能在 n維局部扭轉超立方體上，建造以 0 為樹根的 n 棵邊獨立擴張樹的演算法。因為局部扭轉超立方體不具點對稱性質，Hsieh 和 Tu 所提出的演算法無法解決局部扭轉超立方體的邊猜測。在這篇論文中，我們提出了一個可以在局部扭轉超立方體上，以任一點為樹根，建構 n 棵點獨立擴張樹的演算法；我們的演算法證明了局部扭轉超立方體符合點猜測，當然，也證明了局部扭轉超立方體符合邊猜測。此外，我們的演算法也能在超立方體上得到一様的結果。

關鍵詞：資料廣播，演算法設計與分析，點獨立擴張樹，局部扭轉超立方體，超立方體，平行演算法。

中 華 民國九十八年六月

Constructing independent spanning trees for hypercubes and locally twisted cubes

Student: Yi-Jiun Liu Advisor: Chiuyuan Chen

Department of Applied Mathematics
National Chiao Tung University
Hsinchu, Taiwan 30050

Abstract

The use of multiple independent spanning trees (ISTs) for data broadcasting in networks provides a number of advantages such as the increase of fault-tolerance and bandwidth. Thus the designs of multiple ISTs in several classes of networks have been widely investigated. In [27], Zehavi and Itai stated two versions of the n independent spanning trees conjecture. The vertex (edge) conjecture is that any n-connected (n-edge-connected) graph has n vertex-ISTs (edge-ISTs) rooted at an arbitrary vertex r. In [16], Khuller and Schieber proved that the vertex conjecture implies the edge conjecture. Recently, in [12], Hsieh and Tu proposed an algorithm to construct n edge-ISTs rooted at vertex 0 for an n-dimensional locally twisted cube $L T Q_{n}$, which is a variant of the hypercube. Since $L T Q_{n}$ is it not vertex-transitive, Hsieh and Tu's result does not solve the edge conjecture for the locally twisted cube. In the thesis, we confirm the vertex conjecture (and hence also the edge conjecture) for the locally twisted cube by proposing an algorithm to construct n vertex-ISTs rooted at any vertex for the $L T Q_{n}$. We also confirm the vertex conjecture (and hence also the edge conjecture) for the hypercube.

Keywords: Data broadcasting; Design and analysis of algorithms; Vertexdisjoint spanning trees; Locally twisted cubes; Hypercubes; Parallel algorithm.

Contents

Abstract (in Chinese) i
Abstract (in English) ii
Contents iii
List of Figures iv
List of tables iv
1 Introduction 1
2 Some preliminaries and our algorithm 4
3 Applying our algorithm to locally twisted cubes 12
3.1 Vertex 0 as the common root 14
3.2 Vertex 1 as the common root 20
4 Applying our algorithm to hypercubes 32
5 Concluding remarks 34

List of Figures

1 The n-dimensional general cube $G Q_{n}$. 5
2 (a) $L T Q_{3}$. (b) A symmetric drawing of $L T Q_{3}$ 6
$3 L T Q_{4}$ and its $\mathcal{F}=\left\{f_{3}, f_{2}, f_{1}, f_{0}\right\}$. The ordinary lines (depicted as colorblue), the most solid lines (depicted as color green), the second solid lines(depicted as color black), and the dashed lines (depicted as color red) areperfect matchings f_{3}, f_{2}, f_{1}, and f_{0}, respectively.6
4
Two examples of Algorithm 1: constructing 4 ISTs T_{0}, T_{1}, T_{2} and T_{3} for$L T Q_{4}$. The edges depicted as color red are obtained from f_{0}, color blackare from f_{1}, color green are from f_{2}, and color blue are from f_{3}. (a) The
common root is 1 . (b) The common root is 0 9
5 An illustration for the proof of Lemma 12. 21
List of Tables
1 The connectivity, edge-connectivity and diameters of Q_{n} and its variants. 3
2 The value of q for every vertex in the given set. 22

1 Introduction

This thesis considers the problem of constructing n independent spanning trees rooted at an arbitrary vertex of an n-dimensional locally twisted cube or hypercube. Graph terminology and notation used in this thesis are standard; see [4] and [23] except as indicated.

All graphs in this thesis are simple undirected graphs. Let G be a graph with vertex set $V(G)$ and the edge set $E(G)$. Let $x, y \in V(G)$. A path from x to y is denoted as x, y-path. Two x, y-paths P and Q are internally edge-disjoint if $E(P) \cap E(Q)=\emptyset$. Two x, y-paths P and Q are internally vertex-disjoint if they are internally edge-disjoint and $V(P) \cap V(Q)=\{x, y\}$. A subgraph T of G is a spanning tree of G if T is a tree and $V(T)=V(G)$. Two spanning trees T and T^{\prime} of G are vertex-independent (resp., edgeindependent) if T and T^{\prime} are rooted at the same vertex, say r, and for each $v \in V(G)$, the r, v-path in T and the r, v-path in T^{\prime} are internally vertex-disjoint (resp., internally edgedisjoint). A set of spanning trees of G are vertex-independent (resp., edge-independent) if they are pairwise vertex-independent (resp., pairwise edge-independent).

Recently, the problems of constructing multiple vertex-independent spanning trees (vertex-ISTs) and constructing multiple edge-independent spanning trees (edge-ISTs) for a given graph have received much attention. In [27], Zehavi and Itai stated two versions of the n independent spanning trees conjecture:
(Vertex Conjecture) Any n-connected graph has n vertex-ISTs rooted at an arbitrary vertex r.
(Edge Conjecture) Any n-edge-connected graph has n edge-ISTs rooted at an arbitrary vertex r.

Zehavi and Itai [27] also raised the question: It would be interesting to show that either the vertex conjecture implies the edge conjecture, or vice versa. Later, Khuller and Schieber [16] successfully proved that the vertex conjecture implies the edge conjecture, i.e., if any n-connected graph has n vertex-ISTs, then any n-edge-connected graph has n
edge-ISTs. Khuller and Schieber's proof also works for the directed case. For the directed case, Edmonds [7] solved the edge conjecture. Khuller and Schieber [16] pointed out that the vertex conjecture for directed graphs is the strongest conjecture since it implies all the other conjectures.

The vertex and the edge conjectures have been confirmed only for $n \leq 4$. In [15], Itai and Rodeh gave a linear-time algorithm for constructing two edge-ISTs in a 2 -edgeconnected graph; they also solved the vertex conjecture for $n=2$. In [27], Zehavi and Itai solved the vertex conjecture for $n=3$, but they did not proposed an algorithm for constructing three vertex-ISTs. In [6], Cheriyan and Maheshwari proposed an $O\left(|V(G)|^{2}\right)$ time algorithm for constructing three vertex-ISTs in a 3-connected graph. In [5], Curran et al. proposed an $O\left(|V(G)|^{3}\right.$)-time algorithm for constructing four vertex-ISTs in a 4connected graph. When $n \geq 5$, both the vertex and the edge conjectures are still open. It has been proven that the vertex (or the edge) conjecture holds for several restricted classes of graphs or digraphs, such as planar graphs [9, 10, 17, 18], maximal planar graphs [19], product graphs [20], chordal rings [14, 24], de Bruijn and Kautz digraphs [8, 11], and hypercubes [22, 26].

The design of vertex- and edge-ISTs has applications to reliable communication protocols. For example, a rooted spanning tree in the underlying graph of a network can be viewed as a broadcasting scheme for data communication and fault-tolerance can be achieved by sending n copies of the message along the n independent spanning trees rooted at the source node [1]. For other applications, see [3] for the multi-node broadcasting problem, [21] for one-to-all broadcasting, and [2] for n-channel graphs, reliable broadcasting, and secure message distribution.

This thesis considers the problem of constructing n vertex-ISTs rooted at an arbitrary vertex of an n-dimensional locally twisted cube $L T Q_{n}$ or an n-dimensional hypercube Q_{n} (these cubes will be defined later). Since we focus on vertex-ISTs, in the remaining discussion, we will simply use ISTs to denote vertex-ISTs unless otherwise specified. Note that the development of algorithms for constructing ISTs tends toward pursuing two
research goals: one is to design efficient construction schemes (for example, [14, 17, 19, 24] propose linear-time algorithms) and the other is to reduce the heights of ISTs (for example, [11, 22, 24] propose the idea of height improvements). Let G be an n-connected graph, let T be a spanning tree of G rooted at vertex r, and let $d(T ; r, v)$ denote the depth of vertex v in T. The average path length of a set $\mathcal{S}=\left\{T_{0}, T_{1}, \ldots, T_{n-1}\right\}$ of n ISTs rooted at vertex r in G is defined to be

$$
\sum_{i=0}^{n-1} \sum_{v \in V(G) \backslash\{r\}} d\left(T_{i} ; r, v\right) / n .
$$

A set \mathcal{S} of n ISTs rooted at vertex r in G (if this set exists) is called optimal if the average path length of \mathcal{S} is the minimum among all possible sets of n ISTs rooted at r in G.

The hypercube is one of the most popular interconnection networks due to its simple structure and ease of implementation. However, it has been shown that the hypercube does not achieve the smallest possible diameter for its resources. Therefore, many variants of the hypercube have been proposed. The most well-known variants are twisted cubes (TQ), crossed cubes (CQ), and Möbius cubes (MQ), and locally twisted cubes (LTQ). In the following table, we list the connectivity, edge-connectivity and diameters of Q_{n} and its variants. It is well known that a hypercube Q_{n} is n-connected. Since Q_{n} is itself a

Table 1: The connectivity, edge-connectivity and diameters of Q_{n} and its variants.

$G \backslash$ properties	$\kappa(G)$	$\lambda(G)$	diameter
Q_{n}	n	n	n
$T Q_{n}$	n	n	$\lceil(n+1) / 2\rceil$
$C Q_{n}$	n	n	$\lceil(n+1) / 2\rceil$
$M Q_{n}$	n	n	in $0-M Q_{n},\lceil(n+2) / 2\rceil$ for $n \geq 4$ in $1-M Q_{n},\lceil(n+1) / 2\rceil$ for $n \geq 1$
			2 if $n=3$
3 if $n=4$			
$L T Q_{n}$	n	n	$\lceil(n+3) / 2\rceil$ if $n \geq 5$

product graph, the algorithm proposed by Obokata et al. [20] can be used to construct n ISTs for Q_{n}. As to the construction of the height-reduced ISTs on Q_{n}, Tang et al. [22] modified the algorithm in [20] and proposed an $O\left(n 2^{n}\right)$-time algorithm for constructing an optimal set of n ISTs for hypercubes Q_{n}. It was pointed out by Yang et al. [26] that
the algorithms in [20] and [22] are designed by a recursive fashion and such a construction forbids the possibility that the algorithm could be parallelized; Yang et al. therefore proposed a parallel construction for an optimal set of n ISTs for Q_{n}.

Although Q_{n} is a product graph, it is not known whether its variants are also product graphs. For example, it is not known whether the locally twisted cube $L T Q_{n}$ is a product graph. The locally twisted cube was proposed by Yang et al. in [25]; the motivation of proposing such a variant is that a better hypercube variant should be conceptually closer to hypercube than other existing variants. In locally twisted cubes, the labels of any two adjacent vertices differ in at most two successive bits. In [12], Hsieh and Tu proposed an algorithm to construct n edge-ISTs for $L T Q_{n}$. Do notice that Hsieh and Tu did not solve the edge conjecture for the locally twisted cube since their algorithm uses vertex 0 as the common root of edge-ISTs and a locally twisted cube is not vertex-transitive. For example, in $L T Q_{5}$, vertex 1 can reach any vertex within 3 steps but vertex 0 has to take 4 steps to reach vertex 30 .

The sequential algorithm in [22] and the parallel algorithm in [26] obtain an optimal set of n ISTs. However, these algorithms work only for hypercubes. In this thesis, we outline an approach to construct n vertex-ISTs rooted at an arbitrary vertex of an n dimensional locally twisted cube or hypercube. Thus we confirm both the vertex and the edge conjectures for the locally twisted cube and hypercube.

This thesis is organized as follows. In Section 2, we give some definitions and notations. In Section 3, we outline an approach to construct n vertex-ISTs rooted at an arbitrary vertex of an n-dimensional general cube. In Sections 4 and 5, we prove that our approach constructs n ISTs for $L T Q_{n}$ and Q_{n}, respectively. The final section concludes this thesis.

2 Some preliminaries and our algorithm

In the remaining discussion, \oplus denotes the bitwise XOR operation. As a reference,

$$
0 \oplus 0=0, \quad 0 \oplus 1=1, \quad 1 \oplus 0=1,1 \oplus 1=0 .
$$

If $u=\left(u_{n-1} u_{n-2} \cdots u_{0}\right)_{2}$ and $v=\left(\begin{array}{ll}v_{n-1} & v_{n-2}\end{array} \cdots v_{0}\right)_{2}$, then we define

$$
u \oplus v=\left(u_{n-1} \oplus v_{n-1} \quad u_{n-2} \oplus v_{n-2} \quad \cdots \quad u_{0} \oplus v_{0}\right)_{2} .
$$

Also, $u \oplus v \oplus w=(u \oplus v) \oplus w$.
The n-dimensional hypercube Q_{n} is a graph with 2^{n} vertices and $n \cdot 2^{n-1}$ edges such that its vertices are n-tuples with entries in $\{0,1\}$ and its edges are the pairs of n-tuples that differ in exactly one position. Thus Q_{1} is the complete graph with two vertices 0 and 1 , and $Q_{n}(n \geq 2)$ is built from two copies of Q_{n-1} as follows: Let $k \in\{0,1\}$ and let $k Q_{n-1}$ denote the graph obtained by prefixing the label of each vertex of one copy of Q_{n-1} with k; connect each vertex $\left(0 x_{n-2} \ldots x_{1} x_{0}\right)_{2}$ of $0 Q_{n-1}$ with the vertex $\left(1 x_{n-2} \ldots x_{1} x_{0}\right)_{2}$ of $1 Q_{n-1}$ by an edge.

We now define a generalization of Q_{n}. The n-dimensional general cube $G Q_{n}$ is defined recursively as follows (see Figure 1). $G Q_{1}$ is Q_{1}, and $G Q_{n}(n \geq 2)$ is built from two $G Q_{n-1}$'s (not necessarily identical) as follows: Let $k \in\{0,1\}$ and let $k G Q_{n-1}$ denote the graph obtained by prefixing the label of each vertex of one of the two $G Q_{n-1}$'s with k; add a perfect matching between $0 G Q_{n-1}$ and $1 G Q_{n-1}$, i.e., each vertex in $0 G Q_{n-1}$ is adjacent to exactly one vertex in $1 G Q_{n-1}$.
$G Q_{n}$

Figure 1: The n-dimensional general cube $G Q_{n}$.

The n-dimensional locally twisted cube $L T Q_{n}$ is defined recursively as follow. $L T Q_{1}$ is Q_{1}, and $L T Q_{2}$ is the graph consisting of four vertices labeled with $00,01,10$, and 11 , respectively, and connected by the four edges $(00,01)(00,10),(01,11)$, and (10 , 11). $L T Q_{n}(n \geq 3)$ is built from two identical $L T Q_{n-1}$'s as follows: connect each vertex $\left(0 x_{n-2} x_{n-3} \cdots x_{0}\right)_{2}$ of $0 L T Q_{n-1}$ with the vertex $\left(1\left(x_{n-2} \oplus x_{0}\right) x_{n-3} \cdots x_{0}\right)_{2}$ of $1 L T Q_{n-1}$ by an edge. See Figures 2 and 3.

