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摘  要 

 
在網路中使用多棵獨立擴張樹對於資料廣播有相當多的好處，例如：可以提高容錯以及

頻寬等；因此，在各種的網路結構上，建造多棵獨立擴張樹，一直以來都被廣泛地研究。

Zehavi 和 Itai 在文獻[26]中，對於建造多棵獨立擴張樹提出了兩個猜測。「點猜測」闡述

的是：在一個點連通度為 n 的圖上，能以圖中任一點為樹根，產生 n 棵點獨立擴張樹；

「邊猜測」闡述的是：在一個邊連通度為 n 的圖上，能以圖中任一點為樹根，產生 n 棵

邊獨立擴張樹。在文獻[16] 中，Khuller 和 Schieber 證明了點猜測能涵蓋邊猜測。局部

扭轉超立方體是超立方體的變形。最近，Hsieh 和 Tu 在文獻[10]中，提出了一個能在 n
維局部扭轉超立方體上，建造以 0 為樹根的 n 棵邊獨立擴張樹的演算法。因為局部扭轉

超立方體不具點對稱性質，Hsieh 和 Tu 所提出的演算法無法解決局部扭轉超立方體的邊

猜測。在這篇論文中，我們提出了一個可以在局部扭轉超立方體上，以任一點為樹根，

建構 n 棵點獨立擴張樹的演算法；我們的演算法證明了局部扭轉超立方體符合點猜測，

當然，也證明了局部扭轉超立方體符合邊猜測。此外，我們的演算法也能在超立方體上

得到一樣的結果。 
 
 
關鍵詞：資料廣播、演算法設計與分析、點獨立擴張樹、局部扭轉超立方體、超立方體、

平行演算法。 
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Abstract

The use of multiple independent spanning trees (ISTs) for data broadcasting in
networks provides a number of advantages such as the increase of fault-tolerance
and bandwidth. Thus the designs of multiple ISTs in several classes of networks
have been widely investigated. In [27], Zehavi and Itai stated two versions of the
n independent spanning trees conjecture. The vertex (edge) conjecture is that any
n-connected (n-edge-connected) graph has n vertex-ISTs (edge-ISTs) rooted at an
arbitrary vertex r. In [16], Khuller and Schieber proved that the vertex conjecture
implies the edge conjecture. Recently, in [12], Hsieh and Tu proposed an algorithm
to construct n edge-ISTs rooted at vertex 0 for an n-dimensional locally twisted cube
LTQn, which is a variant of the hypercube. Since LTQn is it not vertex-transitive,
Hsieh and Tu’s result does not solve the edge conjecture for the locally twisted cube.
In the thesis, we confirm the vertex conjecture (and hence also the edge conjecture)
for the locally twisted cube by proposing an algorithm to construct n vertex-ISTs
rooted at any vertex for the LTQn. We also confirm the vertex conjecture (and
hence also the edge conjecture) for the hypercube.

Keywords: Data broadcasting; Design and analysis of algorithms; Vertex-

disjoint spanning trees; Locally twisted cubes; Hypercubes; Parallel algorithm.
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1 Introduction

This thesis considers the problem of constructing n independent spanning trees rooted

at an arbitrary vertex of an n-dimensional locally twisted cube or hypercube. Graph

terminology and notation used in this thesis are standard; see [4] and [23] except as

indicated.

All graphs in this thesis are simple undirected graphs. Let G be a graph with vertex

set V (G) and the edge set E(G). Let x, y ∈ V (G). A path from x to y is denoted as

x, y-path. Two x, y-paths P and Q are internally edge-disjoint if E(P )∩E(Q) = ∅. Two

x, y-paths P and Q are internally vertex-disjoint if they are internally edge-disjoint and

V (P ) ∩ V (Q) = {x, y}. A subgraph T of G is a spanning tree of G if T is a tree and

V (T ) = V (G). Two spanning trees T and T ′ of G are vertex-independent (resp., edge-

independent) if T and T ′ are rooted at the same vertex, say r, and for each v ∈ V (G), the

r, v-path in T and the r, v-path in T ′ are internally vertex-disjoint (resp., internally edge-

disjoint). A set of spanning trees of G are vertex-independent (resp., edge-independent) if

they are pairwise vertex-independent (resp., pairwise edge-independent).

Recently, the problems of constructing multiple vertex-independent spanning trees

(vertex-ISTs) and constructing multiple edge-independent spanning trees (edge-ISTs) for

a given graph have received much attention. In [27], Zehavi and Itai stated two versions

of the n independent spanning trees conjecture:

(Vertex Conjecture) Any n-connected graph has n vertex-ISTs rooted at an arbitrary

vertex r.

(Edge Conjecture) Any n-edge-connected graph has n edge-ISTs rooted at an arbitrary

vertex r.

Zehavi and Itai [27] also raised the question: It would be interesting to show that either

the vertex conjecture implies the edge conjecture, or vice versa. Later, Khuller and

Schieber [16] successfully proved that the vertex conjecture implies the edge conjecture,

i.e., if any n-connected graph has n vertex-ISTs, then any n-edge-connected graph has n
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edge-ISTs. Khuller and Schieber’s proof also works for the directed case. For the directed

case, Edmonds [7] solved the edge conjecture. Khuller and Schieber [16] pointed out that

the vertex conjecture for directed graphs is the strongest conjecture since it implies all

the other conjectures.

The vertex and the edge conjectures have been confirmed only for n ≤ 4. In [15],

Itai and Rodeh gave a linear-time algorithm for constructing two edge-ISTs in a 2-edge-

connected graph; they also solved the vertex conjecture for n = 2. In [27], Zehavi and

Itai solved the vertex conjecture for n = 3, but they did not proposed an algorithm for

constructing three vertex-ISTs. In [6], Cheriyan and Maheshwari proposed an O(|V (G)|2)-
time algorithm for constructing three vertex-ISTs in a 3-connected graph. In [5], Curran

et al. proposed an O(|V (G)|3)-time algorithm for constructing four vertex-ISTs in a 4-

connected graph. When n ≥ 5, both the vertex and the edge conjectures are still open.

It has been proven that the vertex (or the edge) conjecture holds for several restricted

classes of graphs or digraphs, such as planar graphs [9, 10, 17, 18], maximal planar graphs

[19], product graphs [20], chordal rings [14, 24], de Bruijn and Kautz digraphs [8, 11], and

hypercubes [22, 26].

The design of vertex- and edge-ISTs has applications to reliable communication pro-

tocols. For example, a rooted spanning tree in the underlying graph of a network can

be viewed as a broadcasting scheme for data communication and fault-tolerance can be

achieved by sending n copies of the message along the n independent spanning trees

rooted at the source node [1]. For other applications, see [3] for the multi-node broad-

casting problem, [21] for one-to-all broadcasting, and [2] for n-channel graphs, reliable

broadcasting, and secure message distribution.

This thesis considers the problem of constructing n vertex-ISTs rooted at an arbitrary

vertex of an n-dimensional locally twisted cube LTQn or an n-dimensional hypercube

Qn (these cubes will be defined later). Since we focus on vertex-ISTs, in the remaining

discussion, we will simply use ISTs to denote vertex-ISTs unless otherwise specified. Note

that the development of algorithms for constructing ISTs tends toward pursuing two
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research goals: one is to design efficient construction schemes (for example, [14, 17, 19, 24]

propose linear-time algorithms) and the other is to reduce the heights of ISTs (for example,

[11, 22, 24] propose the idea of height improvements). Let G be an n-connected graph,

let T be a spanning tree of G rooted at vertex r, and let d(T ; r, v) denote the depth of

vertex v in T . The average path length of a set S = {T0, T1, . . . , Tn−1} of n ISTs rooted

at vertex r in G is defined to be

∑n−1
i=0

∑
v∈V (G)\{r} d(Ti; r, v)/n.

A set S of n ISTs rooted at vertex r in G (if this set exists) is called optimal if the average

path length of S is the minimum among all possible sets of n ISTs rooted at r in G.

The hypercube is one of the most popular interconnection networks due to its simple

structure and ease of implementation. However, it has been shown that the hypercube

does not achieve the smallest possible diameter for its resources. Therefore, many variants

of the hypercube have been proposed. The most well-known variants are twisted cubes

(TQ), crossed cubes (CQ), and Möbius cubes (MQ), and locally twisted cubes (LTQ). In

the following table, we list the connectivity, edge-connectivity and diameters of Qn and

its variants. It is well known that a hypercube Qn is n-connected. Since Qn is itself a

Table 1: The connectivity, edge-connectivity and diameters of Qn and its variants.
G\properties κ(G) λ(G) diameter

Qn n n n

TQn n n d(n + 1)/2e
CQn n n d(n + 1)/2e

in 0-MQn, d(n + 2)/2e for n ≥ 4

MQn n n in 1-MQn, d(n + 1)/2e for n ≥ 1

2 if n = 3

LTQn n n 3 if n = 4

d(n + 3)/2e if n ≥ 5

product graph, the algorithm proposed by Obokata et al. [20] can be used to construct

n ISTs for Qn. As to the construction of the height-reduced ISTs on Qn, Tang et al. [22]

modified the algorithm in [20] and proposed an O(n2n)-time algorithm for constructing

an optimal set of n ISTs for hypercubes Qn. It was pointed out by Yang et al. [26] that
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the algorithms in [20] and [22] are designed by a recursive fashion and such a construction

forbids the possibility that the algorithm could be parallelized; Yang et al. therefore

proposed a parallel construction for an optimal set of n ISTs for Qn.

Although Qn is a product graph, it is not known whether its variants are also product

graphs. For example, it is not known whether the locally twisted cube LTQn is a product

graph. The locally twisted cube was proposed by Yang et al. in [25]; the motivation of

proposing such a variant is that a better hypercube variant should be conceptually closer

to hypercube than other existing variants. In locally twisted cubes, the labels of any two

adjacent vertices differ in at most two successive bits. In [12], Hsieh and Tu proposed

an algorithm to construct n edge-ISTs for LTQn. Do notice that Hsieh and Tu did not

solve the edge conjecture for the locally twisted cube since their algorithm uses vertex 0

as the common root of edge-ISTs and a locally twisted cube is not vertex-transitive. For

example, in LTQ5, vertex 1 can reach any vertex within 3 steps but vertex 0 has to take

4 steps to reach vertex 30.

The sequential algorithm in [22] and the parallel algorithm in [26] obtain an optimal

set of n ISTs. However, these algorithms work only for hypercubes. In this thesis, we

outline an approach to construct n vertex-ISTs rooted at an arbitrary vertex of an n-

dimensional locally twisted cube or hypercube. Thus we confirm both the vertex and the

edge conjectures for the locally twisted cube and hypercube.

