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摘要 

假設 是一個u的多項式函數且)(uPN )()( uPuf N= 。 在 complex plane f

上是一個多值函數。在 extended complex plane上我們利用適合的

cut-structure建立 的 Riemann surface f 。則 是一個定義在f 上的

單值函數。接著我們在 的代數結構上面做積分的運算。特別地，我們主要

針對兩種特別的路徑來積分，分別為

f

cyclea − 及 cycleb − 。運用 principle of 

deformation of paths來計算這些積分。此外，我們將以上的方法應用在

微分方程上。 
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Abstract

Let PN(u) be a polynomial of u and let f(u) =
√
PN(u). f is a 2-valued function defined

on the complex plane C. We construct the Riemann surface R by a proper cut-structure

on the extended complex plane. Then f is a single-valued function on R. Then we do

evaluations of path integrals on R with its algebraic structure for f . In particular, we

evaluate integrals along two special paths, a− cycle and b− cycle, respectively. We apply

the principle of deformation of paths to evaluate those integrals. Furthermore, we apply

the above argument to differential equations.
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1 Introduction

1.1 Motivation

Let u be a twice differentiable function of t. Consider the following differential equation

u′′ + f(u) = 0, (1)

where f is a polynomial of u. Multiply the equation by u′,

u′′u′ + f(u)u′ = 0, (2)

and integrate it using change of variables, we obtain∫
u′′(t)u′(t) dt+

∫
f(u)u′(t) dt = E, where E is a constant. (3)

=⇒
∫
u′(t) du′(t) +

∫
f(u) du(t) = E, (4)

=⇒ 1

2
[u′(t)]2 + F (u(t)) = E, where F is an antiderivative of f . (5)

=⇒ u′(t) = ±
√

2[E − F (u)] (6)

We obtain the first order differential equation

du

dt
= u′(t) =

√
2[E − F (u)] , (7)

or ∫
1√

2[E − F (u)]
du =

∫
dt. (8)

Since 2[E − F (u)] is a polynomial of u, it can be written as

2[E − F (u)] = (u− u1)(u− u2) . . . (u− un)

=
n∏
k=1

(u− uk),

where u1, . . . , un are the complex roots of the equation 2[E − F (u)] = 0. Thus, equation

(8) can be written as ∫
1√∏n

k=1(u− uk)
du =

∫
dt (9)

In order to solve for u, we need to evaluate the term∫
1√∏n

k=1(u− uk)
du.

In the denominator, the uk
,s are possibly complex numbers, and they are also the branch

points or poles. Here, u : C → C, we will see later that the integrand is in fact a

multiple-valued function. It is not so easy to evaluate the integral.

In this thesis, we will use the Riemann’s approach to evaluate the integrals of this

kind. In addition, we will also discuss how to compute the integrals using the computer

software “Mathematica”.
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1.2 Stereographic Projection

In this section, we give a short introduction to the concept of stereographic projection.

The complex plane together with the point at infinity∞ is called the extended complex

plane or the extended z-plane. One can think of the complex plane as passing through the

equator of a unit sphere centered at the point z = 0. To each point z in the plane there

corresponds exactly one point P on the surface of the sphere. The point P is determined

by the intersection of the line through the point z and the north pole N of the sphere

with that surface. In like manner, to each point P on the surface of the sphere, other than

the north pole N , there correspondings exactly one point z in the plane. By letting the

point N of the sphere corresponds to the point ∞, we obtain a one to one corespondence

between the points of the sphere and the points of the extended complex plane. The

sphere is known as the Riemann sphere, and the correspondence is called a stereographic

projection.

Figure 1

1.3 Some Basic Definitions

Definition 1. A function f of the complex variable z is analytic in an open set if it has

a derivative at each point in that set.

Definition 2. A branch of a multiple-valued function f is any single-valued funtion F

that is analytic in some domain at each point z of which the value F (z) is one of the

values f(z).

Definition 3. A branch cut is a portion of a line or curve that is introduced in order

to define a branch F of a multiple-valued function f . Any point that is common to all

branch cuts of f is called a branch point.

Definition 4. A set of points z = (x, y) in the complex plane is said to be an arc if

x = x(t), y = y(t), a ≤ t ≤ b,

where x(t) and y(t) are continous functions of the real parameter t.

2



It is convenient to describe the points of an arc C by means of the equation

z = z(t), a ≤ t ≤ b,

where

z(t) = x(t) + iy(t).

Definition 5. An arc C is a simple arc if it does not cross itself; that is, C is simple if

z(t1) 6= z(t2) when t1 6= t2. When the arc C is simple except for the fact that z(b) = z(a),

we say that C is a simple closed curve.

Definition 6. A contour, or piecewise smooth arc, is an arc consisting of a finite

number of smooth arcs joined end to end. When only the initial and final values of z(t)

are the same, a contour C is called a simple closed contour.

Definition 7. An analytic function w = w(z) is called an algebraic function if it

satisfies a functional equation

a0(z)wn + a1(z)wn−1 + · · ·+ an(z) = 0, a0(z) 6= 0, (10)

in which the ai(z) are polynomials in z with complex numbers as coefficients.

One simple example is the algebraic function, w =
√
z, defined by w2 − z = 0. It

is not single-valued in the extended z-plane. In the next chapter, we will introduce a

new surface on which to consider the algebraic function defined, and on which it is a

single-valued function. This surface is called a Riemann surface.

3



2 Riemann Surfaces and Cut Structures

2.1 The Riemann Surface for f(z) =
√
z

We begin with the algebraic function f(z) =
√
z to explain how to construct the Riemann

surface for f(z) such that f is a single-valued function on it.

Let z = rei(θ+2kπ), r 6= 0, k ∈ Z. Then

f(z) =
√
re

1
2
i(θ+2kπ) (11)

=
√
re

1
2
iθeikπ (12)

=

{ √
re

1
2
iθ if k is even,

−
√
re

1
2
iθ if k is odd.

(13)

Thus, f is a two-valued function in the extended z-plane. We use the following way to

construct the Riemann surface for f(z).

If we cut the extended z-plane along the negative real axis (the branch cut is drawn

using bold dashed line as in Figure 2) and restrict ourselves so as never to continue f(z)

over this cut, we get two single-valued branches of f(z), namely,

f(z) =
√
re

1
2
iθ, −π ≤ θ < π,

and

f(z) =
√
re

1
2
iθ, π ≤ θ < 3π.

To build the Riemann surface for f(z), we take two replicas of the z-plane cut along

the negative real axis and call them sheet I and sheet II. The cut on each sheet has two

edges. We label the edge of the third quadrant with a + and the edge of the second

quadrant with a −. Then attach the + edge of the cut on sheet I to the − edge of the

cut on sheet II, and attach the − edge of the cut on sheet I to the + edge of the cut on

sheet II. Thus, whenever we cross the cut, we pass from one sheet to the other.

Figure 2

We imagine that the surface as two sheets lying over the extended z-plane, each cut

along the negative axis. Using stereographic projection, we can consider the two sheets

to be spheres. There is one cut on the surfaces of each sphere.
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Figure 3

Figure 4

Now imagine that the spheres are made of rubber. By spreading the edges of the cuts,

we can deform each sheet into a hemisphere. When each sheet is rotated so that the

openings of the hemispheres face each other, the edges marked + and − face each other

and the two hemispheres may be pasted together to give us a sphere. We call this surface

the Riemann surface of genus 0 for f(z) =
√
z, denoted by R0 (Figure 6).

Figure 5

5



Figure 6

2.2 The Riemann Surface for f(z) =
√

(z − r1)(z − r2)

In this section, we discuss how to construct the Riemann surface for the function f(z) =√
(z − r1)(z − r2), r1 6= r2. We will find that this is essentially the same as the situation

for f(z) =
√
z.

The two point z = r1 and z = r2 are branch points of f(z) =
√

(z − r1)(z − r2). We

obtain two single-valued branches of f(z) by cutting the z-plane along the line segment

joining r1 and r2. As in section 2.1, we have two replicas of the z-plane along this cut.

Joining them, we obtain a two-sheeted Riemann surface on which f(z) is single-valued.

Figure 7

If the surface were made of rubber, it could be deformed continuously into that of f(z) =
√
z by moving r1 to ∞ and r2 to 0 and deforming the cut into the negative real axis.

Thus this new surface may also be mapped topologically into a sphere.

Figure 8

6



Figure 9

Figure 10

Also, this surface is the Riemann surface of genus 0 for f(z) =
√

(z − r1)(z − r2).

2.3 The Riemann Surface for f(z) =
√

(z − r1)(z − r2)(z − r3)

Now, we look another example whose Riemann surface is defferent from the ones in the

earlier examples.

Let f(z) =
√

(z − r1)(z − r2)(z − r3) be the algebraic function defined by w2 = (z −
r1)(z − r2)(z − r3), where r1, r2, r3 are distinct. For each i, let z = ri + rei(θ+2kπ), r 6= 0,

k ∈ Z be in the cut plane. We have

√
z − ri =

√
(ri + rei(θ+2kπ))− ri (14)

=
√
rei(θ+2kπ) (15)

=

{ √
re

1
2
iθ if k is even,

−
√
re

1
2
iθ if k is odd.

(16)

Thus, we go from one point to the other by continuing f(z) over any closed path winding

once around one of the roots r1, r2, r3,
√
z − ri changes sign when the argument θ =

arg(z − ri) changes by 2π.

We cut the z-palne from r1 to ∞ and from r2 to r3. Then we take two copies of the

cut z-plane and connect them crosswise over the cuts as before, we obtain a two-sheeted

Riemann surface on which f(z) is single-valued.

7



Figure 11

Figure 12

Stretch each cut into a circular hole and rotate the spheres until the holes face each other,

as in Figure 13.

Figure 13

We may join them together so that each + edges is attached to the − edge of the corre-

sponding cut on the other sphere, as in Figure 14.

8



Figure 14

Thus, The two-sheeted Riemann surface can be mapped topologically onto a torus. This

surface is called the Riemann surface of genus 1 for f(z), denoted by R1.

2.4 Riemann Surfaces of Genus N

We now generalize the results from section 2.1 to section 2.3. Let

f(z) =
√
P (z) =

√
(z − r1)(z − r2) · · · (z − rn),

where r1, r2, . . . , rn are the roots of the polynomial P (z) of order n.

If the number of roots is even, say n = 2N + 2, we can separate the branch points into

pairs, (r1, r2), (r3, r4), . . . , (r2N+1, r2N+2). This gives us n
2

= N + 1 cuts in the cut plane

drawn in Figure 15.

Figure 15

There are N holes in the Riemann surface drawn in Figure 16.

Figure 16

9



If the number of roots is odd, say n = 2N+1, there must be a cut from∞ to r1. The re-

maining branch points r2, . . . , r2N+1 can be separated into pairs, (r2, r3), . . . , (r2N , r2N+1).

This will give us n+1
2

= N + 1 cuts in the cut plane dranw in Figure 17.

Figure 17

There are also N holes in the Riemann surface drawn in Figure 18.

Figure 18

The surface in which there are N holes is called the Riemann surface of genus N ,

denoted by RN , as in Figure 16 and Figure 18.

2.5 To Draw Paths on Cut Planes and on Riemann Surfaces

In this section, we explain how to draw the paths on cut planes and on Riemann surfaces.

In the cut planes, we use solid lines to draw a path on sheet I and use dash lines to

draw a path on sheet II.

In the Riemann surfaces, we use dash lines to draw a path on the back of the surfaces

and use solid lines to draw a path on the front of the surfaces. Let f(z) =
√
z.

Figure

10



19

Let (I,+) denote the + edge of sheet I, (I,−) denote the − edge of sheet I, (II,+) denote

the + edge of sheet II, and (II,−) denote the − edge of sheet II. The path from point A

to point B denotes that start from A in sheet II, cross through the cut from (II,−) to

(I,+), to B. γ1 denotes a path in sheet I, from a point in (I,+) to a point in (I,−). γ2

denotes a path in sheet II, from a point in (II,−) to a point in (II,+). The corresponding

paths in Riemann surface is drawn in following figure.

Figure 20

a−cycle is a closed path that encloses a finite cut (the endpoint of cut is a finite number).

b− cycle is a closed path that starts from + edge of a cut (it maybe finite cut or infinte

cut) without encloed by any a − cycle, to + edge of another cut encloed by a a − cycle.
Then the path crosses through − edge of this cut and goes into sheet II, and finally arrives

to the − edge of the starting cut.

Let f(z) =
√
z(z − 1)(z − 2)(z − 3)(z − 4). The a−cycles and b−cycles in cut plane

and their corresponding paths in Riemann surface are drawn in the following figures.

Figure 21

11



Figure 22

The numbers of a− cycles and b− cycles must be the same. In next few chapters, we

aim to evaluate the integrals along a− cycles and b− cycles.

12



3 Integrals for Horizontal Cuts

3.1 Two Examples

We give a few of examples to explain how to evaluate path integrals. We will use the

principle of deformation of paths (Theorem 1). It tells us that if a simple closed con-

tour(piecewise smooth arc) C1 is continously deformed into another simple closed coutour

C2, always passing through points at which a function f is analytic, then the value of the

integral of f over C1 never changes.

The circle

z = z0 +Reiθ, −π ≤ θ < π,

is a circle centered at the point z0 and with radius R. It is a simple closed curve, oriented

in the counterclockwise direction.

Cauchy-Goursat Theorem. If a function f is analytic at all points interior to and on

a simple closed contour C, then ∫
C

f(z) dz = 0.

Theorem 1. Let C1 and C2 denote positively oriented simple closed contours, where C2 is

interior to C1. If a function f is analytic in the closed region consisting of those contours

and all points between them, then∫
C1

f(z) dz =

∫
C2

f(z) dz.

1
C

2
C

Figure 23

Example 1. Let f(z) =
√
z and let γ be the positively oriented (counterclockwise oriented)

circular path z = eiθ, −π ≤ θ < π. This is a path looked like a circle centered at the point

0 with radius 1. Evaluate the integral
∫
γ
f(z) dz.

Solution.

(1) Integral along the circular path

13



Figure 24

z ∈ γ =⇒ z = eiθ, −π ≤ θ < π

=⇒
√
z = e

1
2
iθ, dz = ieiθdθ.

Then, ∫
γ

f(z) dz =

∫ π

−π
f(eiθ)ieiθ dθ

=

∫ π

−π

√
eiθ ieiθ dθ

= −4

3
i .

(2) Deformation of path

Figure 25

In Figure 25, γ∗ is a line segment from −1 to 0 and γ∗∗ is a line segment from 0 to −1.

14



Let C = γ ∪ −γ∗∗ ∪ −γ∗. Since C is a simple closed contour,∫
C

f(z) dz = 0

=⇒
∫
γ

f(z) dz +

∫
−γ∗∗

f(z) dz +

∫
−γ∗

f(z) dz = 0

=⇒
∫
γ

f(z) dz +

(
−
∫
γ∗∗

f(z) dz

)
+

(
−
∫
γ∗
f(z) dz

)
= 0

=⇒
∫
γ

f(z) dz =

∫
γ∗
f(z) dz +

∫
γ∗∗

f(z) dz. (17)

In (1), we have evaluated
∫
γ
f(z)dz. Now we evaluate the value of the right hand side of

equation (17).

Since the points along the path γ∗ is in the + edge of the cut plane, the points on γ∗

has the angle −π.

z ∈ γ∗ =⇒ z = rei(−π), r : 1→ 0

=⇒
√
z =
√
re

1
2
i(−π) = −i

√
r, dz = −dr.

Then, ∫
γ∗
f(z) dz =

∫ 0

1

(−i
√
r)(−dr)

= i

∫ 0

1

√
r dr

= −2

3
i .

Similarly, the points along the path γ∗∗ is in the − edge of the cut plane. So the points

on γ∗∗ has the angle π.

z ∈ γ∗∗ =⇒ z = reiπ, r : 0→ 1

=⇒
√
z =
√
re

1
2
iπ = i

√
r, dz = −dr.

Then, ∫
γ∗∗

f(z) dz =

∫ 1

0

i
√
r(−dr)

= −i
∫ 1

0

√
r dr

= −2

3
i .

15



Finally, we obtain the result∫
γ∗
f(z) dz +

∫
γ∗∗

f(z) dz = (−2

3
i) + (−2

3
i)

= −4

3
i

=

∫
γ

f(z) dz.

From (1) and (2), we have verified equation (17).

Example 2. Let f(z) =
√

(z − 1)(z − 2) and let γ be the positively oriented circular path

z = 3
2

+ eiθ, −π ≤ θ < π. Evaluate the integral
∫
γ
f(z) dz.

Solution.

Step 1. Draw the cut plane

Figure 26

If a point goes from point A , crossing through the left part of 1 on real axis ({x ∈ R|x <
1}), to point B, it crosses two branch cuts. Then

√
z − 1 changes sign one time and

√
z − 2 also changes sign one time. So f(z) totally changes sign two times. If a point goes

from point C, crossing through the line segment between 1 and 2 ({x ∈ R|1 < x < 2}), to

point D, it crosses only one branch cut. Then
√
z − 1 does not change sign but

√
z − 2

changes sign one time. So f(z) totally changes sign only one times. Thus, there is only

one cut between 1 and 2 (Figure 25).

Step 2. Evaluate the integrals

(1) Integral along the circle

16



Figure 27

z ∈ γ =⇒ z =
3

2
+ eiθ, −π ≤ θ < π

=⇒ dz = ieiθdθ.

Then, ∫
γ

f(z) dz =

∫ π

−π

√
(
3

2
+ eiθ)− 1

√
(
3

2
+ eiθ)− 2 ieiθ dθ

= −0.785395i .

(2) Deformation of path

Figure 28

Since the points along the path γ∗ is in the + edge of the cut plane, the points on γ∗ has

the angle −π.

z ∈ γ∗ =⇒ z = 2 + rei(−π) = 2− r, r : 1→ 0

=⇒
√
z − 2 =

√
re

1
2
i(−π) = −i

√
r, dz = −dr.

Then, ∫
γ∗
f(z) dz =

∫ 0

1

√
1 + rei(−π)(−i

√
r)(−dr)

=

∫ 0

1

√
1− r(−i

√
r)(−dr)

= i

∫ 0

1

√
1− r

√
r dr

= −0.392699i .
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Similarly, the points along the path γ∗∗ is in the − edge of the cut plane. So the points

on γ∗∗ has the angle π.

z ∈ γ∗∗ =⇒ z = 2 + reiπ = 2− r, r : 0→ 1

=⇒
√
z − 2 =

√
re

1
2
iπ = i

√
r, dz = −dr.

Then, ∫
γ∗∗

f(z) dz =

∫ 1

0

√
1− r(i

√
r)(−dr)

= −i
∫ 1

0

√
1− r

√
r dr

= −0.392699i .

We obtain ∫
γ∗
f(z) dz +

∫
γ∗∗

f(z) dz = (−0.392699i) + (−0.392699i)

= −0.785398i .

Again, we verify equation (17).

Note that, ∫
γ

f(z) dz =

∫
γ∗
f(z) dz +

∫
γ∗∗

f(z) dz

= i

∫ 0

1

√
1− r

√
r dr +

(
−i
∫ 1

0

√
1− r

√
r dr

)
= i

∫ 0

1

√
1− r

√
r dr +

(
i

∫ 0

1

√
1− r

√
r dr

)
= 2i

∫ 0

1

√
1− r

√
r dr

= 2

∫
γ∗
f(z) dz .

That is, ∫
γ

f(z) dz = 2

∫
1

+−→2

f(z) dz (18)

3.2 The Problem in Using Mathematica

Before we use Mathematica to compute the integrals, we need to know what phenomena

will happens. Let z = reiθ. We use the notation, arg z to denote the argument of the

complex number z. So, arg z = θ. Let (I) denote sheet I and let (II) denote sheet II. Let

w = f(z) =
√
z. In theoretical aspect,

z ∈ (I) =⇒ −π ≤ arg z < π =⇒ −π
2
≤ 1

2
arg z <

π

2
.

f maps the points on sheet I into the right-half plane {z ∈ C| − π
2
≤ arg z < π

2
}.

18



Figure 29

And,

z ∈ (II) =⇒ π ≤ arg z < 3π =⇒ π

2
≤ 1

2
arg z <

3π

2
.

f maps the points on sheet II into the left-half plane {z ∈ C|π
2
≤ arg z < 3π

2
}.

Figure 30

If you compute
√
z using Mathematica, you can discover that the range of f(z) =

√
z

are as same as the range described above except the points along the + edge of sheet I

,that is, {z ∈ C|arg z = −π}. For example, suppose that z = −2 ∈ (I,+), where (I,+)

denotes the + edge of sheet I.

z ∈ (I,+) =⇒ arg z = −π

=⇒ arg
√
z = −π

2

=⇒ −2 = 2ei(−π)

=⇒ f(z) =
√
−2 =

(
2ei(−π)

) 1
2 =
√

2ei(−
π
2
) = −

√
2i.

But in Mathematica,
√
−2 =

√
2i. This value needs to time −1 to obtain the correct

value. Therefore,

z ∈ (I,+) =⇒
√
z = (−1) ·math

(√
z
)
,

where math (
√
z) means the value of

√
z computed by Mathematica. We use the notation

math (·) to denote the value of “ · ” computed by Mathematica.

2-

i2

i2-

theoretical

Mathematica

Figure 31
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Thus, if you want to compute an integral along the + edge in sheet I, e.g.,
∫
−1 +−→0

√
zdz

(integration along the line segment {z ∈ (I,+)| − 1 < z < 0} from −1 to 0), you must

multiply the result value computed in Mathematica by −1 to obtain the correct value.

That is, ∫
−1 +−→0

√
z dz = (−1) ·math

(∫ 0

−1

√
z dz

)
= −0.666667i.

Suppose that f(z) =
√
z. Let θ2 = θ1 + 2π and let z1 = reiθ1 ,−π ≤ θ1 < π and

z2 = reiθ2 , π ≤ θ2 < 3π. Then z1 and z2 are the same points in the complex plane C, but

in the cut plane, z1 ∈ (I) and z2 ∈ (II) (Figure 32).

Figure 32

f(z2) =
√
z2 =

√
re

1
2
iθ2 =

√
re

1
2
i(θ1+2π) =

√
re

1
2
iθ1+iπ

=
√
re

1
2
iθ1eiπ =

√
re

1
2
iθ1 · (−1) = −

√
z1 = −f(z1) (19)

This tells us that
√
z|II = −

√
z|I , the value of

√
z in sheet II is the value of

√
z in sheet

I multiplied by −1. Thus, if g(z) =
√
h(z) where h(z) = (z − z1)(z − z2) · · · (z − zk) =∏k

j=1(z − zj), we can assume that h(z) = Reiθ for some positive real number R and θ.

Let h(z)|I = Reiθ1 ,−π ≤ θ1 < π and h(z)|II = Reiθ2 , π ≤ θ2 < 3π, where θ2 = θ1 + 2π.

g(z)|II =
√
h(z)|II =

√
Reiθ2 =

√
Rei(θ1+2π) =

√
Reiθ1eiπ

=
√
Reiθ1 · (−1) = (−1) ·

√
h(z)|I = (−1) · g(z)|I (20)

3.3 Evaluating Integrals Using Mathematica

In Example 1 and Example 2, we use the analytic method to evaluate the integral. In

this section, we will explain how to modify the value computed in Mathematica.
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Example 3. Evaluate the integral in Example 1 Using Mathematica .