(a)

(b)

Figure 2: (a) $L T Q_{3}$. (b) A symmetric drawing of $L T Q_{3}$.

Figure 3: $L T Q_{4}$ and its $\mathcal{F}=\left\{f_{3}, f_{2}, f_{1}, f_{0}\right\}$. The ordinary lines (depicted as color blue), the most solid lines (depicted as color green), the second solid lines (depicted as color black), and the dashed lines (depicted as color red) are perfect matchings f_{3}, f_{2}, f_{1}, and f_{0}, respectively.

We assume conventionality of the vertex prefixing method $k G Q_{n-1}$ which will be used repeatedly in the definitions of specific hypercube variants late in this thesis unless otherwise specified. It have been shown that crossed cubes, Möbius cubes, and locally twisted cubes are the examples of $G Q_{n}$; see [13]. Note that the two $G Q_{n-1}$'s in $G Q_{n}$ are not necessarily identical. For instance, for crossed cubes and locally twisted cubes, the two $G Q_{n-1}$'s are identical; but for Möbius cubes, they are not.

Recall that $G Q_{n}(n \geq 2)$ is built recursively by adding a perfect matching between $0 G Q_{n-1}$ and $1 G Q_{n-1}$; denote this perfect matching by f_{n-1}. Then $0 G Q_{n-1}$ and $1 G Q_{n-1}$ are built recursively by adding a perfect matching between $00 G Q_{n-2} \cup 10 G Q_{n-2}$ and $01 G Q_{n-2} \cup 11 G Q_{n-2}$; denote this perfect matching by f_{n-2}. Here \cup means the union
of graphs. Specifically, $G \cup H$ is the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. In general, let us define $L^{i}=\left\{b_{1} b_{2} \cdots b_{i} \mid b_{j} \in\{0,1\}\right.$ for $\left.j=1,2, \ldots, i\right\}$ and $L^{0}=\epsilon$ (the empty string). Let f_{n-i} denote the perfect matching between $\bigcup_{x \in L^{i-1}} x 0 G Q_{n-i}$ and $\bigcup_{x \in L^{i-1}} x 1 G Q_{n-i}$ and let

$$
\mathcal{F}=\left\{f_{n-1}, f_{n-2}, \ldots, f_{0}\right\}
$$

be the set of perfect matchings used to build $G Q_{n}$. See Figure 3 for an illustration of \mathcal{F}.
The following lemma is obvious and its proof is omitted.
Lemma 1. Let $\mathcal{F}=\left\{f_{n-1}, f_{n-2}, \ldots, f_{0}\right\}$ be the set of perfect matchings used to build $G Q_{n}$. Then for every $0 \leq i<n$ and every $v=\left(v_{n-1} v_{n-2} \cdots v_{0}\right)_{2} \in V\left(G Q_{n}\right), f_{i}$ will not affect bits $v_{n-1}, v_{n-2}, \ldots, v_{i+1}$ of v.

Before going further, we give the \mathcal{F} of the hypercube and the locally twisted cube. For convenience, \bar{v}_{i} denotes the complement of v_{i}. First consider Q_{n}. Let $v=\left(v_{n-1} v_{n-2} \cdots v_{0}\right)_{2} \in$ $V\left(Q_{n}\right)$. Then $\mathcal{F}=\left\{f_{n-1}, f_{n-2}, \ldots, f_{0}\right\}$ in which f_{i} is defined by

$$
\begin{equation*}
f_{i}(v)=\left(v_{n-1} v_{n-2} \cdots v_{i+1} \bar{v}_{i} v_{i-1} \cdots v_{0}\right)_{2} \tag{1}
\end{equation*}
$$

Now consider the locally twisted cube. The adjacency relation of $L T Q_{n}$ has been worked out by [13]; see the following.

Lemma 2. [13] For every $v=\left(v_{n-1} v_{n-2} \ldots v_{0}\right)_{2} \in V\left(L T Q_{n}\right)$, the n vertices $y_{0}, y_{1}, \ldots, y_{n-1}$ adjacent to v are:

$$
\begin{aligned}
& y_{0}=\left(v_{n-1} v_{n-2} v_{n-3} \cdots v_{2} v_{1} \bar{v}_{0}\right)_{2}, \\
& y_{1}=\left(v_{n-1} v_{n-2} v_{n-3} \cdots v_{2} \bar{v}_{1} v_{0}\right)_{2}, \\
& y_{2}=\left(v_{n-1} v_{n-2} v_{n-3} \cdots \bar{v}_{2}\left(v_{1} \oplus v_{0}\right) v_{0}\right)_{2}, \\
& \vdots \\
& y_{n-2}=\left(v_{n-1} \bar{v}_{n-2}\left(v_{n-3} \oplus v_{0}\right) v_{n-4} \cdots v_{1} v_{0}\right)_{2}, \\
& y_{n-1}=\left(\bar{v}_{n-1}\left(v_{n-2} \oplus v_{0}\right) v_{n-3} \cdots v_{2} v_{1} v_{0}\right)_{2} .
\end{aligned}
$$

Let $v=\left(v_{n-1} v_{n-2} \cdots v_{0}\right)_{2} \in V\left(L T Q_{n}\right)$. By Lemma 2, $\mathcal{F}=\left\{f_{n-1}, f_{n-2}, \ldots, f_{0}\right\}$ of $L T Q_{n}$ is defined by

$$
f_{i}(v)= \begin{cases}\left(v_{n-1} v_{n-2} \cdots v_{1} \bar{v}_{0}\right)_{2} & \text { if } i=0 \tag{2}\\ \left(v_{n-1} v_{n-2} \cdots v_{2} \bar{v}_{1} v_{0}\right)_{2} & \text { if } i=1 \\ \left(v_{n-1} v_{n-2} \cdots v_{i+1} \bar{v}_{i}\left(v_{i-1} \oplus v_{0}\right) v_{i-2} v_{i-3} \cdots v_{0}\right)_{2} & \text { if } 2 \leq i \leq n-1\end{cases}
$$

In the remaining discussion, (u, v) denotes the edge between u and $v ; T_{0}, T_{1}, \ldots, T_{n-1}$ denote subsets of edges of the given $G Q_{n}$; and r denotes the root of n IST. The vertex $f_{i}(r)$ will be the son of r in T_{i}. Moreover, $v \in V\left(T_{i}\right)$ means that v is an endpoint of an edge in T_{i}, and $v \in V\left(T_{i}\right) \backslash\left\{r, f_{i}(r)\right\}$ means that $v \in V\left(T_{i}\right)$ and v is neither the root nor the son of the root. Now we are ready to propose an algorithm for constructing n ISTs of a given $G Q_{n}$.

```
Algorithm 1 Construct \(n\) ISTs for \(G Q_{n}\).
Input: \(\mathcal{F}=\left\{f_{n-1}, f_{n-2}, \ldots, f_{0}\right\}\) used to build the given \(G Q_{n}\) and a vertex \(r\) of the \(G Q_{n}\).
Output: \(n\) ISTs \(T_{0}, T_{1}, \ldots, T_{n-1}\) rooted at \(r\).
    for each processor \(i(0 \leq i \leq n)\) do in parallel
        son \(\leftarrow f_{i}(r) ;\)
        \(S \leftarrow\{\) son \(\} ;\)
        for \(m=i+1\) to \(i+n\) do
            \(S^{\prime} \leftarrow \emptyset ;\)
            for each vertex \(v \in S\) do
            \(u \leftarrow f_{m \bmod n}(v) ;\)
            \(T_{i} \leftarrow T_{i} \cup\{(v, u)\} ;\)
            \(S^{\prime}=S^{\prime} \cup\{u\} ;\)
            endfor
            \(S \leftarrow S \cup S^{\prime} ;\)
        endfor
    end for
```

Call the for-loop in lines 4 to 12 in the algorithm the outer for-loop for convenience. Also, call the for-loop in lines 6 to 10 in the algorithm the inner for-loop for convenience. Two examples of Algorithm 1 are given in Figure 4. If we replace do in parallel with do in sequential, then Algorithm 1 becomes a sequential algorithm. If a top-down fashion is insisted on, then Algorithm 1 can be modified to Algorithm 2 by adding lines 3, 14~16 and replacing $i+n$ with $i+n-1$ in Algorithm 1. Algorithm 2 builds n ISTs of a $G Q_{n}$ in a top-down fashion; the algorithms in [12, 26] construct spanning trees in a bottom-up fashion. A top-down fashion is preferred since these n ISTs are used for broadcasting messages from the top (the root) of the trees.

We have a lemma.
Lemma 3. For each $i \in\{0,1, \ldots, n-1\}, T_{i}$ constructed by Algorithm 1 has the properties that

$$
m=i+1
$$

T_{3}
(a)

Figure 4: Two examples of Algorithm 1: constructing 4 ISTs T_{0}, T_{1}, T_{2} and T_{3} for $L T Q_{4}$. The edges depicted as color red are obtained from f_{0}, color black are from f_{1}, color green are from f_{2}, and color blue are from f_{3}. (a) The common root is 1 . (b) The common root is 0 .
(i) $\left(r, f_{i}(r)\right) \in T_{i}$;
(ii) for each $v \in V(G) \backslash\left\{r, f_{i}(r)\right\}$, if $v \in V\left(T_{i}\right)$, then the path from $f_{i}(r)$ to v in T_{i} uses each perfect matching in \mathcal{F} at most once.

Proof. Property (i) follows from line 3. Property (ii) follows from the fact that $f_{m \bmod n}$ used in the for-loop between lines 7 and 11 are distinct.

In Sections 3 and 4, we will prove that $T_{0}, T_{1}, \ldots, T_{n-1}$ generated by Algorithm 1 are

```
Algorithm 2
    for each processor \(i(0 \leq i \leq n)\) do in parallel
        son \(\leftarrow f_{i}(r) ;\)
        \(T_{i} \leftarrow\{(r\), son \()\} ;\)
        \(S \leftarrow\{\) son \(\} ;\)
        for \(m=i+1\) to \(i+n-1\) do
            \(S^{\prime} \leftarrow \emptyset ;\)
            for each vertex \(v \in S\) do
                \(u \leftarrow f_{m \bmod n}(v) ;\)
                \(T_{i} \leftarrow T_{i} \cup\{(v, u)\} ;\)
                \(S^{\prime}=S^{\prime} \cup\{u\} ;\)
            endfor
            \(S \leftarrow S \cup S^{\prime} ;\)
        endfor
        for each vertex \(v \in S \backslash\{\) son \(\}\) do
            \(T_{i} \leftarrow T_{i} \cup\left\{\left(v, f_{i}(v)\right)\right\} ;\)
        endfor
    end for
```

n ISTs rooted at r for $L T Q_{n}$ and Q_{n}, respectively. Do notice that for Q_{n} and $L T Q_{n}$,

$$
f_{n-1}^{-1}=f_{n-1}, f_{n-2}^{-1}=f_{n-2}, \ldots, f_{0}^{-1}=f_{0} .
$$

Thus in the remaining discussion, we will simply write f_{i} instead of f_{i}^{-1}. The following definitions are crucial for the subsequent proofs.

Definition 4. Consider arranging the elements $0,1, \ldots, n-1$ on a circle in a clockwise manner. For all $0 \leq i \leq n-1$, define O_{i} to be an ordered set

$$
O_{i}=\{i, i-1, i-2, \ldots, i-n+1\} .
$$

Here $i-k$ means $(i-k) \bmod n$, where $k=1,2, \ldots, n-1$.

Notice that O_{i} can be viewed as the ordered set formed by taking the elements out from the circle in a counterclockwise manner by letting i to be the first element. For example, if $n=6$, then $O_{0}=\{0,5,4,3,2,1\}, O_{1}=\{1,0,5,4,3,2\}, O_{2}=\{2,1,0,5,4,3\}$, $O_{3}=\{3,2,1,0,5,4\}, O_{4}=\{4,3,2,1,0,5\}$, and $O_{5}=\{5,4,3,2,1,0\}$.

Definition 5. For all $0 \leq i \leq n-1$ and $v \in V\left(T_{i}\right)$, define $C_{i}\left(v, f_{i}(r)\right)$ as follows. Recall that $f_{i}(r)$ is the son of the root in T_{i}. Let $v=\left(v_{n-1} v_{n-2} \cdots v_{0}\right)_{2}$ and $f_{i}(r)=$
$\left(a_{n-1} a_{n-2} \ldots a_{0}\right)_{2}$. Suppose v and $f_{i}(r)$ has a total of m different bits. Define $C_{i}\left(v, f_{i}(r)\right)$ to be an ordered set containing all the indices of these m different bits, listed according to the order given in O_{i}.

We give some examples for $C_{i}\left(v, f_{i}(r)\right)$. Note that when $r=0$, the son of the root in T_{i} is 2^{i}, i.e., $f_{i}(r)=2^{i}$. Suppose $n=6$ and $v=(101011)_{2}$. Then $C_{0}\left(v, 2^{0}\right)=$ $\{5,3,1\}, C_{1}\left(v, 2^{1}\right)=\{0,5,3\}, C_{2}\left(v, 2^{2}\right)=\{2,1,0,5,3\}, C_{3}\left(v, 2^{3}\right)=\{1,0,5\}, C_{4}\left(v, 2^{4}\right)=$ $\{4,3,1,0,5\}$, and $C_{5}\left(v, 2^{5}\right)=\{3,1,0\}$.

Definition 6. Suppose $C_{i}\left(v, f_{i}(r)\right)=\left\{c_{m-1}, c_{m-2}, \ldots, c_{0}\right\},\left|C_{i}\left(v, f_{i}(r)\right)\right| \geq 2$ and $j \notin$ $C_{i}\left(v, f_{i}(r)\right)$. We say that j is between c_{u} and c_{u-1} with respect to O_{i} if when $0,1, \ldots, n-1$ are arranged on a circle, the location of j on the circle is between c_{u} and c_{u-1}. Suppose j is between c_{u} and c_{u-1} with respect to O_{i}. Then when j is put into $C_{i}\left(v, f_{i}(r)\right), j$ will be put into $C_{i}\left(v, f_{i}(r)\right)$ according to its original position in O_{i}.

Continue the above example. Then $4 \notin C_{1}\left(v, 2^{1}\right)$ and 4 is between $c_{u}=5$ and $c_{u-1}=3$ with respect to $O_{1} ; 2 \notin C_{1}\left(v, 2^{1}\right)$ and 2 is between 3 and 0 with respect to $O_{1} ; 4,3$ and 2 are not in $C_{3}\left(v, 2^{3}\right)$ and all of them are between 5 and 1 with respect to O_{3}. Since $O_{3}=\{3,2,1,0,5,4\}$, if we put 4 into $C_{3}\left(v, 2^{3}\right)$, then we obtain $\{1,0,5,4\}$; if we put 2 into $C_{3}\left(v, 2^{3}\right)$, then we obtain $\{2,1,0,5\}$.