This thesis is organized as follows. In Section 2, we give some definitions and notations.

In Section 3, we outline an approach to construct n vertex-ISTs rooted at an arbitrary

vertex of an n-dimensional general cube. In Sections 4 and 5, we prove that our approach

constructs n ISTs for LTQn and Qn, respectively. The final section concludes this thesis.

2 Some preliminaries and our algorithm

In the remaining discussion, ⊕ denotes the bitwise XOR operation. As a reference,

0⊕ 0 = 0, 0⊕ 1 = 1, 1⊕ 0 = 1, 1⊕ 1 = 0.
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If u = (un−1 un−2 · · · u0)2 and v = (vn−1 vn−2 · · · v0)2, then we define

u⊕ v = (un−1 ⊕ vn−1 un−2 ⊕ vn−2 · · · u0 ⊕ v0)2.

Also, u⊕ v ⊕ w = (u⊕ v)⊕ w.

The n-dimensional hypercube Qn is a graph with 2n vertices and n · 2n−1 edges such

that its vertices are n-tuples with entries in {0, 1} and its edges are the pairs of n-tuples

that differ in exactly one position. Thus Q1 is the complete graph with two vertices 0

and 1, and Qn (n ≥ 2) is built from two copies of Qn−1 as follows: Let k ∈ {0, 1} and let

kQn−1 denote the graph obtained by prefixing the label of each vertex of one copy of Qn−1

with k; connect each vertex (0xn−2 . . . x1x0)2 of 0Qn−1 with the vertex (1xn−2 . . . x1x0)2

of 1Qn−1 by an edge.

We now define a generalization of Qn. The n-dimensional general cube GQn is defined

recursively as follows (see Figure 1). GQ1 is Q1, and GQn (n ≥ 2) is built from two

GQn−1’s (not necessarily identical) as follows: Let k ∈ {0, 1} and let kGQn−1 denote the

graph obtained by prefixing the label of each vertex of one of the two GQn−1’s with k; add

a perfect matching between 0GQn−1 and 1GQn−1, i.e., each vertex in 0GQn−1 is adjacent

to exactly one vertex in 1GQn−1.

…
...

1
0

n
GQ

1
1

n
GQ

a perfect

matching

n
GQ

Figure 1: The n-dimensional general cube GQn.

The n-dimensional locally twisted cube LTQn is defined recursively as follow. LTQ1

is Q1, and LTQ2 is the graph consisting of four vertices labeled with 00, 01, 10, and

11, respectively, and connected by the four edges (00, 01) (00, 10), (01, 11), and (10,

11). LTQn (n ≥ 3) is built from two identical LTQn−1’s as follows: connect each vertex

(0xn−2xn−3 · · · x0)2 of 0LTQn−1 with the vertex (1(xn−2⊕x0)xn−3 · · · x0)2 of 1LTQn−1 by

an edge. See Figures 2 and 3.
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011
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Figure 2: (a) LTQ3. (b) A symmetric drawing of LTQ3.

Figure 3: LTQ4 and its F = {f3, f2, f1, f0}. The ordinary lines (depicted as color blue),
the most solid lines (depicted as color green), the second solid lines (depicted as color
black), and the dashed lines (depicted as color red) are perfect matchings f3, f2, f1, and
f0, respectively.

We assume conventionality of the vertex prefixing method kGQn−1 which will be

used repeatedly in the definitions of specific hypercube variants late in this thesis unless

otherwise specified. It have been shown that crossed cubes, Möbius cubes, and locally

twisted cubes are the examples of GQn; see [13]. Note that the two GQn−1’s in GQn are

not necessarily identical. For instance, for crossed cubes and locally twisted cubes, the

two GQn−1’s are identical; but for Möbius cubes, they are not.

Recall that GQn (n ≥ 2) is built recursively by adding a perfect matching between

0GQn−1 and 1GQn−1; denote this perfect matching by fn−1. Then 0GQn−1 and 1GQn−1

are built recursively by adding a perfect matching between 00GQn−2 ∪ 10GQn−2 and

01GQn−2 ∪ 11GQn−2; denote this perfect matching by fn−2. Here ∪ means the union
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of graphs. Specifically, G ∪ H is the graph with vertex set V (G) ∪ V (H) and edge set

E(G)∪E(H). In general, let us define Li = {b1b2 · · · bi|bj ∈ {0, 1} for j = 1, 2, . . . , i} and

L0 = ε (the empty string). Let fn−i denote the perfect matching between
⋃

x∈Li−1 x0GQn−i

and
⋃

x∈Li−1 x1GQn−i and let

F = {fn−1, fn−2, . . . , f0}

be the set of perfect matchings used to build GQn. See Figure 3 for an illustration of F .

The following lemma is obvious and its proof is omitted.

Lemma 1. Let F = {fn−1, fn−2, . . . , f0} be the set of perfect matchings used to build

GQn. Then for every 0 ≤ i < n and every v = (vn−1vn−2 · · · v0)2 ∈ V (GQn), fi will not

affect bits vn−1, vn−2, . . . , vi+1 of v.

Before going further, we give the F of the hypercube and the locally twisted cube. For

convenience, vi denotes the complement of vi. First consider Qn. Let v = (vn−1vn−2 · · · v0)2 ∈
V (Qn). Then F = {fn−1, fn−2, . . . , f0} in which fi is defined by

fi(v) = (vn−1vn−2 · · · vi+1vivi−1 · · · v0)2. (1)

Now consider the locally twisted cube. The adjacency relation of LTQn has been

worked out by [13]; see the following.

Lemma 2. [13] For every v = (vn−1vn−2 . . . v0)2 ∈ V (LTQn), the n vertices y0, y1, . . . , yn−1

adjacent to v are:

y0 = (vn−1vn−2vn−3 · · · v2v1v0)2,

y1 = (vn−1vn−2vn−3 · · · v2v1v0)2,

y2 = (vn−1vn−2vn−3 · · · v2 (v1 ⊕ v0) v0)2,
...

yn−2 = (vn−1vn−2 (vn−3 ⊕ v0)vn−4 · · · v1v0)2,

yn−1 = (vn−1 (vn−2 ⊕ v0) vn−3 · · · v2v1v0)2.

Let v = (vn−1vn−2 · · · v0)2 ∈ V (LTQn). By Lemma 2, F = {fn−1, fn−2, . . . , f0} of

LTQn is defined by

fi(v) =





(vn−1vn−2 · · · v1v0)2 if i = 0,

(vn−1vn−2 · · · v2v1v0)2 if i = 1,

(vn−1vn−2 · · · vi+1vi (vi−1 ⊕ v0) vi−2vi−3 · · · v0)2 if 2 ≤ i ≤ n− 1.

(2)
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In the remaining discussion, (u, v) denotes the edge between u and v; T0, T1, . . . , Tn−1

denote subsets of edges of the given GQn; and r denotes the root of n IST. The vertex

fi(r) will be the son of r in Ti. Moreover, v ∈ V (Ti) means that v is an endpoint of an

edge in Ti, and v ∈ V (Ti) \ {r, fi(r)} means that v ∈ V (Ti) and v is neither the root nor

the son of the root. Now we are ready to propose an algorithm for constructing n ISTs

of a given GQn.

Algorithm 1 Construct n ISTs for GQn.

Input: F = {fn−1, fn−2, . . . , f0} used to build the given GQn and a vertex r of the GQn.
Output: n ISTs T0, T1, . . . , Tn−1 rooted at r.
1: for each processor i (0 ≤ i ≤ n) do in parallel
2: son ← fi(r);
3: S ← {son};
4: for m = i + 1 to i + n do
5: S ′ ← ∅;
6: for each vertex v ∈ S do
7: u ← fm mod n(v);
8: Ti ← Ti ∪ {(v, u)};
9: S ′ = S ′ ∪ {u};

10: endfor
11: S ← S ∪ S ′;
12: endfor
13: end for

Call the for-loop in lines 4 to 12 in the algorithm the outer for-loop for convenience.

Also, call the for-loop in lines 6 to 10 in the algorithm the inner for-loop for convenience.

Two examples of Algorithm 1 are given in Figure 4. If we replace do in parallel with do

in sequential, then Algorithm 1 becomes a sequential algorithm. If a top-down fashion

is insisted on, then Algorithm 1 can be modified to Algorithm 2 by adding lines 3, 14∼16

and replacing i + n with i + n − 1 in Algorithm 1. Algorithm 2 builds n ISTs of a GQn

in a top-down fashion; the algorithms in [12, 26] construct spanning trees in a bottom-up

fashion. A top-down fashion is preferred since these n ISTs are used for broadcasting

messages from the top (the root) of the trees.

We have a lemma.

Lemma 3. For each i ∈ {0, 1, . . . , n−1}, Ti constructed by Algorithm 1 has the properties

that
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Figure 4: Two examples of Algorithm 1: constructing 4 ISTs T0, T1, T2 and T3 for LTQ4.
The edges depicted as color red are obtained from f0, color black are from f1, color green
are from f2, and color blue are from f3. (a) The common root is 1. (b) The common root
is 0.

(i) (r, fi(r)) ∈ Ti;

(ii) for each v ∈ V (G) \ {r, fi(r)}, if v ∈ V (Ti), then the path from fi(r) to v in Ti uses

each perfect matching in F at most once.

Proof. Property (i) follows from line 3. Property (ii) follows from the fact that fm mod n

used in the for-loop between lines 7 and 11 are distinct.

In Sections 3 and 4, we will prove that T0, T1, . . . , Tn−1 generated by Algorithm 1 are
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Algorithm 2

1: for each processor i (0 ≤ i ≤ n) do in parallel
2: son ← fi(r);
3: Ti ← {(r, son)};
4: S ← {son};
5: for m = i + 1 to i + n− 1 do
6: S ′ ← ∅;
7: for each vertex v ∈ S do
8: u ← fm mod n(v);
9: Ti ← Ti ∪ {(v, u)};

10: S ′ = S ′ ∪ {u};
11: endfor
12: S ← S ∪ S ′;
13: endfor
14: for each vertex v ∈ S \ {son} do
15: Ti ← Ti ∪ {(v, fi(v))};
16: endfor
17: end for

n ISTs rooted at r for LTQn and Qn, respectively. Do notice that for Qn and LTQn,

f−1
n−1 = fn−1, f−1

n−2 = fn−2, . . . , f−1
0 = f0.

Thus in the remaining discussion, we will simply write fi instead of f−1
i . The following

definitions are crucial for the subsequent proofs.

