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Stein-Lovász 定 理 的 推 廣 及 其 應 用
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摘摘摘 要要要

Stein-Lovász定理提供一個演算法的方式來找出好的覆

蓋(covering)，並且可以用來處理一些組合問題，找出它們的上

界。為了可以用來處理更多的組合問題，在這篇論文裡，我

們將原先的Stein-Lovász定理作推廣。此外，我們將利用推廣後

的Stein-Lovász定理來處理一些模型，這些模型包括：分離矩

陣(disjunct matrices)、選擇器(selectors)以及系統集(set systems)

，在固定行(column)數的前提之下，分別去找出這些矩陣的最

小列(row)數的上界。其中分離矩陣和選擇器可以應用在匯集設

計(pooling design)上。
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Abstract

The Stein-Lovász theorem provides an algorithmic way to deal with the existence of good

coverings and then to derive some upper bounds related to some combinatorial structures.

In order to deal with more combinatorial problems, an extension of the classical Stein-Lovász

theorem, called the extended Stein-Lovász theorem, will be given in this thesis. Moreover, we

will also discuss applications of the extended Stein-Lovász theorem to various models stated

as follows:

1. Several disjunct matrices (for group testing purpose)

• d-disjunct matrices, (d; z]-disjunct matrices;

• (d, r]-disjunct matrices, (d, r; z]-disjunct matrices;

• (d, r)-disjunct matrices, (d, r; z)-disjunct matrices;

• (d, s out of r]-disjunct matrices, (d, s out of r; z]-disjunct matrices.

2. Several selectors (for group testing purpose)

• (k,m, n)-selectors, (k,m, n; z)-selectors;

• (k,m, c, n)-selectors, (k,m, c, n; z)-selectors.

3. Some set systems (for others)

• uniform (m, t)-splitting systems, uniform (m, t; z)-splitting systems;

• uniform (m, t1, t2)-separating systems, uniform (m, t1, t2; z)-separating systems;

• (v, k, t)-covering designs, (v, k, t; z)-covering designs;

• (v, k, t, p)-lotto designs, (v, k, t, p; z)-lotto designs.
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Chapter 1

Introduction

Let X be a finite set and let Γ be a family of subsets of X. We denote by H = (X,Γ)

the hypergraph having X as the set of vertices and Γ as the set of hyperedges. The degree

of x ∈ X is the number of hyperedges containing x. Denoted by d(H) the maximum degree

in the hypergraph H. For d(H) and other functions to be defined we remove the argument

H if no confusion can arise.

A binary matrix M = (mij) of order |Γ| × |X| can be interpreted as a block-point in-

cidence matrix of the hypergraph H, i.e., the rows of M correspond to the hyperedge set

{E1, E2, ..., E|Γ|}, and the columns correspond to the vertex set {x1, x2, ..., x|X|}, where

mij =

{
1 if the hyperedge Ei contains the vertex xj

0 otherwise.

The weight of a binary matrix M is the number of entries with a “1”.

A subset M ⊆ Γ (the same hyperedge may occur more than once) such that each vertex

belongs to at most k of its members is called a k-matching of the hypergraph H. The

maximum size over all k-matchings of the hypergraph H is denoted by νk(H). A k-matching

is simple if no hyperedge occurs in it more than once. Denoted by
∼
νk the maximum number

of hyperedges in simple k-matchings, then
∼
νk ≤ νk.

A subset T ⊆ X (in this thesis, the same vertex does not occur more than once) such that

|T
⋂
E| ≥ k for any hyperedge E is called a k-cover of the hypergarph H. The minimum

size over all k-covers of the hypergraph H is denoted by τk(H). Thus τ(H) = τ1(H) is the
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minimum size of a vertex cover of the hypergraph H.

A vector (wE1 , wE2 , ..., wE|Γ|) with wEi
≥ 0 for each Ei ∈ Γ is called a fractional matching

of the hypergraph H if each entry of the vector (wE1 , wE2 , ..., wE|Γ|)M is at most 1. A vector

(wx1 , wx2 , ..., wx|X|) with wxi
≥ 0 for each xi ∈ X is called a fractional cover of the hypergraph

H if each entry of the vector M(wx1 , wx2 , ..., wx|X|)
t is at least 1. Define

ν∗(H) = max
∑
Ei∈Γ

wEi
and τ ∗(H) = min

∑
xi∈X

wxi
,

where the extrema are taken over all fractional matchings (wE1 , wE2 , ..., wE|Γ|) and all frac-

tional covers (wx1 , wx2 , ..., wx|X|), respectively. By the duality theorem of linear programming,

we have ν∗ = τ ∗. Then it is easy to see that ν ≤ νk/k ≤ ν∗ = τ ∗ ≤ τk/k.

One of the most natural methods to produce a small vertex cover of a given hypergraph

H is the so-called “Greedy Cover Algorithm”, which we describe as follows:

1. Let x1 be a vertex with maximum degree.

2. Suppose that x1, x2, ..., xi have been already selected,

if x1, x2, ..., xi cover all hyperedges, then we stop; otherwise,

let xi+1 be a vertex which covers the most number of uncovered hyperedges.

Generally, the greedy cover algorithm is not the best, but we can expect that it gives a

rather good estimate. By the greedy cover algorithm, an upper bound for τ(H) was given

by Lovász [10].

Theorem 1. [10] If H is a hypergraph and any greedy cover algorithm produces t covering

vertices, then

t ≤
∼
ν1

1× 2
+

∼
ν2

2× 3
+ · · ·+

∼
νd−1

(d− 1)× d
+

∼
νd

d
.

Use the facts that τ ≤ t and
∼
νi ≤ νi ≤ iν∗ = iτ ∗, we have the following corollary.
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Corollary 1. [10] For a hypergraph H,

τ(H) ≤ (1 +
1

2
+ · · ·+ 1

d
)τ ∗(H) < (1 + ln d)τ ∗(H).

Hence we have the following theorem (for completeness, we also give a proof).

Theorem 2. For a hypergraph H = (X,Γ),

τ(H) <
|X|

minE∈Γ |E|
(1 + ln4),

where 4 = maxx∈X |{E : E ∈ Γ with x ∈ E}|.

Proof. Let M be the block-point incidence matrix of H. Define

wxi
=

1

minE∈Γ |E|

for each xi ∈ X. Then each Ei-entry of the vector M(wx1 , wx2 , ..., wx|X|)
t is

|Ei|
minE∈Γ |E|

≥ 1,

i.e., (wx1 , wx2 , ..., wx|X|) is a fractional cover of H. Hence

τ ∗(H) ≤
∑
xi∈X

wxi
=

|X|
minE∈Γ |E|

.

By Corollary 1,

τ(H) < (1 + ln d)τ ∗(H) ≤ |X|
minE∈Γ |E|

(1 + ln4),

as required.

Similarly, by the greedy cover algorithm, an equivalent statement in terms of the point-

block incidence matrices of the corresponding hypergraphs was given by Stein [11] indepen-

dently.
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Theorem 3. [11] Let X be a finite set of cardinality n, and let Γ = {A1, A2, ..., At} be a

family of subsets of X, where |Ai| ≤ a for all 1 ≤ i ≤ t. Assume that each element of X is

in at least q members of the set Γ. Then there is a subfamily of Γ that covers X and has at

most

n

a
+
t

q
(
1

2
+

1

3
+ · · ·+ 1

a
)

members.

Note that Theorem 3 is closely related to work of Fulkerson and Ryser [9] in the 1-width

of a (0, 1)-matrix. They define the 1-width of such a matrix, A, as the minimum number of

columns that can be selected from A in such a way that each row of the resulting submatrix

has at least one 1. In this terminology, Theorem 3 can be restated as follows:

Theorem 4. [11] Let A be a (0, 1)-matrix with n rows and t columns. Assume that each

row contains at least q 1’s and each column at most a 1’s. Then the 1-width of A is at most

n

a
+
t

q
(
1

2
+

1

3
+ · · ·+ 1

a
).

Theorem 4 was called the Stein-Lovász Theorem in [6] while dealing with the covering

problems in coding theory. The Stein-Lovász theorem was first used in dealing with the upper

bounds for the sizes of (k,m, n)-selectors [2]. Inspired by this work, it was also used in dealing

with the upper bounds for the sizes of (d, r; z]-disjunct matrices [5]. Some more applications

can also be found in [8]. The notion of (k,m, n)-selectors was first introduced by De Bonis,

Gasieniec and Vaccaro in [2], followed by a generalization to the notion of (k,m, c, n)-selectors

[1]. A further generalization of (k,m, c, n)-selectors will be given in Chapter 2.

In this thesis, definitions of several properties over binary matrices are considered in

Chapter 2 including several disjunct matrices, several selectors and some set systems stated

as follows:
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1. Several disjunct matrices

• d-disjunct matrices, (d; z]-disjunct matrices;

• (d, r]-disjunct matrices, (d, r; z]-disjunct matrices;

• (d, r)-disjunct matrices, (d, r; z)-disjunct matrices;

• (d, s out of r]-disjunct matrices, (d, s out of r; z]-disjunct matrices.

2. Several selectors

• (k,m, n)-selectors, (k,m, n; z)-selectors;

• (k,m, c, n)-selectors, (k,m, c, n; z)-selectors.

3. Some set systems

• uniform (m, t)-splitting systems, uniform (m, t; z)-splitting systems;

• uniform (m, t1, t2)-separating systems, uniform (m, t1, t2; z)-separating systems;

• (v, k, t)-covering designs, (v, k, t; z)-covering designs;

• (v, k, t, p)-lotto designs, (v, k, t, p; z)-lotto designs.

Note that the upper bounds of the sizes of several disjunct matrices and selectors are obtained

for group testing purpose, and the upper bounds of the sizes of some set systems are obtained

for others. Some formulas are given in Section 2.4 for later simplification purpose used in

Chapter 4.

In order to deal with the upper bounds for these binary matrices defined in Chapter

2, an extended Stein-Lovász theorem is derived in Chapter 3. Some applications of the

determination of some upper bounds of the sizes of various models are considered in Chapter

4. In Section 4.1 and Section 4.2, the extended Stein-Lovász theorem will be used in dealing

the upper bounds for the sizes of several disjunct matrices and selectors, respectively. Those

5



upper bounds for the sizes of uniform splitting systems, uniform separating systems, covering

designs and lotto designs are given in Section 4.3 respectively.
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Chapter 2

Preliminaries

2.1 Several disjunct matrices

A few types of binary matrices, called disjunct matrices, will be introduced in this section,

followed by corresponding associated parameters. These families of disjunct matrices will be

used as models for pooling designs.

Definition 2.1.1. A binary matrix M of order t×n is called d-disjunct if the union of any d

columns does not contain any other column of M , i.e., for any d+1 columns C1, C2, · · · , Cd+1,

|Cd+1 \
d⋃

i=1

Ci| ≥ 1. The integer t is called the size of the d-disjunct matrix. The minimum

size over all d-disjunct matrices with n columns is denoted by t(n, d).

Definition 2.1.2. A binary matrix M of order t× n is called (d; z]-disjunct if for any d+ 1

columns C1, C2, · · · , Cd+1, |Cd+1 \
d⋃

i=1

Ci| ≥ z. The integer t is called the size of the (d; z]-

disjunct matrix. The minimum size over all (d; z]-disjunct matrices with n columns is denoted

by t(n, d; z].

Definition 2.1.3. A binary matrix M of order t× n is called (d, r]-disjunct if the union of

any d columns does not contain the intersection of any other r columns of M , i.e., for any

d+ r columns C1, C2, · · · , Cd+r, |
r⋂

i=1

Ci \
d+r⋃

i=r+1

Ci| ≥ 1. The integer t is called the size of the

(d, r]-disjunct matrix. The minimum size over all (d, r]-disjunct matrices with n columns is

denoted by t(n, d, r].
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Definition 2.1.4. A binary matrix M of order t × n is called (d, r; z]-disjunct if for any

d+ r columns C1, C2, · · · , Cd+r, |
r⋂

i=1

Ci \
d+r⋃

i=r+1

Ci| ≥ z. The integer t is called the size of the

(d, r; z]-disjunct matrix. The minimum size over all (d, r; z]-disjunct matrices with n columns

is denoted by t(n, d, r; z].

Definition 2.1.5. A binary matrix M of order t × n is called (d, r)-disjunct if the union

of any d columns does not contain the union of any other r columns of M , i.e., for any

d+ r columns C1, C2, · · · , Cd+r, |
r⋃

i=1

Ci \
d+r⋃

i=r+1

Ci| ≥ 1. The integer t is called the size of the

(d, r)-disjunct matrix. The minimum size over all (d, r)-disjunct matrices with n columns is

denoted by t(n, d, r).

Definition 2.1.6. A binary matrix M of order t × n is called (d, r; z)-disjunct if for any

d + r columns C1, C2, · · · , Cd+r, |
r⋃

i=1

Ci \
d+r⋃

i=r+1

Ci| ≥ z. The integer t is called the size of

the (d, r; z)-disjunct matrix. The minimum size over all (d, r; z)-disjunct matrices with n

columns is denoted by t(n, d, r; z).

Definition 2.1.7. A binary matrixM of order t×n is called (d, s out of r]-disjunct, 1 ≤ s ≤ r,

if for any d columns and any other r columns of M , there exists a row index in which none

of the d columns appear and at least s of the r columns do. The integer t is called the size of

the (d, s out of r]-disjunct matrix. The minimum size over all (d, s out of r]-disjunct matrices

with n columns is denoted by t(n, d, r, s].

