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hypercubes and locally twisted cubes

Student: Yi-Jiun Liu Advisor: Chiuyuan Chen

Department of Applied Mathematics
National Chiao Tung University
Hsinchu, Tatwan 30050

Abstract

The use of multiple independent spanning trees (ISTs) for data broadcasting in
networks provides a number of advantages such as the increase of fault-tolerance
and bandwidth. Thus the designs of multiple ISTs in several classes of networks
have been widely investigated. In [27], Zehavi and Itai stated two versions of the
n independent spanning trees conjecture. The vertex (edge) conjecture is that any
n-connected (n-edge-connected) graph has n vertex-ISTs (edge-ISTs) rooted at an
arbitrary vertex r. In [16], Khuller and Schieber proved that the vertex conjecture
implies the edge conjecture. Recently, in [12], Hsieh and Tu proposed an algorithm
to construct n edge-ISTs rooted at vertex 0 for an n-dimensional locally twisted cube
LTQ),, which is a variant of the hypercube. Since LT'Q,, is it not vertex-transitive,
Hsieh and Tu’s result does not solve the edge conjecture for the locally twisted cube.
In the thesis, we confirm the vertex conjecture (and hence also the edge conjecture)
for the locally twisted cube by proposing an algorithm to construct n vertex-ISTs
rooted at any vertex for the LTQ,. We also confirm the vertex conjecture (and
hence also the edge conjecture) for the hypercube.

Keywords: Data broadcasting; Design and analysis of algorithms; Vertex-

disjoint spanning trees; Locally twisted cubes; Hypercubes; Parallel algorithm.
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1 Introduction

This thesis considers the problem of constructing n independent spanning trees rooted
at an arbitrary vertex of an n-dimensional locally twisted cube or hypercube. Graph
terminology and notation used in this thesis are standard; see [4] and [23] except as
indicated.

All graphs in this thesis are simple undirected graphs. Let G be a graph with vertex
set V(G) and the edge set E(G). Let z,y € V(G). A path from x to y is denoted as
x,y-path. Two z,y-paths P and Q are internally edge-disjoint if E(P) N E(Q) = (0. Two
x,y-paths P and @) are internally vertex-disjoint if they are internally edge-disjoint and
V(P)NV(Q) = {z,y}. A subgraph T of G is a spanning tree of G if T is a tree and
V(T) = V(G). Two spanning trees 7" and 7" of G are vertez-independent (resp., edge-
independent) if T and T" are rooted at the same vertex, say r, and for each v € V(G), the
r,v-path in T" and the r, v-path in 7" are internally vertex-disjoint (resp., internally edge-
disjoint). A set of spanning trees of G are vertez-independent (resp., edge-independent) if
they are pairwise vertex-independent (resp., pairwise edge-independent).

Recently, the problems of constructing multiple vertex-independent spanning trees
(vertex-ISTs) and constructing multiple edge-independent spanning trees (edge-ISTs) for
a given graph have received much attention. In [27], Zehavi and Itai stated two versions

of the n independent spanning trees conjecture:

(Vertex Conjecture) Any n-connected graph has n vertex-ISTs rooted at an arbitrary

vertex r.

(Edge Conjecture) Any n-edge-connected graph has n edge-ISTs rooted at an arbitrary

vertex r.

Zehavi and Itai [27] also raised the question: It would be interesting to show that either
the vertex conjecture implies the edge conjecture, or vice versa. Later, Khuller and
Schieber [16] successfully proved that the vertex conjecture implies the edge conjecture,

i.e., if any m-connected graph has n vertex-ISTs, then any n-edge-connected graph has n



edge-ISTs. Khuller and Schieber’s proof also works for the directed case. For the directed
case, Edmonds [7] solved the edge conjecture. Khuller and Schieber [16] pointed out that
the vertex conjecture for directed graphs is the strongest conjecture since it implies all
the other conjectures.

The vertex and the edge conjectures have been confirmed only for n < 4. In [15],
Itai and Rodeh gave a linear-time algorithm for constructing two edge-IST's in a 2-edge-
connected graph; they also solved the vertex conjecture for n = 2. In [27], Zehavi and
Itai solved the vertex conjecture for n = 3, but they did not proposed an algorithm for
constructing three vertex-ISTs. In [6], Cheriyan and Maheshwari proposed an O(|V (G)|?)-
time algorithm for constructing three vertex-ISTs in a 3-connected graph. In [5], Curran
et al. proposed an O(|V(G)]?)-time algorithm for constructing four vertex-ISTs in a 4-
connected graph. When n > 5, both the vertex and the edge conjectures are still open.
It has been proven that the vertex (or the edge) conjecture holds for several restricted
classes of graphs or digraphs, such as planar graphs [9, 10, 17, 18], maximal planar graphs
[19], product graphs [20], chordal rings [14, 24], de Bruijn and Kautz digraphs [8, 11], and
hypercubes [22, 26].

The design of vertex- and edge-IST's has applications to reliable communication pro-
tocols. For example, a rooted spanning tree in the underlying graph of a network can
be viewed as a broadcasting scheme for data communication and fault-tolerance can be
achieved by sending n copies of the message along the n independent spanning trees
rooted at the source node [1]. For other applications, see [3] for the multi-node broad-
casting problem, [21] for one-to-all broadcasting, and [2] for n-channel graphs, reliable
broadcasting, and secure message distribution.

This thesis considers the problem of constructing n vertex-ISTs rooted at an arbitrary
vertex of an n-dimensional locally twisted cube LT'Q), or an n-dimensional hypercube
(Q)n (these cubes will be defined later). Since we focus on vertex-ISTs, in the remaining
discussion, we will simply use ISTs to denote vertex-ISTs unless otherwise specified. Note

that the development of algorithms for constructing ISTs tends toward pursuing two



research goals: one is to design efficient construction schemes (for example, [14, 17, 19, 24]
propose linear-time algorithms) and the other is to reduce the heights of ISTs (for example,
[11, 22, 24] propose the idea of height improvements). Let G be an n-connected graph,
let T' be a spanning tree of G rooted at vertex r, and let d(7’;r,v) denote the depth of
vertex v in T. The average path length of a set S = {1y, T4, ..., T,_1} of n ISTs rooted

at vertex r in G is defined to be

Z?:_ol Zvev(c)\{r} d(Ti;r,v)/n.

A set S of n ISTs rooted at vertex r in G (if this set exists) is called optimal if the average
path length of § is the minimum among all possible sets of n IST's rooted at r in G.
The hypercube is one of the most popular interconnection networks due to its simple
structure and ease of implementation. However, it has been shown that the hypercube
does not achieve the smallest possible diameter for its resources. Therefore, many variants
of the hypercube have been proposed. The most well-known variants are twisted cubes
(TQ), crossed cubes (CQ), and Mébius cubes (MQ), and locally twisted cubes (LTQ). In
the following table, we list the connectivity, edge-connectivity and diameters of (),, and

its variants. It is well known that a hypercube @), is n-connected. Since @), is itself a

Table 1: The connectivity, edge-connectivity and diameters of (),, and its variants.

G\properties | K(G) | M(G) diameter
Qn n n n

TQ., n n [(n+1)/2]
CQn n n [(n+1)/2]

in 0-MQ,, [(n+2)/2] forn >4

M@, n n | in I-M@Q,, [(n+1)/2] forn > 1
2ifn=3
LTQ, n n difn=4

[(n+3)/2]ifn>5

product graph, the algorithm proposed by Obokata et al. [20] can be used to construct
n ISTs for @,,. As to the construction of the height-reduced ISTs on @, Tang et al. [22]
modified the algorithm in [20] and proposed an O(n2")-time algorithm for constructing

an optimal set of n ISTs for hypercubes @Q,,. It was pointed out by Yang et al. [26] that

3



the algorithms in [20] and [22] are designed by a recursive fashion and such a construction
forbids the possibility that the algorithm could be parallelized; Yang et al. therefore
proposed a parallel construction for an optimal set of n ISTs for @,,.

Although @, is a product graph, it is not known whether its variants are also product
graphs. For example, it is not known whether the locally twisted cube LT'Q),, is a product
graph. The locally twisted cube was proposed by Yang et al. in [25]; the motivation of
proposing such a variant is that a better hypercube variant should be conceptually closer
to hypercube than other existing variants. In locally twisted cubes, the labels of any two
adjacent vertices differ in at most two successive bits. In [12], Hsieh and Tu proposed
an algorithm to construct n edge-ISTs for LT'Q),,. Do notice that Hsieh and Tu did not
solve the edge conjecture for the locally twisted cube since their algorithm uses vertex 0
as the common root of edge-ISTs and a locally twisted cube is not vertex-transitive. For
example, in LT'Q);, vertex 1 can reach any vertex within 3 steps but vertex 0 has to take
4 steps to reach vertex 30.

The sequential algorithm in [22] and the parallel algorithm in [26] obtain an optimal
set of n ISTs. However, these algorithms work only for hypercubes. In this thesis, we
outline an approach to construct n vertex-ISTs rooted at an arbitrary vertex of an n-
dimensional locally twisted cube or hypercube. Thus we confirm both the vertex and the
edge conjectures for the locally twisted cube and hypercube.

This thesis is organized as follows. In Section 2, we give some definitions and notations.
In Section 3, we outline an approach to construct n vertex-ISTs rooted at an arbitrary
vertex of an n-dimensional general cube. In Sections 4 and 5, we prove that our approach

constructs n ISTs for LT'Q),, and @, respectively. The final section concludes this thesis.

2 Some preliminaries and our algorithm
In the remaining discussion, & denotes the bitwise XOR operation. As a reference,

000=0,001l=1,100=1, 1®1=0.