Definition 7. For all $0 \leq i \leq n-1$ and $v \in V\left(T_{i}\right)$, define $\mathcal{P}_{i}\left(v, f_{i}(r)\right)$ to be an ordered set of all the indices of perfecting matchings used in the $v, f_{i}(r)$-path in T_{i}, listed according to the order from v to $f_{i}(r)$.

Take $L T Q_{4}$ and Figures 4 for an example. Then $O_{0}=\{0,3,2,1\}, O_{1}=\{1,0,3,2\}$, $O_{2}=\{2,1,0,3\}, O_{3}=\{3,2,1,0\}$. Consider $r=1$ and T_{1}. Then the son of the root is $f_{1}(1)=3=(0011)_{2}$. Now suppose $v=6=(0110)_{2}$. Then $v \in T_{1}, C_{1}\left(v, f_{1}(1)\right)=\{0,2\}$ and $\mathcal{P}_{1}\left(v, f_{1}(1)\right)=\{1,0,2\}$. Moreover, the path from v to $f_{1}(1)$ is

$$
(0110)_{2} \xrightarrow{f_{1}^{-1}=f_{1}}(0100)_{2} \xrightarrow{f_{0}^{-1}=f_{0}}(0101)_{2} \xrightarrow{f_{2}^{-1}=f_{2}}(0011)_{2} .
$$

3 Applying our algorithm to locally twisted cubes

The purpose of this section is to prove that $T_{0}, T_{1}, \ldots, T_{n-1}$ generated by Algorithm 1 are n ISTs for the locally twisted cube. It is not difficult to see that $L T Q_{n}$ is vertextransitive when $n \leq 2 . L T Q_{3}$ is vertex-transitive can be observed from Figure 3. We now prove that $L T Q_{n}$ is not vertex-transitive for $n \geq 4$. For $n=4$, let the $N_{k}(r)$ be the set of vertices that can be reached by r in at most k steps. Consider the number of vertices in $N_{2}(r)$ that reaches only one vertex in $N_{1}(r)$ and only one vertex in $N_{3}(r)$. For $r=0$, there is only one such vertex; however, for $r=1$, there are two such vertices. Thus $L T Q_{4}$ is not vertex-transitive. For $n \geq 5, L T Q_{n}$ is not vertex-transitive since the BFS tree with root 0 is of height $\left\lceil\frac{n+3}{2}\right\rceil$ while the BFS tree with root 1 is of height $\left\lceil\frac{n+1}{2}\right\rceil$.

We say that two vertices $u, v \in V(G)$ are symmetric if there is a bijection $h: V(G) \rightarrow$ $V(G)$ such that $h(u)=v$ and $(x, y) \in E(G)$ if and only if $(h(x), h(y)) \in E(G)$. A graph G satisfies the odd-even-transitive property if each pair of odd-numbered vertices are symmetric and each pair of even-numbered vertices are also symmetric.

We now prove that the locally twisted cube satisfies the odd-even-transitive property. Based on this property, we assume without loss of generality that $r=0$ or $r=1$ as the common root. Then, we will prove that $T_{0}, T_{1}, \ldots, T_{n-1}$ generated by Algorithm 1 are n ISTs for the locally twisted cube.

Theorem 8. The locally twisted cube $L T Q_{n}$ satisfies the odd-even-transitive property.

Proof. It suffices to prove that (i) if v is an odd-numbered vertex and $v \neq 1$, then v and 1 are symmetric, and (ii) if v is an even-numbered vertex and $v \neq 0$, then v and 0 are symmetric. Let $\mathcal{F}=\left\{f_{n-1}, f_{n-2}, \ldots, f_{0}\right\}$ be defined by equation (2). Then each edge in $L T Q_{n}$ is of the form $\left(u, f_{i}(u)\right)$ for some $f_{i} \in \mathcal{F}$.

First consider (i). Let $v=\left(v_{n-1} v_{n-2} \cdots v_{0}\right)_{2} \in V\left(L T Q_{n}\right)$ be an odd-numbered vertex and $v \neq 1$. Define a function h_{1} as follows:

$$
h_{1}(u)=v \oplus u \oplus 1 \text { for all } u=\left(u_{n-1} u_{n-2} \cdots u_{0}\right)_{2} \in V\left(L T Q_{n}\right) .
$$

It is not difficult to see that h_{1} is a bijection from $V\left(L T Q_{n}\right)$ to $V\left(L T Q_{n}\right)$. Let $\left(u, f_{i}(u)\right) \in$
$E\left(L T Q_{n}\right)$. Then

$$
h_{1}(u)=\left(v_{n-1} \oplus u_{n-1} v_{n-2} \oplus u_{n-2} \cdots v_{1} \oplus u_{1} u_{0}\right)_{2}
$$

and

$$
h_{1}\left(f_{i}(u)\right)=\left\{\begin{array}{llll}
\left(v_{n-1} \oplus u_{n-1}\right. & v_{n-2} \oplus u_{n-2} & \cdots & \left.v_{1} \oplus u_{1} 1 \oplus \bar{u}_{0}\right)_{2}
\end{array} \quad \text { if } i=0\right.
$$

and if $2 \leq i \leq n-1$, then
$h_{1}\left(f_{i}(u)\right)=\left(v_{n-1} \oplus u_{n-1} v_{n-2} \oplus u_{n-2} \cdots v_{i+1} \oplus u_{i+1} v_{i} \oplus \bar{u}_{i}\left(v_{i-1} \oplus u_{i-1} \oplus u_{0}\right) v_{i-2} \oplus u_{i-2} \cdots v_{1} \oplus u_{1} u_{0}\right)_{2}$.

Note that $v_{i} \oplus \bar{u}_{i}={\overline{v_{i} \oplus u_{i}}}_{i}$ no matter $u_{i}=v_{1}$ or $u_{i} \neq v_{i}$. Therefore

$$
h_{1}\left(f_{i}(u)\right)=f_{i}\left(h_{1}(u)\right)
$$

and hence $\left(h_{1}(u), h_{1}\left(f_{i}(u)\right)\right) \in E\left(L T Q_{n}\right)$.
Now consider (ii). Let $v=\left(v_{n-1} v_{n-2} \cdots v_{0}\right)_{2} \in V\left(L T Q_{n}\right)$ be an even-numbered vertex and $v \neq 0$. Define a function h_{0} as follows:

$$
h_{0}(u)=v \oplus u \text { for all } u=\left(u_{n-1} u_{n-2} \cdots u_{0}\right)_{2} \in V\left(L T Q_{n}\right) .
$$

It is not difficult to see that h_{0} is a bijection from $V\left(L T Q_{n}\right)$ to $V\left(L T Q_{n}\right)$. Let $\left(u, f_{i}(u)\right) \in$ $E\left(L T Q_{n}\right)$. Then

$$
h_{0}(u)=\left(v_{n-1} \oplus u_{n-1} v_{n-2} \oplus u_{n-2} \cdots v_{1} \oplus u_{1} u_{0}\right)_{2}
$$

and

$$
h_{0}\left(f_{i}(u)\right)=\left\{\begin{array}{lll}
\left(v_{n-1} \oplus u_{n-1}\right. & v_{n-2} \oplus u_{n-2} & \cdots \\
v_{1} \oplus u_{1} & \left.\bar{u}_{0}\right)_{2} & \text { if } i=0 \\
\left(v_{n-1} \oplus u_{n-1}\right. & v_{n-2} \oplus u_{n-2} & \cdots v_{2} \oplus u_{2} \\
\left.v_{1} \oplus \bar{u}_{1} u_{0}\right)_{2} & \text { if } i=1
\end{array}\right.
$$

and if $2 \leq i \leq n-1$, then
$h_{0}\left(f_{i}(u)\right)=\left(v_{n-1} \oplus u_{n-1} v_{n-2} \oplus u_{n-2} \cdots v_{k+1} \oplus u_{k+1} v_{k} \oplus \bar{u}_{k}\left(v_{k-1} \oplus u_{k-1} \oplus u_{0}\right) v_{k-2} \oplus u_{k-2} \cdots v_{1} \oplus u_{1} u_{0}\right)_{2}$.

Again, $v_{i} \oplus \bar{u}_{i}=\overline{v_{i} \oplus u_{i}}$ no matter $u_{i}=v_{1}$ or $u_{i} \neq v_{i}$. Therefore

$$
h_{0}\left(f_{i}(u)\right)=f_{i}\left(h_{0}(u)\right)
$$

and hence $\left(h_{0}(u), h_{0}\left(f_{i}(u)\right)\right) \in E\left(L T Q_{n}\right)$.

By Theorem 8, we assume without loss of generality that $r=0$ or $r=1$ as the common root. In subsections 3.1 and 3.2 , we will prove that $T_{0}, T_{1}, \ldots, T_{n-1}$ generated by Algorithm 1 are n ISTs rooted at $r=0$ and $r=1$ for $L T Q_{n}$, respectively. For convenience, in the remaining discussion, define $I(a, b)$, where $a \geq b$, to be an ordered sequence such that

$$
I(a, b)= \begin{cases}a, a-1, \ldots, b+1 & \text { if } a>b, \\ a & \text { if } a=b .\end{cases}
$$

3.1 Vertex 0 as the common root

Throughout this subsection, let $T_{0}, T_{1}, \ldots, T_{n-1}$ be the output of Algorithm 1 when the input is the \mathcal{F} of $L T Q_{n}$ and the root is $r=0$. The purpose of this subsection is to prove that $T_{0}, T_{1}, \ldots, T_{n-1}$ are n ISTs rooted at $r=0$ for $L T Q_{n}$.

Lemma 9. $T_{0}, T_{1}, \ldots, T_{n-1}$ are n spanning trees rooted at r for $L T Q_{n}$ when $r=0$.

Proof. It suffices to prove that each $T_{i}(0 \leq i \leq n-1)$ is a spanning tree rooted at $r=0$. Consider the set S used in line 6 in the algorithm. From the inner for-loop, we know that Algorithm 1 uses vertices in S to generate edges in T_{i} and each $v \in S$ generates exactly one edge $(u, v) \in T_{i}$, where $u=f_{m \bmod n}(v)$. We now claim that:

Claim: At the start of the k-th iteration of the outer for-loop, $|S|=2^{k-1}$.
Proof of the claim. This claim is true when $k=1$ since line 3 sets $S=\{s o n\}$ and hence $|S|=1=2^{0}$. We now prove that if this claim is true before the k-th iteration of the outer for-loop, then it remains true before the next iteration. There are two cases.

Case 1: $k \in\{1,2, \ldots, n-1\}$. Set $t=(i+k) \bmod n$ for easy writing. The k-th outer for-loop uses the perfect matching f_{t} to generate exactly one edge $(u, v) \in T_{i}$ for each
$v \in S$. Notice that the t-th bit of each vertex $v \in S$ is 0 and the t-th bit of each vertex in S^{\prime} is 1 . Therefore $S \cap S^{\prime}=\emptyset$ before the execution of line 11 . Thus at the start of the next iteration of the outer for-loop, $|S|=2^{k}$.

Case 2: $k=n$. The n-th outer for-loop uses the perfect matching f_{i} to generate exactly one edge $(u, v) \in T_{i}$ for each each $v \in S$. Notice that the i-th bit of each vertex $v \in S$ is 1 and the i-th bit of each vertex in $S^{\prime \prime}$ is 0 . Therefore $S \cap S^{\prime}=\emptyset$ before the execution of line 11. Thus at the start of the next iteration of the outer for-loop, $|S|=2^{k}$.

From the above, when the outer for-loop terminates, $k=n+1$ and $|S|=2^{n}$; therefore T_{i} is a spanning subgraph. Also, at the end of the k-th iteration of the outer for-loop, $|S|=2^{k-1}$ new edges are generated; thus T_{i} has a total of $2^{0}+2^{1}+\cdots+2^{n-1}=2^{n}-1$ edges. T_{i} is connected since each newly generated edge in Algorithm 1 is incident to an edge that is already generated. Thus T_{i} is a spanning tree rooted at $r=0$.

When $r=0$, the son of the root in T_{i} is $f_{i}(0)$ and

$$
f_{i}(0)=2^{i} .
$$

For any $v \in V\left(T_{i}\right) \backslash\left\{0, f_{i}(0)\right\}$, the $v, f_{i}(0)$-path in T_{i} can be determined by $\mathcal{P}_{i}\left(v, f_{i}(0)\right)$, which can be determined by the ordered set

$$
C_{i}\left(v, f_{i}(0)\right)=\left\{c_{m-1}, c_{m-2}, \ldots, c_{0}\right\}
$$

as follows. Suppose $v=\left(v_{n-1} v_{n-2} \cdots v_{0}\right)_{2}$. When $v_{0}=0$, since $r=0$, we have
$\mathcal{P}_{i}\left(v, f_{i}(0)\right)= \begin{cases}C_{i}\left(v, f_{i}(0)\right) & \text { if } i=0, \\ \left\{c_{m-1}=0, I\left(c_{m-2}, c_{m-3}\right), \ldots, I\left(c_{3}, c_{2}\right), I\left(c_{1}, c_{0}\right)\right\} & \text { if } i \neq 0 \text { and } m-1 \text { is even, } \\ \left\{c_{m-1}=0, I\left(c_{m-2}, c_{m-3}\right), \ldots, I\left(c_{2}, c_{1}\right), I\left(c_{0}, 0\right)\right\} & \text { if } i \neq 0 \text { and } m-1 \text { is odd. }\end{cases}$
When $v_{0}=1$, since $r=0$, the set $C_{i}\left(v, f_{i}(0)\right)$ must contain the value 0 if $i \neq 0$; so we assume $c_{e}=0$ if $i \neq 0$. Thus when $r=0$ and $v_{0}=1$,
$\mathcal{P}_{i}\left(v, f_{i}(0)\right)= \begin{cases}\left\{I\left(c_{m-1}, c_{m-2}\right), I\left(c_{m-3}, c_{m-4}\right), \ldots, I\left(c_{1}, c_{0}\right)\right\} & \text { if } i=0, m \text { is even, } \\ \left\{I\left(c_{m-1}, c_{m-2}\right), I\left(c_{m-3}, c_{m-4}\right), \ldots, I\left(c_{2}, c_{1}\right), I\left(c_{0}, 0\right)\right\} & \text { if } i=0, m \text { is odd, } \\ \left\{I\left(c_{m-1}, c_{m-2}\right), I\left(c_{m-3}, c_{m-4}\right), \ldots, I\left(c_{e+2}, c_{e+1}\right), c_{e}, c_{e-1}, \ldots, c_{0}\right\} & \text { if } j \neq 0, m-e \text { is odd, } \\ \left\{I\left(c_{m-1}, c_{m-2}\right), I\left(c_{m-3}, c_{m-4}\right), \ldots, I\left(c_{e+1}, 0\right), c_{e}, c_{e-1}, \ldots, c_{0}\right\} & \text { if } i \neq 0, m-e \text { is even. }\end{cases}$

In the following, we give some examples for $\mathcal{P}_{i}\left(v, f_{i}(0)\right)$. Consider $L T Q_{4}$. Then $f_{0}(0)=$ $2^{0}=1, f_{1}(0)=2^{1}=2$ and $f_{2}(0)=2^{2}=4$. Thus the son of the root in T_{0} is 1 , in T_{1} is 2 and in T_{2} is 4. For $v=(1010)_{2} \in T_{0}$, we have $C_{0}(v, 1)=\{0,3,1\}$ and $\mathcal{P}_{0}(v, 1)=\{0, I(3,1)\}=$ $\{0,3,2\}$; so the $v, 1$-path in T_{0} is

$$
(1010)_{2} \xrightarrow{f_{0}^{-1}=f_{0}}(1011)_{2} \xrightarrow{f_{3}^{-1}=f_{3}}(0111)_{2} \xrightarrow{f_{2}^{-1}=f_{2}}(0001)_{2} .
$$

For $v=(1100)_{2} \in T_{1}$, we have $C_{1}(v, 2)=\{1,3,2\}$ and $\mathcal{P}_{1}(v, 2)=\{1,3,2\}$; so the $v, 2$-path in T_{1} is

$$
(1100)_{2} \xrightarrow{f_{1}^{-1}=f_{1}}(1110)_{2} \xrightarrow{f_{3}^{-1}=f_{3}}(0110)_{2} \xrightarrow{f_{2}^{-1}=f_{2}}(0010)_{2}
$$

For $v=(0001)_{2} \in T_{2}$, we have $C_{2}(v, 4)=\{2,0\}$ and $\mathcal{P}_{2}(v, 4)=\{I(2,0), 0\}=\{2,1,0\}$; so the $v, 4$-path in T_{2} is

$$
(0001)_{2} \xrightarrow{f_{2}^{-1}=f_{2}}(0111)_{2} \xrightarrow{f_{1}^{-1}=f_{1}}(0101)_{2} \xrightarrow{f_{0}^{-1}=f_{0}}(0100)_{2}
$$

Lemma 10. $T_{0}, T_{1}, \ldots, T_{n-1}$ are n vertex-independent trees rooted at r for $L T Q_{n}$ when $r=0$.