Solution.

(1)Along −1
+−→ 0 (z ∈ γ∗)(Figure 25)

arg z = −π =⇒
√
z = (−1) ·math

(√
z
)

∫
γ∗
f(z) dz =

∫
−1 +−→0

f(z) dz

=

∫ 0

−1
(−1) ·math

(√
z
)
dz

= (−1) ·math
(∫ 0

−1

√
z dz

)
.

(2)Along −1
−←− 0 (z ∈ γ∗∗)(Figure 25)

arg z = π =⇒
√
z = math

(√
z
)

∫
γ∗∗

f(z) dz =

∫
−1 −←−0

f(z) dz

=

∫ −1
0

math
(√

z
)
dz

= math

(∫ −1
0

√
z dz

)
.

Then, ∫
γ

f(z) dz =

∫
γ∗
f(z) dz +

∫
γ∗∗

f(z) dz

= (−1) ·math
(∫ 0

−1

√
z dz

)
+ math

(∫ −1
0

√
z dz

)
= (−1) ·math

(∫ 0

−1

√
z dz

)
+ (−1) ·math

(∫ 0

−1

√
z dz

)
= (−2) ·math

(∫ 0

−1

√
z dz

)
(21)

= −1.33333i .

This agrees with the value
∫
γ
f(z)dz = −4

3
i = −1.33333i in Example 1.

Example 4. Evaluate the integral in Example 2 Using Mathematica .

Solution.

(1)Along 1
+−→ 2

arg(z − 1) = 0 =⇒
√
z − 1 = math

(√
z − 1

)
arg(z − 2) = −π =⇒

√
z − 2 = (−1) ·math

(√
z − 2

)
.
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Thus,

f(z) =
√
z − 1

√
z − 2 = (−1) ·math

(√
z − 1

√
z − 2

)
.

Then, ∫
γ∗
f(z) dz = (−1) ·math

(∫ 2

1

√
z − 1

√
z − 2

)
.

(2)Along 1
−←− 2

arg(z − 1) = 0 =⇒
√
z − 1 = math

(√
z − 1

)
arg(z − 2) = π =⇒

√
z − 2 = math

(√
z − 2

)
.

Thus,

f(z) =
√
z − 1

√
z − 2 = math

(√
z − 1

√
z − 2

)
.

Then, ∫
γ∗∗

f(z) dz = math

(∫ 1

2

√
z − 1

√
z − 2

)
= (−1) ·math

(∫ 2

1

√
z − 1

√
z − 2

)
=

∫
γ∗
f(z) dz.

So, ∫
γ

f(z) dz =

∫
γ∗
f(z) dz +

∫
γ∗∗

f(z) dz

= 2

∫
γ∗
f(z) dz

= (−2) ·math
(∫ 2

1

√
z − 1

√
z − 2

)
= −0.785398i .

This value also agrees with the answer in Example 2.

In the next example, we evaluate an integral along a positively oriented simple closed

curve in which there are two branch cuts.

Example 5. Suppose that f(z) =
√

(z − 1)(z − 2)(z − 3)(z − 4) and γ is a positively

oriented simple closed curve that encloses all cuts (Figure 33). Evaluate the integral∫
γ
f(z)dz.

Solution.
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Figure 33

According to the deformation of path, we have∫
γ

f(z) dz =

∫
1

+−→4

f(z) dz +

∫
1
−←−4

f(z) dz (22)

=

(∫
1

+−→2

f(z) dz +

∫
2

+−→3

f(z) dz +

∫
3

+−→4

f(z) dz

)
+

(∫
3
−←−4

f(z) dz +

∫
2
−←−3

f(z) dz +

∫
1
−←−2

f(z) dz

)
(23)

=

(∫
1

+−→2

f(z) dz +

∫
3

+−→4

f(z) dz

)
+

(∫
3
−←−4

f(z) dz +

∫
1
−←−2

f(z) dz

)
. (24)

Because of the two paths 2
+−→ 3 and 2

−←− 3 are not along any branch cut, the two

integrals
∫
2

+−→3
f(z)dz and

∫
2
−←−3 f(z)dz in equation (23) are canceled by each other. Thus,

we only investigate the four integrals in equation (24).

Theoretical Evaluation

(1)Along 1
+−→ 2

z = 2 + rei(−π) = 2− r, r : 1 −→ 0 =⇒ dz = −dr
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z − 1 > 0 =⇒ arg(z − 1) = 0 =⇒ z − 1 = (1− r)ei0

=⇒
√
z − 1 =

√
1− re 1

2
i0 =
√

1− r
z − 2 < 0 =⇒ arg(z − 2) = −π =⇒ z − 2 = rei(−π)

=⇒
√
z − 2 =

√
re

1
2
i(−π) = −i

√
r

z − 3 < 0 =⇒ arg(z − 3) = −π =⇒ z − 3 = (1 + r)ei(−π)

=⇒
√
z − 3 =

√
1 + re

1
2
i(−π) = −i

√
1 + r

z − 4 < 0 =⇒ arg(z − 4) = −π =⇒ z − 4 = (2 + r)ei(−π)

=⇒
√
z − 4 =

√
2 + re

1
2
i(−π) = −i

√
2 + r

∫
1

+−→2

f(z) dz =

∫ 0

1

√
1− r(−i

√
r)(−i

√
1 + r)(−i

√
2 + r)(−dr)

= i3
∫ 0

1

√
1− r

√
r
√

1 + r
√

2 + r dr

= −i
∫ 0

1

√
1− r

√
r
√

1 + r
√

2 + r dr

= 0.76002i .

From the procedure above, we find that we can simplify the representation of
√
z − k, k =

1, 2, 3, 4. We only substitute z = 2− r directly into
√
z − k for each k and remember the

following rules :

z ∈ (I,+) =⇒

{
z − k > 0 =⇒

√
z − k =

√
(2− r)− k

z − k < 0 =⇒
√
z − k =

√
−(k − z) = (−i)

√
k − z = −i

√
k − (2− r)

The minus sign, “−”, is necessary because z − k ∈ (I,+) and arg(z − k) = −π. It is the

cause of the factor (−i) appearing.

z ∈ (I,−) =⇒

{
z − k > 0 =⇒

√
z − k =

√
(2− r)− k

z − k < 0 =⇒
√
z − k =

√
−(k − z) = i

√
k − z = i

√
k − (2− r)

It is important that we must make the number inside square roots to be positive. Thus,

we can also write

z − 1 > 0 =⇒ arg(z − 1) = 0

=⇒
√
z − 1 =

√
(2− r)− 1 =

√
1− r

z − 2 < 0 =⇒ arg(z − 2) = −π
=⇒
√
z − 2 =

√
(2− r)− 2 =

√
−r = −i

√
r

z − 3 < 0 =⇒ arg(z − 3) = −π
=⇒
√
z − 3 =

√
(2− r)− 3 =

√
−(1 + r) = −i

√
1 + r

z − 4 < 0 =⇒ arg(z − 4) = −π
=⇒
√
z − 4 =

√
(2− r)− 4 =

√
−(2 + r) = −i

√
2 + r
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(2)Along 3
+−→ 4

z = 4 + rei(−π) = 4− r, r : 1 −→ 0 =⇒ dz = −dr

z − 1 > 0 =⇒ arg(z − 1) = 0

=⇒
√
z − 1 =

√
(4− r)− 1 =

√
3− r

z − 2 > 0 =⇒ arg(z − 2) = 0

=⇒
√
z − 2 =

√
(4− r)− 2 =

√
2− r

z − 3 > 0 =⇒ arg(z − 3) = 0

=⇒
√
z − 3 =

√
(4− r)− 3 =

√
1− r

z − 4 < 0 =⇒ arg(z − 4) = −π
=⇒
√
z − 4 =

√
(4− r)− 4 = −i

√
r∫

3
+−→4

f(z) dz =

∫ 0

1

√
3− r

√
2− r

√
1− r(−i

√
r)(−dr)

= i

∫ 0

1

√
3− r

√
2− r

√
1− r

√
r dr

= −0.76002i .

(3)Along 3
−←− 4

z = 4 + rei(−π) = 4− r, r : 0 −→ 1 =⇒ dz = −dr

z − 1 > 0 =⇒ arg(z − 1) = 0

=⇒
√
z − 1 =

√
(4− r)− 1 =

√
3− r

z − 2 < 0 =⇒ arg(z − 2) = 0

=⇒
√
z − 2 =

√
(4− r)− 2 =

√
2− r

z − 3 < 0 =⇒ arg(z − 3) = 0

=⇒
√
z − 3 =

√
(4− r)− 3 =

√
1− r

z − 4 < 0 =⇒ arg(z − 4) = π

=⇒
√
z − 4 =

√
(4− r)− 4 =

√
−r = i

√
r∫

3
−←−4

f(z) dz =

∫ 1

0

√
3− r

√
2− r

√
1− r(i

√
r)(−dr)

= −i
∫ 1

0

√
3− r

√
2− r

√
1− r

√
r dr

= −i
(
−
∫ 0

1

√
3− r

√
2− r

√
1− r

√
r dr

)
= i

∫ 0

1

√
3− r

√
2− r

√
1− r

√
r dr

=

∫
3

+−→4

f(z) dz

= −0.76002i .
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(4)Along 1
−←− 2

z = 2 + rei(−π) = 2− r, r : 0 −→ 1 =⇒ dz = −dr

z − 1 > 0 =⇒ arg(z − 1) = 0

=⇒
√
z − 1 =

√
(2− r)− 1 =

√
1− r

z − 2 < 0 =⇒ arg(z − 2) = π

=⇒
√
z − 2 =

√
(2− r)− 2 =

√
−r = i

√
r

z − 3 < 0 =⇒ arg(z − 3) = π

=⇒
√
z − 3 =

√
(2− r)− 3 =

√
−(1 + r) = i

√
1 + r

z − 4 < 0 =⇒ arg(z − 4) = π

=⇒
√
z − 4 =

√
(2− r)− 4 =

√
−(2 + r) = i

√
2 + r

∫
1
−←−2

f(z) dz =

∫ 1

0

√
1− r(i

√
r)(i
√

1 + r)(i
√

2 + r)(−dr)

= −i3
∫ 1

0

√
1− r

√
r
√

1 + r
√

2 + r dr

= i

∫ 1

0

√
1− r

√
r
√

1 + r
√

2 + r dr

= −i
∫ 0

1

√
1− r

√
r
√

1 + r
√

2 + r dr

=

∫
1

+−→2

f(z) dz

= 0.76002i .

∫
γ

f(z) dz =

∫
1

+−→2

f(z) dz +

∫
3

+−→4

f(z) dz +

∫
3
−←−4

f(z) dz +

∫
1
−←−2

f(z) dz

= 2

∫
1

+−→2

f(z) dz + 2

∫
3

+−→4

f(z) dz

= 2

(∫
1

+−→2

f(z) dz +

∫
3

+−→4

f(z) dz

)
= 2

(
(0.76002i) + (−0.76002i)

)
= 0 .

Using Mathematica

(1)Along 1
+−→ 2

arg(z − 1) = 0 =⇒
√
z − 1 = math

(√
z − 1

)
arg(z − 2) = −π =⇒

√
z − 2 = (−1) ·math

(√
z − 2

)
arg(z − 3) = −π =⇒

√
z − 3 = (−1) ·math

(√
z − 3

)
arg(z − 4) = −π =⇒

√
z − 4 = (−1) ·math

(√
z − 4

)
.
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∫
1

+−→2

f(z) dz = (−1)3 ·math
(∫ 2

1

√
z − 1

√
z − 2

√
z − 3

√
z − 4 dz

)
= (−1) ·math

(∫ 2

1

√
z − 1

√
z − 2

√
z − 3

√
z − 4 dz

)
.

(2)Along 3
+−→ 4

arg(z − 1) = 0 =⇒
√
z − 1 = math

(√
z − 1

)
arg(z − 2) = 0 =⇒

√
z − 2 = math

(√
z − 2

)
arg(z − 3) = 0 =⇒

√
z − 3 = math

(√
z − 3

)
arg(z − 4) = −π =⇒

√
z − 4 = (−1) ·math

(√
z − 4

)
.∫

3
+−→4

f(z) dz = (−1) ·math
(∫ 4

3

√
z − 1

√
z − 2

√
z − 3

√
z − 4 dz

)
.

(3)Along 3
−←− 4

arg(z − 1) = 0 =⇒
√
z − 1 = math

(√
z − 1

)
arg(z − 2) = 0 =⇒

√
z − 2 = math

(√
z − 2

)
arg(z − 3) = 0 =⇒

√
z − 3 = math

(√
z − 3

)
arg(z − 4) = π =⇒

√
z − 4 = math

(√
z − 4

)
.

∫
3
−←−4

f(z) dz = math

(∫ 3

4

√
z − 1

√
z − 2

√
z − 3

√
z − 4 dz

)
= (−1) ·math

(∫ 4

3

√
z − 1

√
z − 2

√
z − 3

√
z − 4 dz

)
=

∫
3

+−→4

f(z) dz.

(4)Along 1
−←− 2

arg(z − 1) = 0 =⇒
√
z − 1 = math

(√
z − 1

)
arg(z − 2) = π =⇒

√
z − 2 = math

(√
z − 2

)
arg(z − 3) = π =⇒

√
z − 3 = math

(√
z − 3

)
arg(z − 4) = π =⇒

√
z − 4 = math

(√
z − 4

)
.

∫
1
−←−2

f(z) dz = math

(∫ 1

2

√
z − 1

√
z − 2

√
z − 3

√
z − 4 dz

)
= (−1) ·math

(∫ 2

1

√
z − 1

√
z − 2

√
z − 3

√
z − 4 dz

)
=

∫
1

+−→2

f(z) dz.
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Therefore, ∫
γ

f(z) dz = 2

∫
1

+−→2

f(z) dz + 2

∫
3

+−→4

f(z) dz

= (−2) ·math
(∫ 2

1

√
z − 1

√
z − 2

√
z − 3

√
z − 4 dz

)
+ (−2) ·math

(∫ 4

3

√
z − 1

√
z − 2

√
z − 3

√
z − 4 dz

)
= (−2) ·math

(∫ 2

1

√
z − 1

√
z − 2

√
z − 3

√
z − 4 dz

+

∫ 4

3

√
z − 1

√
z − 2

√
z − 3

√
z − 4 dz

)
= −3.15797× 10−15 + 1.77636× 10−15i . (25)

To compare the values in equation (24) and equation (25), the two values in fact are

the same. Note that −3.15797 × 10−15 and 1.77636 × 10−15 are very small numbers, so

we can say them to be 0.

In the next example, we evaluate an integral along one b− cycle.

Example 6. Let f(z) =
√

(z − 1)(z − 2)(z − 3) and let γ be the oriented positively cir-

cular path

z =

{
3
2

+ eiθ if − π ≤ θ < 0, (in sheet I)
3
2

+ eiθ if 2π ≤ θ < 3π. (in sheet II)

Solution.

Figure 34

1. Integral along the circle

Since f(z)|II = −f(z)|I , we have∫
γ

f(z) dz =

∫ 0

−π
f(z) dz +

∫ 3π

2π

f(z) dz

=

∫ 0

−π
f(z) dz + (−1)

∫ π

0

f(z) dz

=

∫ 0

−π
f(z) dz −

∫ π

0

f(z) dz.
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z =
3

2
+ eiθ =⇒ dz = ieiθdθ

∫
γ

f(z) dz =

∫ 0

−π

√
(
3

2
+ eiθ)− 1

√
(
3

2
+ eiθ)− 2

√
(
3

2
+ eiθ)− 3 ieiθ dz

−
∫ π

0

√
(
3

2
+ eiθ)− 1

√
(
3

2
+ eiθ)− 2

√
(
3

2
+ eiθ)− 3 ieiθ dz

= −0.958512 .

2. Deformation of path

Theoretical Evaluation

(1) Along 1−→2

z = 2 + rei(−π) = 2− r, r : 1 −→ 0 =⇒ dz = −dr

z − 1 > 0 =⇒ arg(z − 1) = 0

=⇒
√
z − 1 =

√
(2− r)− 1 =

√
1− r

z − 2 < 0 =⇒ arg(z − 2) = −π
=⇒
√
z − 2 =

√
(2− r)− 2 =

√
−r = −i

√
r

z − 3 < 0 =⇒ arg(z − 3) = −π
=⇒
√
z − 3 =

√
(2− r)− 3 =

√
−(1 + r) = −i

√
1 + r

∫
1−→2

f(z) dz =

∫ 0

1

√
1− r(−i

√
r)(−i

√
1 + r)(−dr)

= −i2
∫ 0

1

√
1− r

√
r
√

1 + r dr

=

∫ 0

1

√
1− r

√
r
√

1 + r dr.

(2) Along 1L992

Since f(z)|II = −f(z)|I , we have
∫
1L992 f(z) dz = −

∫
1←−2 f(z) dz. Therefore, we first

evaluate the value of the integral in sheet I then we multiply the value by −1.

z = 2 + rei(−π) = 2− r, r : 0 −→ 1 =⇒ dz = −dr

z − 1 > 0 =⇒ arg(z − 1) = 0

=⇒
√
z − 1 =

√
(2− r)− 1 =

√
1− r

z − 2 < 0 =⇒ arg(z − 2) = π

=⇒
√
z − 2 =

√
(2− r)− 2 =

√
−r = i

√
r

z − 3 < 0 =⇒ arg(z − 3) = π

=⇒
√
z − 3 =

√
(2− r)− 3 =

√
−(1 + r) = i

√
1 + r
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∫
1←−2

f(z) dz =

∫ 1

0

√
1− r(i

√
r)(i
√

1 + r)(−dr)

= −i2
∫ 1

0

√
1− r

√
r
√

1 + r dr

=

∫ 1

0

√
1− r

√
r
√

1 + r dr.

Thus, ∫
1L992

f(z) dz = −
∫
1←−2

f(z) dz

= −
∫ 1

0

√
1− r

√
r
√

1 + r dr

=

∫ 0

1

√
1− r

√
r
√

1 + r dr

=

∫
1−→2

f(z) dz

From (1) and (2), we obtain∫
γ

f(z) dz =

∫
1−→2

f(z) dz +

∫
1L992

f(z) dz (26)

=

∫
1−→2

f(z) dz +

∫
1−→2

f(z) dz (27)

= 2

∫
1−→2

f(z) dz (28)

= 2

∫ 0

1

√
1− r

√
r
√

1 + r dr (29)

= −0.958512 . (30)

Using Mathematica

According to equation (26) to equation (28), we have∫
γ

f(z) dz = 2

∫
1−→2

f(z) dz. (31)

Thus we only evaluate
∫
1−→2

f(z) dz.

Along 1−→2 :

arg(z − 1) = 0 =⇒
√
z − 1 = math

(√
z − 1

)
arg(z − 2) = −π =⇒

√
z − 2 = (−1) ·math

(√
z − 2

)
arg(z − 3) = −π =⇒

√
z − 3 = (−1) ·math

(√
z − 3

)
.

∫
1−→2

f(z) dz = (−1)2 ·math
(∫ 2

1

√
z − 1

√
z − 2

√
z − 3 dz

)
= math

(∫ 2

1

√
z − 1

√
z − 2

√
z − 3 dz

)
.
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So, ∫
γ

f(z) dz = 2

∫
1−→2

f(z) dz

= 2 ·math
(∫ 2

1

√
z − 1

√
z − 2

√
z − 3 dz

)
= −0.958512 .

We give the final example to evaluate integrals along all a-cycles and b-cycles.

Example 7. Suppose that

f(z) =
√

(z + 5)(z + 3)(z + 1)(z − 1)(z − 3)(z − 4)(z − 6)

=
√

(z − (−5))(z − (−3))(z − (−1))(z − 1)(z − 3)(z − 4)(z − 6) .

Let a1, a2, a3 be three a − cycles and let b1, b2, b3 be three b − cycles drawing in Figure

35. Evaluate the six integrals
∫
ak
f(z)dz and

∫
bk
f(z)dz, k = 1, 2, 3 using the method of

deformation of path.

Figure 35

Solution.

Figure 36

31



Suppose that there is an a − cycle encloses a cut which is between z1 to z2. From

equation (18) in example 2, we have the result∫
a−cycle

f(z) dz = 2

∫
z1

+−→z2
f(z) dz (32)

From equation (21) in example 3, we also have∫
a−cycle

f(z) dz = (−2) ·math
(∫ z2

z1

f(z) dz

)
(33)

1. To evaluate
∫
a1
f(z)dz

Theoretical Evaluation

Along −3
+−→ −1 :

z = −1 + rei(−π) = −1− r, r : 2 −→ 0 =⇒ dz = −dr

z + 5 > 0 =⇒ arg(z + 5) = 0 =⇒
√
z + 5 =

√
4− r

z + 3 > 0 =⇒ arg(z + 3) = 0 =⇒
√
z + 3 =

√
2− r

z + 1 < 0 =⇒ arg(z + 1) = −π =⇒
√
z + 1 =

√
−r = −i

√
r

z − 1 < 0 =⇒ arg(z − 1) = −π =⇒
√
z − 1 =

√
−(2 + r) = −i

√
2 + r

z − 3 < 0 =⇒ arg(z − 3) = −π =⇒
√
z − 3 =

√
−(4 + r) = −i

√
4 + r

z − 4 < 0 =⇒ arg(z − 4) = −π =⇒
√
z − 4 =

√
−(5 + r) = −i

√
5 + r

z − 6 < 0 =⇒ arg(z − 6) = −π =⇒
√
z − 6 =

√
−(7 + r) = −i

√
7 + r∫

−3 +−→−1
f(z) dz = −(−i)5

∫ 0

2

√
4− r

√
2− r

√
r
√

2 + r
√

4 + r
√

5 + r
√

7 + r dr

= i

∫ 0

2

√
4− r

√
2− r

√
r
√

2 + r
√

4 + r
√

5 + r
√

7 + r dr.

∫
a1

f(z)dz = 2

∫
−3 +−→−1

f(z) dz

= 2i

∫ 0

2

√
4− r

√
2− r

√
r
√

2 + r
√

4 + r
√

5 + r
√

7 + r dr

= −144.283i .

Using Mathematica

Along −3
+−→ −1 :

arg(z + 5) = 0 =⇒
√
z + 5 = math

(√
z + 5

)
arg(z + 3) = 0 =⇒

√
z + 3 = math

(√
z + 3

)
arg(z + 1) = −π =⇒

√
z + 1 = (−1) ·math

(√
z + 1

)
arg(z − 1) = −π =⇒

√
z − 1 = (−1) ·math

(√
z − 1

)
arg(z − 3) = −π =⇒

√
z − 3 = (−1) ·math

(√
z − 3

)
arg(z − 4) = −π =⇒

√
z − 4 = (−1) ·math

(√
z − 4

)
arg(z − 6) = −π =⇒

√
z − 6 = (−1) ·math

(√
z − 6

)
.
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∫
−3 +−→1

f(z) dz = (−1)5 ·math
(∫ −1
−3

√
(z + 5)(z + 3)(z + 1)(z − 1)(z − 3)(z − 4)(z − 6) dz

)
= (−1) ·math

(∫ −1
−3

√
(z + 5)(z + 3)(z + 1)(z − 1)(z − 3)(z − 4)(z − 6) dz

)
= −72.1417i .