If u= (tp_1 Up_o -+ ug)y and v = (vy_1 Vy_2 - - Vg)2, then we define
uDv = (un—l P Up—1 Up—2 © Upn—2 - U D UO)Z-

Also, udvdw = (udv) S w.

The n-dimensional hypercube @Q,, is a graph with 2" vertices and n - 2"~! edges such
that its vertices are n-tuples with entries in {0, 1} and its edges are the pairs of n-tuples
that differ in exactly one position. Thus @); is the complete graph with two vertices 0
and 1, and @, (n > 2) is built from two copies of @,,_1 as follows: Let k£ € {0,1} and let
k(Q),_1 denote the graph obtained by prefixing the label of each vertex of one copy of Q,,_1
with k; connect each vertex (0x,_s...x1x)2 of 0Q,_1 with the vertex (1x,_s...2z120)2
of 1Q),,_1 by an edge.

We now define a generalization of (),,. The n-dimensional general cube GQ),, is defined
recursively as follows (see Figure 1). GQ; is @1, and GQ,, (n > 2) is built from two
GQn,-1’s (not necessarily identical) as follows: Let k € {0,1} and let kGQ,,_; denote the
graph obtained by prefixing the label of each vertex of one of the two GQ),,_1’s with k; add
a perfect matching between 0G@Q,_1 and 1GQ,,_1, i.e., each vertex in 0GQ),,_; is adjacent
to exactly one vertex in 1GQ,,_1.

GO,

a perfect
matching

0GQ, , : 160,

Figure 1: The n-dimensional general cube GQ,,.

The n-dimensional locally twisted cube LTQ), is defined recursively as follow. LT,
is ()1, and LTQy is the graph consisting of four vertices labeled with 00, 01, 10, and
11, respectively, and connected by the four edges (00, 01) (00, 10), (01, 11), and (10,
11). LTQ, (n > 3) is built from two identical LT'Q,_1’s as follows: connect each vertex
(0xy—2@p_3 -+ o)z of OLT'Q,,—1 with the vertex (1(z,_o® x¢)Tp_3- - x¢)2 of 1LTQ,_1 by

an edge. See Figures 2 and 3.
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Figure 2: (a) LT Q3. (b) A symmetric drawing of LT'Qs.

1010

1000

Figure 3: LTQ, and its F = {f3, fo, f1, fo}. The ordinary lines (depicted as color blue),
the most solid lines (depicted as color green), the second solid lines (depicted as color
black), and the dashed lines (depicted as color red) are perfect matchings fs, f2, fi, and
fo, respectively.

We assume conventionality of the vertex prefixing method kGQ,_; which will be
used repeatedly in the definitions of specific hypercube variants late in this thesis unless
otherwise specified. It have been shown that crossed cubes, Mobius cubes, and locally
twisted cubes are the examples of GQ,,; see [13]. Note that the two GQ,,_1’s in GQ,, are
not necessarily identical. For instance, for crossed cubes and locally twisted cubes, the
two GQ),_1’s are identical; but for Mobius cubes, they are not.

Recall that GQ,, (n > 2) is built recursively by adding a perfect matching between
0GQ,—1 and 1G(Q,,_1; denote this perfect matching by f,_1. Then 0GQ,_1 and 1GQ,,_1
are built recursively by adding a perfect matching between 00GQ,_, U 10GQ,,_» and

01GQ,_2 U 11GQ,,_2; denote this perfect matching by f, 5. Here U means the union



of graphs. Specifically, G U H is the graph with vertex set V(G) U V(H) and edge set
E(G)UE(H). In general, let us define L = {byby - - - b;|b; € {0,1} for j = 1,2,...,i} and
L° = € (the empty string). Let f,—; denote the perfect matching between (J, ;i1 20GQn—;
and (J,cpi1 21GQ,—; and let

F = {fn—hfn—Qv < "fO}

be the set of perfect matchings used to build GQ,,. See Figure 3 for an illustration of F.

The following lemma is obvious and its proof is omitted.

Lemma 1. Let F = {fu_1, fu—2,-.., fo} be the set of perfect matchings used to build
GQ,. Then for every 0 < i < n and every v = (Vy_1Vp_2-- )2 € V(GQ,), fi will not

affect bits v,_1,Vn_9,...,0;11 Of V.

Before going further, we give the F of the hypercube and the locally twisted cube. For
convenience, T; denotes the complement of v;. First consider @Q),,. Let v = (v,_1vp_2---vp)2 €

V(Qn). Then F ={fn 1, fa_2,-.., fo} in which f; is defined by
fi(v) = (Un_1Un_g - = Vi1 UiVi1 - - - Vp)2. (1)

Now consider the locally twisted cube. The adjacency relation of LT'Q), has been

worked out by [13]; see the following.

Lemma 2. [13] For everyv = (v,_10s—2...09)2 € V(LTQ,), the n vertices yo, Y1, - - -, Yn—1
adjacent to v are:

Yo = (Un—1Un_2Vp_3 - - - U201 Tp)2,
Y1 = (Un—1Un—2Up_3 - - - UVaT1Up)2,
Y2 = (Un—1Un—2Un_3 - Uz (U1 B Vo) Vo)2,

Yn—2 = (Vn-10n—2 (Un—3 ® V0)Vp_a - V100)2,
Yn—1 = (Tp—1 (Vn—2 ® Vg) Vp_3 - VaV1Up)2.

Let v = (’Un,ﬂ}nfg c "Uo)g € V(LTQ,J By Lemma 2, F = {fnfl,fnfg,. . .,fo} of
LTQ), is defined by

(Vn—1Vp—2 - - V1T0)2 if i =0,
filv) = (Vn-1Vn—2- - v20100)2 ife=1, (2)

(Un—1Un—2 -+ 0410 (Vi1 @ Vg) Vi—oUi—g---Vg)2 if 2 <4 <n—1.

7



In the remaining discussion, (u,v) denotes the edge between u and v; To, 11, ..., T, 1
denote subsets of edges of the given G(@Q),; and r denotes the root of n IST. The vertex
fi(r) will be the son of r in T;. Moreover, v € V(T;) means that v is an endpoint of an
edge in T;, and v € V(T;) \ {r, fi(r)} means that v € V(T;) and v is neither the root nor
the son of the root. Now we are ready to propose an algorithm for constructing n ISTs

of a given G@Q,,.

Algorithm 1 Construct n ISTs for GQ,.

Input: F ={f._1, fa_2, ..., fo} used to build the given GQ,, and a vertex r of the GQ,.
Output: n ISTs Ty, T}, ..., T,_1 rooted at r.
1: for each processor i (0 < i < n) do in parallel

2: son «— fi(r);

3 S« {son};

4: form=i¢+1toi+ndo
5: S’ — 0;

6: for each vertex v € S do
T U ~— fmmod n(U);

8: T, — T, U{(v,u)};

9: S =5"U{u};

10: endfor

11: S —Sus’

12:  endfor

13: end for

Call the for-loop in lines 4 to 12 in the algorithm the outer for-loop for convenience.
Also, call the for-loop in lines 6 to 10 in the algorithm the inner for-loop for convenience.
Two examples of Algorithm 1 are given in Figure 4. If we replace do in parallel with do
in sequential, then Algorithm 1 becomes a sequential algorithm. If a top-down fashion
is insisted on, then Algorithm 1 can be modified to Algorithm 2 by adding lines 3, 14~16
and replacing ¢ +n with ¢ +n — 1 in Algorithm 1. Algorithm 2 builds n ISTs of a GQ,,
in a top-down fashion; the algorithms in [12, 26] construct spanning trees in a bottom-up
fashion. A top-down fashion is preferred since these n ISTs are used for broadcasting
messages from the top (the root) of the trees.

We have a lemma.

Lemma 3. For eachi € {0,1,...,n—1}, T; constructed by Algorithm 1 has the properties

that



12/ m=i+1

Figure 4: Two examples of Algorithm 1: constructing 4 ISTs Ty, 17, T5 and T3 for LT'Q,.
The edges depicted as color red are obtained from fy, color black are from f;, color green
are from fs, and color blue are from f3. (a) The common root is 1. (b) The common root
1s 0.

(i) (r, fi(r)) € T3;

(ii) for each v € V(G)\A{r, fi(r)}, if v € V(T;), then the path from f;(r) to v in T; uses

each perfect matching in F at most once.

Proof. Property (i) follows from line 3. Property (ii) follows from the fact that f,; modn

used in the for-loop between lines 7 and 11 are distinct. [

In Sections 3 and 4, we will prove that Tq, 17, ...,T,_1 generated by Algorithm 1 are



Algorithm 2
1: for each processor i (0 <i <n) do in parallel

2: son «— fi(r);

33 T, —{(r,son)};

4: S «— {son};

5 form=i+1toi+n—1do
6: S’ — ()

7: for each vertex v € S do

8: U fmmodn(v);

9: T, — T, U{(v,u)};

10: S'= 5" U{u};

11: endfor

12: S—Sus’

13:  endfor

14:  for each vertex v € S\ {son} do
15 T = T U{(v, fi(v)};

16: endfor
17: end for

n ISTs rooted at r for LT'Q),, and @), respectively. Do notice that for @),, and LTQ,,

it = ooty fola=fazs s S5 = o
Thus in the remaining discussion, we will simply write f; instead of f;'. The following
definitions are crucial for the subsequent proofs.
Definition 4. Consider arranging the elements 0,1,... ,n — 1 on a circle in a clockwise
manner. For all 0 < i <n —1, define O; to be an ordered set

O;={ii—1,i—2,...,i—n+1}

Here i — k means (i — k) mod n, where k =1,2,...,n— 1.