Definition 2.1.8. A binary matrix M of order t × n is called (d, s out of r; z]-disjunct,

1 ≤ s ≤ r, if for any d columns and any other r columns of M , there exist z row indices

in which none of the d columns appear and at least s of the r columns do. The integer t is

called the size of the (d, s out of r; z]-disjunct matrix. The minimum size over all (d, s out

of r; z]-disjunct matrices with n columns is denoted by t(n, d, r, s; z].

8



Some subclasses of (d, s out of r; z]-disjunct matrices are listed in the following table.

parameters types bounds references
s = r = 1, z = 1 d-disjunct t(d, n) [13]

s = r = 1 (d; z]-disjunct

s = r, z = 1 (d, r]-disjunct t(n, d, r] [14]

s = r (d, r; z]-disjunct t(n, d, r; z] [5]

s = 1, z = 1 (d, r)-disjunct t(n, d, r) [14]

s = 1 (d, r; z)-disjunct t(n, d, r; z)

z = 1 (d, s out of r]-disjunct t(n, d, r, s] [14]

(d, s out of r; z]-disjunct t(n, d, r, s; z]

2.2 Several selectors

A few types of binary matrices, called selectors, will be introduced in this section, followed

by corresponding associated parameters. These families of selectors will be used as models

for pooling designs.

Definition 2.2.1. For integers k,m and n with 1 ≤ m ≤ k ≤ n, a binary matrix M of order

t×n is called a (k,m, n)-selector if any t×k submatrix of M contains a submatrix with each

row weight exactly one, with at least m distinct rows. The integer t is called the size of the

(k,m, n)-selector. The minimum size over all (k,m, n)-selectors is denoted by ts(k,m, n).

Definition 2.2.2. For integers k,m and n with 1 ≤ m ≤ k ≤ n, a binary matrix M of

order t × n is called a (k,m, n; z)-selector if any t × k submatrix of M contains z disjoint

submatrices with each row weight exactly one, with at least m distinct rows each. The integer

t is called the size of the (k,m, n; z)-selector. The minimum size over all (k,m, n; z)-selectors

is denoted by ts(k,m, n; z).

Definition 2.2.3. For integers k,m, c and n with 1 ≤ c ≤ k ≤ n and 1 ≤ m ≤
(

k
c

)
, a

t × n binary matrix M is called a (k,m, c, n)-selector if any t × k submatrix of M contains

a submatrix with each row weight exactly c, with at least m distinct rows. The integer t is

9



called the size of the (k,m, c, n)-selector. The minimum size over all (k,m, c, n)-selectors is

denoted by ts(k,m, c, n).

Definition 2.2.4. For integers k,m, c and n with 1 ≤ c ≤ k ≤ n and 1 ≤ m ≤
(

k
c

)
, a

t×n binary matrix M is called a (k,m, c, n; z)-selector if any t× k submatrix of M contains

z disjoint submatrices with each row weight exactly c, with at least m distinct rows each.

The integer t is called the size of the (k,m, c, n; z)-selector. The minimum size over all

(k,m, c, n; z)-selectors is denoted by ts(k,m, c, n; z).

It is interesting to remark that the notion of (k,m, n)-selectors was first introduced by

De Bonis, Gasieniec and Vaccaro [2], and it was then generalized to the notion of (k,m, c, n)-

selectors [1], which are equivalent to (k,m, 1, n; 1)-selectors and (k,m, c, n; 1)-selectors rsepec-

tively. The upper bounds for the sizes of (k,m, n)-selectors and (k,m, c, n)-selectors were

studied in [2] and in [1] respectively by the Stein-Lovász theorem. The bounds for the sizes

of (k,m, c, n; z)-selectors will be derived by the extended Stein-Lovász theorem (Theorem

3.2.1) in Chapter 4 (Theorem 4.1.12).

Some subclasses of (k,m, c, n; z)-selectors are listed in the following table.

parameters types bounds references
c = 1, z = 1 (k,m, n)-selectors ts(k,m, n) [2, 14]

c = 1 (k,m, n; z)-selectors ts(k,m, n; z)

z = 1 (k,m, c, n)-selectors ts(k,m, c, n) [1]

(k,m, c, n; z)-selectors ts(k,m, c, n; z)

The relationship between various models (disjunct matrices, selectors) and nonadaptive group

testing are listed below.

1. A (d, r]-disjunct matrix can be used to identify the up-to-d positives on the complex

model [4].

2. The property of (h, d)-disjunctness is a necessary condition for identifying the positive

set on the (d, h)-inhibitor model [3].

10



3. There exists a two-state group testing algorithm for finding up-to-d positives out of

n items and that uses a number of tests equal to t + k − 1, where t is the size of a

(k, d+ 1, n)-selector [2].

2.3 Some set systems

Most of the combinatorial structures can be viewed as set systems. We present some

relevant definitions. A set system is a pair (X,Γ), where X is a set of points and Γ is a set

of subsets of X, called blocks. A set sysyem (X,Γ) is called k-uniform if |B| = k for each

B ∈ Γ.

Definition 2.3.1. Let m and t be even integers with 2 ≤ t ≤ m. An uniform (m, t)-splitting

system is a pair (X,Γ) where |X| = m, Γ is a family of m
2

–subsets of X, called blocks such

that for every T ⊆ X with |T | = t, there exists a block B ∈ Γ such that |T
⋂
B| = t

2
, i.e.,

B splits T . The system (X,Γ) is also called a t-splitting system. The minimum number of

blocks over all t-splitting systems is denoted by SP (m, t).

Definition 2.3.2. Let m and t be even integers with 2 ≤ t ≤ m, and let z be a positive

integer. An uniform (m, t; z)-splitting system is a pair (X,Γ) where |X| = m, Γ is a family

of m
2

–subsets of X, called blocks such that for every T ⊆ X with |T | = t, there exist z blocks

B ∈ Γ such that |T
⋂
B| = t

2
, i.e., B splits T . The system (X,Γ) is also called a (t; z)-

splitting system. The minimum number of blocks over all (t; z)-splitting systems is denoted

by SP (m, t; z).

Definition 2.3.3. Letm be an even integer, and let t1, t2 be positive integers with t1+t2 ≤ m.

An uniform (m, t1, t2)-separating system is a pair (X,Γ) where |X| = m, Γ is a family of

m
2

–subsets of X, called blocks such that for every T1, T2 ⊆ X , where |Ti| = ti for i = 1, 2

and |T1

⋂
T2| = ∅, there exists a block B ∈ Γ for which either T1 ⊆ B, T2

⋂
B = ∅ or

T2 ⊆ B, T1

⋂
B = ∅, i.e., T1, T2 are separated by B. The system (X,Γ) is also called a

11



(t1, t2)-separating system. The minimum number of blocks over all (t1, t2)-separating systems

is denoted by SE(m, t1, t2).

Definition 2.3.4. Let m be an even integer, and let t1, t2, z be positive integers with t1+t2 ≤

m. An uniform (m, t1, t2; z)-separating system is a pair (X,Γ) where |X| = m, Γ is a family

of m
2

–subsets of X, called blocks such that for every T1, T2 ⊆ X , where |Ti| = ti for i = 1, 2

and |T1

⋂
T2| = ∅, there exist z blocks B ∈ Γ for which either T1 ⊆ B, T2

⋂
B = ∅ or T2 ⊆ B,

T1

⋂
B = ∅, i.e., T1, T2 are separated by B. The system (X,Γ) is also called a (t1, t2; z)-

separating system. The minimum number of blocks over all (t1, t2; z)-separating systems is

denoted by SE(m, t1, t2; z).

Definition 2.3.5. Let v, k, and t be positive integers with t ≤ k ≤ v. A (v, k, t)-covering

design is a pair (X,Γ) where |X| = v, Γ is a family of k-subsets of X, called blocks such

that for every T ⊆ X with |T | = t, there exists a block B ∈ Γ containing T . The minimum

number of blocks over all (v, k, t)-covering designs is denoted by C(v, k, t).

Definition 2.3.6. Let v, k, t and z be positive integers with t ≤ k ≤ v. A (v, k, t; z)-covering

design is a pair (X,Γ) where |X| = v, Γ is a family of k-subsets of X, called blocks such

that for every T ⊆ X with |T | = t, there exist z blocks B ∈ Γ containing T . The minimum

number of blocks over all (v, k, t; z)-covering designs is denoted by C(v, k, t; z).

Definition 2.3.7. Let v, k, t, and p be positive integers with p ≤ t, k ≤ v. A (v, k, t, p)-lotto

design is a pair (X,Γ) where |X| = v, Γ is a family of k-subsets of X, called blocks such

that for every T ⊆ X with |T | = t, there exists a block B ∈ Γ such that |T
⋂
B| ≥ p. The

minimum number of blocks over all (v, k, t, p)-lotto designs is denoted by L(v, k, t, p).

Definition 2.3.8. Let v, k, t, p and z be positive integers with p ≤ t, k ≤ v. A (v, k, t, p; z)-

lotto design is a pair (X,Γ) where |X| = v, Γ is a family of k-subsets of X, called blocks such

that for every T ⊆ X with |T | = t, there exist z blocks B ∈ Γ such that |T
⋂
B| ≥ p. The

minimum number of blocks over all (v, k, t, p; z)-lotto designs is denoted by L(v, k, t, p; z).

12



Note that when p = t, a (v, k, t, t; z)-lotto design will be reduced to a (v, k, t; z)-covering

design. The related bounds are summarized in the following table.

types bounds references
uniform (m, t)-splitting systems SP (m, t) [8]

uniform (m, t; z)-splitting systems SP (m, t; z)

uniform (m, t1, t2)-separating systems SE(m, t1, t2)

uniform (m, t1, t2; z)-separating systems SE(m, t1, t2; z)

(v, k, t)-covering designs C(v, k, t) [8]

(v, k, t; z)-covering designs C(v, k, t; z)

(v, k, t, p)-lotto designs L(v, k, t, p) [8]

(v, k, t, p; z)-lotto designs L(v, k, t, p; z)

2.4 Some basic counting results

Stein-Lovász theorem and its extension will be used to estimate the upper bounds of the

sizes for pooling designs of various models. In order to give upper bounds for the above

mentioned parameters, the following results involving binomial coefficients will be involved.

Lemma 2.4.3 will be used in showing appropriate values of w for pooling designs of various

models. We need information regarding the maximum of the function

f(w) =

(
n− w
d

)(
n− w − d
r − s

)(
w

s

)
with various r and s when dealing with possible upper bounds for t of various models. Lemmas

2.4.4 ∼ 2.4.6 will be used in the simplifications of the bounds M
v

, and ln a respectively in the

expression M
v

(1 + ln a) found in the Stein-Lovász theorem (Theorem 3.1.1).

Lemma 2.4.1. The function

f(x) =
1 + ln x

x

is strictly decreasing on (1,∞).

13



Proof.

f ′(x) =
1
x
· x− (1 + ln x) · 1

x2
=
− lnx

x2
< 0

for all x ∈ (1,∞), as required.

Lemma 2.4.2. (
a

b

)
≤ ab

b!
≤ (

ea

b
)b

Proof. Since ex =
∑
n≥0

xn

n!
, we have ex ≥ xb

b!
for each x, thus eb ≥ bb

b!
and hence 1 ≤ b!eb

bb
.

Therefore, (
a

b

)
=

a!

(a− b)!b!
=
a(a− 1) · · · (a− b+ 1)

b!
≤ ab

b!
≤ ab

b!
· b!e

b

bb
= (

ea

b
)b,

as required.

Lemma 2.4.3. For any positive integers n, d, r, s with k = d + r ≤ n and 1 ≤ s ≤ r, the

function

f(w) =

(
n− w
d

)(
n− w − d
r − s

)(
w

s

)

gets its maximum at

w =
ns− (k − s)

k
.

Proof. First we note that

f(w) =

(
n− w
d

)(
n− w − d
r − s

)(
w

s

)
=

(n− w)!

(n− w − d)!d!
· (n− w − d)!

(n− w − d− r + s)!(r − s)!
·
(
w

s

)
· (d+ r − s)!

(d+ r − s)!

=

(
n− w

d+ r − s

)(
w

s

)(
d+ r − s

d

)
=

(
n− w
k − s

)(
w

s

)(
k − s
d

)
.

14



Since

f(w + 1) =

(
n− (w + 1)

k − s

)(
w + 1

s

)(
k − s
d

)
= (

(n− w)− (k − s)
n− w

(
n− w
k − s

)
) · ( w + 1

w + 1− s

(
w

s

)
) ·
(
k − s
d

)
= (

(n− w)− (k − s)
n− w

· w + 1

w + 1− s
)f(w),

and

(n− w)− (k − s)
n− w

· w + 1

w + 1− s
=

(w + 1)(n− w)− (w + 1)(k − s)
(w + 1)(n− w)− s(n− w)

= 1

if and only if s(n− w) = (w + 1)(k − s), i.e., w =
ns− (k − s)

k
; hence

(n− w)− (k − s)
n− w

· w + 1

w + 1− s
≥ 1 for w ≤ ns− (k − s)

k
and

(n− w)− (k − s)
n− w

· w + 1

w + 1− s
≤ 1 for w ≥ ns− (k − s)

k
.

As a consequence, we then have

f(w) is increasing for w ≤ ns− (k − s)
k

, and

f(w) is decreasing for w ≥ ns− (k − s)
k

as required.

By taking s = r = c in f(w) =

(
n− w
d

)(
n− w − d
r − s

)(
w

s

)
, we get the quadratic function

g(w) =

(
w

c

)(
n− w
k − c

)
(for selectors). Hence we have the following corollary.

