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Even Length and Weight 3

Student: Yi-Hean Lin Advisor: Hung-Lin Fu
Department of Applied Mathematics Department of Applied Mathematics
National Chiao Tung University National Chiao Tung University
Hsinchu, Taiwan 30050 Hsinchu, Taiwan 30050
Abstract

A conflict-avoiding code of length n and weight k is defined as a set C' C Z§ of
binary vectors, called codewords, all of Hamming weight k& such that the distance
of arbitrary cyclic shifts of two distinct codewords in C' is at least 2k — 2. In this
thesis, we obtain direct constructions for optimal conflict-avoiding codes of length
n = 4m where m is odd and weight 3 by using certain types of sequences which
are newly constructed. As a consequence (with known results), we have completely
settled the problem of constructing optimal conflict-avoiding codes of even length
and weight 3.
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1 Introduction

Protocol sequences for a multiple-access channel (collision channel) without feedback have
been investigated by many researchers [3, 5, 6, 8 12, 13]. In such a multiple-access
channel model (see [1] and [7]), the time axis is partitioned into slots whose duration
corresponds to the transmission time for one packet and all users are supposed to have
slot synchronization, but no other synchronization is assumed. In a particular slot, if
none of the users is sending a packet (in which case it is said that each user “sends” the
silence symbol), then the channel output in that slot is the silence symbol. If exactly one
user is sending a packet in a particular slot, then the packet is transmitted successfully
and the channel output in that slot is this packet value ¢, a prime power. If more than
one users are sending packets in a particular slot simultaneously, then there is a conflict

and the channel output in that slot is the collision symbol (see Fig. 1).
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- ==+ Collisionsymbol (Collided packet)
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Figure 1: A multiple-access channel model

Each user, say user i, is statically assigned a protocol sequence, which is a binary
sequence z; = (0, Zi1,--.,%in—1) of length n that controls his sending of packets in the
following manner: When user i becomes active (after some period of inactivity), he sends
a packet (or silence symbol) in the jth slot (0 < j <n — 1) of this activity if z; ; =1 (or

z; ; = 0). User ¢ continues to use the protocol sequence periodically in this manner until



there are no more packets to be sent, and after that the user must remain inactive for at
least n — 1 slots. Those silent slots enable the receiver to synchronize the session of user ¢
without any assumption other than slot synchronization, which is a major difference from
the synchronizing technique of optical orthogonal codes.

If the protocol sequence x; has nonzero components, then user i sends w packets in
each frame of n slots, where his protocol sequence appears. The set C = {x1,z9,...,2x}
of N binary sequences is said to be an (N, k, n, o) protocol sequence set if any x; € C is of
length n and has the property that at least o successful packet transmissions in a frame
are guaranteed for each active user, provided that at most k£ out of N users are active.
Our interest is 0 = 1.

An (N, k,n, 1) protocol sequence set is called a conflict-avoiding code(CAC) of length
n for k active users. A conflict-avoiding code of length n for k active users can be viewed
as an (n, k, 1) optical orthogonal code without the autocorrelation property, which implies
that the maximum size of a conflict-avoiding code should be larger than that of an optical
orthogonal code with the same parameters, i.e., larger than |(n—1)/{k(k—1)}]. For the
definition and some results of optical orthogonal codes, see [2] and references therein.

Before we introduce the terminologies, an example is presented. Let z,y and z be
codewords of length 13 corresponding to the channel model mentioned in Figure 1, see

Figure 2.

x=(1110000000000)
y=(1001001000000)

z=(0100010001000)

Figure 2: vector representations (codewords)

Because all users have been assigned just one slot at the same period and three slots
for each user, a CAC of weight 3 permit three users to use the code. Figure 2 shows that
there are survived packets for all of them.

On the other hand, if three codewords are in Figure 3, then no survived packet for z’.



We will see why this happens in the followings.

Zz=(100001000100)
XX=(110010000000)

y=(100001100000)

Figure 3: Failure situation

In a mathematical description, a conflict-avoiding code of length n for k active users is
aset C C {0, 1}" of binary vectors, or codewords, all of Hamming weight k, such that the
Hamming distance between arbitrary cyclic shifts of distinct codewords is at least 2k — 2.
The support supp(z) of a codeword z is the set of indices of its nonzero positions. In
what follows, for convenience, we shall use supp(x) to represent the codeword z.

For a k-subset A of Z,, we define the multiset of k(k — 1) difference set of A by
A(A)={i—j (modn):i,je€ A i#j}

A conflict-avoiding code of length n and weight k can be defined as a collection C of

k-subsets, called codewords, of 7Z,, satisfying the condition
A(A)NA(B) =10 for any A, B € C with A # B.

Two codewords are said to be equivalent if A(A) = A(B).
In fact, we usually consider 0 € A for every codeword A in a conflict-avoiding code
(CAC). Since for any codeword A in a CAC of length n, the elements of A(A) are sym-

metric with respect to n/2, we henceforth consider the halved difference set defined by
Ay(A)={i:ie A(A),1 <i<n/2}
instead of A(A). We also use the notation Ay(C) to denote UaecAa(A).

Example 1.1. Suppose that A = {0,20,40}, B = {0,6,12} and C = {0,1,22} are
codewords of a conflict-avoiding code of length 60. In this case,

A(A) = {20, 20, 20,40, 40,40}, Ay(A) = {20},
A(B) = {6,6,12,48,54,54},  Ay(B) = {6, 12},
A(C) = {1,22,23,37,38,59}, A,(C) = {1,22,23}.



we denote the class of all the CACs of length n and weight & by CAC(n, k).
For some i,t € Z,, a codeword A of weight k is said to be equi-difference (or centered

when k = 3) if it has the form
A={tyi+t,...,(k—=1)i+t} (modn).

and a code C € CAC(n, k) is called an equi-difference code (or centered code when k = 3)if
every codeword in C is equi-difference.

The maximum size of some codes in CAC(n, k) is denoted by M(n, k), i.e.,
M(n, k) = max{|C| : C € CAC(n,k)}.