Proof. It suffices to prove that any two T_{i} and T_{j} with $0 \leq i<j \leq n-1$ are vertexindependent, i.e., for each $v \in V\left(L T Q_{n}\right)$, the r, v-path in T_{i} and the r, v-path in T_{j} are internally vertex-disjoint. The son of the root in T_{i} is $f_{i}(r)$ and in T_{j} is $f_{j}(r)$. Let $v=\left(v_{n-1} v_{n-2} \cdots v_{0}\right)_{2}$ be an arbitrary vertex in $L T Q_{n}$. In the following, we assume $v \notin\left\{r, f_{i}(r), f_{j}(r)\right\}$ since if $v \in\left\{r, f_{i}(r), f_{j}(r)\right\}$, then the r, v-path in T_{i} and the r, v-path in T_{j} are clearly internally vertex-disjoint.

Since $f_{i}(r) \neq f_{j}(r)$, the r, v-path in T_{i} and the r, v-path in T_{j} are internally vertexdisjoint if and only if the $v, f_{i}(r)$-path in T_{i} and the $v, f_{j}(r)$-path in T_{j} are internally vertex-disjoint. In the following, we will only prove that the $v, f_{i}(r)$-path in T_{i} and the $v, f_{j}(r)$-path in T_{j} are internally vertex-disjoint. Let V_{1} be an ordered set that contains the internal vertices of the $v, f_{i}(r)$-path in T_{i} listed from v to $f_{i}(r)$. Let V_{2} be an ordered set that contains the internal vertices of the $v, f_{j}(r)$-path in T_{j} listed from v to $f_{j}(r)$. We now claim that:

Claim: $V_{1} \cap V_{2}=\emptyset$.
Proof of the claim. Suppose this claim is not true and there exists a vertex $a \in V_{1} \cap V_{2}$. Recall that $f_{i}(0)=2^{i}$ and $f_{j}(0)=2^{j}$. Let

$$
\begin{equation*}
C_{i}\left(v, 2^{i}\right)=\left\{c_{m-1}, c_{m-2}, \ldots, c_{0}\right\} . \tag{5}
\end{equation*}
$$

There are four cases.
Case 1: $v_{i}=1$ and $v_{j}=1$. Then there must exist a u such that $c_{u}=j$. Thus

$$
\begin{equation*}
C_{j}\left(v, 2^{j}\right)=\left\{c_{u-1}, c_{u-2}, \ldots, c_{0}, i, c_{m-1}, c_{m-2}, \ldots, c_{u+1}\right\} . \tag{6}
\end{equation*}
$$

By (3) and (4) and (5), c_{m-1} is the first element in $\mathcal{P}_{i}\left(v, 2^{i}\right)$. Let $x \in V_{1}$. Then the $\left(c_{m-1}\right)$-th bit of x is $v_{c_{m-1}}$ only when (i) $\left(c_{m-1}+1\right) \in \mathcal{P}_{i}\left(v, 2^{i}\right)$, (ii) $c_{m-1}+1 \geq 2$ and (iii) there exists $q=\left(q_{n-1} q_{n-2} \cdots q_{0}\right)_{2} \in V_{1}$ such that $x=f_{c_{m-1}+1}(q)$ and $q_{0}=1$. We now prove that (i), (ii) and (iii) will not occur simultaneously; hence for all $x \in V_{1}$, the $\left(c_{m-1}\right)$-th bit of x is $\bar{v}_{c_{m-1}}$. If $\left|C_{i}\left(v, 2^{i}\right)\right|=1$, then (i) can not occur. Suppose $\left|C_{i}\left(v, 2^{i}\right)\right| \geq 2$ and both (i) and (iii) occur; that is, there exists $q=\left(q_{n-1} q_{n-2} \cdots q_{0}\right)_{2} \in V_{1}$ such that $x=f_{c_{m-1}+1}(q)$ and $q_{0}=1$. $\operatorname{By}(5), c_{m-1}+1$ is the last element in $\mathcal{P}_{i}\left(v, 2^{i}\right)$. Since $q_{0}=1, I\left(c_{0}, 0\right) \subseteq \mathcal{P}_{i}\left(v, 2^{i}\right)$. By Lemma 3 and by the fact that $I\left(c_{0}, 0\right)=\left\{c_{0}, c_{0}-1, \ldots, 1\right\}$, we have $c_{m-1}+1=1$; thus (ii) does not occur and consequently the $\left(c_{m-1}\right)$-th bit of all the vertices in V_{1} is $\bar{v}_{c_{m-1}}$. Since $v_{i}=1$, the i-th bit of all the vertices in V_{1} is 1 . By (3) and (4) and (6), the $\left(c_{m-1}\right)$-th bit of those vertices in V_{2} with the i-th bit being 1 is $v_{c_{m-1}}$. Thus $V_{1} \cap V_{2}=\emptyset$.

Case 2: $v_{i}=0$ and $v_{j}=0$. Then $c_{m-1}=i$. If $\left|C_{i}\left(v, 2^{i}\right)\right|=1$, then $C_{i}\left(v, 2^{i}\right)=$ $\{i\}$, which implies that $v=0$; this contradicts with the assumption that $v \neq 0$. Thus $\left|C_{i}\left(v, 2^{i}\right)\right| \geq 2$ and there must exist a u such that j is between c_{u} and c_{u-1} with respect to O_{i}. Thus

$$
C_{j}\left(v, 2^{j}\right)= \begin{cases}\left\{j, c_{u-1}, c_{u-2}, \ldots, c_{0}, c_{m-2}, c_{m-3}, \ldots, c_{u+1}, c_{u}\right\} & \text { if } u \neq 0 \tag{7}\\ \left\{j, c_{u-1}, c_{u-2}, \ldots, c_{0}, c_{m-2}, c_{m-3}, \ldots, c_{u+1}\right\} & \text { if } u=0\end{cases}
$$

By (3) and (4) and (5), the i-th bit of all vertices in V_{1} is 1 . By (3) and (4) and (7), the j-th bit of all vertex in V_{2} is 1 . Suppose $V_{1} \cap V_{2} \neq \emptyset$ and $a \in V_{1} \cap V_{2}$. Then the i-th bit
and the j-th bit of a are both 1 . When $I\left(c_{u}, c_{u-1}\right) \nsubseteq \mathcal{P}_{i}\left(v, 2^{i}\right)$, each vertex in V_{1} has its j-th bit to be 0 . When $I\left(c_{0}, c_{m-2}\right) \nsubseteq \mathcal{P}_{j}\left(v, 2^{j}\right)$, each vertex in V_{2} has its i-th bit to be 0 . Thus the existence of a implies that $I\left(c_{u}, c_{u-1}\right) \subseteq \mathcal{P}_{i}\left(v, 2^{i}\right)$ and $I\left(c_{0}, c_{m-2}\right) \subseteq \mathcal{P}_{j}\left(v, 2^{j}\right)$. Note that $I\left(c_{u}, c_{u-1}\right) \subseteq \mathcal{P}_{i}\left(v, 2^{i}\right)$ implies that $i=0$ and hence $v_{0}=0$ (since case 2 requires $\left.v_{i}=0\right)$. However, $I\left(c_{0}, c_{m-2}\right) \subseteq \mathcal{P}_{j}\left(v, 2^{j}\right)$ implies $v_{0}=1$, which contradicts with $v_{0}=0$. Thus no such a exists and $V_{1} \cap V_{2}=\emptyset$.

Case 3: $v_{i}=0$ and $v_{j}=1$. Then $c_{m-1}=i$ and there must exist a u such that $c_{u}=j$. If $\left|C_{i}\left(v, 2^{i}\right)\right|=1$, then $C_{j}\left(v, 2^{i}\right)=\emptyset$, which implies that $v=2^{j}$; this contradicts with the assumption that $v \neq 2^{j}$. Thus

$$
\begin{equation*}
C_{j}\left(v, 2^{j}\right)=\left\{c_{u-1}, c_{u-2}, \ldots, c_{0}, c_{m-2}, c_{m-3}, \ldots, c_{u+1}\right\} \tag{8}
\end{equation*}
$$

By (3) and (4) and (5), the i-th bit of all vertices in V_{1} is 1 . Suppose $V_{1} \cap V_{2} \neq \emptyset$ and $a \in V_{1} \cap V_{2}$. Then the i-th bit of a is 1 . When $I\left(c_{0}, c_{m-2}\right) \nsubseteq \mathcal{P}_{j}\left(v, 2^{j}\right)$, each vertex in V_{2} has its i-th bit to be 0 . Thus the existence of a implies that $I\left(c_{0}, c_{m-2}\right) \subseteq \mathcal{P}_{j}\left(v, 2^{j}\right)$ which further implies $v_{0}=1$. Since $I\left(c_{0}, c_{m-2}\right) \subseteq \mathcal{P}_{j}\left(v, 2^{j}\right), V_{2}$ has only one vertex $x=\left(x_{n-1} x_{n-2} \cdots x_{0}\right)_{2}$ such that $x_{i}=1$ and $x=f_{i+1}(q)$ for some $q \in V_{2}$. The existence of a implies that $x=a$. Since $v_{0}=1, \mathcal{P}_{i}\left(v, 2^{i}\right)$ starts with $I\left(i, c_{m-2}\right)$, i.e., $\mathcal{P}_{i}\left(v, 2^{i}\right)$ is of the form $\left\{I\left(i, c_{m-2}\right), \ldots\right\}$. By (4), c_{m-3} is the first element after $I\left(i, c_{m-2}\right)$ in $\mathcal{P}_{i}\left(v, 2^{i}\right)$. Recall that $\mathcal{P}_{i}\left(v, 2^{i}\right)$ is an ordered set of all the indices of perfecting matchings used in the $v, 2^{i}$-path in T_{i} listed according to the order from v to 2^{i}. Thus the first vertex in V_{1} can be obtained by applying the first perfect matching obtained from the first element in $\mathcal{P}\left(v, 2^{i}\right)$ to v, the second vertex in V_{1} can be obtained by applying the second perfect matching obtained from the second element in $\mathcal{P}\left(v, 2^{i}\right)$ to the first vertex in V_{1}, and so on. Thus we can partition V_{1} into $V_{1, a}$ and $V_{1, b}$ such that $V_{1, a}$ consists of those vertices in V_{1} before $f_{c_{m-3}}$ is applied and $V_{1, b}=V_{1}-V_{1, a}$. Let $y=\left(y_{n-1} y_{n-2} \cdots y_{0}\right)_{2}$ be an arbitrary vertex in $V_{1, a}$. Then bits $y_{i} y_{i-1} \cdots y_{c_{m-2}}$ are different from $v_{i} v_{i-1} \cdots v_{c_{m-2}}$ in exactly two bits. However, bits $x_{i} x_{i-1} \cdots x_{c_{m-2}}$ are identical to $v_{i} v_{i-1} \cdots v_{c_{m-2}}$. Thus $x \notin V_{1, a}$. On the other hand, $x_{c_{m-3}}=v_{c_{m-3}}$ but the $\left(c_{m-3}\right)$-th bit of all the vertices in $V_{1, b}$ is $\bar{v}_{c_{m-3}}$; thus $x \notin V_{1, b}$. Since $x \notin V_{1, a}$ and $x \notin V_{1, b}$, we have $x \notin V_{1}$. Since $x=a$, it follows that $a \notin V_{1}$.

Thus no such a exists and $V_{1} \cap V_{2}=\emptyset$.
Case 4: $v_{i}=1$ and $v_{j}=0$. Then there must exist a u such that j is between c_{u} and c_{u-1} with respect to O_{i}. Thus
$C_{j}\left(v, 2^{j}\right)= \begin{cases}\left\{j, i, c_{u-1}, c_{u-2}, \ldots, c_{0}, c_{m-1}, c_{m-2}, \ldots, c_{u}\right\} & \text { if } i \text { is between } c_{u} \text { and } c_{u-1} \text { respect to } O_{i}, \\ \left\{j, c_{u-1}, c_{u-2}, \ldots, c_{0}, i, c_{m-1}, c_{m-2}, \ldots, c_{u}\right\} & \text { if otherwise. }\end{cases}$

By (3) and (4) and (9), the j-th bit of all vertices in V_{2} is 1 . Since $v_{i}=1$, the i-th bit of all the vertices in V_{1} is 1 . Suppose $V_{1} \cap V_{2} \neq \emptyset$ and $a \in V_{1} \cap V_{2}$. Then the i-th bit and the j-th bit of a are both 1 . By (9), case 4 consists of two subcases. In each subcase, we will prove that no such a exists. Since a does not exist, $V_{1} \cap V_{2}=\emptyset$.

Subcase 4.1: i is between c_{u} and c_{u-1} with respect to O_{i}. Then V_{2} has only one vertex $f_{j}(v)$ with its i-th bit and j-th bit both being 1 . By (3) and (4) and (5), c_{m-1} is the first element in $\mathcal{P}_{i}\left(v, 2^{i}\right)$. Thus the $\left(c_{m-1}\right)$-th bit of those vertices in V_{1} with the j-th bit being 1 is $\bar{v}_{c_{m-1}}$. However, by (3) and (4) and (9), the $\left(c_{m-1}\right)$-th bit of $f_{j}(v)$ is $v_{c_{m-1}}$. Thus no such a exists.

