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摘 要 

我們對於部份的樹的拉普拉斯特徵值 1 的重數給予一個演算法。令 T 

是一個有點 u 和 u 的點集                                                                其中

deg(      )=2  且  deg(      )=1。對於 T 的剩餘部分，        是有獨一的點     

與      ，                  。則我們有以下的結果 

   

                                                                                          。 

除此之外，我們在論文的最後一章節對 caterpillar 使用我們的演算法

來計算拉普拉斯特徵值 1 的重數。 
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Abstract 

 

   We give a tree algorithm of the multiplicity T(1) of Laplacian 

eigenvalue 1.  Let T  be the tree with a vertex u, and the vertices                   

are all neighbors of u with 

deg(   )=2 and deg(   )=1.    For the remaining parts of T,    is a tree 

with unique vertex   in    adjacent to             . Then 

     

                   

In addition, we apply our algorithm to some special trees called caterpillar 

in our last section. 
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0.1 Introduction

The Laplacian matrix of a graph and its eigenvalues can be used in several

areas of mathematical research and have physical interpretation of various

physical and chemical theories. The adjacency matrix of a graph and its

eigenvalues were much more investigated in the past than the Laplacian ma-

trix [1]. However, according to the Interlacing theorem [2], the eigenvalues of

Laplacian matrix represent more interlacing behavior than the eigenvalues of

adjacency matrix. Regarding the interlacing behavior, the adjacency matrix

only removes vertices, but the Laplacian matrix removes not only vertices

but also edges. Moreover, the Perron-Frobenius theory only shows that the

largest eigenvalue of a connected graph goes down when one removes an edge

or a vertex. But in the Interlacing theorem, it also tells us what happens with

the other eigenvalues. For example, in [3] and [4] the Interlacing theorem can

be applied to show that in some connected graphs, the largest eigenvalues

are exactly 2. In the recent research, Ji-Ming Guo [5] gives an upper bound

of the kth Laplacian eigenvalue of a tree, and A.E.Brouwer, W.H. Haemers

[6] give a lower bound for the Laplacian eigenvalues of a graph. In their

paper, they give us some information between eigenvalues and the degree of

vertices. However in this paper, we want to find the multiplicity of 1 of some
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trees. Note that if the multiplicity of Laplacian eigenvalue one is k then the

(n − k + 1)-th Laplacian eigenvalue λn−k+1 is bound above by 1u. We con-

struct a labeled digraph and give four operations in the digraph. Moreover,

we present an algorithm of a tree to find the multiplicity of 1. Also, we give

some applications of the algorithm.

0.2 Preliminary

An ordered pair G = (V (G), E(G)) is a graph if V (G) is a finite set

and E(G) is a subset of V (G) × V (G) \ { (a, a) | a ∈ V (G) } such that

(u, v) ∈ E(G) iff (v, u) ∈ E(G) for u, v ∈ V (G). The elements in V (G) are

called vertices, and elements in E(G) are called edges of G. The order

of a graph is the cardinality of V (G). Let G = (V (G), E(G)) be a graph.

For (u, v) ∈ E(G), we say that u and v are adjacent. The degree of

u is the number deg(u) of vertices that are adjacent to u. The graph is

connected if for each pair of vertices x, y ∈ V (G), there exists a sequence

of vertices x = u0, u1, u2, . . . , ut = y such that ui and ui+1 are adjacent for

0 ≤ i ≤ t − 1. The components of the graph are its maximal connected

subgraphs. G − u is the graph with vertex set V (G− u) = V (G) \ {u} and

2



edge set E(G− u) = E(G) \ { (u, a), (a, u) | a∈V (G) }.

A triple G∗ = (V (G∗), E(G∗), fG∗) is a labeled digraph if V (G∗) is a

finite set, E(G∗) is a subset of V (G∗) × V (G∗) \ { (a, a) | a∈ V (G∗) } and

fG∗ : V (G∗) → N ∪ {0} is a function. The indegree of u is deg−G∗(u) =

| { b | (b, u)∈E(G∗) } |. The outdegree of u is deg+
G∗(u) = | { c | (u, c)∈

E(G∗) } |.