∫
a1

f(z)dz = 2

∫
−3 +−→−1

f(z) dz

= (−2) ·math
(∫ −1
−3

√
(z + 5)(z + 3)(z + 1)(z − 1)(z − 3)(z − 4)(z − 6) dz

)
= −144.283i .

2. To evaluate
∫
a2
f(z)dz

Theoretical Evaluation

Along 1
+−→ 3 :

z = 3 + rei(−π) = 3− r, r : 2 −→ 0 =⇒ dz = −dr

z + 5 > 0 =⇒ arg(z + 5) = 0 =⇒
√
z + 5 =

√
8− r

z + 3 > 0 =⇒ arg(z + 3) = 0 =⇒
√
z + 3 =

√
6− r

z + 1 > 0 =⇒ arg(z + 1) = 0 =⇒
√
z + 1 =

√
4− r

z − 1 > 0 =⇒ arg(z − 1) = 0 =⇒
√
z − 1 =

√
2− r

z − 3 < 0 =⇒ arg(z − 3) = −π =⇒
√
z − 3 =

√
−r = −i

√
r

z − 4 < 0 =⇒ arg(z − 4) = −π =⇒
√
z − 4 =

√
−(1 + r) = −i

√
1 + r

z − 6 < 0 =⇒ arg(z − 6) = −π =⇒
√
z − 6 =

√
−(3 + r) = −i

√
3 + r

∫
1

+−→3

f(z) dz = −(−i)3
∫ 0

2

√
8− r

√
6− r

√
4− r

√
2− r

√
r
√

1 + r
√

3 + r dr

= −i
∫ 0

2

√
8− r

√
6− r

√
4− r

√
2− r

√
r
√

1 + r
√

3 + r dr.

∫
a2

f(z)dz = 2

∫
1

+−→3

f(z) dz

= −2i

∫ 0

2

√
8− r

√
6− r

√
4− r

√
2− r

√
r
√

1 + r
√

3 + r dr

= 88.2841i .

Using Mathematica
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Along 1
+−→ 3 :

arg(z + 5) = 0 =⇒
√
z + 5 = math

(√
z + 5

)
arg(z + 3) = 0 =⇒

√
z + 3 = math

(√
z + 3

)
arg(z + 1) = 0 =⇒

√
z + 1 = math

(√
z + 1

)
arg(z − 1) = 0 =⇒

√
z − 1 = math

(√
z − 1

)
arg(z − 3) = −π =⇒

√
z − 3 = (−1) ·math

(√
z − 3

)
arg(z − 4) = −π =⇒

√
z − 4 = (−1) ·math

(√
z − 4

)
arg(z − 6) = −π =⇒

√
z − 6 = (−1) ·math

(√
z − 6

)
.

∫
1

+−→3

f(z) dz = (−1)3 ·math
(∫ 3

1

√
(z + 5)(z + 3)(z + 1)(z − 1)(z − 3)(z − 4)(z − 6) dz

)
= (−1) ·math

(∫ 3

1

√
(z + 5)(z + 3)(z + 1)(z − 1)(z − 3)(z − 4)(z − 6) dz

)
= 44.142i .

∫
a2

f(z)dz = 2

∫
1

+−→3

f(z) dz

= (−2) ·math
(∫ 3

1

√
(z + 5)(z + 3)(z + 1)(z − 1)(z − 3)(z − 4)(z − 6) dz

)
= 88.2841i .

3. To evaluate
∫
a3
f(z)dz

Theoretical Evaluation

Along 4
+−→ 6 :

z = 6 + rei(−π) = 6− r, r : 2 −→ 0 =⇒ dz = −dr

z + 5 > 0 =⇒ arg(z + 5) = 0 =⇒
√
z + 5 =

√
11− r

z + 3 > 0 =⇒ arg(z + 3) = 0 =⇒
√
z + 3 =

√
9− r

z + 1 > 0 =⇒ arg(z + 1) = 0 =⇒
√
z + 1 =

√
7− r

z − 1 > 0 =⇒ arg(z − 1) = 0 =⇒
√
z − 1 =

√
5− r

z − 3 > 0 =⇒ arg(z − 3) = 0 =⇒
√
z − 3 =

√
3− r

z − 4 > 0 =⇒ arg(z − 4) = 0 =⇒
√
z − 4 =

√
2− r

z − 6 < 0 =⇒ arg(z − 6) = −π =⇒
√
z − 6 =

√
−r = −i

√
r

∫
4

+−→6

f(z) dz = −(−i)
∫ 0

2

√
11− r

√
9− r

√
7− r

√
5− r

√
3− r

√
2− r

√
r dr

= i

∫ 0

2

√
11− r

√
9− r

√
7− r

√
5− r

√
3− r

√
2− r

√
r dr.
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∫
a3

f(z)dz = 2

∫
4

+−→6

f(z) dz

= 2i

∫ 0

2

√
11− r

√
9− r

√
7− r

√
5− r

√
3− r

√
2− r

√
r dr

= −198.138i .

Using Mathematica

Along 4
+−→ 6 :

arg(z + 5) = 0 =⇒
√
z + 5 = math

(√
z + 5

)
arg(z + 3) = 0 =⇒

√
z + 3 = math

(√
z + 3

)
arg(z + 1) = 0 =⇒

√
z + 1 = math

(√
z + 1

)
arg(z − 1) = 0 =⇒

√
z − 1 = math

(√
z − 1

)
arg(z − 3) = 0 =⇒

√
z − 3 = math

(√
z − 3

)
arg(z − 4) = 0 =⇒

√
z − 4 = math

(√
z − 4

)
arg(z − 6) = −π =⇒

√
z − 6 = (−1) ·math

(√
z − 6

)
.∫

4
+−→6

f(z) dz = (−1) ·math
(∫ 6

4

√
(z + 5)(z + 3)(z + 1)(z − 1)(z − 3)(z − 4)(z − 6) dz

)
= −99.0688i .∫

a3

f(z)dz = 2

∫
4

+−→6

f(z) dz

= (−2) ·math
(∫ 6

4

√
(z + 5)(z + 3)(z + 1)(z − 1)(z − 3)(z − 4)(z − 6) dz

)
= −198.138i .

From example 6 and equation (31), we have∫
b−cycle

f(z) dz = 2

∫
z1

+−→z2
f(z) dz, (34)

and ∫
b−cycle

f(z) dz = 2 ·math
(∫ z2

z1

f(z) dz

)
. (35)

4. To evaluate
∫
b1
f(z)dz

Figure 37
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Theoretical Evaluation

Along −5
+−→ −3 :

z = −3 + rei(−π) = −3− r, r : 2 −→ 0 =⇒ dz = −dr

z + 5 > 0 =⇒ arg(z + 5) = 0 =⇒
√
z + 5 =

√
2− r

z + 3 < 0 =⇒ arg(z + 3) = −π =⇒
√
z + 3 =

√
−r = −i

√
r

z + 1 < 0 =⇒ arg(z + 1) = −π =⇒
√
z + 1 =

√
−(2 + r) = −i

√
2 + r

z − 1 < 0 =⇒ arg(z − 1) = −π =⇒
√
z − 1 =

√
−(4 + r) = −i

√
4 + r

z − 3 < 0 =⇒ arg(z − 3) = −π =⇒
√
z − 3 =

√
−(6 + r) = −i

√
6 + r

z − 4 < 0 =⇒ arg(z − 4) = −π =⇒
√
z − 4 =

√
−(7 + r) = −i

√
7 + r

z − 6 < 0 =⇒ arg(z − 6) = −π =⇒
√
z − 6 =

√
−(9 + r) = −i

√
9 + r

∫
−5 +−→−3

f(z) dz = −(−i)6
∫ 0

2

√
2− r

√
r
√

2 + r
√

4 + r
√

6 + r
√

7 + r
√

9 + r dr

=

∫ 0

2

√
2− r

√
r
√

2 + r
√

4 + r
√

6 + r
√

7 + r
√

9 + r dr

∫
b1

f(z)dz = 2

∫
−5 +−→−3

f(z) dz

= 2

∫ 0

2

√
2− r

√
r
√

2 + r
√

4 + r
√

6 + r
√

7 + r
√

9 + r dr

= −291.688 .

Using Mathematica

Along −5
+−→ −3 :

arg(z + 5) = 0 =⇒
√
z + 5 = math

(√
z + 5

)
arg(z + 3) = −π =⇒

√
z + 3 = (−1) ·math

(√
z + 3

)
arg(z + 1) = −π =⇒

√
z + 1 = (−1) ·math

(√
z + 1

)
arg(z − 1) = −π =⇒

√
z − 1 = (−1) ·math

(√
z − 1

)
arg(z − 3) = −π =⇒

√
z − 3 = (−1) ·math

(√
z − 3

)
arg(z − 4) = −π =⇒

√
z − 4 = (−1) ·math

(√
z − 4

)
arg(z − 6) = −π =⇒

√
z − 6 = (−1) ·math

(√
z − 6

)
.

∫
−5 +−→−3

f(z) dz = (−1)6 ·math
(∫ −3
−5

√
(z + 5)(z + 3)(z + 1)(z − 1)(z − 3)(z − 4)(z − 6) dz

)
= math

(∫ −3
−5

√
(z + 5)(z + 3)(z + 1)(z − 1)(z − 3)(z − 4)(z − 6) dz

)
= −145.844 .
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∫
b1

f(z)dz = 2

∫
−5 +−→−3

f(z) dz

= 2 ·math
(∫ −3
−5

√
(z + 5)(z + 3)(z + 1)(z − 1)(z − 3)(z − 4)(z − 6) dz

)
= −291.688 .

5. To evaluate
∫
b2
f(z)dz

Figure 38

∫
b2

f(z) dz =

∫
−5 +−→1

f(z) dz +

∫
−5 −L991

f(z) dz

=

∫
−5 +−→−3

f(z) dz +

∫
−3 +−→−1

f(z) dz +

∫
−1 +−→1

f(z) dz

+

∫
−1 −L991

f(z) dz +

∫
−3 −L99−1

f(z) dz +

∫
−5 −L99−3

f(z) dz

Theoretical Evaluation

(1)Along −5
+−→ −3

z = −3 + rei(−π) = −3− r, r : 2 −→ 0 =⇒ dz = −dr

z + 5 > 0 =⇒ arg(z + 5) = 0 =⇒
√
z + 5 =

√
2− r

z + 3 < 0 =⇒ arg(z + 3) = −π =⇒
√
z + 3 =

√
−r = −i

√
r

z + 1 < 0 =⇒ arg(z + 1) = −π =⇒
√
z + 1 =

√
−(2 + r) = −i

√
2 + r

z − 1 < 0 =⇒ arg(z − 1) = −π =⇒
√
z − 1 =

√
−(4 + r) = −i

√
4 + r

z − 3 < 0 =⇒ arg(z − 3) = −π =⇒
√
z − 3 =

√
−(6 + r) = −i

√
6 + r

z − 4 < 0 =⇒ arg(z − 4) = −π =⇒
√
z − 4 =

√
−(7 + r) = −i

√
7 + r

z − 6 < 0 =⇒ arg(z − 6) = −π =⇒
√
z − 6 =

√
−(9 + r) = −i

√
9 + r

Let u1(r) =
√

2− r
√
r
√

2 + r
√

4 + r
√

6 + r
√

7 + r
√

9 + r. Then∫
−5 +−→−3

f(z) dz = −(−i)6
∫ 0

2

u1(r) dr =

∫ 0

2

u1(r) dr
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(2)Along −5
−
L99 −3

The same procedure in example 6, we first evaluate −5
−←− −3.∫

−5 −←−−3
f(z) dz =

∫ 2

0

i6u1(r) (−dr) = −i6
∫ 2

0

u1(r) dr =

∫ 2

0

u1(r) dr.

Then ∫
−5 −L99−3

f(z) dz = −
∫
−5 −←−−3

f(z) dz = −
∫ 2

0

u1(r) dr

=

∫ 0

2

u1(r) dr =

∫
−5 +−→−3

f(z) dz.

From (1) and (2), we have∫
−5 +−→−3

f(z) dz +

∫
−5 −L99−3

f(z) dz = 2

∫
−5 +−→−3

f(z) dz (36)

= 2

∫ 0

2

u1(r) dr. (37)

(3)Along −3
+−→ −1

z = −1 + rei(−π) = −1− r, r : 2 −→ 0 =⇒ dz = −dr

z + 5 > 0 =⇒ arg(z + 5) = 0 =⇒
√
z + 5 =

√
4− r

z + 3 > 0 =⇒ arg(z + 3) = 0 =⇒
√
z + 3 =

√
2− r

z + 1 < 0 =⇒ arg(z + 1) = −π =⇒
√
z + 1 = −i

√
r

z − 1 < 0 =⇒ arg(z − 1) = −π =⇒
√
z − 1 = −i

√
2 + r

z − 3 < 0 =⇒ arg(z − 3) = −π =⇒
√
z − 3 = −i

√
4 + r

z − 4 < 0 =⇒ arg(z − 4) = −π =⇒
√
z − 4 = −i

√
5 + r

z − 6 < 0 =⇒ arg(z − 6) = −π =⇒
√
z − 6 = −i

√
7 + r

Let u2(r) =
√

4− r
√

2− r
√
r
√

2 + r
√

4 + r
√

5 + r
√

7 + r. Then∫
−3 +−→−1

f(z) dz = −(−i)5
∫ 0

2

u2(r) dr = i

∫ 0

2

u2(r) dr.

(4)Along −3
−
L99 −1∫

−3 −←−−1
f(z) dz = −i5

∫ 2

0

u2(r) dr = −i
∫ 2

0

u2(r) dr.

Then ∫
−3 −L99−1

f(z) dz = −
∫
−3 −←−−1

f(z) dz = i

∫ 2

0

u2(r) dr

= −i
∫ 0

2

u2(r) dr = −
∫
−3 +−→−1

f(z) dz.
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From (3) and (4), we have∫
−3 +−→−1

f(z) dz +

∫
−3 −L99−1

f(z) dz (38)

=

∫
−3 +−→−1

f(z) dz +

(
−
∫
−3 +−→−1

f(z) dz

)
(39)

= 0. (40)

(5)Along −1
+−→ 1

z = 1 + rei(−π) = 1− r, r : 2 −→ 0 =⇒ dz = −dr

z + 5 > 0 =⇒ arg(z + 5) = 0 =⇒
√
z + 5 =

√
6− r

z + 3 > 0 =⇒ arg(z + 3) = 0 =⇒
√
z + 3 =

√
4− r

z + 1 > 0 =⇒ arg(z + 1) = 0 =⇒
√
z + 1 =

√
2− r

z − 1 < 0 =⇒ arg(z − 1) = −π =⇒
√
z − 1 = −i

√
r

z − 3 < 0 =⇒ arg(z − 3) = −π =⇒
√
z − 3 = −i

√
2 + r

z − 4 < 0 =⇒ arg(z − 4) = −π =⇒
√
z − 4 = −i

√
3 + r

z − 6 < 0 =⇒ arg(z − 6) = −π =⇒
√
z − 6 = −i

√
5 + r

Let u3(r) =
√

6− r
√

4− r
√

2− r
√
r
√

2 + r
√

3 + r
√

5 + r. Then∫
−1 +−→1

f(z) dz = −(−i)4
∫ 0

2

u3(r) dr = −
∫ 0

2

u3(r) dr.

(6)Along −1
−
L99 1∫

−1 −←−1
f(z) dz = −i4

∫ 2

0

u3(r) dr = −
∫ 2

0

u3(r) dr.

Then ∫
−1 −L991

f(z) dz = −
∫
−1 −←−1

f(z) dz =

∫ 2

0

u3(r) dr

= −
∫ 0

2

u3(r) dr =

∫
−1 +−→1

f(z) dz.

From (5) and (6), we have∫
−1 +−→1

f(z) dz +

∫
−1 −L991

f(z) dz = 2

∫
−1 +−→1

f(z) dz (41)

= −2

∫ 0

2

u3(r) dr. (42)

According to equation (36), (37), (38), (39), (40), (41), and (42),∫
b2

f(z) dz = 2

∫
−5 +−→−3

f(z) dz + 2

∫
−1 +−→1

f(z) dz

= 2

∫ 0

2

u1(r) dr +

(
−2

∫ 0

2

u3(r) dr

)
= −291.688 + 101.116

= −190.572 .
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Using Mathematica

(1)Along −5
+−→ −3

arg(z + 5) = 0 =⇒
√
z + 5 = math

(√
z + 5

)
arg(z + 3) = −π =⇒

√
z + 3 = (−1) ·math

(√
z + 3

)
arg(z + 1) = −π =⇒

√
z + 1 = (−1) ·math

(√
z + 1

)
arg(z − 1) = −π =⇒

√
z − 1 = (−1) ·math

(√
z − 1

)
arg(z − 3) = −π =⇒

√
z − 3 = (−1) ·math

(√
z − 3

)
arg(z − 4) = −π =⇒

√
z − 4 = (−1) ·math

(√
z − 4

)
arg(z − 6) = −π =⇒

√
z − 6 = (−1) ·math

(√
z − 6

)
.

∫
−5 +−→−3

f(z) dz = (−1)6 ·math
(∫ −3
−5

f(z) dz

)
= math

(∫ −3
−5

f(z) dz

)
(2)Along −5

−
L99 −3

arg(z + 5) = 0 =⇒
√
z + 5 = math

(√
z + 5

)
arg(z + 3) = π =⇒

√
z + 3 = math

(√
z + 3

)
arg(z + 1) = π =⇒

√
z + 1 = math

(√
z + 1

)
arg(z − 1) = π =⇒

√
z − 1 = math

(√
z − 1

)
arg(z − 3) = π =⇒

√
z − 3 = math

(√
z − 3

)
arg(z − 4) = π =⇒

√
z − 4 = math

(√
z − 4

)
arg(z − 6) = π =⇒

√
z − 6 = math

(√
z − 6

)
.

∫
−5 −←−−3

f(z) dz = math

(∫ −5
−3

f(z) dz

)
= −math

(∫ −3
−5

f(z) dz

)
= −

∫
−5 +−→−3

f(z) dz

∫
−5 −L99−3

f(z) dz = −
∫
−5 −←−−3

f(z) dz =

∫
−5 +−→−3

f(z) dz

From (1) and (2),∫
−5 +−→−3

f(z) dz +

∫
−5 −L99−3

f(z) dz

=

∫
−5 +−→−3

f(z) dz +

∫
−5 +−→−3

f(z) dz

= 2

∫
−5 +−→−3

f(z) dz

= 2 ·math
(∫ −3
−5

f(z) dz

)
= 2 ·math

(∫ −3
−5

√
(z + 5)(z + 3)(z + 1)(z − 1)(z − 3)(z − 4)(z − 6) dz

)
= −291.688 .
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(3)Along −3
+−→ −1

arg(z + 5) = 0 =⇒
√
z + 5 = math

(√
z + 5

)
arg(z + 3) = 0 =⇒

√
z + 3 = math

(√
z + 3

)
arg(z + 1) = −π =⇒

√
z + 1 = (−1) ·math

(√
z + 1

)
arg(z − 1) = −π =⇒

√
z − 1 = (−1) ·math

(√
z − 1

)
arg(z − 3) = −π =⇒

√
z − 3 = (−1) ·math

(√
z − 3

)
arg(z − 4) = −π =⇒

√
z − 4 = (−1) ·math

(√
z − 4

)
arg(z − 6) = −π =⇒

√
z − 6 = (−1) ·math

(√
z − 6

)
.

∫
−3 +−→−1

f(z) dz = (−1)5 ·math
(∫ −1
−3

f(z) dz

)
= −math

(∫ −1
−3

f(z) dz

)
(4)Along −3

−
L99 −1

arg(z + 5) = 0 =⇒
√
z + 5 = math

(√
z + 5

)
arg(z + 3) = 0 =⇒

√
z + 3 = math

(√
z + 3

)
arg(z + 1) = π =⇒

√
z + 1 = math

(√
z + 1

)
arg(z − 1) = π =⇒

√
z − 1 = math

(√
z − 1

)
arg(z − 3) = π =⇒

√
z − 3 = math

(√
z − 3

)
arg(z − 4) = π =⇒

√
z − 4 = math

(√
z − 4

)
arg(z − 6) = π =⇒

√
z − 6 = math

(√
z − 6

)
.

∫
−3 −←−−1

f(z) dz = math

(∫ −3
−1

f(z) dz

)
= −math

(∫ −1
−3

f(z) dz

)
=

∫
−3 +−→−1

f(z) dz

∫
−3 −L99−1

f(z) dz = −
∫
−3 −←−−1

f(z) dz = −
∫
−3 +−→−1

f(z) dz

From (3) and (4),∫
−3 +−→−1

f(z) dz +

∫
−3 −L99−1

f(z) dz =

∫
−3 +−→−1

f(z) dz −
∫
−3 +−→−1

f(z) dz

= 0 .

(5)Along −1
+−→ 1

arg(z + 5) = 0 =⇒
√
z + 5 = math

(√
z + 5

)
arg(z + 3) = 0 =⇒

√
z + 3 = math

(√
z + 3

)
arg(z + 1) = 0 =⇒

√
z + 1 = math

(√
z + 1

)
arg(z − 1) = −π =⇒

√
z − 1 = (−1) ·math

(√
z − 1

)
arg(z − 3) = −π =⇒

√
z − 3 = (−1) ·math

(√
z − 3

)
arg(z − 4) = −π =⇒

√
z − 4 = (−1) ·math

(√
z − 4

)
arg(z − 6) = −π =⇒

√
z − 6 = (−1) ·math

(√
z − 6

)
.

41



∫
−1 +−→1

f(z) dz = (−1)4 ·math
(∫ 1

−1
f(z) dz

)
= math

(∫ 1

−1
f(z) dz

)
(6)Along −1

−
L99 1

arg(z + 5) = 0 =⇒
√
z + 5 = math

(√
z + 5

)
arg(z + 3) = 0 =⇒

√
z + 3 = math

(√
z + 3

)
arg(z + 1) = 0 =⇒

√
z + 1 = math

(√
z + 1

)
arg(z − 1) = π =⇒

√
z − 1 = math

(√
z − 1

)
arg(z − 3) = π =⇒

√
z − 3 = math

(√
z − 3

)
arg(z − 4) = π =⇒

√
z − 4 = math

(√
z − 4

)
arg(z − 6) = π =⇒

√
z − 6 = math

(√
z − 6

)
.

∫
−1 −←−1

f(z) dz = math

(∫ −1
1

f(z) dz

)
= −math

(∫ −1
−1

f(z) dz

)
= −

∫
−1 +−→1

f(z) dz

∫
−1 −L991

f(z) dz = −
∫
−1 −←−1

f(z) dz =

∫
−1 +−→1

f(z) dz

From (5) and (6),∫
−1 +−→1

f(z) dz +

∫
−1 −L991

f(z) dz

=

∫
−1 +−→1

f(z) dz +

∫
−1 +−→1

f(z) dz

= 2

∫
−1 +−→1

f(z) dz

= 2 ·math
(∫ 1

−1
f(z) dz

)
= 2 ·math

(∫ 1

−1

√
(z + 5)(z + 3)(z + 1)(z − 1)(z − 3)(z − 4)(z − 6) dz

)
= −101.116 .