A code C € CAC(n, k) is said to be optimal if |C| = M(n,k). Similarly, the maximum

size of equi-difference codes is defined in a similar manner to M (n, k) by follows:
M*(n, k) =max{|C| : C € CAC®(n, k)},

where CAC*(n, k) is the subclass consisting of all the equi-difference codes in CAC*(n, k).In
this thesis, we focus on CAC(n, k) only.Moreover, only the case k = 3 is treated. In what
follow, CAC(n, 3) and M(n,3) are simply written as CAC(n) and M (n), respectively.

Levenshtein and Tonchev [6] derived the following upper bound on M (n):

(L1) M(n) <

and further proved that

-2
M(n):n4 ifn=2 (mod 4).

Jimbo et al. [4] improved the Levenshtein’s bound (1.1) for the case n = 0 (mod 4)

by using linear programming.



Theorem 1.2 (Jimbo et al. [4]). Let n = 4t. Then

n/32, ift=0 (mod 8),
Tn+4)/32, ift=1 (mod 8),
Tn—24)/32, ift=2,10 (mod 24),
Tn+12)/32, ift=3 (mod 24),
Tn—16)/32, ift=4,20 (mod 24),
Tn —12)/32, ift=>5,13 (mod 24),
T —8)/32, ift=6 (mod 8),
T —4)/32, ift=7 (mod 8),
n—20)/32, ift=11,19 (mod 24),
Tn+16)/32, ift=12 (mod 24),
Tn+8)/32, ift=18 (mod 24),
(Tn +20)/32, ift =21 (mod 24).

(
(
(
(
M(n) < E
(
(7
(
(

Here let us review briefly the linear programming problem formulated by Jimbo et al.

[4]. Partition integers not exceeding n/2 into the following three subsets.

O={i:i=1 (mod?2), 1<i<n/2}

E={i:i=2 (mod4), 1<i<n/2},

D={i:i=0 (mod4), 1<i<mn/2}
The integers belonging to O are odd, those belonging to E are said to be singly even and
those belonging to D are said to be doubly even. Then it is easy to see that any codeword

can be categorized as in Lemmas 1.3 and 1.4 according to the composition of its halved

difference set.

Lemma 1.3 ([4]). Any centered codeword A € C such that Ay(A) = {i,j}, where j = 2i
ifi € [l,n/4], and j =n—2i ifi € (n/4,n/2) and i # n/3, belongs to one of the following

three types:
(i)i€O and j € F,
(ii) i € F and j € D,
(iii) 4,7 € D.

Lemma 1.4 ([4]). Any non-centered codeword A € C such that Ay(A) = {i,j,k} belongs

to one of the following four types:

(iv) two of i,j and k are in O and one is in E,

5



(v) two of i,7 and k are in O and one is in D,
(vi) two ofi,j and k are in E and one is in D,
(vii) 4,5,k € D.

After the fashion of [4], we also use the notations C,, C, and Cy to denote the sets
of centered codewords of types (i), (ii) and (iii) categorized in Lemma 1.3, and N, Nog,
N, and N, to denote the sets of non-centered codewords of types (iv), (v), (vi) and (vii)
categorized in Lemma 1.4, respectively. For convenience, we treat the centered codewords
{0,n/3,2n/3} and {0,n/4,n/2} separately from C,, C, and Cy4, and define the following
parameters.

if {0,n/3,2n/3} € C,
otherwise,
if {0,n/4,n/2} €C,

otherwize.

@
I
AR AR B

Q
I
—N
SO = O =

Then it follows that

CoUC,UC3U Ny U NyqgU N, U N,

=C\ {{0,n/3,2n/3},{0,n/4,n/2}}

and

IC| = sa+ B+ |Co| + |Ce| + |C4]
(1.2)
+ |Noe’ + ’Nod| + ’Ne‘ + ‘Nd‘a
where the parameter s accounts for the centered codeword {0,n/3,2n/3}, i.e., s = 1 if

n =0 (mod 3), otherwise s = 0.

An upper bound on M (n = 4t) of Theorem 1.2 can be obtained by maximizing (1.2)

subject to

K18+ Col + 2 Nuel + 2 Noa < 7,

Baf + ICol + 1l + I Noel + 21N <[5 ]
(1.3) sa+ kg + |Ce| + 2|Cy|

+ [ Noal + [N.| + 3|Na| < {ZJ ,

cl<|E] astan,

6



where

) ift=0 (mod 12),

) ift=6 (mod 12),
B ) ift=2,10 (mod 12),
(1.4) (s,k1, ko, k3) = ) ift=4,8 (mod 12),
) ift=1,5 (mod 6),
) ift=3 (mod 6).

For the conditions (1.3) and (1.4), see Section 2 of [4]. The technique for solving the LP
probelm is also demonstrated in [4] (and [9]).

In [4] Jimbo et al. further proved that the upper bounds in Theorem 1.2 are strict if
t =2 (mod 4), i.e., n =8 (mod 16) [4, Theorem 3.1].

Recently, Mishima et al. [9] showed that with two exceptions, the equality in Theorem
1.2 holds for t =0 (mod 4), i.e., n =0 (mod 16).

Theorem 1.5 (Mishima et al. [9]). Let n = 16m. The mazimum size M(n) of a code
C € CAC(n) is

(Tn—16)/32, ifm=1,5 (mod 6),

/32, ifm=0 (mod 2),
M(n) = {
(Tn+16)/32, ifm=3 (mod 6).

with the exceptions M (48) = 10 and M (64) = 13.

It now turns out that for even n, the case for which the strictness of the upper bound
on M(n) remains unsettled is n = 4 (mod 8). Our objective is to determine the exact
values of M (n) completely for all even n by proving the strictness of Theorem 1.2 for the

remaining cases, i.e., by proving the following theorem.

Theorem 1.6. Let n = 8m + 4. Then

™m+4)/32, ifm=0 (mod4),
™ +12)/32, ifm=1 (mod 12),
™ —12)/32, ifm=2,6 (mod 12),
T —4)/32, ifm=3 (mod4),

™ —20)/32, ifm=5,9 (mod 12),

(
(
M(n) = E
(
(Tn+20)/32, ifm =10 (mod 12).

