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摘  要 

 

在感應式網路中，有些點知道本身的所在位置，而其他的點經由計算它們與鄰居

之間的距離去決定自己的所在位置，我們將計算這些點的所在位置的過程稱之為

網路定位。如果一個網路定位問題有唯一解，則稱之為可被解決的。在文獻[1]

中證明了網路定位問題是可被解決的，如果其對應的基礎圖是具有全範圍剛性性

質（亦即三連通、且具有多餘的剛性性質）。在文獻[5]中，Jacobs 和 Hendrickson

提出了一個演算法來辨識一個給定的圖是否具有剛性性質。我們稱一個圖為具有

多餘的剛性性質，假如我們移掉任何一個邊之後，此圖還具有剛性性質。在這篇

論文中，我們將會提供數個從具有剛性性質的圖去建構一個新的具有剛性性質的

圖的方法，我們也會提出一個電腦程式來解決唯一定位問題；換句話說，我們的

程式可以判斷一個給定的圖是否具有全範圍剛性性質，我們也將會提出一些實驗

的結果。 

 

 

關鍵詞：感應式網路、網路定位、基礎圖、剛性性質、多餘的剛性性質、全範圍

剛性性質。 
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The Rigidity Property and the Unique Localization
Problem of Sensor Networks

Student: Sung-Yu Tsai Advisor: Chiuyuan Chen

Department of Applied Mathematics

National Chiao Tung University

Hsinchu, Taiwan 30050

Abstract

In a sensor network, some nodes know their locations and other nodes deter-
mine their locations by measuring the distances to their neighbors. The process
of computing the locations of the nodes is called network localization. A network
localization problem is solvable if it has a unique solution. It has been proven in
[1] that a network localization problem is solvable if and only if its corresponding
grounded graph is globally rigid (i.e., 3-connected and redundantly rigid). A graph
G is redundantly rigid if G − e is rigid for any edge e in G. In [5], Jacobs and
Hendrickson have proposed an elegant algorithm to check if a given graph is rigid.
In this thesis, we will provide several ways to construct rigid graphs from rigid
graphs. We will also implement a computer program for solving the unique local-
ization problem; in other words, our program can check if a given graph is globally
rigid. Some experimental results will also be proposed.

Keywords: sensor network, unique localization, grounded graph, rigidity, re-

dundantly rigidity, globally rigidity.
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1 Introduction

In [1], Aspnes et al. provided a theoretical foundation for the problem of network

localization problem in which some nodes know their locations and other nodes determine

their locations by measuring the distances to their neighbors. More precisely, one begins

with a network N in real d-dimensional space (where d = 2 or 3) consisting of a set of

m > 0 nodes labeled 1 through m that represent the special “beacon” nodes together

with n − m > 0 additional nodes labeled m + 1 through n that represent the ordinary

nodes. Each node is located at a fixed position in <d and has associated with it a specific

set of “neighboring” nodes. It is required that the definition of a neighbor is a symmetric

relation on {1, 2, . . . , n} in the sense that node j is a neighbor of node i if and only if

node i is also a neighbor of node j. Under these conditions, N’s neighbor relationships

can be described by an undirected graph GN = (V,EN) with vertex set V = {1, 2, . . . , n}
and edge set EN defined so that (i, j) is one of the graph’s edges precisely when nodes i

and j are neighbors. We assume throughout this thesis that GN is a connected graph.

The network localization problem with distance information is to determine the lo-

cations of all nodes pi in <d given the graph GN of the network, the positions of the

beacons pj, j ∈ {1, 2, . . . ,m} in <d, and the distance δN(i, j) between each neighbor pair

(i, j) ∈ EN. We say that a network localization problem is solvable if there exists a unique

set of nodes {pm+1, pm+2 . . . , pn} in <d consistent with the given data GN, {p1, p2, . . . , pm},
and δN : EN → R. The graph GN = (V,EN) is unique localizable if its corresponding

network localization problem is solvable.

Before going further, we give an example of a graph which is not unique localizable.

Consider the graph in Figure 1. Suppose that vertices a, b and d know their locations.

Hence the distances between a and b, b and d, and also a and d are known. Suppose

vertex c knows only its distances to a and b, but not the distance to d. Then there are

two possible locations for c as shown in Figure 1(a) and (b). Consequently, the graph in

Figure 1 is not unique localizable.

A sensor network consists of multiple detection stations called sensor nodes, each of
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(a) (b)

a b

d

a

c

d
c

b

Figure 1: (a) One possible localization. (b) Another localization.

them is small, lightweight and portable. Every sensor node is equipped with a transducer,

microcomputer, transceiver and power source. The transducer generates electrical signals

based on sensed physical effects and phenomena. The microcomputer processes and stores

the sensor output. The transceiver, which can be hard-wired or wireless, receives com-

mands from a central computer and transmits data to that computer. The power for each

sensor node is derived from the electric utility or from a battery.

A sensor network can be used to monitor and record conditions at diverse locations.

The monitored parameters may be temperature, pressure, humidity, illumination inten-

sity, wind direction and speed, vibration intensity, sound intensity, chemical concentra-

tions, pollutant levels and vital body functions. In a sensor network, every sensor needs

to know its location to detect and record events and to route packets [6]. So the net-

work localization problem plays an important role for sensor networks. Recently, several

methods [2, 8, 9] have been proposed to determine the location of the sensors in a sensor

network.

All the graphs considered in this thesis are simple and undirected. Let G = (V,E)

denote a graph with vertex set V (G) and edge set E(G). The number of vertices and

the number of edges in G are called the order and size of G, respectively. In this thesis,

a node and a vertex are used interchangeably. A graph G is k-connected if it remains

2



connected upon the removal of any set of < k vertices. The connectivity of a complete

graph of order n is defined to be n− 1.

In [1], Aspnes et al. proposed the idea of grounded graphs. More precisely, in a

grounded graph, each vertex represents a node in the given network and there is an edge

between the two vertices if the distance between the two nodes is known. It has been

assumed that when a sensor network is given, the locations of beacons are known. Hence

the distance between any two beacons is implicitly known. Consequently, in a grounded

graph, any two beacons are connected and therefore the subgraph graph induced by the

beacons is a complete graph. In order to determine the locations, other sensor nodes

must compute the distances between them and the beacons or the the distances between

them and those sensor nodes which have already known their locations. As an example,

in Figure 2, the vertices a, b and c are beacons and distances between vertices a and d, b

and d, c and d, a and e, c and e, d and e are known. Because the vertices a, b and c are

beacons, the distance between each pair of them is implicitly known. The vertex d can

compute the distances between itself and the vertices a, b and c to determine its location.