Notice that O; can be viewed as the ordered set formed by taking the elements out
from the circle in a counterclockwise manner by letting ¢ to be the first element. For
example, if n = 6, then Oy = {0,5,4,3,2,1}, O; = {1,0,5,4,3,2}, Oy = {2,1,0,5,4, 3},
O3 ={3,2,1,0,5,4}, Oy = {4,3,2,1,0,5}, and O5 = {5,4,3,2,1,0}.

Definition 5. For all 0 < i < n—1 and v € V(T;), define Ci(v, f;(r)) as follows.

Recall that f;(r) is the son of the root in T;. Let v = (Vy_1Vp_o--Vg)2 and fi(r) =

10



(Qp—1Gp_2...ag)2. Suppose v and f;(r) has a total of m different bits. Define C;(v, f;(1))
to be an ordered set containing all the indices of these m different bits, listed according to

the order given in O;.

We give some examples for C;(v, fi(r)). Note that when r = 0, the son of the root
in T} is 2, i.e., fi(r) = 2'. Suppose n = 6 and v = (101011)3. Then Cpy(v,2°) =
(5,3,1}, C1(v,2") = {0,5,3}, Ca(v,22) = {2,1,0,5,3}, Ca(v,2%) = {1,0,5}, Cu(v,24) =
{4,3,1,0,5}, and Cs(v, 2%) = {3,1,0}.

Definition 6. Suppose C;(v, fi(r)) = {¢m-1,Cm-2,---,¢0}, |Ci(v, fi(r))| > 2 and j &
Ci(v, fi(r)). We say that j is between ¢, and ¢, with respect to O; if when 0,1,... ,n—1
are arranged on a circle, the location of j on the circle is between ¢, and c,_1. Suppose j
is between ¢, and ¢,y with respect to O;. Then when j is put into C;(v, fi(r)), 7 will be

put into C;i(v, fi(r)) according to its original position in O;.

Continue the above example. Then 4 € C;(v,2') and 4 is between ¢, = 5 and ¢, 1 = 3
with respect to Oy; 2 € C1(v,2') and 2 is between 3 and 0 with respect to Oy; 4, 3 and
2 are not in Cs(v,2%) and all of them are between 5 and 1 with respect to Os. Since
O3 = {3,2,1,0,5,4}, if we put 4 into C3(v, 23), then we obtain {1,0,5,4}; if we put 2 into
Cs(v,23), then we obtain {2,1,0,5}.

Definition 7. For all0 <i<n—1 andv € V(T;), define P;(v, f;(r)) to be an ordered set
of all the indices of perfecting matchings used in the v, fi(r)-path in T;, listed according

to the order from v to fi(r).

Take LTQ4 and Figures 4 for an example. Then Oy = {0,3,2,1}, O; = {1,0, 3,2},
Oy = {2,1,0,3}, O3 = {3,2,1,0}. Consider r = 1 and T;. Then the son of the root is
fi(1) = 3 = (0011)3. Now suppose v = 6 = (0110)s. Then v € Ty, C1(v, f1(1)) = {0,2}
and Py (v, f1(1)) = {1,0,2}. Moreover, the path from v to fi(1) is

(0110) " =" (0100), =" (0101), 257 (0011),.

11



3 Applying our algorithm to locally twisted cubes

The purpose of this section is to prove that Ty, 17, ..., T,,_1 generated by Algorithm 1
are n ISTs for the locally twisted cube. It is not difficult to see that LTQ), is vertex-
transitive when n < 2. LT'(Q)3 is vertex-transitive can be observed from Figure 3. We now
prove that LTQ,, is not vertex-transitive for n > 4. For n = 4, let the N(r) be the set
of vertices that can be reached by r in at most k steps. Consider the number of vertices
in Na(r) that reaches only one vertex in Ny(r) and only one vertex in N3(r). For r = 0,
there is only one such vertex; however, for r = 1, there are two such vertices. Thus LT'Q4
is not vertex-transitive. For n > 5, LT'(),, is not vertex-transitive since the BFS tree with
root 0 is of height ["3] while the BFS tree with root 1 is of height [2!].

We say that two vertices u,v € V(G) are symmetric if there is a bijection h : V(G) —
V(G) such that h(u) = v and (z,y) € E(G) if and only if (h(z),h(y)) € E(G). A
graph G satisfies the odd-even-transitive property if each pair of odd-numbered vertices
are symmetric and each pair of even-numbered vertices are also symmetric.

We now prove that the locally twisted cube satisfies the odd-even-transitive property.
Based on this property, we assume without loss of generality that » = 0 or r = 1 as the
common root. Then, we will prove that Tq,T7,...,T,_1 generated by Algorithm 1 are n

ISTs for the locally twisted cube.

Theorem 8. The locally twisted cube LTQ), satisfies the odd-even-transitive property.

Proof. Tt suffices to prove that (i) if v is an odd-numbered vertex and v # 1, then v and
1 are symmetric, and (ii) if v is an even-numbered vertex and v # 0, then v and 0 are
symmetric. Let F = {fu_1, fu_2, ..., fo} be defined by equation (2). Then each edge in
LTQ, is of the form (u, f;(u)) for some f; € F.

First consider (i). Let v = (v,_1Vp—2 -+ vg)2 € V(LTQ,) be an odd-numbered vertex

and v # 1. Define a function h; as follows:
hi(u) =v@®ud1 for all u = (u,_1uy 2 ug)s € V(LTQ,).

It is not difficult to see that hy is a bijection from V (LTQ,,) to V(LTQ,). Let (u, f;(u)) €
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E(LTQ,). Then

hi(u) = (Up—1BUp—1 Vp—2BUp—2 -+ V1BU Up)2
and
ha(fi(u)) = (Un—1®Up—1 Vo BUp—2 -+ V1Bu 1BU)2 ifi=0
e (Un—1BUp—1 Vo BUp_2 -+ VaPuy 11BU 1Pug) ifi=1

and if 2 <7 <n—1, then

hi(fi(uw))= (Vn—1Bun—1 Vn—2BUp—2 - - - Vip1PU1 ViBU; (Vi—1PU—1PUg) Vi—2Bu;i—2 - - - V1BUL Up)2.

Note that v; ® u; = v; ® u; no matter u; = vy or u; # v;. Therefore

hi(fi(w)) = fi(h(w))

and hence (hy(u), hi(fi(w))) € E(LTQ,).
Now consider (ii). Let v = (vp—1Up—2+--1p)2 € V(LTQ,) be an even-numbered vertex

and v # 0. Define a function hy as follows:
ho(u) = v @ u for all u = (uy_1u,_o---ug)2 € V(LTQ,).

It is not difficult to see that hg is a bijection from V (LT'Q,,) to V(LTQ,). Let (u, f;(u)) €
E(LTQ,). Then

ho(u) = (Vn—1@Un—1 Vp—2@Un—2 -+ V1DU Up)2
and
h (f(u)) _ { (Un—l@un—l UTL—Q@U'IL—Q T Ul@Ul ﬂO)Q lf 1= 0
O (Un—1BUp—1 Vpa@Up_2 -+ VaPUy V1PBUy up)e ifi=1

and if 2 <7 <n—1, then

ho(fi(w)) = (Vn—1Bp—1 Vp—ofPBly—2 - - - Vg 1BU+1 VB, (Vg 1BUg—1BU0 ) Vg—ofPUg—2 - - - V1EBUL Ug)2.
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Again, v; ® u; = v; ® u; no matter u; = vy or u; # v;. Therefore

ho(fi(w)) = fi(ho(w))
and hence (ho(u), ho(fi(w))) € E(LTQ,). ]

By Theorem 8, we assume without loss of generality that r = 0 or » = 1 as the
common root. In subsections 3.1 and 3.2, we will prove that Ty, T7,...,7T,_1 generated
by Algorithm 1 are n ISTs rooted at r = 0 and r = 1 for LTQ,, respectively. For
convenience, in the remaining discussion, define I(a,b), where a > b, to be an ordered

sequence such that

a,a—1,...,b+1 ifa>0b,
a ifa=".

I(a,b) = {
3.1 Vertex 0 as the common root

Throughout this subsection, let Tg,T1,...,T,_1 be the output of Algorithm 1 when
the input is the F of LT(Q, and the root is » = 0. The purpose of this subsection is to

prove that Ty, T4, ...,T,_1 are n ISTs rooted at r = 0 for LTQ,,.

Lemma 9. Ty, 71, ...,T,_1 are n spanning trees rooted at r for L'T(Q),, when r = 0.

Proof. 1t suffices to prove that each T; (0 < i < n—1) is a spanning tree rooted at r = 0.
Consider the set S used in line 6 in the algorithm. From the inner for-loop, we know that
Algorithm 1 uses vertices in S to generate edges in T; and each v € S generates exactly

one edge (u,v) € T;, where u = f,, mod n(v). We now claim that:
Claim: At the start of the k-th iteration of the outer for-loop, |S| = 2871,

Proof of the claim. This claim is true when k = 1 since line 3 sets S = {son} and hence
|S| =1 =2° We now prove that if this claim is true before the k-th iteration of the outer
for-loop, then it remains true before the next iteration. There are two cases.

Case 1: k€ {1,2,...,n—1}. Set t = (i + k) mod n for easy writing. The k-th outer

for-loop uses the perfect matching f; to generate exactly one edge (u,v) € T; for each
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v € S. Notice that the ¢-th bit of each vertex v € S is 0 and the ¢-th bit of each vertex
in 5" is 1. Therefore S NS’ = () before the execution of line 11. Thus at the start of the
next iteration of the outer for-loop, |S| = 2*.

