B R B Y R 1 2 v R

The Rigidity Property and the Unique

Localization Problem of Sensor Networks

—

SRR S
BERE D R R

P oE R R4 L4 & -

BRS R B Y R R - R
]

The Rigidity Property and the Unigue Localization

Problem of Sensor Networks

By o4 ERY Student: Sung-Yu Tsai

—

i P D MAE - Advisor: Chiuyuan Chen

A Thesis
Submitted to Department of Applied Mathematics
College of-Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master
in
Applied Mathematics
January 2010
Hsinchu, Taiwan, Republic of China

Vo R R4 L4 B -

BN REY PRI 2 - LR

Brd o ERY X R R

£ 2

AR B ERY U AP p RO a B d 30 v P ARA
2 ApEdE S AP & TR B o AP B I B e B B AR AL
BB T o o — BB U MALY RS B0 RIEL 5 AR e v gl
PP T R R S T AR s de i H e A AR 2R G 2 R
(v ~ P &5 5 Rk) e 15%[5] # 5 Jacobs f= Hendrickson
B - BIFEE RIS BEUORATE G REEE AR BRI E G
SRR BV E SR ER - B o R G R - ATk
e P o AP e BT G RER TRl S - BATOE 3 R D
Blen™ 2 > Ve g4 - B R RS KR TR AL e E o A en
AT BT B ARIATE R 2 RIREET AP R - LR

Gk o

Midie B ASPR - SR T AHF - RLELF - S RTREET - 2FF
R -

COE R R4 L4 & -

The Rigidity Property and the Unique Localization
Problem of Sensor Networks

Student: Sung-Yu Tsai Advisor: Chiuyuan Chen

Department of Applied Mathematics
National Chiao Tung University
Hsinchu, Tatwan 30050

Abstract

In a sensor network; some nodes know their locations‘and other nodes deter-
mine their locations by measuring the distances to their neighbors. The process
of computing the locations of the nodes is called network localization. A network
localization problem.is solvable-if-it has'a unique solution. It has been proven in
[1] that a network localization problem is solvable if and only if'its corresponding
grounded graph is globally rigid (i.e., 3-connected and redundantly rigid). A graph
G is redundantly rigid if G — e is rigid for any edge e in G. In [5], Jacobs and
Hendrickson have proposed an elegant algorithm to check if a given graph is rigid.
In this thesis, we_will provide several ways to construct rigid.graphs from rigid
graphs. We will also implement a’ computer ‘program for solving the unique local-
ization problem; in other words, our program can check if a given graph is globally
rigid. Some experimental results will also be proposed:

Keywords: sensor network, unique localization, grounded graph, rigidity, re-

dundantly rigidity, globally rigidity.

i

s P

RHRAEHEGBY O F AR RHA PP RAFET AR

%

PAFCEARELZL 2 PO aRE S ARUEAF A FRIFY
STEBESYE > F G I F ARl ks s B B E
AR AEL R EOd B OYF 2HLRE L ELE T 5
TIRAR » ~ 3680 3 SR b aidlee o

poth kb enfo s EEE o S AN B RE T A S M i RS
BRFh: BBt L EF R EEF E 2P R U2 TR
SIEETFEE HE L SR R

“ﬁ?!—‘EEﬂ?xF“m‘ﬂvé’f_\gﬁﬁ.—;\m F&j’ﬂ?#’ﬂ%—fﬁﬂ;miw B E N R4T i
BE HRALFE FECFE M IMELE FEVEE Flr oFLR
BEZ R LS LT R I PRyt Nepil L A T PR R 0 Al P
SR A Y RER D B R T S A A R
FY + & 2mA0RE) 8 0x S A e iy o 3R B enflet o S R B
P B flB RS e o A R E S B R S N

EANPREFOw R e

Contents

Abstract (in Chinese) i
Abstract (in English) ii
Acknowledgement iii
Contents iv
List of Figures v
List of tables v
1 Introduction 1
2 Some theoretical results 5
3 Some experimental results for the localization problem 12

3.1 The pebble game algorithm . .0, oLl 12

3.2 Experimental results Lo ot LDl 15
4 Concluding remarks 22
A Appendix: The source code of our program 24

B Appendix: detail data of our experimental results when the transmission

range is fixed 32

C Appendix: detail data of our experimental results when the number of

sensors is fixed 34

v

List of Figures

1 (a) One possible localization. (b) Another localization. 2
2 A grounded graph, in which vertices a, b and ¢ are beacons. 3

3 (a) A graph which is not rigid. (b) A graph which is rigid but not redun-

dantly rigid. (c) A graph which is globally rigid. 4
4 (a) An illustration of Theorem 1. (b) An illustration of Theorem 2. 7
5 An illustration of Theorem 3. 7
6 An illustration of Theorem 3. 8

(a)(b)(c) together . . . & 0 i e 10
8 Constructing a rigid graph from four rigid graphs Gy, G2, G3 and G4. . . . 11
9 Algorithm for enlarging a-pebble covering. 15
10 Example 1 of our computerprogram. Lo 16
11 Example 2 of our computer program. . .« 17
12 Example 3 of our computer program. 18
13 Our experimental result when the transmission range is.fixed. 20
14 Our experimental result when the number of sensors is fixed. 21

1 Introduction

In [1], Aspnes et al. provided a theoretical foundation for the problem of network
localization problem in which some nodes know their locations and other nodes determine
their locations by measuring the distances to their neighbors. More precisely, one begins
with a network N in real d-dimensional space (where d = 2 or 3) consisting of a set of
m > 0 nodes labeled 1 through m that represent the special “beacon” nodes together
with n —m > 0 additional nodes labeled m + 1 through n that represent the ordinary
nodes. FEach node is located at a fixed position in 3¢ and has associated with it a specific
set of “neighboring” nodes. It is required that the definition of a neighbor is a symmetric
relation on {1,2,...,n} in the sense that node j is ‘a neighbor of node i if and only if
node 7 is also a neighbor of node 5. Under these conditionsy N’s neighbor relationships
can be described by an undirected graph Gn = (V) Ex) with vertex set V = {1,2,... n}
and edge set En defined so that (z;7)-1s one of the graph’s edges precisely when nodes i
and j are neighbors. We assume throughout this thesis that G'x is a connected graph.

The network localization problem with distance information is to determine the lo-
cations of all nodes p; in R¢ given the graph G of the network, the positions of the
beacons p;, j € {1,2,...,m}inR¢ and the distance dn(is7j) between each neighbor pair
(1,7) € En. We say that a network localization problem is solvable if there exists a unique
set of nodes {pmi1, Pmia - - -, Do} in R4 consistent with the given data G, {p1,p2,. .-, Pm},
and 0N : En — R. The graph Gn = (V, En) is unique localizable if its corresponding
network localization problem is solvable.