After d knows its location, the vertex e can compute the distances between itself and the

vertices a, c and d to determine the location of e.

a

b

c

d

e

Figure 2: A grounded graph, in which vertices a, b and c are beacons.

It has been proven in [1] that: A network has an unique localization if and only if

its corresponding grounded graph is globally rigid. Formal definitions of the rigidity and
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globally rigidity of a graph is quite copious and can be found in [1]. In [7], it has been

proven that a graph of order n must have at least 2n − 3 edges in order to be rigid. In

[7], Laman proposed the following theorem for determining if a graph with 2n− 3 edges

is rigid; for convenience, call this theorem Laman’s Theorem.

Laman’s Theorem A graph G of order n and size 2n − 3 is rigid if and only if it has

no subgraph with more than 2n′ − 3 edges, where n′ is the number of vertices in the

subgraph.

A graph is redundantly rigid if it remains rigid after removing any single edge. It has

been proven in [4] that a graph G with ≥ 4 vertices is globally rigid in <2 if and only if

it is 3-connected and redundantly rigid in <2. As an example, consider Figure 3. The

graph in Figure 3(a) is not rigid. The graph in Figure 3(b) is rigid but not redundantly

rigid. The graph in Figure 3(c) is 3-connected and redundantly rigid; hence this graph is

globally rigid.

(a)

(c)

(b)

a

b c

d

a

b c

d

a

b c

d

Figure 3: (a) A graph which is not rigid. (b) A graph which is rigid but not redundantly
rigid. (c) A graph which is globally rigid.

In this thesis, we will provide several ways to construct rigid graphs from rigid graphs.

In particular, we prove:

1. If a graph G is rigid, then the graph G′ formed by adding a new vertex v and two new

4



edges connecting v to G is still rigid.

2. If a graph G is rigid, then the graph G′ formed by adding two new vertices u and v

and two new edges on u and v respectively is still rigid.

3. If the graph G1 and G2 are rigid, then the graph G′ formed by adding 3 edges between

G1 and G2 (under some constraints) is still rigid.

4. If the graph G1,G2 and G3 are rigid, then the graph G′ formed by adding 6 edges

between G1, G2 and G3 (under some constraints) is still rigid.

We also implement the algorithm proposed in [5] into a computer program in Turbo C

programming language. Our computer program can determine if a given graph is globally

rigid; hence it can determine if a given graph is 3-connected, rigid, and redundantly

rigid. We also run simulation to obtain experimental results for the relation between the

transmission range of sensors and globally rigid and the relation between the number of

sensors and globally rigid.

The rest of the thesis is organized as follows. In Section 2, we will propose some

properties for graph rigidity. In Section 3, we will introduce the algorithm (called the

pebble game) proposed in [5]. We will implement the pebble game algorithm with com-

puter program and present the simulation results for the unique localization problem in

<2. Concluding remarks and future works will be presented in Section 4. Finally, our

computer program is listed in Appendix A and the detail data of our experimental results

are given in Appendices B and C.

2 Some theoretical results

In this section, we will use Laman’s Theorem to obtain a new rigid graph from a given

rigid graph.

Theorem 1. Let G = (V,E) be a rigid graph of order n and size 2n − 3. Let G′ be the

graph obtained from G by adding a new vertex v and two new edges (v, p1) and (v, p2),

5



where p1 and p2 are two arbitrary vertices in V (G). Then the new graph G′ is rigid. (See

Figure 4(a) as an illustration.)

Proof. Consider an arbitrary subgraph Ĝ of G′. If Ĝ does not contain v, then since Ĝ ⊂
G, by the assumption that G is rigid, we have |E(Ĝ)| ≤ 2|V (Ĝ)| − 3. On the other hand,

let Ĝ = Ġ∪v, where Ġ ⊂ G. Then either |E(Ĝ)| = |E(Ǧ)|+1 or |E(Ĝ)| = |E(Ġ)|+2. In

either case, since Ġ ⊂ G, by the assumption that G is rigid, we have |E(Ġ)| ≤ 2|V (Ġ)|−3.

Hence |E(Ĝ)| ≤ |E(Ġ)|+ 2 ≤ 2|V (Ġ)| − 1 = 2(|V (Ĝ)| − 1)− 1 = 2|V (Ĝ)| − 3. From the

above, |E(Ĝ)| ≤ 2|V (Ĝ)| − 3 holds for any subgraph Ĝ of G′; hence G′ is rigid.

In Theorem 1, we consider how to construct a new rigid graph G′ from a given rigid

graph G by adding a new vertex. Since the new graph G′ is of order n + 1, by Laman’s

Theorem, G′ must have at lest 2(n + 1) − 3 = 2n − 1 = (2n − 3) + 2 edges. Hence we

must add at least two new edges to G to obtain G′. By the same token, if we want to add

k new vertices to G to obtain G′, we have to add at least 2k edges. Theorem 2 considers

the case of k = 2. The cases that k ≥ 3 can be handled in a similar way. Notice that once

a new vertex is added to G, the two new edges incident to this new vertex are added to

G at the same time.

Theorem 2. Let G be a rigid graph of order n and size 2n−3. Let G′ be the graph obtained

from G by adding two new vertices v1, v2 and four new edges (v1, v2), (p1, v1), (p2, v2), (p3, v1),

where p1, p2 and p3 are three arbitrary vertices in V (G). Then the new graph G′ is rigid.

(See Figure 4(b) as an illustration.)

Proof. Let G” be the graph obtained from G by adding vertex v1 and edges (v1, p1) and

(v1, p3). By Theorem 1, G” is rigid. Since G′ is the graph obtained from G” by adding

vertex v2 and edges (v1, v2) and (v2, p2), by Theorem 1, G′ is rigid.

In the following, whenever we say that three edges have no common endpoint, we mean

that there is no vertex incident to all of the three edges. Figure 5 shows an example of

three edges have a common endpoint.

We have already shown how to obtain a new rigid graph from a given rigid graph by

adding k new vertices. Now, we show how to obtain a new rigid graph from k rigid graphs

6
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Figure 4: (a) An illustration of Theorem 1. (b) An illustration of Theorem 2.�� ����
Figure 5: An illustration of Theorem 3.

G1, G2, . . . , Gk. Suppose Gi is of order ni and size 2ni − 3, for i = 1, 2, . . . , k. Since the

order of G′ is n1 + n2 + · · ·+ nk, the size of G
′ must be at lest 2(n1 + n2 + · · ·+ nk)− 3 =

((2n1 − 3) + (2n2 − 3) + · · · + (2nk − 3)) + 3(k − 1), which means that we have to add

at least 3(k − 1) edges to G to make the new graph G′ be rigid. Theorem 3 is the k = 2

case.