Case 2: k = n. The n-th outer for-loop uses the perfect matching f; to generate
exactly one edge (u,v) € T; for each each v € S. Notice that the i-th bit of each vertex
v € S is 1 and the i-th bit of each vertex in S’ is 0. Therefore S N S’ = ) before the
execution of line 11. Thus at the start of the next iteration of the outer for-loop, |S| = 2*.

From the above, when the outer for-loop terminates, k = n+1 and |S| = 2"; therefore
T; is a spanning subgraph. Also, at the end of the k-th iteration of the outer for-loop,
|S| = 27! new edges are generated; thus 7} has a total of 20 +2! 4 ... + 2771 =27 — 1
edges. T; is connected since each newly generated edge in Algorithm 1 is incident to an

edge that is already generated. Thus 7; is a spanning tree rooted at r = 0. [

When r = 0, the son of the root in T} is f;(0) and
fi(0) = 2'.

For any v € V(T;) \ {0, fi(0)}, the v, f;(0)-path in T; can be determined by P;(v, f;(0)),

which can be determined by the ordered set

Ci(va fZ(O)) = {Cm_lv Cm—2y- - 700}

as follows. Suppose v = (V,_1Up_2 -+ Ug)2. When vy = 0, since r = 0, we have

Pi(v, fi(0)) = ¢ {em-1=0,I(cm-2,¢m—3),...,I(c3,c2),I(c1,c0)} ifi#0and m—1iseven, (3)
{em-1=0,1(cm—-2,¢m-3),.--,1(ca,c1),I(co,0)} ifi+# 0 and m — 1 is odd.

When vy = 1, since r = 0, the set C;(v, f;(0)) must contain the value 0 if i # 0; so we
assume ¢, = 0 if 7 # 0. Thus when r = 0 and vy = 1,

{I(e¢m-1,m=2), I(cm=s3,Cma),.-.,1(c1,c0)} if i=0, m is even,

(Q} fz(o)) _ {I( Cm—1,Cm—2 )7 I(Cm—3acm—4)a (027 Cl) I(C(Ja 0)} lf i.:07 m is O.dd, (4)
{I(ema1,cm—=2),I(cm-3,Cm—), - - (ce+2,ce+1)ce,ce Le-Cor if 7#0, m—eis odd,
{I(cma1,em=2), I(Cm-3,Cma), -, 1(Cet1,0), Cey Cety ..., 0} if i£0, m—eis even.
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In the following, we give some examples for P;(v, f;(0)). Consider LTQ4. Then f,(0)=
20=1, f1(0)=2'=2 and f»(0)=2%=4. Thus the son of the root in T} is 1, in T} is 2 and
in Ty is 4. For v = (1010)y € Tp, we have Cy(v,1) = {0,3,1} and Py(v,1) = {0,1(3,1)} =

{0, 3,2}; so the v, 1-path in T} is
—-1_ —1: —1:
(1010)s =7 (1011), 5" (0111), 257 (0001),.

For v = (1100), € T3, we have C}(v,2) = {1, 3,2} and Py (v,2) = {1, 3,2}; so the v, 2-path
in 77 is
1 —1_ ~1_y,
(1100), " =7 (1110), =57 (0110), 257 (0010),.
For v = (0001)y € Ty, we have Cy(v,4) = {2,0} and Pa(v,4) = {1(2,0),0} = {2,1,0}; so

the v, 4-path in T} is
(0001), 25" (0111), " " (0101), =" (0100),.

Lemma 10. Ty, 14,...,T,_1 are n vertez-independent trees rooted at r for LT(Q), when

r=0.

Proof. It suffices to prove that any two 7; and T; with 0 < i < j < n — 1 are vertex-
independent, i.e., for each v € V(LTQ,), the r,v-path in 7; and the r,v-path in T}
are internally vertex-disjoint. The son of the root in 7; is f;(r) and in 7} is f;(r). Let
v = (VUp_1Un_2-+-Ug)2 be an arbitrary vertex in LTQ,. In the following, we assume
v & A{r, fi(r), fj(r)} since if v € {r, fi(r), f;(r)}, then the r,v-path in T; and the r, v-path
in T; are clearly internally vertex-disjoint.

Since fi(r) # f;(r), the r,v-path in T; and the r,v-path in 7} are internally vertex-
disjoint if and only if the v, fi(r)-path in 7; and the v, f;(r)-path in T} are internally
vertex-disjoint. In the following, we will only prove that the v, f;(r)-path in 7; and the
v, f;(r)-path in T; are internally vertex-disjoint. Let V; be an ordered set that contains
the internal vertices of the v, f;(r)-path in T; listed from v to f;(r). Let V5 be an ordered
set that contains the internal vertices of the v, f;(r)-path in 7} listed from v to f;(r). We

now claim that:
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Claim: V; NV, = 0.

Proof of the claim. Suppose this claim is not true and there exists a vertex a € V3 N V5.

Recall that f;(0) =2 and f;(0) = 27. Let
OZ'(U, 21) = {Cm_l, Cmn—2,y .- ,CQ}. (5)

There are four cases.

Case 1: v; = 1 and v; = 1. Then there must exist a u such that ¢, = j. Thus
Cj(va 2]) = {Cu—h Cy—2y - -, Co, i, Cm—1,Cm—2,- - - acu+1}- (6)

By (3) and (4) and (5), ¢,y is the first element in P;(v, 2¢). Let x € V;. Then the (¢,,_1)-th
bit of z is v,, , only when (i) (¢,,—1+1) € Pi(v,2%), (ii) ¢;_1+1 > 2 and (iii) there exists
q = (¢—1Gn-2---qo)2 € Vi1 such that = = f. _,+1(¢) and gy = 1. We now prove that (i),
(ii) and (iii) will not occur simultaneously; hence for all x € Vi, the (¢,,—1)-th bit of z is
Ve, . If |Ci(v,29)| =1, then (i) can not occur. Suppose |C;(v,2%)| > 2 and both (i) and
(iii) occur; that is, there exists ¢ = (gn-1¢n—2--qo)2 € V1 such that z = f. ,11(q) and
qo = 1. By (5), ¢ju_1 + 1 is the last element in P;(v,2%). Since qo = 1, I(cy,0) C P;(v, 2%).
By Lemma 3 and by the fact that I(cq,0) = {co,co — 1,...,1}, we have ¢,,_1 + 1 = 1;
thus (ii) does not occur and consequently the (c¢,,_1)-th bit of all the vertices in V] is
U, _,- Since v; = 1, the i-th bit of all the vertices in V; is 1. By (3) and (4) and (6), the
(€m—1)-th bit of those vertices in V5 with the i-th bit being 1 is v,,,_,. Thus V3 NV, = .

Case 2: v; = 0 and v; = 0. Then c¢,—1 = . If |Ci(v,2")| = 1, then Cj(v,2") =
{i}, which implies that v = 0; this contradicts with the assumption that v # 0. Thus

|Ci(v,2")| > 2 and there must exist a u such that j is between ¢, and ¢,_; with respect

to O;. Thus

C](U,QJ) :{ {jacuflacU,727...7CO7Cm72,Cm73,...,Cqul,Cu} lfu%(), (7)

{j7 Cu—1,Cu—25---,€C0,Cm—2,Cm—-3, - .- 7Cu+1} if u=0.
By (3) and (4) and (5), the i-th bit of all vertices in V; is 1. By (3) and (4) and (7), the

j-th bit of all vertex in V5 is 1. Suppose Vi NV, # 0 and a € V; N V,. Then the i-th bit
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and the j-th bit of a are both 1. When I(cy, ¢,—1) € P;(v,2"), each vertex in V] has its
j-th bit to be 0. When I(co, ¢p2) € P;(v,27), each vertex in V5 has its i-th bit to be
0. Thus the existence of a implies that I(c,, cy,—1) C Pi(v,2") and I(co, ¢p—2) C P;(v, 27).
Note that I(cy, c,—1) € P;i(v,2") implies that ¢ = 0 and hence vy = 0 (since case 2 requires
v; = 0). However, I(cy, cm—2) C P;(v,27) implies vy = 1, which contradicts with vy = 0.

Thus no such a exists and V; NV, = 0.

Case 3: v; = 0 and v; = 1. Then ¢,,—; = ¢ and there must exist a u such that ¢, = j.
If |Ci(v,2%)] = 1, then C;(v,2") = @), which implies that v = 27; this contradicts with the

assumption that v # 27. Thus

Cj('U, 2j) - {Cu—h Cu—2y---5,C0,Cm—2,Cm—3, - - - 7Cu+1}- (8)

By (3) and (4) and (5), the i-th bit of all vertices in V; is 1. Suppose V4 NV, # 0 and
a € Vi NV, Then the i-th bit of a is 1. When I(co, ¢2) € P;(v,27), each vertex in
V3 has its i-th bit to be 0. Thus the existence of a implies that I(cg,cy—2) € P;(v,27)
which further implies vy = 1. Since I(co,¢m—2) C P;(v,27), V5 has only one vertex
T = (Tp_1Tp_2 - Tg)2 such that z; = 1 and = = f;1(q) for some g € V,. The existence
of a implies that z = a. Since vy = 1, P;(v,2") starts with I(4,c,_2), i.e., P;(v,2%) is of
the form {I(i,cp,_2),...}. By (4), ¢_3 is the first element after I(i,c,_2) in P;(v,2%).
Recall that P;(v,2) is an ordered set of all the indices of perfecting matchings used in
the v, 2"-path in 7} listed according to the order from v to 2¢. Thus the first vertex in V;
can be obtained by applying the first perfect matching obtained from the first element
in P(v,2%) to v, the second vertex in V; can be obtained by applying the second perfect
matching obtained from the second element in P(v,2) to the first vertex in V;, and so
on. Thus we can partition V; into Vi , and Vi such that Vi, consists of those vertices in
Vi before f,, . is applied and Vi, = Vi — Vi,. Let ¥y = (yn—1Yn—2- - Yo)2 be an arbitrary
vertex in V; ,. Then bits y;y;—1 - - Ye,,_, are different from vv;_y ---v,,, , in exactly two
bits. However, bits z;x;_1 - - - x.,, , are identical to v;v;_1 - v, ,. Thus z € V4 ,. On the

other hand, z.,, , = v, , but the (¢,_3)-th bit of all the vertices in Vi, is U, ,; thus

3

x & Viyp. Since x € Vi, and x & Vi, we have x ¢ V;. Since x = a, it follows that a & V.
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Thus no such a exists and V; NV, = (.

