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Abstract

The Stein-Lovasz theorem provides an algorithmic way to deal with the existence of good
coverings and then to derive some upper bounds related to some combinatorial structures.
In order to deal with more combinatorial problems, an extension of the classical Stein-Lovasz
theorem, called the extended Stein-Lovasz theorem, will be given in this thesis. Moreover, we
will also discuss applications of the extended Stein-Lovész theorem to various models stated

as follows:

1. Several disjunct matrices (for group testing purpose)

d-disjunct matrices, (d; z]-disjunct matrices;

(d, r]-disjunct matrices, (d, r; z]-disjunct matrices;

(d, r)-disjunct matrices, (d, r; z)-disjunct matrices;

(d, s out of r|-disjunct matrices, (d, s out of r; z]-disjunct matrices.
2. Several selectors (for group testing purpose)
e (k,m,n)-selectors, (k, m,n; z)-selectors;
o (k,m,c,n)-selectors, (k, m,c,n;z)-selectors.
3. Some set systems (for others)
e uniform (m, t)-splitting systems, uniform (m, ¢; z)-splitting systems;
e uniform (m, tq,t2)-separating systems, uniform (m, t1, t; z)-separating systems;
e (v, k, t)-covering designs, (v, k, t; z)-covering designs;

e (v, k, t,p)-lotto designs, (v, k, t,p; z)-lotto designs.
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Chapter 1

Introduction

Let X be a finite set and let I" be a family of subsets of X. We denote by H = (X,T)
the hypergraph having X as the set of vertices and I' as the set of hyperedges. The degree
of € X is the number of hyperedges containing x. Denoted by d(H) the maximum degree
in the hypergraph H. For d(H) and other functions to be defined we remove the argument
H if no confusion can arise.

A binary matrix M = (m;;) of order |I'| x |X| can be interpreted as a block-point in-
cidence matriz of the hypergraph H, i.e., the rows of M correspond to the hyperedge set

{E, B, ..., Ejr }, and the columns correspond to the vertex set {x1, zs, ..., zx|}, where

ey — { (1) if the hyperedge E; contains the vertex x;
otherwise.
The weight of a binary matrix M is the number of entries with a “17.

A subset M C T (the same hyperedge may occur more than once) such that each vertex
belongs to at most k of its members is called a k-matching of the hypergraph H. The
maximum size over all k-matchings of the hypergraph H is denoted by v (H). A k-matching
is simple if no hyperedge occurs in it more than once. Denoted by v, the maximum number
of hyperedges in simple k-matchings, then vy, < vj.

A subset T C X (in this thesis, the same vertex does not occur more than once) such that

T E| > k for any hyperedge E is called a k-cover of the hypergarph H. The minimum

size over all k-covers of the hypergraph H is denoted by 74(H). Thus 7(H) = 71(H) is the

1



minimum size of a vertex cover of the hypergraph H.

A vector (wg,, wg,, ..., wEm) with wg, > 0 for each E; € I' is called a fractional matching
of the hypergraph H if each entry of the vector (wg,, wg,, ..., wg, )M is at most 1. A vector
(Wayy Wy, vy Wy ) With w,, > 0 for each z; € X is called a fractional cover of the hypergraph

H if each entry of the vector M (wy,, Wy, ..., wx‘Xl)t is at least 1. Define

where the extrema are taken over all fractional matchings (wg,, wg,, ..., wp,,) and all frac-
tional covers (W, , Wy, ..., Wy, ), Tespectively. By the duality theorem of linear programming,
we have v* = 7*. Then it is easy to see that v < v /k < v* =7 < 7. /k.

One of the most natural methods to produce a small vertex cover of a given hypergraph

H is the so-called “Greedy Cover Algorithm”, which we describe as follows:
1. Let 1 be a vertex with maximum degree.

2. Suppose that x, xs, ..., z; have been already selected,
if x1, 29, ..., x; cover all hyperedges, then we stop; otherwise,

let x;11 be a vertex which covers the most number of uncovered hyperedges.

Generally, the greedy cover algorithm is not the best, but we can expect that it gives a
rather good estimate. By the greedy cover algorithm, an upper bound for 7(H) was given

by Lovasz [10].

Theorem 1. [10] If H is a hypergraph and any greedy cover algorithm produces ¢ covering

vertices, then
Z 2 Va1 Va
x2 2x3  "ta-ixd d

Use the facts that 7 < t and v; < v; < iv* = 17", we have the following corollary.



Corollary 1. [10] For a hypergraph H,

7(H) < (1+%+---+ 2)7*(1‘[) < (1+1Ind)r"(H).

Hence we have the following theorem (for completeness, we also give a proof).
Theorem 2. For a hypergraph H = (X,T),

Ry

minEep |E|

T(H) < (I+1InA),

where A = max,ex |[{F: E € I' with z € E}|.

Proof. Let M be the block-point incidence matrix of H. Define

1

YT minger | B]

7

for each x; € X. Then each E;-entry of the vector M (wy,, ws,, ..., wxlx‘)t is

| Ei] .
minEep|E| -

L.e., (Wey, Way, oy Wapy) I8 & fractional cover of H. Hence

; | X
T™(H) < g Wy, =
(H) < = minger |F|
By Corollary 1,
X
T(H) < (14+Ind)7"(H) < — 1+InA),
() < (1+nd)r" () € —= 21+ Iy

as required.

]

Similarly, by the greedy cover algorithm, an equivalent statement in terms of the point-
block incidence matrices of the corresponding hypergraphs was given by Stein [11] indepen-

dently.



Theorem 3. [11] Let X be a finite set of cardinality n, and let I' = {4, Ay, ..., A} be a
family of subsets of X, where |A;| < a for all 1 <14 <t¢. Assume that each element of X is
in at least ¢ members of the set I'. Then there is a subfamily of I'" that covers X and has at
most

t1 1

A e
a q2 3

SHES

)

members.

Note that Theorem 3 is closely related to work of Fulkerson and Ryser [9] in the 1-width
of a (0,1)-matrix. They define the I-width of such a matrix, A, as the minimum number of
columns that can be selected from A in such a way that each row of the resulting submatrix

has at least one 1. In this terminology, Theorem 3 can be restated as follows:

Theorem 4. [11] Let A be a (0, 1)-matrix with n rows and ¢ columns. Assume that each

row contains at least ¢ 1’s and each column at most a 1’s. Then the 1-width of A is at most

t(1+1+ +1>
B 1l

n
a

Theorem 4 was called the Stein-Lovasz Theorem in [6] while dealing with the covering
problems in coding theory. The Stein-Lovasz theorem was first used in dealing with the upper
bounds for the sizes of (k, m,n)-selectors [2]. Inspired by this work, it was also used in dealing
with the upper bounds for the sizes of (d, r; z]-disjunct matrices [5]. Some more applications
can also be found in [8]. The notion of (k, m,n)-selectors was first introduced by De Bonis,
Gasieniec and Vaccaro in [2], followed by a generalization to the notion of (k, m, ¢, n)-selectors
[1]. A further generalization of (k,m, ¢, n)-selectors will be given in Chapter 2.

In this thesis, definitions of several properties over binary matrices are considered in

Chapter 2 including several disjunct matrices, several selectors and some set systems stated

as follows:



1. Several disjunct matrices

e d-disjunct matrices, (d; z]-disjunct matrices;

e (d,r]-disjunct matrices, (d,r; z]-disjunct matrices;

e (d,r)-disjunct matrices, (d,r; z)-disjunct matrices;

e (d,s out of r|-disjunct matrices, (d, s out of r; z]-disjunct matrices.
2. Several selectors

e (k,m,n)-selectors, (k, m,n; z)-selectors;

o (k,m,c,n)-selectors, (k,m,c,n; z)-selectors.

3. Some set systems

uniform (m, t)-splitting systems, uniform (m, t; z)-splitting systems;

uniform (m, t1, t2)-separating systems, uniform (m, t1, ty; z)-separating systems;

(v, k, t)-covering designs, (v, k, t; z)-covering designs;

(v, k, t, p)-lotto designs, (v, k,t, p; z)-lotto designs.

Note that the upper bounds of the sizes of several disjunct matrices and selectors are obtained
for group testing purpose, and the upper bounds of the sizes of some set systems are obtained
for others. Some formulas are given in Section 2.4 for later simplification purpose used in
Chapter 4.

In order to deal with the upper bounds for these binary matrices defined in Chapter
2, an extended Stein-Lovész theorem is derived in Chapter 3. Some applications of the
determination of some upper bounds of the sizes of various models are considered in Chapter
4. In Section 4.1 and Section 4.2, the extended Stein-Lovasz theorem will be used in dealing

the upper bounds for the sizes of several disjunct matrices and selectors, respectively. Those



upper bounds for the sizes of uniform splitting systems, uniform separating systems, covering

designs and lotto designs are given in Section 4.3 respectively.



Chapter 2

Preliminaries

2.1 Several disjunct matrices

A few types of binary matrices, called disjunct matrices, will be introduced in this section,
followed by corresponding associated parameters. These families of disjunct matrices will be

used as models for pooling designs.

Definition 2.1.1. A binary matrix M of order ¢ X n is called d-disjunct if the union of any d

columns Soes not contain any other column of M, i.e., for any d+1 columns Cy,Cs, - -+, Cyi1,

|Cay1 \ U C;| > 1. The integer ¢ is called the size of the d-disjunct matrix. The minimum

size ove;:zill d-disjunct matrices with n columns is denoted by ¢(n, d).

Definition 2.1.2. A binary matride of order t x n is called (d; z|-disjunct if for any d + 1

columns Cp,Cy, -+, Cyy1, |Cayr \ UC’J > 2. The integer ¢ is called the size of the (d; z]-
i=1

disjunct matrix. The minimum size over all (d; z]-disjunct matrices with n columns is denoted

by t(n,d; z].

Definition 2.1.3. A binary matrix M of order ¢ x n is called (d, r|-disjunct if the union of

any d columns does not contain the intersection of any other r columns of M, i.e., for any

T d+r
d+r columns C1,Co, -+, Cyyr, | ﬂ Ci \ U C;| > 1. The integer t is called the size of the
i=1 i=r+1

(d, r]-disjunct matrix. The minimum size over all (d, r|-disjunct matrices with n columns is

denoted by t(n,d,r].