Theorem 3. Let G1 and G2 be two rigid graphs such that G1 is of order n1 and size

2n1 − 3, and G2 is of order n2 and size 2n2 − 3. Let G′ be the graph obtained by adding

three edges between G1 and G2. If the three edges have no common endpoints (as shown

in Figure 6(a), (b), (c) and (d)), then the new graph G′ is rigid.

Proof. Let the three newly added edges be (p1, q2), (p2, q2) and (p3, q3), where {p1, p2, p3}
⊆ V (G1) and {q1, q2, q3} ⊆ V (G2). If the equality does not hold for p1 = p2 = p3 and q1 =

q2 = q3. Consider an arbitrary subgraph Ĝ of G′. If Ĝ ⊆ G1 or Ĝ ⊆ G2, by the as-

7



sumption that G1 and G2 are rigid, we have |E(Ĝ)| ≤ 2|V (Ĝ)| − 3. Now assume that

V (Ĝ) = V (Ĝ1) ∪ V (Ĝ2). Let Ĝ1 and Ĝ2 be the subgraph of Ĝ such that Ĝ1 ⊆ G1 and

Ĝ2 ⊆ G2. Also, let |V (Ĝ1)| = n̂1 and |V (Ĝ2)| = n̂2. Since G1 and G2 are rigid, it follows

that |E(Ĝ1)| ≤ 2n̂1 − 3 and |E(Ĝ2)| ≤ 2n̂2 − 3. Thus |E(Ĝ)| ≤ |E(Ĝ1)|+ |E(Ĝ2)|+ 3 ≤
(2n̂1 − 3) + (2n̂2 − 3) + 3 = 2(n̂1 + n̂2) − 3 = 2(|V (Ĝ1)| + |V (Ĝ2)|) − 3 = 2|V (Ĝ)| − 3.

Thus |E(Ĝ)| ≤ 2|V (Ĝ)| − 3 holds for any subgraph Ĝ of G′. Hence G′ is rigid.

(a) (b)

G2G1

q1

q2

q3

p1

p2

p3

G2G1

q1

q2

q3

p1

p2

p3

(c) (d)

G2G1

q1

q2

p1

p2

G2G1

q1

q2

p1

p2

Figure 6: An illustration of Theorem 3.

In Theorem 3, it is required that the three newly added edges between G1 and G2

have no common endpoints; the reason is as follows. If p1 = p2 = p3 (see Figure 5)

or q1 = q2 = q3, then consider the subgraph G̃ of G′ with V (G̃) = V (G2) ∪ {p1} and

E(G̃) = E(G2) ∪ {(p1, q1), (p1, q2), (p1, q3)}. Then |V (G̃)| = |V (G2)| + 1 = n2 + 1. Since

|E(G̃)| = |E(G2)| + 3 = 2n2 = 2(n2 + 1) − 2 > 2(n2 + 1) − 3 = 2|V (G̃)| − 3, G′ is not

rigid.

Theorem 4. Let G1, G2 and G3 be three rigid graphs such that Gi is of order ni and size

2ni − 3, for i = 1, 2, 3. Then the new graph G′ obtained by adding six edges between G1,

8



G2 and G3 is still rigid if (1) the number of edges between any two of G1, G2 and G3 is

≤ 3 and (2) if there are three edges between any two of G1, G2 and G3, then the three

edges have no common endpoints. (See Figure 7(a), (b), (c).)

Proof. First consider the case that among the six newly added edges, three of them

are added between two of G1, G2 and G3. Without loss of generality, we assume that

three newly added edges are between G1 and G2 and call these three edges ea, eb, ec (see

Figure 7(a),(b)). Also assume that the remaining three edges are called ed, ee, ef . Since

there are six edges in total, ed, ee, ef are incident to vertices in G3. If the three edges

ea, eb, ec have no common endpoint, then by Theorem 3, the graph Ġ′ with V (Ġ′) =

V (G1) ∪ V (G2) and E(Ġ′) = E(G1) ∪E(G2) ∪ {ea, eb, ec} is rigid. Again, by Theorem 3,

when Ġ′ is rigid and the edges ed, ee, ef have no common endpoint, G′ is rigid.

Now consider the case that two of the six newly added edges are between G1 and

G2, two of them are between G1 and G3, and two of them are between G2 and G3 (see

Figure 7(c)). Let Ĝ be an arbitrary subgraph of G′. There are three cases.

Case 1: Ĝ ⊆ Gi for some i ∈ {1, 2, 3}. By the assumption that G1,G2 and G3 are rigid,

we have |E(Ĝ)| ≤ 2|V (Ĝ)| − 3.

Case 2: Ĝ ⊆ (Gi∪Gj) for some i, j ∈ {1, 2, 3} and Ĝ 6⊆ Gi for any i ∈ {1, 2, 3}. Without

loss of generality, assume Ĝ ⊆ (G1 ∪ G2). Let Ĝ1 and Ĝ2 be the subgraphs of Ĝ

such that Ĝ1 ⊆ G1 and Ĝ2 ⊆ G2. Also, let |V (Ĝ1)| = n̂1 and |V (Ĝ2)| = n̂2. Since

G1 and G2 are rigid, it follows that |E(Ĝ1)| ≤ 2n̂1− 3 and |E(Ĝ2)| ≤ 2n̂2− 3. Thus

|E(Ĝ)| ≤ |E(Ĝ1)| + |E(Ĝ2)| + 2 ≤ (2n̂1 − 3) + (2n̂2 − 3) + 2 = 2(n̂1 + n̂2) − 4 ≤
2(n̂1 + n̂2)− 3 = 2|V (Ĝ)| − 3.

Case 3: V (Ĝ) = V (Ĝ1) ∪ V (Ĝ2) ∪ V (Ĝ3) and Ĝ 6⊆ (Gi ∪ Gj) for any i, j ∈ {1, 2, 3}
and Ĝ 6⊆ Gi for any i ∈ {1, 2, 3}. Let Ĝ1, Ĝ1 and Ĝ3 be the subgraph of Ĝ such

that Ĝ1 ⊆ G1, Ĝ2 ⊆ G2 and Ĝ3 ⊆ G3. Also, let |V (Ĝ1)| = n̂1, |V (Ĝ2)| = n̂2 and

|V (Ĝ3)| = n̂3. Since G1, G2 and G3 are rigid, it follows that |E(Ĝ1)| ≤ 2n̂1 − 3,

|E(Ĝ2)| ≤ 2n̂2 − 3 and |E(Ĝ3)| ≤ 2n̂3 − 3. Thus |E(Ĝ)| ≤ |E(Ĝ1)| + |E(Ĝ2)| +
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|E(Ĝ3)|+6 ≤ (2n̂1−3)+(2n̂2−3)+(2n̂3−3)+6 = 2(n̂1+n̂2+n̂3)−3 = 2|V (Ĝ)|−3.