Definition 4. Consider arranging the elements 0, 1, . . . , n− 1 on a circle in a clockwise

manner. For all 0 ≤ i ≤ n− 1, define Oi to be an ordered set

Oi = {i, i− 1, i− 2, . . . , i− n + 1}.

Here i− k means (i− k) mod n, where k = 1, 2, . . . , n− 1.

Notice that Oi can be viewed as the ordered set formed by taking the elements out

from the circle in a counterclockwise manner by letting i to be the first element. For

example, if n = 6, then O0 = {0, 5, 4, 3, 2, 1}, O1 = {1, 0, 5, 4, 3, 2}, O2 = {2, 1, 0, 5, 4, 3},
O3 = {3, 2, 1, 0, 5, 4}, O4 = {4, 3, 2, 1, 0, 5}, and O5 = {5, 4, 3, 2, 1, 0}.

Definition 5. For all 0 ≤ i ≤ n − 1 and v ∈ V (Ti), define Ci(v, fi(r)) as follows.

Recall that fi(r) is the son of the root in Ti. Let v = (vn−1vn−2 · · · v0)2 and fi(r) =
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(an−1an−2 . . . a0)2. Suppose v and fi(r) has a total of m different bits. Define Ci(v, fi(r))

to be an ordered set containing all the indices of these m different bits, listed according to

the order given in Oi.

We give some examples for Ci(v, fi(r)). Note that when r = 0, the son of the root

in Ti is 2i, i.e., fi(r) = 2i. Suppose n = 6 and v = (101011)2. Then C0(v, 20) =

{5, 3, 1}, C1(v, 21) = {0, 5, 3}, C2(v, 22) = {2, 1, 0, 5, 3}, C3(v, 23) = {1, 0, 5}, C4(v, 24) =

{4, 3, 1, 0, 5}, and C5(v, 25) = {3, 1, 0}.

Definition 6. Suppose Ci(v, fi(r)) = {cm−1, cm−2, . . . , c0}, |Ci(v, fi(r))| ≥ 2 and j 6∈
Ci(v, fi(r)). We say that j is between cu and cu−1 with respect to Oi if when 0, 1, . . . , n−1

are arranged on a circle, the location of j on the circle is between cu and cu−1. Suppose j

is between cu and cu−1 with respect to Oi. Then when j is put into Ci(v, fi(r)), j will be

put into Ci(v, fi(r)) according to its original position in Oi.

Continue the above example. Then 4 6∈ C1(v, 21) and 4 is between cu = 5 and cu−1 = 3

with respect to O1; 2 6∈ C1(v, 21) and 2 is between 3 and 0 with respect to O1; 4, 3 and

2 are not in C3(v, 23) and all of them are between 5 and 1 with respect to O3. Since

O3 = {3, 2, 1, 0, 5, 4}, if we put 4 into C3(v, 23), then we obtain {1, 0, 5, 4}; if we put 2 into

C3(v, 23), then we obtain {2, 1, 0, 5}.

Definition 7. For all 0 ≤ i ≤ n−1 and v ∈ V (Ti), define Pi(v, fi(r)) to be an ordered set

of all the indices of perfecting matchings used in the v, fi(r)-path in Ti, listed according

to the order from v to fi(r).

Take LTQ4 and Figures 4 for an example. Then O0 = {0, 3, 2, 1}, O1 = {1, 0, 3, 2},
O2 = {2, 1, 0, 3}, O3 = {3, 2, 1, 0}. Consider r = 1 and T1. Then the son of the root is

f1(1) = 3 = (0011)2. Now suppose v = 6 = (0110)2. Then v ∈ T1, C1(v, f1(1)) = {0, 2}
and P1(v, f1(1)) = {1, 0, 2}. Moreover, the path from v to f1(1) is

(0110)2

f−1
1 =f1→ (0100)2

f−1
0 =f0→ (0101)2

f−1
2 =f2→ (0011)2.
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3 Applying our algorithm to locally twisted cubes

The purpose of this section is to prove that T0, T1, . . . , Tn−1 generated by Algorithm 1

are n ISTs for the locally twisted cube. It is not difficult to see that LTQn is vertex-

transitive when n ≤ 2. LTQ3 is vertex-transitive can be observed from Figure 3. We now

prove that LTQn is not vertex-transitive for n ≥ 4. For n = 4, let the Nk(r) be the set

of vertices that can be reached by r in at most k steps. Consider the number of vertices

in N2(r) that reaches only one vertex in N1(r) and only one vertex in N3(r). For r = 0,

there is only one such vertex; however, for r = 1, there are two such vertices. Thus LTQ4

is not vertex-transitive. For n ≥ 5, LTQn is not vertex-transitive since the BFS tree with

root 0 is of height dn+3
2
e while the BFS tree with root 1 is of height dn+1

2
e.

We say that two vertices u, v ∈ V (G) are symmetric if there is a bijection h : V (G) →
V (G) such that h(u) = v and (x, y) ∈ E(G) if and only if (h(x), h(y)) ∈ E(G). A

graph G satisfies the odd-even-transitive property if each pair of odd-numbered vertices

are symmetric and each pair of even-numbered vertices are also symmetric.

We now prove that the locally twisted cube satisfies the odd-even-transitive property.

Based on this property, we assume without loss of generality that r = 0 or r = 1 as the

common root. Then, we will prove that T0, T1, . . . , Tn−1 generated by Algorithm 1 are n

ISTs for the locally twisted cube.

Theorem 8. The locally twisted cube LTQn satisfies the odd-even-transitive property.

Proof. It suffices to prove that (i) if v is an odd-numbered vertex and v 6= 1, then v and

1 are symmetric, and (ii) if v is an even-numbered vertex and v 6= 0, then v and 0 are

symmetric. Let F = {fn−1, fn−2, . . . , f0} be defined by equation (2). Then each edge in

LTQn is of the form (u, fi(u)) for some fi ∈ F .

First consider (i). Let v = (vn−1vn−2 · · · v0)2 ∈ V (LTQn) be an odd-numbered vertex

and v 6= 1. Define a function h1 as follows:

h1(u) = v ⊕ u⊕ 1 for all u = (un−1un−2 · · ·u0)2 ∈ V (LTQn).

It is not difficult to see that h1 is a bijection from V (LTQn) to V (LTQn). Let (u, fi(u)) ∈

12



E(LTQn). Then

h1(u) = (vn−1⊕un−1 vn−2⊕un−2 · · · v1⊕u1 u0)2

and

h1(fi(u)) =

{
(vn−1⊕un−1 vn−2⊕un−2 · · · v1⊕u1 1⊕u0)2 if i = 0

(vn−1⊕un−1 vn−2⊕un−2 · · · v2⊕u2 v1⊕u1 1⊕u0)2 if i = 1

and if 2 ≤ i ≤ n− 1, then

h1(fi(u))= (vn−1⊕un−1 vn−2⊕un−2 · · · vi+1⊕ui+1 vi⊕ui (vi−1⊕ui−1⊕u0) vi−2⊕ui−2 · · · v1⊕u1 u0)2.

Note that vi ⊕ ui = vi ⊕ ui no matter ui = v1 or ui 6= vi. Therefore

h1(fi(u)) = fi(h1(u))

and hence (h1(u), h1(fi(u))) ∈ E(LTQn).

Now consider (ii). Let v = (vn−1vn−2 · · · v0)2 ∈ V (LTQn) be an even-numbered vertex

and v 6= 0. Define a function h0 as follows:

h0(u) = v ⊕ u for all u = (un−1un−2 · · · u0)2 ∈ V (LTQn).

It is not difficult to see that h0 is a bijection from V (LTQn) to V (LTQn). Let (u, fi(u)) ∈
E(LTQn). Then

h0(u) = (vn−1⊕un−1 vn−2⊕un−2 · · · v1⊕u1 u0)2

and

h0(fi(u)) =

{
(vn−1⊕un−1 vn−2⊕un−2 · · · v1⊕u1 u0)2 if i = 0

(vn−1⊕un−1 vn−2⊕un−2 · · · v2⊕u2 v1⊕u1 u0)2 if i = 1

and if 2 ≤ i ≤ n− 1, then

h0(fi(u))=(vn−1⊕un−1 vn−2⊕un−2 · · · vk+1⊕uk+1 vk⊕uk (vk−1⊕uk−1⊕u0) vk−2⊕uk−2 · · · v1⊕u1 u0)2.

13



Again, vi ⊕ ui = vi ⊕ ui no matter ui = v1 or ui 6= vi. Therefore

h0(fi(u)) = fi(h0(u))

and hence (h0(u), h0(fi(u))) ∈ E(LTQn).

By Theorem 8, we assume without loss of generality that r = 0 or r = 1 as the

common root. In subsections 3.1 and 3.2, we will prove that T0, T1, . . . , Tn−1 generated

by Algorithm 1 are n ISTs rooted at r = 0 and r = 1 for LTQn, respectively. For

convenience, in the remaining discussion, define I(a, b), where a ≥ b, to be an ordered

sequence such that

I(a, b) =

{
a, a− 1, . . . , b + 1 if a > b,

a if a = b.

3.1 Vertex 0 as the common root

Throughout this subsection, let T0, T1, . . . , Tn−1 be the output of Algorithm 1 when

the input is the F of LTQn and the root is r = 0. The purpose of this subsection is to

prove that T0, T1, . . . , Tn−1 are n ISTs rooted at r = 0 for LTQn.

Lemma 9. T0, T1, . . . , Tn−1 are n spanning trees rooted at r for LTQn when r = 0.

Proof. It suffices to prove that each Ti (0 ≤ i ≤ n− 1) is a spanning tree rooted at r = 0.

Consider the set S used in line 6 in the algorithm. From the inner for-loop, we know that

Algorithm 1 uses vertices in S to generate edges in Ti and each v ∈ S generates exactly

one edge (u, v) ∈ Ti, where u = fm mod n(v). We now claim that:

Claim: At the start of the k-th iteration of the outer for-loop, |S| = 2k−1.

Proof of the claim. This claim is true when k = 1 since line 3 sets S = {son} and hence

|S| = 1 = 20. We now prove that if this claim is true before the k-th iteration of the outer

for-loop, then it remains true before the next iteration. There are two cases.

Case 1: k ∈ {1, 2, . . . , n− 1}. Set t = (i + k) mod n for easy writing. The k-th outer

for-loop uses the perfect matching ft to generate exactly one edge (u, v) ∈ Ti for each
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v ∈ S. Notice that the t-th bit of each vertex v ∈ S is 0 and the t-th bit of each vertex

in S ′ is 1. Therefore S ∩ S ′ = ∅ before the execution of line 11. Thus at the start of the

next iteration of the outer for-loop, |S| = 2k.