Corollary 2.4.1. The function

g(w) =

(
w

c

)(
n− w
k − c

)
gets its maximum at

w =
nc− (k − c)

k
.
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Lemma 2.4.4. For any positive integers n, d, r, s with k = d+ r ≤ n and 1 ≤ s ≤ r,

n(n− 1) · · · (n− s+ 1)(n− s)(n− s− 1) · · · (n− r − d+ 1)

n(n− k
s
) · · · (n− k + k

s
) · n · (n− k

k−s
) · · · (n− k + k

k−s
)
≤ 1.

Proof. Without loss of generality, let s ≤ k − s and thus 1 ≤ k
k−s
≤ 2 ≤ k

s
. Moreover, we

note that the left hand side is

n(n− 1) · · · (n− s+ 1)(n− s)(n− s− 1) · · · (n− r − d+ 1)

n(n− k
s
) · · · (n− k + k

s
) · n · (n− k

k−s
) · · · (n− k + k

k−s
)

=

∏
0≤i≤r+d−1

(n− i)

∏
0≤i≤s−1

(n− i · k
s

)
∏

0≤j≤k−s−1

(n− j · k

k − s
)

.

To prove this inequality, we will rearrange the terms in the denominator so that
n− t

n− f(t)
≤ 1

for each t with 0 ≤ t ≤ r + d− 1, i.e., we will give a bijection

f : {0, 1, ..., r + d− 1} → {i · k
s
| 0 ≤ i ≤ s− 1}

⋃
{j · k

k − s
| 0 ≤ j ≤ k − s− 1}

with the property that f(t) ≤ t for each t. Note that the element 0 will be counted twice as

0· k
s

and 0· k
k−s

respectively in the range of the function f . Note also that if i· k
s

= i+i· k−s
s
> t,

then s
k−s

< i
t−i

and hence j · k
k−s

= j(1+ s
k−s

) < j(1+ i
t−i

) = j( t
t−i

) = j( t
j
) = t, where i+j = t.

A such function f is defined recursively as follows. For t = 0, 1, 2, let f(0) = 0 k
s
, f(1) =

0 k
k−s

, f(2) = k
k−s

. For 3 ≤ t ≤ r + d− 1, let i (resp. j) be the smallest positive integers such

that i · k
s

(resp. j · k
k−s

)/∈ {f(0), f(1), ..., f(t− 1)} if they exist, it follows that t = i+ j.

1. Let f(t) = i · k
s

if i · k
s
≤ t.

2. Otherwise, we define f(t) = j · k
k−s

.

3. Finally, suppose t is large and there is no such i, note that

n− s
n
≤ n− s− 1

n− k
k−s

≤ · · · ≤ n− r − d+ 1

n− k + k
k−s

and
n− r − d+ 1

n− k + k
k−s

< 1,

we have
n− t

n− (t− s) k
k−s

≤ 1 for all s ≤ t ≤ r + d− 1, we define f(t) = (t− s) k
k−s

.
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Cearly, the function f defined above is 1-1, onto, and f(t) ≤ t for all 0 ≤ t ≤ r + d − 1

as required.

Lemma 2.4.5. For any positive integers n, d, r, s with k = d + r ≤ n and 1 ≤ s ≤ r, let

n′ ≥ n be the smallest positive integer such that w =
n′s

k
is an integer, then

(
n′

d

)(
n′ − d
r

)
(
n′ − w
d

)(
n′ − w − d
r − s

)(
w

s

) ≤ (
k

s
)s(

k

k − s
)k−s(

r

s

) .

Proof. (
n′

d

)(
n′ − d
r

)
(
n′ − w
d

)(
n′ − w − d
r − s

)(
w

s

)

=

(n′)!

(n′ − d)!d!
· (n′ − d)!

(n′ − d− r)!r!
(n′ − w)!

(n′ − w − d)!d!
· (n′ − w − d)!

(n′ − w − d− r + s)!(r − s)!
· w!

(w − s)!s!

=
1
r!
n′(n′ − 1) · · · (n′ − s+ 1)(n′ − s)(n′ − s− 1) · · · (n′ − d− r + 1)

1
(r−s)!s!

w(w − 1) · · · (w − s+ 1)(n′ − w)(n′ − w − 1) · · · (n′ − w − d− r + s+ 1)

=
1(
r
s

) · n′(n′ − 1) · · · (n′ − s+ 1)(n′ − s)(n′ − s− 1) · · · (n′ − d− r + 1)
n′s
k

(n′s
k
− 1) · · · (n′s

k
− s+ 1)(n′ − n′s

k
)(n′ − n′s

k
− 1) · · · (n′ − n′s

k
− d− r + s+ 1)

=
1(
r
s

) · 1

( s
k
)s(k−s

k
)k−s

· n
′(n′ − 1) · · · (n′ − s+ 1)(n′ − s)(n′ − s− 1) · · · (n′ − d− r + 1)

n′(n′ − k
s
) · · · (n′ − k + k

s
) · n′ · (n′ − k

k−s
) · · · (n′ − k + k

k−s
)

≤
(
k

s
)s(

k

k − s
)k−s(

r

s

) (by Lemma 2.4.4).

Lemma 2.4.6. For any positive integers n, d, r, s with k = d + r ≤ n and 1 ≤ s ≤ r, let

n′ ≥ n be the smallest positive integer such that w =
n′s

k
is an integer, then

ln(

(
n′ − w
d

)(
n′ − w − d
r − s

)(
w

s

)
) < k[1 + ln(

n

k
+ 1)] + ln

(
k − s
d

)
.
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Proof. First we note that n′ < n+ k for such n′. Since

(
a

b

)
≤ (

ea

b
)b, we have

(
n′ − w
d

)(
n′ − w − d
r − s

)(
w

s

)
=

(n′ − w)!

(n′ − w − d)!d!
· (n′ − w − d)!

(n′ − w − d− r + s)!(r − s)!
·
(
w

s

)
· (d+ r − s)!

(d+ r − s)!

=

(
n′ − w
d+ r − s

)(
w

s

)(
d+ r − s

d

)
=

(
n′ − w
k − s

)(
w

s

)(
k − s
d

)

≤(
e(n′ − n′s

k
)

k − s
)k−s · (

e(n′s
k

)

s
)s ·
(
k − s
d

)
=(e · n

′

k
)k−s · (en

′

k
)s ·
(
k − s
d

)
=ek(

n′

k
)k ·
(
k − s
d

)
<ek(

n+ k

k
)k ·
(
k − s
d

)
=ek(

n

k
+ 1)k ·

(
k − s
d

)
.

Therefore,

ln(

(
n′ − w
d

)(
n′ − w − d
r − s

)(
w

s

)
)

< ln(ek(
n

k
+ 1)k ·

(
k − s
d

)
) = k[1 + ln(

n

k
+ 1)] + ln

(
k − s
d

)
.
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The substitutions of w for various subclasses are summarized in the following table:

types parameters

d-disjunct s = r = 1, z = 1 w =
n− d
k

w =
n′

k

(d; z]-disjunct s = r = 1 w =
n− d
k

w =
n′

k

(d, r]-disjunct s = r, z = 1 w =
nr − d
k

w =
n′r

k

(d, r; z]-disjunct s = r w =
nr − d
k

w =
n′r

k

(d, r)-disjunct s = 1, z = 1 w =
n− (k − 1)

k
w =

n′

k

(d, r; z)-disjunct s = 1 w =
n− (k − 1)

k
w =

n′

k

(d, s out of r]-disjunct z = 1 w =
ns− (k − s)

k
w =

n′s

k

(d, s out of r; z]-disjunct w =
ns− (k − s)

k
w =

n′s

k

types parameters

(k,m, n)-selectors c = 1, z = 1 w =
n− (k − 1)

k
w =

n′

k

(k,m, n; z)-selectors c = 1 w =
n− (k − 1)

k
w =

n′

k

(k,m, c, n)-selectors z = 1 w =
nc− (k − c)

k
w =

n′c

k

(k,m, c, n; z)-selectors w =
nc− (k − c)

k
w =

n′c

k
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Chapter 3

The Stein-Lovász Theorem and its
extension

3.1 The Stein-Lovász Theorem

We now introduce the Stein-Lovász theorem as follows. The Stein-Lovász theorem was

first used by Stein [11] and Lovász [10] in studying some combinatorial covering problems.

In [6], the authors applied this theorem to some problems in coding theory. The Stein-

Lovász theorem is now stated and the proof is included for completeness [8], with a minor

modification.

Theorem 3.1.1. [8] Let A be a (0,1) matrix with N rows and M columns. Assume that

each row contains at least v ones, and each column at most a ones. Then there exists an

N ×K submatrix C with

K < (
N

a
) + (

M

v
) ln a ≤ (

M

v
)(1 + ln a),

such that C does not contain an all-zero row.

Proof. A constructive approach for producing C is presented. Let Aa = A. We begin by

picking the maximal number Ka of columns from Aa, whose supports are pairwise disjoint and

each column having a ones (perhaps, Ka = 0). Discarding these columns and all rows incident

to one of them, we are left with a ka× (M −Ka) matrix Aa−1, where ka = N −aKa. Clearly,
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the columns of Aa−1 have at most a−1 ones (indeed, otherwise such a column could be added

to the previously discarded set, contradicting its maximality). Now we remove from Aa−1 a

maximal number Ka−1 of columns having a−1 ones and whose supports are pairwise disjoint,

thus getting a ka−1 × (M −Ka −Ka−1) matrix Aa−2, where ka−1 = N − aKa − (a− 1)Ka−1.

The process will terminate after at most a steps. The union of the columns of the discarded

sets form the desired submatrix C with

K =
a∑

i=1

Ki.

The first step of the algorithm gives

ka = N − aKa,

which we rewrite, setting ka+1 = N , as

Ka =
ka+1 − ka

a
.

Analogously,

Ki =
ki+1 − ki

i
, i = 1, ..., a.

Now we derive an upper bound for ki by counting the number of ones in Ai−1 in two ways:

every row of Ai−1 contains at least v ones, and every column at most i− 1 ones, thus

vki ≤ (i− 1)(M −Ka − · · · −Ki) ≤ (i− 1)M.

Furthermore,

K =
a∑

i=1

Ki =
a∑

i=1

ki+1 − ki

i
=
ka+1

a
+

ka

a(a− 1)
+

ka−1

(a− 1)(a− 2)
+ · · ·+ k2

2× 1
− k1

≤ (N/a) + (M/v)(1/a+ 1/(a− 1) + · · ·+ 1/2),

thus giving the result.
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The greedy procedure as shown in the proof constructs the desired submatrix one column

at a time, and hence the algorithm below follows [8].

Algorithm: STEIN-LOVÁSZ(A)

input: A is an N ×M matrix, each column has at most a ones, each row has at least v ones

C ← ∅

while A has at least one row

do


find a column c in A having maximum weight

delete all rows of A that contain a “1” in column c

delete column c from A

output: Returns a submatrix of A with no all-zero row

At each state, a new column is added to the submatrix that maximizes the number of

“new” rows that are yet uncovered. When all rows are covered, the algorithm stops. It

seems quite interesting that we can use the Stein-Lovász theorem to derive bounds for some

combinatorial array [8].

3.2 Extension of The Stein-Lovász Theorem

The Stein-Lovász theorem can be further extended from rows of the resulting submatrix

with weight at least 1 to the case of rows of the resulting submatrix with weight at least

z ≥ 1. The bound can be further improved when A is a matrix with constant row weight

and column weight as well, i.e., in the language of hypergraphs, uniform and regular.

22



Theorem 3.2.1. Let A be a (0,1) matrix of order N×M , and let v, a, z be positive integers.

Assume that each row contains at least v ones, and each column at most a ones. Then there

exists a submatrix C of order N ×K with

K <
v

v − (z − 1)
z(
M

v
)(1 + ln a),

such that each row of C has weight at least z.

More specifically, if the matrix is v-uniform and a-regular, the upper bound can then be

reduced to

K < z(
M

v
)(1 + ln a).

The strategy for the proof of Theorem 3.2.1 is as follows:

1. Use the Stein-Lovász theorem to obtain a submatrix C1 with each row has weight at

least 1.

2. Choose some columns in the matrix A\C1 to combine with the submatrix C1 to form

a submatrix C2 with each row has weight at least 2.

3. Choose some columns in the matrix A\C2 to combine with the submatrix C2 to form

a submatrix C3 with each row has weight at least 3.

4. Step by step, and finally we obtain the desired submatrix C = Cz with each row has

weight at least z.

Note that this upper bound makes sense only if

v

v − (z − 1)
z(
M

v
)(1 + ln a) < M,

i.e.,

z <
v + 1

2 + ln a
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in general, or if

z(
M

v
)(1 + ln a) < M,

i.e.,

z <
v

1 + ln a

for the case of uniform and regular.

Proof. A constructive approach for producing C is presented. Let A1 = A. By the Stein-

Lovász theorem, there exists an N × M1 submatrix C1(= B
′
1 = B1) of A1 with M1 <

M
v

(1 + ln a) such that each row of C1 has weight at least 1.

The algorithm used in the proof of the Stein-Lovász theorem shows that some rows of C1

have weight exactly 1. Let R1 be the set of indices of those rows and |R1| = r1. Let A2 be the

submatrix of order r1 × (M −M1) obtained from A1 by deleting the submatrix C1 and the

i-th row, i /∈ R1 as well. Then each row of A2 contains at least v − 1 ones, and each column

at most a ones. Again, by the Stein-Lovász theorem, there exists an r1 ×M2 submatrix B
′
2

with M2 <
M−M1

v−1
(1 + ln a) such that each row of B

′
2 has weight at least 1. Let B2 be the

matrix of order N ×M2 obtained from B
′
2 by adding the i-th row, i /∈ R1. Let C2 be the

matrix of order N × (M1 +M2) obtained by the union of B1 and B2. Then C2 is a submatrix

of A with each row weight at least 2.