From the above, |E(Ĝ)| ≤ 2|V (Ĝ)| − 3 holds for any subgraph Ĝ of G′; thus G′ is rigid.

Theorem 4 limits the number of newly added edges between any two of G1, G2 and

G3 to three edges. What will happen if we add more than three edges between two of

the graphs G1, G2 and G3? Without loss of generality, suppose we add more than three

edges between G1 and G2 (see Figure 7(d)) and let E ′ denote the set of these newly added

edges between G1 and G2. Let Ĝ be the graph with vertex set V (Ĝ) = V (G1) ∪ V (G2)

and edge set E(Ĝ) = E(G1) ∪ E(G2) ∪ E ′. Then |E(Ĝ)| > |E(G1)| + |E(G2)| + 3 =

(2n1 − 3) + (2n2 − 3) + 3 = 2(n1 + n2)− 3 = 2|V (Ĝ)| − 3 and hence G′ is not rigid.

(a) (b)

G1

G2 G3

G1

G2 G3

(c)

G1

G2 G3

(d)

G1

G2 G3

Figure 7: An illustration of Theorem 4, where (a), (b), (c) are allowed and (d) is not.
(a)(b)(c) together

In Figure 8, we list the possible cases of constructing a rigid graph from four rigid

graphs G1, G2, G3 and G4, where each Gi is of order ni and size 2ni − 3. In Figure 8

(a),(b) and (c), consider the graph G1,2 obtained by adding three edges between G1 and
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G2, we can use Theorem 3 to prove G1,2 is rigid. The graph G3,4 obtained by adding three

edges between G3 and G4 is rigid by the same token. Then we can use the same method

to prove that the resultant graph obtained by adding three edges between G1,2 and G3,4

is rigid. We also can use similar arguments to prove that the graphs in Figure 8(d), (e),

(f), (g) and (h) are also rigid. That the graphs in Figure 8(i) and (j) are rigid can not be

proven by the above theorem; however, they can be proven by similar methods and we

omit the proofs.

G1

G4G3

G2

(a)

G1

G4G3

G2

(b)

G1

G4G3

G2

(c)

G1

G4G3

G2

(d)

G1

G4G3

G2

(e)

G1

G4G3

G2

(f)

G1

G4G3

G2

(g)

G1

G4G3

G2

(h)

G1

G4G3

G2

(i)

G1

G4G3

G2

(j)

Figure 8: Constructing a rigid graph from four rigid graphs G1, G2, G3 and G4.
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3 Some experimental results for the localization prob-

lem

Although Laman’s Theorem can be used to check if a given graph is rigid, it is ineffi-

cient since in the worst case it has to compute the number of edges for every subgraph of

a given graph and a graph has an exponential number of subgraphs. In [5], Jacobs and

Hendrickson proposed an efficient algorithm, called pebble game, to check if a given graph

is rigid. The pebble game algorithm takes only O(nm) time, where n is the order and m

is the size of the given graph. In the first part of this section (subsection 3.1), we give the

pebble game algorithm proposed in [5]. In the second part of this section (subsection 3.2),

we present some experimental results.

3.1 The pebble game algorithm

The following two theorems are foundations of the pebble game algorithm.

Theorem 5. [7] The edges of a graph G = (V,E) are independent in <2 if and only if no

subgraph G′ = (V ′, E ′) of G has more than 2n′ − 3 edges, where n′ is the order of G′.

Theorem 6. [5] For a graph G = (V,E) of order n and size m, the following statements

are equivalent.

A. The edges of G are independent in <2.

B. For each edge (a, b) in G, the graph formed by adding three additional (multiple) edges

(a, b) has no induced subgraph G′ in which m′ > 2n′, where n′ is the order and m′

is the size of G′.

Let G be a graph of order n and size m. The basic idea behind the pebble game

algorithm is to grow a maximal set of independent edges at a time. Denote these basis

edges (the edges that belong to a maximal set of independent edges) by Ê. A new edge

can be added to Ê if it is discovered to be independent of Ê. If 2n− 3 independent edges

are found, then G is rigid. The key is the efficient determination of whether or not a new

edge is independent to the current basis Ê.
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Assume that we have a set Ê (may be empty) of independent edges. Combine Ê with

the vertices of G and thus form a graph Ĝ. We want to determine if another edge e is

independent of Ê by adding e to Ĝ. Let G be the graph obtained by adding e to Ĝ. By

Theorem 6, e is independent of Ê if and only if there is no subgraph with too many edges

such that m′ > 2n′ after any edge in G is quadrupled (i.e., adding three edges between the

same pair of vertices). The following lemma suggests that only e needs to be quadrupled.

Lemma 7. [5] A new edge e is independent of Ê if and only if the graph G4e formed by

quadrupling e has no induced subgraph G′ in which m′ > 2n′, where n′ is the order and

m′ is the size of G′.

Lemma 7 reduces the time complexity of independence testing to that of counting

edges in subgraphs once a new edge is quadrupled. The pebble game algorithm is based

on Lemma 7 and it works as follows.

The pebble game algorithm:

Initially, each vertex is given two pebbles and can use its pebbles to cover any two edges

which are incident to it. We would like to assign the pebbles in such a way that all the

edges in the graph are covered. Such an assignment is called a pebble covering. In [5],

it has been shown that the existence of a pebble covering is equivalent to that there is

no induced subgraph on n′ vertices with more than 2n′ edges, which is the independence

condition in Lemma 7.

The following is an approach for moving pebbles to cover a new edge. Assume that

we have a set of edges Ê that are covered with pebbles. First, look at the two vertices

incident to the new edge. If either one of the two vertices has a free pebble, then use it to

cover the new edge and exit. Otherwise, their pebbles are used to cover existing edges. If

a vertex at the other end of one of these edges has a free pebble, then that pebble can be

used to cover the existing edge, freeing up a pebble which can be used to cover the new

edge. More precisely, the algorithm searches for free pebbles in a directed graph, in which

each edge has a direction. Specifically, if edge (a, b) is covered by a pebble from vertex

a, then the edge is directed from a to b. From each vertex v, search along the edges (at
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most two) directed away from v. The search for free pebbles continues until either a free

pebble is found and a sequence of swaps allows a new edge to be covered, or else no more

vertices can be reached and no free pebbles have been discovered. We list in Figure 9 the

pebble game algorithm given in [5].