Subcase 4.2: i is not between c_{u} and c_{u-1} with respect to O_{i}. If $\left|C_{i}\left(v, 2^{i}\right)\right|=1$, then $C_{i}\left(v, 2^{i}\right)=\left\{c_{0}\right\} ;$ since $v_{j}=0$, we have $c_{0} \neq j$, which implies that each vertex in V_{1} has its j-th bit to be 0 and consequently no such a exists. Now suppose $\left|C_{i}\left(v, 2^{i}\right)\right| \geq 2$. Then when $I\left(c_{u}, c_{u-1}\right) \nsubseteq \mathcal{P}_{i}\left(v, 2^{i}\right)$, each vertex in V_{1} has its j-th bit to be 0 . Thus the existence of a implies that $I\left(c_{u}, c_{u-1}\right) \subseteq \mathcal{P}_{i}\left(v, 2^{i}\right)$. Since $I\left(c_{u}, c_{u-1}\right) \subseteq \mathcal{P}_{i}\left(v, 2^{i}\right), V_{1}$ has only one vertex $x=\left(x_{n-1} x_{n-2} \cdots x_{0}\right)_{2}$ such that $x_{j}=1$ and $x=f_{j+1}(q)$ for some $q \in V_{1}$. The existence of a implies that $x=a$. By (3) and (4) and (9), the (c_{m-1})-th bit of those vertices in V_{2} with the i-th bit being 1 is $\bar{v}_{c_{m-1}}$. However, the $x_{c_{m-1}}=v_{c_{m-1}}$. So if $x \in V_{1}$, $x \notin V_{2}$. Then, by (3) and (4) and (5), the j-th bit of all the vertices in $V_{1} \backslash\{x\}$ is 0 . By (3) and (4) and (9), the j-th bit of all the vertices in V_{2} is 1 . Thus no such a exists.

Since $V_{1} \cap V_{2}=\emptyset$, we have this lemma.

Theorem 11. $T_{0}, T_{1}, \ldots, T_{n-1}$ are $n n$ ISTs rooted at r for $L T Q_{n}$ when $r=0$.

Proof. This theorem follows from Lemmas 9 and 10.

3.2 Vertex 1 as the common root

Throughout this subsection, let $T_{0}, T_{1}, \ldots, T_{n-1}$ be the output of Algorithm 1 when the input is the \mathcal{F} of $L T Q_{n}$ and the root is $r=1$. The purpose of this subsection is to prove that $T_{0}, T_{1}, \ldots, T_{n-1}$ are n ISTs rooted at $r=1$ for $L T Q_{n}$. For $S \subseteq V\left(L T Q_{n}\right)$, define $f_{i}(S)$ to be

$$
f_{i}(S)=\left\{f_{i}(v) \mid \text { for all } v \in S\right\}
$$

This definition will be used in the following proofs.
Lemma 12. $T_{0}, T_{1}, \ldots, T_{n-1}$ are n spanning trees rooted at r for $L T Q_{n}$ when $r=1$.
Proof. The proof of this lemma is similar to that of Lemma 9 except that $r=0$ is replaced by $r=1$ and the proof of the claim is modified as follows.

Proof of the claim. This claim is true when $k=1$ since line 3 sets $S=\{s o n\}$ and hence $|S|=1=2^{0}$. We now prove that if this claim is true before the k-th iteration of the outer for-loop, then it remains true before the next iteration. According to which T_{i} is considered, there are three possibilities.

1. Suppose T_{0} is considered. Then $i=0$ and there are two cases.

Case 1: $k \in\{1,2, \ldots, n-1\}$. The proof of this case is the same as Case 1 in Lemma 9.
Case 2: $k=n$. The proof of this case is the same as Case 2 in Lemma 9 except that: the i-th bit of each vertex $v \in S$ is 0 and the i-th bit of each vertex in S^{\prime} is 1 .
2. Suppose T_{n-1} is considered. Then $i=n-1$ and there are two cases.

Case 1: $k \in\{1,2, \ldots, n-1\}$. The proof of this case is the same as Case 1 in Lemma 9 except that: when $k=n-1$, the $(n-2)$-th bit of each vertex $v \in S$ is 1 and the ($n-2$)-th bit of each vertex in S^{\prime} is 0 .

Case 2: $k=n$. The proof of this case is the same as Case 2 in Lemma 9.
3. Suppose T_{i} is considered, where $i \in\{1,2, \ldots, n-2\}$. Then there are two cases.

Case 1: $k \in\{1,2, \ldots, n-1\}$. The proof of this case is the same as Case 1 in Lemma 9 except that: when $k=n-1$, the $(n-2)$-th bit of each vertex $v \in S$ is 1 and the ($n-2$)-th bit of each vertex in S^{\prime} is 0 .

Case 2: $k=n$. This is the last (the n-th) iteration of the outer for-loop of Algorithm 1 . Before the n-th iteration of the outer for-loop, $|S|=2^{n-1}$ and a total of $2^{0}+2^{1}+\cdots+2^{n-2}=$ $2^{n-1}-1$ edges have been put into T_{i}; these edges form a connected subgraph since each newly generated edge in Algorithm 1 is incident to an edge that is already generated. Thus S induces a tree. Partition S into S^{0} and S^{1} such that

$$
S^{0}=\left\{\text { all the vertices in the subtree rooted at } f_{i+1}\left(f_{i}(1)\right)\right\} \text { and } S^{1}=S \backslash S^{0} .
$$

See Figure 5 as an illustration.

Figure 5: An illustration for the proof of Lemma 12.

By (2) and by Lemma 3, we have: (i) the i-th bit of all the vertices in S^{0} is 0 and hence the i-th bit of all the vertices in $f_{i}\left(S^{0}\right)$ is 1 , and (ii) the i-th bit of all the vertices in S^{1} is 1 and hence the i-th bit of all the vertices in $f_{i}\left(S^{1}\right)$ is 0 . Notice that

$$
S^{\prime}=f_{i}\left(S^{0}\right) \cup f_{i}\left(S^{1}\right)
$$

By (i) and (ii), to prove that $S \cap S^{\prime}=\emptyset$, it suffices to prove that

$$
\begin{equation*}
S^{0} \cap f_{i}\left(S^{1}\right)=\emptyset \quad \text { and } \quad S^{1} \cap f_{i}\left(S^{0}\right)=\emptyset \tag{10}
\end{equation*}
$$

Suppose $i=n-2$. Then the $(n-1)$-bit of all the vertices in S^{0} and $f_{n-2}\left(S^{0}\right)$ is 1 ; however, the $(n-1)$-bit of all the vertices in S^{1} and $f_{n-2}\left(S^{1}\right)$ is 0 . Thus when $i=n-2, S^{0} \cap f_{n-2}\left(S^{1}\right)=\emptyset$ and $S^{1} \cap f_{n-2}\left(S^{0}\right)=\emptyset$. Now suppose $i \in\{1,2, \ldots, n-3\}$. Partition S^{0} into S_{0}^{0} and S_{1}^{0} such that

$$
S_{0}^{0}=\left\{\text { all the vertices in the subtree rooted at } f_{i+2}\left(f_{i+1}\left(f_{i}(1)\right)\right)\right\} \text { and } S_{1}^{0}=S^{0} \backslash S_{0}^{0}
$$

Partition S^{1} into S_{0}^{1} and S_{1}^{1} such that

$$
S_{0}^{1}=\left\{\text { all the vertices in the subtree rooted at } f_{i+2}\left(f_{i}(1)\right)\right\} \text { and } S_{1}^{1}=S^{0} \backslash S_{0}^{1} .
$$

By (2) and by Lemma 3, the pair of the $(i+1)$-th and the i-th bit of all the vertices in S_{0}^{0} and $f_{i}\left(S_{1}^{1}\right)$ is $(0,0)$; in $f_{i}\left(S_{0}^{0}\right)$ and S_{1}^{1} is $(0,1)$; in S_{1}^{0} and $f_{i}\left(S_{0}^{1}\right)$ is $(1,0)$ and in $f_{i}\left(S_{1}^{0}\right)$ and S_{0}^{1} is $(1,1)$. Thus to prove (10), it suffices to prove that

$$
\begin{equation*}
S_{0}^{0} \cap f_{i}\left(S_{1}^{1}\right)=\emptyset, S_{1}^{1} \cap f_{i}\left(S_{0}^{0}\right)=\emptyset, S_{0}^{1} \cap f_{i}\left(S_{1}^{0}\right)=\emptyset \text { and } S_{1}^{0} \cap f_{i}\left(S_{0}^{1}\right)=\emptyset \tag{11}
\end{equation*}
$$

For each $v=\left(v_{n-1}, v_{n-1}, \ldots, v_{0}\right)_{2} \in V\left(L T Q_{n}\right)$ such that $v \neq 0$, define q to be the index so that v_{q} is the leftmost nonzero bit, i.e., $v_{n-1}=v_{n-2}=\cdots=v_{q+1}=0$ and $v_{q}=1$ (since $v \neq 0, q$ exists). For $v=0$, define q to be -1 . By (2) and by Lemma 3, we have Table 2 . We now use two claims to prove (11).

Table 2: The value of q for every vertex in the given set.

$S_{0}^{0} \cup f_{i}\left(S_{0}^{0}\right)$	$S_{1}^{1} \cup f_{i}\left(S_{1}^{1}\right)$	$S_{0}^{1} \cup f_{i}\left(S_{0}^{1}\right)$	$S_{1}^{0} \cup f_{i}\left(S_{1}^{0}\right)$
$q \geq i+2$	$q \leq i+1$ or $q \geq i+3$	$q \geq i+3$	$q=i+1$ or $q \geq i+3$

Claim A: $S_{0}^{0} \cap f_{i}\left(S_{1}^{1}\right)=\emptyset$ and $S_{1}^{1} \cap f_{i}\left(S_{0}^{0}\right)=\emptyset$. This claim holds since:
By Table 2, each vertex in $S_{1}^{1} \cap f_{i}\left(S_{1}^{1}\right)$ with $q \leq i+1$ does not belong to $S_{0}^{0} \cup f_{i}\left(S_{0}^{0}\right)$ since every vertex in $S_{0}^{0} \cup f_{i}\left(S_{0}^{0}\right)$ has $q \geq i+2$. By Table 2 , each vertex in $S_{0}^{0} \cup f_{i}\left(S_{0}^{0}\right)$ with $q=i+2$ does not belong to $S_{1}^{1} \cap f_{i}\left(S_{1}^{1}\right)$ since each vertex in $S_{1}^{1} \cap f_{i}\left(S_{1}^{1}\right)$ has $q \neq i+2$. From the above, we may focus on vertices with $q=i+3$ or $q>i+3$. Note that each vertex in $S_{0}^{0} \cup f_{i}\left(S_{0}^{0}\right)$ with $q=i+3$ will have its $(i+2)$-th bit to be 0 ; however, from Table 2, we know that each vertex in $f_{i}\left(S_{1}^{1}\right) \cup S_{1}^{1}$ with $q \geq i+3$ will have its $(i+2)$-th bit to be 1 . Therefore, each vertex in $S_{0}^{0} \cup f_{i}\left(S_{0}^{0}\right)$ with $q=i+3$ does not belong to $S_{1}^{1} \cup f_{i}\left(S_{1}^{1}\right)$.

It remains to consider vertices with $q>i+3$. Note that the bit string of those bits from the q-th bit to the $(i+2)$-th bit of all the vertices in $S_{0}^{0} \cup f_{i}\left(S_{0}^{0}\right)$ is one of the strings in $L_{0}=\{\underbrace{1 \overbrace{00 \cdots 0}^{q-i-20^{\prime} s}}_{q-i-1 \text { bits }}, \underbrace{1 \overbrace{00 \cdots 0}^{q-i-40^{\prime} s} 11}_{q-i-1 \text { bits }}, \underbrace{1 \overbrace{00 \cdots 0}^{q-i-50^{\prime} s} 101}_{q-i-1 \text { bits }}, \underbrace{1 \overbrace{00 \cdots 0}^{q-i-60^{\prime} s} 1001}_{q-i-1 \text { bits }}, \ldots, \underbrace{101 \overbrace{00 \cdots 0}^{q-i-50^{\prime} s} 1}_{q-i-1 \text { bits }}, \underbrace{11 \overbrace{00 \cdots 0}^{q-i-40^{\prime} s} 1}_{q-i-1 \text { bits }}\}$.

However, the bit string of those bits from the q-th bit to the $(i+2)$-th bit of all the vertices in $S_{1}^{1} \cup f_{i}\left(S_{1}^{1}\right)$ is one of the strings in
$L_{1}=\{\underbrace{1 \overbrace{00 \cdots 0} 1}_{q-i-1 \text { bits }}, \underbrace{\overbrace{00 \cdots 0}^{q-i-40^{\prime} s} 10}_{q-i-1 \text { bits }}, \underbrace{1 \overbrace{00 \cdots 0}^{q-i-5} 100}_{q-i-1 \text { bits }}, \underbrace{1 \overbrace{00 \cdots 0}^{0^{\prime} s} 1000}_{q-i-1 \text { bits }}, \ldots, \underbrace{101 \overbrace{00 \cdots 0}^{q-i-4}}_{q-i-1 \text { bits }}, \underbrace{11 \overbrace{00 \cdots 0}^{0^{\prime} s}}_{q-i-1 \text { bits }}\}$.
It is not difficult to see that $L_{0} \cap L_{1}=\emptyset$. Hence we have Claim A.
Claim B: $S_{1}^{0} \cap f_{i}\left(S_{0}^{1}\right)=\emptyset$ and $S_{0}^{1} \cap f_{i}\left(S_{1}^{0}\right)=\emptyset$. The proof of Claim B is similar to that of Claim A except that $S_{0}^{0} \cup f_{i}\left(S_{0}^{0}\right)$ is replaced by $S_{0}^{1} \cup f_{i}\left(S_{0}^{1}\right)$ and $S_{1}^{1} \cup f_{i}\left(S_{1}^{1}\right)$ is replaced by $S_{1}^{0} \cup f_{i}\left(S_{1}^{0}\right)$.

By Claims A and B, we have (11) and hence have (10). Therefore $S \cap S^{\prime}=\emptyset$ before the execution of line 11. Thus at the start of the next iteration of the outer for-loop, $|S|=2^{k}$.

We now have this lemma.