Case 4: v; = 1 and v; = 0. Then there must exist a u such that j is between ¢, and
Cy—1 With respect to O;. Thus

C'j(v,2j) _ {j, T, Culy Cu2y - - » ,C()., Cm1s Cm2s « -+ Cu } 1fz is bet'ween ¢y and ¢, 1 respect to Oy, )
{J, Cu1, Cu2y - - ,CO4 Ty Cr1 s Cm2, - - -, Cy } if Otherwise.

By (3) and (4) and (9), the j-th bit of all vertices in V5 is 1. Since v; = 1, the i-th bit of

all the vertices in V; is 1. Suppose V; NV, # () and a € V; N V,. Then the i-th bit and

the j-th bit of a are both 1. By (9), case 4 consists of two subcases. In each subcase, we

will prove that no such a exists. Since a does not exist, V; NV, = 0.

Subcase 4.1: 1 is between ¢, and ¢, with respect to O;. Then V5 has only one vertex
f;(v) with its i-th bit and j-th bit both being 1. By (3) and (4) and (5), ¢,—1 is the first
element in P;(v, 2%). Thus the (c,,_1)-th bit of those vertices in V; with the j-th bit being
1is ¥, ,. However, by (3) and (4) and (9), the (¢;,—1)-th bit of f;(v) is v.,,_,. Thus no
such a exists.

Subcase 4.2: i is not between ¢, and ¢, 1 with respect to O;. If |C;(v,2")| = 1, then
Ci(v,2") = {co}; since v; = 0, we have ¢y # j, which implies that each vertex in V; has
its j-th bit to be 0 and consequently no such a exists. Now suppose |C;(v,2%)| > 2. Then
when I(cy, cy—1) € P;(v,2"), each vertex in V; has its j-th bit to be 0. Thus the existence
of a implies that I(c,,c,—1) C Pi(v,2%). Since I(cy,cu—1) C Pi(v,2%), Vi has only one
vertex © = (Tp_1Tp_2---To)2 such that x; = 1 and = = fj;1(q) for some ¢ € Vi. The
existence of a implies that x = a. By (3) and (4) and (9), the (¢;,—1)-th bit of those
vertices in V5 with the ¢-th bit being 1 is v,,, ,. However, the z., , =1v.,, ,. Soif x € V7,
x € Va. Then, by (3) and (4) and (5), the j-th bit of all the vertices in V; \ {z} is 0. By

(3) and (4) and (9), the j-th bit of all the vertices in V5 is 1. Thus no such a exists. ®

Since V; NV, = (), we have this lemma. ]

Theorem 11. Ty, T4,...,T,_1 are n n ISTs rooted at r for LTQ, when r = 0.

Proof. This theorem follows from Lemmas 9 and 10. [
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3.2 Vertex 1 as the common root

Throughout this subsection, let Tq, 77, ...,7T,_1 be the output of Algorithm 1 when
the input is the F of LTQ, and the root is » = 1. The purpose of this subsection is to
prove that Ty, Ty,...,T,-1 are n ISTs rooted at r = 1 for LTQ,. For S C V(LTQ,),
define f;(S) to be

fi(S) ={fi(v) | for all v € S}.
This definition will be used in the following proofs.

Lemma 12. T, T}, ...,T,_1 are n spanning trees rooted at r for LT(Q), when r = 1.

Proof. The proof of this lemma is similar to that of Lemma 9 except that » = 0 is replaced

by r = 1 and the proof of the claim is modified as follows.

Proof of the claim. This claim is true when k& = 1 since line 3 sets S = {son} and hence
|S| = 1 = 2°. We now prove that if this claim is true before the k-th iteration of the
outer for-loop, then it remains true before the next iteration. According to which T is

considered, there are three possibilities.

1. Suppose Ty is considered. Then ¢ = 0 and there are two cases.
Case 1: k € {1,2,...,n—1}. The proof of this case is the same as Case 1 in Lemma 9.
Case 2: k = n. The proof of this case is the same as Case 2 in Lemma 9 except that:

the -th bit of each vertex v € S is 0 and the i-th bit of each vertex in S’ is 1.

2. Suppose T,,_; is considered. Then ¢ =n — 1 and there are two cases.

Case 1: k € {1,2,...,n—1}. The proof of this case is the same as Case 1 in Lemma 9
except that: when k = n—1, the (n—2)-th bit of each vertex v € S is 1 and the (n—2)-th
bit of each vertex in S’ is 0.

Case 2: k = n. The proof of this case is the same as Case 2 in Lemma 9.

3. Suppose T; is considered, where i € {1,2,...,n — 2}. Then there are two cases.
Case 1: k € {1,2,...,n—1}. The proof of this case is the same as Case 1 in Lemma 9
except that: when k = n—1, the (n—2)-th bit of each vertex v € S is 1 and the (n—2)-th

bit of each vertex in S’ is 0.
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Case 2: k = n. This is the last (the n-th) iteration of the outer for-loop of Algorithm 1.
Before the n-th iteration of the outer for-loop, |S|=2""1 and a total of 2°+2' 4. .. +27 2=
2n=1 1 edges have been put into Tj; these edges form a connected subgraph since each
newly generated edge in Algorithm 1 is incident to an edge that is already generated.

Thus S induces a tree. Partition S into S° and S! such that
SY = {all the vertices in the subtree rooted at f;y1(fi(1))} and S'= S\ S°.

See Figure 5 as an illustration.

Figure 5: An illustration for the proof of Lemma 12.

By (2) and by Lemma 3, we have: (i) the i-th bit of all the vertices in S° is 0 and hence
the i-th bit of all the vertices in f;(SY) is 1, and (ii) the -th bit of all the vertices in S*

is 1 and hence the i-th bit of all the vertices in f;(S') is 0. Notice that
§'=fi(8") U fi(S).
By (i) and (ii), to prove that SN.S" = 0, it suffices to prove that
SN f;(SYH) =0 and S*N f;(SY) = 0. (10)
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Suppose i =n—2. Then the (n—1)-bit of all the vertices in S® and f,,_»(S°) is 1; however, the
(n—1)-bit of all the vertices in S* and f,,_5(S') is 0. Thus when i=n—2, S°N f, 2(S*) =0
and SN f,_2(S%) = 0. Now suppose i € {1,2,...,n — 3}. Partition S° into SJ and S?

such that
S8 = {all the vertices in the subtree rooted at fiio(fir1(fi(1)))} and S9 = 5%\ 5.
Partition S' into S§ and S such that
Sy = {all the vertices in the subtree rooted at f;1o(fi(1))} and S} = S°\ S}.

By (2) and by Lemma 3, the pair of the (i+1)-th and the i-th bit of all the vertices in S
and f;(S7) is (0,0); in £;(S5) and S} is (0,1); in SY and f;(S}) is (1,0) and in f;(S?) and

S¢ is (1,1). Thus to prove (10), it suffices to prove that
So N fi(S1) =0, SN fi(Sy) =0, Sy N fi(S1) =0 and SYN fi(Sp) = 0. (11)

For each v = (vy_1,Vp-1,...,00)2 € V(LTQ,) such that v # 0, define ¢ to be the index
so that v, is the leftmost nonzero bit, i.e., v,—1 = vy_9 = - -+ = vg41 = 0 and v, = 1 (since
v # 0, q exists). For v = 0, define ¢ to be —1. By (2) and by Lemma 3, we have Table 2.
We now use two claims to prove (11).

Table 2: The value of g for every vertex in the given set.

So U fi(S5) St U fi(Sh) So U fi(Sp) ST U fi(SY)
q>1+2 |g<i+lorq>t1+3| g=>1+3 |g=i1+1orq>1+3

Claim A: Sy N f;(S}) =0 and S} N f;(SY) = 0. This claim holds since:
By Table 2, each vertex in S} N f;(S]) with ¢ < i+ 1 does not belong to SJ U f;(S)) since
every vertex in Sy U f;(S)) has ¢ > ¢ + 2. By Table 2, each vertex in Sj U f;(S)) with
q = i + 2 does not belong to S{ N f;(S}) since each vertex in S{ N f;(S]) has q # i + 2.
From the above, we may focus on vertices with ¢ = ¢ + 3 or ¢ > 7 + 3. Note that each
vertex in S§ U f;(SY) with ¢ = i + 3 will have its (i + 2)-th bit to be 0; however, from
Table 2, we know that each vertex in f;(S})U S} with ¢ > i+ 3 will have its (i + 2)-th bit

to be 1. Therefore, each vertex in SyU f;(S§) with ¢ = i+ 3 does not belong to Sj U f;(S]).
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It remains to consider vertices with ¢ > 7 + 3. Note that the bit string of those bits from

the g-th bit to the (i 4+ 2)-th bit of all the vertices in S§ U f;(S7) is one of the strings in

qg—i—2 0's q—i—4 0's q—i—5 0's q—i—6 0's qg—i—5 0's qg—i—4 0's

—— —— —— — —
Ly={100-0,100.~011,160- 0101,160--01001,...,30160. 01,1160 01}

qg—i—1 bits qg—i—1 bits q—i—1 bits qg—i—1 bits qg—i—1 bits qg—i—1 bits

However, the bit string of those bits from the g¢-th bit to the (i 4+ 2)-th bit of all the
vertices in S] U f;(S7) is one of the strings in

q—i—3 0's g—i—4 0's q—i—5 0's q—i—6 0's q—i—4 0's q—i—3 0's

—— — — — — ——
Ly={100---01,100---010,100---0100,100---0 1000,...,10100---0,,1100---0, }.
q—i—‘f bits q—i—‘I bits q—i—\I bits q—i—\I bits q—i—‘I bits q—i—\I bits

It is not difficult to see that Ly N Ly = (). Hence we have Claim A.