The end of the pebble game algorithm

If Enlarge Cover (see Figure 9) fails, then all the pebbles owned by the vertices en-

countered in the search are already covering bonds. If n′ vertices were encountered, then

they must have at least 2n′ induced edges to spend all their pebbles. This observation

proves that the existence of a pebble covering is equivalent to the edge independence; see

the following.

Lemma 8. [5] If the new edge e is tripled instead of quadrupled to form G3e , then G3e

has a pebble covering.

Lemma 9. [5] If G4e, the graph constructed by quadrupling e, does not have a pebble

covering, then the set of n′ vertices encountered in Find Pebble already have 2n′ − 3

induced edges.

Therefore, if the pebble game algorithm determines that a new edge is not independent,

then it means that a subgraph on n′ vertices already contains 2n′ − 3 edges; otherwise,

the pebble game algorithm will enlarge the covering successfully.

Theorem 10. [5] A new edge e is independent of Ê if and only if there exists a pebble

covering when e is quadrupled.

Corollary 11. [5] If Ê is independent and a corresponding pebble covering Ĝ is known,

then determining whether a new edge is independent requires O(n) time.

The pebble game algorithm takes O(nm) time, in which each enlargement of a pebble

covering requires O(n) time.
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Figure 9: Algorithm for enlarging a pebble covering.

3.2 Experimental results

In our simulation, we assume each sensor has the same transmission range and we

randomly generate various network topology of different settings. For each setting, we
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perform the simulation for 500 times and compute the number of 3-connected graphs,

the number of rigid graphs, the number of redundantly rigid graphs, and the number

of globally rigid graphs among 500 randomly generated graphs. We vary the number of

sensors and the transmission range to evaluate the impact of this two factors.

In Figures 10, 11 and 12, we give three examples of our computer program. In each of

these examples, the number of sensors is 100, the transmission range is 25, and the region

is of size 100× 100m2.

Figure 10: Example 1 of our computer program.

In our simulation, we randomly place sensors in a 100 × 100m2 region. Figure 13

shows our experimental result when the transmission range is fixed; see also Appendix B

for the detailed data. In particular, Figure 13(a) is the result of fixing the transmission

range at 20m, which is 1/5 to the area edge (100× 100m2); Figure 13(b) is the result of

fixing the transmission range at 25m, which is 1/4 to the area edge (100 × 100m2); and

Figure 13(c) is the result of fixing the transmission range at 33m, which is about 1/3 to

the area edge (100×100m2). In Figure 13, the number of nodes varies from 30 to 120 and

we count the number of 3-connected graphs, the number of rigid graphs, the number of
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Figure 11: Example 2 of our computer program.

redundantly rigid graphs, and the number of globally rigid graphs among 500 randomly

generated graphs. For example, from Appendix B, we know that when the transmission

range is 20m and the number of sensors is 100, there are 113 3-connected graphs, 289

rigid graphs, 144 redundantly rigid graphs, and 113 globally rigid graphs among the 500

randomly generated graphs. Figure 13 and Appendix B show that when the number of

sensors is raised from 30 to 120, the number of 3-connected, rigid, redundantly rigid, and

globally graphs also increases.

Figure 14 shows our experimental result when the number of sensors is fixed; see also

Appendix C for the detailed data. In particular, Figure 14(a) is the result of fixing the

number of sensors at 50; Figure 14(b) is the result of fixing the number of sensors at

60; and Figure 14(c) is the result of fixing the number of sensors at 70. In Figure 14,

the transmission range varies from 10m to 50m and we count the number of 3-connected

graphs, the number of rigid graphs, the number of redundantly rigid graphs, and the
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Figure 12: Example 3 of our computer program.

number of globally rigid graphs among 500 randomly generated graphs. For example,

from Appendix C, we know that when the transmission range is 30m and the number

of sensors is 50, there are 137 3-connected graphs, 269 rigid graphs, 155 redundantly

rigid graphs, and 137 globally rigid graphs among the 500 randomly generated graphs.

Figure 14 and Appendix C show that when the transmission range is raised from 10m

to 50m, the number of 3-connected, rigid, redundantly rigid, and globally graphs also

increases.

From our experimental results, we have several observations.

• Our simulation shows that when a randomly generated graph is 3-connected, it has

a very high possibility of being globally rigid. Therefore, in our simulation, the

number of globally rigid graphs and the number of 3-connected graphs are almost

the same.

• Let Ns and NG denote the number of sensors and the number of globally rigid graphs,
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respectively. In our simulation, if we fix Ns, then NG does not increase very fast

when the transmission range varies from 10m to 20m; however, NG increases very

fast when the transmission range varies from 20m to 35m. Moreover, if we fix the

transmission range, then the increasing speed of NG is not obvious whenNs increases

from 30 to 120.

• When the transmission range is 25m and when we place 60 sensors in a 100 × 100m2

region, the probability that a randomly generated graph is unique localizable is at

least 1/10. When the transmission range is 25m and when we place 70 sensors in

a 100 × 100m2 region, the probability that a randomly generated graph is unique

localizable is about 1/5. When the transmission range is 30m and when we place 60

sensors in a 100 × 100m2 region, the probability that a randomly generated graph

is unique localizable is at least 1/2.
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Figure 13: Our experimental result when the transmission range is fixed.

20



0

50

100

150

200

250

300

350

400

450

500

10 15 20 25 30 35 40 45 50

N
u

m
b

e
r 

o
f 

G
ra

p
h

s

Transmission Range

Number of Sensors=50

3-connected

rigid

redundantly rigid

globally rigid

(a)

0

50

100

150

200

250

300

350

400

450

500

10 15 20 25 30 35 40 45 50

N
u

m
b

e
r 

o
f 

G
ra

p
h

s

Transmission Range

Number of Sensors=60

3-connected

rigid

redundantly rigid

globally rigid

(b)

0

50

100

150

200

250

300

350

400

450

500

10 15 20 25 30 35 40 45 50

N
u

m
b

e
r 

o
f 

G
ra

p
h

s

Transmission Range

Number of Sensors=70

3-connected

rigid

redundantly rigid

globally rigid

(c)

Figure 14: Our experimental result when the number of sensors is fixed.
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4 Concluding remarks

In the thesis, we study the unique localization problem and provide several ways

to construct rigid graphs from rigid graphs. We also implement a computer program for

the unique localization problem and propose some experimental results. Let Ns and NG

be defined as in the previous section. In this thesis, we try to determine the relation

between Ns and NG, and the relation between transmission range and NG. One future

work is to increase the number of randomly generated graphs to see if there is any trend in

the increasing rate. Furthermore, since if we want to check a given graph is redundantly

rigid, we have to remove every edge of the randomly generated graph to check if the

resultant graph is rigid. The process of removing every edge and checking each resultant

graph takes a huge amount of computation time. Therefore, another future work is to

design a more efficient algorithm for checking the redundantly rigidity of a given graph.
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A Appendix: The source code of our program

//File Name: GloblyRigid.cpp 

//Author: 

//Email Address: tbofdciyib@yahoo.com.tw 

//Description: Count the number of globally rigid graphs among 100 randomly generated graphs. 