Before going further, we give an example of a graph which is not unique localizable.
Consider the graph in Figure 1. Suppose that vertices a, b and d know their locations.
Hence the distances between a and b, b and d, and also a and d are known. Suppose
vertex ¢ knows only its distances to a and b, but not the distance to d. Then there are
two possible locations for ¢ as shown in Figure 1(a) and (b). Consequently, the graph in
Figure 1 is not unique localizable.

A sensor network consists of multiple detection stations called sensor nodes, each of

(2) (b)

Figure 1: (a) One possible localization. (b) Another localization.

them is small, lightweight and portable. Every sensormnode is equipped with a transducer,
microcomputer, transceiver and power source. The transducer generates electrical signals
based on sensed physical effects and-phenomena.. The microcomputer processes and stores
the sensor output. The transceiver, which can be hard-wired or wireless, receives com-
mands from a central computer and transmits data to that computer. The power for each
sensor node is derived from the electric utility or from a battery.

A sensor network can be used to'monitor and record conditions at diverse locations.
The monitored parameters may be.temperature, pressure, humidity, illumination inten-
sity, wind direction and speed, vibration intensity, sound intensity, chemical concentra-
tions, pollutant levels and vital body functions. In a sensor network, every sensor needs
to know its location to detect and record events and to route packets [6]. So the net-
work localization problem plays an important role for sensor networks. Recently, several
methods [2, 8, 9] have been proposed to determine the location of the sensors in a sensor
network.

All the graphs considered in this thesis are simple and undirected. Let G = (V| E)
denote a graph with vertex set V(G) and edge set E(G). The number of vertices and
the number of edges in GG are called the order and size of G, respectively. In this thesis,

a node and a vertex are used interchangeably. A graph G is k-connected if it remains

connected upon the removal of any set of < k vertices. The connectivity of a complete
graph of order n is defined to be n — 1.

In [1], Aspnes et al. proposed the idea of grounded graphs. More precisely, in a
grounded graph, each vertex represents a node in the given network and there is an edge
between the two vertices if the distance between the two nodes is known. It has been
assumed that when a sensor network is given, the locations of beacons are known. Hence
the distance between any two beacons is implicitly known. Consequently, in a grounded
graph, any two beacons are connected and therefore the subgraph graph induced by the
beacons is a complete graph. In order to determine the locations, other sensor nodes
must compute the distances between them and the beacons or the the distances between
them and those sensor nodes which have already known their locations. As an example,
in Figure 2, the vertices a; b and ¢ are beacons-and distances between vertices a and d, b
and d, c and d, a and e, ¢ and e, d-and e are known. Because the vertices a, b and ¢ are
beacons, the distance between each pair of them is implicitly known. The vertex d can
compute the distances between itself and the vertices a, b and ¢ to determine its location.
After d knows its location, the vertex e can compute the distances between itself and the

vertices a, ¢ and d to determine the location of e.

e

Figure 2: A grounded graph, in which vertices a, b and ¢ are beacons.

It has been proven in [1] that: A network has an unique localization if and only if

its corresponding grounded graph is globally rigid. Formal definitions of the rigidity and

globally rigidity of a graph is quite copious and can be found in [1]. In [7], it has been
proven that a graph of order n must have at least 2n — 3 edges in order to be rigid. In
[7], Laman proposed the following theorem for determining if a graph with 2n — 3 edges
is rigid; for convenience, call this theorem Laman’s Theorem.

Laman’s Theorem A graph G of order n and size 2n — 3 is rigid if and only if it has
no subgraph with more than 2n’ — 3 edges, where n’ is the number of vertices in the
subgraph.

A graph is redundantly rigid if it remains rigid after removing any single edge. It has
been proven in [4] that a graph G with > 4 vertices is globally rigid in R? if and only if
it is 3-connected and redundantly rigid-in' #82:v As_an example, consider Figure 3. The
graph in Figure 3(a) is not rigid. The-graph in Figure 3(b) is rigid but not redundantly
rigid. The graph in Figure 3(e)is 3-connectedrand redundantly rigid; hence this graph is

globally rigid.

(a) (b)

(c)

Figure 3: (a) A graph which is not rigid. (b) A graph which is rigid but not redundantly
rigid. (¢) A graph which is globally rigid.

In this thesis, we will provide several ways to construct rigid graphs from rigid graphs.

In particular, we prove:

1. If a graph G is rigid, then the graph G’ formed by adding a new vertex v and two new

4

edges connecting v to G is still rigid.

2. If a graph G is rigid, then the graph G’ formed by adding two new vertices u and v

and two new edges on u and v respectively is still rigid.

3. If the graph G; and G are rigid, then the graph G’ formed by adding 3 edges between

G and G2 (under some constraints) is still rigid.

4. If the graph G1,Gy and G35 are rigid, then the graph G’ formed by adding 6 edges

between G, Gy and G3 (under some constraints) is still rigid.

We also implement the algorithm proposed in [5] into a computer program in Turbo C
programming language. Our computer program can determine if a given graph is globally
rigid; hence it can determine if'a given graph is 3-connected, rigid, and redundantly
rigid. We also run simulation to obtain experimental results for the relation between the
transmission range of sensors and-globally rigid-and the relation between the number of
sensors and globally rigid.

The rest of the thesis is organized as follows. In Section 2;:we will propose some
properties for graph rigidity. In Section 3, we will introduge the algorithm (called the
pebble game) proposed in [5].. We will implement the pebble game algorithm with com-
puter program and present the simulation results for the unique localization problem in
2. Concluding remarks and future works will be presented in Section 4. Finally, our
computer program is listed in Appendix A and the detail data of our experimental results

are given in Appendices B and C.

2 Some theoretical results

In this section, we will use Laman’s Theorem to obtain a new rigid graph from a given

rigid graph.

Theorem 1. Let G = (V, E) be a rigid graph of order n and size 2n — 3. Let G’ be the

graph obtained from G by adding a new vertex v and two new edges (v,p1) and (v,ps3),

where p1 and py are two arbitrary vertices in V(G). Then the new graph G' is rigid. (See

Figure /(a) as an illustration.)

Proof. Consider an arbitrary subgraph G of G'. If G does not contain v, then since Gc
G, by the assumption that G is rigid, we have |E(G)| < 2|V (G)| — 3. On the other hand,
let G = GUw, where G C G. Then either |E(GQ)| = |E(G)|+1 or |[E(G)| = |E(G)|+2. In
either case, since G C G, by the assumption that G is rigid, we have |E(G)| < 2|V (G)|—-3.
Hence |E(G)| < |E(G)| +2 <2[V(G)| —1=2(|V(G)] — 1) — 1 =2|V(G)| — 3. From the
above, |E(G)| < 2|V(G)| — 3 holds for any subgraph G of G’; hence G’ is rigid.]