Similarly, there exist some rows of C2 that have weight exactly 2. Let R2 be the set of

indices of those rows and |R2| = r2. Continue in this way, we have:

For 2 ≤ i ≤ z,

1. Ai is a matrix of order ri−1 × (M −
i−1∑
j=1

Mj), and each row contains at least v− (i− 1)

ones, and each column at most a ones.

2. B
′
i is an ri−1×Mi submatrix of Ai with Mi <

M −
i−1∑
j=1

Mj

v − (i− 1)
(1 + ln a), and each row has
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weight at least 1.

For 1 ≤ i ≤ z,

3. Bi is a matrix of order N ×Mi.

4. Ci is an N ×
i∑

j=1

Mj submatrix of A, and each row has weight at least i.

Hence, C = Cz is the submatrix required, that is,

K =
z∑

j=1

Mj = M1 +M2 + · · ·+Mz

<
M

v
(1 + ln a) +

M −M1

v − 1
(1 + ln a) + · · ·+

M −
z−1∑
j=1

Mj

v − (z − 1)
(1 + ln a)

<
M

v
(1 + ln a) +

M

v − 1
(1 + ln a) + · · ·+ M

v − (z − 1)
(1 + ln a)

= M(1 + ln a)(
1

v
+

1

v − 1
+ · · ·+ 1

v − (z − 1)
)

< M(1 + ln a)(
1

v − (z − 1)
+

1

v − (z − 1)
+ · · ·+ 1

v − (z − 1)
)

=
z

v − (z − 1)
M(1 + ln a)

=
v

v − (z − 1)
z(
M

v
)(1 + ln a),

thus gives the result.

More specifically, for the case of uniform and regular, using similar argument as above

with a minor modification. First we note that Nv = Ma by counting the weight of A in two

ways. For 2 ≤ i ≤ z , Ai is a matrix of order ri−1 × (M −
i−1∑
j=1

Mj), and each row contains

exactly v − (i − 1) ones, and each column at most a ones. Moreover, a lower bound for
i−1∑
j=1

Mj is derived by counting the weight of the submatrix Ci−1 in two ways; each row of Ci−1

contains at least i− 1 ones, and each column exactly a ones, thus N(i− 1) ≤ (
i−1∑
j=1

Mj)a, and

hence
M

v
(i− 1) ≤

i−1∑
j=1

Mj for 2 ≤ i ≤ z. Furthermore,
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K =
z∑

j=1

Mj = M1 +M2 + · · ·+Mz

<
M

v
(1 + ln a) +

M −M1

v − 1
(1 + ln a) + · · ·+

M −
z−1∑
j=1

Mj

v − (z − 1)
(1 + ln a)

≤ M

v
(1 + ln a) +

M − M
v

v − 1
(1 + ln a) + · · ·+

M − (z − 1) · M
v

v − (z − 1)
(1 + ln a)

=
M

v
(1 + ln a) +

M

v
(1 + ln a) + · · ·+ M

v
(1 + ln a)

= z(
M

v
)(1 + ln a),

thus gives the result.

Remark 3.2.1. Since this upper bound makes sense only if

z <
v + 1

2 + ln a

in general,

z <
v + 1

2 + ln a
<
v + 1

2
<
v + 2

2
=
v

2
+ 1.

Then

z − 1 <
v

2

and thus

v

v − (z − 1)
= 1 +

z − 1

v − (z − 1)
< 1 + 1 = 2.

Hence

K <
v

v − (z − 1)
z
M

v
(1 + ln a) < 2z

M

v
(1 + ln a)

for general case.
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Similarly, Theorem 3.2.1 can be restated in the language of hypergraphs in the following

corollary. Recall that a subset T ⊆ X such that |T
⋂
E| ≥ z for any hyperedge E is called

a z-cover of the hypergarph H, and the minimum size of a z-cover of the hypergraph H is

denoted by τz(H).

Corollary 3.2.1. For a hypergraph H = (X,Γ) and a positive integer z ≥ 2,

τz(H) <
2z|X|

minE∈Γ |E|
(1 + ln4),

where 4 = maxx∈X |{E : E ∈ Γ with x ∈ E}|.

More specifically, for the case of uniform and regular, we have the following corollary.

Corollary 3.2.2. Let H = (X,Γ) be a v-uniform and a-regular hypergraph with vertex set

X and edge set Γ, then

τz(H) < z
|X|
v

(1 + ln a).

We conjecture that τz(H) ≤ zτ1(H) holds for hypergraphs which are uniform and regular.

However, it is not true in general as shown in the following example. For the hypergraph H

with X = {1, 2, 3, ..., 8} and Γ = {{1, 2, 3}, {4, 5, 6}, {1, 7, 8}}. It is easy to see that {1, 4}

is a 1-cover with minimum size, hence τ1(H) = 2. Similarly, {1, 2, 4, 5, 7} is a 2-cover with

minimum size, hence τ2(H) = 5. This shows that τ2(H) = 5 > 2 · 2 = 2τ1(H).
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Chapter 4

Some Applications of the extended
Stein-Lovász Theorem

The Stein-Lovász theorem was first used in dealing with the upper bounds for the sizes

in the model of (k,m, n)-selecters [2]. Inspired by this work, it was also used in dealing with

the upper bounds for the sizes of (d, r; z]-disjunct matrices [5]. In Section 4.1 and Section

4.2, the extended Stein-Lovász theorem will be used in dealing the upper bounds for the

sizes of several disjunct matrices (Theorem 4.1.1∼ 4.1.8) and selectors (Theorem 4.2.1 ∼

4.2.4), respectively. Those upper bounds for the sizes of uniform splitting systems, uniform

separating systems, covering designs and lotto designs are given in Section 4.3 (Theorem

4.3.1 ∼ 4.3.8) respectively.

4.1 Bounds for several disjunct matrices

Note that upper bounds for the sizes of d-disjunct matrices, (d, r]-disjunct matrices, (d, r)-

disjunct matrices and (d, s out of r]-disjunct matrices were given in [13, 14] by the Lovász

Local Lemma.

Recall that t(n, d) is the minimum size over all d-disjunct matrices with n columns.

Theorem 4.1.1. For any positive integers n and d, if k = d+ 1 ≤ n, then

t(n, d) < k(
k

d
)d{1 + k[1 + ln(

n

k
+ 1)]}.
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Proof. For 1 ≤ w ≤ n − d, let A be the binary matrix of order [

(
n

d

)(
n− d

1

)
] ×

(
n

w

)
with rows and columns indexed by {(D, s) | D ∈

(
[n]

d

)
, s ∈ [n] \D} and V = {v | v ∈

{0, 1}n, wt(v) = w} respectively. The entry of A at the row indexed by the pair (D, s) and

the column indexed by the vector v ∈ V is 1 if the entries of v over D are all zero and the

entry of v at s is one; and 0 otherwise.

Observe that each row of A has weight

(
n− (d+ 1)

w − 1

)
, and each column of A has weight(

n− w
d

)(
w

1

)
. By the Stein-Lovász theorem, there exists a submatrix M of A of order

[

(
n

d

)(
n− d

1

)
]× t having no zero rows, where

t <

(
n

w

)
(
n− (d+ 1)

w − 1

){1 + ln[

(
n− w
d

)(
w

1

)
]} =

(
n

d

)(
n− d

1

)
(
n− w
d

)(
w

1

){1 + ln[

(
n− w
d

)(
w

1

)
]}.

Note that the equality is obtained by counting the weight of A in two ways. It is straight-

forward to show that the columns of M form a d-disjunct matrix of order t × n. We then

have

t(n, d) <

(
n

d

)(
n− d

1

)
(
n− w
d

)(
w

1

){1 + ln[

(
n− w
d

)(
w

1

)
]}.

Let n′ ≥ n be the smallest positive integer such that w =
n′

k
is an integer. We have

(
n′

d

)(
n′ − d

1

)
(
n′ − w
d

)(
w

1

) ≤ k(
k

d
)d

by Lemma 2.4.5 (taking s = r = 1), and

ln(

(
n′ − w
d

)(
w

1

)
) < k[1 + ln(

n

k
+ 1)]
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by Lemma 2.4.6 (taking s = r = 1). Therefore,

t(n, d) ≤ t(n′, d) <

(
n′

d

)(
n′ − d

1

)
(
n′ − w
d

)(
w

1

){1 + ln[

(
n′ − w
d

)(
w

1

)
]}

< k(
k

d
)d{1 + k[1 + ln(

n

k
+ 1)]}

as required.

Recall that t(n, d; z] is the minimum size over all (d; z]-disjunct matrices with n columns.

Theorem 4.1.2. For any positive integers n, d and z, if k = d+ 1 ≤ n, then

t(n, d; z] < zk(
k

d
)d{1 + k[1 + ln(

n

k
+ 1)]}.

Proof. For 1 ≤ w ≤ n − d, let A be the binary matrix of order [

(
n

d

)(
n− d

1

)
] ×

(
n

w

)
with rows and columns indexed by {(D, s) | D ∈

(
[n]

d

)
, s ∈ [n] \D} and V = {v | v ∈

{0, 1}n, wt(v) = w} respectively. The entry of A at the row indexed by the pair (D, s) and

the column indexed by the vector v ∈ V is 1 if the entries of v over D are all zero and the

entry of v at s is one; and 0 otherwise.

Observe that each row of A has weight

(
n− (d+ 1)

w − 1

)
, and each column of A has weight(

n− w
d

)(
w

1

)
. By the extended Stein-Lovász theorem, there exists a submatrix M of A of

order [

(
n

d

)(
n− d

1

)
]× t with each row weight at least z, where

t <

z

(
n

w

)
(
n− (d+ 1)

w − 1

){1 + ln[

(
n− w
d

)(
w

1

)
]} =

z

(
n

d

)(
n− d

1

)
(
n− w
d

)(
w

1

) {1 + ln[

(
n− w
d

)(
w

1

)
]}.

Note that the equality is obtained by counting the weight of A in two ways. It is straightfor-

ward to show that the columns of M form a (d; z]-disjunct matrix of order t × n. We then
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have

t(n, d; z] <

z

(
n

d

)(
n− d

1

)
(
n− w
d

)(
w

1

) {1 + ln[

(
n− w
d

)(
w

1

)
]}.

Let n′ ≥ n be the smallest positive integer such that w =
n′

k
is an integer. We have

(
n′

d

)(
n′ − d

1

)
(
n′ − w
d

)(
w

1

) ≤ k(
k

d
)d

by Lemma 2.4.5 (taking s = r = 1), and

ln(

(
n′ − w
d

)(
w

1

)
) < k[1 + ln(

n

k
+ 1)]

by Lemma 2.4.6 (taking s = r = 1). Therefore,

t(n, d; z] ≤ t(n′, d; z] <

z

(
n′

d

)(
n′ − d

1

)
(
n′ − w
d

)(
w

1

) {1 + ln[

(
n′ − w
d

)(
w

1

)
]}

< zk(
k

d
)d{1 + k[1 + ln(

n

k
+ 1)]}

as required.

Recall that t(n, d, r] is the minimum size over all (d, r]-disjunct matrices with n columns.

Theorem 4.1.3. For any positive integers n, d and r, if k = d+ r ≤ n, then

t(n, d, r] < (
k

r
)r(
k

d
)d{1 + k[1 + ln(

n

k
+ 1)]}.

Proof. For r ≤ w ≤ n− d, let A be the binary matrix of order [

(
n

d

)(
n− d
r

)
]×
(
n

w

)
with

rows and columns indexed by {(D,R) | D ∈
(

[n]

d

)
, R ∈

(
[n]

r

)
with D

⋂
R empty} and
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V = {v | v ∈ {0, 1}n, wt(v) = w} respectively. The entry of A at the row indexed by the pair

(D,R) and the column indexed by the vector v ∈ V is 1 if the entries of v over D are all zero

and the entries of v over R are all one; and 0 otherwise.

Observe that each row of A has weight

(
n− (d+ r)

w − r

)
, and each column of A has weight(

n− w
d

)(
w

r

)
. By the Stein-Lovász theorem, there exists a submatrix M of A of order

[

(
n

d

)(
n− d
r

)
]× t having no zero rows, where

t <

(
n

w

)
(
n− (d+ r)

w − r

){1 + ln[

(
n− w
d

)(
w

r

)
]} =

(
n

d

)(
n− d
r

)
(
n− w
d

)(
w

r

){1 + ln[

(
n− w
d

)(
w

r

)
]}.

Note that the equality is obtained by counting the weight of A in two ways. It is straight-

forward to show that the columns of M form a (d, r]-disjunct matrix of order t×n. We then

have

t(n, d, r] <

(
n

d

)(
n− d
r

)
(
n− w
d

)(
w

r

){1 + ln[

(
n− w
d

)(
w

r

)
]}.

Let n′ ≥ n be the smallest positive integer such that w =
n′r

k
is an integer. We have

(
n′

d

)(
n′ − d
r

)
(
n′ − w
d

)(
w

r

) ≤ (
k

r
)r(
k

d
)d

by Lemma 2.4.5 (taking s = r), and

ln(

(
n′ − w
d

)(
w

r

)
) < k[1 + ln(

n

k
+ 1)]
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by Lemma 2.4.6 (taking s = r). Therefore,

t(n, d, r] ≤ t(n′, d, r] <

(
n′

d

)(
n′ − d
r

)
(
n′ − w
d

)(
w

r

){1 + ln[

(
n′ − w
d

)(
w

r

)
]}

< (
k

r
)r(
k

d
)d{1 + k[1 + ln(

n

k
+ 1)]}

as required.

Recall that t(n, d, r; z] is the minimum size over all (d, r; z]-disjunct matrices with n

columns.