//Input:  None. 

//Output: The numbers of 3-connected, rigid, redundantly rigid, and globally rigid graphs among these 100 

//       randomly generated graphs. 

#include <iostream> 

#include <fstream> 

#include <ctime> 

#include <cstdlib> 

#include <conio.h> 

#include <math.h> 

using namespace std; 

#define testtime 100 //number of randomly generate graphs 

#define range 100 //range of sensors 

#define radius 30  //radius of sensors 

#define square (r)*(r); 

#define RAND_MAX 32767 

const int SIZE=70; //number of sensors 

int absolute[100][100]; //the adjacency matrix of the randomly generated graph 

int dir[100][100]={0}; //the adjacency matrix used to record the directed graph obtained by pebble game 

int pebble[100];  //pebble[i] is the number of pebbles on vertex i 

int temppebble[100]={0}; //If we want to add edge (i,j) into the graph, then temppebble[i] and temppebble[j] 

//record the number of pebbles borrowed from i and j, respectively 

int seen[100];  //If vertex i has been searched in pebble game, then seen[i] is set to 1 

int path[100];  //path[i] represents the son of vertex i after the function find_pebble is executed 

unsigned xxxx=1; 

struct coordinate 

{

 int x; 

 int y; 

}sensor[SIZE];  //the coordinates of sensors 

//------------------------------ functions used to generate sensors start here 

void srand(unsigned s){xxxx=s;} 

int rand() 

{

 xxxx=214013*xxxx+2531011; 

 return(xxxx>>16)&0x7FFF; 

}

void in(int n) 

{

 time_t t; 

 time(&t); 

 srand(static_cast<unsigned>(t)); 

 for(int i=0;i<n;i++) 

 {      

  sensor[i].x=rand()%range; 

  sensor[i].y=rand()%range; 

 } 
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}

//------------------------------ functions used to generate sensors end here 

//--------------------------------pebble game starts here 

void rearrange_pebbles(int dir[100][100], int v, int path[100]) 

{

     if(path[v]==-1) 

  pebble[v]=pebble[v]-1; 

 while(path[v]!=-1) 

 { 

  int w=path[v]; 

  if(path[w]==-1) 

  { 

   dir[w][v]=1;  

   dir[v][w]=0; 

   pebble[w]=pebble[w]-1; 

  } 

  else 

   dir[w][v]=1;dir[v][w]=0; 

  v=w; 

 } 

}

int find_pebble(int dir[100][100], int v, int seen[100], int path[100]) 

{

 seen[v]=1; 

 path[v]=-1; 

 int found; 

 int x=-1; 

 int y=-1; 

 if(pebble[v]>0) 

 { 

  return 1; 

 } 

 else 

 { 

  for(int i=0; i<SIZE; i++) 

   if(dir[v][i]>0){x=i; break;} 

  for(int j=x+1; j<SIZE; j++) 

   if(dir[v][j]>0){y=j; break;} 

  if(x!=-1) 

  { 

   if(seen[x]==0) 

   { 

    path[v]=x; 

    found=find_pebble(dir,x,seen,path); 

    if(found) return 1; 

   } 

  } 

  if(y!=-1) 

   if(!seen[y]) 

   { 

    path[v]=y; 

    found=find_pebble(dir,y,seen,path); 
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    if(found) return 1; 

   } 

 } 

 return 0; 

}

int enlarge_cover(int dir[100][100], int p, int q) 

{

 for(int i=0; i<SIZE; i++) 

 { 

  seen[i]=0; 

  path[i]=-1; 

 } 

 int found=find_pebble(dir,p,seen,path); 

 if(found) 

 { 

  rearrange_pebbles(dir,p,path); 

  temppebble[p]++; 

  return 1; 

 } 

 if(!seen[q]) 

 { 

  found=find_pebble(dir,q,seen,path); 

  if(found) 

  { 

   rearrange_pebbles(dir,q,path); 

   temppebble[q]++; 

   return 1; 

  } 

 } 

    return 0; 

}

int rigid(void) 

{

 for(int i=0; i<SIZE; i++) 

  pebble[i]=2; 

     int pb1,pb2,pb3,pb4; 

 for(int i1=0;i1<SIZE;i1++) 

      for(int i2=i1+1;i2<SIZE;i2++) 

  { 

   if(absolute[i1][i2]!=0) 

   { 

    pb1=enlarge_cover(dir,i1,i2); 

    pb2=enlarge_cover(dir,i1,i2); 

    pb3=enlarge_cover(dir,i2,i1); 

    pb4=enlarge_cover(dir,i2,i1); 

                  if(pb1 && pb2 && pb3 && pb4) 

    { 

     dir[i1][i2]=1; 
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     pebble[i1]=1; 

     pebble[i2]=2; 

     temppebble[i1]=0; 

     temppebble[i2]=0; 

    } 

    else 

    { 

     pebble[i1]=temppebble[i1]; 

     pebble[i2]=temppebble[i2]; 

     temppebble[i1]=0; 

     temppebble[i2]=0; 

    } 

   } 

  } 

     int total=0; 

 for(int t=0; t<SIZE; t++) 

  total=total+pebble[t]; 

 if(total==3) 

  return 1; //If the tatal number of remaining pebbles is 3, the graph is rigid and we return true   

 else 

  return 0; //Otherwise, we return false 

}

//-------------------------------------------------------pebble game ends here 

//-------------------------------------------------------test 3-connected starts here 

void dfs_visit(int u, int color[100], int pi[100], int b[100][100]) //dfs 

{

 color[u]=1; 

 for(int v=0;v<SIZE;v++)//if edge(u,v) belong to E(G) and v is never searched,then color v=1 

 { 

  if (b[u][v]==1 && color[v]==0) 