In Theorem 1, we consider how to construct a new rigid graph G’ from a given rigid
graph G by adding a new vertex.. Since the new graph G’ is of order n 4+ 1, by Laman’s
Theorem, G’ must have at lest2(n+ 1) — 3 = 2n — 1.=(2n — 3) + 2 edges. Hence we
must add at least two new edges to-G-to-obtain G'. By the same token, if we want to add
k new vertices to G to‘ebtain G’, we-have to add at least 2k edges. Theorem 2 considers
the case of k = 2. The cases that k > 3 can be handled in a similar way. Notice that once
a new vertex is added to G, the two new edges incident to this new vertex are added to

G at the same time.

Theorem 2. Let G be a rigid graph of order n and size 2n=3. Let G’ be the graph obtained
from G by adding two new vertices vy, vswand fournew edges (vi,vs), (p1,v1), (P2, v2), (P3,v1),
where py, pa and ps are three arbitrary vertices in V(G). Then the new graph G’ is rigid.

(See Figure 4(b) as an illustration.)

Proof. Let G” be the graph obtained from G by adding vertex v; and edges (v, p1) and
(v1,p3). By Theorem 1, G” is rigid. Since G’ is the graph obtained from G” by adding

vertex vy and edges (v1,v2) and (ve, p2), by Theorem 1, G’ is rigid.]

In the following, whenever we say that three edges have no common endpoint, we mean
that there is no vertex incident to all of the three edges. Figure 5 shows an example of
three edges have a common endpoint.

We have already shown how to obtain a new rigid graph from a given rigid graph by

adding k new vertices. Now, we show how to obtain a new rigid graph from £ rigid graphs

6

%21
.
% %)

(a) (b)

Figure 4: (a) An illustration of Theorem 1. (b) An illustration of Theorem 2.

G: G:

Figure 5: An illustration of Theorem 3.

G1,Ga, ..., GE. Suppose G is of order n; and size-2n; — 3, for i = 1,2, ..., k. Since the
order of G’ is ny +ng + - - - Fny, the size of G’ must be at'lest 2(n; +ng+---+ng) —3 =
((2ny —3) + (2n2 — 3) + -+ - + (2 = 3)) +3(k — 1), which means that we have to add
at least 3(k — 1) edges to G to make the new graph G’ be rigid. Theorem 3 is the k = 2

case.

Theorem 3. Let Gi and Gy be two rigid graphs such that G1 is of order ni and size
2n1 — 3, and Gq is of order ny and size 2ny — 3. Let G’ be the graph obtained by adding
three edges between Gy and Gy. If the three edges have no common endpoints (as shown

in Figure 6(a), (b), (¢) and (d)), then the new graph G' is rigid.

Proof. Let the three newly added edges be (p1, q2), (p2, ¢2) and (ps, g3), where {p1, p2, p3 }
C V(Gy) and {q1, 2, g3} C V(Gs). If the equality does not hold for p; = py = p3 and ¢, =

¢> = g3. Consider an arbitrary subgraph G of G'. If G C G, or G C Gs, by the as-

sumption that Gy and Gy are rigid, we have |E(G)| < 2|V(G)| — 3. Now assume that
V(G) = V(G,) UV (Gy). Let Gy and G, be the subgraph of G such that G; € Gy and
Gy C Gy. Also, let [V(Gy)| =y and |V (Ga)| = fy. Since Gy and Gy are rigid, it follows
that |E(G1)| < 2, — 3 and |E(G,)| < 2, — 3. Thus |[E(G)| < |E(G1)| + |E(Gs)| +3 <
(2081 — 3) + (2102 — 3) + 3 = 218y + 112) — 3 = 2(|V(G1)| + |[V(Ga)|) — 3 = 2|V(G)| — 3.
Thus |E(G)| < 2|V(G)| — 3 holds for any subgraph G of G'. Hence G is rigid.]

G, G

(c) (d)

Figure 6: An illustration of Theorem 3.

In Theorem 3, it is required that the three newly added edges between G; and G,
have no common endpoints; the reason is as follows. If p; = py = p3 (see Figure 5)
or g = ¢ = g3, then consider the subgraph G of G’ with V(G) = V(Gs) U {p;} and
E(G) = E(G2) U{(p1,q1). (p1, %), (p1,q3)}. Then |V(G)| = |V(G3)| + 1 = ny + 1. Since
|E(G)| = |E(G2)| +3 =2ny =2(ny +1) =2 > 2(ny + 1) — 3 = 2|V(G)| — 3, G' is not
rigid.

Theorem 4. Let Gy, Gy and G3 be three rigid graphs such that G; is of order n; and size

2n; — 3, for i =1,2,3. Then the new graph G’ obtained by adding siz edges between G,

8

Go and Gs is still rigid if (1) the number of edges between any two of Gy, Go and G3 is
< 3 and (2) if there are three edges between any two of Gy, Gy and Gs, then the three

edges have no common endpoints. (See Figure 7(a), (b), (c).)

Proof. First consider the case that among the six newly added edges, three of them
are added between two of GG, Gy and G3. Without loss of generality, we assume that
three newly added edges are between GG; and G2 and call these three edges e,, e, e. (see
Figure 7(a),(b)). Also assume that the remaining three edges are called ey, e, ef. Since
there are six edges in total, eq, e, ey are incident to vertices in Gg. If the three edges
€, €, e have no common endpoint, then by Theorem 3, the graph G’ with V(G) =
V(G1) UV(Gy) and E(G") = E(G1)U B(Gy) U {€q; esye,} is rigid. Again, by Theorem 3,
when G/ is rigid and the edges ey, e., e 7 have no common endpoint, G’ is rigid.

Now consider the case that two-of the six newly added edges are between G; and
G, two of them are between GGy and-G3, and two of them are between G5 and G3 (see

Figure 7(c)). Let G be'an arbitrary subgraph of G’ There are thrée cases.

Case 1: G C G; for some i € {1,2,3}: By the assumption that Gy,G5 and Gs are rigid,
we have |E(G)| <2[V(G)|— 3.

Case 2: G C (G;UG,) for samed, 5. {1,2,3} and G-Z @, for any i € {1,2,3}. Without
loss of generality, assume G C (G UG,). Let @1 and éQ be the subgraphs of G
such that G; € G, and Gy C Gy. Also, let |V(é1)| = n,; and |V(C§2)| = 7i5. Since
Gy and Gy are rigid, it follows that |E(G1)| < 27, — 3 and |E(Gy)| < 272 — 3. Thus
|E(G)| < |E(GY)| + |E(G)| +2 < (2, — 3) + (27 — 3) + 2 = 2(fy +1y) —4 <
2(y 4 ng) — 3 = 2|V(G)| - 3.