Thus,∫
b2

f(z) dz =

(∫
−5 +−→−3

f(z) dz +

∫
−5 −L99−3

f(z) dz

)
+

(∫
−1 +−→1

f(z) dz +

∫
−1 −L991

f(z) dz

)
= −291.688 + 101.116

= −190.572 .

6. To evaluate
∫
b3
f(z)dz

42



Figure 39

∫
b3

f(z) dz =

∫
−5 +−→4

f(z) dz +

∫
−5 −L994

f(z) dz

=

∫
−5 +−→−3

f(z) dz +

∫
−3 +−→−1

f(z) dz +

∫
−1 +−→1

f(z) dz +

∫
1

+−→3

f(z) dz

+

∫
3

+−→4

f(z) dz +

∫
3
−
L994

f(z) dz +

∫
1
−
L993

f(z) dz +

∫
−1 −L991

f(z) dz

+

∫
−3 −L99−1

f(z) dz +

∫
−5 −L99−3

f(z) dz

We only need to evaluate the four integrals,
∫
1

+−→3
f(z)dz,

∫
1
−
L993

f(z)dz,
∫
3

+−→4
f(z)dz, and∫

3
−
L994

f(z) dz. The other six integrals are as same as the six integrals evaluated in 5.

Theoretical Evaluation

(1)Along 1
+−→ 3

z = 3 + rei(−π) = 3− r, r : 2 −→ 0 =⇒ dz = −dr

z + 5 > 0 =⇒ arg(z + 5) = 0 =⇒
√
z + 5 =

√
8− r

z + 3 > 0 =⇒ arg(z + 3) = 0 =⇒
√
z + 3 =

√
6− r

z + 1 > 0 =⇒ arg(z + 1) = 0 =⇒
√
z + 1 =

√
4− r

z − 1 > 0 =⇒ arg(z − 1) = 0 =⇒
√
z − 1 =

√
2− r

z − 3 < 0 =⇒ arg(z − 3) = −π =⇒
√
z − 3 = −i

√
r

z − 4 < 0 =⇒ arg(z − 4) = −π =⇒
√
z − 4 = −i

√
1 + r

z − 6 < 0 =⇒ arg(z − 6) = −π =⇒
√
z − 6 = −i

√
3 + r

Let u4(r) =
√

8− r
√

6− r
√

4− r
√

2− r
√
r
√

1 + r
√

3 + r. Then∫
1

+−→3

f(z) dz = −(−i)3
∫ 0

2

u4(r) dr = −i
∫ 0

2

u4(r) dr.

(2)Along 1
−
L99 3 ∫

1
−←−3

f(z) dz = −i3
∫ 2

0

u4(r) dr = i

∫ 2

0

u4(r) dr.
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Then ∫
1
−
L993

f(z) dz = −
∫
1
−←−3

f(z) dz = −i
∫ 2

0

u4(r) dr

= i

∫ 0

2

u4(r) dr = −
∫
1

+−→3

f(z) dz.

From (1) and (2), we have ∫
1

+−→3

f(z) dz +

∫
1
−
L993

f(z) dz

=

∫
1

+−→3

f(z) dz +

(
−
∫
1

+−→3

f(z) dz

)
= 0. (43)

(3)Along 3
+−→ 4

z = 4 + rei(−π) = 4− r, r : 1 −→ 0 =⇒ dz = −dr

z + 5 > 0 =⇒ arg(z + 5) = 0 =⇒
√
z + 5 =

√
9− r

z + 3 > 0 =⇒ arg(z + 3) = 0 =⇒
√
z + 3 =

√
7− r

z + 1 > 0 =⇒ arg(z + 1) = 0 =⇒
√
z + 1 =

√
5− r

z − 1 > 0 =⇒ arg(z − 1) = 0 =⇒
√
z − 1 =

√
3− r

z − 3 > 0 =⇒ arg(z − 3) = 0 =⇒
√
z − 3 =

√
1− r

z − 4 < 0 =⇒ arg(z − 4) = −π =⇒
√
z − 4 = −i

√
r

z − 6 < 0 =⇒ arg(z − 6) = −π =⇒
√
z − 6 = −i

√
2 + r

Let u5(r) =
√

9− r
√

7− r
√

5− r
√

3− r
√

1− r
√
r
√

2 + r. Then∫
3

+−→4

f(z) dz = −(−i)2
∫ 0

1

u5(r) dr =

∫ 0

1

u5(r) dr.

(4)Along 3
−
L99 4 ∫

3
−←−4

f(z) dz = −i2
∫ 1

0

u5(r) dr =

∫ 1

0

u5(r) dr.

Then ∫
3
−
L994

f(z) dz = −
∫
3
−←−4

f(z) dz = −
∫ 1

0

u5(r) dr

=

∫ 0

1

u5(r) dr =

∫
3

+−→4

f(z) dz.

From (3) and (4), we have∫
3

+−→4

f(z) dz +

∫
3
−
L994

f(z) dz = 2

∫
3

+−→4

f(z) dz

= 2

∫ 0

1

u5(r) dr. (44)
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So, we have∫
b3

f(z) dz = 2

∫
−5 +−→−3

f(z) dz + 2

∫
−1 +−→1

f(z) dz + 2

∫
3

+−→4

f(z) dz

= 2

∫ 0

2

u1(r) dr +

(
−2

∫ 0

2

u3(r) dr

)
+ 2

∫ 0

1

u5(r) dr

= −291.688 + 101.116 + (−30.8213)

= −221.393 .

Using Mathematica

(1)Along 1
+−→ 3

arg(z + 5) = 0 =⇒
√
z + 5 = math

(√
z + 5

)
arg(z + 3) = 0 =⇒

√
z + 3 = math

(√
z + 3

)
arg(z + 1) = 0 =⇒

√
z + 1 = math

(√
z + 1

)
arg(z − 1) = 0 =⇒

√
z − 1 = math

(√
z − 1

)
arg(z − 3) = −π =⇒

√
z − 3 = (−1) ·math

(√
z − 3

)
arg(z − 4) = −π =⇒

√
z − 4 = (−1) ·math

(√
z − 4

)
arg(z − 6) = −π =⇒

√
z − 6 = (−1) ·math

(√
z − 6

)
.

∫
1

+−→3

f(z) dz = (−1)3 ·math
(∫ 3

1

f(z) dz

)
= −math

(∫ 3

1

f(z) dz

)
(2)Along 1

−
L99 3∫

1
−←−3

f(z) dz = math

(∫ 1

3

f(z) dz

)
= −math

(∫ 3

1

f(z) dz

)
=

∫
1

+−→3

f(z) dz

∫
1
−
L993

f(z) dz = −
∫
1
−←−3

f(z) dz = −
∫
1

+−→3

f(z) dz

From (1) and (2),∫
1

+−→3

f(z) dz +

∫
1
−
L993

f(z) dz =

∫
1

+−→3

f(z) dz −
∫
1

+−→3

f(z) dz

= 0 .

(3)Along 3
+−→ 4

arg(z + 5) = 0 =⇒
√
z + 5 = math

(√
z + 5

)
arg(z + 3) = 0 =⇒

√
z + 3 = math

(√
z + 3

)
arg(z + 1) = 0 =⇒

√
z + 1 = math

(√
z + 1

)
arg(z − 1) = 0 =⇒

√
z − 1 = math

(√
z − 1

)
arg(z − 3) = 0 =⇒

√
z − 3 = math

(√
z − 3

)
arg(z − 4) = −π =⇒

√
z − 4 = (−1) ·math

(√
z − 4

)
arg(z − 6) = −π =⇒

√
z − 6 = (−1) ·math

(√
z − 6

)
.
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∫
3

+−→4

f(z) dz = (−1)2 ·math
(∫ 4

3

f(z) dz

)
= math

(∫ 4

3

f(z) dz

)
(4)Along 3

−
L99 4∫

3
−←−4

f(z) dz = math

(∫ 3

4

f(z) dz

)
= −math

(∫ 4

3

f(z) dz

)
= −

∫
3

+−→4

f(z) dz

∫
3
−
L994

f(z) dz = −
∫
3
−←−4

f(z) dz =

∫
3

+−→4

f(z) dz

From (3) and (4),∫
3

+−→4

f(z) dz +

∫
3
−
L994

f(z) dz

=

∫
3

+−→4

f(z) dz +

∫
3

+−→4

f(z) dz

= 2

∫
3

+−→4

f(z) dz

= 2 ·math
(∫ 4

3

f(z) dz

)
= 2 ·math

(∫ 4

3

√
(z + 5)(z + 3)(z + 1)(z − 1)(z − 3)(z − 4)(z − 6) dz

)
= −30.8213 .

Thus,∫
b3

f(z) dz =

(∫
−5 +−→−3

f(z) dz +

∫
−5 −L99−3

f(z) dz

)
+

(∫
−1 +−→1

f(z) dz +

∫
−1 −L991

f(z) dz

)
= +

(∫
3

+−→4

f(z) dz +

∫
3
−
L994

f(z) dz

)
= −291.688 + 101.116 + (−30.8213)

= −221.393 .

3.4 Generalization of Integrals Along Horizontal Cuts

We evaluate the integrals on the Riemann surface of genus N. If the Riemann surface is

of genus N, then there are 2N + 1 or 2N + 2 branch points.

Case 1. The number of branch points is odd (2N + 1 branch points)
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Figure 40

1 ≤ k ≤ N in Figure 40. Let

f(z) =
√

(z − z1)(z − z2) · · · (z − z2N+1) =
2N+1∏
j=1

√
z − zj.

(1) To evaluate
∫
ak
f(z)dz

Figure 41

Theoretical Evaluation

Along z2k
+−→ z2k+1, let d = |z2k+1 − z2k|.

z = z2k+1 + rei(−π) = z2k+1 − r, r : d −→ 0 =⇒ dz = −dr

For j = 1, 2, · · · , 2k,

arg(z − zj) = 0 =⇒
√
z − zj =

√
(z2k+1 − r)− zj

For j = 2k + 1, 2k + 2, · · · , 2N + 1,

arg(z − zj) = −π =⇒
√
z − zj = −i

√
zj − (z2k+1 − r)

Let

u(r) =

(
2k∏
j=1

√
(z2k+1 − r)− zj

)(
2N+1∏
j=2k+1

√
zj − (z2k+1 − r)

)
.
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Then ∫
z2k

+−→z2k+1

f(z) dz = −(−i)(2N+1)−(2k+1)+1

∫ 0

d

u(r) dr

= −(−i)2N−2k+1

∫ 0

d

u(r) dr

= i2N−2k+1

∫ 0

d

u(r) dr

= i2N−2k · i
∫ 0

d

u(r) dr

= (i2)N−k · i
∫ 0

d

u(r) dr

= (−1)N−k · i
∫ 0

d

u(r) dr

Thus, ∫
ak

f(z) dz = 2

∫
z2k

+−→z2k+1

f(z) dz (45)

= (−1)N−k · 2i
∫ 0

d

u(r) dr (46)

Note that the value of the integral is a pure imaginary number.

Using Mathematica

For j = 1, 2, · · · , 2k,

arg(z − zj) = 0 =⇒
√
z − zj = math

(√
z − zj

)
For j = 2k + 1, 2k + 2, · · · , 2N + 1,

arg(z − zj) = −π =⇒
√
z − zj = (−1) ·math

(√
z − zj

)
Then, ∫

z2k
+−→z2k+1

f(z) dz = (−1)(2N+1)−(2k+1)+1 ·math
(∫ z2k+1

z2k

f(z) dz

)
= (−1) ·math

(∫ z2k+1

z2k

f(z) dz

)
Thus, ∫

ak

f(z) dz = 2

∫
z2k

+−→z2k+1

f(z) dz (47)

= (−2) ·math
(∫ z2k+1

z2k

f(z) dz

)
(48)

(2) To evaluate
∫
bk
f(z)dz
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Figure 42

Before our compuation, we first discuss the integrals of the two kinds of path drawn in

Figure 43 and Figure 44.

Class 1. Along a path that there is a cut on it

Figure 43

Since f(z)|II = −f(z)|I ,∫
zm−1

−
L99zm

f(z) dz = −
∫
zm−1

−←−zm
f(z) dz

= −
∫
zm−1

+−→zm
f(z) dz

So, we have ∫
zm−1

+−→zm
f(z) dz +

∫
zm−1

−
L99zm

f(z) dz = 0. (49)

Class 2. Along a path that there is no cut on it

Figure 44

Since f(z)|II = −f(z)|I ,∫
zm−1

−
L99zm

f(z) dz = −
∫
zm−1

−←−zm
f(z) dz

= −
(
−
∫
zm−1

+−→zm
f(z) dz

)
=

∫
zm−1

+−→zm
f(z) dz
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So, we have ∫
zm−1−→zm

f(z) dz +

∫
zm−1L99zm

f(z) dz = 2

∫
zm−1−→zm

f(z) dz. (50)

Thus, we only need to evaluate the integrals
∫
zj

+−→zj+1
f(z) dz for j = 1, 2, · · · , 2k− 1 and

add them together. That is,∫
bk

f(z) dz = 2

(∫
z1−→z2

f(z) dz +

∫
z3−→z4

f(z) dz + · · ·+
∫
z2k−1−→z2k

f(z) dz

)

= 2
k∑

m=1

∫
z2m−1−→z2m

f(z) dz (51)

Figure

45

Theoretical Evaluation

Along z2m−1−→z2m, let d = |z2m − z2m−1|.

z = z2m + rei(−π) = z2m − r, r : d −→ 0 =⇒ dz = −dr

For j = 1, 2, · · · , 2m− 1,

arg(z − zj) = 0 =⇒
√
z − zj =

√
(z2m − r)− zj

For j = 2m, 2m+ 1, · · · , 2N + 1,

arg(z − zj) = −π =⇒
√
z − zj = −i

√
zj − (z2m − r)

Let

u(r) =

(
2m−1∏
j=1

√
(z2m − r)− zj

)(
2N+1∏
j=2m

√
zj − (z2m − r)

)
.

Then ∫
z2m−1−→z2m

f(z) dz = −(−i)(2N+1)−2m+1

∫ 0

d

u(r) dr

= −(−i)2N−2m+2

∫ 0

d

u(r) dr

= (−1)N−m
∫ 0

d

u(r) dr
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Thus, ∫
bk

f(z) dz = 2
k∑

m=1

∫
z2m−1−→z2m

f(z) dz (52)

= 2

k/2∑
m=1

(−1)N−m
∫ 0

d

u(r) dr (53)

Note that the value of the integral is a real number.

Using Mathematica

For j = 1, 2, · · · , 2m− 1,

arg(z − zj) = 0 =⇒
√
z − zj = math

(√
z − zj

)
For j = 2m, 2m+ 1, · · · , 2N + 1,

arg(z − zj) = −π =⇒
√
z − zj = (−1) ·math

(√
z − zj

)
Then, ∫

z2m−1
+−→z2m

f(z) dz = (−1)(2N+1)−2m+1 ·math
(∫ z2m

z2m−1

f(z) dz

)
= math

(∫ z2m

z2m−1

f(z) dz

)
Thus, ∫

bk

f(z) dz = 2
k∑

m=1

∫
z2m−1−→z2m

f(z) dz (54)

= 2
k∑

m=1

math

(∫ z2m

z2m−1

f(z) dz

)
(55)

Case 2. The number of branch points is even (2N + 2 branch points)

Figure 46
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1 ≤ k ≤ N in Figure 46. Let

f(z) =
√

(z − z1)(z − z2) · · · (z − z2N+2) =
2N+2∏
j=1

√
z − zj.

(1) To evaluate
∫
ak
f(z)dz

Figure 47

Theoretical Evaluation

Along z2k+1
+−→ z2k+2, let d = |z2k+2 − z2k+1|.

z = z2k+2 + rei(−π) = z2k+2 − r, r : d −→ 0 =⇒ dz = −dr

For j = 1, 2, · · · , 2k + 1,

arg(z − zj) = 0 =⇒
√
z − zj =

√
(z2k+2 − r)− zj

For j = 2k + 2, 2k + 3, · · · , 2N + 2,

arg(z − zj) = −π =⇒
√
z − zj = −i

√
zj − (z2k+2 − r)

Let

u(r) =

(
2k+1∏
j=1

√
(z2k+2 − r)− zj

)(
2N+2∏
j=2k+2

√
zj − (z2k+2 − r)

)
.

Then ∫
z2k+1

+−→z2k+2

f(z) dz = −(−i)(2N+2)−(2k+2)+1

∫ 0

d

u(r) dr

= −(−i)2N−2k+1

∫ 0

d

u(r) dr

= (−1)N−k · i
∫ 0

d

u(r) dr

Thus, ∫
ak

f(z) dz = 2

∫
z2k+1

+−→z2k+2

f(z) dz (56)

= (−1)N−k · 2i
∫ 0

d

u(r) dr (57)
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Note that the value of the integral is a pure imaginary number.

Using Mathematica

For j = 1, 2, · · · , 2k + 1,

arg(z − zj) = 0 =⇒
√
z − zj = math

(√
z − zj

)
For j = 2k + 2, 2k + 3, · · · , 2N + 2,

arg(z − zj) = −π =⇒
√
z − zj = (−1) ·math

(√
z − zj

)
Then, ∫

z2k+1
+−→z2k+2

f(z) dz = (−1)(2N+2)−(2k+2)+1 ·math

(∫ z2k+2

z2k+1

f(z) dz

)

= (−1) ·math

(∫ z2k+2

z2k+1

f(z) dz

)
Thus, ∫

ak

f(z) dz = 2

∫
z2k+1

+−→z2k+2

f(z) dz (58)

= (−2) ·math

(∫ z2k+2

z2k+1

f(z) dz

)
(59)

(2) To evaluate
∫
bk
f(z)dz

Figure 48

Using similar arguments in class 1 and class 2 of Case 1, we also can see that∫
bk

f(z) dz = 2

(∫
z2−→z3

f(z) dz +

∫
z4−→z5

f(z) dz + · · ·+
∫
z2k−→z2k+1

f(z) dz

)

= 2
k∑

m=1

∫
z2m−→z2m+1

f(z) dz (60)
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Figure 49

Theoretical Evaluation

Along z2m−→z2m+1, let d = |z2m+1 − z2m|.

z = z2m+1 + rei(−π) = z2m+1 − r, r : d −→ 0 =⇒ dz = −dr

For j = 1, 2, · · · , 2m,

arg(z − zj) = 0 =⇒
√
z − zj =

√
(z2m − r)− zj

For j = 2m+ 1, 2m+ 2, · · · , 2N + 2,

arg(z − zj) = −π =⇒
√
z − zj = −i

√
zj − (z2m − r)

Let

u(r) =

(
2m∏
j=1

√
(z2m − r)− zj

)(
2N+2∏
j=2m+1

√
zj − (z2m − r)

)
.

Then ∫
z2m−→z2m+1

f(z) dz = −(−i)(2N+2)−(2m+1)+1

∫ 0

d

u(r) dr

= −(−i)2N−2m+2

∫ 0

d

u(r) dr

= (−1)N−m
∫ 0

d

u(r) dr

Thus, ∫
bk

f(z) dz = 2
k∑

m=1

∫
z2m−→z2m+1

f(z) dz (61)

= 2
k∑

m=1

(−1)N−m
∫ 0

d

u(r) dr (62)

Note that the value of the integral is a real number.

Using Mathematica

For j = 1, 2, · · · , 2m,

arg(z − zj) = 0 =⇒
√
z − zj = math

(√
z − zj

)
For j = 2m+ 1, 2m+ 2, · · · , 2N + 2,

arg(z − zj) = −π =⇒
√
z − zj = (−1) ·math

(√
z − zj

)
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Then, ∫
z2m−→z2m+1

f(z) dz = (−1)(2N+2)−(2m+1)+1 ·math
(∫ z2m+1

z2m

f(z) dz

)
= math

(∫ z2m+1

z2m

f(z) dz

)
Thus, ∫

bk

f(z) dz = 2
k∑

m=1

∫
z2m−→z2m+1

f(z) dz (63)

= 2
k∑

m=1

math

(∫ z2m+1

z2m

f(z) dz

)
(64)

Example 8. Let

f(z) =
2N+2∏
j=1

√
z − zj.

Suppose that Im(z2j−1) = Im(z2j), j = 1, 2, · · · , N + 1. The cuts are drawn in Figure 50.

Let Re(zj) = xj, j = 1, 2, · · · , 2N + 2 and Im(z2j−1) = Im(z2j) = yj, j = 1, 2, · · · , N + 1.

Evaluate
∫
ak
f(z)dz and

∫
bk
f(z)dz.

Figure 50
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Figure 51 Figure 52

Solution.

(1) To evaluate
∫
ak
f(z)dz (Figure 51)

Theoretical Evaluation

Along z2k+1
+−→ z2k+2, let d = |z2k+2 − z2k+1|.

z = z2k+2 + rei(−π) = z2k+2 − r, r : d −→ 0 =⇒ dz = −dr

For j = 2k + 2,

arg(z − z2k+2) = −π =⇒
√
z − z2k+2 = −i

√
r

For other j,

arg(z − zj) 6= −π =⇒
√
z − zj =

√
(z2k+2 − r)− zj

Let

u(r) =

(
2k+1∏
j=1

√
(z2k+2 − r)− zj

)(√
r
)( 2N+2∏

j=2k+3

√
zj − (z2k+2 − r)

)
.

Then ∫
z2k+1

+−→z2k+2

f(z) dz = −(−i)
∫ 0

d

u(r) dr = i

∫ 0

d

u(r) dr

Thus, ∫
ak

f(z) dz = 2i

∫ 0

d

u(r) dr .
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Using Mathematica

Along z2k+1
+−→ z2k+2.

For j = 2k + 2,

arg(z − z2k+2) = −π =⇒
√
z − z2k+2 = (−1) ·math

(√
z − z2k+2

)
For other j,

arg(z − zj) 6= −π =⇒
√
z − zj = math

(√
z − zj

)
Then, ∫

z2k+1
+−→z2k+2

f(z) dz = (−1) ·math

(∫ z2k+2

z2k+1

f(z) dz

)

Thus, ∫
ak

f(z) dz = 2

∫
z2k+1

+−→z2k+2

f(z) dz

= (−2) ·math

(∫ z2k+2

z2k+1

f(z) dz

)

(2) To evaluate
∫
bk
f(z)dz (Figure 52)

For j = 2, 3, · · · , k, ∫
z2j−1

+
99Kz2j

f(z) dz +

∫
z2j−1

−←−z2j
f(z) dz

= −
∫
z2j−1

+−→z2j
f(z) dz +

∫
z2j−1

+−→z2j
f(z) dz

= 0 .