Definition 2.1.4. A binary matrix M of order ¢ x n is called (d,r;z]-disjunct if for any

r d+r
d+r columns C1,Co, -+, Cyyr, | ﬂ Ci \ U C;| > z. The integer t is called the size of the
i=1 i=r+1

(d, r; z]-disjunct matrix. The minimum size over all (d, r; z]-disjunct matrices with n columns

is denoted by t(n,d,r; z].

Definition 2.1.5. A binary matrix M of order ¢ x n is called (d,r)-disjunct if the union

of any d columns does not contain the union of any other r columns of M, i.e., for any

T d+r
d+ r columns Cy,Cy, -+, Cayp, | U Ci \ U C;] > 1. The integer ¢ is called the size of the
i=1 i=r+1

(d, r)-disjunct matrix. The minimum size over all (d, r)-disjunct matrices with n columns is

denoted by t(n,d,r).

Definition 2.1.6. A binary matrix M of order t x n is called (d,r; z)-disjunct if for any
7 d+r

d + r columns C,Cy, -+, Cyyr, |UCZ \ U C;| > z. The integer ¢ is called the size of
i=1 i=rt1
the (d,r;z)-disjunct matrix. The minimum size over all (d,r; z)-disjunct matrices with n

columns is denoted by t(n,d,r; z).

Definition 2.1.7. A binary matrix M of order ¢t xn is called (d, s out of r]-disjunct, 1 < s <,
if for any d columns and any other r columns of M, there exists a row index in which none
of the d columns appear and at least s of the r columns do. The integer t is called the size of
the (d, s out of r]-disjunct matrix. The minimum size over all (d, s out of r]-disjunct matrices

with n columns is denoted by t(n,d,r, s].

Definition 2.1.8. A binary matrix M of order t x n is called (d,s out of r;z]-disjunct,
1 < s < r,if for any d columns and any other r columns of M, there exist z row indices
in which none of the d columns appear and at least s of the r columns do. The integer t is
called the size of the (d, s out of r; z]-disjunct matrix. The minimum size over all (d, s out

of r; z]-disjunct matrices with n columns is denoted by t(n,d,r, s; z].



Some subclasses of (d, s out of r; z]-disjunct matrices are listed in the following table.

parameters types bounds references
s=r=1,z=1 d-disjunct t(d,n) [13]
s=r=1 (d; z]-disjunct
s=r,z=1 (d, r]-disjunct t(n,d,r] [14]
s=r (d, r; z]-disjunct t(n,d,r; 2] 5]
s=1,z=1 (d, r)-disjunct t(n,d,r) [14]
s=1 (d, r; z)-disjunct t(n,d,r;z)
z=1 (d, s out of r|-disjunct  t(n,d,r,s] [14]

(d, s out of r; z]-disjunct  t(n,d,r,s; z]

2.2 Several selectors

A few types of binary matrices, called selectors, will be introduced in this section, followed
by corresponding associated parameters. These families of selectors will be used as models

for pooling designs.

Definition 2.2.1. For integers k, m and n with 1 < m < k < n, a binary matrix M of order
t x n is called a (k, m, n)-selector if any t x k submatrix of M contains a submatrix with each
row weight exactly one, with at least m distinct rows. The integer t is called the size of the

(k,m,n)-selector. The minimum size over all (k, m,n)-selectors is denoted by ts(k, m,n).

Definition 2.2.2. For integers k,m and n with 1 < m < k < n, a binary matrix M of
order t x n is called a (k,m,n;z)-selector if any ¢t x k submatrix of M contains z disjoint
submatrices with each row weight exactly one, with at least m distinct rows each. The integer
t is called the size of the (k, m,n; z)-selector. The minimum size over all (k, m, n; z)-selectors

is denoted by ts(k,m,n; z).

Definition 2.2.3. For integers k,m,c and n with 1 < ¢ < k <nand 1 < m < ('Z), a
t X n binary matrix M is called a (k, m, c,n)-selector if any ¢t x k submatrix of M contains

a submatrix with each row weight exactly ¢, with at least m distinct rows. The integer ¢ is

9



called the size of the (k,m,c,n)-selector. The minimum size over all (k, m, ¢, n)-selectors is

denoted by ts(k,m,c,n).

Definition 2.2.4. For integers k,m,c and n with 1 < ¢ < k <nand 1 < m < (lz), a
t X n binary matrix M is called a (k, m, ¢, n; z)-selector if any t x k submatrix of M contains
z disjoint submatrices with each row weight exactly ¢, with at least m distinct rows each.
The integer ¢ is called the size of the (k,m,c,n;z)-selector. The minimum size over all

(k, m, c,n; z)-selectors is denoted by ts(k,m,c,n; z).

It is interesting to remark that the notion of (k,m,n)-selectors was first introduced by
De Bonis, Gasieniec and Vaccaro [2], and it was then generalized to the notion of (k, m, ¢, n)-
selectors [1], which are equivalent to (k, m, 1, n; 1)-selectors and (k, m, ¢, n; 1)-selectors rsepec-
tively. The upper bounds for the sizes of (k,m,n)-selectors and (k,m,c, n)-selectors were
studied in [2] and in [1] respectively by the Stein-Lovasz theorem. The bounds for the sizes
of (k,m,c,n;z)-selectors will be derived by the extended Stein-Lovész theorem (Theorem
3.2.1) in Chapter 4 (Theorem 4.1.12).

Some subclasses of (k,m, ¢, n; z)-selectors are listed in the following table.

parameters  types bounds references

c=1,2=1 (k,m,n)-selectors ts(k,m,n) (2, 14]

c=1 (k,m,n; z)-selectors ts(k,m,n; z)

z=1 (k,m, c,n)-selectors ts(k,m,c,n) 1]
(k,m,c,n; z)-selectors  ts(k,m,c,n; z)

The relationship between various models (disjunct matrices, selectors) and nonadaptive group

testing are listed below.

1. A (d,r]-disjunct matrix can be used to identify the up-to-d positives on the complex
model [4].
2. The property of (h, d)-disjunctness is a necessary condition for identifying the positive

set on the (d, h)-inhibitor model [3].

10



3. There exists a two-state group testing algorithm for finding up-to-d positives out of
n items and that uses a number of tests equal to ¢t + k — 1, where ¢t is the size of a

(k,d + 1,n)-selector [2].
2.3 Some set systems

Most of the combinatorial structures can be viewed as set systems. We present some
relevant definitions. A set system is a pair (X, "), where X is a set of points and I is a set
of subsets of X, called blocks. A set sysyem (X,T") is called k-uniform if |B| = k for each

Bel.

Definition 2.3.1. Let m and ¢ be even integers with 2 < ¢t < m. An uniform (m,t)-splitting
system is a pair (X,I") where |X| = m, I' is a family of %-subsets of X, called blocks such
that for every ' C X with |T'| = ¢, there exists a block B € T such that |T(\B| = £, i.e,,
B splits T. The system (X,T) is also called a t-splitting system. The minimum number of

blocks over all t-splitting systems is denoted by SP(m,t).

Definition 2.3.2. Let m and ¢ be even integers with 2 < t < m, and let z be a positive
integer. An wuniform (m,t; z)-splitting system is a pair (X,I") where |X| = m, I' is a family
of F—subsets of X, called blocks such that for every 7' C X with |T'| = ¢, there exist z blocks
B € I' such that [T’ B| = £, i.e., B splits T. The system (X,I") is also called a (t; z)-
splitting system. The minimum number of blocks over all (¢; z)-splitting systems is denoted

by SP(m,t; z).

Definition 2.3.3. Let m be an even integer, and let ¢1, 5 be positive integers with ¢+t < m.
An uniform (m,ty,ty)-separating system is a pair (X,T") where | X| = m, ' is a family of
Zsubsets of X, called blocks such that for every 71,7, C X , where |T;| = t; for i = 1,2
and |T; (T»| = 0, there exists a block B € T for which either 7} C B, To(\B = () or

T, C B, T'(B =0, i.e., Ty, Ty are separated by B. The system (X,T") is also called a

11



(t1,t2)-separating system. The minimum number of blocks over all (1, t2)-separating systems

is denoted by SE(m,ty,ts).

Definition 2.3.4. Let m be an even integer, and let ¢, t5, 2 be positive integers with ¢; +t5 <
m. An uniform (m,tq,ts; z)-separating system is a pair (X, I") where |X| =m, I' is a family
of Z-subsets of X, called blocks such that for every 71,7, C X , where |T;| = t; for i = 1,2
and |T} () T»| = 0, there exist z blocks B € T for which either T} C B, T, (V1B =0 or T, C B,
Ti(\B = 0, ie., Ti, Ty are separated by B. The system (X,T') is also called a (t1,ts; 2)-
separating system. The minimum number of blocks over all (1, t9; z)-separating systems is

denoted by SE(m,ty,ts; 2).

Definition 2.3.5. Let v, k, and ¢ be positive integers with t < k < v. A (v, k,t)-covering
design is a pair (X,I') where |X| = v, I is a family of k-subsets of X, called blocks such
that for every T' C X with |T'| = t, there exists a block B € I' containing 7". The minimum

number of blocks over all (v, k, t)-covering designs is denoted by C(v, k, ).

Definition 2.3.6. Let v, k,t and z be positive integers with ¢t < k <wv. A (v, k, t; z)-covering
design is a pair (X,I") where |X| = v, ' is a family of k-subsets of X, called blocks such
that for every T' C X with |T'| = t, there exist z blocks B € I' containing 7". The minimum

number of blocks over all (v, k, t; z)-covering designs is denoted by C(v, k,t; z).

Definition 2.3.7. Let v, k, ¢, and p be positive integers with p < t, k < wv. A (v, k,t, p)-lotto
design is a pair (X,I") where |X| = v, ' is a family of k-subsets of X, called blocks such
that for every T' C X with |T'| = t, there exists a block B € I' such that |T'( B| > p. The

minimum number of blocks over all (v, k, t, p)-lotto designs is denoted by L(v, k,t, p).

Definition 2.3.8. Let v, k,t,p and z be positive integers with p < t, k < wv. A (v,k,t,p;2)-
lotto design is a pair (X, I") where | X| = v, I is a family of k-subsets of X, called blocks such
that for every T' C X with |T'| = ¢, there exist z blocks B € I' such that |T'( B| > p. The

minimum number of blocks over all (v, k, ¢, p; z)-lotto designs is denoted by L(v, k,t, p; z).