Claim B: SN f;(S§) = 0 and S N f:(SY) = 0. The proof of Claim B is similar to that
of Claim A except that Sy U f;(S9) is replaced by S3 U fi(S3) and ST U f;(S}) is replaced
by SY U fi(SY).

By Claims A and B, we have (11) and hence have (10). Therefore SN .S" = ) before
the execution of line 11. Thus at the start of the next iteration of the outer for-loop,

|S| = 2*. "
We now have this lemma. (]

When r = 1, the son of the root in 7} is f;(1), where
0 if i #0,
fi(l)y=«¢ 3 ife=1, (12)
20427 11 if2<i<n-—1
For any v € V(T;) \ {1, fi(1)}, the v, f;(1)-path in T; can be determined by P;(v, f;(1)),

which can be determined by the ordered set

Ci(va fz(l)) = {Cmfla Cm—2y- - 760}

as follows. Let c._; be the first (from left to right) member in C;(v, f;(1)) that is larger

than i. Suppose v = (Vp,_1Vp_2 - Up)2. When i = 0, since r = 1, we have

Pi(v, fi(1)) = Ci(v, fi(1)). (13)
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When 7 # 0 and vy = 0, since r = 1, we have ¢, = 0 and

{em-1,Cm-=2, -+, CesI(Ce1,Ce2), I(Ce3,Cea),. . I (c1,c0)} if € is even,
Pl(vafl(l)): {Cm72acmf37" '7667](06—1306—2)5 I(Ce—3ace—4)7'° '71(607i)} if e is Odd) Cmflzia (14)
{4, em1, Cm25- - s Ces L (Ce1,Ce2), I(Ce3,Cea), - I (co,7)} if € is odd, ¢ #i.

When i # 0 and vy = 0, in order to obtain P;(v, f;(1)) from C;(v, f;(1)), we need to define
C}, C? and (;(v, f;(1)). Define C? to be the ordered sequence

2
C; =Ce1,Ce2,---,C0

and define C}! to be the ordered sequence

C1sCm—2, - --,Ce  if |C?| is even,
1 . . . 2 . .
Cl =1 i,¢n1,Cm—2,...,¢ 1if |C?|is odd and ¢,y # i
Crm—9yCm—3,+--,Ce  if |C?| is odd and ¢,,_1 = 1.

Defined ¢;(v, fi(1)) to be the ordered sequence

{C}, C?%} if |C}] is even and |C?| is even,
{C},C? i} if |C}] is even and |C?| is odd,

Glv, (1) = {C},0,C?} if |C}] is odd and |C?| is even, (15)
{C1,0,C?,i} if |C}| is odd and |C?] is odd.
Suppose
Giv, fi(1)) = {sus Su—1, - - - S0}
Then when ¢ # 0 and vy = 1, since r = 1, we have
Pi(v, fi(1)) = {1 (s, su=1), 1 (Su=2, Su=3), - - -, L (51, %0), }- (16)

In the following, we give some examples for P;(v, f;(1)). Consider LT'Q)5. Then f,(1) =
2'+1=3, fo(1) =22 +2"+1 =7 and f3(1) = 2+ 22+ 1 = 13. Thus the son of the root
in 7y is 3, in Ty is 7 and in T3 is 13. For v = (10000), € T}, we have Cy(v,3) = {1,0,4}
and P;(v,3) = {0,1(4,1)} = {0,4,3,2}; so the v, 3-path in T} is

—1_ 712 71: 71:
(10000)5 " 5" (10001), * 5" (01001), =7 (00101), 25" (00011),.

For v = (11010); € Ty, we have Cy(v,7) = {2,0,4,3} and P2(v,7) = {2,0,1(4,3)} =
{2,0,4}; so the v, 7-path in T is

1 —1_ —1_
(11010), 25" (11110), =" (11111), 57 (00111),.
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For v = (11101)y € T3, we have Cs(v,13) = {4}, C3 = {4}, C3 = {3}, (v, f;(1)) =
{3,0,4,3} and Ps(v,13) = {I(3,0),1(4,3)} = {3,2,1,4}; so the v, 13-path in T} is

(11101), =" (10001), =" (10111), " 57 (10101), =7 (01101),.

Lemma 13. Ty, 1},...,T,_1 are n vertez-independent trees rooted at r for LT(Q), when

r=1.

Proof. Tt suffices to prove that any two 7; and 7; with 0 < ¢ < j < n — 1 are vertex-
independent. Let v = (v,_1v,-2---vg)2 be an arbitrary vertex in LTQ,. We assume
v & A{r, fi(r), f;(r)} since if v € {r, fi(r), f;(r)}, then the r,v-path in T; and the r, v-path
in T} are clearly internally vertex-disjoint. By the same arguments used in the proof of
Lemma 10, it suffices to prove that the v, f;(r)-path in 7; and the v, f;(r)-path in T; are

internally vertex-disjoint. Let Vi and V5 be defined as in Lemma 10. We now claim that:
Claim: V; NV, = 0.

Proof of the claim. Suppose this claim is not true and there exists a vertex a € V; N V5.

Let

Cl(v7f7,(1)) = {Cm—lvcm—%-”aCO}’ (17>
There are four cases.

Case 1: 0 =i < j <n — 1. The proof of this case is divided into two parts, depending
on vg = 1 or vg = 0. Suppose vy = 1. Then 0 ¢ C;(v, f;(1)). Thus the 0-th bit of all the
vertices in V5 is 1. By (13) and (17), 0 is the first element in Cy(v, fo(1)); this implies
that the 0-th bit of all the vertices in V; is 0. Thus V3 NV, = (). Suppose vy = 0. Then
0 & Cy(v, fo(1)). Thus the 0-th bit of all the vertices in V; is 0; this implies that the 0-th

bit of a is 0. There are two possibilities: j =1 or 7 > 1.

1. 7 = 1. Note that either 1 € Py (v, fi(1)) or 1 € Py (v, f1(1)). Suppose 1 & Py (v, fi(1)).
Then 0 is the first element in P (v, f1(1)); this implies that the 0-th bit of all the vertices
in V5 is 1. Thus no such a exists and V; N Vo = (. Suppose 1 € Py(v, f1(1)). Then 1

and 0 are the first element and the second element in Py (v, fi(1)), respectively. Thus the
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0-th bit of all the vertices in V5 \ {fi(v)} is 1. The existence of a implies that f;(v) = a.
Suppose v; = 0. Then 1 & Cy(v, fo(1)); this implies that the 1-st bit of all the vertices
in Vj is 0. However, it is obvious that the 1-st bit of fi(v) is 1. Therefore fi(v) & V1.
Thus no such a exists and V; NV, = (). Suppose v; = 1. Since 1 € Py(v, f1(1)), there
must exist some k > 1 such that vy = 1; this implies that ¢,,—; # 1. By (13) and (17),
the (¢;,—1)-th bit of all the vertices in Vj is T, _,. However, the (¢,,_1)-th bit of fi(v) is

Ve, _,- Therefore fi(v) & V4. Thus no such a exists and V3 NV, = 0.

2. 7 > 1. By (13), (14), (15), (16) and (17), we have: ¢, 1 is the first element in
Ci(v, fi(1)), cm—1 € Cj(v, f;(1)), 0 € Cj(v, f;(1)), and ¢,,—; appears after 0 in the ordered
set Cj(v, f;(1)). Thus the (¢;,—1)-th bit of all the vertices in V; is T, ,. However, the
(¢m—1)-th bit of those vertices with the 0-th bit being 0 in V5 is v.,,_,. Thus no such a

exists and V; NV, = 0.

Case 2: 1 =i < j <n— 1. The proof of this case is divided into two parts, depending

onvyg=0oruvy=1.

1. vy = 0. Then it is not difficult to see (by comparing the j-th and the O-th bits of
fi(v) and all the vertices in V;) that f;(v) & V4. Thus a can not be f;(v). It remains
to consider those vertices in V5 \ fj(v). The remaining proof is further divided into two

parts, depending on v;_; = 0 or v;_; = 1.

1.1. v,y = 0. Since v9 = 0 and v;_; = 0, j — 1 € P;(v, fj(v)). Since vy = 0 and
j— 1€ Pj(v, fj(v)), the (j — 1)-th bit of all the vertices in V5 \ f;(v) is 1. However, the

(7 — 1)-th bit of all the vertices in V; is 0. Thus no such a exists and V; NV, = ().