Theorem 4.1.4. [5] For any positive integers n, d, r and z, if k = d+ r ≤ n, then

t(n, d, r; z] < z(
k

r
)r(
k

d
)d{1 + k[1 + ln(

n

k
+ 1)]}.

Proof. For r ≤ w ≤ n− d, let A be the binary matrix of order [

(
n

d

)(
n− d
r

)
]×
(
n

w

)
with

rows and columns indexed by {(D,R) | D ∈
(

[n]

d

)
, R ∈

(
[n]

r

)
with D

⋂
R empty} and

V = {v | v ∈ {0, 1}n, wt(v) = w} respectively. The entry of A at the row indexed by the pair

(D,R) and the column indexed by the vector v ∈ V is 1 if the entries of v over D are all zero

and the entries of v over R are all one; and 0 otherwise.

Observe that each row of A has weight

(
n− (d+ r)

w − r

)
, and each column of A has weight(

n− w
d

)(
w

r

)
. By the extended Stein-Lovász theorem, there exists a submatrix M of A of

order [

(
n

d

)(
n− d
r

)
]× t with each row weight at least z, where

t <

z

(
n

w

)
(
n− (d+ r)

w − r

){1 + ln[

(
n− w
d

)(
w

r

)
]} =

z

(
n

d

)(
n− d
r

)
(
n− w
d

)(
w

r

) {1 + ln[

(
n− w
d

)(
w

r

)
]}.

Note that the equality is obtained by counting the weight of A in two ways. It is straight-

forward to show that the columns of M form a (d, r; z]-disjunct matrix of order t × n. We

33



then have

t(n, d, r] <

z

(
n

d

)(
n− d
r

)
(
n− w
d

)(
w

r

) {1 + ln[

(
n− w
d

)(
w

r

)
]}.

Let n′ ≥ n be the smallest positive integer such that w =
n′r

k
is an integer. We have

(
n′

d

)(
n′ − d
r

)
(
n′ − w
d

)(
w

r

) ≤ (
k

r
)r(
k

d
)d

by Lemma 2.4.5 (taking s = r), and

ln(

(
n′ − w
d

)(
w

r

)
) < k[1 + ln(

n

k
+ 1)]

by Lemma 2.4.6 (taking s = r). Therefore,

t(n, d, r; z] ≤ t(n′, d, r; z] <

z

(
n′

d

)(
n′ − d
r

)
(
n′ − w
d

)(
w

r

) {1 + ln[

(
n′ − w
d

)(
w

r

)
]}

< z(
k

r
)r(
k

d
)d{1 + k[1 + ln(

n

k
+ 1)]}

as required.

Recall that t(n, d, r) is the minimum size over all (d, r)-disjunct matrices with n columns.

Theorem 4.1.5. For any positive integers n, d and r, if k = d+ r ≤ n, then

t(n, d, r) <
k

r
(1 +

1

k − 1
)k−1{1 + k[1 + ln(

n

k
+ 1)] + ln

(
k − 1

d

)
}.

Proof. For 1 ≤ w ≤ n− d, let A be the binary matrix of order [

(
n

d

)(
n− d
r

)
]×
(
n

w

)
with

rows and columns indexed by {(D,R) | D ∈
(

[n]

d

)
, R ∈

(
[n]

r

)
with D

⋂
R empty} and
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V = {v | v ∈ {0, 1}n, wt(v) = w} respectively. The entry of A at the row indexed by the pair

(D,R) and the column indexed by the vector v ∈ V is 1 if the entries of v over D are all zero

and at least one entry of v over R is one; and 0 otherwise.

Observe that each row of A has weight

min(r,w)∑
j=1

(
r

j

)(
n− (d+ r)

w − j

)
, and each column of A

has weight

(
n− w
d

)min(r,w)∑
j=1

(
n− w − d
r − j

)(
w

j

)
. By the Stein-Lovász theorem, there exists a

submatrix M of A of order [

(
n

d

)(
n− d
r

)
]× t having no zero rows, where

t <

(
n

w

)
min(r,w)∑

j=1

(
r

j

)(
n− (d+ r)

w − j

){1 + ln[

(
n− w
d

)min(r,w)∑
j=1

(
n− w − d
r − j

)(
w

j

)
]}

=

(
n

d

)(
n− d
r

)
(
n− w
d

)min(r,w)∑
j=1

(
n− w − d
r − j

)(
w

j

){1 + ln[

(
n− w
d

)min(r,w)∑
j=1

(
n− w − d
r − j

)(
w

j

)
]}.

Note that the equality is obtained by counting the weight of A in two ways. It is straightfor-

ward to show that the columns of M form a (d, r)-disjunct matrix of order t × n. We then

have

t(n, d, r) <

(
n

d

)(
n− d
r

)
(
n− w
d

)min(r,w)∑
j=1

(
n− w − d
r − j

)(
w

j

){1 + ln[

(
n− w
d

)min(r,w)∑
j=1

(
n− w − d
r − j

)(
w

j

)
]}

<

(
n

d

)(
n− d
r

)
(
n− w
d

)(
n− w − d
r − 1

)(
w

1

){1 + ln[

(
n− w
d

)(
n− w − d
r − 1

)(
w

1

)
]},

by Lemma 2.4.1. Let n′ ≥ n be the smallest positive integer such that w =
n′

k
is an integer.
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We have (
n′

d

)(
n′ − d
r

)
(
n′ − w
d

)(
n′ − w − d
r − 1

)(
w

1

) ≤ k

r
(1 +

1

k − 1
)k−1

by Lemma 2.4.5 (taking s = 1), and

ln(

(
n′ − w
d

)(
n′ − w − d
r − 1

)(
w

1

)
) < k[1 + ln(

n

k
+ 1)] + ln

(
k − 1

d

)
by Lemma 2.4.6 (taking s = 1). Therefore,

t(n, d, r) ≤ t(n′, d, r) <

(
n′

d

)(
n′ − d
r

)
(
n′ − w
d

)(
n′ − w − d
r − 1

)(
w

1

){1 + ln[

(
n′ − w
d

)(
n′ − w − d
r − 1

)(
w

1

)
]}

<
k

r
(1 +

1

k − 1
)k−1{1 + k[1 + ln(

n

k
+ 1)] + ln

(
k − 1

d

)
}

as required.

Recall that t(n, d, r; z) is the minimum size over all (d, r; z)-disjunct matrices with n

columns.

Theorem 4.1.6. For any positive integers n, d, r and z, if k = d+ r ≤ n, then

t(n, d, r; z) < z
k

r
(1 +

1

k − 1
)k−1{1 + k[1 + ln(

n

k
+ 1)] + ln

(
k − 1

d

)
}.

Proof. For 1 ≤ w ≤ n− d, let A be the binary matrix of order [

(
n

d

)(
n− d
r

)
]×
(
n

w

)
with

rows and columns indexed by {(D,R) | D ∈
(

[n]

d

)
, R ∈

(
[n]

r

)
with D

⋂
R empty} and

V = {v | v ∈ {0, 1}n, wt(v) = w} respectively. The entry of A at the row indexed by the pair

(D,R) and the column indexed by the vector v ∈ V is 1 if the entries of v over D are all zero

and at least one entry of v over R is one; and 0 otherwise.
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Observe that each row of A has weight

min(r,w)∑
j=1

(
r

j

)(
n− (d+ r)

w − j

)
, and each column of

A has weight

(
n− w
d

)min(r,w)∑
j=1

(
n− w − d
r − j

)(
w

j

)
. By the extended Stein-Lovász theorem,

there exists a submatrix M of A of order [

(
n

d

)(
n− d
r

)
]× t with each row weight at least z,

where

t <

z

(
n

w

)
min(r,w)∑

j=1

(
r

j

)(
n− (d+ r)

w − j

){1 + ln[

(
n− w
d

)min(r,w)∑
j=1

(
n− w − d
r − j

)(
w

j

)
]}

=

z

(
n

d

)(
n− d
r

)
(
n− w
d

)min(r,w)∑
j=1

(
n− w − d
r − j

)(
w

j

){1 + ln[

(
n− w
d

)min(r,w)∑
j=1

(
n− w − d
r − j

)(
w

j

)
]}.

Note that the equality is obtained by counting the weight of A in two ways. It is straight-

forward to show that the columns of M form a (d, r; z)-disjunct matrix of order t × n. We

then have

t(n, d, r; z) <

z

(
n

d

)(
n− d
r

)
(
n− w
d

)min(r,w)∑
j=1

(
n− w − d
r − j

)(
w

j

){1 + ln[

(
n− w
d

)min(r,w)∑
j=1

(
n− w − d
r − j

)(
w

j

)
]}

<

z

(
n

d

)(
n− d
r

)
(
n− w
d

)(
n− w − d
r − 1

)(
w

1

){1 + ln[

(
n− w
d

)(
n− w − d
r − 1

)(
w

1

)
]},

by Lemma 2.4.1. Let n′ ≥ n be the smallest positive integer such that w =
n′

k
is an integer.

We have (
n′

d

)(
n′ − d
r

)
(
n′ − w
d

)(
n′ − w − d
r − 1

)(
w

1

) ≤ k

r
(1 +

1

k − 1
)k−1
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by Lemma 2.4.5 (taking s = 1), and

ln(

(
n′ − w
d

)(
n′ − w − d
r − 1

)(
w

1

)
) < k[1 + ln(

n

k
+ 1)] + ln

(
k − 1

d

)
by Lemma 2.4.6 (taking s = 1). Therefore,

t(n, d, r; z) ≤ t(n′, d, r; z)

<

z

(
n′

d

)(
n′ − d
r

)
(
n′ − w
d

)(
n′ − w − d
r − 1

)(
w

1

){1 + ln[

(
n′ − w
d

)(
n′ − w − d
r − 1

)(
w

1

)
]}

< z
k

r
(1 +

1

k − 1
)k−1{1 + k[1 + ln(

n

k
+ 1)] + ln

(
k − 1

d

)
}

as required.

Recall that t(n, d, r, s] is the minimum size over all (d, s out of r]-disjunct matrices with

n columns.

Theorem 4.1.7. For any positive integers n, d, r and s, with 1 ≤ s ≤ r, if k = d + r ≤ n,

then

t(n, d, r, s] <
(k

s
)s( k

k−s
)k−s(

r
s

) {1 + k[1 + ln(
n

k
+ 1)] + ln

(
k − s
d

)
}.

Proof. For s ≤ w ≤ n− d, let A be the binary matrix of order [

(
n

d

)(
n− d
r

)
]×
(
n

w

)
with

rows and columns indexed by {(D,R) | D ∈
(

[n]

d

)
, R ∈

(
[n]

r

)
with D

⋂
R empty} and

V = {v | v ∈ {0, 1}n, wt(v) = w} respectively. The entry of A at the row indexed by the pair

(D,R) and the column indexed by the vector v ∈ V is 1 if the entries of v over D are all zero

and at least s entries of v over R are one; and 0 otherwise.

Observe that each row of A has weight

min(r,w)∑
j=s

(
r

j

)(
n− (d+ r)

w − j

)
, and each column of A
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has weight

(
n− w
d

)min(r,w)∑
j=s

(
n− w − d
r − j

)(
w

j

)
. By the Stein-Lovász theorem, there exists a

submatrix M of A of order [

(
n

d

)(
n− d
r

)
]× t having no zero rows, where

t <

(
n

w

)
min(r,w)∑

j=s

(
r

j

)(
n− (d+ r)

w − j

){1 + ln[

(
n− w
d

)min(r,w)∑
j=s

(
n− w − d
r − j

)(
w

j

)
]}

=

(
n

d

)(
n− d
r

)
(
n− w
d

)min(r,w)∑
j=s

(
n− w − d
r − j

)(
w

j

){1 + ln[

(
n− w
d

)min(r,w)∑
j=s

(
n− w − d
r − j

)(
w

j

)
]}.

Note that the equality is obtained by counting the weight of A in two ways. It is straight-

forward to show that the columns of M form a (d, s out of r]-disjunct matrix of order t× n.

We then have

t(n, d, r, s] <

(
n

d

)(
n− d
r

)
(
n− w
d

)min(r,w)∑
j=s

(
n− w − d
r − j

)(
w

j

){1 + ln[

(
n− w
d

)min(r,w)∑
j=s

(
n− w − d
r − j

)(
w

j

)
]}

<

(
n

d

)(
n− d
r

)
(
n− w
d

)(
n− w − d
r − s

)(
w

s

){1 + ln[

(
n− w
d

)(
n− w − d
r − s

)(
w

s

)
]},

by Lemma 2.4.1. Let n′ ≥ n be the smallest positive integer such that w =
n′s

k
is an integer.

We have (
n′

d

)(
n′ − d
r

)
(
n′ − w
d

)(
n′ − w − d
r − s

)(
w

s

) ≤ (
k

s
)s(

k

k − s
)k−s(

r

s

)

by Lemma 2.4.5, and

ln(

(
n′ − w
d

)(
n′ − w − d
r − s

)(
w

s

)
) < k[1 + ln(

n

k
+ 1)] + ln

(
k − s
d

)
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by Lemma 2.4.6. Therefore,

t(n, d, r, s] ≤ t(n′, d, r, s]

<

(
n′

d

)(
n′ − d
r

)
(
n′ − w
d

)(
n′ − w − d
r − s

)(
w

s

){1 + ln[

(
n′ − w
d

)(
n′ − w − d
r − s

)(
w

s

)
]}

<
(k

s
)s( k

k−s
)k−s(

r
s

) {1 + k[1 + ln(
n

k
+ 1)] + ln

(
k − s
d

)
}

as required.

Recall that t(n, d, r, s; z] is the minimum size over all (d, s out of r; z]-disjunct matrices

with n columns.