12



Note that when p = ¢, a (v, k, t,; z)-lotto design will be reduced to a (v, k, t; z)-covering

design. The related bounds are summarized in the following table.

types bounds references
uniform (m, t)-splitting systems SP(m,t) 8]
uniform (m, ¢; z)-splitting systems SP(m,t;z)

uniform (m, ¢y, ty)-separating systems SE(m,ty,ts)

uniform (m, 11, to; z)-separating systems SE(m,ty,ts;2)

(v, k, t)-covering designs C(v, k,t) 8]

(v, k, t; z)-covering designs C(v, k,t; z)

(v, k, t, p)-lotto designs L(v, k,t,p) 8]

(v, k, t, p; z)-lotto designs L(v,k,t,p; 2)

2.4 Some basic counting results

Stein-Lovasz theorem and its extension will be used to estimate the upper bounds of the
sizes for pooling designs of various models. In order to give upper bounds for the above
mentioned parameters, the following results involving binomial coefficients will be involved.
Lemma 2.4.3 will be used in showing appropriate values of w for pooling designs of various

models. We need information regarding the maximum of the function

o= ("))

with various r and s when dealing with possible upper bounds for ¢ of various models. Lemmas
2.4.4 ~ 2.4.6 will be used in the simplifications of the bounds %, and In a respectively in the

expression (1 + Ina) found in the Stein-Lovasz theorem (Theorem 3.1.1).

Lemma 2.4.1. The function

is strictly decreasing on (1, 00).

13



Proof.

L.rx—(1+hz)-1 —lnz
f@) = = =—5 <0

for all x € (1, 00), as required.

O
Lemma 2.4.2.
b
NE-ELCoL
b b! b
n b bb b' b
Proof. Since e* = Z: %, we have e* > % for each z, thus e’ > ol and hence 1 < b_i'
n>0
Therefore,
! — 1) (aq— b b plob
ay __ a :a(a 1) (a b—i—l)ga_ga_.b._ez(%)b,
b (a — b)!b! b! b! bbb b
as required. O

Lemma 2.4.3. For any positive integers n,d,r,s with k = d+r < nand 1 < s < r, the
n—w\(n—w-—d\[w
= ("))

_ns—(k‘—s).

w =

function

gets its maximum at

Proof. First we note that

S ==

() )G O0)

14



Since

o= ()T

:<(n—12)_—5}k—s)(7;:1;1))_(1011—1:9(1;))_ (k‘;s)

(n—w)—(k—s) w+l

= n—uw w—l—l—s)f(w)’
and
m—w)—(k—s) w+l _(w—l—l)(n—w)—(w—l—l)(k—s)_l
n—uw w+l—s  (w+)mn—-—w)—sh—-—w)
' . , ns — (k—s)
if and only if s(n —w) = (w + 1)(k — s), i.e., w = — hence
(mn—w)—(k—s) w+l Zlforwgns—(k_8>and
n—uw w+1l-—s k
m—w)—(k—s) w+l Slforwzns_(k_s).
n—uw w s k
As a consequence, we then have
—(k—
f(w) is increasing for w < <k S), and
(R
f(w) is decreasing for w > (k: °)
as required. N

- —w—d
By taking s = r = cin f(w) = <n J w> (n v ) (w) , we get the quadratic function
r—s s

g(w) = (Z)) (Z:f) (for selectors). Hence we have the following corollary.

Corollary 2.4.1. The function

gets its maximum at



Lemma 2.4.4. For any positive integers n,d,r,s with k=d+r <nand 1 <s<r,

nn—1)---(n—s+1)(n—s)n—s—1)---(n—r—d+1) .
=5 kbt D on-(n— )=kt )

S S

|

Proof. Without loss of generality, let s < k — s and thus 1 < % 2 . Moreover, we

k—s — — s

note that the left hand side is

nn—1)--n—-—s+1)(n—s)n—s—1)---(n—r—d+1)
nn=%5-(n—k+% n-(n—2) - (n—k+ )

[T n-9

o 0<i<r+d—1
N .k Y
n—i-— n—j-
H ( s> H (= k — s)
0<i<s—1 0<j<k—s—1
n—t
To prove this inequality, we will rearrange the terms in the denominator so that —f(t) <1
/”L p—

for each t with 0 <t <r+d—1, i.e., we will give a bijection

k k
f:{O,l,...,r+d—1}—>{z’~g|O§i§s—1}U{j~m]Ogjgk—s—l}

with the property that f(t) <t for each ¢. Note that the element 0 will be counted twice as

k—s > t,
s

O-% and 0- ﬁ respectively in the range of the function f. Note also that ifi-% =i+1i-

then 1% < i and hence j- 75 = j(1+3%) < j(1+5) = j() = j(5) = t, where i+j = .

A such function f is defined recursively as follows. For ¢t = 0,1,2, let f(0) = 0x, f(1) =

0 £ f(2) = ﬁ For 3 <t <r-+d—1,leti (resp. j) be the smallest positive integers such

k—

that ¢ - & (resp. j - Z2=)¢ {f(0), f(1), ..., f(t — 1)} if they exist, it follows that ¢ =i + j.

1. Let f(t)=i-%2ifi -2 <t

. k
J k—s-®

2. Otherwise, we define f(t)

3. Finally, suppose t is large and there is no such 7, note that

n—sgn—s;l S”'§7"L—?"—d~]|€—1 . n—r—ch—l “1
n n— i n—k+ n—k+ =
-t
we have " <lforalls<t<r+d—1, wedefine f(t) = (t —s) .

n—(t—s)ﬁ

16



Cearly, the function f defined above is 1-1, onto, and f(t) <t forall0 <t <r+d-—1

as required. O

Lemma 2.4.5. For any positive integers n,d,r,s with k = d+r < nand 1 < s < r, let
n's
n’ > n be the smallest positive integer such that w = = is an integer, then

1 -
(")

Proof.

n—w\/(n—-—w-d\ [(w
()0
)N (= d)
(n'—d)ld! (' —d—r)lr!
(n' —w)! (' —w — d)! o
(n’—w—d)!d!.(n’—w—d—r—l—s)!(r—s)!'(w_s)[s[
_ %n/(n,_1)"'(n,—$+1)(7’/—8)(?2/—8—1)---(n'—d—r+1)
g —1) - (w—s+ ) —w)(w —w—1) (0 —w—d—r+s+1)

_ nn—=1)---(n=s+1)(n —s)(n' —=s—=1)---(n' —d—r+1)

(1) mE(me—1)- (22 —s+1)(n =28 — 28— 1) (' — 22 —d—r+5+1)
1 =1 —s+ D —s)(n —s—1)---(n —d—r+1)
() O w5 bt 5o (= )~ bt )

Er

(by Lemma 2.4.4).

]

Lemma 2.4.6. For any positive integers n,d,r,s with k = d+r < nand 1 < s < r, let
n's
n’ > n be the smallest positive integer such that w = — is an integer, then

ln((n,;w) (n/ ;i”s_d> (Z’)) < k[1+ln(% +1)] +In (k;8>.

17



Proof. First we note that n’ < n + k for such n'. Since <Z> < (%)b, we have

("’;“) () (@:/)

(OB (LR (F0)

e (77

(")
()

- (%H)k-(’“;s).

S0

) k[l—l—ln(%—l—l)]—l—ln (k;‘s).

»
N——

18



The substitutions of w for various subclasses are summarized in the following table:

types parameters

—d 7
d-disjunct s=r=1,z=1 w:nk’ w:%
—d /
(d; z]-disjunct s=r=1 w = n - w = %

.. nr—d n'r

(d, r]-disjunct s=r,z=1 w = W= —
k k
—d /

(d, r; z]-disjunct s=r w=" w—= "
k k
. — /
(d, r)-disjunct s=12=1 w = # W — %
(k-1 /
(d, r; z)-disjunct s=1 w= % w= %
(k- /

(d, s out of r|-disjunct 2e4l w = w w = %
_(k— '

(d, s out of r; z]-disjunct w="2 (k= s) w= 22
k k

types parameters

] 7
(k, m, n)-selectors =i = % w= %
i _ /
(k, m, n; z)-selectors c=1 w= w w = %
— —_ /

(k, m, c,n)-selectors 120 w = W w = %
_(k— /

(k,m, c,n; z)-selectors w = < 5{; ) w = %

19



Chapter 3

The Stein-Lovasz Theorem and its
extension

3.1 The Stein-Lovasz Theorem

We now introduce the Stein-Lovasz theorem as follows. The Stein-Lovasz theorem was
first used by Stein [11] and Lovész [10] in studying some combinatorial covering problems.
In [6], the authors applied this theorem to some problems in coding theory. The Stein-
Lovasz theorem is now stated and the proof is included for completeness [8], with a minor

modification.

Theorem 3.1.1. [8] Let A be a (0,1) matrix with NV rows and M columns. Assume that
each row contains at least v ones, and each column at most a ones. Then there exists an
N x K submatrix C' with

)+ (%)lna < (%)(1 +1Ina),

N
K < (—
a

such that C' does not contain an all-zero row.

Proof. A constructive approach for producing C' is presented. Let A, = A. We begin by
picking the maximal number K, of columns from A,, whose supports are pairwise disjoint and
each column having a ones (perhaps, K, = 0). Discarding these columns and all rows incident

to one of them, we are left with a k, x (M — K,) matrix A,_;, where k, = N —aK,. Clearly,

20



the columns of A,_; have at most a—1 ones (indeed, otherwise such a column could be added
to the previously discarded set, contradicting its maximality). Now we remove from A, a
maximal number K, ; of columns having a —1 ones and whose supports are pairwise disjoint,
thus getting a k,_1 x (M — K, — K,_1) matrix A, o, where k,_1 = N —aK, — (a — 1)K, 1.
The process will terminate after at most a steps. The union of the columns of the discarded
sets form the desired submatrix C' with
a

K:ZKZ-.

i=1

The first step of the algorithm gives

ko =N — aK,,

which we rewrite, setting k,.1 = N, as

Analogously,

Now we derive an upper bound for k; by counting the number of ones in A;_; in two ways:

every row of A;_; contains at least v ones, and every column at most ¢ — 1 ones, thus

vk < (i = 1)(M — Ky — - — K;) < (i = 1)M.