Example.

1 4 5 9 3

a b c d e

The labeled digraph G∗

V (G∗) = {a, b, c, d, e}, E(G∗) = {(a, b), (b, c), (c, d), (d, e), (e, d), (e, c)}

fG∗(c) = 5, deg−G∗(c) = 2, deg+
G∗(c) = 1

0.3 Laplacian of a simple graph

In this section, let G = (V (G), E(G)) be a graph of order n. The matrices

considered in this section are n×n matrices with rows and columns indexed

by V (G). Set D(G) to be a diagonal matrix such that D(G)xx = deg(x), and
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A(G) to be a matrix with

(A(G))xy =





1 if (x, y) ∈ E(G),

0 else.

A(G) is referred to the adjacency matrix of G. Let L(G) = D(G)−A(G),

L(G) is called the Laplacian matrix (or simply Laplacian) of G, and the

eigenvalues of L(G) are called the Laplacian eigenvalues of G. Since L(G)

is a symmetric matrix, it is diagonalizable. For an eigenvalue λ of L(G),

let mG(λ) be the multiplicity of λ. Denoted by mG(λ) = 0 if λ is not an

eigenvalue of L(G).

0.4 Labeled digraph representing a matrix

Recall that in a graph G, the Laplacian matrix L(G) has nonnegative

integers on the diagonal and values 0,−1 off diagonal. It is natural to give a

name for such a matrix.

Definition 0.4.1. An n × n matrix M has Laplacian type if Mxx ∈ N

∪{0} and Mxy ∈ {0,−1} for x 6= y, x, y ∈ {1, 2, . . . , n}.
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In particular, the Laplacian matrix of a graph G has Laplacian type. Note

that a matrix with Laplacian type in general needs not to be symmetric. Let

M be a Laplacian type with rows and columns indexed by a finite set V .

The labeled digraph G∗
M = (V (G∗

M), E(G∗
M), fG∗M ) associated with M , if

V (G∗
M) = V , E(G∗

M) = { (x, y) | Mxy = −1 } and fG∗M (x) = Mxx. On the

other hand, for each labeled digraph F ∗ = (V (F ∗), E(F ∗), fF ∗) the matrix

MF ∗ with rows and columns indexed by V (F ∗) such that

(MF ∗)xy =





fF ∗(x) if x = y,

−1 if (x, y) ∈ E(F ∗),

0 else

for x, y ∈ V (F ∗), is called the characteristic matrix of F ∗. Besides, in

n × n matrix N , the rank(N) is the maximal number of its linearly inde-

pendent columns, and the nullity(N) is n−rank(N).
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0.5 Four operations

Let H be a connected simple graph , and we build up the vertex labeled

digraph H∗ = (V (H∗), E(H∗), fH∗) associated with L(H)− I corresponding

to H. And in H∗ we can find the multiplicity mH(1) of Laplacian eigenvalue

1 of H directly.

We consider the following four operations σp, τp, ρw,t, γw,t on H∗.

(a) Type I operation σp:

Suppose that fH∗(p) = 0, deg+(p) = 1 and (p, q) ∈ E(H∗). Then we have a

new labeled digraph

σp(H
∗) = (σp(V (H∗)), σp(E(H∗)), σp(fH∗)),

where

σp(V (H∗)) = V (H∗),

σp(E(H∗)) = E(H∗)− { (a, q) | (a, q) ∈ E(H∗), a 6= p },

and

σp(fH∗(u)) =





fH∗(u) if u 6= q,

0 if u = q.
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The new labeled digraph σp(H
∗) = (σp(V (H∗)), σp(E(H∗)), σp(fH∗)) associ-

ated with matrix Mσp(H∗), where

(Mσp(H∗))st =





0 if s = t = q,

0 if t = q, (s, q) ∈ E(H∗), s 6= p,

(L(H)− I)st otherwise.