Theorem 4.1.8. For any positive integers n, d, r, s and z, with 1 ≤ s ≤ r, if k = d+ r ≤ n,

then

t(n, d, r, s; z] <
z(k

s
)s( k

k−s
)k−s(

r
s

) {1 + k[1 + ln(
n

k
+ 1)] + ln

(
k − s
d

)
}.

Proof. For s ≤ w ≤ n− d, let A be the binary matrix of order [

(
n

d

)(
n− d
r

)
]×
(
n

w

)
with

rows and columns indexed by {(D,R) | D ∈
(

[n]

d

)
, R ∈

(
[n]

r

)
with D

⋂
R empty} and

V = {v | v ∈ {0, 1}n, wt(v) = w} respectively. The entry of A at the row indexed by the pair

(D,R) and the column indexed by the vector v ∈ V is 1 if the entries of v over D are all zero

and at least s entries of v over R are one; and 0 otherwise.

Observe that each row of A has weight

min(r,w)∑
j=s

(
r

j

)(
n− (d+ r)

w − j

)
, and each column of

A has weight

(
n− w
d

)min(r,w)∑
j=s

(
n− w − d
r − j

)(
w

j

)
. By the extended Stein-Lovász theorem,

there exists a submatrix M of A of order [

(
n

d

)(
n− d
r

)
]× t with each row weight at least z,
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where

t <

z

(
n

w

)
min(r,w)∑

j=s

(
r

j

)(
n− (d+ r)

w − j

){1 + ln[

(
n− w
d

)min(r,w)∑
j=s

(
n− w − d
r − j

)(
w

j

)
]}

=

z

(
n

d

)(
n− d
r

)
(
n− w
d

)min(r,w)∑
j=s

(
n− w − d
r − j

)(
w

j

){1 + ln[

(
n− w
d

)min(r,w)∑
j=s

(
n− w − d
r − j

)(
w

j

)
]}.

Note that the equality is obtained by counting the weight of A in two ways. It is straightfor-

ward to show that the columns of M form a (d, s out of r; z]-disjunct matrix of order t× n.

We then have

t(n, d, r, s; z] <

z

(
n

d

)(
n− d
r

)
(
n− w
d

)min(r,w)∑
j=s

(
n− w − d
r − j

)(
w

j

){1 + ln[

(
n− w
d

)min(r,w)∑
j=s

(
n− w − d
r − j

)(
w

j

)
]}

<

z

(
n

d

)(
n− d
r

)
(
n− w
d

)(
n− w − d
r − s

)(
w

s

){1 + ln[

(
n− w
d

)(
n− w − d
r − s

)(
w

s

)
]},

by Lemma 2.4.1. Let n′ ≥ n be the smallest positive integer such that w =
n′s

k
is an integer.

We have (
n′

d

)(
n′ − d
r

)
(
n′ − w
d

)(
n′ − w − d
r − s

)(
w

s

) ≤ (
k

s
)s(

k

k − s
)k−s(

r

s

)

by Lemma 2.4.5, and

ln(

(
n′ − w
d

)(
n′ − w − d
r − s

)(
w

s

)
) < k[1 + ln(

n

k
+ 1)] + ln

(
k − s
d

)
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by Lemma 2.4.6. Therefore,

t(n, d, r, s; z] ≤ t(n′, d, r, s; z]

<

z

(
n′

d

)(
n′ − d
r

)
(
n′ − w
d

)(
n′ − w − d
r − s

)(
w

s

){1 + ln[

(
n′ − w
d

)(
n′ − w − d
r − s

)(
w

s

)
]}

<
z(k

s
)s( k

k−s
)k−s(

r
s

) {1 + k[1 + ln(
n

k
+ 1)] + ln

(
k − s
d

)
}

as required.

4.2 Bounds for several selectors

The notion of (k,m, n)-selectors was first introduced by De Bonis, Gasieniec and Vaccaro

in [2] , and it was then generalized to the notion of (k,m, c, n)-selectors [1]. It is interesting

to remark that the notions of (k,m, n)-selecters and (k,m, c, n)-selectors are equivalent to

(k,m, 1, n; 1)-selectors and (k,m, c, n; 1)-selectors respectively. Note that upper bounds for

the sizes of (k,m, n)-selectors were also given in [14] by the Lovász Local Lemma.

Following similar arguments in [2] and [1] with a minor modification, upper bounds for

the sizes of several selectors are given below.

Recall that ts(k,m, n) is the minimum size over all (k,m, n)-selectors.

Theorem 4.2.1.

ts(k,m, n) <
k

k −m+ 1
(1 +

1

k − 1
)k−1{1 + k[1 + ln(

n

k
+ 1)] + ln

(
k − 1

k −m

)
}.

Proof. For 1 ≤ w ≤ n − k + 1, let X = {x ∈ {0, 1}n | wt(x) = w} and U = {u ∈ {0, 1}k |

wt(u) = 1}. Moreover, for any A ⊆ U of size r, r = 1, ..., k, and any set S ∈
(

[n]
k

)
, define

EA,S = {x ∈ X : x|S ∈ A}.

Let M be the binary matrix of order [
(

k
k−m+1

)(
n
k

)
]×
(

n
w

)
with rows and columns indexed
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by Γ = {EA,S ⊆ X | A ⊆ U with |U | = k, |A| = k −m+ 1, S ∈
(

[n]
k

)
} and X = {x ∈ {0, 1}n |

wt(x) = w} respectively. The entry of M at the row indexed by the set EA,S and the column

indexed by the vector x ∈ X is 1 if x ∈ EA,S; and 0 otherwise.

Observe that each row of M has weight
(

k−m+1
1

)(
n−k
w−1

)
, and each column of M has weight(

w
1

)(
n−w
k−1

)(
k−1

(k−m+1)−1

)
. By the Stein-Lovász theorem, there exists a submatrix M

′
of M of

order [
(

k
k−m+1

)(
n
k

)
]× t having no zero rows, where

t <

(
n
w

)
(k −m+ 1)

(
n−k
w−1

){1 + ln[

(
w

1

)(
n− w
k − 1

)(
k − 1

k −m

)
]}

=

(
k

k−m+1

)(
n
k

)(
w
1

)(
n−w
k−1

)(
k−1
k−m

){1 + ln[

(
w

1

)(
n− w
k − 1

)(
k − 1

k −m

)
]}.

Note that the equality is obtained by counting the weight of M in two ways.

It suffices to show that the matrix M∗ of order t × n formed by the columns of M
′

is a

(k,m, n)-selector, that is, any submatrix of k arbitrary columns of M∗ contains a submatrix

with each row weight exactly one, with at least m distinct rows.

Let x1, x2, ..., xt be the t rows of M∗ and let T = {x1, x2, ..., xt}. Suppose contradictorily

that there exists a set S ∈
(

[n]
k

)
such that the submatrix M∗|S of M∗ contains a submatrix

with each row weight exactly one, with at most m − 1 distinct rows. Let uj1 , uj2 , ..., ujq

be such rows, with q ≤ m − 1; let A be any subset of U\{uj1 , uj2 , ..., ujq} of cardinality

|A| = k −m + 1, then we have T
⋂
EA,S = ∅, contradicting the fact that M

′
is a matrix of

order [
(

k
k−m+1

)(
n
k

)
]× t having no zero rows. Hence we have

ts(k,m, n) <

(
k

k−m+1

)(
n
k

)(
w
1

)(
n−w
k−1

)(
k−1
k−m

){1 + ln[

(
w

1

)(
n− w
k − 1

)(
k − 1

k −m

)
]}.

Let n′ ≥ n be the smallest positive integer such that w =
n′

k
is an integer. We have

(
k

k−m+1

)(
n′

k

)(
w
1

)(
n′−w
k−1

)(
k−1
k−m

) =

k!
(m−1)!(k−m+1)!

(k−1)!
(m−1)!(k−m)!

·
(

n′

k

)(
w
1

)(
n′−w
k−1

) =
k

k −m+ 1
·

(
n′

k

)(
w
1

)(
n′−w
k−1

)
≤ k

k −m+ 1
(1 +

1

k − 1
)k−1
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by Lemma 2.4.5 (taking s = r = 1), and

ln[

(
w

1

)(
n′ − w
k − 1

)(
k − 1

k −m

)
] < k[1 + ln(

n

k
+ 1)] + ln

(
k − 1

k −m

)
by Lemma 2.4.6 (taking s = r = 1). Therefore, we have

ts(k,m, n) ≤ts(k,m, n′)

<

(
k

k−m+1

)(
n′

k

)(
w
1

)(
n′−w
k−1

)(
k−1
k−m

){1 + ln[

(
w

1

)(
n′ − w
k − 1

)(
k − 1

k −m

)
]}

<
k

k −m+ 1
(1 +

1

k − 1
)k−1{1 + k[1 + ln(

n

k
+ 1)] + ln

(
k − 1

k −m

)
}

as required.

Recall that ts(k,m, n; z) is the minimum size over all (k,m, n; z)-selectors.

Theorem 4.2.2.

ts(k,m, n; z) <
(k −m+ 1)(z − 1) + 1

k −m+ 1
k(1 +

1

k − 1
)k−1{1 + k[1 + ln(

n

k
+ 1)] + ln

(
k − 1

k −m

)
}.

Proof. For 1 ≤ w ≤ n − k + 1, let X = {x ∈ {0, 1}n | wt(x) = w} and U = {u ∈ {0, 1}k |

wt(u) = 1}. Moreover, for any A ⊆ U of size r, r = 1, ..., k, and any set S ∈
(

[n]
k

)
, define

EA,S = {x ∈ X : x|S ∈ A}.

Let M be the binary matrix of order [
(

k
k−m+1

)(
n
k

)
]×
(

n
w

)
with rows and columns indexed

by Γ = {EA,S ⊆ X | A ⊆ U with |U | = k, |A| = k −m+ 1, S ∈
(

[n]
k

)
} and X = {x ∈ {0, 1}n |

wt(x) = w} respectively. The entry of M at the row indexed by the set EA,S and the column

indexed by the vector x ∈ X is 1 if x ∈ EA,S; and 0 otherwise.

Observe that each row of M has weight
(

k−m+1
1

)(
n−k
w−1

)
, and each column of M has weight(

w
1

)(
n−w
k−1

)(
k−1

(k−m+1)−1

)
. By the extended Stein-Lovász theorem, there exists a submatrix M

′
of

M of order [
(

k
k−m+1

)(
n
k

)
]× t with each row weight at least (k −m+ 1)(z − 1) + 1, where
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t <
[(k −m+ 1)(z − 1) + 1]

(
n
w

)
(k −m+ 1)

(
n−k
w−1

) {1 + ln[

(
w

1

)(
n− w
k − 1

)(
k − 1

k −m

)
]}

=
[(k −m+ 1)(z − 1) + 1]

(
k

k−m+1

)(
n
k

)(
w
1

)(
n−w
k−1

)(
k−1
k−m

) {1 + ln[

(
w

1

)(
n− w
k − 1

)(
k − 1

k −m

)
]}.

Note that the equality is obtained by counting the weight of M in two ways.

It suffices to show that the matrix M∗ of order t × n formed by the columns of M
′

is a

(k,m, n; z)-selector, that is, any submatrix of k arbitrary columns of M∗ contains z disjiont

submatrices with each row weight exactly one, with at least m distinct rows each.

Let x1, x2, ..., xt be the t rows of M∗ and let T = {x1, x2, ..., xt}. Suppose contradictorily

that there exists a set S ∈
(

[n]
k

)
such that the submatrix M∗|S of M∗ contains at most

z − 1 disjoint submatrices with each row weight exactly one, with at least m distinct rows.

Moreover, M∗|S contains another disjoint submatrix with at most m− 1 distinct rows with

weight exactly one. Let uj1 , uj2 , ..., ujq be such rows, with q ≤ m − 1; let A be any subset

of U\{uj1 , uj2 , ..., ujq} of cardinality |A| = k −m + 1, then we have |T
⋂
EA,S| < (k −m +

1)(z − 1) + 1, contradicting the fact that M
′

is a matrix of order [
(

k
k−m+1

)(
n
k

)
]× t with each

row weight at least (k −m+ 1)(z − 1) + 1. Hence we have

ts(k,m, n; z) <
[(k −m+ 1)(z − 1) + 1]

(
k

k−m+1

)(
n
k

)(
w
1

)(
n−w
k−1

)(
k−1
k−m

) {1 + ln[

(
w

1

)(
n− w
k − 1

)(
k − 1

k −m

)
]}.

Let n′ ≥ n be the smallest positive integer such that w =
n′

k
is an integer. We have

(
k

k−m+1

)(
n′

k

)(
w
1

)(
n′−w
k−1

)(
k−1
k−m

) =

k!
(m−1)!(k−m+1)!

(k−1)!
(m−1)!(k−m)!

·
(

n′

k

)(
w
1

)(
n′−w
k−1

) =
k

k −m+ 1
·

(
n′

k

)(
w
1

)(
n′−w
k−1

)
≤ k

k −m+ 1
(1 +

1

k − 1
)k−1

by Lemma 2.4.5 (taking s = r = 1), and

ln[

(
w

1

)(
n′ − w
k − 1

)(
k − 1

k −m

)
] < k[1 + ln(

n

k
+ 1)] + ln

(
k − 1

k −m

)
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by Lemma 2.4.6 taking s = r = 1). Therefore, we have

ts(k,m, n; z) ≤ts(k,m, n′; z)

<
[(k −m+ 1)(z − 1) + 1]

(
k

k−m+1

)(
n′

k

)(
w
1

)(
n′−w
k−1

)(
k−1
k−m

) {1 + ln[

(
w

1

)(
n′ − w
k − 1

)(
k − 1

k −m

)
]}

<
(k −m+ 1)(z − 1) + 1

k −m+ 1
k(1 +

1

k − 1
)k−1{1 + k[1 + ln(

n

k
+ 1)] + ln

(
k − 1

k −m

)
}

as required.