As for odd n, which is not treated in this thesis, the necessary and sufficient condition
to satisfy M(n) = (n—1)/4 or (n+1)/4 can be found in [10], but known results on M (n)

for odd n are very few so far.



2 0dd sequences with doubly even integers latently

Mishima et al. [9] used Skolem type sequences effectively in the proof of Theorem 1.5
and with those sequences, they also gave a simpler proof of Theorem 3.1 in [4] than the
original one. Unfortunately, the Skolem type sequences used in [9] to prove the strictiness
of the upper bound on M (n) is not valid for our present target case n =4 (mod 8). So,
we define here a new sequence with a certain property and provide several series of those

sequences that are needed for our constructions of optimal codes in CAC(n).

Definition 2.1. For positive integers k and n, let K be a k-subset of {1,2,...,n} and
F be a 2k-subset of the 2n odd integers {1,3,...,4n — 1}. A K-extended odd sequence of
order n and defect F' with doubly even integers latently, denoted by K -ext O,, of defect F'

for short, is a collection of n — k ordered pairs of odd integers
{((Ii,bi) g bl — Q; =4y OTbZ'—FCLi :42,2 S {1,2,,n}\K}

with

O{ai;bi}:{1,3,...,4n—1}\F,

igK

If K = {t}, a K-ext O, of defect F is simply denoted as t-ext O, of defect F, and if

K =0, it is denoted just as O,,.

Example 2.2. (1) An Oy:
{(7,11),(5,13),(3,9), (1,15)}.

(2) A 2-ext Oj; of defect {13,19}:
{(7,11),(3,9), (1,17), (5,15)}.

(3) A {2,3}-ext Og of defect {3,5,29,31}:
{(23,27), (9,25), (1,19), (11, 13), (7,21), (15, 17)}.

Lemma 2.3. There ezists an O, ifn=0,1 (mod 4).

Proof. The proof is devided into two cases.



(i) The case n =0 (mod 4). Put doubly even integers in [4,4n| as follows:
4in (3n—3,3n+ 1);
8+8 in (2n—7—4i,2n+1+41), 0 <i<n/4—2;
124 8iin 2n —5 —44,2n+7+4i), 0 <i<n/4—2;
2n in (3,2n + 3);
An —8 —4diin (54 2i,4n — 3 —2i), 0<i < n/2—3;
dn —4in (2n —3,2n — 1);
4n in (1,4n —1).
Then the set of the above n pairs is a partition of {1,3,...,4n — 1}, which means that it
is an O,

(ii)) The case n = 1 (mod 4). Note that the case (i) guarantees the existence of an
Op—1 for n > 5. Metamorphose the pair (3,2(n — 1) 4 3) in the O,,_; together with
{4n —3,4n — 1} into the following two pairs so that 2(n— 1) and 4n can be there latently.

2n—2in (2n+ 1,4n — 1);
An in (3,4n — 3).
Then the remaining n —2 pairs in the O,,_; and the above two pairs form an O,, for n > 5.

If n =1, it is trivial that {(1,3)} is the O;. ]

Example 2.4. (1) An Oa:
{(33,37), (17,25), (19, 31), (13, 29), (15, 35), (3, 27),
(11,39), (9,41), (7,43), (5,45), (21, 23), (1, 47)}.

(2) An 0132
012\ {<37 27)} U{(3> 49)7 (277 51>}'

Lemma 2.5. There exists an n-ext O,, of defect ' if
(1) n=0 (mod 4) and F € {{2n — 1,2n + 1},{4n — 7,4n — 1}.
(2) n=2 (mod 4), n>6 and F = {2n —3,2n+ 7}, and

(3) n=3 (mod 4) and F € {{2n — 1,2n + 5}, {4n — 13,4n — 3}, {4n — 5,4n — 3}}.



Proof. (1) The case n =0 (mod 4) and F = {2n—1,2n+ 1}. If n > 8, put doubly even
integers as follows:
4in (3n —5,3n —1);

8+8iin (2n —3 —4i,2n+5+4i), 0 <i<n/2—2;

124+ 8iin (2n —9 — 46, 2n + 3+ 4i), 0<i < n/d—3;

2n —41in (1,2n — 5);

An —4—8iin (3+4i,dn —1—4i), 0<i <n/4— 1.
If n = 4, we have {(11,15),(3,5), (1,13)} as a 4-ext O, of defect {7,9}.
The case n = 0 (mod 4) and F' = {4n — 7,4n — 1}. Put doubly even integers as

follows:

4in (n—1,n+ 3);
8+8iin 2n—1—-4i,2n+7+4i), 0<i<n/4-2;
12+ 8 in (2n —11 —4i,2n+1+4i), 0<i<n/2-—3;
dn —8—=8iin (3+4i,4n —5—4i), 0 <i<n/4—2;
2n in (2n — 3,4n = 3);
dn —4'in (2n —7,2n + 3).
(2) The case n =2 (mod 4). Put doubly even integers as follows:
4in (n+1,n+5);
8+ 8iin (2n+3—4i,2n+11+4i), 0<i < (n—2)/4— 1;
124 8i in (20— 7 — 4i,2n + 5+ 4i), 0<i < n/2—2;
dn —8—8iin (7T+4i,dn—1—4i), 0<i < (n—2)/4 —2;
2n+41in (3,2n + 1).

(3) The case n = 3 (mod 4) and F = {2n — 1,2n + 5}. From the case (2), there
does exist an (n — 1)-ext O, of defect {2n — 5,2n + 5} for n > 7. Assemble the pair
(3,2(n — 1) + 1) in the (n — 1)-ext O,_1 and {2n — 5,2n + 5,4n — 3,4n — 1} into the
following two pairs

2(n—1)+4in (2n — 5,4n — 3);
dn —4in (3,4n —1).

10



Then together with the remaining pairs in the (n — 1)-ext O,_1, an n-ext O, of defect

{2n — 1,2n + 5} can be obtained for n > 7. If n = 3, we have {(3,7),(1,9)} as a 3-ext
Oj of defect {5,11}.