-

¾

-

¾

-

¾

-

¾

s

k

0 2 1 0

1 0

p q s1 s3

s2 s4

The labeled digraph H∗

7



-

¾

-

¾

-

¾

-

s

0 0 1 0

1 0

p q s1 s3

s2 s4

The new labeled digraph σp(H
∗)

(b) Type II operation τp:

Suppose that fH∗(p) = 0, deg−(p) = 1 and (q, p) ∈ E(H∗). Then we have a

new labeled digraph

τp(H
∗) = (τp(V (H∗)), τp(E(H∗)), τp(fH∗)),

where

τp(V (H∗)) = V (H∗),

τp(E(H∗)) = E(H∗)− { (q, a) | (q, a) ∈ E(H∗), a 6= p },

and

τp(fH∗(u)) =





fH∗(u) if u 6= q,

0 if u = q.
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The new labeled digraph τp(H
∗) = (τp(V (H∗)), τp(E(H∗)), τp(fH∗)) associ-

ated with matrix Mτp(H∗), where

(Mτp(H∗))st =





0 if t = s = q,

0 if s = q, (q, t) ∈ E(H∗), t 6= p,

(L(H)− I)st otherwise.

-

¾

-

¾

-

¾

-

¾

s

k

0 2 1 0

1 0

p q s1 s3

s2 s4

The labeled digraph H∗
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-

¾

-

¾

-

¾¾

k

0 0 1 0

1 0

p q s1 s3

s2 s4

The labeled digraph τp(H
∗)

(c) Type III operation ρw,t:

Suppose that fH∗(w) = 1, (w, t), (t, w) ∈ E(H∗). Then we have

ρw,t(H
∗) = (ρw,t(V (H∗)), ρw,t(E(H∗)), ρw,t(fH∗)),

where

ρw,t(V (H∗)) = V (H∗),

ρw,t(E(H∗)) = E(H∗)− { (t, w) }

and

ρw,t(fH∗(u)) =





fH∗(u) if u 6= t,

fH∗(u)− 1 if u = t.
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The new labeled digraph ρw,t(H
∗) = (ρw,t(V (H∗)), ρw,t(E(H∗)), ρw,t(fH∗))

associated with matrix Mρw,t(H∗), where

(Mρw,t(H∗))mn =





0 if m = t, n = w,

(L(H)− I)tt − 1 if m = n = t,

(L(H)− I)mn otherwise.

-

¾

-

¾

-

¾

-

¾

s

k

0 2 1 1

0

0

a b w t

r

f

The labeled digraph H∗
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-

¾

-

¾

--

¾

s

k

0 2 1 0

0

0

a b w t

r

f

The labeled digraph ρw,t(H
∗)

(d) Type IV operation γw,t:

Suppose that fH∗(w) = 1, deg+(w) = 1 and (w, t) ∈ E(H∗). Then we

have

γw,t(H
∗) = (γw,t(V (H∗)), γw,t(E(H∗)), γw,t(fH∗)),

where

γw,t(V (H∗)) = V (H∗),

γw,t(E(H∗)) = E(H∗)− { (w, t) }

and

γw,t(fH∗(u)) = fH∗(u) ∀u ∈ V (H∗).
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The new labeled digraph γw,t(H
∗) = (γw,t(V (H∗)), γw,t(E(H∗)), γw,t(fH∗))

associated with matrix Mγw,t(H∗), where

(Mγw,t(H∗))mn =





0 if m = w, n = t,

(L(H)− I)mn otherwise.

-

¾

-

¾

-

¾

-

¾

s

k

0 2 1 1

0

0

a b w t

r

f

The labeled digraph H∗
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-

¾

-

¾ ¾

-

¾

s

k

0 2 1 1

0

0

a b w t

r

f

The labeled digraph γw,t(H
∗)

These four kinds of operations are applied to the vertex labeled digraph.

Consider the corresponding characteristic matrices during the processes, we

can also see the operations above as operations on characteristic matrices

preserving the rank. If a vertex labeled digraph associated with a matrix

M of Laplacian can take use of these four operations to becomes a non-edge

labeled subgraph, then the nullity of M is the number of vertices with label

zero. In particular, if M = L(G) − I for some graph G, we can find the

multiplicity mG(1) of Laplacian eigenvalue 1 of G, where I(G) is the identity

matrix,

(I(G))xy =





1 if (x = y),

0 else.