  { 

   pi[v]=u; 

   dfs_visit(v,color,pi,b); 

  } 

 } 

}

void cutvertex(int i, int j, int b[100][100], int& ans) 

//remove two vertices i and j from G, and then check if the resultant graph G' is connected 

{

 for(int k1=0; k1<=SIZE-1; k1++) //remove all the edges incident to vertex i 

 { 

  b[i][k1]=0; 

      b[k1][i]=0; 

 } 

 for(int k2=0; k2<=SIZE-1; k2++) //remove all the edges incident to vertex j 

 { 

  b[j][k2]=0; 

      b[k2][j]=0; 

 } 

     int pi[100]; 
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 int color[100]; 

     

 for(int s=0; s<SIZE; s++) //color every vertex with color 0; 

 { 

  color[s]=0; 

  pi[s]=-1; 

 } 

     //choose a vertex called candidate that belongs to G-{u,v} 

     //varible candidate represents the vertex we start a DFS 

     int p=0;     

 int candidate;  

 if(p!=i) //since i and j are removed, we can not choose them as the candidate 

  candidate=p; 

 else 

  candidate=p+1; 

     if (candidate==j) candidate++; 

 dfs_visit(candidate,color,pi,b); //do DFS 

 color[i]=1; //color the removed vertex i with color 1  

 color[j]=1; //color the removed vertex j with color 1 

 for(int a=0; a<SIZE; a++) //check if every vertex is reached 

  if(color[a]==0)   //If there is vertex which is not reached, the graph is not connected,  

     ans=0;  //ans=0 means the graph is not triconnected 

}

int test(int b[100][100]) 

{

 int ans=1; //varible ans represnets the graph is triconnected or not 

 for(int i=0; i<=SIZE-2; i++) //choose two vertices i and j so that they will be reomoved 

  for(int j=i+1; j<=SIZE-1; j++) 

  { 

   cutvertex(i,j,b,ans); //remove vertices i and j and test if the resultant graph is connected 

   for(int t1=0; t1<SIZE; t1++) //recover matrix b to matrix absolute 

    for(int t2=0; t2<SIZE; t2++) 

     b[t1][t2]=absolute[t1][t2]; 

  } 

 return ans; 

}

//-------------------------------------------------------test 3-connected ends here 

//-------------------------------------------------------main program starts here 

int main() 

{

     int tricount=0;  //number of triconnected graphs among 100 randomly generated graphs 

 int rigidcount=0;  //number of rigid graphs among 100 randomly generated graphs 

 int redundantlyrigidcount=0; //number of redundantly rigid graphs among 100 randomly generated graphs 

 int globallyrigidcount=0;    //number of globallyrigid graphs among 100 randomly generated graphs 

 ofstream outf; 

 FILE *f1,*f2; 
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 ofstream outfdata3; 

 outfdata3.open("s70r30.txt",ios::app); 

     

 for(int ttime=0; ttime<testtime; ttime++) 

 { 

                //----------------------------------------generate the vertices randomly 

  outf.open("data1.txt",ios::out); 

  int n=SIZE; 

  in(n); 

  for(int my_write=0; my_write<n; my_write++) 

   outf << "(" << sensor[my_write].x << "," << sensor[write].y << ")" << endl; 

  outf << endl; 

  outf << endl; 

  outf.close(); 

          //----------------------------------------read the coordinates to construct adjacency matrix 

  struct coordinate vt[100]; 

  if ((f1=fopen("data1.txt","r"))==NULL) 

  { 

   printf("data1 cannot be opened\n"); 

   exit(1); 

  } 

  if ((f2=fopen("data2.txt","w"))==NULL) 

  { 

   printf("data2 cannot be opened\n"); 

   exit(1); 

  } 

  char next1; 

  int q1=0; 

  int tem[10]; 

  int data1size=0; 

  while((next1=fgetc(f1))!=EOF) 

  {   

   if(next1=='(') 

   continue; 

   tem[q1]=atoi(&next1); 

   q1++; 

   int total=0; 

   if(next1==',') 

   { 

    for(int i1=0; i1<q1; i1++) 

     total=total+tem[i1]*pow(10,q1-i1-2); 

    q1=0; 

    vt[data1size].x=total; 

    total=0; 

   } 

   if(next1==')') 

   { 
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    for(int i2=0; i2<q1; i2++) 

     total=total+tem[i2]*pow(10,q1-i2-2); 

    q1=0; 

    vt[data1size].y=total; 

    total=0; 

    data1size++; 

   } 

  } 

  for(int p1=0; p1<data1size; p1++) 

   for(int p2=p1+1; p2<data1size; p2++) 

   { 

    int length=(vt[p1].x-vt[p2].x)*(vt[p1].x-vt[p2].x)+ 

                                           (vt[p1].y-vt[p2].y)*(vt[p1].y-vt[p2].y); 

    int r=radius; 

    if(length<=(r*r)) 

    { 

     absolute[p1][p2]=1; 

     absolute[p2][p1]=1; 

    } 

   } 

  for(int p3=0; p3<data1size; p3++) 

  {     

   for(int p4=0; p4<data1size; p4++) 

    if(absolute[p3][p4]==0) 

     fputc('0',f2); 

                 else    

     fputc('1',f2); 

   fputc('\n',f2); 

  } 

  fputc('\n',f2); 

  fputc('\n',f2); 

  fputc('\n',f2); 

  fclose(f1); 

  fclose(f2); 

          //----------------------------------------Count the numbers of 3-connected, rigid, redundantly rigid, and 

//----------------------------------------globally rigid graphs among 100 randomly generated graphs. int 

condition1=0; //0 means not triconnected and 1 means triconnected 

      int condition2=0; //0 means not rigid and 1 means rigid 

  int condition3=0; //0 means not redundantly rigid and 1 means redundantly rigid    

   

      int b[100][100]; 

  for(int t3=0; t3<SIZE; t3++) //copy the data from matrix absolute to matrix b 

   for(int t4=0; t4<SIZE; t4++) 

    b[t3][t4]=absolute[t3][t4]; 

  if(test(b)==1) //test if b is 3-connected? 