Case 3: V(G) = V(G,) UV(Gy) UV(Gs) and G € (G; U G;) for any i,j € {1,2,3}
and G € G, for any i € {1,2,3}. Let G1, G and G5 be the subgraph of G such
that Gy C Gy, G2 C Gy and G5 C G3. Also, let [V(Gy)| = ny, [V(Gs)| = g and
|V(Gs)| = ng. Since Gy, Gy and Gy are rigid, it follows that |E(Gy)| < 20y — 3,
|E(G,)| < 2 — 3 and |E(G3)| < 275 — 3. Thus |E(GQ)| < |E(GY)| + |E(Gy)| +

|E(G3)|+6 < (2 —3)+ (20— 3) + (23— 3) +6 = 2(Ay + g +ng) —3 = 2|V (G)| —3.
From the above, |E(G)| < 2|V(G)| — 3 holds for any subgraph G of G'; thus G is rigid.

Theorem 4 limits the number of newly added edges between any two of G, G2 and
G to three edges. What will happen if we add more than three edges between two of
the graphs G, Gy and G37 Without loss of generality, suppose we add more than three
edges between GG7 and G (see Figure 7(d)) and let E’ denote the set of these newly added
edges between G and Gy. Let G be the graph with vertex set V(@) = V(G1) U V(G,)
and edge set E(GQ) = E(G1) U E(Gy) U E'. Then |E(G)| > |E(Gy)| + |E(Gy)| +3 =
(20, — 3) + (212 — 3) + 3 = 2(ny + ny) — 3 = 2|V(G)| — 3 and hence G is not rigid.

[/ [b
H

Figure 7: An illustration of Theorem 4, where (a), (b), (c) are allowed and (d) is not.
(a)(b)(c) together

In Figure 8, we list the possible cases of constructing a rigid graph from four rigid
graphs G, Gy, G3 and Gy, where each G, is of order n; and size 2n; — 3. In Figure 8

(a),(b) and (c), consider the graph G, obtained by adding three edges between G; and

10

G2, we can use Theorem 3 to prove G 5 is rigid. The graph G5 4 obtained by adding three
edges between G5 and Gy is rigid by the same token. Then we can use the same method
to prove that the resultant graph obtained by adding three edges between G2 and Gs4
is rigid. We also can use similar arguments to prove that the graphs in Figure 8(d), (e),
(f), (g) and (h) are also rigid. That the graphs in Figure 8(i) and (j) are rigid can not be
proven by the above theorem; however, they can be proven by similar methods and we

omit the proofs.

o) (R CRO) (F

| I I
9 (FE9, (FF (F
(b) (d)

) () (RS
INECEDIN
Q Qﬁ \

(f) (g)

Figure 8: Constructing a rigid graph from four rigid graphs G, G5, G3 and Gy.

11

3 Some experimental results for the localization prob-
lem

Although Laman’s Theorem can be used to check if a given graph is rigid, it is ineffi-
cient since in the worst case it has to compute the number of edges for every subgraph of
a given graph and a graph has an exponential number of subgraphs. In [5], Jacobs and
Hendrickson proposed an efficient algorithm, called pebble game, to check if a given graph
is rigid. The pebble game algorithm takes only O(nm) time, where n is the order and m
is the size of the given graph. In the first part of this section (subsection 3.1), we give the
pebble game algorithm proposed in [5]. In the second part of this section (subsection 3.2),

we present some experimental results.

3.1 The pebble game algorithm
The following two theorems are-foundations.of the pebble game algorithm.

Theorem 5. [7] The edges of a graph G = (V, E) are independent in R? if and only if no

subgraph G' = (V' E')_of G has more than 2n' — 3 edges, where n’_is the order of G'.

Theorem 6. [5] For a graph G = (V, E) of ordern _and size my, the following statements

are equivalent.
A. The edges of G are independent in R2.

B. For each edge (a,b) in G, the graph formed by adding three additional (multiple) edges
(a,b) has no induced subgraph G' in which m' > 2n', where n' is the order and m/

is the size of G'.

Let G be a graph of order n and size m. The basic idea behind the pebble game
algorithm is to grow a maximal set of independent edges at a time. Denote these basis
edges (the edges that belong to a maximal set of independent edges) by E. A new edge
can be added to F if it is discovered to be independent of E. If2n—3 independent edges
are found, then G is rigid. The key is the efficient determination of whether or not a new

edge is independent to the current basis E.

12

Assume that we have a set £ (may be empty) of independent edges. Combine E with
the vertices of G and thus form a graph G. We want to determine if another edge e is
independent of E by adding e to G. Let G be the graph obtained by adding e to G. By
Theorem 6, e is independent of E if and only if there is no subgraph with too many edges
such that m’ > 2n’ after any edge in G is quadrupled (i.e., adding three edges between the

same pair of vertices). The following lemma suggests that only e needs to be quadrupled.

Lemma 7. [5] A new edge e is independent ofE if and only if the graph Gy formed by
quadrupling e has no induced subgraph G’ in which m' > 2n', where n’ is the order and

m' is the size of G'.

Lemma 7 reduces the time complexity of independence testing to that of counting
edges in subgraphs once a new edge is quadrupled. The pebble game algorithm is based

on Lemma 7 and it works as follows.

The pebble game algorithm:

Initially, each vertex is given two pebbles and can use its pebbles to cover any two edges
which are incident to it.. We would' like to assign the pebbles in such a way that all the
edges in the graph are covered. Such an assignment is called a. pebble covering. In [5],
it has been shown that the existence of a pebble covering is equivalent to that there is
no induced subgraph on n’ vertices with-more than 2n’ edges, which is the independence
condition in Lemma 7.

The following is an approach for moving pebbles to cover a new edge. Assume that
we have a set of edges E that are covered with pebbles. First, look at the two vertices
incident to the new edge. If either one of the two vertices has a free pebble, then use it to
cover the new edge and exit. Otherwise, their pebbles are used to cover existing edges. If
a vertex at the other end of one of these edges has a free pebble, then that pebble can be
used to cover the existing edge, freeing up a pebble which can be used to cover the new
edge. More precisely, the algorithm searches for free pebbles in a directed graph, in which
each edge has a direction. Specifically, if edge (a,b) is covered by a pebble from vertex

a, then the edge is directed from a to b. From each vertex v, search along the edges (at

13

most two) directed away from v. The search for free pebbles continues until either a free
pebble is found and a sequence of swaps allows a new edge to be covered, or else no more
vertices can be reached and no free pebbles have been discovered. We list in Figure 9 the
pebble game algorithm given in [5].

The end of the pebble game algorithm

If Enlarge Cover (see Figure 9) fails, then all the pebbles owned by the vertices en-
countered in the search are already covering bonds. If n’ vertices were encountered, then
they must have at least 2n’ induced edges to spend all their pebbles. This observation
proves that the existence of a pebble covering is equivalent to the edge independence; see

the following.