Furthermore,

- ki1 — ki kan kq ka1 ko
K:ZZIKZ:ZZI s ;Jra(a—1)+(a—l)(a—Q)Jr"'J“2><1_k1
< (N/a)+ (M/v)1/a+1/(a—1)+---+1/2),

thus giving the result.
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The greedy procedure as shown in the proof constructs the desired submatrix one column

at a time, and hence the algorithm below follows [8].

Algorithm: STEIN-LOVASZ(A)
input: A is an N x M matrix, each column has at most a ones, each row has at least v ones
C—10

while A has at least one row

find a column ¢ in A having maximum weight
do ¢ delete all rows of A that contain a “1” in column ¢

delete column ¢ from A

output: Returns a submatrix of A with no all-zero row

At each state, a new column is added to the submatrix that maximizes the number of
“new” rows that are yet uncovered. When all rows are covered, the algorithm stops. It
seems quite interesting that we can use the Stein-Lovasz theorem to derive bounds for some

combinatorial array [8].

3.2 Extension of The Stein-Lovasz Theorem

The Stein-Lovasz theorem can be further extended from rows of the resulting submatrix
with weight at least 1 to the case of rows of the resulting submatrix with weight at least
z > 1. The bound can be further improved when A is a matrix with constant row weight

and column weight as well, i.e., in the language of hypergraphs, uniform and regular.
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Theorem 3.2.1. Let A be a (0,1) matrix of order N x M, and let v, a, z be positive integers.
Assume that each row contains at least v ones, and each column at most a ones. Then there

exists a submatrix C of order N x K with

v M
K < oy P Z<7>(1 +1Ina),

such that each row of C' has weight at least z.
More specifically, if the matrix is v-uniform and a-regular, the upper bound can then be

reduced to

K < z(%)(l—l—lna).

The strategy for the proof of Theorem 3.2.1 is as follows:

1. Use the Stein-Lovasz theorem to obtain a submatrix C'; with each row has weight at

least 1.

2. Choose some columns in the matrix A\C} to combine with the submatrix C; to form

a submatrix Cy with each row has weight at least 2.

3. Choose some columns in the matrix A\Cy to combine with the submatrix Cy to form

a submatrix C3 with each row has weight at least 3.

4. Step by step, and finally we obtain the desired submatrix C' = C, with each row has

weight at least z.

Note that this upper bound makes sense only if

v M
_— (/) (1 +1 M
v—(z—1)2<v>( +1Ina) < M,
ie.,
v+ 1
2+1Ina

z <
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in general, or if

Z(M)(l +1Ina) < M,

ie.,

z <

1+1na

for the case of uniform and regular.

Proof. A constructive approach for producing C' is presented. Let A; = A. By the Stein-
Lovész theorem, there exists an N x M; submatrix Ci(= B, = B;) of A; with M; <
M (1 + Ina) such that each row of Cy has weight at least 1.

The algorithm used in the proof of the Stein-Lovész theorem shows that some rows of C
have weight exactly 1. Let R; be the set of indices of those rows and |R;| = r1. Let Ay be the
submatrix of order r; x (M — M;) obtained from A; by deleting the submatrix C; and the
i-th row, i ¢ Ry as well. Then each row of Ay contains at least v — 1 ones, and each column
at most a ones. Again, by the Stein-Lovész theorem, there exists an r; X My submatrix B;
with My < 2=21(1 4+ Ina) such that each row of B, has weight at least 1. Let By be the
matrix of order N x M, obtained from B; by adding the i-th row, ¢ ¢ Ry. Let Cy be the
matrix of order N x (M; + M) obtained by the union of B; and B,. Then Cj is a submatrix
of A with each row weight at least 2.

Similarly, there exist some rows of C5 that have weight exactly 2. Let R, be the set of

indices of those rows and |Ry| = 7. Continue in this way, we have:

For 2 <1< 2,
i—1
1. A; is a matrix of order r;,_1 x (M — » M), and each row contains at least v — (i — 1)
1

j:
ones, and each column at most a ones.

i—1
M=) M
2. B;- is an r;_1 x M; submatrix of A; with M; < #:il)(l +Ina), and each row has

24



weight at least 1.
For1 <1<z,
3. B, is a matrix of order N x M;.
4. C;isan N X i: M; submatrix of A, and each row has weight at least i.

j=1

Hence, C' = C, is the submatrix required, that is,

K=Y Mj=M+M-+--+ M. .
= M=) M,
7j=1

M M — M, -
2141 el Y e — 7 (141
<U(+na)+ U_l(+na)+ +U_(Z_1)(+na)
M M M
241 _ ot G e ——— (141
<U(+na)+v_1(+na)+ +U_(Z_1)(+na)
—M(1+lna)(1+ : + +;)
B v v—1 v—(z—-1)
< M(1+ g TS e | 1
v—(2=-1) v—(2—-1) v—(z—1)
z
= ——M(1+1
i P (1+Ina)
v M

- v — (Z _ 1) Z(T)“‘ —l—lna),

thus gives the result.

More specifically, for the case of uniform and regular, using similar argument as above

with a minor modification. First we note that Nv = Ma by counting the weight of A in two
i1

ways. For 2 < i <z, A; is a matrix of order r;_y x (M — Z M;), and each row contains
j=1

exactly v — (i — 1) ones, and each column at most a ones. Moreover, a lower bound for
i1

Z M; is derived by counting the weight of the submatrix C;_; in two ways; each row of C;_;

Jj=1
i—1

contains at least ¢ — 1 ones, and each column exactly a ones, thus N(i —1) < (Z M;)a, and
j=1

i1
M

hence —(i — 1) < Z M; for 2 <i < z. Furthermore,
v =
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K=Y Mj=M+M+-+M

j=1

M M — M
<—(+Ilna)+—(1+1Ina

v v—1

M _M
<—{1+1Ina)+ “(1+1na)

/l} —

M
=—{1+4+Ina)+—(1+1na)+

v

M

=z 7)(1+1H&),

thus gives the result.

Remark 3.2.1. Since this upper bound makes

M=) M,
)—I—-”—i—v_(];—l)(l—i—lna)
M—(z—l)-%
+-+ P (1+1na)

+7(1+1na)

sense only if

2 v+ 1
2
24+ Ina
in general,
- v+ 1 v+1 v+2 v+1
z = - )
2+Ina 2 2 2
Then
v
_1<_
: 2
and thus
v z—1
v—(z—-1) +U—(Z—1) i
Hence
M M
K < Az—(l +1Ina) <2z—(1+1Ina)
v—(2—1) v v

for general case.
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Similarly, Theorem 3.2.1 can be restated in the language of hypergraphs in the following
corollary. Recall that a subset T C X such that |T'(| E| > z for any hyperedge E is called
a z-cover of the hypergarph H, and the minimum size of a z-cover of the hypergraph H is

denoted by 7,(H).

Corollary 3.2.1. For a hypergraph H = (X,T") and a positive integer z > 2,

22| X|
minger | E|

T.(H) < (1+1InA),

where A = max,ex [{F: E € I' with z € E}|.
More specifically, for the case of uniform and regular, we have the following corollary.

Corollary 3.2.2. Let H = (X,I') be a v-uniform and a-regular hypergraph with vertex set
X and edge set I', then
RS

Gl ZT(l +1Ina).

We conjecture that 7,(H) < z7(H) holds for hypergraphs which are uniform and regular.
However, it is not true in general as shown in the following example. For the hypergraph H
with X = {1,2,3,...,8} and I" = {{1,2,3},{4,5,6},{1,7,8}}. It is easy to see that {1,4}
is a 1-cover with minimum size, hence 7 (H) = 2. Similarly, {1,2,4,5,7} is a 2-cover with

minimum size, hence 75(H) = 5. This shows that 7(H) =5 > 2-2 =27 (H).
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Chapter 4

Some Applications of the extended
Stein-Lovasz Theorem

The Stein-Lovasz theorem was first used in dealing with the upper bounds for the sizes
in the model of (k, m,n)-selecters [2]. Inspired by this work, it was also used in dealing with
the upper bounds for the sizes of (d,r; z]-disjunct matrices [5]. In Section 4.1 and Section
4.2, the extended Stein-Lovasz theorem will be used in dealing the upper bounds for the
sizes of several disjunct matrices (Theorem 4.1.1~ 4.1.8) and selectors (Theorem 4.2.1 ~
4.2.4), respectively. Those upper bounds for the sizes of uniform splitting systems, uniform
separating systems, covering designs and lotto designs are given in Section 4.3 (Theorem

4.3.1 ~ 4.3.8) respectively.

4.1 Bounds for several disjunct matrices

Note that upper bounds for the sizes of d-disjunct matrices, (d, r|-disjunct matrices, (d,r)-
disjunct matrices and (d, s out of r]-disjunct matrices were given in [13, 14] by the Lovész
Local Lemma.

Recall that t(n,d) is the minimum size over all d-disjunct matrices with n columns.

Theorem 4.1.1. For any positive integers n and d, if k = d + 1 < n, then

t(n,d) < k(g)d{l +E[1+ ln(% +1)]}
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—d
Proof. For 1 < w < n —d, let A be the binary matrix of order [(Z) <n ) >] X (n)
w

[Z]>,s € [nJ\D}and V = {v | v €

{0,1}", wt(v) = w} respectively. The entry of A at the row indexed by the pair (D, s) and

with rows and columns indexed by {(D,s) | D € (

the column indexed by the vector v € V is 1 if the entries of v over D are all zero and the

entry of v at s is one; and 0 otherwise.
n—(d+1)

Observe that each row of A has weight ( ]
w J—

>, and each column of A has weight

(n ; w) (T) By the Stein-Lovasz theorem, there exists a submatrix M of A of order

[(n> (n B d)] X t having no zero rows, where

d 1
< (e

w—1

<Z)(nzd) () ()
o))

d 1

Note that the equality is obtained by counting the weight of A in two ways. It is straight-

forward to show that the columns of M form a d-disjunct matrix of order ¢ x n. We then

t(n,d) < (Z)(”Id) () ()
<im0

d 1

have

n/
Let n’ > n be the smallest positive integer such that w = n is an integer. We have

by Lemma 2.4.5 (taking s = r = 1), and

1n(<”' P w) (T)) < k[l + ln(% +1)]
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by Lemma 2.4.6 (taking s = r = 1). Therefore,

(7;/) (n/ 1_ d) n —w\ [w
t(n,d) <t(n',d) < O {1+ In] 1}

1

< k(g)d{l + {1+ In( + 1))}

as required.