  { 

   tricount++; 

           condition1=1; 

  } 

  int reduntrigid=1; 
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      if(rigid()==1) 

  { 

   condition2=1; 

   rigidcount++; 

  } 

      else 

   reduntrigid=0; 

      if(reduntrigid==1) 

   for(int  t11=0;  t11<data1size-1;  t11++) 

    for(int  t12=t11+1;  t12<data1size;  t12++) 

     if(absolute[t11][t12]==1) 

     { 

         int temp1=absolute[t11][t12]; 

                 int temp2=absolute[t12][t11]; 

                 absolute[t11][t12]=0; 

                 absolute[t12][t11]=0; 

                 for(int tt1=0;tt1<size;tt1++) 

                            { 

                                for(int tt2=0;tt2<size;tt2++) 

                                dir[tt1][tt2]=0; 

                                temppebble[tt1]=0; 

}   

      if(rigid()!=1) 

      { 

       reduntrigid=0; 

              t11=data1size-1; 

              t12=data1size-1; 

      } 

                           absolute[t11][t12]=temp1; 

                           absolute[t12][t11]=temp2; 

     } 

  condition3=reduntrigid; 

  if(reduntrigid==1) redundantlyrigidcount++; 

  if((condition1==1) && (condition2==1) && (condition3==1)) globallyrigidcount++; 

          

     for(int  tt3=0; tt3<size; tt3++) 

                            { 

                                for(int tt4=0;tt4<size;tt4++) 

                                {dir[tt3][tt4]=0; absolute[tt3][tt4]=0;} 

                                temppebble[tt1]=0; 

}   

 } 

 outfdata3 << tricount << " " << rigidcount << " " << redundantlyrigidcount 

                  << " " << globallyrigidcount << endl; 

 outfdata3.close(); 

 return 0; 

}

//-------------------------------------------------------main program ends here 
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B Appendix: detail data of our experimental results

when the transmission range is fixed

Transmission range = 20m

Gs 3-connected rigid redundantly rigid globally rigid
30 0 0 0 0
35 0 0 0 0
40 0 0 0 0
45 0 0 0 0
50 0 0 0 0
55 0 9 0 0
60 8 24 0 0
65 3 39 3 3
70 0 25 4 0
75 3 59 6 3
80 8 92 13 8
85 19 132 33 19
90 34 181 48 34
95 69 234 93 69
100 113 289 144 113
105 141 330 181 141
110 183 378 219 182
115 230 403 269 230
120 257 411 298 257

Transmission range = 25m

Gs 3-connected rigid redundantly rigid globally rigid
30 0 0 0 0
35 0 0 0 0
40 0 73 0 0
45 5 97 11 5
50 4 102 21 4
55 30 166 36 30
60 51 212 59 51
65 64 255 77 64
70 96 234 115 96
75 201 350 228 201
80 267 406 300 267
85 295 410 316 295
90 375 451 394 375
95 376 450 397 376
100 416 473 429 416
105 444 491 457 444
110 448 485 457 448
115 456 490 469 456
120 471 492 472 471
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Transmission range = 33m

Gs 3-connected rigid redundantly rigid globally rigid
30 28 116 35 28
35 66 199 75 66
40 90 236 107 90
45 216 335 225 216
50 262 402 284 262
55 294 393 300 294
60 364 441 376 364
65 418 468 425 418
70 469 490 473 469
75 480 497 481 480
80 484 493 486 484
85 495 499 496 495
90 497 500 497 497
95 496 498 496 496
100 494 499 495 494
105 499 499 499 499
110 500 500 500 500
115 500 500 500 500
120 500 500 500 500
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C Appendix: detail data of our experimental results

when the number of sensors is fixed

Number of sensors = 50

transmission range 3-connected rigid redundantly rigid globally rigid
10 0 0 0 0
11 0 0 0 0
12 0 0 0 0
13 0 0 0 0
14 0 0 0 0
15 0 0 0 0
16 0 0 0 0
17 0 0 0 0
18 0 0 0 0
19 0 0 0 0
20 0 0 0 0
21 0 0 0 0
22 0 13 0 0
23 0 9 0 0
24 0 67 10 0
25 4 102 21 4
26 9 163 34 9
27 56 211 74 56
28 58 222 81 58
29 84 270 109 84
30 137 269 155 137
31 158 293 175 158
32 179 306 193 179
33 262 402 284 262
34 334 408 351 334
35 349 436 358 349
36 388 460 394 388
37 427 475 438 427
38 418 444 421 418
39 447 479 449 447
40 461 476 462 461
41 474 487 477 474
42 478 485 482 478
43 489 500 492 489
44 491 500 492 491
45 495 500 495 495
46 499 500 499 499
47 500 500 500 500
48 492 500 492 492
49 500 500 500 500
50 500 500 500 500
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Number of sensors = 60

transmission range 3-connected rigid redundantly rigid globally rigid
10 0 0 0 0
11 0 0 0 0
12 0 0 0 0
13 0 0 0 0
14 0 0 0 0
15 0 0 0 0
16 0 0 0 0
17 0 0 0 0
18 0 0 0 0
19 0 4 0 0
20 8 24 0 0
21 0 43 0 0
22 0 78 0 0
23 3 114 16 3
24 22 136 29 22
25 51 212 59 51
26 79 218 89 79
27 94 228 112 94
28 157 298 187 157
29 198 331 212 198
30 254 384 278 254
31 263 370 273 263
32 339 422 351 339
33 364 441 376 364
34 392 439 394 392
35 446 473 450 446
36 463 491 466 463
37 468 482 469 468
38 478 491 479 478
39 491 500 493 491
40 494 495 494 494
41 498 500 498 498
42 491 494 492 491
43 500 500 500 500
44 500 500 500 500
45 500 500 500 500
46 500 500 500 500
47 500 500 500 500
48 500 500 500 500
49 500 500 500 500
50 500 500 500 500
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Number of sensors = 70

transmission range 3-connected rigid redundantly rigid globally rigid
10 0 0 0 0
11 0 0 0 0
12 0 0 0 0
13 0 0 0 0
14 0 0 0 0
15 0 0 0 0
16 0 0 0 0
17 0 0 0 0
18 0 6 0 0
19 0 17 0 0
20 0 25 4 0
21 9 96 13 9
22 20 138 27 20
23 42 170 50 42
24 48 170 61 48
25 96 234 115 96
26 150 318 172 150
27 241 360 265 241
28 301 413 325 301
29 337 412 349 337
30 409 473 420 409
31 415 455 420 415
32 444 478 449 444
33 469 490 473 469
34 477 492 481 477
35 473 485 475 473
36 490 500 492 490
37 496 500 496 496
38 497 500 499 497
39 496 499 497 496
40 494 495 495 494
41 499 500 499 499
42 500 500 500 500
43 500 500 500 500
44 500 500 500 500
45 500 500 500 500
46 500 500 500 500
47 500 500 500 500
48 500 500 500 500
49 500 500 500 500
50 500 500 500 500
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