Case 2: k = n. The n-th outer for-loop uses the perfect matching fi to generate

exactly one edge (u, v) ∈ Ti for each each v ∈ S. Notice that the i-th bit of each vertex

v ∈ S is 1 and the i-th bit of each vertex in S ′ is 0. Therefore S ∩ S ′ = ∅ before the

execution of line 11. Thus at the start of the next iteration of the outer for-loop, |S| = 2k.

From the above, when the outer for-loop terminates, k = n+1 and |S| = 2n; therefore

Ti is a spanning subgraph. Also, at the end of the k-th iteration of the outer for-loop,

|S| = 2k−1 new edges are generated; thus Ti has a total of 20 + 21 + · · · + 2n−1 = 2n − 1

edges. Ti is connected since each newly generated edge in Algorithm 1 is incident to an

edge that is already generated. Thus Ti is a spanning tree rooted at r = 0.

When r = 0, the son of the root in Ti is fi(0) and

fi(0) = 2i.

For any v ∈ V (Ti) \ {0, fi(0)}, the v, fi(0)-path in Ti can be determined by Pi(v, fi(0)),

which can be determined by the ordered set

Ci(v, fi(0)) = {cm−1, cm−2, . . . , c0}
as follows. Suppose v = (vn−1vn−2 · · · v0)2. When v0 = 0, since r = 0, we have

Pi(v, fi(0)) =





Ci(v, fi(0)) if i = 0,

{cm−1 = 0, I(cm−2, cm−3), . . . , I(c3, c2), I(c1, c0)} if i 6= 0 and m− 1 is even,

{cm−1 = 0, I(cm−2, cm−3), . . . , I(c2, c1), I(c0, 0)} if i 6= 0 and m− 1 is odd.

(3)

When v0 = 1, since r = 0, the set Ci(v, fi(0)) must contain the value 0 if i 6= 0; so we
assume ce = 0 if i 6= 0. Thus when r = 0 and v0 = 1,

Pi(v,fi(0))=





{I(cm−1,cm−2), I(cm−3,cm−4), . . . , I(c1, c0)} if i=0, m is even,

{I(cm−1,cm−2), I(cm−3,cm−4), . . . , I(c2, c1), I(c0, 0)} if i=0, m is odd,

{I(cm−1,cm−2),I(cm−3,cm−4), . . . ,I(ce+2, ce+1),ce,ce−1,. . .,c0} if j 6=0, m−e is odd,

{I(cm−1,cm−2), I(cm−3,cm−4), . . . ,I(ce+1, 0), ce, ce−1, . . . , c0} if i 6=0, m−e is even.

(4)
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In the following, we give some examples for Pi(v, fi(0)). Consider LTQ4. Then f0(0)=

20 =1, f1(0)=21 =2 and f2(0)=22 =4. Thus the son of the root in T0 is 1, in T1 is 2 and

in T2 is 4. For v = (1010)2 ∈ T0, we have C0(v, 1) = {0, 3, 1} and P0(v, 1) = {0, I(3, 1)} =

{0, 3, 2}; so the v, 1-path in T0 is

(1010)2

f−1
0 =f0→ (1011)2

f−1
3 =f3→ (0111)2

f−1
2 =f2→ (0001)2.

For v = (1100)2 ∈ T1, we have C1(v, 2) = {1, 3, 2} and P1(v, 2) = {1, 3, 2}; so the v, 2-path

in T1 is

(1100)2

f−1
1 =f1→ (1110)2

f−1
3 =f3→ (0110)2

f−1
2 =f2→ (0010)2.

For v = (0001)2 ∈ T2, we have C2(v, 4) = {2, 0} and P2(v, 4) = {I(2, 0), 0} = {2, 1, 0}; so

the v, 4-path in T2 is

(0001)2

f−1
2 =f2→ (0111)2

f−1
1 =f1→ (0101)2

f−1
0 =f0→ (0100)2.

Lemma 10. T0, T1, . . . , Tn−1 are n vertex-independent trees rooted at r for LTQn when

r = 0.

Proof. It suffices to prove that any two Ti and Tj with 0 ≤ i < j ≤ n − 1 are vertex-

independent, i.e., for each v ∈ V (LTQn), the r, v-path in Ti and the r, v-path in Tj

are internally vertex-disjoint. The son of the root in Ti is fi(r) and in Tj is fj(r). Let

v = (vn−1vn−2 · · · v0)2 be an arbitrary vertex in LTQn. In the following, we assume

v 6∈ {r, fi(r), fj(r)} since if v ∈ {r, fi(r), fj(r)}, then the r, v-path in Ti and the r, v-path

in Tj are clearly internally vertex-disjoint.

Since fi(r) 6= fj(r), the r, v-path in Ti and the r, v-path in Tj are internally vertex-

disjoint if and only if the v, fi(r)-path in Ti and the v, fj(r)-path in Tj are internally

vertex-disjoint. In the following, we will only prove that the v, fi(r)-path in Ti and the

v, fj(r)-path in Tj are internally vertex-disjoint. Let V1 be an ordered set that contains

the internal vertices of the v, fi(r)-path in Ti listed from v to fi(r). Let V2 be an ordered

set that contains the internal vertices of the v, fj(r)-path in Tj listed from v to fj(r). We

now claim that:
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Claim: V1 ∩ V2 = ∅.

Proof of the claim. Suppose this claim is not true and there exists a vertex a ∈ V1 ∩ V2.

Recall that fi(0) = 2i and fj(0) = 2j. Let

Ci(v, 2i) = {cm−1, cm−2, . . . , c0}. (5)

There are four cases.

Case 1: vi = 1 and vj = 1. Then there must exist a u such that cu = j. Thus

Cj(v, 2j) = {cu−1, cu−2, . . . , c0, i, cm−1, cm−2, . . . , cu+1}. (6)

By (3) and (4) and (5), cm−1 is the first element in Pi(v, 2i). Let x∈ V1. Then the (cm−1)-th

bit of x is vcm−1 only when (i) (cm−1 +1) ∈ Pi(v, 2i), (ii) cm−1 +1 ≥ 2 and (iii) there exists

q = (qn−1qn−2 · · · q0)2 ∈ V1 such that x = fcm−1+1(q) and q0 = 1. We now prove that (i),

(ii) and (iii) will not occur simultaneously; hence for all x ∈ V1, the (cm−1)-th bit of x is

vcm−1 . If |Ci(v, 2i)| = 1, then (i) can not occur. Suppose |Ci(v, 2i)| ≥ 2 and both (i) and

(iii) occur; that is, there exists q = (qn−1qn−2 · · · q0)2 ∈ V1 such that x = fcm−1+1(q) and

q0 = 1. By (5), cm−1 + 1 is the last element in Pi(v, 2i). Since q0 = 1, I(c0, 0) ⊆ Pi(v, 2i).

By Lemma 3 and by the fact that I(c0, 0) = {c0, c0 − 1, . . . , 1}, we have cm−1 + 1 = 1;

thus (ii) does not occur and consequently the (cm−1)-th bit of all the vertices in V1 is

vcm−1 . Since vi = 1, the i-th bit of all the vertices in V1 is 1. By (3) and (4) and (6), the

(cm−1)-th bit of those vertices in V2 with the i-th bit being 1 is vcm−1 . Thus V1 ∩ V2 = ∅.

Case 2: vi = 0 and vj = 0. Then cm−1 = i. If |Ci(v, 2i)| = 1, then Ci(v, 2i) =

{i}, which implies that v = 0; this contradicts with the assumption that v 6= 0. Thus

|Ci(v, 2i)| ≥ 2 and there must exist a u such that j is between cu and cu−1 with respect

to Oi. Thus

Cj(v, 2j) =

{ {j, cu−1, cu−2, . . . , c0, cm−2, cm−3, . . . , cu+1, cu} if u 6= 0,

{j, cu−1, cu−2, . . . , c0, cm−2, cm−3, . . . , cu+1} if u = 0.
(7)

By (3) and (4) and (5), the i-th bit of all vertices in V1 is 1. By (3) and (4) and (7), the

j-th bit of all vertex in V2 is 1. Suppose V1 ∩ V2 6= ∅ and a ∈ V1 ∩ V2. Then the i-th bit
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and the j-th bit of a are both 1. When I(cu, cu−1) * Pi(v, 2i), each vertex in V1 has its

j-th bit to be 0. When I(c0, cm−2) * Pj(v, 2j), each vertex in V2 has its i-th bit to be

0. Thus the existence of a implies that I(cu, cu−1) ⊆ Pi(v, 2i) and I(c0, cm−2) ⊆ Pj(v, 2j).

Note that I(cu, cu−1) ⊆ Pi(v, 2i) implies that i = 0 and hence v0 = 0 (since case 2 requires

vi = 0). However, I(c0, cm−2) ⊆ Pj(v, 2j) implies v0 = 1, which contradicts with v0 = 0.

Thus no such a exists and V1 ∩ V2 = ∅.

Case 3: vi = 0 and vj = 1. Then cm−1 = i and there must exist a u such that cu = j.

If |Ci(v, 2i)| = 1, then Cj(v, 2i) = ∅, which implies that v = 2j; this contradicts with the

assumption that v 6= 2j. Thus

Cj(v, 2j) = {cu−1, cu−2, . . . , c0, cm−2, cm−3, . . . , cu+1}. (8)

By (3) and (4) and (5), the i-th bit of all vertices in V1 is 1. Suppose V1 ∩ V2 6= ∅ and

a ∈ V1 ∩ V2. Then the i-th bit of a is 1. When I(c0, cm−2) * Pj(v, 2j), each vertex in

V2 has its i-th bit to be 0. Thus the existence of a implies that I(c0, cm−2) ⊆ Pj(v, 2j)

which further implies v0 = 1. Since I(c0, cm−2) ⊆ Pj(v, 2j), V2 has only one vertex

x = (xn−1xn−2 · · · x0)2 such that xi = 1 and x = fi+1(q) for some q ∈ V2. The existence

of a implies that x = a. Since v0 = 1, Pi(v, 2i) starts with I(i, cm−2), i.e., Pi(v, 2i) is of

the form {I(i, cm−2), . . .}. By (4), cm−3 is the first element after I(i, cm−2) in Pi(v, 2i).