When $r=1$, the son of the root in T_{i} is $f_{i}(1)$, where

$$
f_{i}(1)= \begin{cases}0 & \text { if } i \neq 0 \tag{12}\\ 3 & \text { if } i=1 \\ 2^{i}+2^{i-1}+1 & \text { if } 2 \leq i \leq n-1\end{cases}
$$

For any $v \in V\left(T_{i}\right) \backslash\left\{1, f_{i}(1)\right\}$, the $v, f_{i}(1)$-path in T_{i} can be determined by $\mathcal{P}_{i}\left(v, f_{i}(1)\right)$, which can be determined by the ordered set

$$
C_{i}\left(v, f_{i}(1)\right)=\left\{c_{m-1}, c_{m-2}, \ldots, c_{0}\right\}
$$

as follows. Let c_{e-1} be the first (from left to right) member in $C_{i}\left(v, f_{i}(1)\right)$ that is larger than i. Suppose $v=\left(v_{n-1} v_{n-2} \cdots v_{0}\right)_{2}$. When $i=0$, since $r=1$, we have

$$
\begin{equation*}
\mathcal{P}_{i}\left(v, f_{i}(1)\right)=C_{i}\left(v, f_{i}(1)\right) . \tag{13}
\end{equation*}
$$

When $i \neq 0$ and $v_{0}=0$, since $r=1$, we have $c_{e}=0$ and
$\mathcal{P}_{i}\left(v, f_{i}(1)\right)= \begin{cases}\left\{c_{m-1}, c_{m-2}, \ldots, c_{e}, I\left(c_{e-1}, c_{e-2}\right), I\left(c_{e-3}, c_{e-}\right), \ldots, I\left(c_{1}, c_{0}\right)\right\} & \text { if } e \text { is even, } \\ \left\{c_{m-2}, c_{m-3}, \ldots, c_{e}, I\left(c_{e-1}, c_{e-2}\right), I\left(c_{e-3}, c_{e-4}\right), \ldots, I\left(c_{0}, i\right)\right\} & \text { if } e \text { is odd, } c_{m-1}=i, \\ \left\{i, c_{m-1}, c_{m-2}, \ldots, c_{e}, I\left(c_{e-1}, c_{e-2}\right), I\left(c_{e-3}, c_{e-4}\right), \ldots, I\left(c_{0}, i\right)\right\} & \text { if } e \text { is odd, } c_{m-1} \neq i .\end{cases}$

When $i \neq 0$ and $v_{0}=0$, in order to obtain $\mathcal{P}_{i}\left(v, f_{i}(1)\right)$ from $C_{i}\left(v, f_{i}(1)\right)$, we need to define C_{i}^{1}, C_{i}^{2} and $\zeta_{i}\left(v, f_{i}(1)\right)$. Define C_{i}^{2} to be the ordered sequence

$$
C_{i}^{2}=c_{e-1}, c_{e-2}, \ldots, c_{0}
$$

and define C_{i}^{1} to be the ordered sequence

$$
C_{i}^{1}= \begin{cases}c_{m-1}, c_{m-2}, \ldots, c_{e} & \text { if }\left|C_{i}^{2}\right| \text { is even, } \\ i, c_{m-1}, c_{m-2}, \ldots, c_{e} & \text { if }\left|C_{i}^{2}\right| \text { is odd and } c_{m-1} \neq i \\ c_{m-2}, c_{m-3}, \ldots, c_{e} & \text { if }\left|C_{i}^{2}\right| \text { is odd and } c_{m-1}=i\end{cases}
$$

Defined $\zeta_{i}\left(v, f_{i}(1)\right)$ to be the ordered sequence

$$
\zeta_{i}\left(v, f_{i}(1)\right)= \begin{cases}\left\{C_{i}^{1}, C_{i}^{2}\right\} & \text { if }\left|C_{i}^{1}\right| \text { is even and }\left|C_{i}^{2}\right| \text { is even, } \tag{15}\\ \left\{C_{i}^{1}, C_{i}^{2}, i\right\} & \text { if }\left|C_{i}^{1}\right| \text { is even and }\left|C_{i}^{2}\right| \text { is odd, } \\ \left\{C_{i}^{1}, 0, C_{i}^{2}\right\} & \text { if }\left|C_{i}^{1}\right| \text { is odd and }\left|C_{i}^{2}\right| \text { is even, } \\ \left\{C_{i}^{1}, 0, C_{i}^{2}, i\right\} & \text { if }\left|C_{i}^{1}\right| \text { is odd and }\left|C_{i}^{2}\right| \text { is odd. }\end{cases}
$$

Suppose

$$
\zeta_{i}\left(v, f_{i}(1)\right)=\left\{\varsigma_{u}, \varsigma_{u-1}, \ldots, \varsigma_{0}\right\}
$$

Then when $i \neq 0$ and $v_{0}=1$, since $r=1$, we have

$$
\begin{equation*}
\mathcal{P}_{i}\left(v, f_{i}(1)\right)=\left\{I\left(\varsigma_{u}, \varsigma_{u-1}\right), I\left(\varsigma_{u-2}, \varsigma_{u-3}\right), \ldots, I\left(\varsigma_{1}, \varsigma_{0}\right),\right\} . \tag{16}
\end{equation*}
$$

In the following, we give some examples for $\mathcal{P}_{i}\left(v, f_{i}(1)\right)$. Consider $L T Q_{5}$. Then $f_{1}(1)=$ $2^{1}+1=3, f_{2}(1)=2^{2}+2^{1}+1=7$ and $f_{3}(1)=2^{3}+2^{2}+1=13$. Thus the son of the root in T_{1} is 3 , in T_{2} is 7 and in T_{3} is 13 . For $v=(10000)_{2} \in T_{1}$, we have $C_{1}(v, 3)=\{1,0,4\}$ and $\mathcal{P}_{1}(v, 3)=\{0, I(4,1)\}=\{0,4,3,2\}$; so the $v, 3$-path in T_{1} is

$$
(10000)_{2} \xrightarrow{f_{0}^{-1}=f_{0}}(10001)_{2} \xrightarrow{f_{4}^{-1}=f_{4}}(01001)_{2} \xrightarrow{f_{3}^{-1}=f_{3}}(00101)_{2} \xrightarrow{f_{2}^{-1}=f_{2}}(00011)_{2}
$$

For $v=(11010)_{2} \in T_{2}$, we have $C_{2}(v, 7)=\{2,0,4,3\}$ and $\mathcal{P}_{2}(v, 7)=\{2,0, I(4,3)\}=$ $\{2,0,4\}$; so the $v, 7$-path in T_{2} is

$$
(11010)_{2} \xrightarrow{f_{2}^{-1}=f_{2}}(11110)_{2} \xrightarrow{f_{0}^{-1}=f_{0}}(11111)_{2} \xrightarrow{f_{4}^{-1}=f_{4}}(00111)_{2}
$$

For $v=(11101)_{2} \in T_{3}$, we have $C_{3}(v, 13)=\{4\}, C_{3}^{2}=\{4\}, C_{3}^{1}=\{3\}, \zeta_{j}\left(v, f_{j}(1)\right)=$ $\{3,0,4,3\}$ and $\mathcal{P}_{3}(v, 13)=\{I(3,0), I(4,3)\}=\{3,2,1,4\}$; so the $v, 13$-path in T_{3} is

$$
(11101)_{2} \stackrel{f_{3}^{-1}=f_{3}}{\rightarrow}(10001)_{2} \stackrel{f_{2}^{-1}=f_{2}}{\rightarrow}(10111)_{2} \xrightarrow{f_{1}^{-1}=f_{1}}(10101)_{2} \xrightarrow{f_{4}^{-1}=f_{4}}(01101)_{2} .
$$

Lemma 13. $T_{0}, T_{1}, \ldots, T_{n-1}$ are n vertex-independent trees rooted at r for $L T Q_{n}$ when $r=1$.

Proof. It suffices to prove that any two T_{i} and T_{j} with $0 \leq i<j \leq n-1$ are vertexindependent. Let $v=\left(v_{n-1} v_{n-2} \cdots v_{0}\right)_{2}$ be an arbitrary vertex in $L T Q_{n}$. We assume $v \notin\left\{r, f_{i}(r), f_{j}(r)\right\}$ since if $v \in\left\{r, f_{i}(r), f_{j}(r)\right\}$, then the r, v-path in T_{i} and the r, v-path in T_{j} are clearly internally vertex-disjoint. By the same arguments used in the proof of Lemma 10, it suffices to prove that the $v, f_{i}(r)$-path in T_{i} and the $v, f_{j}(r)$-path in T_{j} are internally vertex-disjoint. Let V_{1} and V_{2} be defined as in Lemma 10. We now claim that:

Claim: $V_{1} \cap V_{2}=\emptyset$.
Proof of the claim. Suppose this claim is not true and there exists a vertex $a \in V_{1} \cap V_{2}$. Let

$$
\begin{equation*}
C_{i}\left(v, f_{i}(1)\right)=\left\{c_{m-1}, c_{m-2}, \ldots, c_{0}\right\} . \tag{17}
\end{equation*}
$$

There are four cases.
Case 1: $0=i<j \leq n-1$. The proof of this case is divided into two parts, depending on $v_{0}=1$ or $v_{0}=0$. Suppose $v_{0}=1$. Then $0 \notin C_{j}\left(v, f_{j}(1)\right)$. Thus the 0 -th bit of all the vertices in V_{2} is 1 . By (13) and (17), 0 is the first element in $C_{0}\left(v, f_{0}(1)\right)$; this implies that the 0 -th bit of all the vertices in V_{1} is 0 . Thus $V_{1} \cap V_{2}=\emptyset$. Suppose $v_{0}=0$. Then $0 \notin C_{0}\left(v, f_{0}(1)\right)$. Thus the 0 -th bit of all the vertices in V_{1} is 0 ; this implies that the 0 -th bit of a is 0 . There are two possibilities: $j=1$ or $j>1$.

1. $j=1$. Note that either $1 \in \mathcal{P}_{1}\left(v, f_{1}(1)\right)$ or $1 \notin \mathcal{P}_{1}\left(v, f_{1}(1)\right)$. Suppose $1 \notin \mathcal{P}_{1}\left(v, f_{1}(1)\right)$. Then 0 is the first element in $\mathcal{P}_{1}\left(v, f_{1}(1)\right)$; this implies that the 0 -th bit of all the vertices in V_{2} is 1 . Thus no such a exists and $V_{1} \cap V_{2}=\emptyset$. Suppose $1 \in \mathcal{P}_{1}\left(v, f_{1}(1)\right)$. Then 1 and 0 are the first element and the second element in $\mathcal{P}_{1}\left(v, f_{1}(1)\right)$, respectively. Thus the

0 -th bit of all the vertices in $V_{2} \backslash\left\{f_{1}(v)\right\}$ is 1 . The existence of a implies that $f_{1}(v)=a$. Suppose $v_{1}=0$. Then $1 \notin C_{0}\left(v, f_{0}(1)\right)$; this implies that the 1 -st bit of all the vertices in V_{1} is 0 . However, it is obvious that the 1 -st bit of $f_{1}(v)$ is 1 . Therefore $f_{1}(v) \notin V_{1}$. Thus no such a exists and $V_{1} \cap V_{2}=\emptyset$. Suppose $v_{1}=1$. Since $1 \in \mathcal{P}_{1}\left(v, f_{1}(1)\right)$, there must exist some $k>1$ such that $v_{k}=1$; this implies that $c_{m-1} \neq 1$. By (13) and (17), the $\left(c_{m-1}\right)$-th bit of all the vertices in V_{1} is $\bar{v}_{c_{m-1}}$. However, the $\left(c_{m-1}\right)$-th bit of $f_{1}(v)$ is $v_{c_{m-1}}$. Therefore $f_{1}(v) \notin V_{1}$. Thus no such a exists and $V_{1} \cap V_{2}=\emptyset$.
2. $j>1$. By (13), (14), (15), (16) and (17), we have: c_{m-1} is the first element in $C_{i}\left(v, f_{i}(1)\right), c_{m-1} \in C_{j}\left(v, f_{j}(1)\right), 0 \in C_{j}\left(v, f_{j}(1)\right)$, and c_{m-1} appears after 0 in the ordered set $C_{j}\left(v, f_{j}(1)\right)$. Thus the $\left(c_{m-1}\right)$-th bit of all the vertices in V_{1} is $\bar{v}_{c_{m-1}}$. However, the $\left(c_{m-1}\right)$-th bit of those vertices with the 0 -th bit being 0 in V_{2} is $v_{c_{m-1}}$. Thus no such a exists and $V_{1} \cap V_{2}=\emptyset$.

Case 2: $1=i<j \leq n-1$. The proof of this case is divided into two parts, depending on $v_{0}=0$ or $v_{0}=1$.

1. $v_{0}=0$. Then it is not difficult to see (by comparing the j-th and the 0 -th bits of $f_{j}(v)$ and all the vertices in $\left.V_{1}\right)$ that $f_{j}(v) \notin V_{1}$. Thus a can not be $f_{j}(v)$. It remains to consider those vertices in $V_{2} \backslash f_{j}(v)$. The remaining proof is further divided into two parts, depending on $v_{j-1}=0$ or $v_{j-1}=1$.
1.1. $v_{j-1}=0$. Since $v_{0}=0$ and $v_{j-1}=0, j-1 \in \mathcal{P}_{j}\left(v, f_{j}(v)\right)$. Since $v_{0}=0$ and $j-1 \in \mathcal{P}_{j}\left(v, f_{j}(v)\right)$, the $(j-1)$-th bit of all the vertices in $V_{2} \backslash f_{j}(v)$ is 1 . However, the $(j-1)$-th bit of all the vertices in V_{1} is 0 . Thus no such a exists and $V_{1} \cap V_{2}=\emptyset$.
1.2. $v_{j-1}=1$. We claim that: the bits from v_{j-2} to v_{2} are all 0 , i.e., $v_{j-2}=v_{j-3}=\cdots=$ $v_{2}=0$. Suppose this claim is not true and let k be the largest number between $j-2$ and 2 (inclusive) such that $v_{k}=1$. By (17) and (14), the $(j-1)$-th and the k-th bits of all the vertices in $V_{2} \backslash f_{j}(v)$ is 1 and 0 , respectively. However, the $(j-1)$-th bit of those vertices in V_{1} with k-th bit being 0 is 0 . Thus $v_{j-2}=v_{j-3}=\cdots=v_{2}=0$. So the 1 -st bit of all the vertices in V_{1} is 1 and the 1 -st bit of all the vertices in $V_{2} \backslash f_{j}(v)$ is 0 . Thus no such a exists and $V_{1} \cap V_{2}=\emptyset$.
2. $v_{0}=1$. The proof of this part is further divided into six parts as follows.
2.1. $j=2, v_{1}=1$ and $v_{2}=1$. Since $v_{0}=1$ and $v_{1}=1$ and $v_{2}=1$,

$$
C_{j}\left(v, f_{j}(1)\right)=\left(c_{m-1}, c_{m-2}, \ldots, c_{1}\right)
$$

Suppose m is even. Then

$$
\mathcal{P}_{i}\left(v, f_{i}(1)\right)=\left\{I\left(c_{m-1}, c_{m-2}\right), \ldots, I\left(c_{1}, c_{0}=2\right)\right\}
$$

and

$$
\mathcal{P}_{j}\left(v, f_{j}(1)\right)=\left\{I(2,0), I\left(c_{m-1}, c_{m-2}\right), \ldots, I\left(c_{1}, 2\right)\right\} .
$$

By (15) and (16), the 2-nd bit of all the vertices in V_{1} are 1. However, the 2-nd bit of all the vertices in V_{2} are 0 . Thus no such a exists and $V_{1} \cap V_{2}=\emptyset$. Suppose m is odd. Then

$$
\mathcal{P}_{i}\left(v, f_{i}(1)\right)=\left\{1, I\left(c_{m-1}, c_{m-2}\right), \ldots, I\left(c_{0}, 1\right)\right\}
$$

and

$$
\mathcal{P}_{j}\left(v, f_{j}(1)\right)=\left\{I\left(c_{m-1}, c_{m-2}\right), \ldots, I\left(c_{2}, c_{1}\right)\right\} .
$$