Lemma 8. [5] If the newsedge e is tripled-instead of quadrupled to form Gs. , then Gs,

has a pebble covering.

Lemma 9. [5] If Gy the graph constructed by quadrupling e, ‘does not have a pebble
covering, then the set of n' vertices encountered in Find_Pebble already have 2n' — 3

induced edges.

Therefore, if the pebble game algorithm determines that a new edge is not independent,
then it means that a subgraph on n' vertices-already contains 2n’ — 3 edges; otherwise,

the pebble game algorithm will enlarge the covering successfully.

Theorem 10. [5] A new edge e is independent ofE if and only if there exists a pebble

covering when e is quadrupled.

Corollary 11. [5]]fE 1s 1ndependent and a corresponding pebble covering G is known,

then determining whether a new edge is independent requires O(n) time.

The pebble game algorithm takes O(nm) time, in which each enlargement of a pebble

covering requires O(n) time.

14

Algorithm Enlarge Cover(G, eas)
For Each vertex v
seen(v) = False, path(v) = -1
found = Find_Pebble(G, a, seen, path)
If (found) Then
Rearrange_Pebbles(G, a, seen)
Return (Success)
If (not seen(b)) Then
found = Find_Pebble(G, b, seen, path)
If (found) Then
Rearrange_Pebbles(G, b, path)
Return (Success)
Return (Failure)

Function Find Pebble(G, v, seen, path)
seen(v) = True, path(v) = -1
If (v has free pebble) Then
Return (True)
Else
z = neighbor along edge my pebble covers
If (not seen(z)) Then
path(v) = x
found = Find_Pebble(G, z, seen, path)
if (found) Then Return (True)
y = neighbor along edge my other pebble covers
If (not seen(y)) Then
path(v) =y
found = Find_Pebble(G, y, seen, path)
if (found) Then Return (True)
Return (False)

Subroutine Rearrange Pebbles(G, v, path)
While (path(v) # —1)
w = path(v)
if (path(w) = —1) Then
Cover edge (v,w) with free pebble from w
Else
Cover edge (v,w) with pebble from edge (w,path{w)

v=w

Figure 9: Algorithm for enlarging a pebble covering.

3.2 Experimental results

In our simulation, we assume each sensor has the same transmission range and we

randomly generate various network topology of different settings. For each setting, we

15

perform the simulation for 500 times and compute the number of 3-connected graphs,
the number of rigid graphs, the number of redundantly rigid graphs, and the number
of globally rigid graphs among 500 randomly generated graphs. We vary the number of
sensors and the transmission range to evaluate the impact of this two factors.

In Figures 10, 11 and 12, we give three examples of our computer program. In each of
these examples, the number of sensors is 100, the transmission range is 25, and the region

is of size 100 x 100m2.

. vy .
Figure 10: Example 1 |o'our computer program.

In our simulation, we randomly place sensors in a 100 x 100m? region. Figure 13
shows our experimental result when the transmission range is fixed; see also Appendix B
for the detailed data. In particular, Figure 13(a) is the result of fixing the transmission
range at 20m, which is 1/5 to the area edge (100 x 100m?); Figure 13(b) is the result of
fixing the transmission range at 25m, which is 1/4 to the area edge (100 x 100m?); and
Figure 13(c) is the result of fixing the transmission range at 33m, which is about 1/3 to

the area edge (100 x 100m?). In Figure 13, the number of nodes varies from 30 to 120 and

we count the number of 3-connected graphs, the number of rigid graphs, the number of

16

Figure 11:

redundantly rigid graphs, and t hs among 500 randomly

generated graphs. For exe ‘ / [that when the transmission

range is 20m and the number s is 100, there-are 113 3-connected graphs, 289

rigid graphs, 144 redundantly rigid graphs, and 113 globally rigid graphs among the 500
randomly generated graphs. Figure 13 and Appendix B show that when the number of
sensors is raised from 30 to 120, the number of 3-connected, rigid, redundantly rigid, and
globally graphs also increases.

Figure 14 shows our experimental result when the number of sensors is fixed; see also
Appendix C for the detailed data. In particular, Figure 14(a) is the result of fixing the
number of sensors at 50; Figure 14(b) is the result of fixing the number of sensors at
60; and Figure 14(c) is the result of fixing the number of sensors at 70. In Figure 14,

the transmission range varies from 10m to 50m and we count the number of 3-connected

graphs, the number of rigid graphs, the number of redundantly rigid graphs, and the

17

Figure 14 and Appendix C show that when the transmission range is raised from 10m

to 50m, the number of 3-connected, rigid, redundantly rigid, and globally graphs also
increases.

From our experimental results, we have several observations.

e Our simulation shows that when a randomly generated graph is 3-connected, it has
a very high possibility of being globally rigid. Therefore, in our simulation, the
number of globally rigid graphs and the number of 3-connected graphs are almost

the same.

e Let N, and Ng denote the number of sensors and the number of globally rigid graphs,

18

respectively. In our simulation, if we fix Ny, then Ny does not increase very fast
when the transmission range varies from 10m to 20m; however, N increases very
fast when the transmission range varies from 20m to 35m. Moreover, if we fix the

transmission range, then the increasing speed of Ng is not obvious when N, increases

from 30 to 120.

e When the transmission range is 25m and when we place 60 sensors in a 100 x 100m?
region, the probability that a randomly generated graph is unique localizable is at
least 1/10. When the transmission range is 25m and when we place 70 sensors in
a 100 x 100m? region, the probability that a randomly generated graph is unique
localizable is about 1/5. When the transmission range is 30m and when we place 60
sensors in a 100 x 1002 region, the probability that a. randomly generated graph

is unique localizable.is at least-1/2:

19

Transmission Range=20m
500

450
400 =

350 /—

300 /

250 / A —+3-connected

200 / / / -=-rigid

150 / // —+redundantly rigid
1o / /;/'{ —<globally rigid

N a4

T

30 35 40 45 50 55 60 65 70 75 80 85 90 95100105110115120

Number of Graphs

Number of sensors

(a)

Transmission Range=25m

500
450 ﬁ%
400

ol

Z:z ‘\J/ /):/ —+3-connected

200 J'/ /y -=rigid

150 / // —+redundantly rigid
—<globally rigid

Number of Graphs

30 35 40 45 50 55 60 65 70 75 80 85 90 95100105110115120

Number of sensors

(b)

Transmission Range=33m

500 BB — 8 —8—R
450
/S

400 A~
350 / - /
300 / /
250 / —+3-connected
- / / -=-rigid

/' / —+redundantly rigid
150

{ l —<globally rigid

100
0 S

L

Number of Graphs

30 35 40 45 50 55 60 65 70 75 80 85 90 95100105110115120

Number of sensors

(©

Figure 13: Our experimental result when the transmission range is fixed.