Recall that Pi(v, 2i) is an ordered set of all the indices of perfecting matchings used in

the v, 2i-path in Ti listed according to the order from v to 2i. Thus the first vertex in V1

can be obtained by applying the first perfect matching obtained from the first element

in P(v, 2i) to v, the second vertex in V1 can be obtained by applying the second perfect

matching obtained from the second element in P(v, 2i) to the first vertex in V1, and so

on. Thus we can partition V1 into V1,a and V1,b such that V1,a consists of those vertices in

V1 before fcm−3 is applied and V1,b = V1 − V1,a. Let y = (yn−1yn−2 · · · y0)2 be an arbitrary

vertex in V1,a. Then bits yiyi−1 · · · ycm−2 are different from vivi−1 · · · vcm−2 in exactly two

bits. However, bits xixi−1 · · · xcm−2 are identical to vivi−1 · · · vcm−2 . Thus x 6∈ V1,a. On the

other hand, xcm−3 = vcm−3 but the (cm−3)-th bit of all the vertices in V1,b is vcm−3 ; thus

x 6∈ V1,b. Since x 6∈ V1,a and x 6∈ V1,b, we have x 6∈ V1. Since x = a, it follows that a 6∈ V1.
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Thus no such a exists and V1 ∩ V2 = ∅.
Case 4: vi = 1 and vj = 0. Then there must exist a u such that j is between cu and

cu−1 with respect to Oi. Thus

Cj(v,2j) =

{
{j, i, cu−1, cu−2, . . . ,c0, cm−1, cm−2, . . . ,cu} if i is between cu and cu−1 respect to Oi,

{j, cu−1, cu−2, . . . ,c0, i, cm−1, cm−2, . . . , cu} if otherwise.
(9)

By (3) and (4) and (9), the j-th bit of all vertices in V2 is 1. Since vi = 1, the i-th bit of

all the vertices in V1 is 1. Suppose V1 ∩ V2 6= ∅ and a ∈ V1 ∩ V2. Then the i-th bit and

the j-th bit of a are both 1. By (9), case 4 consists of two subcases. In each subcase, we

will prove that no such a exists. Since a does not exist, V1 ∩ V2 = ∅.

Subcase 4.1: i is between cu and cu−1 with respect to Oi. Then V2 has only one vertex

fj(v) with its i-th bit and j-th bit both being 1. By (3) and (4) and (5), cm−1 is the first

element in Pi(v, 2i). Thus the (cm−1)-th bit of those vertices in V1 with the j-th bit being

1 is vcm−1 . However, by (3) and (4) and (9), the (cm−1)-th bit of fj(v) is vcm−1 . Thus no

such a exists.

Subcase 4.2: i is not between cu and cu−1 with respect to Oi. If |Ci(v, 2i)| = 1, then

Ci(v, 2i) = {c0}; since vj = 0, we have c0 6= j, which implies that each vertex in V1 has

its j-th bit to be 0 and consequently no such a exists. Now suppose |Ci(v, 2i)| ≥ 2. Then

when I(cu, cu−1) * Pi(v, 2i), each vertex in V1 has its j-th bit to be 0. Thus the existence

of a implies that I(cu, cu−1) ⊆ Pi(v, 2i). Since I(cu, cu−1) ⊆ Pi(v, 2i), V1 has only one

vertex x = (xn−1xn−2 · · ·x0)2 such that xj = 1 and x = fj+1(q) for some q ∈ V1. The

existence of a implies that x = a. By (3) and (4) and (9), the (cm−1)-th bit of those

vertices in V2 with the i-th bit being 1 is vcm−1 . However, the xcm−1 = vcm−1 . So if x ∈ V1,

x 6∈ V2. Then, by (3) and (4) and (5), the j-th bit of all the vertices in V1 \ {x} is 0. By

(3) and (4) and (9), the j-th bit of all the vertices in V2 is 1. Thus no such a exists.

Since V1 ∩ V2 = ∅, we have this lemma.

Theorem 11. T0, T1, . . . , Tn−1 are n n ISTs rooted at r for LTQn when r = 0.

Proof. This theorem follows from Lemmas 9 and 10.
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3.2 Vertex 1 as the common root

Throughout this subsection, let T0, T1, . . . , Tn−1 be the output of Algorithm 1 when

the input is the F of LTQn and the root is r = 1. The purpose of this subsection is to

prove that T0, T1, . . . , Tn−1 are n ISTs rooted at r = 1 for LTQn. For S ⊆ V (LTQn),

define fi(S) to be

fi(S) = {fi(v) | for all v ∈ S}.

This definition will be used in the following proofs.

Lemma 12. T0, T1, . . . , Tn−1 are n spanning trees rooted at r for LTQn when r = 1.

Proof. The proof of this lemma is similar to that of Lemma 9 except that r = 0 is replaced

by r = 1 and the proof of the claim is modified as follows.

Proof of the claim. This claim is true when k = 1 since line 3 sets S = {son} and hence

|S| = 1 = 20. We now prove that if this claim is true before the k-th iteration of the

outer for-loop, then it remains true before the next iteration. According to which Ti is

considered, there are three possibilities.

1. Suppose T0 is considered. Then i = 0 and there are two cases.

Case 1: k ∈ {1, 2, . . . , n−1}. The proof of this case is the same as Case 1 in Lemma 9.

Case 2: k = n. The proof of this case is the same as Case 2 in Lemma 9 except that:

the i-th bit of each vertex v ∈ S is 0 and the i-th bit of each vertex in S ′ is 1.

2. Suppose Tn−1 is considered. Then i = n− 1 and there are two cases.

Case 1: k ∈ {1, 2, . . . , n−1}. The proof of this case is the same as Case 1 in Lemma 9

except that: when k = n−1, the (n−2)-th bit of each vertex v ∈ S is 1 and the (n−2)-th

bit of each vertex in S ′ is 0.

Case 2: k = n. The proof of this case is the same as Case 2 in Lemma 9.

3. Suppose Ti is considered, where i ∈ {1, 2, . . . , n− 2}. Then there are two cases.

Case 1: k ∈ {1, 2, . . . , n−1}. The proof of this case is the same as Case 1 in Lemma 9

except that: when k = n−1, the (n−2)-th bit of each vertex v ∈ S is 1 and the (n−2)-th

bit of each vertex in S ′ is 0.
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Case 2: k = n. This is the last (the n-th) iteration of the outer for-loop of Algorithm 1.

Before the n-th iteration of the outer for-loop, |S|=2n−1 and a total of 20+21+· · ·+2n−2 =

2n−1−1 edges have been put into Ti; these edges form a connected subgraph since each

newly generated edge in Algorithm 1 is incident to an edge that is already generated.

Thus S induces a tree. Partition S into S0 and S1 such that

S0 = {all the vertices in the subtree rooted at fi+1(fi(1))} and S1 = S \ S0.

See Figure 5 as an illustration.
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Figure 5: An illustration for the proof of Lemma 12.

By (2) and by Lemma 3, we have: (i) the i-th bit of all the vertices in S0 is 0 and hence

the i-th bit of all the vertices in fi(S
0) is 1, and (ii) the i-th bit of all the vertices in S1

is 1 and hence the i-th bit of all the vertices in fi(S
1) is 0. Notice that

S ′ = fi(S
0) ∪ fi(S

1).

By (i) and (ii), to prove that S ∩ S ′ = ∅, it suffices to prove that

S0 ∩ fi(S
1) = ∅ and S1 ∩ fi(S

0) = ∅. (10)
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Suppose i=n−2. Then the (n−1)-bit of all the vertices in S0 and fn−2(S
0) is 1; however, the

(n−1)-bit of all the vertices in S1 and fn−2(S
1) is 0. Thus when i=n−2, S0∩fn−2(S

1) = ∅
and S1 ∩ fn−2(S

0) = ∅. Now suppose i ∈ {1, 2, . . . , n − 3}. Partition S0 into S0
0 and S0

1

such that

S0
0 = {all the vertices in the subtree rooted at fi+2(fi+1(fi(1)))} and S0

1 = S0 \ S0
0 .

Partition S1 into S1
0 and S1

1 such that

S1
0 = {all the vertices in the subtree rooted at fi+2(fi(1))} and S1

1 = S0 \ S1
0 .

By (2) and by Lemma 3, the pair of the (i+1)-th and the i-th bit of all the vertices in S0
0

and fi(S
1
1) is (0,0); in fi(S

0
0) and S1

1 is (0,1); in S0
1 and fi(S

1
0) is (1,0) and in fi(S

0
1) and

S1
0 is (1,1). Thus to prove (10), it suffices to prove that

S0
0 ∩ fi(S

1
1) = ∅, S1

1 ∩ fi(S
0
0) = ∅, S1

0 ∩ fi(S
0
1) = ∅ and S0

1 ∩ fi(S
1
0) = ∅. (11)

For each v = (vn−1, vn−1, . . . , v0)2 ∈ V (LTQn) such that v 6= 0, define q to be the index

so that vq is the leftmost nonzero bit, i.e., vn−1 = vn−2 = · · · = vq+1 = 0 and vq = 1 (since

v 6= 0, q exists). For v = 0, define q to be −1. By (2) and by Lemma 3, we have Table 2.

We now use two claims to prove (11).

Table 2: The value of q for every vertex in the given set.
S0

0 ∪ fi(S
0
0) S1

1 ∪ fi(S
1
1) S1

0 ∪ fi(S
1
0) S0

1 ∪ fi(S
0
1)

q ≥ i + 2 q ≤ i + 1 or q ≥ i + 3 q ≥ i + 3 q = i + 1 or q ≥ i + 3

Claim A: S0
0 ∩ fi(S

1
1) = ∅ and S1

1 ∩ fi(S
0
0) = ∅. This claim holds since:

By Table 2, each vertex in S1
1 ∩ fi(S

1
1) with q ≤ i + 1 does not belong to S0

0 ∪ fi(S
0
0) since

every vertex in S0
0 ∪ fi(S

0
0) has q ≥ i + 2. By Table 2, each vertex in S0

0 ∪ fi(S
0
0) with

q = i + 2 does not belong to S1
1 ∩ fi(S

1
1) since each vertex in S1

1 ∩ fi(S
1
1) has q 6= i + 2.

From the above, we may focus on vertices with q = i + 3 or q > i + 3. Note that each

vertex in S0
0 ∪ fi(S

0
0) with q = i + 3 will have its (i + 2)-th bit to be 0; however, from

Table 2, we know that each vertex in fi(S
1
1)∪S1

1 with q ≥ i+3 will have its (i+2)-th bit

to be 1. Therefore, each vertex in S0
0∪fi(S

0
0) with q = i+3 does not belong to S1

1∪fi(S
1
1).
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It remains to consider vertices with q > i + 3. Note that the bit string of those bits from

the q-th bit to the (i + 2)-th bit of all the vertices in S0
0 ∪ fi(S

0
0) is one of the strings in

L0 = { 1

q−i−2 0′s︷ ︸︸ ︷
00 · · · 0︸ ︷︷ ︸

q−i−1 bits

, 1

q−i−4 0′s︷ ︸︸ ︷
00 · · · 0 11︸ ︷︷ ︸
q−i−1 bits

, 1

q−i−5 0′s︷ ︸︸ ︷
00 · · · 0 101︸ ︷︷ ︸
q−i−1 bits

, 1

q−i−6 0′s︷ ︸︸ ︷
00 · · · 0 1001︸ ︷︷ ︸

q−i−1 bits

, . . . , 101

q−i−5 0′s︷ ︸︸ ︷
00 · · · 0 1︸ ︷︷ ︸

q−i−1 bits

, 11

q−i−4 0′s︷ ︸︸ ︷
00 · · · 0 1︸ ︷︷ ︸

q−i−1 bits

}.