By (15) and (16), the 1-st bit of all the vertices in V_{1} is 0 . However, the 1-st bit of all the vertices in V_{2} is 1 . Thus no such a exists and $V_{1} \cap V_{2}=\emptyset$.
2.2. $j=2, v_{1}=0$ and $v_{2}=1$. Since $v_{0}=1$ and $v_{1}=0$ and $v_{2}=1$, we have $c_{m-1}=1$, $c_{0}=2$ and

$$
C_{j}\left(v, f_{j}(1)\right)=\left\{c_{m-1}, c_{m-2}, \ldots, c_{1}\right\}
$$

Suppose $m-1$ is odd. Then

$$
\mathcal{P}_{i}\left(v, f_{i}(1)\right)=\left\{I\left(c_{m-2}, c_{m-3}\right), \ldots, I\left(c_{0}, 1\right)\right\}
$$

and

$$
\mathcal{P}_{j}\left(v, f_{j}(1)\right)=\left\{1, I\left(c_{m-2}, c_{m-3}\right), \ldots, I\left(c_{2}, c_{1}\right)\right\} .
$$

By (15) and (16), the 1 -st bit of all vertices in V_{1} are 0 . However, the 1 -st bit of all vertices in V_{2} is 1 . Thus no such a exists and $V_{1} \cap V_{2}=\emptyset$. Suppose $m-1$ is even. Then

$$
\mathcal{P}_{i}\left(v, f_{i}(1)\right)=\left\{1, I\left(c_{m-2}, c_{m-3}\right), \ldots, I\left(c_{1}, c_{0}\right)\right\}
$$

and

$$
\mathcal{P}_{j}\left(v, f_{j}(1)\right)=\left\{2,1, I\left(c_{m-2}, c_{m-3}\right), \ldots, I\left(c_{1}, 2\right)\right\} .
$$

By (15) and (16), the 2-nd bit of all vertices in V_{1} are 1. However, the 2-nd bit of all vertices in V_{2} are 0 . Thus no such a exists and $V_{1} \cap V_{2}=\emptyset$.
2.3. $j=2, v_{1}=1$ and $v_{2}=0$ (resp., $v_{1}=0$ and $v_{2}=0$). Then

$$
C_{j}\left(v, f_{j}(1)\right)=\left\{2, c_{m-1}, c_{m-2}, \ldots, c_{0}\right\} .
$$

Suppose m (resp., $m-1$) is even. Then by (15) and (16), the 2-nd bit of all vertices in V_{1}. However, the 2-nd bit of all vertices in V_{2} are 1. Suppose m (resp., $m-1$) is odd. Then by (15) and (16), the 1 -st bit of all vertices in V_{1} are 0 . However, the 1 -st bit of all vertices in V_{2} are 1. Thus no such a exists and $V_{1} \cap V_{2}=\emptyset$.
2.4. $j \neq 2$ and $v_{j-1}=0$. Then the $(j-1)$-th bit of all the vertices in V_{1} are 0 . However, the $(j-1)$-th bit of all the vertices in V_{2} are 1. Thus no such a exists and $V_{1} \cap V_{2}=\emptyset$.
2.5. $j \neq 2, v_{j-1}=1$ and at least one of the bits in $v_{j-2} v_{j-3} \cdots v_{2}$ is 1 . Then there exist q such that

$$
q=\max \left\{t \mid t \in C_{i}\left(v, f_{i}(1)\right), 1<t<j-1\right\} .
$$

2.5.1. Suppose $I(j, q) \nsubseteq \mathcal{P}_{j}\left(v, f_{j}(1)\right)$. Then the q-th and the $(j-1)$-th bit of all the vertices in V_{2} are 0 and 1, respectively; however, the $(j-1)$-th bit of those vertices in V_{1} with the q-th bit being 0 is 0 . Thus no such a exists and $V_{1} \cap V_{2}=\emptyset$.
2.5.2. Suppose $I(j, q) \subseteq \mathcal{P}_{j}\left(v, f_{j}(1)\right)$. Then we partition V_{2} into $V_{2,1}$ and $V_{2,2}$ such that
$V_{2,1}=\left\{\right.$ all the vertices in V_{2} before the perfect matching f_{q} is applied $\}$ and $V_{2,2}=V_{2} \backslash V_{2,1}$.

Consider the vertices in $V_{2,1}$. Suppose $v_{j}=0$. Since $j \in I(j, q)$, we can compare the j-th bit of all vertices in V_{1} and in $V_{2,1}$ to see that no such a exists and $V_{1} \cap V_{2}=\emptyset$. Suppose $v_{j}=1$. Then the number of bits in $v_{n-1} v_{n-2} \cdots v_{j+1}$ that are 1 is odd. This implies that $c_{m-1} \neq j$. Since $c_{m-1} \neq j$, by comparing the c_{m-1}-th bit of all the vertices in V_{1} and in $V_{2,1}$, we know that $V_{1} \cap V_{2,1}=\emptyset$. Consider the vertices in $V_{2,2}$. Then the q-th and the
($j-1$)-th bit of all the vertices in $V_{2,2}$ are 0 and 1, respectively. However, the $(j-1)$-th bit of those vertices in V_{1} with the q-th bit being 0 is 0 . Hence $V_{1} \cap V_{2,2}=\emptyset$. Since $V_{1} \cap V_{2,1}=\emptyset$ and $V_{1} \cap V_{2,2}=\emptyset$, no such a exists and $V_{1} \cap V_{2}=\emptyset$.
2.6. $j \neq 2, v_{j-1}=1$ and all the bits in $v_{j-2} v_{j-3} \cdots v_{2}$ are 0 (i.e., $v_{j-2}=v_{j-3}=\cdots=v_{2}=0$). For convenience, let $t\left(w_{1}, w_{2}\right)$ denote the number of bits in $v_{w_{1}} v_{w_{1}-1} \cdots v_{w_{2}}$ that are 1 . There are three possibilities.
2.6.1. Suppose $t(n-1, i+1)$ is odd. Then $t(n-1, j)$ is even. Thus the i-th bit of all the vertices in V_{2} is 0 . However, the i-th bit of all the vertices in V_{1} is 1 . Thus no such a exists and $V_{1} \cap V_{2}=\emptyset$.
2.6.2. Suppose $t(n-1, i+1)$ is even and $v_{j}=0$. Then $t(n-1, j+1)$ is even. Thus the j-th bit of all the vertices in V_{2} is 1 . However, the j-th bit of all the vertices in V_{1} is 0 . Thus no such a exists and $V_{1} \cap V_{2}=\emptyset$.
2.6.3. Suppose $t(n-1, i+1)$ is even and $v_{j}=1$. Then $t(n-1, j+1)$ is odd. Thus the i-th bit of all the vertices in $V_{2} \backslash\left\{f_{j}(v)\right\}$ is 0 . However, the i-th bit of all the vertices in V_{1} is 1 . Since $c_{m-1} \neq j$, we can find that $f_{j}(v) \notin V_{1}$ by comparing the c_{m-1}-th bit. Thus no such a exists and $V_{1} \cap V_{2}=\emptyset$.

Case 3: $3 \leq i+1=j \leq n-1$. For convenience, let t denote the number of bits in $v_{n-1} v_{n-2} \cdots v_{i+1}$ that are 1. By (13)~(17), we have the following results for t. Suppose t is odd. Then the i-th bit of all vertices in V_{1} is 0 and $j \notin \mathcal{P}_{j}\left(v, f_{j}(1)\right)$; however, the i-th bit of all the vertices in V_{2} is 1 . Suppose t is even and $v_{j}=0$. Then the j-th bit of all the vertices in V_{2} is 1 ; however, the j-th bit of all the vertices in V_{1} is 0 . Suppose t is even and $v_{j}=1$. Then the j-th bit of all the vertices in V_{2} is 0 ; however, the j-th bit of all the vertices in V_{1} is 1 . Thus no such a exists and $V_{1} \cap V_{2}=\emptyset$.

Case 4: $3 \leq i+1<j \leq n-1$. The proof of this case is divided into xxx parts, depending on the values of v_{j-1} and v_{i-1}.
4.1. $v_{j-1}=0$. Then if $j \in \mathcal{P}_{i}\left(v, f_{i}(1)\right)$, then V_{1} has only one vertex (say, vertex x) with its $(j-1)$-th bit being 1. By comparing from the j-th to the $(i-1)$-th bits of x with the
j-th to the $(i-1)$-th bits of each vertex in V_{2}, we have $x \notin V_{2}$. If $j \in \mathcal{P}_{j}\left(v, f_{j}(1)\right)$, then $f_{j}(v)$ is the unique vertex in V_{2} with its $(j-1)$-th bit being 0 . By comparing from the j-th to the $(i-1)$-th bits of $f_{j}(v)$ with the j-th to the $(i-1)$-th bits of each vertex in V_{1}, we have $f_{j}(v) \notin V_{1}$. Then by $(13) \sim(17)$, the $(j-1)$-th bit of all the vertices in $V_{1} \backslash\{x\}$ is 0 ; however, the $(j-1)$-th bit of all the vertices in $V_{2} \backslash f_{j}(v)$ is 1 . Thus no such a exists and $V_{1} \cap V_{2}=\emptyset$.
4.2. $v_{i-1}=0$. Then we can use similar arguments to prove that no such a exists and $V_{1} \cap V_{2}=\emptyset$.
4.3. $v_{i-1}=1$ and $v_{j-1}=1$. By (13) $\sim(16)$, we have following the results. When $i \in C_{i}\left(v, f_{i}(1)\right)$ and $v_{0}=1, V_{1}$ has only one vertex (say, vertex z) with its ($i-1$)-th bit being 0 . By comparing the $(j-1)$-th and the $(i-1)$-th bits of z with the $(j-1)$-th and the $(i-1)$-th bits of each vertex in V_{2}, we have $z \notin V_{2}$. Thus the $(i-1)$-th bit of all the vertices in $V_{1} \backslash\{z\}$ is 1 . Hence the existence of a implies that the $(i-1)$-th bit of a must be 1. Partition V_{2} into two $V_{2,1}$ and $V_{2,2}$ such that
$V_{2,1}=\left\{\right.$ all the vertices in V_{2} before the perferct matching f_{i} is applied $\}$ and $V_{2,2}=V_{2} \backslash V_{2,1}$.

Thus the $(i-1)$-th bit of all the vertices in $V_{2,1}$ is 1 and if a exist, then $a \in V_{2,1}$. We claim that:

$$
\text { If } a \text { exists, then } v_{j-2}=v_{j-3}=\cdots=v_{i+1}=0
$$

Suppose this claim is not true. Then let q be the largest index between $j-2$ and $i+1$ (inclusive) such that $v_{q}=1$. Let $y=\left(y_{n-1} y_{n-2} \cdots y_{0}\right)_{2}$ be an arbitrary vertex in $V_{2,1} \backslash\left\{f_{j}(v)\right\}$. Note that $f_{j}(v) \in V_{2,1}$ only when $j \in \mathcal{P}_{j}\left(v, f_{j}(1)\right)$. Also note that $q \in$ $\mathcal{P}_{j}\left(v, f_{j}(1)\right)$. Moreover, if $j \in C_{j}\left(v, f_{j}(1)\right)$, then q is the first element after j in $C_{j}\left(v, f_{j}(1)\right)$; if $j \notin C_{j}\left(v, f_{j}(1)\right)$, then q is the first element in $C_{j}\left(v, f_{j}(1)\right)$. Since q exists, by (14) $\sim(16)$, the bits $y_{j-2} y_{j-3} \cdots y_{i+1}$ will be different from the bits $v_{j-2} v_{j-3} \cdots v_{i+1}$. However, let $x=\left(x_{n-1} x_{n-2} \cdots x_{0}\right)_{2}$ be an arbitrary vertex in V_{1}. Then the bits $x_{j-2} x_{j-3} \cdots x_{i+1}$ are identical to the bits $v_{j-2} v_{j-3} \cdots v_{i+1}$. Thus every vertex in $V_{2,1} \backslash\left\{f_{j}(v)\right\}$ is not in V_{1}. Although $f_{j}(v) \in V_{2,1}, f_{j}(v)$ is not in V_{1} (this can be observed by comparing the j-th bit
and the bits from the $(j-2)$-th to the $(i+1)$-th bits of all the vertices in V_{1} with j-th bit and the bits from the $(j-2)$-th to the $(i+1)$-th bits of $\left.f_{j}(v)\right)$. Thus $V_{1} \cap V_{2,1}=\emptyset$. Since if a exists, then $a \in V_{2,1}$. Thus a does not exists and we have this claim.

By this claim, in the remaining proof, we assume $v_{i-1}=1, v_{j-1}=1$ and $v_{j-2}=v_{j-3}=\cdots=$ $v_{i+1}=0$. For convenience, let t denote the number of bits in $v_{n-1} v_{n-2} \cdots v_{j+1}$ that are 1 . The remaining proof is further divided into four subcases.
4.3.1. $v_{i}=1$ and $v_{j}=1$. Suppose t is even. Then the first member in $\mathcal{P}_{j}\left(v, f_{j}(1)\right)$ is i. However, $i \notin \mathcal{P}_{i}\left(v, f_{i}(1)\right)$. Thus no such a exists and $V_{1} \cap V_{2}=\emptyset$. Suppose t is odd. Then $j \in \mathcal{P}_{j}\left(v, f_{j}(1)\right)$ and $I(j-1, i) \subset \mathcal{P}_{i}\left(v, f_{i}(1)\right)$. Thus the j-th bit of all the vertices in V_{2} is 0 . Partition V_{1} into $V_{1,1}$ and $V_{1,2}$ such that
$V_{1,1}=\left\{\right.$ all the vertices in V_{1} before the perfect matching f_{j+1} is applied $\}$ and $V_{1,2}=V_{1} \backslash V_{1,1}$.