The case n = 3 (mod 4) and F = {4n — 13,4n — 3}. If n > 11, put doubly even

integers as follows:
4 in (n —4,n);
8in (4n —9,4n — 1);
1248 in (2n —9—4i,2n+3+4i), 0<i<(n—1)/2—2;
164+ 8iin (2n — 11 —4i,2n +5+4i), 0<i < (n—3)/4—3;
dn — 20 — 8iin (3 + 4i,4n — 17— 4i), 0 < i< (n—3)/4—2;
2n —6in (2n +1,4n — 5);
dn —12in (2n — 7,2n — 5);
dn —4in (2n — 3,2n — 1).

If n =7, we have {(9,13), (11,19), (5,17),(7,23), (1,21), (3,27)} as a T-ext O of defect
{15,25}.

The case n = 3 (mod 4) and F' = {4n —5,4n —3}. If n > 7, put doubly even integers

as follows:
4 in (3n —4,3n);
8+ 8iin (2n— 9 —4i,2n — 1 +4i), 0<i < (n—3)/4— 1;
1248 in 2n —7—4i,2n+5+4i), 0<i<(n—1)/2—3;
An—12—8iin (5+4i,4n — 7 —4i), 0<i < (n—3)/4—2;

2n +2in (1,2n + 1);

4n — 8 in (2n —5,2n — 3);

4n —4in (3,4n — 1).

If n =3, we have {(1,5),(3,11)} as a 3-ext O3 of defect {7,9}. ]

Example 2.6. (1) A 8-ext Oy of defect {15,17}:
{(19,23), (13,21), (1,11), (9, 25), (7, 27), (5, 29), (3, 31)}.

11



A 8-ext Og of defect {25,31}:

{(7,11), (15,23), (5,17), (13,29), (1, 21), (3,27),(9,19) }.

(2) A 10-ext Oy of defect {17,27}:

{(11,15), (23, 31), (13, 25), (19, 35), (9, 29), (3,21), (5, 33), (7, 39), (1,37)}

(3) A 11-ext Oy of defect {31,41}:

((7,11), (35,43), (13, 25), (23,39), (9, 29), (3, 27), (5, 33), (15, 17), (1, 37), (19, 21)}.
A 11-ext Oy of defect {39,41}:

{(29,33), (13,21), (15, 27), (9,25), (11,31),(1,23),(7,35), (5,37), (17, 19), (3,43)}.

Lemma 2.7. There exists a 2-ext O,, of defect F' if
(1) n=0 (mod 4) and F = {4n — 5,4n — 3},
(2) n=1 (mod 4), n>5 and F = {4n — 7,4n — 1}, and
(3) n=2,3 (mod 4) and F = {4n — 3,4n — 1}.

Proof. (1) The case n =0 (mod 4). If n. > 8, put doubly even integers as follows:
4in (3n —11,3n —7);
1248 in (2n — 11 —4i,2n+ 1+ 4i), 0 <i<n/4—3;
16+ 8i in (2n — 9 — 4i,2n+ 7 +4i), 0<i < n/2 — 4;
dn —12—8iin (b+4i,4n —7—4i), 0 <i<n/4—2;

2n—41in (3,2n — 1);

4n — 8 in (2n — 5,2n — 3);

dn —4in (2n —7,2n + 3);
Anin (1,4n —1).

If n =4, {(1,5),(3,15),(7,9)} is a 2-ext Oy of defect {11,13}.

12



(2) Thecasen =1 (mod 4). If n > 9, we first construct the 2-ext O,,_; of defect {4(n—
1) = 5,4(n — 1) — 3} according to the construction for the case (1). Next, metamorphose
the pair (3,2(n — 1) — 1) in the 2-ext O,,_; with {4n — 9,4n — 3} into the following two
pairs so that 2(n — 1) — 4 and 4n can be there latently.
2n —6in (2n — 3,4n —9);

4n in (3,4n — 3).
Then together with the remaining pairs in the 2-ext O,,_;, we have a 2-ext O,, of defect
{4n = 7,4n — 1}.1f n =5, {(7,11),(3,9), (1,17), (5,15)} is a 2-ext O; of defect {13,19}.
(3) The case n =2 (mod 4). If n > 10, put doubly even integers as follows:
4in (3n—3,3n + 1);

12+ 8i in (20— 11 — 44, 2n + 1+ 4i), 0<i < n/2 —3;
16+ 8i in (2n — 9 — 44, 20+ T+ 4i), 0 <i < (n—2)/4—3;
An — 16 — 8iin (11 +4i,dn — 5— 4i), 0 <i < (n—2)/d — 2;
2n —4in (3,2n — 1);
4n —8in (2n — 5,2n — 3);
dn —4in (2n —7,2n + 3);
dn in (7,4n — 7).
Ifn=26, {(7,11),(5,17),(3,13),(1,19),(9,15) } is a 2-ext O of defect {21,23}. If n = 2,
{(1,3)} is a 2-ext O, of defect {5,7}.

The case n = 3 (mod 4). If n > 7, put doubly even integers as follows:

4in (n —2,n+ 2);
1248 in (2n —5—4i,2n+7+4i), 0<i<(n—3)/4—2;
1648 in (2n — 11 —44,2n+5+4i), 0<i<(n—1)/2 —3;
4n —8—8iin (1+4i,4n—7—4i), 0<i<(n—3)/4—-1;
2n — 2 in (2n — 3,4n — 5);
dn —4in (2n —7,2n+ 3);

dn in (2n —1,2n 4+ 1).
If n=3, {(1,3),(5,7)} is a 2-ext O3 of defect {9,11}. ]
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Example 2.8. (1) A 2-ext Og of defect {27,29}:
{(13,17), (3,15), (7, 23), (5, 25), (11,13), (9,19), (1, 31)}.

(2) A 2-ext Oy of defect {29,35}:
2-ext Os\{(3,15)} UU{(15,27), (3,33)}.