However, the bit string of those bits from the q-th bit to the (i + 2)-th bit of all the

vertices in S1
1 ∪ fi(S

1
1) is one of the strings in

L1 = { 1

q−i−3 0′s︷ ︸︸ ︷
00 · · · 0 1︸ ︷︷ ︸

q−i−1 bits

, 1

q−i−4 0′s︷ ︸︸ ︷
00 · · · 0 10︸ ︷︷ ︸
q−i−1 bits

, 1

q−i−5 0′s︷ ︸︸ ︷
00 · · · 0 100︸ ︷︷ ︸
q−i−1 bits

, 1

q−i−6 0′s︷ ︸︸ ︷
00 · · · 0 1000︸ ︷︷ ︸

q−i−1 bits

, . . . , 101

q−i−4 0′s︷ ︸︸ ︷
00 · · · 0︸ ︷︷ ︸

q−i−1 bits

, 11

q−i−3 0′s︷ ︸︸ ︷
00 · · · 0︸ ︷︷ ︸

q−i−1 bits

}.

It is not difficult to see that L0 ∩ L1 = ∅. Hence we have Claim A.

Claim B: S0
1 ∩ fi(S

1
0) = ∅ and S1

0 ∩ fi(S
0
1) = ∅. The proof of Claim B is similar to that

of Claim A except that S0
0 ∪ fi(S

0
0) is replaced by S1

0 ∪ fi(S
1
0) and S1

1 ∪ fi(S
1
1) is replaced

by S0
1 ∪ fi(S

0
1).

By Claims A and B, we have (11) and hence have (10). Therefore S ∩ S ′ = ∅ before

the execution of line 11. Thus at the start of the next iteration of the outer for-loop,

|S| = 2k.

We now have this lemma.

When r = 1, the son of the root in Ti is fi(1), where

fi(1) =





0 if i 6= 0,

3 if i = 1,

2i + 2i−1 + 1 if 2 ≤ i ≤ n− 1.

(12)

For any v ∈ V (Ti) \ {1, fi(1)}, the v, fi(1)-path in Ti can be determined by Pi(v, fi(1)),

which can be determined by the ordered set

Ci(v, fi(1)) = {cm−1, cm−2, . . . , c0}

as follows. Let ce−1 be the first (from left to right) member in Ci(v, fi(1)) that is larger

than i. Suppose v = (vn−1vn−2 · · · v0)2. When i = 0, since r = 1, we have

Pi(v, fi(1)) = Ci(v, fi(1)). (13)
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When i 6= 0 and v0 = 0, since r = 1, we have ce = 0 and

Pi(v, fi(1))=





{cm−1, cm−2,. . ., ce,I(ce−1,ce−2), I(ce−3,ce−4),. . .,I(c1, c0)} if e is even,

{cm−2, cm−3,. . ., ce,I(ce−1,ce−2), I(ce−3,ce−4),. . .,I(c0, i)} if e is odd, cm−1 = i,

{i, cm−1, cm−2,. . ., ce,I(ce−1,ce−2), I(ce−3,ce−4),. . .,I(c0, i)} if e is odd, cm−1 6= i.

(14)

When i 6= 0 and v0 = 0, in order to obtain Pi(v, fi(1)) from Ci(v, fi(1)), we need to define

C1
i , C2

i and ζi(v, fi(1)). Define C2
i to be the ordered sequence

C2
i = ce−1, ce−2, . . . , c0

and define C1
i to be the ordered sequence

C1
i =





cm−1, cm−2, . . . , ce if |C2
i | is even,

i, cm−1, cm−2, . . . , ce if |C2
i | is odd and cm−1 6= i

cm−2, cm−3, . . . , ce if |C2
i | is odd and cm−1 = i.

Defined ζi(v, fi(1)) to be the ordered sequence

ζi(v, fi(1)) =





{C1
i , C

2
i } if |C1

i | is even and |C2
i | is even,

{C1
i , C

2
i , i} if |C1

i | is even and |C2
i | is odd,

{C1
i , 0, C

2
i } if |C1

i | is odd and |C2
i | is even,

{C1
i , 0, C

2
i , i} if |C1

i | is odd and |C2
i | is odd.

(15)

Suppose

ζi(v, fi(1)) = {ςu, ςu−1, . . . , ς0}.

Then when i 6= 0 and v0 = 1, since r = 1, we have

Pi(v, fi(1)) = {I(ςu, ςu−1), I(ςu−2, ςu−3), . . . , I(ς1, ς0), }. (16)

In the following, we give some examples for Pi(v, fi(1)). Consider LTQ5. Then f1(1) =

21 + 1 = 3, f2(1) = 22 + 21 + 1 = 7 and f3(1) = 23 + 22 + 1 = 13. Thus the son of the root

in T1 is 3, in T2 is 7 and in T3 is 13. For v = (10000)2 ∈ T1, we have C1(v, 3) = {1, 0, 4}
and P1(v, 3) = {0, I(4, 1)} = {0, 4, 3, 2}; so the v, 3-path in T1 is

(10000)2

f−1
0 =f0→ (10001)2

f−1
4 =f4→ (01001)2

f−1
3 =f3→ (00101)2

f−1
2 =f2→ (00011)2.

For v = (11010)2 ∈ T2, we have C2(v, 7) = {2, 0, 4, 3} and P2(v, 7) = {2, 0, I(4, 3)} =

{2, 0, 4}; so the v, 7-path in T2 is

(11010)2

f−1
2 =f2→ (11110)2

f−1
0 =f0→ (11111)2

f−1
4 =f4→ (00111)2.
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For v = (11101)2 ∈ T3, we have C3(v, 13) = {4}, C2
3 = {4}, C1

3 = {3}, ζj(v, fj(1)) =

{3, 0, 4, 3} and P3(v, 13) = {I(3, 0), I(4, 3)} = {3, 2, 1, 4}; so the v, 13-path in T3 is

(11101)2

f−1
3 =f3→ (10001)2

f−1
2 =f2→ (10111)2

f−1
1 =f1→ (10101)2

f−1
4 =f4→ (01101)2.

Lemma 13. T0, T1, . . . , Tn−1 are n vertex-independent trees rooted at r for LTQn when

r = 1.

Proof. It suffices to prove that any two Ti and Tj with 0 ≤ i < j ≤ n − 1 are vertex-

independent. Let v = (vn−1vn−2 · · · v0)2 be an arbitrary vertex in LTQn. We assume

v 6∈ {r, fi(r), fj(r)} since if v ∈ {r, fi(r), fj(r)}, then the r, v-path in Ti and the r, v-path

in Tj are clearly internally vertex-disjoint. By the same arguments used in the proof of

Lemma 10, it suffices to prove that the v, fi(r)-path in Ti and the v, fj(r)-path in Tj are

internally vertex-disjoint. Let V1 and V2 be defined as in Lemma 10. We now claim that:

Claim: V1 ∩ V2 = ∅.

Proof of the claim. Suppose this claim is not true and there exists a vertex a ∈ V1 ∩ V2.

Let

Ci(v, fi(1)) = {cm−1, cm−2, . . . , c0}. (17)

There are four cases.

Case 1: 0 = i < j ≤ n − 1. The proof of this case is divided into two parts, depending

on v0 = 1 or v0 = 0. Suppose v0 = 1. Then 0 6∈ Cj(v, fj(1)). Thus the 0-th bit of all the

vertices in V2 is 1. By (13) and (17), 0 is the first element in C0(v, f0(1)); this implies

that the 0-th bit of all the vertices in V1 is 0. Thus V1 ∩ V2 = ∅. Suppose v0 = 0. Then

0 6∈ C0(v, f0(1)). Thus the 0-th bit of all the vertices in V1 is 0; this implies that the 0-th

bit of a is 0. There are two possibilities: j = 1 or j > 1.

1. j = 1. Note that either 1 ∈ P1(v, f1(1)) or 1 6∈ P1(v, f1(1)). Suppose 1 6∈ P1(v, f1(1)).

Then 0 is the first element in P1(v, f1(1)); this implies that the 0-th bit of all the vertices

in V2 is 1. Thus no such a exists and V1 ∩ V2 = ∅. Suppose 1 ∈ P1(v, f1(1)). Then 1

and 0 are the first element and the second element in P1(v, f1(1)), respectively. Thus the
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0-th bit of all the vertices in V2 \ {f1(v)} is 1. The existence of a implies that f1(v) = a.

Suppose v1 = 0. Then 1 6∈ C0(v, f0(1)); this implies that the 1-st bit of all the vertices

in V1 is 0. However, it is obvious that the 1-st bit of f1(v) is 1. Therefore f1(v) 6∈ V1.

Thus no such a exists and V1 ∩ V2 = ∅. Suppose v1 = 1. Since 1 ∈ P1(v, f1(1)), there

must exist some k > 1 such that vk = 1; this implies that cm−1 6= 1. By (13) and (17),

the (cm−1)-th bit of all the vertices in V1 is vcm−1 . However, the (cm−1)-th bit of f1(v) is

vcm−1 . Therefore f1(v) 6∈ V1. Thus no such a exists and V1 ∩ V2 = ∅.

2. j > 1. By (13), (14), (15), (16) and (17), we have: cm−1 is the first element in

Ci(v, fi(1)), cm−1 ∈ Cj(v, fj(1)), 0 ∈ Cj(v, fj(1)), and cm−1 appears after 0 in the ordered

set Cj(v, fj(1)). Thus the (cm−1)-th bit of all the vertices in V1 is vcm−1 . However, the

(cm−1)-th bit of those vertices with the 0-th bit being 0 in V2 is vcm−1 . Thus no such a

exists and V1 ∩ V2 = ∅.

Case 2: 1 = i < j ≤ n − 1. The proof of this case is divided into two parts, depending

on v0 = 0 or v0 = 1.