14



˙

0.6 Tree Algorithm

Definition 0.6.1. Let G be a graph. A vertex u ∈ V (G) is called typical

if deg(v) ≤ 2 for any vertex v adjacent to u, and deg(w) = 1 for some w

adjacent to u.

Theorem 0.6.2. Let T be the tree with a typical vertex u, the vertices w1,

w2, w3, . . ., wk, u1, u2, u3, . . ., us are all neighbors of u with deg(wi) = 1

and deg(uj) = 2. For the remaining parts Tj is a tree with a unique vertex tj

in Tj adjacent to uj for 1 ≤ j ≤ s. Then

mT (1) = (k − 1) +
s∑

i=1

mTi
(1).

Proof. Let T ∗ be the labeled digraph associated with L(T )− I, where L(T )

is the Laplacian of T . For fT ∗(w1) = 0, deg+
T ∗(w1) = 1 and (w1, u) ∈

E(T ∗), we can apply Type I operation σw1 to delete all arcs (wj, u) and

(ui, u) for 2 ≤ j ≤ k and 1 ≤ i ≤ s, and to erase the label on u, we

have the new labeled digraph σw1(T
∗). However, since σw1(fT ∗)(w1) = 0,

deg−σw1 (T ∗)(w1) = 1 and (u,w1) ∈ σw1(T
∗), we can apply the operation τw1

15



to delete all arcs (u,wj) and (u, ui) for 2 ≤ j ≤ k and 1 ≤ i ≤ s. Af-

ter that we have a new labeled digraph τw1(σw1(T
∗)). And in τw1(σw1(T

∗)),

we have isolated points w2, w3 . . . wk. And each wi has label 0. Moreover,

since τw1(fσw1 (T ∗))(u1) = 1, and (u1, t1) and (t1, u1) ∈ E(τw1(σw1(T
∗))), we

can apply Type III operation ρu1,t1 to delete the arc (t1, u1) and to decrease

the label on t1 1. Then we have a new labeled digraph ρu1,t1(τw1σw1(T
∗)).

Similarly, because of
∏p−1

i=1 ρui,tiτw1σw1(T
∗) is a new labeled digraph and

f∏p−1
i=1 ρui,tiτw1σw1 (T ∗)(up) = 1, (ui, ti) (ti, ui) ∈ E(

∏p−1
i=1 ρui,tiτw1σw1(T

∗)), we

can apply Type III ρup,tp to delete the arc (tp, up) and to decrease the label

on tp 1 for 2 ≤ p ≤ s. As the results of the preceding operations, we have a

new labeled digraph
∏s

i=1 ρui,tiτw1σw1(T
∗). Since f∏s

i=1 ρui,tiτw1σw1 (T ∗)(u1) = 1

and deg+∏s
i=1 ρui,tiτw1σw1 (T ∗)(u1) = 1 and (u1, t1) ∈ E(

∏s
i=1 ρui,tiτw1σw1(T

∗)), we

can apply Type IV operation γu1,t1 to delete arc (u1, t1). So, we have a new

labeled digraph γu1,t1(
∏p

i=1 ρui,tiτw1σw1(T
∗)). Furthermore, for

∏p−1
j=1 γuj ,tj

∏p
i=1 ρui,tiτw1σw1(T

∗) is a new labeled digraph , f∏p−1
j=1 γuj,tj

∏s
i=1 ρui,tiτw1σw1 (T ∗)

(up) = 1 and deg+

(
∏p−1

j=1 γuj,tj

∏s
i=1 ρui,tiτw1σw1T ∗)