So,∫
bk

f(z) dz =

(∫
z1

+
99Kz2

f(z) dz +

∫
z1
−
L99z2

f(z) dz

)
+

k∑
j=1

(∫
z2j−1−→z2j+2

f(z) dz +

∫
z2j−1L99z2j+2

f(z) dz

)

+

(∫
z2k+1

+−→z2k+2

f(z) dz +

∫
z2k+1

−←−z2k+2

f(z) dz

)

= (−1) · 2
∫
z1

+−→z2
f(z) dz + 2

k∑
j=1

∫
z2j−1−→z2j+2

f(z) dz

= 2i

∫ 0

d

(
2k+1∏
j=1

√
(z2k+2 − r)− zj

)(√
r
)( 2N+2∏

j=2k+3

√
zj − (z2k+2 − r)

)
dr .
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Theoretical Evaluation

Along z1
+−→ z2, let d = |z2 − z1|.

z = z2 + rei(−π) = z2 − r, r : d −→ 0 =⇒ dz = −dr

For j = 2,

arg(z − z2) = −π =⇒
√
z − z2 = −i

√
r

For other j,

arg(z − zj) 6= −π =⇒
√
z − zj =

√
(z2 − r)− zj

Let

u(r) =
(√

(z2 − r)− z1
) (√

r
)(2N+2∏

j=3

√
zj − (z2 − r)

)
.

Then ∫
z1

+−→z2
f(z) dz = −(−i)

∫ 0

d

u(r) dr = i

∫ 0

d

u(r) dr

Along z2j−1
+−→ z2j+2, let

θ = − arctan
|z2j−1 − z2j+1|
|z2j+1 − z2j+2|

, d = |z2j−1 − z2j+2|.

z = z(r) = z2j−1 + reiθ, r : d −→ 0 =⇒ dz = eiθdr

Then, ∫
z2j−1−→z2j+2

f(z) dz =

∫ d

0

2N+2∏
j=1

√
|z(r)− zj| eiθdr .

Thus,∫
bk

f(z) dz = (−1) · 2
∫
z1

+−→z2
f(z) dz + 2

k∑
j=1

∫
z2j−1−→z2j+2

f(z) dz +

∫
ak

f(z) dz

= (−1) · 2i
∫ 0

d

u(r) dr + 2
k∑
j=1

∫ d

0

2N+2∏
j=1

√
|z(r)− zj| eiθdr +

∫
ak

f(z) dz .

Using Mathematica

Along z1
+−→ z2, let d = |z2 − z1|.

For j = 2,

arg(z − z2) = −π =⇒
√
z − z2 = (−1) ·math

(√
z − z2

)
For other j,

arg(z − zj) 6= −π =⇒
√
z − zj = math

(√
z − zj

)
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Then, ∫
z1

+−→z2
f(z) dz = (−1) ·math

(∫ z2

z1

f(z) dz

)
Along z2j−1

+−→ z2j+2, let

θ = − arctan
|z2j−1 − z2j+1|
|z2j+1 − z2j+2|

, d = |z2j−1 − z2j+2|.

z = z2j−1 + reiθ, r : d −→ 0 =⇒ dz = eiθdr

Then, ∫
z2j−1−→z2j+2

f(z) dz = math

(∫ d

0

f(z2j−1 + reiθ)eiθdr

)
.

Thus,∫
bk

f(z) dz = (−1) · 2
∫
z1

+−→z2
f(z) dz + 2

k∑
j=1

∫
z2j−1−→z2j+2

f(z) dz +

∫
ak

f(z) dz

= (−1) · 2 · (−1) ·math
(∫ z2

z1

f(z) dz

)
+ 2

k∑
j=1

math

(∫ d

0

f(z2j−1 + reiθ)eiθdr

)

+ (−2) ·math

(∫ z2k+2

z2k+1

f(z) dz

)

= 2 ·math
(∫ z2

z1

f(z) dz

)
+ 2

k∑
j=1

math

(∫ d

0

f(z2j−1 + reiθ)eiθdr

)

+ (−2) ·math

(∫ z2k+2

z2k+1

f(z) dz

)
.
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4 Integrals for Vertical Cuts

4.1 Cut Structures for Vertical Cuts

We first define the branches for vertical cuts. Let f(z) =
√
z and let z = reiθ, where

θ = arg z. We define two single-valued branches of f as

f(z) =
√
re

1
2
iθ, −3π

2
≤ θ <

π

2
,

and

f(z) =
√
re

1
2
iθ,

π

2
≤ θ <

5π

2
.

And we define sheet I and sheet II as

sheet I = {z ∈ C| − 3π

2
≤ arg z <

π

2
},

and

sheet II = {z ∈ C|π
2
≤ arg z <

5π

2
}.

To Label the second quadrant with a + and label the first quadrant with a −.

Figure 53

Then we can use the same method used in section 2.1 to construct the Riemann surface

for f. (see Figure 6)

4.2 The Problem in Using Mathematica

We use (I) to denote sheet I and (II) to denote sheet II. We can see

z ∈ (I) =⇒ −3π

2
≤ arg z <

π

2
=⇒ −3π

4
≤ 1

2
arg z <

π

4
.

f maps the points on sheet I into the region {z ∈ C| − 3π
4
≤ arg z < π

4
}.
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Figure 54

And,

z ∈ (II) =⇒ π

2
≤ arg z <

5π

2
=⇒ π

4
≤ 1

2
arg z <

5π

4
.

f maps the points on sheet II into the region {z ∈ C|π
4
≤ arg z < 5π

4
}.

Figure 55

Let z ∈ Ic = [−3π
2
,−π] ⊆ (I). For example, suppose that z = −1 + i ∈ (I). Then

arg z = −5π
4

and z = ei(
−5π
4

).

arg z = −5π

4
∈ Ic =⇒ arg

√
z = −5π

8

=⇒ f(z) =
√
−1 + i = (ei(

−5π
4

))
1
2 = ei(

−5π
8

)

But in Mathematica,

−1 + i = ei(
3π
4
) =⇒

√
−1 + i = ei(

3π
8
)

We find that ei(
3π
8
) = (−1) · ei(−5π

8
).

Figure 56
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Thus we have the result

z ∈ sheet I and − 3π

2
≤ arg z ≤ −π =⇒

√
z = (−1) ·math

(√
z
)

Let θ = arg z, and let

A = {z ∈ C| − π

2
< θ <

π

4
},

BT = {z ∈ C| − 3π

4
≤ θ ≤ −π

2
},

BM = {z ∈ C|π
4
≤ θ ≤ π

2
}.

T
B

M
B

A

Figure 57

Theoretically,

f(sheet I) = A ∪BT .

In Mathematica,

f(sheet I) = A ∪BM .

4.3 Evaluating Integrals Using Mathematica

Example 9. Let f(z) =
√
z and let γ be the positively oriented (counterclockwise oriented)

circular path z = eiθ, −3π
2
≤ θ < π

2
. Evaluate the integral

∫
γ
f(z) dz.

Solution.

(1) Integral along the circular path

Figure 58
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z ∈ γ =⇒ z = eiθ, −3π

2
≤ θ <

π

2

=⇒ dz = ieiθdθ.

Then, ∫
γ

f(z) dz = math

(
(−1) ·

∫ −π
− 3π

2

f(eiθ)ieiθ dθ +

∫ π
2

−π
f(eiθ)ieiθ dθ

)

= math

(
(−1) ·

∫ −π
− 3π

2

√
eiθ ieiθ dθ +

∫ π
2

−π

√
eiθ ieiθ dθ

)
= −0.942809 + 0.942809i .

(2) Deformation of path

Figure 59

Theoretical Evaluation

Along i
+−→ 0(z ∈ γ∗)

z = ri, r : 1 −→ 0 =⇒ dz = idr

arg z = −3

2
π =⇒

√
z =

√
|ri| ei(

−3π
4

)

∫
γ∗
f(z) dz =

∫ 0

1

√
|ri| ei(

−3π
4

)i dr

= −0.471405 + 0.471405i .

To use the similar method of deriving Equation(18), we can know that∫
γ

f(z) dz = 2

∫
γ∗
f(z) dz

= −0.942809 + 0.942809i .

Using Mathematica

arg z = −3

2
π =⇒

√
z = (−1) ·math

(√
z
)
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∫
γ∗
f(z) dz = (−1) ·math

(∫ 0

1

f(ri) i dr

)
= (−1) ·math

(∫ 0

1

√
ri i dr

)
.

Then, ∫
γ

f(z) dz = 2

∫
γ∗
f(z) dz

= −0.942809 + 0.942809i .

Example 10. Suppose that f(z) =
√

(z − i)(z − 2i)(z − 3i)(z − 4i) and γ is a positively

oriented simple closed curve that encloses all cuts. Evaluate the integral
∫
γ
f(z)dz.

Figure 60

Solution.

Theoretical Evaluation

(1)Along 4i
+−→ 3i

z = ri, r : 4 −→ 3 =⇒ dz = idr

For k = 1, 2, 3,

arg(z − ki) = −3

2
π =⇒

√
z − ki =

√
|ri− ki| ei(−

3π
4
),

and

arg(z − 4i) = −1

2
π =⇒

√
z − 4i =

√
|ri− 4i| ei(−

π
4
)

Then, ∫
4i

+−→3i

f(z) dz =

∫ 3

4

(
4∏

k=1

√
|ri− ki|

)(
ei(
−3π
4

)
)3
ei(
−π
4

) i dr

= −0.76002 .
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(2)Along 2i
+−→ i

z = ri, r : 2 −→ 1 =⇒ dz = idr

arg(z − i) = −3

2
π =⇒

√
z − i =

√
|ri− i| ei(−

3π
4
)

For k = 2, 3, 4,

arg(z − ki) = −1

2
π =⇒

√
z − ki =

√
|ri− ki| ei(−

π
4
)

Then, ∫
2i

+−→i
f(z) dz =

∫ 1

2

(
4∏

k=1

√
|ri− ki|

)
ei(
−3π
4

)
(
ei(
−π
4

)
)3

i dr

= 0.76002 .

Thus, ∫
γ

f(z) dz =

(∫
4i

+−→3i

f(z) dz +

∫
3i
−−→4i

f(z) dz

)
+

(∫
2i

+←−i
f(z) dz +

∫
i
−←−2i

f(z) dz

)
= 2

∫
4i

+−→3i

f(z) dz + 2

∫
2i

+←−i
f(z) dz

= 2

(∫
4i

+−→3i

f(z) dz +

∫
2i

+←−i
f(z) dz

)
= 0 .

Using Mathematica

(1)Along 4i
+−→ 3i

z = ri, r : 4 −→ 3 =⇒ dz = idr

For k = 1, 2, 3,

arg(z − ki) = −3

2
π =⇒

√
z − ki = (−1) ·math

(√
z − ki

)
,

and

arg(z − 4i) = −1

2
π =⇒

√
z − 4i = math

(√
z − 4i

)
Then, ∫

4i
+−→3i

f(z) dz = (−1)3 ·math

(∫ 3

4

(
4∏

k=1

√
|ri− ki|

)
i dr

)
= −0.76002 .

(2)Along 2i
+−→ i

z = ri, r : 2 −→ 1 =⇒ dz = idr
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arg(z − i) = −3

2
π =⇒

√
z − i = (−1) ·math

(√
z − i

)
For k = 2, 3, 4,

arg(z − ki) = −1

2
π =⇒

√
z − ki = math

(√
z − ki

)
Then, ∫

2i
+−→i
f(z) dz = (−1) ·math

(∫ 1

2

(
4∏

k=1

√
|ri− ki|

)
i dr

)
= 0.76002 .

Thus, ∫
γ

f(z) dz = 2

(∫
4i

+−→3i

f(z) dz +

∫
2i

+←−i
f(z) dz

)
= 0 .

Example 11. Suppose that

f(z) =
√

(z − i)(z − 2i)(z − 3i))(z − 4i)(z − 5i)(z − 6i) .

Let a1, a2 be two a− cycles and let b1, b2 be two b− cycles drawing in Figure 61. Evaluate

the four integrals
∫
ak
f(z)dz and

∫
bk
f(z)dz, k = 1, 2 using the method of deformation of

path.

Figure 61

Solution.

66



Figure 62

1. To evaluate
∫
a1
f(z)dz

Theoretical Evaluation

Along 2i
+−→ i,

z = ri, r : 2 −→ 1 =⇒ dz = idr

arg(z − i) = −3

2
π =⇒

√
z − i =

√
|ri− i| ei(−

3π
4
),

For k = 2, 3, 4, 5, 6,

arg(z − ki) = −1

2
π =⇒

√
z − ki =

√
|ri− ki| ei(−

π
4
)

Then, ∫
a1

f(z) dz = 2

∫
2i

+−→i
f(z) dz

= 2

∫ 1

2

(
6∏

k=1

√
|ri− ki|

)
ei(
−3π
4

)
(
ei(
−π
4

)
)5

i dr

= 2

∫ 1

2

(
6∏

k=1

√
|ri− ki|

)
i dr

= −6.08344i .

Using Mathematica

Along 2i
+−→ i,

z = ri, r : 2 −→ 1 =⇒ dz = idr

arg(z − i) = −3

2
π =⇒

√
z − i = (−1) ·math

(√
z − i

)
,
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For k = 2, 3, 4, 5, 6,

arg(z − ki) = −1

2
π =⇒

√
z − ki = math

(√
z − ki

)
Then, ∫

a1

f(z) dz = 2

∫
2i

+−→i
f(z) dz

= 2 · (−1) ·math

(∫ 1

2

(
6∏

k=1

√
ri− ki

)
i dr

)
= −6.08344i .

2. To evaluate
∫
a2
f(z)dz

Theoretical Evaluation

Along 4i
+−→ 3i,

z = ri, r : 4 −→ 3 =⇒ dz = idr

For k = 1, 2, 3,

arg(z − ki) = −3

2
π =⇒

√
z − ki =

√
|ri− ki| ei(−

3π
4
)

For k = 4, 5, 6,

arg(z − ki) = −1

2
π =⇒

√
z − ki =

√
|ri− ki| ei(−

π
4
)

Then, ∫
a2

f(z) dz = 2

∫
4i

+−→3i

f(z) dz

= 2

∫ 3

4

(
6∏

k=1

√
|ri− ki|

)(
ei(
−3π
4

)
)3 (

ei(
−π
4

)
)3

i dr

= 2 · (−1)

∫ 3

4

(
6∏

k=1

√
|ri− ki|

)
i dr

= 2.88937i .

Using Mathematica

Along 4i
+−→ 3i,

z = ri, r : 4 −→ 3 =⇒ dz = idr

For k = 1, 2, 3,

arg(z − ki) = −3

2
π =⇒

√
z − ki = (−1) ·math

(√
z − ki

)
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For k = 4, 5, 6,

arg(z − ki) = −1

2
π =⇒

√
z − ki = math

(√
z − ki

)
Then, ∫

a2

f(z) dz = 2

∫
4i

+−→3i

f(z) dz

= 2 · (−1)3 ·math

(∫ 3

4

(
6∏

k=1

√
ri− ki

)
i dr

)
= 2.88937i .

Figure 63

3. To evaluate
∫
b1
f(z)dz

Theoretical Evaluation

(1)Along 5i −→ 4i

z = ri, r : 5 −→ 4 =⇒ dz = idr

For k = 1, 2, 3, 4,

arg(z − ki) = −3

2
π =⇒

√
z − ki =

√
|ri− ki| ei(−

3π
4
)

For k = 5, 6,

arg(z − ki) = −1

2
π =⇒

√
z − ki =

√
|ri− ki| ei(−

π
4
)
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Then, ∫
5i−→4i

f(z) dz +

∫
5iL994i

f(z) dz

= 2

∫
5i−→4i

f(z) dz

= 2

∫ 4

5

(
6∏

k=1

√
|ri− ki|

)(
ei(
−3π
4

)
)4 (

ei(
−π
4

)
)2

i dr

= 2 · i
∫ 4

5

(
6∏

k=1

√
|ri− ki|

)
i dr

= 3.43541 .

(2)Along 3i −→ 2i

z = ri, r : 3 −→ 2 =⇒ dz = idr

For k = 1, 2,

arg(z − ki) = −3

2
π =⇒

√
z − ki =

√
|ri− ki| ei(−

3π
4
)

For k = 3, 4, 5, 6,

arg(z − ki) = −1

2
π =⇒

√
z − ki =

√
|ri− ki| ei(−

π
4
)

Then, ∫
3i−→2i

f(z) dz +

∫
3iL992i

f(z) dz

= 2

∫
3i−→2i

f(z) dz

= 2

∫ 2

3

(
6∏

k=1

√
|ri− ki|

)(
ei(
−3π
4

)
)2 (

ei(
−π
4

)
)4

i dr

= 2 · i
∫ 2

3

(
6∏

k=1

√
|ri− ki|

)
i dr

= −3.43541 .

Thus, ∫
b1

f(z) dz = 2

∫
5i−→4i

f(z) dz + 2

∫
3i−→2i

f(z) dz

= 0 .

Using Mathematica

(1)Along 5i −→ 4i

z = ri, r : 5 −→ 4 =⇒ dz = idr
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For k = 1, 2, 3, 4,

arg(z − ki) = −3

2
π =⇒

√
z − ki = (−1) ·math

(√
z − ki

)
For k = 5, 6,

arg(z − ki) = −1

2
π =⇒

√
z − ki = math

(√
z − ki

)
Then, ∫

5i−→4i

f(z) dz +

∫
5iL994i

f(z) dz

= 2

∫
5i−→4i

f(z) dz

= 2 · (−1)4
∫ 4

5

(
6∏

k=1

√
ri− ki

)
i dr

= 3.43541 .

(2)Along 3i −→ 2i

z = ri, r : 3 −→ 2 =⇒ dz = idr

For k = 1, 2,

arg(z − ki) = −3

2
π =⇒

√
z − ki = (−1) ·math

(√
z − ki

)
For k = 3, 4, 5, 6,

arg(z − ki) = −1

2
π =⇒

√
z − ki = math

(√
z − ki

)
Then, ∫

3i−→2i

f(z) dz +

∫
3iL992i

f(z) dz

= 2

∫
3i−→2i

f(z) dz

= 2 · (−1)2
∫ 2

3

(
6∏

k=1

√
ri− ki

)
i dr

= −3.43541 .

Thus, ∫
b1

f(z) dz = 2

∫
5i−→4i

f(z) dz + 2

∫
3i−→2i

f(z) dz

= 0 .

4. To evaluate
∫
b2
f(z)dz : We have done in 3.∫

b2

f(z) dz = 2

∫
5i−→4i

f(z) dz = 3.43541 .
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Next, we discuss how to determine the region needed to change the sign of a given

function f .

Example 12. Let f(z) =
√
z − z1

√
z − z2. Determine the region needed to change the

sign in sheet I of the cut plane for f .

Solution.

Figure 64

We separate the cut plane to six region, R1, R2, R3, R4, R5, R6 (Figure 64). Let

Ic = [−3π
2
,−π]. We investigate the sign of each

√
z − zk for all z ∈ sheet I.

If z ∈ R1,

arg(z − z1) ∈ Ic =⇒
√
z − z1 = (−1) ·math

(√
z − z1

)
arg(z − z2) ∈ Ic =⇒

√
z − z2 = (−1) ·math

(√
z − z2

)
.

Then,

f(z) = (−1)2 ·math (f(z)) = math (f(z)) .

If z ∈ R2,

arg(z − z1) ∈ Ic =⇒
√
z − z1 = (−1) ·math

(√
z − z1

)
arg(z − z2) /∈ Ic =⇒

√
z − z2 = math

(√
z − z2

)
.

Then,

f(z) = (−1) ·math (f(z)) .

If z ∈ R3,

arg(z − z1) /∈ Ic =⇒
√
z − z1 = math

(√
z − z1

)
arg(z − z2) /∈ Ic =⇒

√
z − z2 = math

(√
z − z2

)
.

72



Then,

f(z) = math (f(z)) .

If z ∈ R4 ∪R5 ∪R6,

arg(z − z1) /∈ Ic =⇒
√
z − z1 = math

(√
z − z1

)
arg(z − z2) /∈ Ic =⇒

√
z − z2 = math

(√
z − z2

)
.

Then,

f(z) = math (f(z)) .

Thus, the region needed to change the sign is R2. We call such region the sign-region of

f .

Example 13. Let f(z) =
√
z − z1

√
z − z2

√
z − z3. Determine the region needed to

change the sign in sheet I of the cut plane for f .

Solution.

Figure 65

From example 11, we know that it does not to change sign on the right-half side of

sheet I. So we only discuss the left-half side.

We separate the left-half side to four region, R1, R2, R3, R4 (Figure 65). Let Ic =

[−3π
2
,−π].

If z ∈ R1,

arg(z − z1) ∈ Ic =⇒
√
z − z1 = (−1) ·math

(√
z − z1

)
arg(z − z2) ∈ Ic =⇒

√
z − z2 = (−1) ·math

(√
z − z2

)
arg(z − z3) ∈ Ic =⇒

√
z − z3 = (−1) ·math

(√
z − z3

)
.

Then,

f(z) = (−1)3 ·math (f(z)) = (−1) ·math (f(z)) .
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If z ∈ R2,

arg(z − z1) ∈ Ic =⇒
√
z − z1 = (−1) ·math

(√
z − z1

)
arg(z − z2) ∈ Ic =⇒

√
z − z2 = (−1) ·math

(√
z − z2

)
arg(z − z3) ∈ Ic =⇒

√
z − z3 = math

(√
z − z3

)
.

Then,

f(z) = (−1)2 ·math (f(z)) = math (f(z)) .

If z ∈ R3,

arg(z − z1) ∈ Ic =⇒
√
z − z1 = (−1) ·math

(√
z − z1

)
arg(z − z2) ∈ Ic =⇒

√
z − z2 = math

(√
z − z2

)
arg(z − z3) ∈ Ic =⇒

√
z − z3 = math

(√
z − z3

)
.

Then,

f(z) = (−1)math (f(z)) .

If z ∈ R4,

arg(z − z1) ∈ Ic =⇒
√
z − z1 = math

(√
z − z1

)
arg(z − z2) ∈ Ic =⇒

√
z − z2 = math

(√
z − z2

)
arg(z − z3) ∈ Ic =⇒

√
z − z3 = math

(√
z − z3

)
.

Then,

f(z) = math (f(z)) .

Thus, the sign-region are R1 and R3.

We generalize the result of example 11 and example 12 in next two examples.

Example 14. (There are odd branch points)

Let

f(z) =
√

(z − z1)(z − z2) · · · (z − z2N+1) =
2N+1∏
j=1

√
z − zj ,

where Re(zk), k = 1, 2, · · · , 2N + 1, are all the same (Figure 62). Determine the region

needed to change the sign in sheet I of the cut plane for f .

Solution.

We separate the left-half side to the 2N + 1 region, R1, R2, · · · , R2N+1. Let Ic =

[−3π
2
,−π].
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Figure 66

(1) z ∈ R2j−1, j = 1, 2, · · · , N + 1.

For k = 1, 2, · · · , 2j − 2,

arg(z − zk) ∈ Ic =⇒
√
z − zk = (−1) ·math

(√
z − zk

)
For k = 2j − 1, 2j, · · · , 2N + 1,

arg(z − zk) /∈ Ic =⇒
√
z − zk = math

(√
z − zk

)
Then,

f(z) = (−1)2j−2 ·math (f(z)) = math (f(z)) .

(2) z ∈ R2j, j = 1, 2, · · · , N + 1.

For k = 1, 2, · · · , 2j − 1,

arg(z − zk) ∈ Ic =⇒
√
z − zk = (−1) ·math

(√
z − zk

)
For k = 2j, 2j + 1, · · · , 2N + 2,

arg(z − zk) /∈ Ic =⇒
√
z − zk = math

(√
z − zk

)
Then,

f(z) = (−1)2j−1 ·math (f(z)) = (−1) ·math (f(z)) .