(3) A 2-ext Oy of defect {37,39}:

{(27,31), (9,21), (3,19), (5, 25), (11, 35), (1, 29), (15,17), (13, 23), (7,33) }.
A 2-ext Oy of defect {41,43}:

{(9,13), (17,29), (11, 27),(19,39), (7,31), (5,33), (3, 35), (1,37), (15, 25), (21, 23)}.

Lemma 2.9. There exists a 3-ext O, of defect F' if
(1) n=0,1 (mod 4), n >4 and F = {1,3}, and
(2) n=2,3 (mod 4), n >3 and F = {3,5}.

Proof. (1) The case n =0 (mod 4). If n > 8, put doubly even integers as follows:

4in (3n +1,3n+5);
8in (2n + 3,2n + 11);

1648 in (2n —11 —4i,2n+5+4i), 0<i<n/4—-2;

20+ 8iin (2n — 5 —4i,2n+ 15+ 4i), 0 < i < n/2 — 4

dn — 8 —8iin (b +4i,4n —3 —4i), 0 <i<n/4—3;
2n +81in (7,2n + 1);
dn —4in (2n —3,2n — 1);
dnin 2n —7,2n+7).

It n =4, {(9,13),(7,15),(5,11)} is a 3-ext O, of defect {1, 3}.
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The case n =1 (mod 4). If n > 9, put doubly even integers as follows:
4 in (3n,3n +4);
8 in (2n — 3,2n+5);
16+ 8iin (2n — 5 —4i,2n + 11+ 44), 0<i < (n—1)/2 — 3;
20+ 8 in (2n — 11— 4i,2n+ 9+ 4i), 0<i < (n—1)/4—3;
dn—8—8iin (7T+4i,4n—1—4i), 0<i< (n—1)/4—2;
2n+2in (5,2n + 7);
dn —4in (2n —7,2n + 3);
Anin (2n —1,2n +1).
If n =5, {(13,17),(11,19),(7,9), (5,15)} is a 3-ext O of defect {1, 3}.
(2) The case n =2 (mod 4). If n > 10, put doubly even integers as follows:
4in (3n+1,3n+5);
8in (2n+1,2n +9);
16+ 8i in (2n — 9 — 4i 20+ 7 +4i), 0<i < (n—2)/4 —2;
20 + 8i in (2n — 7 — 4, 2n + 13+ 4i), 0 < i < n/2 — 4
dn — 8 — 8iin (7T--4i,dn — 1 — 4i), 0 <i < (n—2)/4 —2;
2n +4 in (1,2n + 3);
dn —4in (2n — 3,2n — 1);
An in (2n —5,2n +5).

If n. =6, {(19,23),(13,21), (1,15), (9,11), (7,17)} is a 3-ext O of defect {3,5}.
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The case n = 3 (mod 4). If n > 7, put doubly even integers as follows:
4in (3n+2,3n +6);
8 in (2n — 3,2n + 5);
16 +8iin (2n—5—4i,2n+ 11 +4i), 0<i < (n—1)/2 — 3;
20+ 8i in (20 — 11 —4i,2n + 9 +4i), 0<i < (n—3)/4—2;
dn—8—8iin (7T+4i,4n—1—4i), 0<i < (n—3)/4 -1,
2n+6in (1,2n + 7);
dn —4in (2n —7,2n + 3);
Anin (2n —1,2n +1).

If n=3, {(7,11),(1,9)} is a 3-ext O of defect {3,5}.

Lemma 2.10. There exists a {2,3}-ext O,, of defect F if
(1) n=0,1 (mod 4), n > 8 and F = {3,5,4n — 3,4n — 1}, and
(2) n=2,3 (mod 4), n >7 and F ={1,3,4n — 3,4n — 1}.

Proof. (1) The case n =0 (mod 4). If n > 8, put doubly even integers as follows:

4in (3n —1,3n + 3);

164+ 8iin (2n =7 —44,2n+ 9 +4i), 0 <i <n/2—4;

20+ 8i in (2n — 13— 4i,2n + 7+ 4i), 0<i < n/d—3;

dn —12 =8 in (7T +4i,d4n — 5 —41), 0 <i<n/4—3;

2n+4 in (1,2n + 3);

4n — 8 in (2n — 5,2n — 3);

dn —4in (2n —9,2n + 5);

Anin (2n —1,2n+1).
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The case n =1 (mod 4). If n > 9, put doubly even integers as follows:
4 in (3n,3n + 4);

1648 in (2n —11—4i,2n+5+4i), 0<i<(n—1)/4—2;

20 + 8 in (2n — 9 —4i,2n + 11 +4i), 0<i < (n—1)/2 — 4;
An —12 — 8i'in (7T+4i,4n —5—4i), 0<i < (n—1)/4 — 3;

2n +6in (1,2n 4+ 7);

4n — 8 in (2n — 5,2n — 3);

dn — 4 in (2n — 7,2n + 3);

dnin (2n —1,2n+1).
(2) The case n =2 (mod 4). If n > 10, put doubly even integers as follows:
4in (3n+ 1,3n +5);

16 + 8i in (20 — 7 =44, 2n + 9+ 4i), 0< i < n/2 — 4;

20 + 8 in (2n — 13— 44, 2n+ 7+ 4i), 0< i < (n— 2)/4 — 2;
dn — 12 — 8iin (7+4i,4n — 5 —4i), 0<i < (n—2)/4d—3;

2n +81in (5,2n + 3);

4n —8in (2n —5,2n — 3);

4n —4in (2n —9,2n +5);

dn in (2n —1,2n+ 1).
The case n = 3 (mod 4). If n > 7, put doubly even integers as follows:
4 in (3n — 2,3n + 2);

1648 in (2n — 11 —4i,2n+5+4i), 0<i < (n—3)/4—2;

20 + 8iin (21— 9 — 4i,2n + 11+ 4i), 0<i < (n—1)/2 — 4;
An — 12 — 8iin (7 +4i,4n —5—4i), 0 <i < (n—3)/4 — 2;

2n+2in (5,2n 4+ 7);

4n — 8 in (2n — 5,2n — 3);

dn — 4 in (2n — 7,2n + 3);

dn in (2n —1,2n+1).
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3 Constructions for optimal CACs

We will now present direct constructions for optimal codes in CAC(n = 8m + 4), which
will eventually prove Theorem 1.6. The constructions are given for the following nine

subcases, respectively.
(1) m=0,4 (mod 16),
(2) m=8,12 (mod 16),
(3) m=1 (mod 12),
(4) m=5,9 (mod 12),
(5) m = 2,6,18,38 (mod 48),
(6) m = 14, 26, 30,42 (mod 48),
(7) m = 22,34 (mod 48),
(8) m =10,46 (mod 48), and
(9) m =3 (mod 4).