]

Recall that t(n, d; z] is the minimum size over all (d; z]-disjunct matrices with n columns.

Theorem 4.1.2. For any positive integers n,d and z, if K =d 4+ 1 < n, then
k.4 n
t(n,d; z] < zk(a) {1+Ek[1+ IH(E + )]}

—d
Proof. For 1 < w < n — d, let A be the binary matrix of order [(Z) (n ] )] X (Z)

[Z]),s € [nJ\D}and V = {v | v €

{0,1}", wt(v) = w} respectively. The entry of A at the row indexed by the pair (D, s) and

with rows and columns indexed by {(D,s) | D €

the column indexed by the vector v € V' is 1 if the entries of v over D are all zero and the

entry of v at s is one; and 0 otherwise.
n—(d+1)

Observe that each row of A has weight 1
w J—

), and each column of A has weight

(n :Z w) (T) By the extended Stein-Lovéasz theorem, there exists a submatrix M of A of

—d
order [(Z) <n ) )] x t with each row weight at least z, where

t < (nzggz 1)> 1 +1n[(n;w> (?)]} _

TICu
SRIFIR

Note that the equality is obtained by counting the weight of A in two ways. It is straightfor-

w—1

ward to show that the columns of M form a (d; z]-disjunct matrix of order ¢ x n. We then
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have

n\ (n—d
“\da 1 n—w) [{w
; 1+1 :
i < oLl ()
d 1
/
Let n’ > n be the smallest positive integer such that w = % is an integer. We have
(2)("1)
d/ 1 < k
n —w\ (w
("))
by Lemma 2.4.5 (taking s = r = 1), and

m((”' ) w) G’)) < k[1+ ln(% +1)]

by Lemma 2.4.6 (taking s = r = 1). Therefore,

Z(T;/) (nll_d> n' —w w
(n,d; 2] < t(nf,d; 2] < {1+mn] I}
tin,d; 2] < t(n',d <(n;w><zf) 1.1 ( J )(1>
< S(S)1+ KL+ In(E + 1))

as required.

[
Recall that t(n, d, r| is the minimum size over all (d, r]-disjunct matrices with n columns.

Theorem 4.1.3. For any positive integers n,d and r, if k = d + r < n, then

n

K, d,r] < (é)r(g)dg PR (1)),

Proof. For r <w < n —d, let A be the binary matrix of order [(Z) (n R d)] X (n) with
r w

]

rows and columns indexed by {(D,R) | D € ( g

),R e ([Z]) with DR empty} and
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V ={v|ve{0,1}", wt(v) = w} respectively. The entry of A at the row indexed by the pair
(D, R) and the column indexed by the vector v € V' is 1 if the entries of v over D are all zero

and the entries of v over R are all one; and 0 otherwise.
n—(d+r)
w—r

Observe that each row of A has weight ( ), and each column of A has weight

(n ; w) (w) By the Stein-Lovész theorem, there exists a submatrix M of A of order
r

[(Z) (n R d)] X t having no zero rows, where
r

@(n;d) (") ()
)

d T

t< (n<(l§>+’r)> {1+1n[(";w> (l:)]}:

Note that the equality is obtained by counting the weight of A in two ways. It is straight-

forward to show that the columns of M form a (d, r]-disjunct matrix of order ¢ x n. We then

t(n,d,r] < (Z)(”;d) () ()
s i@ )

d r

have

n'r
Let n’ > n be the smallest positive integer such that w = — is an integer. We have

w\ (0 —d
Ej> (w)(u% <Gy
d )\r

by Lemma 2.4.5 (taking s = r), and

1n(<”/ P “’) (f)) < k[l + m(% +1)]
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by Lemma 2.4.6 (taking s = r). Therefore,

() %) oy o
t(n,d,r] <t(n',d,r] < . {1+ In] . 1}
< ) )(> ( d )()

r

< (%)r(g)dg + k[L+In(7 + 1))}

as required.

O

Recall that t(n,d,r;z] is the minimum size over all (d,r;z]-disjunct matrices with n

columns.

Theorem 4.1.4. [5] For any positive integers n,d, r and z, if k = d +r < n, then

t(n,d,r; 2] < z(é)r(g)d{l + k[1 4+ ln(% + )]}

—d
Proof. For r <w < n —d, let A be the binary matrix of order [(Z) (n )] X <n) with
w

r

[Z])’ R e ([Z]) with DR empty} and

V ={v|ve{0,1}", wt(v) = w} respectively. The entry of A at the row indexed by the pair

rows and columns indexed by {(D,R) | D € (

(D, R) and the column indexed by the vector v € V' is 1 if the entries of v over D are all zero

and the entries of v over R are all one; and 0 otherwise.
n—(d+r)

), and each column of A has weight
w—r

Observe that each row of A has weight (

(n ; w) (w) By the extended Stein-Lovéasz theorem, there exists a submatrix M of A of
r

—d
order [(Z) <n >] x t with each row weight at least z, where

r

) <f§;”2r>>“+w<"ﬁ> (1)~

00, oo
0 0

Note that the equality is obtained by counting the weight of A in two ways. It is straight-

w—rr

forward to show that the columns of M form a (d, r; z]-disjunct matrix of order ¢ x n. We
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then have

n\ (n—d
- d r n—w)\ (w
1+1 )
tindr < ALl (M)
d r
/
Let n’ > n be the smallest positive integer such that w = % is an integer. We have
(), )
d r k.. k.4
< (22
AL < () ()
d r
by Lemma 2.4.5 (taking s = r), and

m(("' 3 “’) C‘f)) < k[l + ln(% +1)]

by Lemma 2.4.6 (taking s = r). Therefore,

(O -y
tn,d,rs 2] < Hn'yd s3] < S 4 | "
o
< z(é)’"(g)d{l + k{1 +In(7 + 1))}
as required.

[
Recall that ¢(n, d, r) is the minimum size over all (d, r)-disjunct matrices with n columns.

Theorem 4.1.5. For any positive integers n,d and r, if k = d + r < n, then

Hn,d,r) < §(1 b R I 4 D] (k . 1)}.

d r

rows and columns indexed by {(D,R) | D € ([Z]>,R € ([:]) with DR empty} and

—d
Proof. For 1 <w < n —d, let A be the binary matrix of order [(n> (n )] X <n) with
w

34



V ={v|ve{0,1}", wt(v) = w} respectively. The entry of A at the row indexed by the pair
(D, R) and the column indexed by the vector v € V' is 1 if the entries of v over D are all zero

and at least one entry of v over R is one; and 0 otherwise.
n—(d+r)
w—j

min(r,w)
Observe that each row of A has weight Z (T> (

), and each column of A
J

J=1

min(r,w)
— —w—d
has weight o g now , w . By the Stein-Lovész theorem, there exists a
d = r—7j J

—d
submatrix M of A of order [(Z) (n )] X t having no zero rows, where
r

(=) =) G ) o
Focay 0

j=1

(Z> <n;d) n—w\ " —w—d\ (w
— N CC ;| {1+1n[< ) > ( )(,)]}.
(d)z<r—jd>(;‘) d

J=1

Note that the equality is obtained by counting the weight of A in two ways. It is straightfor-
ward to show that the columns of M form a (d,r)-disjunct matrix of order ¢t x n. We then

have

n
by Lemma 2.4.1. Let n’ > n be the smallest positive integer such that w = = is an integer.
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s e
)0

by Lemma 2.4.5 (taking s = 1), and

1n((”, P w) (n/ ;i”l_ d) (?)) < k[1 —Hn(% +1)]+1n (k P 1)

by Lemma 2.4.6 (taking s = 1). Therefore,

t(n,d,r) < t(n',d,r) < - w@/)n/(ngd)d o Ut m[(n/ ; w) (n ;ivl_ d) (QD]}
) 0)
k

d r—1 1

<

k-1 d

1 k—1
(1+—)k_1{1+k[1+ln(%+1)] —I—ln( )}
as required.

]

Recall that t(n,d,r;z) is the minimum size over all (d,r; z)-disjunct matrices with n

columns.

Theorem 4.1.6. For any positive integers n,d,r and z, if k = d + r < n, then

' k 1 n E—1
t(n,d,r,z)<zr(1+k_1) {1+k[1+ln(k+1)]+ln( p >}

Proof. For 1 < w < n —d, let A be the binary matrix of order [(n> <n B d)] X (n) with
w

d r
rows and columns indexed by {(D,R) | D € ([Z]>,R € ([n]) with D R empty} and
r

V ={v|ve{0,1}", wt(v) = w} respectively. The entry of A at the row indexed by the pair
(D, R) and the column indexed by the vector v € V' is 1 if the entries of v over D are all zero

and at least one entry of v over R is one; and 0 otherwise.
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n—(d+r)

min(r,w)
Observe that each row of A has weight Z <T> ( .
w =7

PRSI

min(r,w)
— —w—d
A has weight (n w) 5 (n v , ) (w) By the extended Stein-Lovész theorem,
d r—7j J

), and each column of

=1

—d
there exists a submatrix M of A of order [(Z) (n

)] x t with each row weight at least z,
,

where

Z> n—w\ "o p - w
sy 90

() (") )
- ) {1+ln[( ) > ( . )(.)]}.
P ([

J

Note that the equality is obtained by counting the weight of A in two ways. It is straight-
forward to show that the columns of M form a (d, r; z)-disjunct matrix of order ¢ x n. We

then have

min (r,w)
i) 2 (O
(7 0C) A

n
by Lemma 2.4.1. Let n’ > n be the smallest positive integer such that w = = is an integer.

()
)0
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We have




by Lemma 2.4.5 (taking s = 1), and
n —w\ (n —w-—d\ [w n kE—1
1 E[l+In(—-+1)]+1
() ) e e (U7)
by Lemma 2.4.6 (taking s = 1). Therefore,
t(n,d,r;2) <t(n',d,r;z)

< (2)(") ("D ()
<n’—w)<n’—w—d>(w) ( d )( r—1 )(1>

d r—1 1

< zé(l + %)’”{1 + k1 + ln(% +1)] +1n (k ; 1)}

as required.