1.2. v;_; = 1. We claim that: the bits from v;_5 to vo are all 0, i.e., vj_o =vj_3 =+ =
vy = 0. Suppose this claim is not true and let k& be the largest number between 7 — 2 and
2 (inclusive) such that v, = 1. By (17) and (14), the (j — 1)-th and the k-th bits of all the
vertices in V3 \ fj(v) is 1 and 0, respectively. However, the (j — 1)-th bit of those vertices
in V; with k-th bit being 0 is 0. Thus v;_9 = vj_3 = -+ = v = 0. So the 1-st bit of all
the vertices in 1} is 1 and the 1-st bit of all the vertices in V5 \ f;(v) is 0. Thus no such

a exists and V; NV, = (.
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2. vg = 1. The proof of this part is further divided into six parts as follows.

2.1. j=2,vy=1and v, = 1. Since vy =1 and v; = 1 and vy = 1,

Cj(U, f](l)) = (Cmfl, Cm—2y.-- ,Cl>.

Suppose m is even. Then

Pi(v, fi(1))={I(cm-1,Cm-2),- .., 1(c1,c0=2)}
and
,Pj(v» f](l)) :{[(27 O)’ [(Cm,l, Cme)a R [(Cla 2>}

By (15) and (16), the 2-nd bit of all the vertices in V; are 1. However, the 2-nd bit of all

the vertices in V5 are 0. Thus no such a exists and V; NV, = (0. Suppose m is odd. Then

Pi(v, f:(1) = {1, I(¢pp-1,Cm—2),---,1(co, 1)}
and
Pj(v’ f](l)) N {I(Cm—la Cm—2), s ,I(Cz, Cl)}-

By (15) and (16), the 1-st bit of all the vertices in V; is 0. However, the 1-st bit of all the

vertices in V5 is 1. Thus no such a exists and V; N V5 = 0.

2.2. j=2, vy =0and vy = 1. Since vy = 1 and v; = 0 and v, = 1, we have ¢,,_1 = 1,
co = 2 and

Cj(’U, f](]_)) == {Cm—la Cm—2y .- - ,Cl}.

Suppose m — 1 is odd. Then

,Pi<vv fl<1>> = {I(Cm*% cme)y ceey [(CO, 1)}
and
Pj(vv f](1>> = {1, I(cm-2,Cm-3), ..., I(c2,c1)}.

By (15) and (16), the 1-st bit of all vertices in Vi are 0. However, the 1-st bit of all

vertices in V5 is 1. Thus no such a exists and V; NV, = (). Suppose m — 1 is even. Then

Pi(v, fi(1)) =41, I(cm_2,Cm—3),--.,1(c1,c0)}
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and
,Pj<vv f](l)) = {2’ L, I(Cm—2a Cm—3), . 71(61, 2)}

By (15) and (16), the 2-nd bit of all vertices in Vi are 1. However, the 2-nd bit of all

vertices in V5 are 0. Thus no such a exists and V; NV, = 0.

2.3. j=2,v; =1 and vy = 0 (resp., v; = 0 and vy = 0). Then

Cj(’U, f](l)) = {2, Cm—1Cm—24 .. ,C()}.

Suppose m (resp., m — 1) is even. Then by (15) and (16), the 2-nd bit of all vertices in
Vi. However, the 2-nd bit of all vertices in V, are 1. Suppose m (resp., m — 1) is odd.
Then by (15) and (16), the 1-st bit of all vertices in V; are 0. However, the 1-st bit of all

vertices in V5 are 1. Thus no such a exists and V; NV, = 0.

2.4. j # 2 and vj_; = 0. Then the (j — 1)-th bit of all the vertices in V; are 0. However,

the (j — 1)-th bit of all the vertices in V5 are 1. Thus no such a exists and V3 NV, = 0.

2.5. j #2,v,_1 =1 and at least one of the bits in v;_v,;_5---vg is 1. Then there exist ¢
such that

g=max{t | teCiv, fi(1), 1<t <j—1}.

2.5.1. Suppose 1(j,q) € Pj(v, f;(1)). Then the ¢-th and the (j — 1)-th bit of all the
vertices in V5 are 0 and 1, respectively; however, the (j — 1)-th bit of those vertices in V}

with the ¢g-th bit being 0 is 0. Thus no such a exists and V; N V5 = ().

2.5.2. Suppose 1(j,q) € P;(v, f;(1)). Then we partition V5 into Vo1 and Va5 such that
Vo1 = {all the vertices in V; before the perfect matching f, is applied} and V5 = Vo\Va ;.

Consider the vertices in V5 ;. Suppose v; = 0. Since j € I(j,¢), we can compare the j-th
bit of all vertices in V; and in V5 to see that no such a exists and V3 NV, = ). Suppose
v; = 1. Then the number of bits in v,_1v,—2---v;41 that are 1 is odd. This implies that
Cm—1 # J. Since ¢,,,_1 # j, by comparing the c,,_1-th bit of all the vertices in V; and in

Va1, we know that V3 N V5, = (. Consider the vertices in V55. Then the ¢g-th and the
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(7 — 1)-th bit of all the vertices in V55 are 0 and 1, respectively. However, the (j — 1)-th
bit of those vertices in V; with the ¢-th bit being 0 is 0. Hence V3 N V2o = (). Since

ViNVay =0 and Vi NVas =0, no such a exists and V; NV, = ().

2.6. j # 2, v;_; = 1 and all the bits in v;_svj_5---vy are 0 (i.e., v;_s=v;_3="---=v3=0).
For convenience, let t(wy,wsy) denote the number of bits in v, vy, 1 - vy, that are 1.

There are three possibilities.

2.6.1. Suppose t(n — 1,7+ 1) is odd. Then ¢(n — 1,7) is even. Thus the i-th bit of all
the vertices in V5 is 0. However, the i-th bit of all the vertices in V; is 1. Thus no such a

exists and V; NV, = 0.

2.6.2. Suppose t(n — 1,9+ 1) is even and v; = 0. Then ¢(n — 1,7 + 1) is even. Thus the
j-th bit of all the vertices in V5 is 1. However, the j-th bit of all the vertices in V; is 0.

Thus no such a exists and V; NV, = 0.

2.6.3. Suppose t(n — 1,7+ 1) is even and v; = 1. Then ¢(n — 1,75 + 1) is odd. Thus the
i-th bit of all the vertices in V5 \ {f;(v)} is 0. However, the i-th bit of all the vertices in
Vi is 1. Since ¢,—1 # j, we can find that f;(v) € Vi by comparing the ¢,,_1-th bit. Thus

no such a exists and V; NV, = 0.

Case 3: 3 <i+ 1= 5 <n—1. For convenience, let ¢t denote the number of bits in
Up—1Un—2 - - - V41 that are 1. By (13)~(17), we have the following results for ¢. Suppose ¢
is odd. Then the i-th bit of all vertices in V; is 0 and j & P;(v, f;(1)); however, the i-th
bit of all the vertices in V5 is 1. Suppose t is even and v; = 0. Then the j-th bit of all the
vertices in V5 is 1; however, the j-th bit of all the vertices in V4 is 0. Suppose t is even
and v; = 1. Then the j-th bit of all the vertices in V5 is 0; however, the j-th bit of all the

vertices in V; is 1. Thus no such a exists and V; NV, = 0.

Case 4: 3 <i+1 < j < n—1. The proof of this case is divided into xxx parts, depending

on the values of v;_; and v;_;.

4.1. v;_; = 0. Then if j € P;(v, f;(1)), then V; has only one vertex (say, vertex z) with

its (j — 1)-th bit being 1. By comparing from the j-th to the (i — 1)-th bits of x with the
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j-th to the (i — 1)-th bits of each vertex in V3, we have x & V5. If j € Pj(v, f;(1)), then
f;(v) is the unique vertex in V5 with its (j — 1)-th bit being 0. By comparing from the
j-th to the (i — 1)-th bits of f;(v) with the j-th to the (i — 1)-th bits of each vertex in V4,
we have f;(v) € V1. Then by (13)~(17), the (j — 1)-th bit of all the vertices in V; \ {z} is
0; however, the (j — 1)-th bit of all the vertices in V5 \ f;(v) is 1. Thus no such a exists

and V, NV, = 0.

4.2. v;_1 =0. Then we can use similar arguments to prove that no such a exists and

VinVy=0.

4.3. v;.y = 1 and v;_; = 1. By (13)~(16), we have following the results. When
i € Ci(v, fi(1)) and vy = 1, V] has only one vertex (say, vertex z) with its (i — 1)-th bit
being 0. By comparing the (j — 1)-th and the (¢ — 1)-th bits of z with the (j — 1)-th and
the (i — 1)-th bits of each vertex in V5, we have z & V5. Thus the (i — 1)-th bit of all the
vertices in V; \ {z} is 1. Hence the existence of a implies that the (¢ — 1)-th bit of @ must

be 1. Partition V5 into two V51 and Va9 such that
Va1 = {all the vertices in V; before the perferct matching f; is applied} and Voo = V5\Va ;.

Thus the (¢ — 1)-th bit of all the vertices in V5, is 1 and if a exist, then a € V5;. We

claim that:
If a exists, then v;_9 =vj_3 =--- = v;31 = 0.

Suppose this claim is not true. Then let ¢ be the largest index between j — 2 and
i + 1 (inclusive) such that v, = 1. Let y = (Yn—1Yn—2---Yo)2 be an arbitrary vertex
in Vo1 \ {f;(v)}. Note that f;(v) € Vo, only when j € P;(v, f;(1)). Also note that g €
P;(v, f;(1)). Moreover, if j € C;(v, f;(1)), then ¢ is the first element after j in C;(v, f;(1));
if j & C;(v, f;(1)), then g is the first element in C}(v, f;(1)). Since g exists, by (14)~(16),
the bits y;_oy;j_3---yit1 will be different from the bits v;_ov;_5---v;1;. However, let
T = (Tp_1Tp_2---To)2 be an arbitrary vertex in V;. Then the bits x;_ox;_5- - z;41 are
identical to the bits v;_ov;_5---v;41. Thus every vertex in Vo; \ {f;(v)} is not in V.