For reference, we list in Table 1 the sizes of subsets of codewords produced by our

direct constructions, which indeed meet the upper bounds on M(n) of Theorem 1.6.

Table 1: Sizes of subsets of codewords for an optimal code in CAC(n = 8m + 4)

m o g |Col |Cal | Nod| ]
0 (mod4) |0 1  (n—4)/8 (n — 4)/32 (n—4)/16 | (Tn+4)/32
1 mod12) |1 1 (n—4)/8—1 (n—12)/32 (n+4)/16 | (Tn+12)/32
2,6 (mod12) |0 1  (n—4)/8 (n—20)/32—1 (n+12)/16 | (7Tn — 12)/32
3 (mod4) |0 1 (n—4)/8 (n —28)/32 (n+4)/16 (Tn—4)/32
5,9 (mod 12) | 0 1 (n—4)/8 (n—12)/32—2 (n+4)/16+1| (Tn — 20)/32
10 (mod12) |1 1 (n—4)/8 (n — 20)/32 (n—4)/16 | (7n + 20)/32
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Construction 3.1. The case m = 0,4 (mod 16), i.e., n = 4,36 (mod 128). Let C, be

the set of the following (n — 4)/8 centered codewords:

(3.5) (0,n/2+1—2in+2—4i}, 1<i<(n—4)/8,

and let Cy be the set of the following (n — 4)/32 centered codewords:

(3.6) {0,n/4+3 —4i,n/2+6—8i}, 1 <i<(n—4)/32

Then it is easy to verify that

No(Co)={20i—1:(n+4)/8+1<i<n/4}uU{di—2:(n+4)/8+1<i<n/4}

Ao(Cy) = {4i: (n+28)/32+1<i< (n—4)/16YU{8i: (n+28)/32+1<i< (n—4)/16}.
Next, let N,y be the set of the following (n — 4)/16 non-centered codewords:

(3.7) (0,n/4+2—4i,nf2+2—8i}, 1<i<(n—4)/32

(3.8) {0,a;,0;} or {0,a;,a; +b;}, 1 <i<(n—4)/32,

where {(a;,0;) : 1 < i < (n—4)/32} is an Og,—4)/32. The choice between {0,a;,b;} or

{0, a;, a; + b;} depends on how a; and b; give rise to 41, i.e., if b; — a; = 44, take {0, a;, b;},

and if b; + a; = 41, take {0, a;, a; + b;}. Then
Ao(Npg) ={2i —1:1<i<(n—4)/8—1, i # (n+12)/16}
U{4i:1<i<(n—4)/32}U{8i —4:(n+28)/32<i<(n—4)/16}.
Note that since (n —4)/32 = 0,1 (mod 4) holds, Lemma 2.3 guarantees the existence of
an O(n—4)/32-

Counting the number of codewords in the resulting code C, we have

n—4 n—4 n-—4 ™+ 4
C|l= C, C Nyl =1 = .

Example 3.2. When m = 16, i.e., n =132, a =0, =1,

C, = {{0, 65,130}, {0,63,126}, {0, 61,122}, {0,59, 118}, {0, 57, 114}, {0, 55, 110},
{0,53,106},{0,51, 102}, {0,49,98}, {0,47,94},{0,45,90},{0,43,86},
{0,41,82},{0,39,78},{0,37,74},{0, 35,70} },

Ca = {{0, 32,60}, {0,28,56}, {0, 24, 48}, {0, 20,40} },

Noq = {{0,31,60}, {0,27,52}, {0, 23,44}, {0, 19, 36},
{0,11,15},{0,3,8},{0,1,13},{0,7,16} }.
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Construction 3.3. The case m = 8,12 (mod 16), i.e., n = 68,100 (mod 128). Let C,
be the set of {0,n/4 —2,n/2 — 4} and (3.5) for 1 < i < (n—4)/8 — 1, C,4 be the set of
(3.6) just as it is, and N,q be the set of {0,n/4 + 2,n/2 — 6},

(3.9) {0,n/4+4—8i,n/2+2—16i}, 1 <i<|(n—4)/64];

(3.10) {0,n/4+2—8i,n/2—6—16i}, 1 <i<[(n—4)/64] — 1;

and (3.8) with an ((n + 28)/32)-ext O(,128)/32 of defect

=

Note that since (n + 28)/32 = 3,0 (mod 4), Lemma 2.5(3) and (1) assure the existence

(n—4)/8—=1,(n+4)/8} ifm=8 (mod 16),
(n—4)/8—-3,(n+4)/8+2} ifm=12 (mod 16).

A
.

of the required odd sequences. Then we have |C| = (7n +4)/32. Since the verification of

A, (C) is strightforward, we leave it to the reader.