Moreover, we will also give better, but nonconstructive upper bounds for the sizes of

(k,m, n; z)-selectors as follows.

Lemma 4.2.1. A (k,m, n; z)-selector M is (m− 1, k −m+ 1; z)-disjunct.

Proof. Suppose not. Then there exist k columns C1, C2, ..., Ck of M such that

|
k⋃

i=m

Ci\
m−1⋃
i=1

Ci| ≤ z − 1,

that is, there exist at most z−1 rows with row weight 1 such that each of them hits exactly one

of the columns Cm, Cm+1, ..., Ck. Hence there exist at most z − 1 disjoint m× k submatrices

of the identity matrix Ik, it contradicts the fact that M is a (k,m, n; z)-selector.

By Lemma 4.2.1, upper bounds for the sizes of (k,m, n; z)-selectors can be obtained from

that of (m− 1, k−m+ 1; z)-disjunct matrices. Hence nonconstructive upper bounds for the

sizes of (k,m, n; z)-selectors are given below.

Corollary 4.2.1.

ts(k,m, n; z) <
zk

k −m+ 1
(1 +

1

k − 1
)k−1{1 + k[1 + ln(

n

k
+ 1)] + ln

(
k − 1

m− 1

)
}.
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Proof. Put

(d, r) = (m− 1, k − (m− 1))

in t(n, d, r; z) as shown in Theorem 4.1.6, we then have

ts(k,m, n; z) <
zk

k −m+ 1
(1 +

1

k − 1
)k−1{1 + k[1 + ln(

n

k
+ 1)] + ln

(
k − 1

m− 1

)
}.

Remark 4.2.1. For the case z = 1, i.e.,

ts(k,m, n; 1) <
k

k −m+ 1
(1 +

1

k − 1
)k−1{1 + k[1 + ln(

n

k
+ 1)] + ln

(
k − 1

m− 1

)
}

was also given in Theorem 4.2.1 followed by a constructive proof in term of the Stein-Lovász

theorem.

Recall that ts(k,m, c, n) is the minimum size over all (k,m, c, n)-selectors.

Theorem 4.2.3. For a =

(
k

c

)
,

ts(k,m, c, n) <
1

a−m+ 1
(
k

c
)c(1 +

1

k − c
)k−c{1 + k[1 + ln(

n

k
+ 1)] + ln

(
a− 1

a−m

)
}.

Proof. For c ≤ w ≤ n − k + c, let X = {x ∈ {0, 1}n | wt(x) = w} and U = {u ∈ {0, 1}k |

wt(u) = c}. Moreover, for any A ⊆ U of size r, r = 1, ...,
(

k
c

)
, and any set S ∈

(
[n]
k

)
, define

EA,S = {x ∈ X : x|S ∈ A}.

Let a =
(

k
c

)
and M be the binary matrix of order [

(
a

a−m+1

)(
n
k

)
] ×

(
n
w

)
with rows and

columns indexed by Γ = {EA,S ⊆ X | A ⊆ U with |U | = a, |A| = a −m + 1, S ∈
(

[n]
k

)
} and

X = {x ∈ {0, 1}n | wt(x) = w} respectively. The entry of M at the row indexed by the set

EA,S and the column indexed by the vector x ∈ X is 1 if x ∈ EA,S; and 0 otherwise.

Observe that each row of M has weight
(

a−m+1
1

)(
n−k
w−c

)
, and each column of M has weight(

w
c

)(
n−w
k−c

)(
a−1

(a−m+1)−1

)
. By the Stein-Lovász theorem, there exists a submatrix M

′
of M of
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order [
(

a
a−m+1

)(
n
k

)
]× t having no zero rows, where

t <

(
n
w

)
(a−m+ 1)

(
n−k
w−c

){1 + ln[

(
w

c

)(
n− w
k − c

)(
a− 1

a−m

)
]}

=

(
a

a−m+1

)(
n
k

)(
w
c

)(
n−w
k−c

)(
a−1
a−m

){1 + ln[

(
w

c

)(
n− w
k − c

)(
a− 1

a−m

)
]}.

Note that the equality is obtained by counting the weight of M in two ways.

It suffices to show that the matrix M∗ of order t × n formed by the columns of M
′

is a

(k,m, c, n)-selector, that is, any submatrix of k arbitrary columns of M∗ contains a submatrix

with each row weight exactly c, with at least m distinct rows.

Let x1, x2, ..., xt be the t rows of M∗ and let T = {x1, x2, ..., xt}. Suppose contradictorily

that there exists a set S ∈
(

[n]
k

)
such that the submatrix M∗|S of M∗ contains a submatrix

with each row weight exactly c, with at most m− 1 distinct rows. Let uj1 , uj2 , ..., ujq be such

rows, with q ≤ m−1; let A be any subset of U\{uj1 , uj2 , ..., ujq} of cardinality |A| = a−m+1,

then we have T
⋂
EA,S = ∅, contradicting the fact that M

′
is a matrix of order [

(
a

a−m+1

)(
n
k

)
]×t

having no zero rows. Hence we have

ts(k,m, c, n) <

(
a

a−m+1

)(
n
k

)(
w
c

)(
n−w
k−c

)(
a−1
a−m

){1 + ln[

(
w

c

)(
n− w
k − c

)(
a− 1

a−m

)
]}.

Let n′ ≥ n be the smallest positive integer such that w =
n′c

k
is an integer. We have

(
a

a−m+1

)(
n′

k

)(
w
c

)(
n′−w
k−c

)(
a−1
a−m

) =

a!
(m−1)!(a−m+1)!

(a−1)!
(m−1)!(a−m)!

·
(

n′

k

)(
w
c

)(
n′−w
k−c

) =
1

a−m+ 1
·

a
(

n′

k

)(
w
c

)(
n′−w
k−c

)
=

1

a−m+ 1
·
(

k
c

)(
n′

k

)(
w
c

)(
n′−w
k−c

) ≤ 1

a−m+ 1
(
k

c
)c(1 +

1

k − c
)k−c

by Lemma 2.4.5 (taking s = r = c), and

ln[

(
w

c

)(
n′ − w
k − c

)(
a− 1

a−m

)
] < k[1 + ln(

n

k
+ 1)] + ln

(
a− 1

a−m

)
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by Lemma 2.4.6 (taking s = r = c). Therefore, we have

ts(k,m, c, n) ≤ts(k,m, c, n′)

<

(
a

a−m+1

)(
n′

k

)(
w
c

)(
n′−w
k−c

)(
a−1
a−m

){1 + ln[

(
w

c

)(
n′ − w
k − c

)(
a− 1

a−m

)
]}

<
1

a−m+ 1
(
k

c
)c(1 +

1

k − c
)k−c{1 + k[1 + ln(

n

k
+ 1)] + ln

(
a− 1

a−m

)
}

as required.

Recall that ts(k,m, c, n; z) is the minimum size over all (k,m, c, n; z)-selectors.

Theorem 4.2.4. For a =

(
k

c

)
,

ts(k,m, c, n; z) <
(a−m+ 1)(z − 1) + 1

a−m+ 1
(
k

c
)c(1+

1

k − c
)k−c{1+k[1+ln(

n

k
+1)]+ln

(
a− 1

a−m

)
}.

Proof. For c ≤ w ≤ n − k + c, let X = {x ∈ {0, 1}n | wt(x) = w} and U = {u ∈ {0, 1}k |

wt(u) = c}. Moreover, for any A ⊆ U of size r, r = 1, ...,
(

k
c

)
, and any set S ∈

(
[n]
k

)
, define

EA,S = {x ∈ X : x|S ∈ A}.

Let a =
(

k
c

)
and M be the binary matrix of order [

(
a

a−m+1

)(
n
k

)
] ×

(
n
w

)
with rows and

columns indexed by Γ = {EA,S ⊆ X | A ⊆ U with |U | = a, |A| = a −m + 1, S ∈
(

[n]
k

)
} and

X = {x ∈ {0, 1}n | wt(x) = w} respectively. The entry of M at the row indexed by the set

EA,S and the column indexed by the vector x ∈ X is 1 if x ∈ EA,S; and 0 otherwise.

Observe that each row of M has weight
(

a−m+1
1

)(
n−k
w−c

)
, and each column of M has weight(

w
c

)(
n−w
k−c

)(
a−1

(a−m+1)−1

)
. By the extended Stein-Lovász theorem, there exists a submatrix M

′
of

M of order [
(

a
a−m+1

)(
n
k

)
]× t with each row weight at least (a−m+ 1)(z − 1) + 1, where

t <
[(a−m+ 1)(z − 1) + 1]

(
n
w

)
(a−m+ 1)

(
n−k
w−c

) {1 + ln[

(
w

c

)(
n− w
k − c

)(
a− 1

a−m

)
]}

=
[(a−m+ 1)(z − 1) + 1]

(
a

a−m+1

)(
n
k

)(
w
c

)(
n−w
k−c

)(
a−1
a−m

) {1 + ln[

(
w

c

)(
n− w
k − c

)(
a− 1

a−m

)
]}.
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Note that the equality is obtained by counting the weight of M in two ways.

It suffices to show that the matrix M∗ of order t × n formed by the columns of M
′

is a

(k,m, c, n; z)-selector, that is, any submatrix of k arbitrary columns of M∗ contains z disjoint

submatrices with each row weight exactly c, with at least m distinct rows each.

Let x1, x2, ..., xt be the t rows of M∗ and let T = {x1, x2, ..., xt}. Suppose contradictorily

that there exists a set S ∈
(

[n]
k

)
such that the submatrix M∗|S of M∗ contains at most

z − 1 disjoint submatrices with each row weight exactly c, with at least m distinct rows

each. Moreover, M∗|S contains another disjoint submatrix with at most m− 1 distinct rows

with weight exactly c. Let uj1 , uj2 , ..., ujq be such rows, with q ≤ m − 1; let A be any

subset of U\{uj1 , uj2 , ..., ujq} of cardinality |A| = a − m + 1, then we have |T
⋂
EA,S| <

(a−m + 1)(z − 1) + 1, contradicting the fact that M
′

is a matrix of order [
(

a
a−m+1

)(
n
k

)
]× t

with each row weight at least (a−m+ 1)(z − 1) + 1. Hence we have

ts(k,m, c, n; z) <
[(a−m+ 1)(z − 1) + 1]

(
a

a−m+1

)(
n
k

)(
w
c

)(
n−w
k−c

)(
a−1
a−m

) {1 + ln[

(
w

c

)(
n− w
k − c

)(
a− 1

a−m

)
]}.

Let n′ ≥ n be the smallest positive integer such that w =
n′c

k
is an integer. We have

(
a

a−m+1

)(
n′

k

)(
w
c

)(
n′−w
k−c

)(
a−1
a−m

) =

a!
(m−1)!(a−m+1)!

(a−1)!
(m−1)!(a−m)!

·
(

n′

k

)(
w
c

)(
n′−w
k−c

) =
1

a−m+ 1
·

a
(

n′

k

)(
w
c

)(
n′−w
k−c

)
=

1

a−m+ 1
·
(

k
c

)(
n′

k

)(
w
c

)(
n′−w
k−c

) ≤ 1

a−m+ 1
(
k

c
)c(1 +

1

k − c
)k−c

by Lemma 2.4.5 (taking s = r = c), and

ln[

(
w

c

)(
n′ − w
k − c

)(
a− 1

a−m

)
] < k[1 + ln(

n

k
+ 1)] + ln

(
a− 1

a−m

)
by Lemma 2.4.6 (taking s = r = c). Therefore, we have
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ts(k,m, c, n; z) ≤ts(k,m, c, n′; z)

<
[(a−m+ 1)(z − 1) + 1]

(
a

a−m+1

)(
n′

k

)(
w
c

)(
n′−w
k−c

)(
a−1
a−m

) {1 + ln[

(
w

c

)(
n′ − w
k − c

)(
a− 1

a−m

)
]}

<
(a−m+ 1)(z − 1) + 1

a−m+ 1
(
k

c
)c(1 +

1

k − c
)k−c{1 + k[1 + ln(

n

k
+ 1)] + ln

(
a− 1

a−m

)
}

as required.

4.3 Bounds for some set systems

Note that upper bounds for the minimum number of blocks of uniform (m, t)-splitting

systems were given in [7] by the Lovász Local Lemma. Note further that upper bounds for

the minimum number of blocks of uniform (m, t)-splitting systems, (v, k, t)-covering designs,

and (v, k, t, p)-lotto designs were given in [8] by the classical Stein-Lovász theorem, the proofs

are included for completeness.

In this section, upper bounds for the minimum number of blocks of uniform (m, t; z)-

splitting systems, uniform (m, t1, t2; z)-separating systems, (v, k, t; z)-covering designs and

(v, k, t, p; z)-lotto designs will be derived by using the extended Stein-Lovász theorem.

Recall that SP (m, t) is the minimum number of blocks of uniform (m, t)-splitting systems.

Theorem 4.3.1. [8]

SP (m, t) <

(
m
m
2

)(
t
t
2

)(
m−t
m
2
− t

2

){1 + ln[

(m
2
t
2

)2

]}.

Proof. Let A be the binary matrix of order
(

m
t

)
×
(

m
m
2

)
with rows and columns indexed by

{T | T ∈
(

[m]
t

)
} and Γ = {B | B ∈

(
[m]
m
2

)
} respectively. The entry of A at the row indexed by

the T and the column indexed by the vector B ∈ Γ is 1 if B splits T ; and 0 otherwise.
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Observe that each row of A has weight

v =

(
t
t
2

)(
m− t
m
2
− t

2

)
,

and each column of A has weight

a =

(m
2
t
2

)(m
2
t
2

)
=

(m
2
t
2

)2

.