Although f;(v) € Va1, f;j(v) is not in V; (this can be observed by comparing the j-th bit

30



and the bits from the (j — 2)-th to the (i + 1)-th bits of all the vertices in V} with j-th
bit and the bits from the (j — 2)-th to the (i + 1)-th bits of f;(v)). Thus Vi NV, = 0.

Since if a exists, then a € V5;. Thus a does not exists and we have this claim.

By this claim, in the remaining proof, we assume v;_1 =1, v;_1=1and v;_o=v;_3=---=
v;41 =0. For convenience, let ¢ denote the number of bits in v,_;v,_2---v;4; that are 1.

The remaining proof is further divided into four subcases.

4.3.1. v; = 1 and v; = 1. Suppose t is even. Then the first member in P;(v, f;(1)) is 1.
However, i & P;(v, f;(1)). Thus no such a exists and V3 NV, = (). Suppose ¢ is odd. Then
j € Pj(v, f;(1)) and I(j —1,4) C P;(v, fi(1)). Thus the j-th bit of all the vertices in V5 is

0. Partition V; into V; and V) 5 such that
Vi1 ={all the vertices in V; before the perfect matching fj; is applied} and V3 o =V1\Vi 1.

Thus the j-th bit of all vertices in V4 ; is 1 and the j-th bit of all vertices in V; 5 is 0. By the
fact that the j-th bit of all the vertices in V5 is 0, to prove Vi NV, = (), it suffices to prove
ViaNVa=10. If vy = 1, then the (j — 1)-th bit of all the vertices in V5 is 1; however, the
(j—1)-th bit of all the vertices in V; o is 0. If vy = 0, then V5 has only one vertex f;(v) with
its (7 —1)-th bit being 0. Obviously, either f;(v) = (vp—1Vp—2 - - - V;4+100;_1Vj_2v,_3 - - - Up)2
or f;(v) = (Un—1Vn—2 - - vj1100;_10j_9v;_3 - - - Vg)2; the former case occurs when vy=0 and

the latter, vo=1. In either case, we have f;(v) ¢ V;. Thus no such a exists and ViNV,=0.

4.3.2. v; = 0 and v; = 0. Suppose t is even. Then the j-th bit of all the vertices in V5 is
1. However, the j-th bit of all the vertices in V] is 0. Suppose t is odd. Then the number
of bits in v, 1v,_2---v;11 that are 1 is even; this implies that ¢ is the first member in
Pi(v, fi(1)). Thus the i-th bit of all the vertices in V4 is 0. However, the i-th bit of all the

vertices in V] is 1. Thus no such a exists and V; NV, = 0.

4.3.3. v; = 0 and v; = 1. Suppose ¢ is even. Then the first member in P;(v, f;(1)) is
i — 1 and the first member in P;(v, f;(1)) is i. So the i-th bit of all the vertices in V3 is
0; however, the i-th bit of all the vertices in V; is 1. Suppose t is odd. Define ¢ to be

the index of the leftmost nonzero bit of v. Then ¢ > j. Thus the (i — 1)-th bit of all
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the vertices in V5 \ {f;(v)} is 0; however, the (i — 1)-th bit of all the vertices in V; is 1.
By comparing the j-th and the g-th bits of f;(v) with the j-th and the ¢-th bits of every

vertex in Vj, we have f;(v) € V4. Thus no such a exists and V; NV, = 0.

4.3.4. v; = 1 and v; = 0. If the number of those bits from v,,_; to v;;; being 1 is even,
then the j-th bit of all the vertices in V5 is 1, but the j-th bit of all the vertices in V;
is 0. If the number of those bits from v,_; to v;4; being 1 is odd, then the number of
bits in v, _10,_2 - - - ;41 that are 1 is even. Thus 7 is the first member of P;(v, f;(1)) but
i & Pi(v, f;(1)) which implies that the i-th bit of all the vertices in V5 is 0 but the i-th

bit of all the vertices in V; is 1. So V; NV, = () in this case. [ |
Since V; NV, = (), we have this lemma. ]

Theorem 14. Ty, T}, ...,T,_1 are n ISTs rooted at r for LTQ, when r = 1.

Proof. This theorem follows from Lemmas 12 and 13. ]

4 Applying our algorithm to hypercubes

The purpose of this section is to prove that Ty, 11, ..., T,,_1 generated by Algorithm 1
are n [STs for the hypercube. It is well-known that the hypercube is vertex-transitive.
Therefore we assume without loss of generality that » = 0 is the common root. Through-
out this section, let Ty, T7,...,T,_1 be the output of Algorithm 1 when the input is the

F of @, and the root is r = 0. It is not difficult to see that the hypercube has

Pi(v, fi(r)) = Ci(v, fi(r)), forall 0 <i<n—1.

Theorem 15. Ty, T4, ...,T,_1 are n ISTs rooted at r for Q),, when r = 0.

Proof. We first prove that T, T, ..., T, are spanning trees of ¢),,. The proof of this part
is identical to the proof of Lemma 9 except that the definition of F is the one for @,. It
remains to prove that Ty, T, ...,7T,1 are n vertex-independent trees rooted at r for @,

when r=0. Consider an arbitrary vertex v = (v,_1, Up 2 - vo)2 € V(Q,)\{r}. We use the
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definitions of T;, T}, Vi, V3 and Cj(v,2") in Lemma 10. Note that in each of the following
four cases, Cj(v,27) is also the same as the one used in Lemma 10. To prove that 7; and
T} are vertex-independent, it suffices to prove that V3 N V=0 holds in each cases.

Case 1: v; =1 and v; = 1. By (5), the i-th bit of all the vertices in V; is 1. Partition V5

into V5 ; and V54 such that
Va1 = {all the vertices in V} before the perfect matching f; is applied} and Voo = Vo\Va ;.

Thus the ¢-th bit of all the vertices in V5; is 1 and the i-th bit of all the vertices in V55
is 0. By the fact that the i-th bit of all the vertices in V; is 1, to prove Vi NV, = 0, it
suffices to prove V; N'V,o; = 0. By (5) and (6), the (¢,,—1)-th bit of all the vertices in V;
is U, _,; however, the (¢,,—1)-th bit of all the vertices in Va1 is v, ,. Thus Vi NV, = 0.
Case 2: v;=0 and v; =0. By (5), (7) and (8), the i-th bit of all the vertices in V; is 1;
however, the i-th bit of all the vertices in V5 is 0. Thus V; NV, = 0.
Case 3: v;=0 and v;=1. The proof of this part is the same as Case 2 and we omit it.
Case 4: v; = 1 and v; = 0. By (5) and (9), the j-th bit of all the vertices in V; is 0;
however, the j-th bit of all the vertices in V5 is 1. Thus V; NV, = 0.

By above four cases, V1NV, = (0. Thus Ty, T4, ..., T,_1 are n vertex-independent trees.

Since Ty, T4, ..., T, 1 are also spanning trees, we have this theorem. [
Let N(r) be a vertex set containing all the neighbors of r. The following lemma has

been proven in [22].

Lemma 16. [22] Given a n-connected, n-reqular graph G and a set S of independent
spanning trees rooted at r in G. Let v be a vertex in G, v & {r} UN(r), and u € N(v).
If |d(T;;r,u) — d(Ty;ryv)| < 1 for every T € S, then S is optimal.

We now prove that Algorithm 1 generates an optimal solution for @,.

Theorem 17. Let S = {Ty,T1,...,Th—1}, where Ty, Ty, ..., T,_1 are renerated by Algo-

rithm 1. Then S is optimal.

Proof. Let r =0, T; € S, and H(u,v) be the Hamming distance between vertices v and

u. Let v be an arbitrary vertex in @,, and v & {r} UN(r). For each T}, we will prove that
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v has the property that [d(7;;0,u) — d(T;;0,v)| < 1, where u € N(v). It is obvious that

for each vertex a = (a,_1a5,—2 - - - ap)2, we have

H(O a) if a; = 1,
d(T3;0,a) = ’ .
(T;0,0) { H(0,a) +2 if a; =0.
Thus if the i-th bit of v and the i-th bit of u are the same, then |d(T}; 0, u)—d(T;;0,v)| = 1.
On the other hand, without loss of generality, we may assume that the i-th of v is 1 and the

i-th of u is 0. Since H(0,v)=H (0, u)+1, we have d(T;;0,u) = H(0,u)+2 = H(0,v)+1 =

d(T;;0,v) 4+ 1; hence |d(T;;0,u) — d(T;;0,v)| = 1. By Lemma 16, we have this theorem. n

5 Concluding remarks

There are two versions for the n independent spanning trees conjecture. The ver-
tex (edge) conjecture is that any n-connected (n-edge-connected) graph has n vertex-
independent (edge-independent) spanning trees rooted at an arbitrary vertex r. It has
been proven that the vertex conjecture implies the edge conjecture. In this thesis, we
present an algorithm to construct n vertex-independent spanning trees rooted at any ver-
tex for the LTQ,. To the best of our knowledge, this is the first result to confirm the
Vertex Conjecture for the locally twisted cubes. Moreover, we present the first algorithm
that can construct n vertex-independent spanning trees rooted at any vertex for both the
locally twisted cube and the hypercube. We believe that our algorithm can be used to
construct n vertex-independent spanning trees rooted at any vertex for other variant the

hypercube.
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