20

Number of Sensors=50
500
450 o\ W’
400 -j N
350 [,/
300 j r
250 rf # —+~3-connected
200 FJ I -=-rigid
150 / /é —+redundantly rigid
/

—<globally rigid
100
N {7
. aded

10 15 20 25 30 35 40 45 50

Number of Graphs

Transmission Range

(@)

Number of Sensors=60
500
450 ﬁ
r
400
350 N /

2l
250 [d —+3-connected
200 F"J / -=-rigid
/ /‘f —+redundantly rigid

- ,f l —<globally rigid
100
0 ¢

10 15 20 25 30 35 40 45 50

300

Number of Graphs

Transmission Range

(b)

Number of Sensors=70
500 Wm
450
400 'JF/
350 J I

300 { i

250

[—+3-connected
’ -=rigid

200
—+redundantly rigid

/

i

150)J l
/ I —<globally rigid

J

Number of Graphs

100 r
50 _.EJ/

0
10 15 20 25 30 35 40 45 50

Transmission Range

(©

Figure 14: Our experimental result when the number of sensors is fixed.

21

4 Concluding remarks

In the thesis, we study the unique localization problem and provide several ways
to construct rigid graphs from rigid graphs. We also implement a computer program for
the unique localization problem and propose some experimental results. Let N, and Ng
be defined as in the previous section. In this thesis, we try to determine the relation
between N, and Ng, and the relation between transmission range and Ng. One future
work is to increase the number of randomly generated graphs to see if there is any trend in
the increasing rate. Furthermore, since if we want to check a given graph is redundantly
rigid, we have to remove every edge of the randomly generated graph to check if the
resultant graph is rigid. The progcess of removing every edge and checking each resultant
graph takes a huge amount of computation time. Therefore; another future work is to

design a more efficient algorithm for checking the redundantly rigidity of a given graph.

22

References

1]

J. Aspnes and T. Eren and D. Goldenberg, et al., “A theory of network localization,”

IEEE Transactions on Mobile Computing, vol. 5, no. 12, 2006.

T. He, C. Huang, B. Blum, J. Stankovic, and T. Abdelzaher, “Range-free localization
schemes in large scale sensor networks,” in Proc. Ninth Int’l Conf. Mobile Computing

and Networking (MobiCom), pp. 81-95, 2003.

B. Hendrickson, “Conditions for unique graph realizations,” SIAM J. Computing, vol.
21, no. 1, pp. 65-84, 1992.

B. Jackson and T. Jordan,.“Connected rigidity matroids and unique realizations of

graphs,” J. Combinatiorial Theory B, vol.94, pp.-1-29, 2005.

D. Jacobs and B. Hendrickson, “An-algorithm for twe dimensional rigidity percolation:

The pebble game,” J. Computional Physics, vol. 137, no. 2, pp. 346-365, 1997.

B. Karp and H.T. Kung, "GPSR: Greedy Perimeter Stateless Routing for wireless
networks,” in Proc. Sixth Int’l Conf. Mobile Computing and:networking(mobiCom),
2000.

G. Laman, “On graphs and rigidity of plane skeletal structures,” J. Eng. Math., vol.
4, pp. 331-340, 2002.

D. Moore, J. Leonard, D. Rus, and S.Teller, “Robust distributed network localization
with noisy range measurements,” in Proc. Second ACM Conf. Embedded Networked

Sensor Systems (SenSys), Nov. 2004.

A. Savvides, C.-C. Han, and M.B. Strivastave, “Dynamic fine-grained localization
in ad-hoc networks of sensors,” in Proc.Seventh Int’l Conf. Mobile Computing and

Networking (MobiCom), pp. 166-179, 2001.

23

A Appendix: The source code of our program

//File Name: GloblyRigid.cpp

//Author: ZHANE

//Email Address: tbofdciyib@yahoo.com.tw

//Description: Count the number of globally rigid graphs among 100 randomly generated graphs.

//Input: None.

//Output: The numbers of 3-connected, rigid, redundantly rigid, and globally rigid graphs among these 100
/ randomly generated graphs.

#include <iostream>
#include <fstream>
#include <ctime>
#include <cstdlib>
#include <conio.h>
#include <math.h>
using namespace std;

#define testtime 100 //number of randomly generate graphs

#define range 100 //range of sensors
#define radius 30 //radius of sensors
#define square (r)*(r);

#define RAND MAX 32767

const int SIZE=70; /Mmumber. of sensors

int absolute[100][100]; //the adjacency matrix of the randomly generated graph

int dir[100][100]={0}; //the adjacency matrix.used to record the directed graph obtained by pebble game

int pebble[100]; //pebblel[i] is the number of pebbles on vertex i

int temppebble[100]={0};//1f we want to add edge (i,j) into the graph, then temppebble[i] and temppebble[j]
//record the number of pebbles borrowed from i1 and j, respectively

int seen[100]; //1f vertex i has been searched in pebble game, then seen[i] is set to 1

int path[100]; /Ipath[i] represents the son of vertex i after the function find pebble is executed

unsigned xxxx=1;

struct coordinate

{
int x;
inty;
}sensor[SIZE]; //the coordinates of sensors
/ functions used to generate sensors start here

void srand(unsigned s) {xxxx=s;}

int rand()

{
xxxx=214013*xxxx+2531011;
return(xxxx>>16)&0x7FFF;

¥

void in(int n)

{
time tt;
time(&t);

srand(static_cast<unsigned>(t));

for(int i=0;i<n;i++)

{
sensor[i].x=rand()%range;
sensor[i].y=rand()%range;

24

}

1/ functions used to generate sensors end here
1/ pebble game starts here
void rearrange pebbles(int dir[100][100], int v, int path[100])
{
if(path[v]==-1)
pebble[v]=pebble[v]-1;
while(path[v]!=-1)
{
int w=path[v];
if(path[w]==-1)
{
dir[w][v]=1;
dir[v][w]=0;
pebble[w]=pebble[w]-1;
}
else
dir[w][v]=1;dir[v][w]=0;
V=W;
}
b

int find_pebble(int dir[100][100

seen[v]=1;
path[v]=-1;

int found;
int x=-1;

int y=-1;

if(pebble[v]>0)
{

return 1;

for(int i=0; i<SIZE; i
if(dir[v][i]>0) {x=i; br
for(int j=x+1; j<SIZE; j++)
if(dir[v][j]>0){y=j; break;}

if(x!=-1)

if(seen[x]==0)

{
path[v]=x;
found=find_pebble(dir,x,seen,path);
if(found) return 1;

}

}
if(y!=-1)
if(!seen[y])
{
path[v]=y;
found=find_pebble(dir,y,seen,path);