Thus the j-th bit of all vertices in $V_{1,1}$ is 1 and the j-th bit of all vertices in $V_{1,2}$ is 0 . By the fact that the j-th bit of all the vertices in V_{2} is 0 , to prove $V_{1} \cap V_{2}=\emptyset$, it suffices to prove $V_{1,2} \cap V_{2}=\emptyset$. If $v_{0}=1$, then the $(j-1)$-th bit of all the vertices in V_{2} is 1 ; however, the $(j-1)$-th bit of all the vertices in $V_{1,2}$ is 0 . If $v_{0}=0$, then V_{2} has only one vertex $f_{j}(v)$ with its $(j-1)$-th bit being 0 . Obviously, either $f_{j}(v)=\left(v_{n-1} v_{n-2} \cdots v_{j+1} 0 v_{j-1} v_{j-2} v_{j-3} \cdots v_{0}\right)_{2}$ or $f_{j}(v)=\left(v_{n-1} v_{n-2} \cdots v_{j+1} 0 \bar{v}_{j-1} v_{j-2} v_{j-3} \cdots v_{0}\right)_{2}$; the former case occurs when $v_{0}=0$ and the latter, $v_{0}=1$. In either case, we have $f_{j}(v) \notin V_{1}$. Thus no such a exists and $V_{1} \cap V_{2}=\emptyset$.
4.3.2. $v_{i}=0$ and $v_{j}=0$. Suppose t is even. Then the j-th bit of all the vertices in V_{2} is 1. However, the j-th bit of all the vertices in V_{1} is 0 . Suppose t is odd. Then the number of bits in $v_{n-1} v_{n-2} \cdots v_{i+1}$ that are 1 is even; this implies that i is the first member in $\mathcal{P}_{i}\left(v, f_{i}(1)\right)$. Thus the i-th bit of all the vertices in V_{2} is 0 . However, the i-th bit of all the vertices in V_{1} is 1 . Thus no such a exists and $V_{1} \cap V_{2}=\emptyset$.
4.3.3. $v_{i}=0$ and $v_{j}=1$. Suppose t is even. Then the first member in $\mathcal{P}_{j}\left(v, f_{j}(1)\right)$ is $i-1$ and the first member in $\mathcal{P}_{i}\left(v, f_{i}(1)\right)$ is i. So the i-th bit of all the vertices in V_{2} is 0 ; however, the i-th bit of all the vertices in V_{1} is 1 . Suppose t is odd. Define q to be the index of the leftmost nonzero bit of v. Then $q>j$. Thus the $(i-1)$-th bit of all
the vertices in $V_{2} \backslash\left\{f_{j}(v)\right\}$ is 0 ; however, the $(i-1)$-th bit of all the vertices in V_{1} is 1 . By comparing the j-th and the q-th bits of $f_{j}(v)$ with the j-th and the q-th bits of every vertex in V_{1}, we have $f_{j}(v) \notin V_{1}$. Thus no such a exists and $V_{1} \cap V_{2}=\emptyset$.
4.3.4. $v_{i}=1$ and $v_{j}=0$. If the number of those bits from v_{n-1} to v_{j+1} being 1 is even, then the j-th bit of all the vertices in V_{2} is 1 , but the j-th bit of all the vertices in V_{1} is 0 . If the number of those bits from v_{n-1} to v_{j+1} being 1 is odd, then the number of bits in $v_{n-1} v_{n-2} \cdots v_{i+1}$ that are 1 is even. Thus i is the first member of $\mathcal{P}_{j}\left(v, f_{j}(1)\right)$ but $i \notin \mathcal{P}_{i}\left(v, f_{j}(1)\right)$ which implies that the i-th bit of all the vertices in V_{2} is 0 but the i-th bit of all the vertices in V_{1} is 1 . So $V_{1} \cap V_{2}=\emptyset$ in this case.

Since $V_{1} \cap V_{2}=\emptyset$, we have this lemma.

Theorem 14. $T_{0}, T_{1}, \ldots, T_{n-1}$ are n ISTs rooted at r for $L T Q_{n}$ when $r=1$.
Proof. This theorem follows from Lemmas 12 and 13.

4 Applying our algorithm to hypercubes

The purpose of this section is to prove that $T_{0}, T_{1}, \ldots, T_{n-1}$ generated by Algorithm 1 are n ISTs for the hypercube. It is well-known that the hypercube is vertex-transitive. Therefore we assume without loss of generality that $r=0$ is the common root. Throughout this section, let $T_{0}, T_{1}, \ldots, T_{n-1}$ be the output of Algorithm 1 when the input is the \mathcal{F} of Q_{n} and the root is $r=0$. It is not difficult to see that the hypercube has

$$
\mathcal{P}_{i}\left(v, f_{i}(r)\right)=C_{i}\left(v, f_{i}(r)\right), \text { for all } 0 \leq i \leq n-1 .
$$

Theorem 15. $T_{0}, T_{1}, \ldots, T_{n-1}$ are n ISTs rooted at r for Q_{n} when $r=0$.

Proof. We first prove that $T_{0}, T_{1}, \ldots, T_{n-1}$ are spanning trees of Q_{n}. The proof of this part is identical to the proof of Lemma 9 except that the definition of \mathcal{F} is the one for Q_{n}. It remains to prove that $T_{0}, T_{1}, \ldots, T_{n-1}$ are n vertex-independent trees rooted at r for Q_{n} when $r=0$. Consider an arbitrary vertex $v=\left(v_{n-1}, v_{n-2} \cdots v_{0}\right)_{2} \in V\left(Q_{n}\right) \backslash\{r\}$. We use the
definitions of $T_{i}, T_{j}, V_{1}, V_{2}$ and $C_{i}\left(v, 2^{i}\right)$ in Lemma 10. Note that in each of the following four cases, $C_{j}\left(v, 2^{j}\right)$ is also the same as the one used in Lemma 10. To prove that T_{i} and T_{j} are vertex-independent, it suffices to prove that $V_{1} \cap V_{2}=\emptyset$ holds in each cases.

Case 1: $v_{i}=1$ and $v_{j}=1$. By (5), the i-th bit of all the vertices in V_{1} is 1. Partition V_{2} into $V_{2,1}$ and $V_{2,2}$ such that
$V_{2,1}=\left\{\right.$ all the vertices in V_{1} before the perfect matching f_{i} is applied $\}$ and $V_{2,2}=V_{2} \backslash V_{2,1}$. Thus the i-th bit of all the vertices in $V_{2,1}$ is 1 and the i-th bit of all the vertices in $V_{2,2}$ is 0 . By the fact that the i-th bit of all the vertices in V_{1} is 1 , to prove $V_{1} \cap V_{2}=\emptyset$, it suffices to prove $V_{1} \cap V_{2,1}=\emptyset$. By (5) and (6), the (c_{m-1})-th bit of all the vertices in V_{1} is $\bar{v}_{c_{m-1}}$; however, the $\left(c_{m-1}\right)$-th bit of all the vertices in $V_{2,1}$ is $v_{c_{m-1}}$. Thus $V_{1} \cap V_{2,1}=\emptyset$. Case 2: $v_{i}=0$ and $v_{j}=0$. By (5), (7) and (8), the i-th bit of all the vertices in V_{1} is 1 ; however, the i-th bit of all the vertices in V_{2} is 0 . Thus $V_{1} \cap V_{2}=\emptyset$.

Case 3: $v_{i}=0$ and $v_{j}=1$. The proof of this part is the same as Case 2 and we omit it. Case 4: $v_{i}=1$ and $v_{j}=0$. By (5) and (9), the j-th bit of all the vertices in V_{1} is 0 ; however, the j-th bit of all the vertices in V_{2} is 1 . Thus $V_{1} \cap V_{2}=\emptyset$.

By above four cases, $V_{1} \cap V_{2}=\emptyset$. Thus $T_{0}, T_{1}, \ldots, T_{n-1}$ are n vertex-independent trees. Since $T_{0}, T_{1}, \ldots, T_{n-1}$ are also spanning trees, we have this theorem.

Let $N(r)$ be a vertex set containing all the neighbors of r. The following lemma has been proven in [22].

Lemma 16. [22] Given a n-connected, n-regular graph G and a set \mathcal{S} of independent spanning trees rooted at r in G. Let v be a vertex in $G, v \notin\{r\} \cup N(r)$, and $u \in N(v)$. If $\left|d\left(T_{i} ; r, u\right)-d\left(T_{i} ; r, v\right)\right| \leq 1$ for every $T \in \mathcal{S}$, then \mathcal{S} is optimal.

We now prove that Algorithm 1 generates an optimal solution for Q_{n}.
Theorem 17. Let $\mathcal{S}=\left\{T_{0}, T_{1}, \ldots, T_{n-1}\right\}$, where $T_{0}, T_{1}, \ldots, T_{n-1}$ are renerated by Algorithm 1. Then \mathcal{S} is optimal.

Proof. Let $r=0, T_{i} \in \mathcal{S}$, and $H(u, v)$ be the Hamming distance between vertices v and u. Let v be an arbitrary vertex in Q_{n} and $v \notin\{r\} \cup N(r)$. For each T_{i}, we will prove that
v has the property that $\left|d\left(T_{i} ; 0, u\right)-d\left(T_{i} ; 0, v\right)\right| \leq 1$, where $u \in N(v)$. It is obvious that for each vertex $a=\left(a_{n-1} a_{n-2} \cdots a_{0}\right)_{2}$, we have

$$
d\left(T_{i} ; 0, a\right)= \begin{cases}H(0, a) & \text { if } a_{i}=1 \\ H(0, a)+2 & \text { if } a_{i}=0\end{cases}
$$

Thus if the i-th bit of v and the i-th bit of u are the same, then $\left|d\left(T_{i} ; 0, u\right)-d\left(T_{i} ; 0, v\right)\right|=1$. On the other hand, without loss of generality, we may assume that the i-th of v is 1 and the i-th of u is 0 . Since $H(0, v)=H(0, u)+1$, we have $d\left(T_{i} ; 0, u\right)=H(0, u)+2=H(0, v)+1=$ $d\left(T_{i} ; 0, v\right)+1$; hence $\left|d\left(T_{i} ; 0, u\right)-d\left(T_{i} ; 0, v\right)\right|=1$. By Lemma 16, we have this theorem.

5 Concluding remarks

There are two versions for the n independent spanning trees conjecture. The vertex (edge) conjecture is that any n-connected (n-edge-connected) graph has n vertexindependent (edge-independent) spanning trees rooted at an arbitrary vertex r. It has been proven that the vertex conjecture implies the edge conjecture. In this thesis, we present an algorithm to construct n vertex-independent spanning trees rooted at any vertex for the $L T Q_{n}$. To the best of our knowledge, this is the first result to confirm the Vertex Conjecture for the locally twisted cubes. Moreover, we present the first algorithm that can construct n vertex-independent spanning trees rooted at any vertex for both the locally twisted cube and the hypercube. We believe that our algorithm can be used to construct n vertex-independent spanning trees rooted at any vertex for other variant the hypercube.

References

[1] F. Bao , Y. Funyu, Y. Hamada and Y. Igarashi, "Reliable broadcasting and secure distributing in channel networks," IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, vol. E81A, pp. 796-806, 1998.
[2] F. Bao , Y. Igarashi and S. R. Ohring, "Reliable broadcasting in product networks," Graph-theoretic Concepts in Computer Science, vol. 1517, pp. 310-323, 1998.
[3] Y. S. Chen, C. Y. Chiang and C.Y. Chen, "Multi-node broadcasting in all-ported 3-D wormhole-routed torus using an aggregation-then-distribution strategy," Journal of System Architecyure, vol. 50, pp. 575-589, 2004.
[4] G. Chartrand and L. Lensniak, Graph and Digraphs, Wadsworth, Monterey, CA, 1981.
[5] S. Curran, O. Lee and X. Yu, "Finding four independent trees," SIAM Journal on Computing, vol. 35, pp. 1023-1058, 2006.
[6] J. Cheriyan and S.N. Maheshwari, "Finding nonseparating induced cycles and independent spanning trees in 3-connected graphs," Journal of Algorithms, vol. 9, pp. 507-537,1988.
[7] J. Edmonds, "Edge-disjoint branchings," in: R. Rustin, ed., Combinatorial Algorithms, Courant Inst. Sci. Symp. 9 (Algorithmics Press, New York, 1973), pp. 91V96.
[8] Z. Ge and S. L. Hakimi, "Disjoint rooted spanning trees with small depths in deBruijn and Kautz graphs," SIAM Journal on Computing, vol. 26, pp. 79-92, 1997.
[9] A. Huck, "Independent trees in planar graphs," Graphs and Combinatorics, vol. 5, pp. 29-77, 1999.
[10] A. Huck, "Independent trees in graphs," Graphs and Combinatorics, vol. 10, pp. 29-45, 1994.
[11] T. Hasunuma and H. Nagamochi, "Independent spanning trees with small depths in iterated line digraphs," Discrete Applied Mathematics, vol. 110, pp. 189-211, 2001.
[12] S. Y. Hsieh and C. J. Tu, "Constructing edge-disjoint spanning trees in locally twisted cubes," Theoretical Computer Science, vol. 410, pp. 8-10, 2009.
[13] K. S. Hu, S. S. Yeoh, C. Y. Chen, and L. H. Hsu, "Node-pancyclicity and edgepancyclicity of hypercube variants," Information Processing Letters, vol. 102 (1) pp. 1-7, 2007.
[14] Y. Iwasaki, Y. Kajiwara, K. Obokata and Y. Igarashi, "Independent spanning trees of chordal rings," Information Processing Letters, vol. 69, pp. 155-160, 1999.
[15] A. Itai and M. Rodeh, "The multi-tree approach to reliability in distributed networks," Information and Computation, vol. 79, pp. 43-59, 1988.
[16] S. Khuller, B. Schieber, "On Insependent spanning-trees," Information Processing Letters, vol. 42, pp. 321-323, 1992.
[17] K. Miura, D. Takahashi, S. Nakano and T. Nishizeki, "A linear-time algorithm to find four independent spanning trees in four-connected planar graphs," International Journal of Foundations of Computer Science, vol. 10, pp. 195-210, 1999.
[18] K. Miura, D. Takahashi, S. Nakano and T. Nishizeki, "A linear-time algorithm to find four independent spanning trees in four-connected planar graphs," Discrete Applied Mathematics, vol. 83, pp. 3-20, 1998.
[19] S. Nagai and S. Nakano, "A linear-time algorithm to find independent spanning trees in maximal planar graphs," IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, vol. E84A, pp. 1102-1109, 2001; also appears in: Proceedings of 26th Workshop on Graph-Theoretic Concepts in Computer Science, WG 2000, LNCS 1928, Springer, 2000, pp. 290-301.
[20] K. Obokata, Y. Iwasaki, F. Bao and Y. Igarashi, "Independent spanning trees of product graphs," Lecture Notes in Computer Science, vol. 197, pp. 338-351, 1996. See also: K. Obokata, Y. Iwasaki, F. Bao, Y. Igarashi, "Independent spanning trees of product graphs and their construction," IEICE Trans. Fundamentals of Electronics,Communications and Computer Sciences, E79-A, pp. 1894V1903, 1996.
[21] Y. C. Tseng, S. Y. Wang and C. W. Ho, "Efficient broadcasting in wormhole-routed multicomputers: A network-partitioning approach," IEEE Transaction on Parallel and Distributed Systems, vol. 10, pp. 44-61, 1999.
[22] S. M. Tang, Y. L. Wang and Y. H. Leu, "Optimal independent spanning trees on hypercubes," Journal of Information Science and Engineering, vol. 20, pp. 143-155, 2004.
[23] D. B. West, Introduction to Graph Theory, 2nd ed. Prentice Hall, Upper Saddle River, NJ, 2001.
[24] J. S. Yang, J. M. Chang, S. M. Tang and Y. L. Wang, "Reducing the height of inedpendent spanning trees in chordal rings," IEEE Transactions on Parallel and Distributed Systems, vol. 18, pp. 644-657, 2007.
[25] X. Yang, D. J. Evans, and G. M. Megson, "The locally twisted cubes," International Journal of Computer Mathematics, vol. 82, pp. 401-413, 2005.
[26] J. S. Yang, S. M. Tang, J. M. Chang and Y. L. Wang, "Parallel construction of optimal independent spanning trees on hypercubes," Parallel Computing, vol. 33, pp. 73-79, 2007.
[27] A. Zwhavi and A. Itai, "Three tree-paths," Journal of Graph Theory, vol. 13, pp. 175-188, 1989.