Thus, the sign-region are R2, R4, · · · , R2N+2.
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Example 15. (There are even branch points)

Let

f(z) =
√

(z − z1)(z − z2) · · · (z − z2N+2) =
2N+2∏
j=1

√
z − zj ,

where Re(zj), j = 1, 2, · · · , 2N + 2, are all the same (Figure 67). Determine the region

needed to change the sign in sheet I of the cut plane for f .

Solution.

We separate the left-half side to the 2N + 2 region, R1, R2, · · · , R2N+2. Let Ic =

[−3π
2
,−π].

Figure 67

(1) z ∈ R2j−1, j = 1, 2, · · · , N + 2.

For k = 1, 2, · · · , 2j − 2,

arg(z − zk) ∈ Ic =⇒
√
z − zk = (−1) ·math

(√
z − zk

)
For k = 2j − 1, 2j, · · · , 2N + 1,

arg(z − zk) /∈ Ic =⇒
√
z − zk = math

(√
z − zk

)
Then,

f(z) = (−1)2j−2 ·math (f(z)) = math (f(z)) .

(2) z ∈ R2j, j = 1, 2, · · · , N + 1.

For k = 1, 2, · · · , 2j − 1,

arg(z − zk) ∈ Ic =⇒
√
z − zk = (−1) ·math

(√
z − zk

)
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For k = 2j, 2j + 1, · · · , 2N + 2,

arg(z − zk) /∈ Ic =⇒
√
z − zk = math

(√
z − zk

)
Then,

f(z) = (−1)2j−1 ·math (f(z)) = (−1) ·math (f(z)) .

Thus, the sign-region are R2, R4, · · · , R2N+2.

4.4 Generalization of Integrals Along Vertical Cuts

Case 1. The number of branch points is odd (2N + 1 branch points)

Let

f(z) =
√

(z − z1)(z − z2) · · · (z − z2N+1) =
2N+1∏
j=1

√
z − zj .

Aussume that Im(zj) > Im(zj+1) for j = 1, 2, · · · , 2N . Let yj to denote the imaginary

part of zj for all j. That is, yj = Im(zj).

Figure 68 Figure 69 Figure 70
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(1) To evaluate
∫
ak
f(z)dz (Figure 69)

Theoretical Evaluation

Along z2k
+−→ z2k+1,

z = ri, r : y2k −→ y2k+1 =⇒ dz = idr

For j = 1, 2, · · · , 2k,

arg(z − zj) = −1

2
π =⇒

√
z − zj =

√
|ri− zj| ei(−

π
4
)

For j = 2k + 1, 2k + 2, · · · , 2N + 1,

arg(z − zj) = −3

2
π =⇒

√
z − zj =

√
|ri− zj| ei(−

3π
4
)

Then, ∫
ak

f(z) dz = 2

∫
z2k

+−→z2k+1

f(z) dz

= 2
(
ei(
−3π
4

)
)(2N+1)−2k (

ei(
−π
4

)
)2k ∫ y2k+1

y2k

(
2N+1∏
j=1

√
|ri− zj|

)
i dr

= 2 ·
(
ei(

π
4
)
)−3[(2N+1)−2k]−2k

∫ y2k+1

y2k

(
2N+1∏
j=1

√
|ri− zj|

)
i dr

= 2 ·
(
ei(

π
4
)
)−4(N−k)−(2N+3)

∫ y2k+1

y2k

(
2N+1∏
j=1

√
|ri− zj|

)
i dr

= 2 ·
(
ei(−π)

)N−k (
ei(

π
4
)
)−(2N+3)

∫ y2k+1

y2k

(
2N+1∏
j=1

√
|ri− zj|

)
i dr

= 2 · (−1)N−kei(−
2N+3

4
π)

∫ y2k+1

y2k

(
2N+1∏
j=1

√
|ri− zj|

)
i dr .

Note that |Re(
∫
ak
f(z)dz)| = |Im(

∫
ak
f(z)dz)|. It is due to ei(−

2N+3
4

π).

Using Mathematica

Along z2k
+−→ z2k+1,

z = ri, r : y2k −→ y2k+1 =⇒ dz = idr

For j = 1, 2, · · · , 2k,

arg(z − zj) = −1

2
π =⇒

√
z − zj = math

(√
ri− zj

)
For j = 2k + 1, 2k + 2, · · · , 2N + 1,

arg(z − zj) = −3

2
π =⇒

√
z − zj = (−1) ·math

(√
ri− zj

)
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Then, ∫
ak

f(z) dz = 2

∫
z2k

+−→z2k+1

f(z) dz

= 2 · (−1)(2N+1)−2k ·math

(∫ y2k+1

y2k

(
2N+1∏
j=1

√
ri− zj

)
i dr

)

= 2 · (−1) ·math

(∫ y2k+1

y2k

(
2N+1∏
j=1

√
ri− zj

)
i dr

)
.

(2) To evaluate
∫
bk
f(z)dz (Figure 70)

To use the similar method of deriving Equation (49) in case 1 of (2) in section 3.4, we

obtain∫
bk

f(z) dz = 2

(∫
z1−→z2

f(z) dz +

∫
z3−→z4

f(z) dz + · · ·+
∫
z2k−1−→z2k

f(z) dz

)

= 2
k∑

m=1

∫
z2m−1−→z2m

f(z) dz (65)

Theoretical Evaluation

Along z2m−1−→z2m,

z = ri, r : y2m−1 −→ y2m =⇒ dz = idr

For j = 1, 2, · · · , 2m− 1,

arg(z − zj) = −1

2
π =⇒

√
z − zj =

√
|ri− zj| ei(−

π
4
)

For j = 2m, 2m+ 1, · · · , 2N + 1,

arg(z − zj) = −3

2
π =⇒

√
z − zj =

√
|ri− zj| ei(−

3π
4
)

Then,∫
z2m−1−→z2m

f(z) dz =
(
ei(
−3π
4

)
)(2N+1)−(2m−1) (

ei(
−π
4

)
)2m−1 ∫ y2m

y2m−1

(
2N+1∏
j=1

√
|ri− zj|

)
i dr

=
(
ei(

π
4
)
)−3[(2N+1)−(2m−1)]−(2m−1)

∫ y2m

y2m−1

(
2N+1∏
j=1

√
|ri− zj|

)
i dr

=
(
ei(

π
4
)
)−4(N−m+1)−(2N+1)

∫ y2m

y2m−1

(
2N+1∏
j=1

√
|ri− zj|

)
i dr

=
(
ei(−π)

)N−m+1 (
ei(

π
4
)
)−(2N+1)

∫ y2m

y2m−1

(
2N+1∏
j=1

√
|ri− zj|

)
i dr

= (−1)N−m+1ei(−
2N+1

4
π)

∫ y2m

y2m−1

(
2N+1∏
j=1

√
|ri− zj|

)
i dr .
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Thus, ∫
bk

f(z) dz = 2
k∑

m=1

∫
z2m−1−→z2m

f(z) dz

= 2 · (−1)N−m+1ei(−
2N+1

4
π)

k∑
m=1

∫ y2m

y2m−1

(
2N+1∏
j=1

√
|ri− zj|

)
i dr .

Note that |Re(
∫
ak
f(z)dz)| = |Im(

∫
ak
f(z)dz)|.

Using Mathematica

Along z2m−1−→z2m,

z = ri, r : y2m−1 −→ y2m =⇒ dz = idr

For j = 1, 2, · · · , 2m− 1,

arg(z − zj) = −1

2
π =⇒

√
z − zj = math

(√
ri− zj

)
For j = 2m, 2m+ 1, · · · , 2N + 1,

arg(z − zj) = −3

2
π =⇒

√
z − zj = (−1) ·math

(√
ri− zj

)
Then, ∫

bk

f(z) dz = 2

∫
z2m−1−→z2m

f(z) dz

= 2 · (−1)(2N+1)−(2m−1) ·math

(∫ y2m

y2m−1

(
2N+1∏
j=1

√
ri− zj

)
i dr

)

= 2 ·math

(∫ y2m

y2m−1

(
2N+1∏
j=1

√
ri− zj

)
i dr

)
.

Case 2. The number of branch points is even (2N + 2 branch points)

Let

f(z) =
√

(z − z1)(z − z2) · · · (z − z2N+2) =
2N+2∏
j=1

√
z − zj .

Aussume that Im(zj) > Im(zj+1) for j = 1, 2, · · · , 2N+1. Let yj to denote the imaginary

part of zj for all j. That is, yj = Im(zj).
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Figure 71 Figure 72 Figure 73

(1) To evaluate
∫
ak
f(z)dz (Figure 72)

Theoretical Evaluation

Along z2k+1
+−→ z2k+2,

z = ri, r : y2k+1 −→ y2k+2 =⇒ dz = idr

For j = 1, 2, · · · , 2k + 1,

arg(z − zj) = −1

2
π =⇒

√
z − zj =

√
|ri− zj| ei(−

π
4
)

For j = 2k + 2, 2k + 3, · · · , 2N + 2,

arg(z − zj) = −3

2
π =⇒

√
z − zj =

√
|ri− zj| ei(−

3π
4
)
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Then,∫
ak

f(z) dz = 2

∫
z2k+1

+−→z2k+2

f(z) dz

= 2
(
ei(
−3π
4

)
)(2N+1)−(2k+1) (

ei(
−π
4

)
)2k+1

∫ y2k+2

y2k+1

(
2N+2∏
j=1

√
|ri− zj|

)
i dr

= 2 ·
(
ei(

π
4
)
)−3[(2N+1)−(2k+1)]−(2k+1)

∫ y2k+2

y2k+1

(
2N+2∏
j=1

√
|ri− zj|

)
i dr

= 2 ·
(
ei(

π
4
)
)−4(N−k+1)−2N

∫ y2k+2

y2k+1

(
2N+2∏
j=1

√
|ri− zj|

)
i dr

= 2 ·
(
ei(−π)

)N−k+1 (
ei(

π
4
)
)−2N ∫ y2k+2

y2k+1

(
2N+2∏
j=1

√
|ri− zj|

)
i dr

= 2 · (−1)N−k+1ei(−
N
2
π)

∫ y2k+2

y2k+1

(
2N+2∏
j=1

√
|ri− zj|

)
i dr .

Note that this value is a pure imaginary number.

Using Mathematica

Along z2k+1
+−→ z2k+2,

z = ri, r : y2k+1 −→ y2k+2 =⇒ dz = idr

For j = 1, 2, · · · , 2k + 1,

arg(z − zj) = −1

2
π =⇒

√
z − zj = math

(√
ri− zj

)
For j = 2k + 2, 2k + 3, · · · , 2N + 2,

arg(z − zj) = −3

2
π =⇒

√
z − zj = (−1) ·math

(√
ri− zj

)
Then, ∫

ak

f(z) dz = 2

∫
z2k+1

+−→z2k+2

f(z) dz

= 2 · (−1)(2N+1)−(2k+1) ·math

(∫ y2k+1

y2k

(
2N+2∏
j=1

√
ri− zj

)
i dr

)

= 2 ·math

(∫ y2k+2

y2k+1

(
2N+2∏
j=1

√
ri− zj

)
i dr

)
.

(2) To evaluate
∫
bk
f(z)dz (Figure 73)
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∫
bk

f(z) dz = 2

(∫
z2−→z3

f(z) dz +

∫
z4−→z5

f(z) dz + · · ·+
∫
z2k−→z2k+1

f(z) dz

)

= 2
k∑

m=1

∫
z2m−→z2m+1

f(z) dz

Theoretical Evaluation

Along z2m−→z2m+1,

z = ri, r : y2m −→ y2m+1 =⇒ dz = idr

For j = 1, 2, · · · , 2m,

arg(z − zj) = −1

2
π =⇒

√
z − zj =

√
|ri− zj| ei(−

π
4
)

For j = 2m+ 1, 2m+ 2, · · · , 2N + 2,

arg(z − zj) = −3

2
π =⇒

√
z − zj =

√
|ri− zj| ei(−

3π
4
)

Then,∫
z2m−→z2m+1

f(z) dz =
(
ei(
−3π
4

)
)(2N+2)−2m (

ei(
−π
4

)
)2m ∫ y2m+1

y2m

(
2N+2∏
j=1

√
|ri− zj|

)
i dr

=
(
ei(

π
4
)
)−3[(2N+2)−2m]−2m

∫ y2m+1

y2m

(
2N+2∏
j=1

√
|ri− zj|

)
i dr

=
(
ei(

π
4
)
)−4(N−m+1)−2N

∫ y2m+1

y2m

(
2N+2∏
j=1

√
|ri− zj|

)
i dr

=
(
ei(−π)

)N−m+1 (
ei(

π
4
)
)−2N ∫ y2m+1

y2m

(
2N+2∏
j=1

√
|ri− zj|

)
i dr

= (−1)N−m+1ei(−
N
2
π)

∫ y2m+1

y2m

(
2N+2∏
j=1

√
|ri− zj|

)
i dr .

Thus, ∫
bk

f(z) dz = 2
k∑

m=1

∫
z2m−→z2m+1

f(z) dz

= 2 · (−1)N−m+1ei(−
N
2
π)

k∑
m=1

∫ y2m+1

y2m

(
2N+2∏
j=1

√
|ri− zj|

)
i dr .

Using Mathematica

Along z2m−→z2m+1,

z = ri, r : y2m −→ y2m+1 =⇒ dz = idr
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For j = 1, 2, · · · , 2m,

arg(z − zj) = −1

2
π =⇒

√
z − zj = math

(√
ri− zj

)
For j = 2m+ 1, 2m+ 2, · · · , 2N + 2,

arg(z − zj) = −3

2
π =⇒

√
z − zj = (−1) ·math

(√
ri− zj

)
Then, ∫

bk

f(z) dz = 2

∫
z2m−→z2m+1

f(z) dz

= 2 · (−1)(2N+2)−2m ·math

(∫ y2m+1

y2m

(
2N+2∏
j=1

√
ri− zj

)
i dr

)

= 2 ·math

(∫ y2m+1

y2m

(
2N+2∏
j=1

√
ri− zj

)
i dr

)
.

Next, we investigate the sign-regions for other complicated examples.

Example 16. Suppose that

f(z) =
7∏
j=1

√
z − zj

and the cutted plane (sheet I) is drawn below. To determine the sign-regions of f .

Figure 74
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Solution.

First we draw a horizontal line from each end point of every cut to the direction of

minus real asix, L1, L2, L3, L4, L5, L6. Then these horizontal lines and all cuts separate

the complex plane to several regions, R1, · · · , R18. Let Ic = [−3π
2
,−π].

z ∈ R1

=⇒ arg(z − zk) ∈ Ic for all k

=⇒ f(z) = (−1)7 ·math (f(z)) = (−1) ·math (f(z)) .

z ∈ R8

=⇒

{
arg(z − zk) ∈ Ic if k = 2, 3, 5, 6, 7,

arg(z − zk) /∈ Ic otherwise.

=⇒ f(z) = (−1)5 ·math (f(z)) = (−1) ·math (f(z)) .

z ∈ R15

=⇒

{
arg(z − zk) ∈ Ic if k = 5, 7,

arg(z − zk) /∈ Ic otherwise.

=⇒ f(z) = (−1)2 ·math (f(z)) = math (f(z)) .

To discuss the other regions using the above method, you can find that the sign-regions

are the gray regions drawn in Figure 74.

We also give a simple method of finding the sign-regions. For z ∈ Rk, e,g, z ∈ R10,

we imgine that there is a coordinate with orgin z. If there are odd branch points in the

forth quadrant, then f(z) = (−1) · math (f(z)). If there are even branch points in the

forth quadrant, then f(z) = math (f(z)). Finally the sign-regions is shown below.

Figure 75
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Example 17. Suppose that

f(z) =
√

[z − (1 + 2i)][z − (1− 2i)][z − (2 + i)][z − (2− i)].

Evaluate the integral
∫
b
f(z)dz.

Figure 76

Solution.

We evaluate this integral along two different, but equivalent paths, respectively.

(1) Along the paths in Figure 77

Figure 77

Since the path b∗1 lies in a sign-region, we obtain∫
b∗1

f(z) dz +

∫
b∗∗1

f(z) dz = 2

∫
b∗1

f(z) dz

= 2 · (−1) ·math
(∫

1−i +−→1−2i
f(z) dz

)
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Since b∗3 and b∗∗3 are two paths in sheet II and f(z)|II = (−1) · f(z)|I ,∫
b∗3

f(z) dz +

∫
b∗∗3

f(z) dz = 2

∫
b∗3

f(z) dz

= (−1) · 2
∫
2+i

+−→2−i
f(z) dz

Furthermore, b∗3 lies in a sign-region, so∫
b∗3

f(z) dz +

∫
b∗∗3

f(z) dz = (−1) · 2
∫
2+i

+−→2−i
f(z) dz

= (−1) · 2 · (−1) ·math
(∫

2+i
+−→2−i

f(z) dz

)
= 2 ·math

(∫
2+i

+−→2−i
f(z) dz

)
If z ∈ b∗2, then

arg(z − (2− i)) ∈ Ic =⇒
√
z − (2− i) = (−1) ·math

(√
z − (2− i)

)
arg(z − (2 + i)) /∈ Ic =⇒

√
z − (1 + i) = math

(√
z − (2 + i)

)
arg(z − (1− 2i)) /∈ Ic =⇒

√
z − (1− 2i) = math

(√
z − (1− 2i)

)
arg(z − (1 + 2i)) /∈ Ic =⇒

√
z − (1 + 2i) = math

(√
z − (1 + 2i)

)
,

where Ic = [−3π
2
,−π]. Hence,∫

b∗2

f(z) dz +

∫
b∗∗2

f(z) dz = 2

∫
b∗2

f(z) dz

= 2 · (−1) ·math
(∫

1−i +−→2−i
f(z) dz

)
We obtain∫

b

f(z) dz =
3∑

k=1

(∫
b∗k

f(z) dz +

∫
b∗∗k

f(z) dz

)

= 2 · (−1) ·math
(∫

1−i +−→1−2i
f(z) dz

)
+ 2 ·math

(∫
2+i

+−→2−i
f(z) dz

)
+ 2 · (−1) ·math

(∫
1−i +−→2−i

f(z) dz

)
= 2 · (−1)

∫ −2
−1

f(1 + ri)i dr + 2

∫ −1
1

f(2 + ri)i dr + 2 · (−1)

∫ 2

1

f(x− i) dx

= −0.13095− 11.5969i .

(2) Along the paths in Figure 78
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Figure 78

∫
1+2i

+−→1+i

f(z) dz = (−1) ·math
(∫ 1

2

f(1 + ri)i dr

)
and ∫

1+2i
−
L991+i

f(z) dz = (−1)

∫
1+2i

+←−1+i
f(z) dz

= (−1) ·math
(∫ 2

1

f(1 + ri)i dr

)
= (−1)

∫
1+2i

+−→1+i

f(z) dz

Thus, ∫
1+2i

+−→1+i

f(z) dz +

∫
1+2i

−
L991+i

f(z) dz = 0 .

Similarly, ∫
1+i

+−→1−i
f(z) dz +

∫
1−i −L991+i

f(z) dz = 0∫
1−i +−→1−2i

f(z) dz +

∫
1−2i −L991−i

f(z) dz = 0

So, we have ∫
1+2i

+−→1−2i
f(z) dz +

∫
1−2i −L991+2i

f(z) dz = 0

and ∫
2+i

+−→2−i
f(z) dz +

∫
2−i −L992+i

f(z) dz = 0
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It remains to evaluate the integrals along the slant paths
∫
1−2i−→2+i

f(z) dz+
∫
2+iL991−2i f(z) dz.∫

1−2i−→2+i

f(z) dz +

∫
2+iL991−2i

f(z) dz

= 2

∫
1−2i−→2+i

f(z) dz

= 2

∫ √
10
3

0

f(1− 2i+ rei tan
−1 3)ei tan

−1 3 dr + 2 · (−1)

∫ √10
√
10
3

f(1− 2i+ rei tan
−1 3)ei tan

−1 3 dr

= −0.13095− 11.5969i .

Thus, ∫
b

f(z) dz = 2

∫
1−2i−→2+i

f(z) dz = −0.13095− 11.5969i .

Example 18. Suppose that

f(z) =
N+1∏
j=1

√
z − zj

√
z − zj .

satisfying that Re(zj) < Re(zj+1) and Im(zj) = Im(zj+1) for all j and suppose that N+1

is odd. The cut plane is drawn in Figure 79. Evaluate
∫
ak
f(z)dz and

∫
bk
f(z)dz.

Figure 79

Solution.

1. Evaluate
∫
ak
f(z)dz
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Figure 80

Let zj = xj + iyj for all j.∫
zk+1

+−→zk+1

f(z) dz = math

(∫ −yk+1

yk+1

f(xk+1 + ri)i dr

)

∫
zk+1

−←−zk+1

f(z) dz = (−1) ·math

(∫ yk+1

−yk+1

f(xk+1 + ri)i dr

)

= math

(∫ −yk+1

yk+1

f(xk+1 + ri)i dr

)
=

∫
zk+1

+−→zk+1

f(z) dz

Thus, ∫
ak

f(z) dz = 2

∫
zk+1

+−→zk+1

f(z) dz

= 2 ·math

(∫ −yk+1

yk+1

f(xk+1 + ri)i dr

)
.

2. Evaluate
∫
bk
f(z)dz

Figure 81

For j = 1, 2, · · · , k, ∫
zk+1

+−→zk+1

f(z) dz +

∫
zk+1

−
L99zk+1

f(z) dz = 0
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So, ∫
bk

f(z)dz = 2
k∑
j=1

∫
zj−→zj+1

f(z) dz

Let zj = xj + iyj for all j and let

d =
|zj+1 − zj+1|
|zj+1 − zj|

=
2yj

xj+1 − xj

For z ∈ zj −→ zj+1, let z = zj + rei tan
−1 d, r : 0 −→ |zj+1 − zj|. Then∫

zj−→zj+1

f(z) dz = (−1)j ·math

(∫ |zj+1−zj |

0

f(zj + rei tan
−1 d)ei tan

−1 ddr

)

Therefore,∫
bk

f(z)dz = math

(
2

k∑
j=1

(−1)j
∫ |zj+1−zj |

0

f(zj + rei tan
−1 d)ei tan

−1 ddr

)
.

Example 19. Suppose that

f(z) =
√

[z − (−1 + i)][z − 0][z − 2i][z − (1 + 3i)][z − (1 + 5i)][z − (2 + 2i)][z − (2− 2i)].

The cut plane is drawn in Figure 82. Evaluate
∫
bk
f(z)dz for k = 1, 2, 3.

Figure 82

Solution.
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Figure 83

1. Evaluate
∫
b1
f(z)dz

∫
b1

f(z)dz =

∫
−1+i−→2i

f(z) dz +

∫
−1+iL992i

f(z) dz = 2

∫
−1+i−→2i

f(z) dz

Along −1 + i −→ 2i, let z = (−1 + i) + rei(
π
4
), r : 0 −→

√
2.∫

b1

f(z)dz = 2

∫
−1+i−→2i

f(z) dz

= 2 ·math

(∫ √2
0

f((−1 + i) + rei(
π
4
))ei(

π
4
) dr

)
= 0.0529343− 18.4855i .