Construction 3.4. The case m =1 (mod 12) and m > 13, i.e., n = 12 (mod 96) and
n > 108. Let C, be the set of {0,n/6+ 1,n/3+ 2} and (3.5) for 2 < i < (n—4)/8 except

i =n/12+ 1, and Cy be the set of the following (n — 12)/32 centered codewords:
(3.11) {0,n/4+1—4in/2+2—8i}, 1 <i< (n—12)/32.
Further let N,; be the set of

{0,n/6 —1,n/2 — 2}, {0,n/4—2,n/2—1}, {0,2,c},

where
(n+4)/84+1 ifm=1,37 (mod 96),
c=¢ (n+4)/16+2 ifm=13 (mod 96),
(n—4)/8 if m=25 (mod 96),
and
(3.12) {0, n/4—4i,n/2—2—8i}, 1<i<(n—12)/32—1, i # (n — 12)/48,

and (3.8) for 1 <14 < (n —12)/32, where {(a;, b;) : 1 <4 < (n—12)/32} is an Op_12)/32
if m = 1,37 (mod 96), and an (n + 20)/32-ext O,,1.90)/32 of defect

F_{ {(n+4)/16,(n+4)/16 + 2} if m =13 (mod 96),
)l {(n—4)/8-2,(n—4)/8} if m=25 (mod 96).
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It is easy to see that Lemmas 2.3, 2.5(1) and 2.5(3) guarantee the existence of the respec-
tive required sequences.
Counting the number of codewords in the resulting code C, we have

n—12+n+4_7n+12
32 16 32

-4
Cl = a+ B+ |Col +1Cal + 1Nl =1+ 14 (P55 1) +

Construction 3.5. The case m = 5,9 (mod 12) and m > 21, i.e.,, n = 44,76 (mod 96)
and n > 172. Let C, be the set of {0,6,12} and (3.5) for 1 <i < (n—4)/8 and i # 2,
and Cy be the set of (3.11) for 1 <1i < (n — 12)/32 — 2. Further let N,; be the set of

{0,¢,n/2 — 2}, {0,3,n/4 + 1}, {0,8,n/4+ 13},

(3.12) for 1 < i < (n—12)/32 — 1, and (3.8) for 1 <4 < (n+20)/32+ 1 and i # 2,3,
where ¢ = 1 or 5 depending on m = 5,17, 21,33 (mod 48) or m = 9,29,41,45 (mod 48)
respectively, and {(a;, b;) : 1 <7 < (n+20)/32+ 1, @ # 2,3} is a {2, 3}-ext Opny20)/3241
of defect {c,3, (n+4)/8+3,(n+4)/8+ 5} whose existence is guaranteed by Lemma 2.10.

Counting the number of codewords in the resulting code C, we have

4 n—12 +4 7n — 20
1= B+ 1l + 104 Nl =1+ 222 L (P20 5) 40 "

1= .
32 16 * 32

Construction 3.6. The casem = 2,6, 18,38 (mod 48) and m > 6,i.e., n = 20, 52, 148, 308
(mod 384) and n > 52. Let C, be the set of the (n —4)/8 centered codewords (3.5) just
as they are, and Cy be the set of (3.6) for 1 <i < (n—20)/32 — 1. Further let N,q be the
set of {0,8,n/44 11}, (3.7) for 1 <i < (n—20)/32, and (3.8) for 1 <i < (n+12)/32+1
and i # 2, where {(a;,b;) : 1 <4 < (n+12)/32+ 1, i # 2} is a 2-ext O(n412)/3241 Of
defect {(n+4)/8+2,(n+4)/8+ 4} whose existence is guaranteed by Lemma 2.7(3) since
(n+12)/32+1=2,3 (mod 4).

Counting the number of codewords in the resulting code C, we have

—4 — 20 12 n—12
\C\=ﬂ+|co|+|cd|+|zvod|=1+"8 +(" _1)+"+ _Mm-12

32 16 32

Construction 3.7. The case m = 14,26,30,42 (mod 48), i.e., n = 116,212,244, 340

(mod 384). Let C, be the set of {0,n/4 —2,n/2—4} and (3.5) for 1 <i < (n—4)/8—1,
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and Cy be the set of (3.6) for 1 < i < (n — 20)/32 — 1. Further let N,q be the set
of {0,8,n/4 + 11}, {0,n/4 + 2,n/2 — 6}, (3.9) for 1 < i < [(n — 20)/64], (3.10) for
1 <i<|[(n—20)/64] —1, and (3.8) for 1 < i < (n+12)/32+ 1 and i # 2, where

{(a;,b;) : 1 <i < (n+12)/32 41, i # 2} is a 2-ext Ony12)/3241 of defect

F_{ {(n+4)/8,(n+4)/8+2} if m = 26,42 (mod 48),
)l {(n+4)/8—2,(n+4)/8+4} if m=14,30 (mod 48).

Note that since (n + 12)/32 + 1 = 0,1 (mod 4), Lemma 2.7(1) and (2) guarantee the

existence of the required odd sequences. Then we have |C| = (Tn — 12)/32.

Construction 3.8. The case m = 22,34 (mod 48), i.e., n = 180,276 (mod 384). Let C,
be the set of {0,n/6 + 1,n/3 4+ 2} and (3.5) except i = n/12 + 1, and Cy; be the set of
(3.11) for 1 < i < (n —20)/32. Further let N, be the set of {0,n/3 — 1,n/2 — 2}, (3.7)
for 1 <i < (n+12)/32 except ¢ = (n+ 12)/48, and (3.8) for 1 < i < (n —20)/32, where
{(a;,b;) : 1 <0 < (n—20)/32} is an O(,_20)/32 Whose existence is guaranteed by Lemma
2.3 since (n —20)/32 = 1,0 (mod 4).

Counting the number of codewords in the resulting code C, we have

n—4 n—-20 n—-—4 Tn+20
C|= Co| + |Ca| + | Nog| =1+ 1 = :
Cl=a+ B +[Co| +|Cal + [ Noal =1+ 14—t —F=+ — ™

Construction 3.9. The case m = 10,46 (mod 48) and m > 46, ie., n = 84,372
(mod 384) and n > 372. Let C, be the set of

(0, (n —4)/16 + 6, (n —4)/8+ 12} ifm=10 (mod 48),
{0,n/6+1,n/3+2}, { {0, (n—4)/8 — 5,n/4— 11} ifm =46 (mod 48),

and (3.5) except

| (n+12)/32+ 3 and n/12+1 if m=10 (mod 48),
|l (n—4)/16—-2and n/12+1 ifm=46 (mod 48),

and Cy be the set of
{0,n/4 —5—4i,n/2 — 10 — 8}, 1 <i < (n—20)/32.