1. v0 = 0. Then it is not difficult to see (by comparing the j-th and the 0-th bits of

fj(v) and all the vertices in V1) that fj(v) 6∈ V1. Thus a can not be fj(v). It remains

to consider those vertices in V2 \ fj(v). The remaining proof is further divided into two

parts, depending on vj−1 = 0 or vj−1 = 1.

1.1. vj−1 = 0. Since v0 = 0 and vj−1 = 0, j − 1 ∈ Pj(v, fj(v)). Since v0 = 0 and

j − 1 ∈ Pj(v, fj(v)), the (j − 1)-th bit of all the vertices in V2 \ fj(v) is 1. However, the

(j − 1)-th bit of all the vertices in V1 is 0. Thus no such a exists and V1 ∩ V2 = ∅.

1.2. vj−1 = 1. We claim that: the bits from vj−2 to v2 are all 0, i.e., vj−2 = vj−3 = · · · =
v2 = 0. Suppose this claim is not true and let k be the largest number between j − 2 and

2 (inclusive) such that vk = 1. By (17) and (14), the (j−1)-th and the k-th bits of all the

vertices in V2 \ fj(v) is 1 and 0, respectively. However, the (j − 1)-th bit of those vertices

in V1 with k-th bit being 0 is 0. Thus vj−2 = vj−3 = · · · = v2 = 0. So the 1-st bit of all

the vertices in V1 is 1 and the 1-st bit of all the vertices in V2 \ fj(v) is 0. Thus no such

a exists and V1 ∩ V2 = ∅.
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2. v0 = 1. The proof of this part is further divided into six parts as follows.

2.1. j = 2, v1 = 1 and v2 = 1. Since v0 = 1 and v1 = 1 and v2 = 1,

Cj(v, fj(1)) = (cm−1, cm−2, . . . , c1).

Suppose m is even. Then

Pi(v, fi(1))={I(cm−1, cm−2), . . . , I(c1, c0 =2)}

and

Pj(v, fj(1))={I(2, 0), I(cm−1, cm−2), . . . , I(c1, 2)}.

By (15) and (16), the 2-nd bit of all the vertices in V1 are 1. However, the 2-nd bit of all

the vertices in V2 are 0. Thus no such a exists and V1 ∩ V2 = ∅. Suppose m is odd. Then

Pi(v, fi(1)) = {1, I(cm−1, cm−2), . . . , I(c0, 1)}

and

Pj(v, fj(1)) = {I(cm−1, cm−2), . . . , I(c2, c1)}.

By (15) and (16), the 1-st bit of all the vertices in V1 is 0. However, the 1-st bit of all the

vertices in V2 is 1. Thus no such a exists and V1 ∩ V2 = ∅.

2.2. j = 2, v1 = 0 and v2 = 1. Since v0 = 1 and v1 = 0 and v2 = 1, we have cm−1 = 1,

c0 = 2 and

Cj(v, fj(1)) = {cm−1, cm−2, . . . , c1}.

Suppose m− 1 is odd. Then

Pi(v, fi(1)) = {I(cm−2, cm−3), . . . , I(c0, 1)}

and

Pj(v, fj(1)) = {1, I(cm−2, cm−3), . . . , I(c2, c1)}.

By (15) and (16), the 1-st bit of all vertices in V1 are 0. However, the 1-st bit of all

vertices in V2 is 1. Thus no such a exists and V1 ∩ V2 = ∅. Suppose m− 1 is even. Then

Pi(v, fi(1)) = {1, I(cm−2, cm−3), . . . , I(c1, c0)}

27



and

Pj(v, fj(1)) = {2, 1, I(cm−2, cm−3), . . . , I(c1, 2)}.

By (15) and (16), the 2-nd bit of all vertices in V1 are 1. However, the 2-nd bit of all

vertices in V2 are 0. Thus no such a exists and V1 ∩ V2 = ∅.

2.3. j = 2, v1 = 1 and v2 = 0 (resp., v1 = 0 and v2 = 0). Then

Cj(v, fj(1)) = {2, cm−1, cm−2, . . . , c0}.

Suppose m (resp., m − 1) is even. Then by (15) and (16), the 2-nd bit of all vertices in

V1. However, the 2-nd bit of all vertices in V2 are 1. Suppose m (resp., m − 1) is odd.

Then by (15) and (16), the 1-st bit of all vertices in V1 are 0. However, the 1-st bit of all

vertices in V2 are 1. Thus no such a exists and V1 ∩ V2 = ∅.

2.4. j 6= 2 and vj−1 = 0. Then the (j − 1)-th bit of all the vertices in V1 are 0. However,

the (j − 1)-th bit of all the vertices in V2 are 1. Thus no such a exists and V1 ∩ V2 = ∅.

2.5. j 6= 2, vj−1 = 1 and at least one of the bits in vj−2vj−3 · · · v2 is 1. Then there exist q

such that

q = max{ t | t ∈ Ci(v, fi(1)), 1 < t < j − 1}.

2.5.1. Suppose I(j, q) * Pj(v, fj(1)). Then the q-th and the (j − 1)-th bit of all the

vertices in V2 are 0 and 1, respectively; however, the (j − 1)-th bit of those vertices in V1

with the q-th bit being 0 is 0. Thus no such a exists and V1 ∩ V2 = ∅.

2.5.2. Suppose I(j, q) ⊆ Pj(v, fj(1)). Then we partition V2 into V2,1 and V2,2 such that

V2,1 = {all the vertices in V2 before the perfect matching fq is applied} and V2,2 = V2\V2,1.

Consider the vertices in V2,1. Suppose vj = 0. Since j ∈ I(j, q), we can compare the j-th

bit of all vertices in V1 and in V2,1 to see that no such a exists and V1 ∩ V2 = ∅. Suppose

vj = 1. Then the number of bits in vn−1vn−2 · · · vj+1 that are 1 is odd. This implies that

cm−1 6= j. Since cm−1 6= j, by comparing the cm−1-th bit of all the vertices in V1 and in

V2,1, we know that V1 ∩ V2,1 = ∅. Consider the vertices in V2,2. Then the q-th and the
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(j − 1)-th bit of all the vertices in V2,2 are 0 and 1, respectively. However, the (j − 1)-th

bit of those vertices in V1 with the q-th bit being 0 is 0. Hence V1 ∩ V2,2 = ∅. Since

V1 ∩ V2,1 = ∅ and V1 ∩ V2,2 = ∅, no such a exists and V1 ∩ V2 = ∅.

2.6. j 6= 2, vj−1 = 1 and all the bits in vj−2vj−3 · · · v2 are 0 (i.e., vj−2 =vj−3 = · · ·=v2 =0).

For convenience, let t(w1, w2) denote the number of bits in vw1vw1−1 · · · vw2 that are 1.

There are three possibilities.

2.6.1. Suppose t(n − 1, i + 1) is odd. Then t(n − 1, j) is even. Thus the i-th bit of all

the vertices in V2 is 0. However, the i-th bit of all the vertices in V1 is 1. Thus no such a

exists and V1 ∩ V2 = ∅.

2.6.2. Suppose t(n− 1, i + 1) is even and vj = 0. Then t(n− 1, j + 1) is even. Thus the

j-th bit of all the vertices in V2 is 1. However, the j-th bit of all the vertices in V1 is 0.

Thus no such a exists and V1 ∩ V2 = ∅.

2.6.3. Suppose t(n− 1, i + 1) is even and vj = 1. Then t(n− 1, j + 1) is odd. Thus the

i-th bit of all the vertices in V2 \ {fj(v)} is 0. However, the i-th bit of all the vertices in

V1 is 1. Since cm−1 6= j, we can find that fj(v) 6∈ V1 by comparing the cm−1-th bit. Thus

no such a exists and V1 ∩ V2 = ∅.

Case 3: 3 ≤ i + 1 = j ≤ n − 1. For convenience, let t denote the number of bits in

vn−1vn−2 · · · vi+1 that are 1. By (13)∼(17), we have the following results for t. Suppose t

is odd. Then the i-th bit of all vertices in V1 is 0 and j 6∈ Pj(v, fj(1)); however, the i-th

bit of all the vertices in V2 is 1. Suppose t is even and vj = 0. Then the j-th bit of all the

vertices in V2 is 1; however, the j-th bit of all the vertices in V1 is 0. Suppose t is even

and vj = 1. Then the j-th bit of all the vertices in V2 is 0; however, the j-th bit of all the

vertices in V1 is 1. Thus no such a exists and V1 ∩ V2 = ∅.

Case 4: 3 ≤ i+1 < j ≤ n−1. The proof of this case is divided into xxx parts, depending

on the values of vj−1 and vi−1.

4.1. vj−1 = 0. Then if j ∈ Pi(v, fi(1)), then V1 has only one vertex (say, vertex x) with

its (j − 1)-th bit being 1. By comparing from the j-th to the (i− 1)-th bits of x with the
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j-th to the (i − 1)-th bits of each vertex in V2, we have x 6∈ V2. If j ∈ Pj(v, fj(1)), then

fj(v) is the unique vertex in V2 with its (j − 1)-th bit being 0. By comparing from the

j-th to the (i− 1)-th bits of fj(v) with the j-th to the (i− 1)-th bits of each vertex in V1,

we have fj(v) 6∈ V1. Then by (13)∼(17), the (j− 1)-th bit of all the vertices in V1 \ {x} is

0; however, the (j − 1)-th bit of all the vertices in V2 \ fj(v) is 1. Thus no such a exists

and V1 ∩ V2 = ∅.

4.2. vi−1 = 0. Then we can use similar arguments to prove that no such a exists and

V1 ∩ V2 =∅.

4.3. vi−1 = 1 and vj−1 = 1. By (13)∼(16), we have following the results. When

i ∈ Ci(v, fi(1)) and v0 = 1, V1 has only one vertex (say, vertex z) with its (i − 1)-th bit

being 0. By comparing the (j − 1)-th and the (i− 1)-th bits of z with the (j − 1)-th and

the (i− 1)-th bits of each vertex in V2, we have z 6∈ V2. Thus the (i− 1)-th bit of all the

vertices in V1 \ {z} is 1. Hence the existence of a implies that the (i− 1)-th bit of a must

be 1. Partition V2 into two V2,1 and V2,2 such that

V2,1 = {all the vertices in V2 before the perferct matching fi is applied} and V2,2 = V2\V2,1.

Thus the (i − 1)-th bit of all the vertices in V2,1 is 1 and if a exist, then a ∈ V2,1. We

claim that:

If a exists, then vj−2 = vj−3 = · · · = vi+1 = 0.