2. Evaluate
∫
b2
f(z)dz

∫
b2

f(z)dz = 2

∫
−1+i−→2i

f(z) dz + 2

∫
0−→1+5i

f(z) dz

Along 0 −→ 1 + 5i, let z = rei tan
−1 3, r : 0 −→

√
26.∫

0−→1+5i

f(z) dz = 2 · (−1) ·math

(∫ 2
√
26
5

0

f(rei tan
−1 3)ei tan

−1 3 dr

)

+ 2 ·math

(∫ 3
√
26
5

2
√
26
5

f(rei tan
−1 3)ei tan

−1 3 dr

)

+ 2 · (−1) ·math

(∫ √26
3
√

26
5

f(rei tan
−1 3)ei tan

−1 3 dr

)
= −67.2252 + 88.1591i .
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Thus, ∫
b2

f(z)dz = 2

∫
−1+i−→2i

f(z) dz + 2

∫
0−→1+5i

f(z) dz

= (0.0529343− 18.4855i) + (−67.2252 + 88.1591i)

= −67.1723 + 69.6736i .

3. Evaluate
∫
b3
f(z)dz

∫
b3

f(z)dz = 2

∫
−1+i−→2i

f(z) dz + 2

∫
0−→1+5i

f(z) dz + 2

∫
1+3i−→2+2i

f(z) dz

Along 1 + 3i −→ 2 + 2i, let z = (1 + 3i) + rei(−
π
4
), r : 0 −→

√
2.∫

1+3i−→2+2i

f(z) dz = 2 ·math

(∫ √2
0

f((1 + 3i) + rei(−
π
4
))ei(−

π
4
) dr

)
= 9.0209 + 17.2364i .

Thus,∫
b3

f(z)dz = 2

∫
−1+i−→2i

f(z) dz + 2

∫
0−→1+5i

f(z) dz + 2

∫
1+3i−→2+2i

f(z) dz

= (0.0529343− 18.4855i) + (−67.2252 + 88.1591i) + (9.0209 + 17.2364i)

= −58.1514 + 86.91i .
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5 Integrals for Slant Cuts

5.1 Cut Structures for Slant Cuts

Let f(z) =
√
z and let z = reiθ where θ = arg z. Define two single-valued branches of f

as

f(z) =
√
re

1
2
iθ, −7π

4
≤ θ <

π

4
,

and

f(z) =
√
re

1
2
iθ,

π

4
≤ θ <

9π

4
.

Define sheet I and sheet II as

sheet I = {z ∈ C| − 7π

4
≤ arg z <

π

4
},

and

sheet II = {z ∈ C|π
4
≤ arg z <

9π

4
}.

To Label a + and label a − as in Figure 84.

Figure 84

Then we can use the same method used in section 2.1 to build the Riemann surface for

f. (see Figure 6)

More generally, suppose that 0 ≤ α ≤ π. we can define two single-valued branches of

f as

f(z) =
√
re

1
2
iθ, α− 2π ≤ θ < α,

and

f(z) =
√
re

1
2
iθ, α ≤ θ < α + 2π.

Define sheet I and sheet II as

sheet I = {z ∈ C|α− 2π ≤ arg z < α},
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and

sheet II = {z ∈ C|α ≤ arg z < α + 2π}.

To Label a + and label a − as in Figure 85.

paq 2-=

aq =

a

paq 2+=

aq =

Figure 85

5.2 The Problem in Using Mathematica

Let (I) to denote sheet I and let (II) to denote sheet II. Then

z ∈ (I) =⇒ −7π

4
≤ arg z <

π

4
=⇒ −7π

8
≤ arg z <

π

8
.

f maps the points on sheet I into the region {z ∈ C| − 7π
8
≤ 1

2
arg z < π

8
}.

Figure 86

And,

z ∈ (II) =⇒ π

4
≤ arg z <

9π

4
=⇒ π

8
≤ 1

2
arg z <

9π

8
.

f maps the points on sheet II into the region {z ∈ C|π
8
≤ arg z < 9π

8
}.
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Figure 87

Let z ∈ Ic = [−7π
4
,−π] ⊆ (I). For example, suppose that z = 1

2
+
√
3
2
i ∈ (I). Then

arg z = −5π
3

and z = ei(
−5π
3

).

arg z = −5π

3
∈ Ic =⇒ arg

√
z = −5π

6

=⇒ f(z) =

√
1

2
+

√
3

2
i = (ei(

−5π
3

))
1
2 = ei(

−5π
6

)

But in Mathematica,

1

2
+

√
3

2
i = ei(

π
3
) =⇒

√
1

2
+

√
3

2
i = ei(

π
6
)

Note that ei(
π
6
) = (−1) · ei(−5π

6
).

Figure 88

Thus we have the result

z ∈ sheet I and − 7π

4
≤ arg z ≤ −π =⇒

√
z = (−1) ·math

(√
z
)

Let θ = arg z, and let

A = {z ∈ C| − π

2
< θ <

π

4
},

BT = {z ∈ C| − 3π

4
≤ θ ≤ −π

2
},

BM = {z ∈ C|π
4
≤ θ ≤ π

2
}.
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Figure 89

Theoretically,

f(sheet I) = A ∪BT .

In Mathematica,

f(sheet I) = A ∪BM .

5.3 Evaluating Integrals Using Mathematica

Example 20. Let f(z) =
√
z and let γ be the positively oriented (counterclockwise ori-

ented) circular path z = eiθ, −7π
4
≤ θ < π

4
. Evaluate the integral

∫
γ
f(z) dz.

Figure 90

Solution.

(1) Integral along the circular path

z ∈ γ =⇒ z = eiθ, −7π

4
≤ θ <

π

4
=⇒ dz = ieiθdθ.
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Then, ∫
γ

f(z) dz = math

(
(−1) ·

∫ −π
− 7π

4

f(eiθ)ieiθ dθ +

∫ π
4

−π
f(eiθ)ieiθ dθ

)

= math

(
(−1) ·

∫ −π
− 7π

4

√
eiθ ieiθ dθ +

∫ π
4

−π

√
eiθ ieiθ dθ

)
= 0.510245 + 1.23184i .

(2) Deformation of path

Theoretical Evaluation

Along
√
2
2

+
√
2
2
i

+−→ 0(z ∈ γ∗)

z = rei(−
7π
4
), r : 1 −→ 0 =⇒ dz = ei(−

7π
4
)dr

arg z = −7

4
π =⇒

√
z =
√
r ei(

−7π
8

)

∫
γ∗
f(z) dz =

∫ 0

1

√
r ei(

−7π
8

) ei(−
7π
4
) dr

= 0.255122 + 0.61592i .

To use the similar method of deriving Equation(18), we can know that∫
γ

f(z) dz = 2

∫
γ∗
f(z) dz

= 0.510245 + 1.23184i .

Using Mathematica

Along
√
2
2

+
√
2
2
i

+−→ 0(z ∈ γ∗)

z = rei(−
7π
4
), r : 1 −→ 0 =⇒ dz = ei(−

7π
4
)dr

arg z = −7

4
π =⇒

√
z = (−1) ·math

(√
z
)

∫
γ∗
f(z) dz = (−1) ·math

(∫ 0

1

f(rei(−
7π
4
)) ei(−

7π
4
) dr

)
= (−1) ·math

(∫ 0

1

√
rei(−

7π
4
) ei(−

7π
4
) dr

)
.

Then, ∫
γ

f(z) dz = 2

∫
γ∗
f(z) dz

= 0.510245 + 1.23184i .
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Example 21. Suppose that

f(z) =
√
z − (1 + i)

√
z − (2 + 2i).

Let γ be the positively oriented circular path

γ : z =
3

2
+

3

2
i+ eiθ, −7π

4
≤ θ <

π

4
.

Evaluate the integral
∫
γ
f(z) dz.

Figure 91

Solution.

Similar to the method of finding sign-regions for vertical cuts, the sign-region is shown in

Figure 91.

(1) Integral along the circular path

z ∈ γ =⇒ z =
3

2
+

3

2
i+ eiθ, −7π

4
≤ θ <

π

4
=⇒ dz = ieiθdθ.

∫
γ

f(z) dz = math

(∫ − 7π
6

− 7π
4

f(
3

2
+

3

2
i+ eiθ)ieiθ dθ

)

+ (−1) ·math

(∫ − 5π
6

− 7π
6

f(
3

2
+

3

2
i+ eiθ)ieiθ dθ

)

+ math

(∫ π
4

− 5π
6

f(
3

2
+

3

2
i+ eiθ)ieiθ dθ

)
= 1.5708 .

(2) Deformation of path

Theoretical Evaluation

Along 2 + 2i
+−→ 1 + i (z ∈ γ∗)

z = 1 + i+ rei(−
7π
4
), r :

√
2 −→ 0 =⇒ dz = ei(−

7π
4
)dr
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Then,

z − (1 + i) = |1 + i+ rei(−
7π
4
) − (1 + i)|ei(−

7π
4
)

=⇒
√
z − (1 + i) =

√
|1 + i+ rei(−

7π
4
) − (1 + i)| ei(−

7π
8
)

z − (2 + 2i) = |1 + i+ rei(−
7π
4
) − (2 + 2i)|ei(−

3π
4
)

=⇒
√
z − (2 + 2i) =

√
|1 + i+ rei(−

3π
4
) − (2 + 2i)| ei(−

3π
8
)

∫
γ

f(z) dz = 2

∫
γ∗
f(z) dz

= 2

∫ 0

√
2

√
|1 + i+ rei(−

7π
4
) − (1 + i)|

√
|1 + i+ rei(−

3π
4
) − (2 + 2i)| ei(−

7π
8
)ei(−

3π
8
)ei(−

7π
4
) dr

= 1.5708 .

Using Mathematica

Along 2 + 2i
+−→ 1 + i (z ∈ γ∗)

z = 1 + i+ rei(−
7π
4
), r :

√
2 −→ 0 =⇒ dz = ei(−

7π
4
)dr

arg (z − (1 + i)) = −7

4
π =⇒

√
z − (1 + i) = (−1) ·math

(√
z − (1 + i)

)
arg (z − (2 + 2i)) = −3

4
π =⇒

√
z − (2 + 2i) = math

(√
z − (2 + 2i)

)
∫
γ

f(z) dz = 2

∫
γ∗
f(z) dz

= 2 · (−1) ·math
(∫ 0

√
2

√
1 + i+ rei(−

7π
4
) − (1 + i)

√
1 + i+ rei(−

3π
4
) − (2 + 2i) ei(−

7π
4
) dr

)
= 1.5708 .

Example 22. Suppose that

f(z) =
√
z − (1 + i)

√
z − (2 + 2i)

√
z − (3 + 3i)

√
z − (4 + 4i)

√
z − (5 + 5i)

=
5∏

k=1

√
z − (k + ki).

Let a1, a2 be two a− cycles and let b1, b2 be two b− cycles drawing in Figure 92. Evaluate

the four integrals
∫
ak
f(z)dz and

∫
bk
f(z)dz, k = 1, 2 using the method of deformation of

path.
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Figure 92

Solution.

Figure 93

1. Evaluate
∫
a1
f(z) dz

Theoretical Evaluation

Along 2 + 2i
+−→ 1 + i,

z = 1 + i+ rei(−
7π
4
), r :

√
2 −→ 0 =⇒ dz = ei(−

7π
4
)dr

For k = 1,

arg(z − (1 + i)) = −7

4
π =⇒

√
z − (1 + i) =

√
|1 + i+ rei(−

7π
4
) − (1 + i)| ei(−

7π
8
).

For k = 2, 3, 4, 5,

arg(z − (k + ki)) = −3

4
π =⇒

√
z − (k + ki) =

√
|1 + i+ rei(−

7π
4
) − (k + ki)| ei(−

3π
8
)
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Then,∫
a1

f(z) dz = 2

∫
2+2i

+−→1+i

f(z) dz

= 2

∫ 0

√
2

(
5∏

k=1

√
|1 + i+ rei(−

7π
4
) − (k + ki)|

)
ei(
−7π
8

)
(
ei(
−3π
8

)
)4

ei(−
7π
4
) dr

= −8.8736 + 3.67557i .

Using Mathematica

Along 2 + 2i
+−→ 1 + i,

z = 1 + i+ rei(−
7π
4
), r :

√
2 −→ 0 =⇒ dz = ei(−

7π
4
)dr

For k = 1,

arg(z − (1 + i)) = −7

4
π =⇒

√
z − (1 + i) = (−1) ·math

(√
1 + i+ rei(−

7π
4
) − (1 + i)

)
.

For k = 2, 3, 4, 5,

arg(z − (k + ki)) = −3

4
π =⇒

√
z − (k + ki) = math

(√
1 + i+ rei(−

7π
4
) − (k + ki)

)
.

Then,∫
a1

f(z) dz = 2

∫
2+2i

+−→1+i

f(z) dz

= 2 · (−1) ·math

(∫ 0

√
2

(
5∏

k=1

√
1 + i+ rei(−

7π
4
) − (k + ki)

)
ei(−

7π
4
) dr

)
= −8.8736 + 3.67557i .

2. Evaluate
∫
a2
f(z) dz

Theoretical Evaluation

Along 4 + 4i
+−→ 3 + 3i,

z = 3 + 3i+ rei(−
7π
4
), r :

√
2 −→ 0 =⇒ dz = ei(−

7π
4
)dr

For k = 1, 2, 3,

arg(z − (k + ki)) = −7

4
π =⇒

√
z − (k + ki) =

√
|3 + 3i+ rei(−

7π
4
) − (k + ki)| ei(−

7π
8
)

For k = 4, 5,

arg(z − (k + ki)) = −3

4
π =⇒

√
z − (k + ki) =

√
|3 + 3i+ rei(−

7π
4
) − (k + ki)| ei(−

3π
8
)
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Then,∫
a2

f(z) dz = 2

∫
4+4i

+−→3+3i

f(z) dz

= 2

∫ 0

√
2

(
5∏

k=1

√
|3 + 3i+ rei(−

7π
4
) − (k + ki)|

)(
ei(
−7π
8

)
)3 (

ei(
−3π
8

)
)2

ei(−
7π
4
) dr

= 5.69991− 2.36098i .

Using Mathematica

Along 4 + 4i
+−→ 3 + 3i,

z = 3 + 3i+ rei(−
7π
4
), r :

√
2 −→ 0 =⇒ dz = ei(−

7π
4
)dr

For k = 1, 2, 3,

arg(z−(k+ki)) = −7

4
π =⇒

√
z − (k + ki) = (−1)·math

(√
3 + 3i+ rei(−

7π
4
) − (k + ki)

)
For k = 4, 5,

arg(z − (k + ki)) = −3

4
π =⇒

√
z − (k + ki) = math

(√
3 + 3i+ rei(−

7π
4
) − (k + ki)

)
Then,∫

a2

f(z) dz = 2

∫
4+4i

+−→3+3i

f(z) dz

= 2 · (−1)2 ·math

(∫ 0

√
2

(
5∏

k=1

√
|3 + 3i+ rei(−

7π
4
) − (k + ki)|

)
ei(−

7π
4
) dr

)
= 5.69991− 2.36098i .

Figure 94
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3. Evaluate
∫
b1
f(z) dz

Theoretical Evaluation

(1)Along 5 + 5i −→ 4 + 4i

z = 4 + 4i+ rei(−
7π
4
), r :

√
2 −→ 0 =⇒ dz = ei(−

7π
4
)dr

For k = 1, 2, 3, 4,

arg(z − (k + ki)) = −7

4
π =⇒

√
z − (k + ki) =

√
|4 + 4i+ rei(−

7π
4
) − (k + ki)| ei(−

7π
8
)

For k = 5,

arg(z − (5 + 5i)) = −3

4
π =⇒

√
z − (5 + 5i) =

√
|4 + 4i+ rei(−

7π
4
) − (5 + 5i)| ei(−

3π
8
)

Then, ∫
5+5i−→4+4i

f(z) dz +

∫
5+5iL994+4i

f(z) dz

= 2

∫
5+5i−→4+4i

f(z) dz

= 2

∫ 0

√
2

(
5∏

k=1

√
|4 + 4i+ rei(−

7π
4
) − (k + ki)|

)(
ei(
−7π
8

)
)4
ei(
−3π
8

) ei(−
7π
4
) dr

= −3.67557− 8.8736i .

(2)Along 3 + 3i −→ 2 + 2i

z = 2 + 2i+ rei(−
7π
4
), r :

√
2 −→ 0 =⇒ dz = ei(−

7π
4
)dr

For k = 1, 2,

arg(z − (k + ki)) = −7

4
π =⇒

√
z − (k + ki) =

√
|2 + 2i+ rei(−

7π
4
) − (k + ki)| ei(−

7π
8
)

For k = 3, 4, 5,

arg(z − (k + ki)) = −1

2
π =⇒

√
z − (k + ki) =

√
|2 + 2i+ rei(−

7π
4
) − (k + ki)| ei(−

3π
8
)

Then,∫
3+3i−→2+2i

f(z) dz +

∫
3+3iL992+2i

f(z) dz

= 2

∫
3+3i−→2+2i

f(z) dz

= 2

∫ 0

√
2

(
5∏

k=1

√
|4 + 4i+ rei(−

7π
4
) − (k + ki)|

)(
ei(
−7π
8

)
)2 (

ei(
−3π
8

)
)3

ei(−
7π
4
) dr

= −1.31458− 3.17369i .
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Thus, ∫
b1

f(z) dz = 2

∫
5+5i−→4+4i

f(z) dz + 2

∫
3+3i−→2+2i

f(z) dz

= −4.99015− 12.0473i .

Using Mathematica

(1)Along 5 + 5i −→ 4 + 4i

z = 4 + 4i+ rei(−
7π
4
), r :

√
2 −→ 0 =⇒ dz = ei(−

7π
4
)dr

For k = 1, 2, 3, 4,

arg(z−(k+ki)) = −3

2
π =⇒

√
z − (k + ki) = (−1)·math

(√
4 + 4i+ rei(−

7π
4
) − (k + ki)

)
For k = 5,

arg(z − (5 + 5i)) = −1

2
π =⇒

√
z − (5 + 5i) = math

(√
4 + 4i+ rei(−

7π
4
) − (5 + 5i)

)
Then, ∫

5+5i−→4+4i

f(z) dz +

∫
5+5iL994+4i

f(z) dz

= 2

∫
5+5i−→4+4i

f(z) dz

= 2 · (−1)4
∫ 0

√
2

(
5∏

k=1

√
4 + 4i+ rei(−

7π
4
) − (k + ki)

)
ei(−

7π
4
) dr

= −3.67557− 8.8736i .

(2)Along 3 + 3i −→ 2 + 2i

z = 2 + 2i+ rei(−
7π
4
), r :

√
2 −→ 0 =⇒ dz = ei(−

7π
4
)dr

For k = 1, 2,

arg(z−(k+ki)) = −7

4
π =⇒

√
z − (k + ki) = (−1)·math

(√
2 + 2i+ rei(−

7π
4
) − (k + ki)

)
For k = 3, 4, 5,

arg(z − (k + ki)) = −3

4
π =⇒

√
z − (k + ki) = math

(√
2 + 2i+ rei(−

7π
4
) − (k + ki)

)
Then, ∫

3+3i−→2+2i

f(z) dz +

∫
3+3iL992+2i

f(z) dz

= 2

∫
3+3i−→2+2i

f(z) dz

= 2 · (−1)2
∫ 0

√
2

(
5∏

k=1

√
4 + 4i+ rei(−

7π
4
) − (k + ki)

)
ei(−

7π
4
) dr

= −1.31458− 3.17369i .
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Thus, ∫
b1

f(z) dz = 2

∫
5+5i−→4+4i

f(z) dz + 2

∫
3+3i−→2+2i

f(z) dz

= −4.99015− 12.0473i .

4. Evaluate
∫
b2
f(z) dz : We have done in 3.

∫
b2

f(z) dz = 2

∫
5+5i−→4+4i

f(z) dz = −3.67557− 8.8736i .

Example 23. Let

f(z) =
√

(z − z1)(z − z2) · · · (z − z2N+1) =
2N+1∏
j=1

√
z − zj

and

g(z) =
√

(z − z1)(z − z2) · · · (z − z2N+1) =
2N+2∏
j=1

√
z − zj

where zj is of the form zj = rje
i(α−2π). That is, these zj are lies on a slant cut of angle

α. The cuts of f and g are drwan in Figure 95 and Figure 96, respectively.

Figure 95 Figure 96

Let Ic = [α− 2π,−π]. To Apply the similar method using in example 13 and example

14 for vertical cuts, we are able to easily determine the sign-regions for f and g. The

sign-regions for f and for g are all R2, R4, · · · , R2N+2 which are shown in Figure 95 and

Figure 96, respectively.
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5.4 Generalization of Integrals Along Slant Cuts

Case 1. The number of branch points is odd (2N + 1 branch points)

Let

f(z) =
√

(z − z1)(z − z2) · · · (z − z2N+1) =
2N+1∏
j=1

√
z − zj .

Aussume that Re(zj) = Im(zj) for j = 1, 2, · · · , 2N + 1.

22 -k
z

Figure 97

(1) To evaluate
∫
ak
f(z)dz

22 -k
z

Figure 98
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Theoretical Evaluation

Along z2k
+−→ z2k+1, let d = |z2k − z2k+1|.

z = z(r) = z2k+1 + rei(
−7π
4

), r : d −→ 0 =⇒ dz = ei(
−7π
4

)dr

For j = 1, 2, · · · , 2k,

arg(z − zj) = −3

4
π =⇒

√
z − zj =

√
|z(r)− zj| ei(−

3π
8
)

For j = 2k + 1, 2k + 2, · · · , 2N + 1,

arg(z − zj) = −7

4
π =⇒

√
z − zj =

√
|z(r)− zj| ei(−

7π
8
)

Then,∫
ak

f(z) dz = 2

∫
z2k

+−→z2k+1

f(z) dz

= 2
(
ei(
−3π
8

)
)(2N+1)−2k (

ei(
−7π
8

)
)2k ∫ 0

d

(
2N+1∏
j=1

√
|z(r)− zj|

)
ei(
−7π
4

) dr

Using Mathematica

Along z2k
+−→ z2k+1, let d = |z2k − z2k+1|.

z = z(r) = z2k+1 + rei(
−7π
4

), r : d −→ 0 =⇒ dz = ei(
−7π
4

)dr

For j = 1, 2, · · · , 2k,

arg(z − zj) = −3

4
π =⇒

√
z − zj = math

(√
z(r)− zj

)
For j = 2k + 1, 2k + 2, · · · , 2N + 1,

arg(z − zj) = −7

4
π =⇒

√
z − zj = (−1) ·math

(√
z(r)− zj

)
Then, ∫

ak

f(z) dz = 2

∫
z2k

+−→z2k+1

f(z) dz

= 2 · (−1)(2N+1)−2k ·math

(∫ 0

d

(
2N+1∏
j=1

√
z(r)− zj

)
ei(
−7π
4

) dr

)

= 2 · (−1) ·math

(∫ 0

d

(
2N+1∏
j=1

√
z(r)− zj

)
ei(
−7π
4

) dr

)

(2) To evaluate
∫
bk
f(z)dz
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Figure 99

To use the similar method of deriving Equation (49) in case 1 of (2) in section 3.4, we

obtain∫
bk

f(z) dz = 2

(∫
z1−→z2

f(z) dz +

∫
z3−→z4

f(z) dz + · · ·+
∫
z2k−1−→z2k

f(z) dz

)

= 2
k∑

m=1

∫
z2m−1−→z2m

f(z) dz (66)

Theoretical Evaluation

Along z2m−1 −→ z2m, let d = |z2m−1 − z2m|.

z = z2m + ei(
−7π
4

), r : d −→ 0 =⇒ dz = ei(
−7π
4

)dr

For j = 1, 2, · · · , 2m− 1,

arg(z − zj) = −3

4
π =⇒

√
z − zj =

√
|z(r)− zj| ei(−

3π
8
)

For j = 2m, 2m+ 1, · · · , 2N + 1,

arg(z − zj) = −7

4
π =⇒

√
z − zj =

√
|z(r)− zj| ei(−

7π
8
)

Then,∫
z2m−1−→z2m

f(z) dz =
(
ei(
−3π
8

)
)(2N+1)−(2m−1) (

ei(
−7π
8

)
)2m−1 ∫ 0

d

(
2N+1∏
j=1

√
|z(r)− zj|

)
ei(
−7π
4

) dr .