(up) = 1 and (up, tp) ∈ E(
∏p−1

j=1

γuj ,tj

∏s
i=1 ρui,tiτw1σw1(T

∗)), we can apply Type IV operation γup,tp to delete

arc (up, tp) for 2 ≤ p ≤ s. Therefore,
∏s

j=1 γuj ,tj

∏s
i=1 ρui,tiτw1σw1(T

∗) is

a new labeled digraph. Note that in this new labeled digraph
∏s

j=1 γuj ,tj

16



∏s
i=1 ρui,tiτw1σw1(T

∗), we have several components, that are isolated points

w2, w3 . . . wk with label 0, u1, u2 . . . us with label 1 and T
′
d corresponding

to Td, 1 ≤ d ≤ s. Now, let’s consider the characteristic matrix M∏s
j=1 γuj,tj

∏s
i=1 ρui,ti

τw1σw1 (T ∗). Since we have isolated points w2, w3 . . . wk with label 0 in

∏p
j=1 γuj ,tj

∏p
i=1 ρui,tiτw1σw1(T

∗), the row and column corresponding to each

wi are 0 in the characteristic matrix M∏s
j=1 γuj,tj

∏s
i=1 ρui,tiτw1σw1 (T ∗). However,

we have isolated points u1, u2 . . . us with label 1 in
∏s

j=1 γuj ,tj

∏s
i=1 ρui,tiτw1

σw1(T
∗), the row and column corresponding to each ui are 1 in the charac-

teristic matrix M∏s
j=1 γuj,tj

∏s
i=1 ρui,tiτw1 σw1(T ∗). Moreover, each component T

′
d

in
∏s

j=1 γuj ,tj

∏s
i=1 ρui,tiτw1σw1(T

∗) is a labeled digraph of Td induced from

L(Td)− I. This implies

nullity(M∏s
j=1 γuj,tj

∏s
i=1 ρui,tiτw1σw1 (T ∗))

= (k − 1) +
s∑

d=1

nullity(MT
′
d
).

Thus

mT (1) = (k − 1) +
s∑

i=1

mTi
(1).
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0.7 Applications

We need the following lemma about Laplacian eigenvalues of a path Pn of

n vertices in our study. Let Pn be the path with vertex set V (Pn) = {ui | i =

1, 2, ..., n } and edge set E(Pn) = { {ui, ui+1} | i = 1, 2, ..., n− 1 }.

Lemma 0.7.1. [7] Pn has eigenvalues λi(L(Pn)) = 2− 2 cos(π(n− i)/n) for

i ∈ {1, 2, · · · , n}.

By this Lemma, we know that mPn(λ) = 1 for each eigenvalue λ.

Corollary 0.7.2. Pn has eigenvalue 1 if and only if 3 divides n.

Proof. Since λi(L(Pn)) = 2 − 2 cos(π(n − i)/n) = 1 for i ∈ {1, 2, · · · , n},

cos(π(n − i)/n) = 1/2. Moreover, for each eigenvalue λ, mPn(λ) = 1. So,

cos(π/3) = cos(π(n− i)/n). Then π/3 = π(n− i)/n. This implies n = 3i/2.

Thus 3 divides n. Let n = 3d, d ∈ N . If we take i = 2d, then we get

λi(L(Pn)) = λ2d(L(P3d) = 2 − 2 cos(π(3d − 2d)/3d) = 2 − 2 cos(π/3) = 1.

Thus Pn has eigenvalue 1 .

Definition 0.7.3. A caterpillar is a tree CP (n; k1, k2, k3, . . . , kn) with ver-

tex set V = V (Pn) ∪
n⋃

i=1

{uij|1 ≤ j ≤ ki} and edge set E = E(Pn) ∪

18



n⋃
i=1

{{ui, uij|1 ≤ j ≤ ki}, ki ≥ 0.

Theorem 0.7.4. Let H1 = CP (n; k1, k2, k3, . . . , kn) be the graph where k2i =

0 for all i and n is odd, then mH1(1) =
∑(n−1)/2

j=0 k2j+1 − (n + 1)/2.