25

if(found) return 1;

}

return 0;

}

int enlarge _cover(int dir[100][100], int p, int q)
{
for(int i=0; i<SIZE; i++)
{
seen[i]=0;
path[i]=-1;
}
int found=find _pebble(dir,p,seen,path);

if(found)

{
rearrange_pebbles(dir,p,path);
temppebble[p]++;
return 1;

}

if(!seen[q])
{

found=find pebblel
if(found)
{

int rigid(void)
{

for(int i=0; i<SIZE; it++)
pebble[i]=2;

int pb1,pb2,pb3,pb4;

for(int 11=0;i1<SIZE;i1++)
for(int i2=i1+1;i2<SIZE;i2++)

if(absolute[i1][i2]!=0)
{
pbl=enlarge cover(dir,il,i2);
pb2=enlarge cover(dir,il,i2);
pb3=enlarge cover(dir,i2,il);
pb4=enlarge cover(dir,i2,il);
if(pbl && pb2 && pb3 && pb4)

dirfi1][i2]=1;

26

pebble[il]=1;
pebble[i2]=2;
temppebble[il]=0;
temppebble[i2]=0;

}

else

{
pebble[il]=temppebble[il];
pebble[i2]=temppebble[i2];
temppebble[il]=0;
temppebble[i2]=0;

¥

}
¥
int total=0;

for(int t=0; t<SIZE; t++)
total=total+pebble[t];

if(total==3)
return 1; /If the tatal number of remaining pebbles is 3, the graph is rigid and we return true

else
return 0; //Otherwise, we return false
}
// pebble game ends here
/1 test 3-connected starts here
void dfs_visit(int u, int color[100];int pi[100]; int b[100][100]) //dfs
{
color[u]=1;
for(int v=0;v<SIZE;v++)//if edge(u,v) belong to E(G) and v is never searched,then color v=1
if (b[u][v]==1-&& color[v]==0)
{
pi[vl=u;
dfs_visit(v,color,pi,b);
}
¥
}

void cutvertex(int i, int j, int b[100][100], int& ans)
//remove two vertices i and j from G, and then check if the resultant graph G' is connected

{

for(int k1=0; k1<=SIZE-1; k1++) //remove all the edges incident to vertex i

bli][k1]=0;
b[k1][i]=0;
}

for(int k2=0; k2<=SIZE-1; k2++) //remove all the edges incident to vertex j

bj1[k2]=0;
b[k2][j1=0;
¥
int pi[100];

27

int color[100];

for(int s=0; s<SIZE; s++) //color every vertex with color 0;
{

color[s]=0;

pi[s]=-1;
b

//choose a vertex called candidate that belongs to G-{u,v}
/Ivarible candidate represents the vertex we start a DFS
int p=0;

int candidate;

if(p!=i) //since i and j are removed, we can not choose them as the candidate
candidate=p;

else
candidate=p+1;

if (candidate==j) candidate++;

dfs_visit(candidate,color,pi,b); //do DFS

color[i]=1; //color the removed vertex i with color 1
color[j]=1; //color the removed.vertex j with color 1

for(int a=0; a<SIZE; a++) //check if every vertex is reached
if(color[a]==0) “ //If there is vertex which is not reached, the graph is not connected,
ans=0; //ans=0 means-the-graph is not triconnected

¥
int test(int b[100][1007)
{
int ans=1; //varible ans represnets the graph is triconnected or not
for(int i=0; i<=SIZE-2; i++) //choose two.vertices i and j so that they will be reomoved
for(int j=i+1;j<=SIZE-1; j++)
{
cutvertex(i,j,b,ans); //remove vertices i and jand test if the resultant graph is connected
for(int t1=0; t1<SIZE, t1++) //recover matrix b to matrix absolute
for(int t2=0; t2<SIZE; t2++)
b[t1][t2]=absolute[t1][t2];
}
return ans;
¥
// test 3-connected ends here
/1 main program starts here
int main()
{

int tricount=0; //number of triconnected graphs among 100 randomly generated graphs

int rigidcount=0; //mumber of rigid graphs among 100 randomly generated graphs

int redundantlyrigidcount=0; /number of redundantly rigid graphs among 100 randomly generated graphs
int globallyrigidcount=0; //mumber of globallyrigid graphs among 100 randomly generated graphs

ofstream outf;
FILE *f1,*f2;

28

ofstream outfdata3;
outfdata3.open("s70r30.txt",ios::app);

for(int ttime=0; ttime<testtime; ttime++)
{
/I generate the vertices randomly
outf.open("datal.txt",ios::out);
int n=SIZE;
in(n);

for(int my write=0; my_ write<n; my_write++)
outf << "(" << sensor[my_write].x <<"," << sensor[write].y <<")" << endl,

outf << endl;
outf << endl;
outf.close();

/] read the coordinates to construct adjacency matrix
struct coordinate vt[100];

if ((f1=fopen("datal.txt","r"

char nextl;
int q1=0;

int tem[10];
int datalsize=0

while((next1=fge

if(next1=="(")
continue;

tem[q1]=atoi(&nextl);
ql+;

int total=0;

if(next1==""
{
for(int i1=0; i1<ql; i1++)
total=total+tem[il]*pow(10,q1-i1-2);
q1=0;
vt[datalsize].x=total;
total=0;

}

if(next1=="))

29

for(int i2=0; i2<q1; i2++)
total=total+tem[i2]*pow(10,q1-i2-2);

ql=0;

vt[datalsize].y=total;

total=0;

datalsize++;

}

for(int p1=0; pl<datalsize; pl++)
for(int p2=p1+1; p2<datalsize; p2++)
{
int length=(vt[p1].x-vt[p2].x)*(vt[pl].x-vt[p2].x)+
(vtlp1].y-vt[p2].y)*(vi[p1].y-vt[p2].y);
int r=radius;

if(length<=(r*r))

{
absolute[p1][p2]=1;
absolute[p2][pl]=1;

}

for(int p3=0; p3<datalsize; p3++)
{
for(int p4=0; p4<datalsize; p4++)
if(absolute[p3][p4]==0)
fputc('0',£2);
else
fpute('1',£2);
fputc(\n',£2);
¥

fpute("\n',f2);
fpute("\n',f2);
fpute("\n',f2);
fclose(f1);
fclose(12);

/] Count the numbers.of 3-connected, rigid, redundantly rigid, and
1 globally rigid graphs among 100 randomly generated graphs. int
condition1=0; //0 means not triconnected and 1 means triconnected

int condition2=0; //0 means not rigid and 1 means rigid

int condition3=0; //0 means not redundantly rigid and 1 means redundantly rigid

int b[100][100];
for(int t3=0; t3<SIZE; t3++) //copy the data from matrix absolute to matrix b
for(int t4=0; t4<SIZE; t4++)
b[t3][t4]=absolute[t3][t4];
if(test(b)==1) //test if b is 3-connected?
tricount++;

conditionl=1;