By the Stein-Lovász theorem, there exists a submatrix M of A of order
(

m
t

)
×N having no

zero rows, where

N <

(
m
m
2

)
v
{1 + ln a}.

It is straightforward to show that the columns of M form an uniform (m, t)-splitting system

with N blocks, as required.

Recall that SP (m, t; z) is the minimum number of blocks of uniform (m, t; z)-splitting

systems.

Theorem 4.3.2.

SP (m, t; z) <
z
(

m
m
2

)(
t
t
2

)(
m−t
m
2
− t

2

){1 + ln[

(m
2
t
2

)2

]}.

Proof. Let A be the binary matrix of order
(

m
t

)
×
(

m
m
2

)
with rows and columns indexed by

{T | T ∈
(

[m]
t

)
} and Γ = {B | B ∈

(
[m]
m
2

)
} respectively. The entry of A at the row indexed by

the T and the column indexed by the vector B ∈ Γ is 1 if B splits T ; and 0 otherwise.

Observe that each row of A has weight

v =

(
t
t
2

)(
m− t
m
2
− t

2

)
,

and each column of A has weight

a =

(m
2
t
2

)(m
2
t
2

)
=

(m
2
t
2

)2

.
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By the extended Stein-Lovász theorem, there exists a submatrix M of A of order
(

m
t

)
× N

with each row weight at least z, where

N <
z
(

m
m
2

)
v
{1 + ln a}.

It is straightforward to show that the columns of M form an uniform (m, t; z)-splitting system

with N blocks, as required.

For the sizes of uniform (m, t1, t2)-separating systems and uniform (m, t1, t2; z)-separating

systems, we only discuss the case t1 6= t2. Note that the case t1 = t2 can be handled in a

similar way.

Recall that SE(m, t1, t2) is the minimum number of blocks of uniform (m, t1, t2)-separating

systems.

Theorem 4.3.3.

SE(m, t1, t2) <

(
m
m
2

)
2
(

m−(t1+t2)
m
2
−t1

){1 + ln[2

(
m
2

t1

)(
m
2

t2

)
]}.

Proof. Let A be the binary matrix of order [
(

m
t1

)(
m−t1

t2

)
] ×

(
m
m
2

)
with rows and columns in-

dexed by {(T1, T2) | T1 ∈
(

[m]
t1

)
, T2 ∈

(
[m]
t2

)
with T1

⋂
T2 empty } and Γ = {B | B ∈

(
[m]
m
2

)
}

respectively. The entry of A at the row indexed by the pair (T1, T2) and the column indexed

by the vector B ∈ Γ is 1 if B separates the pair (T1, T2); and 0 otherwise.

Observe that each row of A has weight

v =

(
m− (t1 + t2)

m
2
− t1

)
+

(
m− (t1 + t2)

m
2
− t2

)
= 2

(
m− (t1 + t2)

m
2
− t1

)
,

and each column of A has weight

a =

(
m
2

t1

)(
m
2

t2

)
+

(
m
2

t2

)(
m
2

t1

)
= 2

(
m
2

t1

)(
m
2

t2

)
.
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By the Stein-Lovász theorem, there exists a submatrix M of A of order [
(

m
t1

)(
m−t1

t2

)
] × N

having no zero rows, where

N <

(
m
m
2

)
v
{1 + ln a}.

It is straightforward to show that the columns of M form an uniform (m, t1, t2)-splitting

system with N blocks, as required.

Recall that SE(m, t1, t2; z) is the minimum number of blocks of uniform (m, t1, t2; z)-

separating systems.

Theorem 4.3.4.

SE(m, t1, t2; z) <
z
(

m
m
2

)
2
(

m−(t1+t2)
m
2
−t1

){1 + ln[2

(
m
2

t1

)(
m
2

t2

)
]}.

Proof. Let A be the binary matrix of order [
(

m
t1

)(
m−t1

t2

)
] ×

(
m
m
2

)
with rows and columns in-

dexed by {(T1, T2) | T1 ∈
(

[m]
t1

)
, T2 ∈

(
[m]
t2

)
with T1

⋂
T2 empty } and Γ = {B | B ∈

(
[m]
m
2

)
}

respectively. The entry of A at the row indexed by the pair (T1, T2) and the column indexed

by the vector B ∈ Γ is 1 if B separates the pair (T1, T2); and 0 otherwise.

Observe that each row of A has weight

v =

(
m− (t1 + t2)

m
2
− t1

)
+

(
m− (t1 + t2)

m
2
− t2

)
= 2

(
m− (t1 + t2)

m
2
− t1

)
,

and each column of A has weight

a =

(
m
2

t1

)(
m
2

t2

)
+

(
m
2

t2

)(
m
2

t1

)
= 2

(
m
2

t1

)(
m
2

t2

)
.

By the extended Stein-Lovász theorem, there exists a submatrix M of A of order [
(

m
t1

)(
m−t1

t2

)
]×

N with each row weight at least z, where

N <
z
(

m
m
2

)
v
{1 + ln a}.
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It is straightforward to show that the columns of M form an uniform (m, t1, t2; z)-splitting

system with N blocks, as required.

Recall that C(v, k, t) is the minimum number of blocks of uniform (v, k, t)-covering de-

signs.

Theorem 4.3.5. [8]

C(v, k, t) <

(
v
t

)(
k
t

){1 + ln

(
k

t

)
}.

Proof. Let A be the binary matrix of order
(

v
t

)
×
(

v
k

)
with rows and columns indexed by

{T | T ∈
(

[v]
t

)
} and Γ = {B | B ∈

(
[v]
k

)
} respectively. The entry of A at the row indexed by

the T and the column indexed by the vector B ∈ Γ is 1 if T ⊆ B; and 0 otherwise.

Observe that each row of A has weight
(

v−t
k−t

)
, and each column of A has weight

(
k
t

)
. By

the Stein-Lovász theorem, there exists a submatrix M of A of order
(

v
t

)
×N having no zero

rows, where

N <

(
v
k

)(
v−t
k−t

){1 + ln

(
k

t

)
} =

(
v
t

)(
k
t

){1 + ln

(
k

t

)
}.

Note that the equality is obtained by counting the weight of A in two ways. It is straight-

forward to show that the columns of M form an (v, k, t)-covering design with N blocks, as

required.

Recall that C(v, k, t; z) is the minimum number of blocks of uniform (v, k, t; z)-covering

designs.

Theorem 4.3.6.

C(v, k, t; z) <
z
(

v
t

)(
k
t

) {1 + ln

(
k

t

)
}.
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Proof. Let A be the binary matrix of order
(

v
t

)
×
(

v
k

)
with rows and columns indexed by

{T | T ∈
(

[v]
t

)
} and Γ = {B | B ∈

(
[v]
k

)
} respectively. The entry of A at the row indexed by

the T and the column indexed by the vector B ∈ Γ is 1 if T ⊆ B; and 0 otherwise.

Observe that each row of A has weight
(

v−t
k−t

)
, and each column of A has weight

(
k
t

)
. By

the extended Stein-Lovász theorem, there exists a submatrix M of A of order
(

v
t

)
×N with

each row weight at least z, where

N <
z
(

v
k

)(
v−t
k−t

){1 + ln

(
k

t

)
} =

z
(

v
t

)(
k
t

) {1 + ln

(
k

t

)
}.

Note that the equality is obtained by counting the weight of A in two ways. It is straight-

forward to show that the columns of M form an (v, k, t; z)-covering design with N blocks, as

required.

Recall that L(v, k, t, p) is the minimum number of blocks of uniform (v, k, t, p)-lotto de-

signs.

Theorem 4.3.7. [8]

L(v, k, t, p) <

(
v

k

)
min(t,k)∑

i=p

(
t

i

)(
v − t
k − i

){1 + ln[

min(t,k)∑
i=p

(
k

i

)(
v − k
t− i

)
]}.

Proof. Let A be the binary matrix of order
(

v
t

)
×
(

v
k

)
with rows and columns indexed by

{T | T ∈
(

[v]
t

)
} and Γ = {B | B ∈

(
[v]
k

)
} respectively. The entry of A at the row indexed by

the T and the column indexed by the vector B ∈ Γ is 1 if |T
⋂
B| ≥ p; and 0 otherwise.

Observe that each row of A has weight

min(t,k)∑
i=p

(
t

i

)(
v − t
k − i

)
,
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and each column of A has weight

min(t,k)∑
i=p

(
k

i

)(
v − k
t− i

)
.

By the Stein-Lovász theorem, there exists a submatrix M of A of order
(

v
t

)
× N having no

zero rows, where

N <

(
v

k

)
min(t,k)∑

i=p

(
t

i

)(
v − t
k − i

){1 + ln[

min(t,k)∑
i=p

(
k

i

)(
v − k
t− i

)
]}.

It is straightforward to show that the columns of M form an (v, k, t, p)-lotto design with N

blocks, as required.

Recall that L(v, k, t, p; z) is the minimum number of blocks of uniform (v, k, t, p; z)-lotto

designs.

Theorem 4.3.8.

L(v, k, t, p; z) <

z

(
v

k

)
min(t,k)∑

i=p

(
t

i

)(
v − t
k − i

){1 + ln[

min(t,k)∑
i=p

(
k

i

)(
v − k
t− i

)
]}.

Proof. Let A be the binary matrix of order
(

v
t

)
×
(

v
k

)
with rows and columns indexed by

{T | T ∈
(

[v]
t

)
} and Γ = {B | B ∈

(
[v]
k

)
} respectively. The entry of A at the row indexed by

the T and the column indexed by the vector B ∈ Γ is 1 if |T
⋂
B| ≥ p; and 0 otherwise.

Observe that each row of A has weight

min(t,k)∑
i=p

(
t

i

)(
v − t
k − i

)
,

and each column of A has weight

min(t,k)∑
i=p

(
k

i

)(
v − k
t− i

)
.
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By the extended Stein-Lovász theorem, there exists a submatrix M of A of order
(

v
t

)
× N

with each row weight at least z, where

N <

z

(
v

k

)
min(t,k)∑

i=p

(
t

i

)(
v − t
k − i

){1 + ln[

min(t,k)∑
i=p

(
k

i

)(
v − k
t− i

)
]}.

It is straightforward to show that the columns of M form an (v, k, t, p; z)-lotto design with

N blocks, as required.
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Chapter 5

Conclusion

In this thesis, we derive the extended Stein-Lovász theorem to deal with more combina-

torial problems. From the strategy of the proof in Theorem 3.2.1, it is easy to see that the

extended Stein-Lovász theorem also provides an algorithmic way to dealing with the exis-

tence of good coverings and then deriving some upper bounds related to some combinatorial

structures in Chapter 4. Note that most of these upper bounds obtained in Chapter 4 are

roughly the same as those derived by the basic probabilistic method including the Lovász Lo-

cal Lemma (see Appendix). Thus, due to its constructive nature, the Stein-Lovász theorem

can be regarded as a de-randomized algorithm for the probabilistic methods. The relationship

between the (extended) Stein-Lovász theorem and the Lovász Local Lemma deserve further

study.
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Appendix

Some upper bounds for the sizes of several disjunct matrices and selectors obtained by

the Lovász Local Lemma and the classical Stein-Lovász theorem are survey in the following.

d-disjunct matrices

t(d, n) ≤ (d+ 1)(1 +
1

d
)d{1 + ln[(d+ 1)(

(
n

d+1

)
−
(

n−d−1
d+1

)
)]} [13]

(by the Lovász Local Lemma)

(d, r]-disjunct matrices

t(n, d, r] ≤ (1 +
d

r
)r(1 +

r

d
)d{1 + ln[

(
n
d

)(
n−d

r

)
−
(

n−(d+r)
d

)(
n−(d+r)−d

r

)
]} [14]

(by the Lovász Local Lemma)

(d, r; z]-disjunct matrices

t(n, d, r; z] < z(1 +
d

r
)r(1 +

r

d
)d{1 + k[1 + ln(n

k
+ 1)]}, k = d+ r [5]

(by the classical Stein-Lovász theorem)

(d, r)-disjunct matrices

t(n, d, r) ≤ (1 +
d

r
)(1 +

r

d
)

d
r {1 + ln[

(
n
d

)(
n−d

r

)
−
(

n−(d+r)
d

)(
n−(d+r)−d

r

)
]} [14]

(by the Lovász Local Lemma)

(d, s out of r]-disjunct matrices

t(n, d, r, s] ≤
1 + ln[

(
n
d

)(
n−d

r

)
−
(

n−(d+r)
d

)(
n−(d+r)−d

r

)
]

fd,r,s(p)
for all 0 < p < 1,

where fd,r,s(p) = (1− p)d[1−
s−1∑
i=0

(
r

i

)
pi(1− p)r−i] [14]

(by the Lovász Local Lemma)
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(k,m, n)-selectors

ts(k,m, n) <
ek2

k −m+ 1
ln
n

k
+
ek(2k − 1)

k −m+ 1
[2]

(by the classical Stein-Lovász theorem)

ts(k,m, n) ≤ m(
k
m

)
m!

[k(1 +
1

k − 1
)k−1]{1 + ln[

(
n
k

)
−
(

n−k
k

)
]} [14]

(by the Lovász Local Lemma)

(k,m, c, n)-selectors

ts(k,m, c, n) <
ekc+1

z
lndn

k
e − ewkc

z
ln c+

ekc

z
(c+m+ k + z − 1),

where z =
(

k
c

)
−m+ 1 [1]

(by the classical Stein-Lovász theorem)
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