Proof. Take u1 to be the typical vertex, then by theorem 6.2 we have mH1(1) =

(k1− 1) + mCP (n−2;k3,k4,...,kn)(1). Similarly, when we take u2t+1 be the typical

vertex in CP (n− 2t; k2t+1, k2t+2, . . . , kn), where t ≥ 1. Then

mH1(1) = (k1 − 1) + (k3 − 1) + . . . + CP (1; kn)

= (k1 − 1) + (k3 − 1) + . . . + (kn − 1)

=

(n−1)/2∑
j=0

k2j+1 − (n + 1)/2.

Theorem 0.7.5. Let H2 = CP (n; k1, k2, k3, . . . , kn) be the graph where k2i =

0 for all i and n is even, then mH2(1) =
∑(n−2)/2

j=0 k2j+1 − (n− 2)/2.

Proof. Similarly to theorem 7.4, we take u2t+1 to be the typical vertex in

CP (n− 2t; k2t+1, k2t+2, . . . , kn), where t ≥ 0. Then

mH2(1) = (k1−1)+(k3−1)+ . . .+(kn−3−1)+CP (2; kn−1, kn)

=

(n−2)/2∑
j=0

k2j+1 − (n− 2)/2.
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Theorem 0.7.6. Let H3 = CP (n; 0, 0, . . . , kt, 0, . . . , 0) be the graph where

t ≡ 0 ( mod 3). If n ≡ 1 ( mod 3), then mH3(1) = kt. Otherwise, if n ≡ 0, 2

then mH3(1) = kt − 1.

Proof. Take ut to be the typical vertex, then we have mH3(1) = (kt −

1) + CP (t − 2; 0, 0, . . . , 0) + CP (n − t − 1; 0, 0, . . . , 0). If n ≡ 1 ( mod 3),

then by Corollary 7.3, mCP (n−t−1;0,0,...,0)(1) = 1, and mCP (t−2;0,0,...,0)(1) = 0.

Thus, mH3(1) = (kt − 1) + 1 = kt. Otherwise, if n ≡ 0, 2 ( mod 3) then

mCP (n−t−1;0,0,...,0)(1) = 0, and mCP (t−2;0,0,...,0)(1) = 0. Thus, mH3(1) =

kt − 1.

Theorem 0.7.7. Let H4 = CP (n; 0, 0, . . . , kt, 0, . . . , 0) be the graph where

t ≡ 1 ( mod 3). If n ≡ 2 ( mod 3), then mH4(1) = kt. Otherwise, if n ≡ 0, 1

( mod 3) then mH4(1) = kt − 1.

Proof. Take ut to be the typical vertex, then we have mH4(1) = (kt −

1) + CP (t − 2; 0, 0, . . . , 0) + CP (n − t − 1; 0, 0, . . . , 0). If n ≡ 2 ( mod 3),

then by Corollary 7.3, mCP (n−t−1;0,0,...,0)(1) = 1, and mCP (t−2;0,0,...,0)(1) = 0.

Thus, mH4(1) = (kt − 1) + 1 = kt. Otherwise, if n ≡ 0, 1 ( mod 3) then

mCP (n−t−1;0,0,...,0)(1) = 0, and mCP (t−2;0,0,...,0)(1) = 0. Thus, mH4(1) =

kt − 1.
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Theorem 0.7.8. Let H5 = CP (n; 0, 0, . . . , kt, 0, . . . , 0) be the graph where

t ≡ 2 ( mod 3). If n ≡ 0 ( mod 3), then mH5(1) = kt + 1. Otherwise, if

n ≡ 1, 2 ( mod 3) then mH5(1) = kt.

Proof. Take ut to be the typical vertex, then we have mH5(1) = (kt − 1) +

CP (t − 2; 0, 0, . . . , 0) + CP (n − t − 1; 0, 0, . . . , 0). If n ≡ 0 ( mod 3), then

by Corollary 7.3, mCP (n−t−1;0,0,...,0)(1) = 1, and mCP (t−2;0,0,...,0)(1) = 1. Thus,

mH5(1) = (kt − 1) + 2 = kt + 1. Otherwise, if n ≡ 1, 2 ( mod 3) then

mCP (n−t−1;0,0,...,0)(1) = 0, and mCP (t−2;0,0,...,0)(1) = 1. Thus, mH5(1) = kt.
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