Further let N,; be the set of

{0,(n—4)/16 —4,n/2 — 10} ifm =10 (mod 48),
{0

{0,n/3—1,n/2—2}7{ ,(n—4)/8—15,n/2 — 10} if m =46 (mod 48),
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(3.7) for 1 <i < (n+12)/32 except i = (n+12)/48, and (3.8) for 1 < i < (n—20)/32—1,
where {(a;,0;) 11 <4 < (n—20)/32 -1} is an ((n — 20)/32)-ext O,—20)/32 of defect

F_{ {(n—4)/16 —4,(n —4)/16 + 6} f m =10 (mod 48),
1 {(n—4)/8—5,(n—4)/8 -5} if m=46 (mod 48).

As shown in Lemma 2.5(2) and (3), such odd sequences do exist since (n —20)/32 = 2,3

(mod 4). Then we have |C| = (7n + 20)/32.

Construction 3.10. The case m = 3 (mod 4) and m > 11, i.e.,, n = 28 (mod 32) and
n > 92. Let C, be the set of {0,6,12} and (3.5) for 1 <i < (n—4)/8 except i = 2, and Cy
be the set of (3.11) for 1 <7 < (n — 28)/32. Further let N,4 be the set of {0, ¢,n/2 — 2},
{0,3,n/441}, (3.12) for 1 <i < (n—28)/32, and (3.8) for 1 < i < (n+4)/32 except i = 3,
where ¢ = 1 or 5 depending on m = 3,15 (mod 16) or m = 7,11 (mod 16) respectively,
and {(a;,;b;) : 1 < i < (n+4)/32, i # 3} is a 3-ext Oq4y/32 of defect {c,3} whose
existence is guaranteed by Lemma 2.9.

Counting the number of codewords in the resulting code C, we have

n—4 n-—28 n+4 Tn-—4
C|l = C, C Nyl =1 = )

Note that there are nine cases (n = 12,20, 28,44, 60, 76,84, 108, 140) to which Con-
structions 3.1-3.10 cannot be applied. This means that we still need to prove that those
cases also satisfy Theorem 1.6 by presenting codewords specifically.

Since it is common to all the nine cases that the resulting code C contains {0,n/4,n/2}

and C, is of form
Co={{0,n/24+1—2i,n+2—4i}:1<i<(n—4)/8}.

We will show that those remaining cases also meet the upper bound on M (n) in The-
orem 1.6. Specifically, n = 12,28, 44,60, 76,84, 108,140 are left behind. We construct

them respectively.

(1) When m=1,ie,n=12, a=1, =1,
C, = {{0,5,10}.
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(2)m=2ie,n=20, a=0, =1,
C, ={{0,13,26},{0,11,22},{0,9, 18} },
Ca= {{07 8, 16}}7
Nog = {{0,1,4}}.

Bym=>5ie,n=44, a=0, =1,
C, = {{0,21,42},{0,19,38},{0,17,34}{0, 15,30} },
Cy={{0,8,16}},
Noqg = {{0,1,4},{0,5,12}}.

(4)m="T71e,n=60, a=1, =1,
C, = {{0,29,58},{0,27,54}, {0, 25,50}, {0, 23,46}, {0, 21,42}, {0, 19, 38}, {0, 17,34} },
C'cl = {{07 8, 16}}7
Noq = {{0,1,4},{0,5,12},{0,11,24}}.

(5)m=9,ie,n=76, a=0, =1,
C, ={{0,37,74},{0,35,70}, {0, 33,66}, {0,31, 62}, {0, 29, 58}, {0, 27, 54},
{0,25,50}, {0,23,46}, {0, 21,42} },
Cy = {{0,8,16},{0,28,56}},
Noa = {{0,1,4},{0,5,12}, {0, 11, 24}, {0, 15,32} }

(6) m =10, ie,n=84, a=1, =1,
C, = {{0,41,82}, {0, 39, 78}, {0, 37, 74}, {0, 35, 70}, {0, 33, 66}, {0, 31, 62}
{0, 29,58}, {0, 27,54}, {0, 25,50}, {0, 23, 46} },
C, = {{0,40,80}, {0, 36,72} }
N,q = {{0,3,8},{0,7,16}, {0, 11, 24}, {0, 15, 32}, {0, 1,20} }

(7)m=13,ie,n=108, a =1, f=1,
C, = {{0,53,106},{0,51,102},{0,49,98}, {0,47,94}, {0, 45,90}, {0, 43,86},
{0, 41,82}, {0, 39,78}, {0, 37,74}, {0, 35, 70}, {0, 33,66}, {0, 31, 62}, {0, 29, 581},
Cy = {{0,8,16}, {0, 28,56}, {0, 44,88} }
No.q =1{{0,1,4},{0,5,12},{0,11,24},{0, 15,32}, {0, 19,40}, {0, 23,48} }.

(8) m=17,ie.,n =140, a =0, =1,
C, = {{0,69, 138}, {0, 67, 134}, {0, 65, 130}, {0, 63, 126}, {0, 61, 122}, {0, 59, 118},
10,57, 114}, {0, 55,110}, {0, 53, 106}, {0, 51, 102}, {0, 49, 98}, {0, 47,94}, {0, 45, 90},
{0,43,86}, {0, 41,82}, {0, 39, 78}, {0, 37, 74} },
Cy = {{0,8,16}, {0, 36,72}, {0, 44, 88}, {0, 60, 120} },
Noa = {{0,1,4},{0,5,12}, {0, 11,24}, {0,15, 32}, {0, 19, 40} }, {0, 23,48}, {0, 27, 56}, {0, 31, 64} }
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4 Conclusion

By using a class of newly constructed special sequences, extended odd sequence with
doubly even integers latently, we are able to obtain an optimal CAC(n) with weight
three for each n = 4,12 (mod 16). Now, combining this result with known results on
constructing optimal CAC’s with weight three, the spectrum of the size of optimal CAC’s
of even length with weight three is completely settled. Unfortunately, the case when n is
odd and weight three is still very far from being solved. We believe Algebra and Number
theory are going to play important roles in tackling this part. Hopefully, this can be done

in near future.
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