}

int reduntrigid=1;

30

if(rigid)==1)

{
condition2=1;
rigidcount++;
§
else

reduntrigid=0;

if(reduntrigid==1)
for(int t11=0; tll<datalsize-1; tl1++)
for(int t12=t11+1; tl2<datalsize; t12++)
if(absolute[t11][t12]==1)
{
int temp1=absolute[t11][t12];
int temp2=absolute[t12][t11];

absolute[t11][t12]=0;
absolute[t12][t11]=0;
for(int tt1=0;tt1<size;tt1++)
{
for(int tt2=0;tt2<size;tt2++)
dir[tt1][tt2]=0;
temppebble[tt1]=0;
}
if(rigid()!=1)
{
reduntrigid=0;
tl=datalsize-1;
tl12=datalsize-1;

absolute[t11][t12]=temp];
absolute[t12][t11]=temp2;

b
condition3=reduntrigid;
if(reduntrigid==1) redundantlyrigidcount++;
if((condition]l==1) && (condition2==1) && (condition3==1)) globallyrigidcount++;
for(int tt3=0; tt3<size; tt3++)
{ for(int tt4=0;tt4<size;tt4-++)

{dir[tt3][tt4]=0; absolute[tt3][tt4]=0;}
temppebble[tt1]=0;

}

outfdata3 << tricount << " " << rigidcount << " " << redundantlyrigidcount
<<"" << globallyrigidcount << endl;
outfdata3.close();

return 0;

// main program ends here

31

B Appendix: detail data of our experimental results
when the transmission range is fixed

Transmission range = 20m

Gs 3-connected rigid redundantly rigid globally rigid
30 0 0 0 0
35 0 0 0 0
40 0 0 0 0
45 0 0 0 0
50 0 0 0 0
55 0 9 0 0
60 8 24 0 0
65 3 39 3 3
70 0 25 4 0
75 3 59 6 3
80 8 92 13 8
85 19 7132 33 19
90 34 181 48 34
95 69 234 93 69
100 113 289 144 113
105 141 330 181 141
110 183 378 219 182
115 230 403 269 230
120 257 . 411 298 257

Transmission range = 26m

Gs 3-connected rigid redundantly rigid < globally rigid

30 0 0 0 0
35 0 0 0 0
40 0 73 0 0
45) 97 11 >
50 4 102 21 4
95 30 166 36 30
60 ol 212 99 ol
65 64 255 7 64
70 96 234 115 96
75 201 350 228 201
80 267 406 300 267
85 295 410 316 295
90 375 451 394 375
95 376 450 397 376
100 416 473 429 416
105 444 491 457 444
110 448 485 457 448
115 456 490 469 456
120 471 492 472 471

32

Transmission range = 33m

33

Gs 3-connected rigid redundantly rigid globally rigid
30 28 116 35 28
35 66 199 75 66
40 90 236 107 90
45 216 335 225 216
50 262 402 284 262
95 294 393 300 294
60 364 441 376 364
65 418 468 425 418
70 469 490 473 469
75 480 497 481 480
80 484 493 486 484
85 495 499 496 495
90 497
95 496

494

499

500

500

500

C Appendix: detail data of our experimental results
when the number of sensors is fixed

Number of sensors = 50

transmission range 3-connected rigid redundantly rigid globally rigid
10 0 0 0 0
11 0 0 0 0
12 0 0 0 0
13 0 0 0 0
14 0 0 0 0
15 0 0 0 0
16 0 0 0 0
17 0 0 0 0
18 0 0 0 0
19 0 0 0 0
20 0 0 0 0
21 0 0 0 0
22 0 13 0 0
23 0 9 0 0
24 0 67 10 0
25 4 102 21 4
26 9 163 34 9
27 56 211 74 56
28 58 222 81 58
29 84 270 109 84
30 137 269 155 137
31 158 293 175 158
32 179 306 193 179
33 262 402 284 262
34 334 408 351 334
35 349 436 358 349
36 388 460 394 388
37 427 475 438 427
38 418 444 421 418
39 447 479 449 447
40 461 476 462 461
41 474 487 477 474
42 478 485 482 478
43 489 500 492 489
44 491 500 492 491
45 495 500 495 495
46 499 500 499 499
47 500 500 500 200
48 492 500 492 492
49 500 500 500 200
50 500 500 500 500

34

Number of sensors = 60

transmission range 3-connected rigid redundantly rigid globally rigid
10 0 0 0 0
11 0 0 0 0
12 0 0 0 0
13 0 0 0 0
14 0 0 0 0
15 0 0 0 0
16 0 0 0 0
17 0 0 0 0
18 0 0 0 0
19 0 4 0 0
20 8 24 0 0
21 0 43 0 0
22 0 78 0 0
23 3 114 16 3
24 227 136 29 22
25 51 212 59 51
26 79 218 89 79
27 94 © 228 112 94
28 157 = 298 187 157
29 198 331 212 198
30 254 384 278 254
31 263 370 273 263
32 339 422 351 339
33 364 441 376 364
34 392 439 394 392
35 446 473 450 446
36 463 491 466 463
37 468 482 469 468
38 478 491 479 478
39 491 500 493 491
40 494 495 494 494
41 498 500 498 498
42 491 494 492 491
43 500 500 500 500
44 500 500 500 500
45 500 500 500 500
46 500 500 500 500
47 500 500 500 200
48 500 500 500 200
49 500 500 500 200
50 500 500 500 500

35

Number of sensors = 70

transmission range 3-connected rigid redundantly rigid globally rigid
10 0 0 0 0
11 0 0 0 0
12 0 0 0 0
13 0 0 0 0
14 0 0 0 0
15 0 0 0 0
16 0 0 0 0
17 0 0 0 0
18 0 6 0 0
19 0 17 0 0
20 0 25 4 0
21 9 96 13 9
22 20 138 27 20
23 42 170 50 42
24 48 170 61 48
25 96 234 115 96
26 150 = 318 172 150
27 241 360 265 241
28 301 413 325 301
29 337 412 349 337
30 409 473 420 409
31 415 455 420 415
32 444 AT8 449 444
33 469 490 473 469
34 AT7 492 481 477
35 473 485 475 473
36 490 500 492 490
37 496 500 496 496
38 497 500 499 497
39 496 499 497 496
40 494 495 495 494
41 499 500 499 499
42 500 500 500 200
43 500 500 500 500
44 500 500 500 500
45 500 500 500 500
46 500 500 500 500
47 500 500 500 200
48 500 500 500 200
49 500 500 500 200
50 500 500 500 500

36