Suppose this claim is not true. Then let q be the largest index between j − 2 and

i + 1 (inclusive) such that vq = 1. Let y = (yn−1yn−2 · · · y0)2 be an arbitrary vertex

in V2,1 \ {fj(v)}. Note that fj(v) ∈ V2,1 only when j ∈ Pj(v, fj(1)). Also note that q ∈
Pj(v, fj(1)). Moreover, if j ∈ Cj(v, fj(1)), then q is the first element after j in Cj(v, fj(1));

if j 6∈ Cj(v, fj(1)), then q is the first element in Cj(v, fj(1)). Since q exists, by (14)∼(16),

the bits yj−2yj−3 · · · yi+1 will be different from the bits vj−2vj−3 · · · vi+1. However, let

x = (xn−1xn−2 · · · x0)2 be an arbitrary vertex in V1. Then the bits xj−2xj−3 · · ·xi+1 are

identical to the bits vj−2vj−3 · · · vi+1. Thus every vertex in V2,1 \ {fj(v)} is not in V1.

Although fj(v) ∈ V2,1, fj(v) is not in V1 (this can be observed by comparing the j-th bit
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and the bits from the (j − 2)-th to the (i + 1)-th bits of all the vertices in V1 with j-th

bit and the bits from the (j − 2)-th to the (i + 1)-th bits of fj(v)). Thus V1 ∩ V2,1 = ∅.
Since if a exists, then a ∈ V2,1. Thus a does not exists and we have this claim.

By this claim, in the remaining proof, we assume vi−1 =1, vj−1 =1 and vj−2 =vj−3 = · · ·=
vi+1 =0. For convenience, let t denote the number of bits in vn−1vn−2 · · · vj+1 that are 1.

The remaining proof is further divided into four subcases.

4.3.1. vi = 1 and vj = 1. Suppose t is even. Then the first member in Pj(v, fj(1)) is i.

However, i 6∈ Pi(v, fi(1)). Thus no such a exists and V1 ∩ V2 = ∅. Suppose t is odd. Then

j ∈ Pj(v, fj(1)) and I(j − 1, i) ⊂ Pi(v, fi(1)). Thus the j-th bit of all the vertices in V2 is

0. Partition V1 into V1,1 and V1,2 such that

V1,1 ={all the vertices in V1 before the perfect matching fj+1 is applied} and V1,2 =V1\V1,1.

Thus the j-th bit of all vertices in V1,1 is 1 and the j-th bit of all vertices in V1,2 is 0. By the

fact that the j-th bit of all the vertices in V2 is 0, to prove V1 ∩V2 = ∅, it suffices to prove

V1,2 ∩ V2 = ∅. If v0 = 1, then the (j − 1)-th bit of all the vertices in V2 is 1; however, the

(j−1)-th bit of all the vertices in V1,2 is 0. If v0 = 0, then V2 has only one vertex fj(v) with

its (j−1)-th bit being 0. Obviously, either fj(v) = (vn−1vn−2 · · · vj+10vj−1vj−2vj−3 · · · v0)2

or fj(v) = (vn−1vn−2 · · · vj+10vj−1vj−2vj−3 · · · v0)2; the former case occurs when v0 =0 and

the latter, v0 =1. In either case, we have fj(v) 6∈ V1. Thus no such a exists and V1∩V2 =∅.

4.3.2. vi = 0 and vj = 0. Suppose t is even. Then the j-th bit of all the vertices in V2 is

1. However, the j-th bit of all the vertices in V1 is 0. Suppose t is odd. Then the number

of bits in vn−1vn−2 · · · vi+1 that are 1 is even; this implies that i is the first member in

Pi(v, fi(1)). Thus the i-th bit of all the vertices in V2 is 0. However, the i-th bit of all the

vertices in V1 is 1. Thus no such a exists and V1 ∩ V2 = ∅.

4.3.3. vi = 0 and vj = 1. Suppose t is even. Then the first member in Pj(v, fj(1)) is

i − 1 and the first member in Pi(v, fi(1)) is i. So the i-th bit of all the vertices in V2 is

0; however, the i-th bit of all the vertices in V1 is 1. Suppose t is odd. Define q to be

the index of the leftmost nonzero bit of v. Then q > j. Thus the (i − 1)-th bit of all
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the vertices in V2 \ {fj(v)} is 0; however, the (i − 1)-th bit of all the vertices in V1 is 1.

By comparing the j-th and the q-th bits of fj(v) with the j-th and the q-th bits of every

vertex in V1, we have fj(v) 6∈ V1. Thus no such a exists and V1 ∩ V2 = ∅.

4.3.4. vi = 1 and vj = 0. If the number of those bits from vn−1 to vj+1 being 1 is even,

then the j-th bit of all the vertices in V2 is 1, but the j-th bit of all the vertices in V1

is 0. If the number of those bits from vn−1 to vj+1 being 1 is odd, then the number of

bits in vn−1vn−2 · · · vi+1 that are 1 is even. Thus i is the first member of Pj(v, fj(1)) but

i 6∈ Pi(v, fj(1)) which implies that the i-th bit of all the vertices in V2 is 0 but the i-th

bit of all the vertices in V1 is 1. So V1 ∩ V2 = ∅ in this case.

Since V1 ∩ V2 = ∅, we have this lemma.

Theorem 14. T0, T1, . . . , Tn−1 are n ISTs rooted at r for LTQn when r = 1.

Proof. This theorem follows from Lemmas 12 and 13.

4 Applying our algorithm to hypercubes

The purpose of this section is to prove that T0, T1, . . . , Tn−1 generated by Algorithm 1

are n ISTs for the hypercube. It is well-known that the hypercube is vertex-transitive.

Therefore we assume without loss of generality that r = 0 is the common root. Through-

out this section, let T0, T1, . . . , Tn−1 be the output of Algorithm 1 when the input is the

F of Qn and the root is r = 0. It is not difficult to see that the hypercube has

Pi(v, fi(r)) = Ci(v, fi(r)), for all 0 ≤ i ≤ n− 1.

Theorem 15. T0, T1, . . . , Tn−1 are n ISTs rooted at r for Qn when r = 0.

Proof. We first prove that T0, T1, . . . , Tn−1 are spanning trees of Qn. The proof of this part

is identical to the proof of Lemma 9 except that the definition of F is the one for Qn. It

remains to prove that T0, T1, . . . , Tn−1 are n vertex-independent trees rooted at r for Qn

when r=0. Consider an arbitrary vertex v =(vn−1, vn−2· · ·v0)2 ∈ V (Qn)\{r}. We use the
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definitions of Ti, Tj, V1, V2 and Ci(v, 2i) in Lemma 10. Note that in each of the following

four cases, Cj(v, 2j) is also the same as the one used in Lemma 10. To prove that Ti and

Tj are vertex-independent, it suffices to prove that V1 ∩ V2 =∅ holds in each cases.

Case 1: vi = 1 and vj = 1. By (5), the i-th bit of all the vertices in V1 is 1. Partition V2

into V2,1 and V2,2 such that

V2,1 = {all the vertices in V1 before the perfect matching fi is applied} and V2,2 = V2\V2,1.

Thus the i-th bit of all the vertices in V2,1 is 1 and the i-th bit of all the vertices in V2,2

is 0. By the fact that the i-th bit of all the vertices in V1 is 1, to prove V1 ∩ V2 = ∅, it

suffices to prove V1 ∩ V2,1 = ∅. By (5) and (6), the (cm−1)-th bit of all the vertices in V1

is vcm−1 ; however, the (cm−1)-th bit of all the vertices in V2,1 is vcm−1 . Thus V1 ∩ V2,1 = ∅.
Case 2: vi = 0 and vj = 0. By (5), (7) and (8), the i-th bit of all the vertices in V1 is 1;

however, the i-th bit of all the vertices in V2 is 0. Thus V1 ∩ V2 = ∅.
Case 3: vi =0 and vj =1. The proof of this part is the same as Case 2 and we omit it.

Case 4: vi = 1 and vj = 0. By (5) and (9), the j-th bit of all the vertices in V1 is 0;

however, the j-th bit of all the vertices in V2 is 1. Thus V1 ∩ V2 = ∅.
By above four cases, V1∩V2 = ∅. Thus T0, T1, . . . , Tn−1 are n vertex-independent trees.

Since T0, T1, . . . , Tn−1 are also spanning trees, we have this theorem.

Let N(r) be a vertex set containing all the neighbors of r. The following lemma has

been proven in [22].

Lemma 16. [22] Given a n-connected, n-regular graph G and a set S of independent

spanning trees rooted at r in G. Let v be a vertex in G, v 6∈ {r} ∪ N(r), and u ∈ N(v).

If |d(Ti; r, u)− d(Ti; r, v)| ≤ 1 for every T ∈ S, then S is optimal.

We now prove that Algorithm 1 generates an optimal solution for Qn.

Theorem 17. Let S = {T0, T1, . . . , Tn−1}, where T0, T1, . . . , Tn−1 are renerated by Algo-

rithm 1. Then S is optimal.

Proof. Let r = 0, Ti ∈ S, and H(u, v) be the Hamming distance between vertices v and

u. Let v be an arbitrary vertex in Qn and v 6∈ {r}∪N(r). For each Ti, we will prove that
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v has the property that |d(Ti; 0, u) − d(Ti; 0, v)| ≤ 1, where u ∈ N(v). It is obvious that

for each vertex a = (an−1an−2 · · · a0)2, we have

d(Ti; 0, a) =

{
H(0, a) if ai = 1,

H(0, a) + 2 if ai = 0.

Thus if the i-th bit of v and the i-th bit of u are the same, then |d(Ti; 0, u)−d(Ti; 0, v)| = 1.

On the other hand, without loss of generality, we may assume that the i-th of v is 1 and the

i-th of u is 0. Since H(0, v)=H(0, u)+1, we have d(Ti; 0, u) = H(0, u)+2 = H(0, v)+1 =

d(Ti; 0, v) + 1; hence |d(Ti; 0, u)− d(Ti; 0, v)| = 1. By Lemma 16, we have this theorem.

5 Concluding remarks

There are two versions for the n independent spanning trees conjecture. The ver-

tex (edge) conjecture is that any n-connected (n-edge-connected) graph has n vertex-

independent (edge-independent) spanning trees rooted at an arbitrary vertex r. It has

been proven that the vertex conjecture implies the edge conjecture. In this thesis, we

present an algorithm to construct n vertex-independent spanning trees rooted at any ver-

tex for the LTQn. To the best of our knowledge, this is the first result to confirm the

Vertex Conjecture for the locally twisted cubes. Moreover, we present the first algorithm

that can construct n vertex-independent spanning trees rooted at any vertex for both the

locally twisted cube and the hypercube. We believe that our algorithm can be used to

construct n vertex-independent spanning trees rooted at any vertex for other variant the

hypercube.
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