Recall that t(n,d,r, s] is the minimum size over all (d, s out of r|-disjunct matrices with

n columns.

Theorem 4.1.7. For any positive integers n,d,r and s, with 1 < s < r if k =d+r < n,

then

k\s(_k \k—s
o k -
%{1 + k1 + ln(% +1)] +1In < J S)}.
—d
Proof. For s < w < n —d, let A be the binary matrix of order [(Z) (n )] X <n) with
w

[n]

d),R c ([Z]) with DR empty} and

V ={v|ve{0,1}", wt(v) = w} respectively. The entry of A at the row indexed by the pair

rows and columns indexed by {(D,R) | D € (

(D, R) and the column indexed by the vector v € V' is 1 if the entries of v over D are all zero

and at least s entries of v over R are one; and 0 otherwise.

min(r,w)
—(d
Observe that each row of A has weight 5 (T> (n ( + T)), and each column of A
- J w—=7
j=s
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n—w

min(r,w)
— d
. > (n w= ) ( ) By the Stein-Lovasz theorem, there exists a
J

has weight (
r—J

=S

—d
submatrix M of A of order [(Z) (n )] X t having no zero rows, where
r

ey 0O R G0

J=s

()() "
T e T {1+1n[< ) Z ( e )(J,)]}.
( d ) Z ( r—j d>(j) ’ a

J=s

.

Note that the equality is obtained by counting the weight of A in two ways. It is straight-
forward to show that the columns of M form a (d, s out of r]-disjunct matrix of order ¢ x n.

We then have

minr) n—w
T R
d : r—J J

n's
by Lemma 2.4.1. Let n’ > n be the smallest positive integer such that w = = is an integer.

()()
()0 0)

We have

IA
»

by Lemma 2.4.5, and

1n<(”’ . w) <” - d) (w)> <K+ 1) +ln (’“ . )
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by Lemma 2.4.6. Therefore,

t(n,d,r,s] <t(n',d,r, s

< ()" ) (") (D ()
n’—w)(n’—w—d)(w) ( d )( s )<s>

r—s S

< —){1+k[1+1n(%+1)]+ln (k;‘9>}

as required.

O

Recall that t(n,d,r, s; 2] is the minimum size over all (d, s out of r; z]-disjunct matrices

with n columns.

Theorem 4.1.8. For any positive integers n,d,r,s and 2z, with 1 < s <r if k=d+r <mn,

then
B ) (i
Y

4

t(n,d,r,s;z] < {1+k[1+1n(%+1)]+1n <k;$)}

Proof. For s < w < n —d, let A be the binary matrix of order [(Z) (n R d)] X (n) with
w

[;4)7 R ([Z]) with ;ﬂR empty} and

V ={v|ve€{0,1}", wt(v) = w} respectively. The entry of A at the row indexed by the pair

rows and columns indexed by {(D,R) | D € (

(D, R) and the column indexed by the vector v € V' is 1 if the entries of v over D are all zero

and at least s entries of v over R are one; and 0 otherwise.

min(r,w)
Observe that each row of A has weight g <T) (n (d + T)), and each column of
- J w =]
j=s

min(r,w)
— —w—d
A has weight (n w) Z (n v , ) (w) By the extended Stein-Lovasz theorem,
d = r—7j J
: : n\(n—d : .
there exists a submatrix M of A of order [( d> ( )] x t with each row weight at least z,
r
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where

<mm<m (;) - dH){l“n[( ) - ()6

("
T (nﬁﬁ(j) ()2 (0)

j=s
Note that the equality is obtained by counting the weight of A in two ways. It is straightfor-

ward to show that the columns of M form a (d, s out of r; z|-disjunct matrix of order ¢ X n.

We then have

n's
by Lemma 2.4.1. Let n’ > n be the smallest positive integer such that w = = is an integer.

We have
E k

OIS

)k—s

(<)

00

by Lemma 2.4.5, and

1n<(”’ . w) <” - d) (w)> <K+ (E 4 1) +ln (’“ . )
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by Lemma 2.4.6. Therefore,

t(n,d,r,s;z] <t(n',d,r,s;2]

< (2)(") (" (TN ()
(n’—w)(n’—w—d)<w) < d )( . )(s)

d r—3s S
2(E) (ke

(5

{1+/€[1+1n(%+1)]+1n <k;5)}

as required.

4.2 Bounds for several selectors

The notion of (k, m,n)-selectors was first introduced by De Bonis, Gasieniec and Vaccaro
in [2] , and it was then generalized to the notion of (k, m, ¢, n)-selectors [1]. It is interesting
to remark that the notions of (k, m,n)-selecters and (k,m,c,n)-selectors are equivalent to
(k,m,1,n;1)-selectors and (k,m, ¢, n; 1)-selectors respectively. Note that upper bounds for
the sizes of (k, m,n)-selectors were also given in [14] by the Lovész Local Lemma.

Following similar arguments in [2] and [1] with a minor modification, upper bounds for
the sizes of several selectors are given below.

Recall that ts(k, m,n) is the minimum size over all (k, m, n)-selectors.

Theorem 4.2.1.

< K (1+ L
k—m+1 k—1

t5k7 )
(k,m,n) -

k—1
)k_1{1+k[1+ln(%+1)]+ln< )}.
Proof. For 1 <w <n—k+1,let X = {z € {0,1}" | wt(z) = w} and U = {u € {0,1}" |
wt(u) = 1}. Moreover, for any A C U of size r, r = 1,...,k, and any set S € ([Z]), define
EA75:{$€XZ$‘S EA}

Let M be the binary matrix of order [(k_:; +1) ()] x () with rows and columns indexed
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byI'={Ess CX|ACU with [U| =k, [A|=k—m+1,5 € (")} and X = {z € {0,1}" |
wt(x) = w} respectively. The entry of M at the row indexed by the set E4 ¢ and the column
indexed by the vector z € X is 1 if z € E4 g; and 0 otherwise.

Observe that each row of M has weight (k_TH) (Zj), and each column of M has weight

(’f) (7,:;11”) ((k_ :;11)_1). By the Stein-Lovdsz theorem, there exists a submatrix M of M of

order [(,_*)(?)] x  having 1o zero rows, where
T m(f)w(zz—’;) aem(T) () ()

-masegt (G

Note that the equality is obtained by counting the weight of M in two ways.

It suffices to show that the matrix M* of order ¢ x n formed by the columns of M is a
(k, m,n)-selector, that is, any submatrix of & arbitrary columns of M* contains a submatrix
with each row weight exactly one, with at least m distinct rows.

Let x1,xa, ...,y be the t rows of M* and let T' = {x1, z3, ..., z; }. Suppose contradictorily
that there exists a set S € ([Z}) such that the submatrix M*|g of M* contains a submatrix
with each row weight exactly one, with at most m — 1 distinct rows. Let w;,uj,, ..., u;,
be such rows, with ¢ < m — 1; let A be any subset of U\{u;,,u;,,...,u;,} of cardinality

|A| = k —m + 1, then we have T'() Eas = (), contradicting the fact that M  is a matrix of

order [( r )(7)] x t having no zero rows. Hence we have

k—m+1/ \k
(men) (2) w\ (n—w) (k-1
om0y () (1) (521
(1)(13—1)(:—711) 1J\k=1/\k—m
/
Let n’ > n be the smallest positive integer such that w = % is an integer. We have
(om) (i) @ty () k()
w\ (n'—w — —1)! w\ (n/—w w\ (n'—w
(1)(#1)(1@%) #(?_m)l (1)(1%1) k—m+1 (1)(#1)
Lk
S Fomri T Eo
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by Lemma 2.4.5 (taking s = r = 1), and
m(ﬁ’) (T; 3 11") (:__;)] < K1+ In(y + 1))+ In (:__;)
by Lemma 2.4.6 (taking s = r = 1). Therefore, we have
ts(k,m,n) <t (k,m,n’)
e

1 1+In(—+1 1
R —— { —i—k‘[—i—n(k—l— )] + n(k—m)}

<

(1+k_1)

as required. O
Recall that t,(k, m,n; z) is the minimum size over all (k, m, n; z)-selectors.

Theorem 4.2.2.

(k—=m+1)(z—1)+1 1

1 n k—1
- k(1+—)" {1+/€[1+1n(E+1)}+1n< >}.

ts(k,m, n;
(k,m,n;z) < N k—m

Proof. For 1 <w <n—k+1,let X = {z € {0,1}" | wt(z) = w} and U = {u € {0,1}" |
wt(u) = 1}. Moreover, for any A C U of size r, r = 1,...,k, and any set S € ([Z])7 define
Eys={re X :z|s € A}.

Let M be the binary matrix of order [(k_f1 +1) (Z)] X (Z) with rows and columns indexed
by '={Ess C X |ACU with |U| =k, [A|=k—-m+1,5 € (")} and X = {z € {0,1}" |
wt(z) = w} respectively. The entry of M at the row indexed by the set E4 ¢ and the column

indexed by the vector z € X is 1 if v € E4 g; and 0 otherwise.

Observe that each row of M has weight (k*TH) (Zj), and each column of M has weight

(ﬁ’) (76:7“1”) ( (kﬁ]:;rll)fl). By the extended Stein-Lovész theorem, there exists a submatrix M of

M of order [(kfflﬂ) (7)] x t with each row weight at least (k —m + 1)(z — 1) + 1, where
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_ [(k—m+1>(z—1)+1](Z){1+1n[(zf) (Z:ﬁ(k_l)]}

(k—m+1)(""%) k—m

- ey () (DG

Note that the equality is obtained by counting the weight of M in two ways.

It suffices to show that the matrix M* of order ¢ x n formed by the columns of M is a
(k,m,n; z)-selector, that is, any submatrix of k arbitrary columns of M* contains z disjiont
submatrices with each row weight exactly one, with at least m distinct rows each.

Let x1,Za, ..., z; be the ¢t rows of M* and let T' = {xy, 2, ..., z; }. Suppose contradictorily
that there exists a set S € ([Z]) such that the submatrix M*|g of M* contains at most
z — 1 disjoint submatrices with each row weight exactly one, with at least m distinct rows.
Moreover, M*|s contains another disjoint submatrix with at most m — 1 distinct rows with
weight exactly one. Let wj,,uj,,...,u;, be such rows, with ¢ < m — 1; let A be any subset
of U\{u;,,uj,,...,u;,} of cardinality |A| = k —m + 1, then we have |T'(Eas| < (k —m +
1)(z — 1) + 1, contradicting the fact that M  is a matrix of order [(k_flﬂ) ()] x t with each

row weight at least (k —m + 1)(z — 1) + 1. Hence we have

ity < L s O (V) (20 (£

k—1

k—m

!/
n
Let n’ > n be the smallest positive integer such that w = — is an integer. We have

k
Gome) (b)) ot (0 k()
w\ (n'—w - - —1)! w\ (n —w\ w\ (n'—w
(1)(#1)(:7;) % M) k=m0
I ks
ey NG )

by Lemma 2.4.5 (taking s = r = 1), and

1n[(11”) (:; - i”) (:__TD] <k[l+ ln(% +1)]+1n (:__nll)
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by Lemma 2.4.6 taking s = r = 1). Therefore, we have

ts(k,m,n; z) <t (k,m,n'; 2)

e B () () ()
ST

k—m

k(1 + ﬁ)’“‘l{l + k1 —l—ln(% +1)]+1In (k_ 1)}

as required.

[]

Moreover, we will also give better, but nonconstructive upper bounds for the sizes of

(k, m,n; z)-selectors as follows.
Lemma 4.2.1. A (k,m,n; z)-selector M is (m — 1,k —m + 1; z)-disjunct.

Proof. Suppose not. Then there exist k columns C7, (s, ..., C) of M such that

k m—1
Jenl)cil<z-1,
i=m i=1

that is, there exist at most z—1 rows with row weight 1 such that each of them hits exactly one
of the columns C,,, C,41, ..., Ck. Hence there exist at most z — 1 disjoint m x k submatrices
of the identity matrix I, it contradicts the fact that M is a (k, m,n; z)-selector.

]

By Lemma 4.2.1, upper bounds for the sizes of (k, m,n; z)-selectors can be obtained from
that of (m — 1,k —m + 1; z)-disjunct matrices. Hence nonconstructive upper bounds for the

sizes of (k, m,n; z)-selectors are given below.

Corollary 4.2.1.

< 2k (1+ !
k—m-+1 k—1

ts(k,m,n;2) )k_1{1+k[1+1n(%+1)]+ln(k_1)}.

m—1
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Proof. Put

(d,r)=(m—-1,k—(m—-1))

in t(n,d,r; z) as shown in Theorem 4.1.6, we then have

- zk
k—m+1

k—1

YL+ K1+ m(% +1)] +1In (:1_—11) b

Remark 4.2.1. For the case z =1, i.e.,

k 1 n kE—1
k—m+1(1+k3—1) {1—1—/{:[1—1—111(%—1-1)]4—11&( )}

m—1

ts(k,m,n;1) <

was also given in Theorem 4.2.1 followed by a constructive proof in term of the Stein-Lovasz

theorem.
Recall that ts(k, m,c,n) is the minimum size over all (k, m, ¢, n)-selectors.
i
Theorem 4.2.3. For a = \
c

1 <k
a—m-+1

ts(k,m,c,n) < (1 + )’“*C{1+k[1+ln(%+1)] +In (a_ 1)}.

c k—c a—m

Proof. For c < w < n—k+¢ let X = {z € {0,1}" | wt(z) = w} and U = {u € {0,1}" |
wt(u) = c}. Moreover, for any A C U of size r, r = 1, ..., (]Z), and any set S € ([Z]), define
Eys={re X :z|s € A}.

Let a = (’Z) and M be the binary matrix of order [<a—sz+1) ()] x () with rows and
columns indexed by I' = {E4 ¢ C X | AC U with |U| =qa,|[A|=a—m+ 1,5 € ([Z])} and
X ={z € {0,1}" | wt(x) = w} respectively. The entry of M at the row indexed by the set
FE 4 s and the column indexed by the vector x € X is 1 if # € F4 g; and 0 otherwise.

Observe that each row of M has weight (“_mH) ("_k), and each column of M has weight

1 w—c

(t’j) (z:lc”) ((a_s:l)_l). By the Stein-Lovész theorem, there exists a submatrix M of M of
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order [(a_sI +1) (”)] x t having no zero rows, where

t )

< <a_m+1><;—@>{1“n[(f) GG

- <(><>)<()> el () G

Note that the equality is obtained by counting the weight of M in two ways.

It suffices to show that the matrix M* of order t x n formed by the columns of M is a
(k,m, c,n)-selector, that is, any submatrix of k arbitrary columns of M* contains a submatrix
with each row weight exactly ¢, with at least m distinct rows.

Let x1,xo, ..., z; be the t rows of M* and let T' = {x1, xo, ..., 2, }. Suppose contradictorily
that there exists a set S € ([Z]) such that the submatrix M*|g of M* contains a submatrix
with each row weight exactly ¢, with at most m — 1 distinct rows. Let u;,, uj,, ..., u;, be such
rows, with ¢ < m—1; let A be any subset of U\ {u;,,u;,, ..., u;, } of cardinality |A| = a—m+1,
then we have T'( E4.5 = 0, contradicting the fact that M is a matrix of order [<a—’:z+1) ()] xt

having no zero rows. Hence we have

ol o) < <f§“@%§)&> () () (o

n'c
Let n’ > n be the smallest positive integer such that w = o is an integer. We have

i) (2) _ Gomamrr () 1 ali)
OO ooty (D) a=m+L1 ()(50)
1 () (0 1Lk L e
a—m+1.(w)(”];:;“) a—m—l—l(z)( k—c)

by Lemma 2.4.5 (taking s = r = ¢), and

1n[(‘s> (TZ } L”) (5:;)] <KL+In(; + ] +1n (Z:;)
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by Lemma 2.4.6 (taking s = r = ¢). Therefore, we have
ts(k,m,c,n) <ts(k,m,c,n')
< (a—ﬁH—l) (7/2/) {1 + h’l[ w n —w a—1 ]}
(2) () (250) ¢)\k—c/\a=m

< ; — (k)C(l + ﬁ)’”{l + k[ + ln(g +1)]+1In (;__”11)}

C

as required.

L]
Recall that ts(k, m, c,n; z) is the minimum size over all (k, m, ¢, n; z)-selectors.
k
Theorem 4.2.4. For a = ( ),
c
(a—m+1)(z—1)+1k i, n a—1
to(k.m,c,n; Dy —— Ve k[1In( 24 1)]+1 .
(o em; ) < S EVEZDE L Eyeq L jeeeqapbfimn(E oo (071 ))

Proof. For ¢ < w < n—k+¢, let X = {z € {0,1}" | wi(z) = w} and U = {u € {0,1}" |

wt(u) = c}. Moreover, for any A C U of size r, r = 1, ..., (k), and any set S € ([Z}), define

[

EA7S:{SL’€X:QZ‘SEA}.

Let a = (’Z) and M be the binary matrix of order [(, % +1) ()] x () with rows and

columns indexed by I' = {E4s C X | ACU with [U| =a,|A|=a—m+1,5 € ([Z])} and
X ={z € {0,1}" | wt(x) = w} respectively. The entry of M at the row indexed by the set
FE4 s and the column indexed by the vector x € X is 1 if x € F4 g; and 0 otherwise.

Observe that each row of M has weight (“_mH) (”_k), and each column of M has weight

1 w—c

(Z’) (Z:Z’) ( (a_s;rll)_l). By the extended Stein-Lovész theorem, there exists a submatrix M’ of

M of order [(, 2. ,)(})] x t with each row weight at least (a —m + 1)(z — 1) + 1, where

N e ML 19 [ Y

w—c

e () 2)
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Note that the equality is obtained by counting the weight of M in two ways.

It suffices to show that the matrix M* of order ¢ x n formed by the columns of M is a
(k,m, c,n; z)-selector, that is, any submatrix of k arbitrary columns of M* contains z disjoint
submatrices with each row weight exactly ¢, with at least m distinct rows each.

Let xq,xo, ...,y be the t rows of M* and let T' = {xy, z3, ..., z; }. Suppose contradictorily
that there exists a set S € ([Z]) such that the submatrix M*|s of M* contains at most
z — 1 disjoint submatrices with each row weight exactly ¢, with at least m distinct rows
each. Moreover, M*|g contains another disjoint submatrix with at most m — 1 distinct rows
with weight exactly c. Let wuj,uj,,...,u;, be such rows, with ¢ < m — 1; let A be any
subset of U\{u;,,uj,,...,u;,} of cardinality |A| = a —m + 1, then we have [T'(E4s| <
(@ —m+1)(z — 1) + 1, contradicting the fact that M is a matrix of order [(,_¢ ) (})] x ¢

a—m+1/ \k

with each row weight at least (a —m 4+ 1)(z — 1) + 1. Hence we have

ki) < e () (4 20) (1)

n'c
Let n’ > n be the smallest positive integer such that w = o is an integer. We have

(o)) miem () 1 )
OG5 oot (DD a=m+L ()(30)
1 () (0 Lk 1 e
_a—m—irl.(w)(”l;k:;”) a—m—|—1<z)( k—c)

by Lemma 2.4.5 (taking s = r = ¢), and

1n[(f> (TZ - Z)) (;__TD] <KL+ In(7 +1)]+1n (5:;)

by Lemma 2.4.6 (taking s = r = ¢). Therefore, we have
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to(k,m,c,n; z) <t (k,m,c,n’;z)

Mamma DD+ 6) m[(w) (n - w) ( -1 )1}

() (=G5 k—c)\a-m
e matlgfi_l 1)+1 (é)C(l + ﬁ)k%{l +k[1+ ln(% +1)]+1n (;:7711)}
as required.
O

4.3 Bounds for some set systems

Note that upper bounds for the minimum number of blocks of uniform (m, t)-splitting
systems were given in [7] by the Lovész Local Lemma. Note further that upper bounds for
the minimum number of blocks of uniform (m, t)-splitting systems, (v, k, t)-covering designs,
and (v, k, t, p)-lotto designs were given in [8] by the classical Stein-Lovész theorem, the proofs
are included for completeness.

In this section, upper bounds for the minimum number of blocks of uniform (m,t; 2)-
splitting systems, uniform (m, 1, ts; z)-separating systems, (v, k,t; z)-covering designs and
(v, k,t, p; z)-lotto designs will be derived by using the extended Stein-Lovasz theorem.

Recall that SP(m,t) is the minimum number of blocks of uniform (m, t)-splitting systems.

Theorem 4.3.1. [§]
()

W{l +ln[(§) 2]}.

w3 3

SP(m,t) <

SIS
SRS
N+ SR

Proof. Let A be the binary matrix of order (T) X (g) with rows and columns indexed by
2

{T|Te ([’?])} and '={B| B¢ ([E])} respectively. The entry of A at the row indexed by
2

the T and the column indexed by the vector B € I' is 1 if B splits T'; and 0 otherwise.

o1



Observe that each row of A has weight

and each column of A has weight

m\ /m m 2
_ (2 2 ) _ [ 2
~(5)(0)- ()
2 2 2
By the Stein-Lovasz theorem, there exists a submatrix M of A of order (T) x N having no

zero rows, where
( “—{1+Ina}.
” { na}

N <

It is straightforward to show that the columns of M form an uniform (m,t)-splitting system

with N blocks, as required.
m

Recall that SP(m,t;z) is the minimum number of blocks of uniform (m, t; z)-splitting

systems.

Theorem 4.3.2.

(_>){1+m[@1}.

SP(m,t;z) <

—~
o3 |s 3
N|er

(0) (2~

ol o+

Proof. Let A be the binary matrix of order (T) X (Z) with rows and columns indexed by

{T|Te ([T‘])} and '={B| B¢ ([g])} respectively. The entry of A at the row indexed by
2

the T" and the column indexed by the vector B € I' is 1 if B splits T'; and 0 otherwise.

Observe that each row of A has weight

and each column of A has weight



") x N

By the extended Stein-Lovasz theorem, there exists a submatrix M of A of order ( ;

with each row weight at least z, where

v

N < {1+1Ina}.

It is straightforward to show that the columns of M form an uniform (m, t; z)-splitting system
with NV blocks, as required.
O

For the sizes of uniform (m, ¢, ty)-separating systems and uniform (m, ¢y, t5; z)-separating
systems, we only discuss the case t; # t5. Note that the case t; = t can be handled in a
similar way.

Recall that SE(m, tq,t2) is the minimum number of blocks of uniform (m, ¢, t)-separating

systems.

Theorem 4.3.3.

Proof. Let A be the binary matrix of order [(Z‘) (mt;“)] X (g) with rows and columns in-
dexed by {(T1,T3) | Ty € (1), T € (") with Ty 7> empty } and T' = {B | B € ([g])}
respectively. The entry of A at the row indexed by the pair (77, 75) and the column indexed
by the vector B € T is 1 if B separates the pair (T, Ts); and 0 otherwise.

Observe that each row of A has weight

=) ) =)

and each column of A has weight
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By the Stein-Lovész theorem, there exists a submatrix M of A of order [(:11) (mt_;l)] x N

having no zero rows, where
m
m

N < —=—{l+Ina}.
v

It is straightforward to show that the columns of M form an uniform (m,t;,ts)-splitting

system with N blocks, as required.

]

Recall that SE(m,ty,ts;2) is the minimum number of blocks of uniform (m,tq,1s; 2)-

separating systems.

Theorem 4.3.4.

Proof. Let A be the binary matrix of order [(?Z) (mt;tl)] X (i) with rows and columns in-
2

dexed by {(T1,T2) | Ty € ("), Ty € (") with Ty (T empty } and I' = {B | B € ()}

1 2 2
respectively. The entry of A at the row indexed by the pair (77, 75) and the column indexed
by the vector B € I' is 1 if B separates the pair (71, 73); and 0 otherwise.

Observe that each row of A has weight

() )

and each column of A has weight

= (2)(E) (@)E) = ()E)

By the extended Stein-Lovasz theorem, there exists a submatrix M of A of order [(ZL) (mt;tl)] X

N with each row weight at least z, where
m
(3

()

N <

{1+1Ina}.

o4



It is straightforward to show that the columns of M form an uniform (m, ty,ts; z)-splitting

system with N blocks, as required.
O

Recall that C(v, k,t) is the minimum number of blocks of uniform (v, k,t)-covering de-

signs.

Theorem 4.3.5. [§]

Clos k) < %{1 +n (f)}

Proof. Let A be the binary matrix of order (1’) X (Z) with rows and columns indexed by
{T|Te (@)} and ' ={B| B¢ ([Z])} respectively. The entry of A at the row indexed by
the T" and the column indexed by the vector B € I'is 1 if T' C B; and 0 otherwise.

Observe that each row of A has weight (Z:i), and each column of A has weight (];) By

the Stein-Lovasz theorem, there exists a submatrix M of A of order (;’) x N having no zero

N < é%{lﬂn (f)}—%{l—l—ln (IZ)}

rows, where

Note that the equality is obtained by counting the weight of A in two ways. It is straight-
forward to show that the columns of M form an (v, k, t)-covering design with N blocks, as

required.

]

Recall that C'(v, k, t; z) is the minimum number of blocks of uniform (v, k, ¢; z)-covering

designs.

Theorem 4.3.6.
2(3)
(7)

C(v,k,t;2) <

e ()
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Proof. Let A be the binary matrix of order (:) X (Z) with rows and columns indexed by

{T|Te ([?)} and ' ={B| B¢ ([Z])} respectively. The entry of A at the row indexed by
the T" and the column indexed by the vector B € I'is 1 if T' C B; and 0 otherwise.

Observe that each row of A has weight (Z:i), and each column of A has weight (l;) By

the extended Stein-Lovasz theorem, there exists a submatrix M of A of order (”) X N with
each row weight at least z, where
2(3) 2(3)

{1+ (’z)} = e (’z)}

Note that the equality is obtained by counting the weight of A in two ways. It is straight-

N <

forward to show that the columns of M form an (v, k, t; z)-covering design with N blocks, as

required.

]

Recall that L(v, k,t,p) is the minimum number of blocks of uniform (v, k, ¢, p)-lotto de-

signs.

Theorem 4.3.7. [§]

L(v,k,t,p) <

(Z) mink) o\
min(tk {1+ In| Z ; _ 1}
g)<z) (Z:i) i=p < )(t >

Proof. Let A be the binary matrix of order (1’) X (Z) with rows and columns indexed by

{T|TEe ([:])} and '={B | B e ([Z])} respectively. The entry of A at the row indexed by

the T" and the column indexed by the vector B € I'is 1 if |T() B| > p; and 0 otherwise.
Observe that each row of A has weight

min(t,k)

> ()62

o6



and each column of A has weight

67
, 1 t—1i)°
i=p

(2

t) x N having no

By the Stein-Lovasz theorem, there exists a submatrix M of A of order (

zero rows, where

v
min(t,k)
(k) k\ (v—Fk
| am Y ()( .)]}

SO T
: 1) \k—1
i=p
It is straightforward to show that the columns of M form an (v, k, ¢, p)-lotto design with N

blocks, as required.

]

Recall that L(v, k,t,p; z) is the minimum number of blocks of uniform (v, k, ¢, p; z)-lotto

designs.

Theorem 4.3.8.

v
Z< min(t,k)
k) K\ (v —k
Lo byt piz) < —— arn > (D320

> (6 7

1=p

Proof. Let A be the binary matrix of order (:) X (Z) with rows and columns indexed by
{T|Te ([1’])} and ' ={B| B € ([Z])} respectively. The entry of A at the row indexed by
the T and the column indexed by the vector B € I' is 1 if |T'(") B| > p; and 0 otherwise.

Observe that each row of A has weight

> ()G
i) \k—1i)’
i=p
and each column of A has weight
00
1 t—1
i=p



By the extended Stein-Lovész theorem, there exists a submatrix M of A of order (:) x N

with each row weight at least z, where

min(t,k)

Z(Z) BN (o -k
Bl ()
Y6 T

1=p

It is straightforward to show that the columns of M form an (v, k, ¢, p; z)-lotto design with

N blocks, as required.
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Chapter 5

Conclusion

In this thesis, we derive the extended Stein-Lovasz theorem to deal with more combina-
torial problems. From the strategy of the proof in Theorem 3.2.1, it is easy to see that the
extended Stein-Lovasz theorem also provides an algorithmic way to dealing with the exis-
tence of good coverings and then deriving some upper bounds related to some combinatorial
structures in Chapter 4. Note that most of these upper bounds obtained in Chapter 4 are
roughly the same as those derived by the basic probabilistic method including the Lovész Lo-
cal Lemma (see Appendix). Thus, due to its constructive nature, the Stein-Lovédsz theorem
can be regarded as a de-randomized algorithm for the probabilistic methods. The relationship
between the (extended) Stein-Lovész theorem and the Lovasz Local Lemma deserve further

study.
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Appendix

Some upper bounds for the sizes of several disjunct matrices and selectors obtained by

the Lovész Local Lemma and the classical Stein-Lovasz theorem are survey in the following.
d-disjunct matrices

t(d,n) < (d+1)(1+ ) {1+ In[(d+1)((,}) = (75N [13]

(by the Lovasz Local Lemma)
(d, r]-disjunct matrices

tndor] < (1 (4 DL () () = (4 (7)) 1

(by the Lovasz Local Lemma)
(d,r; z]-disjunct matrices

t(n,d,r;z] < z(1+ 6;i)’"(l - g)d{l + k[l +1In(z +1)]}, E=d+r [5]

(by the classical Stein-Lovész theorem)
(d, r)-disjunct matrices

t(n,d,r) < (1+ g)(l + 2)%{1 +In[(7) ("4 — (vl (=AY (1)

(by the Lovasz Local Lemma)

(d, s out of r]-disjunct matrices

L+In[(5) (") = (TG ()
t(n,d,r,s| < f r p)

forall 0 <p <1,

where fq,s(p) = (1 — 7 [14]

|
/?
\/

(by the Lovéasz Local Lemma
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(k,m,n)-selectors

ek? n  ek(2k —1)
<——hh-+——=
k—m+1 kK k—-—m+1
(by the classical Stein-Lovéasz theorem)

0 ) — (7)) 1

(by the Lovasz Local Lemma)

ts(ka m7 /n')

2]

ts(k,m,n) <

(k, m, c,n)-selectors

ekchl c

- m%} _

where z = (’Z) —m+1[1]

ewk* ek

ts(k,m,c,n) < Inc+

(c+m+k+z-1),
z

(by the classical Stein-Lovész theorem)
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