Thus,∫
bk

f(z) dz = 2
k∑

m=1

∫
z2m−1−→z2m

f(z) dz

= 2 ·
(
ei(
−3π
8

)
)(2N+1)−(2m−1) (

ei(
−7π
8

)
)2m−1 k∑

m=1

∫ 0

d

(
2N+1∏
j=1

√
|z(r)− zj|

)
ei(
−7π
4

) dr .
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Using Mathematica

Along z2m−1 −→ z2m, let d = |z2m−1 − z2m|.

z = ei(
−7π
4

), r : yd −→ 0 =⇒ dz = ei(
−7π
4

)dr

For j = 1, 2, · · · , 2m− 1,

arg(z − zj) = −3

4
π =⇒

√
z − zj = math

(√
z(r)− zj

)
For j = 2m, 2m+ 1, · · · , 2N + 1,

arg(z − zj) = −7

4
π =⇒

√
z − zj = (−1) ·math

(√
z(r)− zj

)
Then,∫

bk

f(z) dz = 2

∫
z2m−1−→z2m

f(z) dz

= 2 · (−1)(2N+1)−(2m−1) ·math

(∫ 0

d

(
2N+1∏
j=1

√
z(r)− zj

)
ei(
−7π
4

) dr

)

= 2 ·math

(∫ 0

d

(
2N+1∏
j=1

√
z(r)− zj

)
ei(
−7π
4

) dr

)
.

Case 2. The number of branch points is even (2N + 2 branch points)

Let

f(z) =
√

(z − z1)(z − z2) · · · (z − z2N+2) =
2N+2∏
j=1

√
z − zj .

Aussume that Re(zj) = Im(zj) for j = 1, 2, · · · , 2N + 2.

Figure 100
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(1) To evaluate
∫
ak
f(z)dz

Figure 101

Theoretical Evaluation

Along z2k+1
+−→ z2k+2, let d = |z2k+1 − z2k+2|.

z = z(r) = z2k+2 + rei(
−7π
4

), r : d −→ 0 =⇒ dz = ei(
−7π
4

)dr

For j = 1, 2, · · · , 2k + 1,

arg(z − zj) = −3

4
π =⇒

√
z − zj =

√
|z(r)− zj| ei(−

3π
8
)

For j = 2k + 2, 2k + 3, · · · , 2N + 2,

arg(z − zj) = −7

4
π =⇒

√
z − zj =

√
|z(r)− zj| ei(−

7π
8
)

Then,∫
ak

f(z) dz = 2

∫
z2k+1

+−→z2k+2

f(z) dz

= 2
(
ei(
−3π
8

)
)(2N+2)−(2k+1) (

ei(
−7π
8

)
)2k+1

∫ 0

d

(
2N+2∏
j=1

√
|z(r)− zj|

)
ei(
−7π
4

) dr

Using Mathematica

Along z2k+1
+−→ z2k+2, let d = |z2k − z2k+1|.

z = z(r) = z2k+2 + rei(
−7π
4

), r : d −→ 0 =⇒ dz = ei(
−7π
4

)dr
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For j = 1, 2, · · · , 2k + 1,

arg(z − zj) = −3

4
π =⇒

√
z − zj = math

(√
z(r)− zj

)
For j = 2k + 2, 2k + 3, · · · , 2N + 2,

arg(z − zj) = −7

4
π =⇒

√
z − zj = (−1) ·math

(√
z(r)− zj

)
Then,∫

ak

f(z) dz = 2

∫
z2k+1

+−→z2k+2

f(z) dz

= 2 · (−1)(2N+2)−(2k+1) ·math

(∫ 0

d

(
2N+2∏
j=1

√
z(r)− zj

)
ei(
−7π
4

) dr

)

= 2 ·math

(∫ 0

d

(
2N+2∏
j=1

√
z(r)− zj

)
ei(
−7π
4

) dr

)

(2) To evaluate
∫
bk
f(z)dz

Figure 102

To use the similar method of deriving Equation (49) in case 1 of (2) in section 3.4, we

obtain∫
bk

f(z) dz = 2

(∫
z2−→z3

f(z) dz +

∫
z4−→z5

f(z) dz + · · ·+
∫
z2k−→z2k+1

f(z) dz

)

= 2
k∑

m=1

∫
z2m−→z2m+1

f(z) dz (67)
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Theoretical Evaluation

Along z2m −→ z2m+1, let d = |z2m − z2m+1|.

z = z2m+1 + rei(
−7π
4

), r : d −→ 0 =⇒ dz = ei(
−7π
4

)dr

For j = 1, 2, · · · , 2m,

arg(z − zj) = −3

4
π =⇒

√
z − zj =

√
|z(r)− zj| ei(−

3π
8
)

For j = 2m+ 1, 2m+ 2, · · · , 2N + 2,

arg(z − zj) = −7

4
π =⇒

√
z − zj =

√
|z(r)− zj| ei(−

7π
8
)

Then,∫
z2m−→z2m+1

f(z) dz =
(
ei(
−3π
8

)
)(2N+2)−2m (

ei(
−7π
8

)
)2m ∫ 0

d

(
2N+2∏
j=1

√
|z(r)− zj|

)
ei(
−7π
4

) dr .

Thus,∫
bk

f(z) dz = 2
k∑

m=1

∫
z2m−→z2m+1

f(z) dz

= 2 ·
(
ei(
−3π
8

)
)(2N+2)−2m (

ei(
−7π
8

)
)2m k∑

m=1

∫ 0

d

(
2N+2∏
j=1

√
|z(r)− zj|

)
ei(
−7π
4

) dr .

Using Mathematica

Along z2m −→ z2m+1, let d = |z2m − z2m+1|.

z = rei(
−7π
4

), r : yd −→ 0 =⇒ dz = ei(
−7π
4

)dr

For j = 1, 2, · · · , 2m,

arg(z − zj) = −3

4
π =⇒

√
z − zj = math

(√
z(r)− zj

)
For j = 2m+ 1, 2m+ 2, · · · , 2N + 2,

arg(z − zj) = −7

4
π =⇒

√
z − zj = (−1) ·math

(√
z(r)− zj

)
Then, ∫

bk

f(z) dz = 2

∫
z2m−→z2m+1

f(z) dz

= 2 · (−1)(2N+2)−2m ·math

(∫ 0

d

(
2N+2∏
j=1

√
z(r)− zj

)
ei(
−7π
4

) dr

)

= 2 ·math

(∫ 0

d

(
2N+2∏
j=1

√
z(r)− zj

)
ei(
−7π
4

) dr

)
.
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Next, we give two more complicated examples.

Example 24. Let z1 = −1, z2 = i, z3 = 0, z4 = 2+2i, z5 = 2+i, z6 = (2+
√

3)+2i, z7 =

3 − i, z8 = 4 + (
√

3 − 1)i. Suppose that f(z) =
∏8

j=1

√
z − zj. Evaluate the integrals∫

ak
f(z)dz and

∫
bk
f(z)dz, k = 1, 2, 3 drawn in Figure 103.

Figure 103

Solution.

Figure 104
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1. Evaluate
∫
a1
f(z) dz∫

a1

f(z) dz =

(∫
(
√
3−1)+(

√
3−1)i +−→0

f(z) dz +

∫
(
√
3−1)+(

√
3−1)i −←−0

f(z) dz

)
+

(∫
1+i

+−→(
√
3−1)+(

√
3−1)i

f(z) dz +

∫
1+i

−←−(
√
3−1)+(

√
3−1)i

f(z) dz

)
+

(∫
2+2i

+−→1+i

f(z) dz +

∫
2+2i

−←−+i
f(z) dz

)
= 2 ·math

(∫
(
√
3−1)+(

√
3−1)i +−→0

f(z) dz

)
+ 2 · (−1) ·math

(∫
1+i

+−→(
√
3−1)+(

√
3−1)i

f(z) dz

)
+ 2 ·math

(∫
2+2i

+−→1+i

f(z) dz

)
= 2 ·math

(∫ 0

√
2(
√
3−1)

f(ei(
−7π
4

)) ei(
−7π
4

) dr

)
+ 2 · (−1) ·math

(∫ √2(√3−1)
√
2

f(ei(
−7π
4

)) ei(
−7π
4

) dr

)

+ 2 ·math

(∫ √2
2
√
2

f(ei(
−7π
4

)) ei(
−7π
4

) dr

)
= 54.6154 + 25.4057i .

2. Evaluate
∫
a2
f(z) dz∫
a2

f(z) dz =

∫
(2+
√
3)+2i

+−→2+i

f(z) dz +

∫
(2+
√
3)+2i

−←−2+i
f(z) dz

= 2 · (−1) ·math
(∫

(2+
√
3)+2i

+−→2+i

f(z) dz

)
= 2 ·math

(∫ 0

2

f(2 + i+ rei(
−11π

6
)) ei(

−11π
6

) dr

)
= 19.3388− 40.8839i .

3. Evaluate
∫
a3
f(z) dz∫

a3

f(z) dz =

∫
3−i +−→4+(

√
3−1)i

f(z) dz +

∫
3−i −←−4+(

√
3−1)i

f(z) dz

= 2 · (−1) ·math
(∫

3−i +−→4+(
√
3−1)i

f(z) dz

)
= 2 · (−1) ·math

(∫ 0

2

f(3− i+ rei(
−5π
3

)) ei(
−5π
3

) dr

)
= 35.7104− 61.8018i .
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Figure 105

4. Evaluate
∫
b1
f(z) dz∫

b1

f(z) dz =

(∫
099K−i

f(z) dz +

∫
0←−−i

f(z) dz

)
+ (−1)

∫
a1

f(z) dz

= 2

∫
0←−−i

f(z) dz + (−1)

∫
a1

f(z) dz

= 2 · (−1) ·math
(∫

0←−−i
f(z) dz

)
+ (−1)

∫
a1

f(z) dz

= 2 · (−1) ·math
(∫ 0

−1
f(ri) i dr

)
+ (−1)(54.6154 + 25.4057i)

= −43.5559− 11.1194i .

Figure 106
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5. Evaluate
∫
b2
f(z) dz∫

b2

f(z) dz =

(∫
099K−i

f(z) dz +

∫
0←−−i

f(z) dz

)
+

(∫
2+2i

+
99K0

f(z) dz +

∫
2+2i

−←−0
f(z) dz

)
+

(∫
2+2i−→2+i

f(z) dz +

∫
2+2iL992+i

f(z) dz

)
+ (−1)

∫
a2

f(z) dz

= 2 · (−1) ·math
(∫

0←−−i
f(z) dz

)
+ 0 + 2 · (−1) ·math

(∫
2+2i−→2+i

f(z) dz

)
+ (−1)

∫
a2

f(z) dz

= 2 · (−1) ·math
(∫ 0

−1
f(ri) i dr

)
+ 2 · (−1) ·math

(∫ 1

2

f(2 + ri) i dr

)
+ (−1)(19.3388− 40.8839i)

= 17.9344− 31.2184i .

6. Evaluate
∫
b3
f(z) dz∫

b3

f(z) dz

=

∫
b2

f(z) dz +

(∫
2+i−→4+(

√
3−1)i

f(z) dz +

∫
2+iL994+(

√
3−1)i

f(z) dz

)

= (17.9344− 31.2184i) + 2 ·math

∫ √11−4
√
3

0

f(2 + i+ rei(− tan−1 2−
√
3

2
)) ei(− tan−1 2−

√
3

2
) dr


= 36.6632 + 8.92194i .

Example 25. Let z1 = −1, z2 = i, z3 = 0, z4 = 2+2i, z5 = 2+i, z6 = (2+
√

3)+2i, z7 =

3 − i, z8 = 4 + (
√

3 − 1)i. Suppose that f(z) =
∏8

j=1

√
z − zj. Evaluate the integrals∫

ak
f(z)dz and

∫
bk
f(z)dz, k = 1, 2, 3 drawn in Figure 107.

Figure 107
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Solution.

Figure 108

1. Evaluate
∫
a1
f(z) dz∫

a1

f(z) dz =

∫
1+i

+−→0

f(z) dz +

∫
1+i

−←−0
f(z) dz

= 2 ·math
(∫

1+i
+−→0

f(z) dz

)
= 2 ·math

(∫ 0

√
2

f(rei(
−7π
4

)) ei(
−7π
4

) dr

)
= −0.876621− 5.4111i .

2. Evaluate
∫
a2
f(z) dz∫

a2

f(z) dz =

∫
1

+−→2

f(z) dz +

∫
1
−←−2

f(z) dz

= 2 ·math
(∫

1
+−→2

f(z) dz

)
= 2 ·math

(∫ 2

1

f(x) dx

)
= 3.70585 + 0.993793i .

3. Evaluate
∫
a3
f(z) dz∫
a3

f(z) dz =

∫
3+i

+−→3−i
f(z) dz +

∫
3+i

−←−3−i
f(z) dz

= 2 ·math
(∫

3+i
+−→3−i

f(z) dz

)
= 2 ·math

(∫ 0

√
2

f(3− i+ rei(
−3π
2

)) ei(
−3π
2

) dr

)
= 23.1466 + 24.5632i .
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Figure 109

4. Evaluate
∫
b1
f(z) dz∫

b1

f(z) dz =

∫
i−→1+i

f(z) dz +

∫
iL991+i

f(z) dz

= 2 ·math
(∫ 1

0

f(x+ i) dx

)
= 3.29859 + 1.33887i .

5. Evaluate
∫
b2
f(z) dz∫

b2

f(z) dz =

∫
a1

f(z) dz +

∫
b1

f(z) dz +

(∫
1+i−→1

f(z) dz +

∫
1+iL991

f(z) dz

)
=

∫
a1

f(z) dz +

∫
b1

f(z) dz + 2

∫
1+i−→1

f(z) dz

= (−0.876621− 5.4111i) + (3.29859 + 1.33887i) + 2 · (−1) ·math
(∫ 0

1

f(1 + ri) i dr

)
= 0.63586− 1.78728i .

6. Evaluate
∫
b3
f(z) dz∫

1
−
L992

f(z) dz = (−1)

∫
1
−←−2

f(z) dz

= (−1) · (−1) ·math
(∫ 1

2

f(x) dx

)
= (−1) ·math

(∫ 2

1

f(x) dx

)
= (−1)

∫
1

+−→2

f(z) dz

So, ∫
1

+−→2

f(z) dz +

∫
1
−
L992

f(z) dz = 0. (68)
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Thus,∫
b3

f(z) dz =

∫
b2

f(z) dz +

(∫
1

+−→2

f(z) dz +

∫
1
−
L992

f(z) dz

)
+

(∫
2

+−→3+i

f(z) dz +

∫
2
−
L993+i

f(z) dz

)
=

∫
b2

f(z) dz + 0 + 2 · (−1) ·math
(∫

2
+−→3+i

f(z) dz

)
= (0.63586− 1.78728i) + 2 · (−1) ·math

(∫ √2
0

f(2 + rei(
π
4
)) ei(

π
4
) dr

)
= −23.3469 + 13.0985i .

Example 26. Let z1 = −1 + 2i, z2 = −2 + i, z3 = −2− i, z4 = −1− 2i, z5 = 1− 2i, z6 =

2 − i, z7 = 2 + i, z8 = 1 + 2i. Suppose that f(z) =
∏8

j=1

√
z − zj. Evaluate the integrals∫

ak
f(z)dz and

∫
bk
f(z)dz, k = 1, 2, 3 drawn in Figure 110.

i21 +-

i21 +

i21-- i21 -

i+- 2

i-- 2

i+2

i-2

1
a

2
a

3
a

1
b

2
b

3
b

+

-
+

-

+

-

+

-

Figure 110

Solution.

120



i21 +- i21 +

i21-- i21 -

i+- 2

i-- 2

i+2

i-2

1
a

2
a

3
a

+

-
+

-

+

-

+

-

Figure 111

1. Evaluate
∫
a1
f(z) dz∫
a1

f(z) dz =

∫
−2−i +−→−1−2i

f(z) dz +

∫
−2−i −←−−1−2i

f(z) dz

= 2 ·math
(∫
−2−i +−→−1−2i

f(z) dz

)
= 2 ·math

(∫ 0

√
2

f(−1− 2i+ rei(
−5π
4

)) ei(
−5π
4

) dr

)
= −41.8808 + 41.8808i .

2. Evaluate
∫
a2
f(z) dz∫

a2

f(z) dz =

∫
2−i +−→1−2i

f(z) dz +

∫
2−i −←−1−2i

f(z) dz

= (−1) · 2 ·math
(∫

2−i +−→1−2i
f(z) dz

)
= (−1) · 2 ·math

(∫ 0

√
2

f(1− 2i+ rei(
−7π
4

)) ei(
−7π
4

) dr

)
= −41.8808− 41.8808i .
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3. Evaluate
∫
a3
f(z) dz∫

a3

f(z) dz =

∫
1+2i

+−→2+i

f(z) dz +

∫
1+2i

−←−2+i
f(z) dz

= (−1) · 2 ·math
(∫

1+2i
+−→2+i

f(z) dz

)
= (−1) · 2 ·math

(∫ 0

√
2

f(1 + 2i+ rei(
−5π
4

)) ei(
−5π
4

) dr

)
= 49.0544− 125.2i .

i21 +-

i21 +

i21-- i21 -

i+- 2

i-- 2

i+2

i-2

+

-
+

-

+

-

+

-

Figure 112

4. Evaluate
∫
b1
f(z) dz∫

b1

f(z) dz =

∫
−2+i−→−2−i

f(z) dz +

∫
−2+iL99−2−i

f(z) dz

= 2 ·math
(∫ −1

1

f(−2 + ri) idr

)
= −98.1087i .
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5. Evaluate
∫
b2
f(z) dz∫

b2

f(z) dz =

(∫
−2+i−→−2−i

f(z) dz +

∫
−2+iL99−2−i

f(z) dz

)
+

(∫
−2−i +−→−1−2i

f(z) dz +

∫
−2−i −L99−1−2i

f(z) dz

)
+

(∫
−1−2i−→1−2i

f(z) dz +

∫
−1−2iL991−2i

f(z) dz

)
+

(∫
2−i +

99K1−2i
f(z) dz +

∫
2−i −L991−2i

f(z) dz

)
=

∫
b1

f(z) dz + 0 + 2

∫
−1−2i−→1−2i

f(z) dz + (−1) · 2
∫
2−i +−→1−2i

f(z) dz

= −98.1087i+ (−1) · 2 ·math
(∫ −1

1

f(−2 + ri) idr

)
+ (−1) · 2 · (−1) ·math

(∫ 0

√
2

f(1− 2i+ rei(
−7π
4

)) ei(
−7π
4

) dr

)
= 139.99− 56.2279i .

i21 +-

i21 +

i21-- i21 -

i+- 2

i-- 2

i+2

i-2

+

-
+

-

+

-

+

-

Figure 113

123



6. Evaluate
∫
b3
f(z) dz∫

b3

f(z) dz =

∫
b1

f(z) dz + 0 + 2

∫
−1−2i−→1−2i

f(z) dz + 0 + 2

∫
2−i−→2+i

f(z) dz

+ (−1) · 2
∫
1+2i

+−→2+i

f(z) dz

= −98.1087i+ (−1) · 2 ·math
(∫ −1

1

f(−2 + ri) idr

)
+ 2 ·math

(∫ 1

−1
f(2 + ri) idr

)
+ (−1) · 2 · (−1) ·math

(∫ √2
0

f(1 + 2i+ rei(
−5π
4

)) ei(
−5π
4

) dr

)
= −49.0544 + 223.309i .
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6 An Application on Differential Equations

The umdamped pendulum equation can be written as

u′′ + cosu = 0. (69)

We know that cosu = 1− 1
2!
u2 + 1

4!
u4 + 1

6!
u6 + · · ·+ 1

(2n)!
u2n + · · · ,−∞ < u <∞. We use

the first three terms to be an estimation of cosu.

cosu ≈ 1− 1

2!
u2 +

1

4!
u4.

Let

f(u) = 1− 1

2!
u2 +

1

4!
u4.

Then, equation (69) becomes to

u′′ + f(u) = 0.

In section1.1, we have derived that

1

2
(u′)2 + F (u) = E. (70)

This equation is the principle of conservation law T + V = E, where T = 1
2
(u′)2 is the

kinetic energy, V = F (u) is the potential energy, and E is the total energy. Equation (70)

implies that ∫
1√

2[E − F (u)]
du =

∫
dt.

Here, the solution u is in the Riemann surface of
√

2[E − F (u)].

Example 27. Given that E = 5 and

F (u) =

∫ u

0

f(s)ds = u− 1

3!
u3 +

1

5!
u5.

Let

h(u) =
1√

2[E − F (u)]
.

√
2[E − F (u)] =

√
2[5− (u− 1

3!
u3 +

1

5!
u5)]

=

√
10− 2u+

2

3!
u3 − 2

5!
u5

=

√√√√ 5∏
j=1

(u− uj),
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where

u1 = −3.86− 1.63i ,

u2 = −3.86 + 1.63i ,

u3 = 1.59− 2.24i ,

u4 = 1.59− 2.24i ,

u5 = 4.54 .

Figure 114

Figure 115
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1. Evaluate
∫
a1
h(u) du∫

a1

h(u) du =

(∫
u4

+−→1.59

h(u) du+

∫
u4
−←−1.59

h(u) du

)
+

(∫
1.59

+−→u3
h(u) du+

∫
1.59

−←−u3
h(u) du

)
= 2

∫
u4

+−→1.59

h(u) du+ 2

∫
1.59

+−→u3
h(u) du

= 2 ·math
(∫ 0

2.24

h(1.59 + ri) i dr

)
+ 2 · (−1) ·math

(∫ −2.24
0

h(1.59 + ri) i dr

)
= −0.587776 .

2. Evaluate
∫
a2
h(u) du∫

a2

h(u) du

=

(∫
u2

+−→−3.86
h(u) du+

∫
u2
−←−−3.86

h(u) du

)
+

(∫
−3.86 +−→u1

h(u) du+

∫
−3.86 −←−u1

h(u) du

)
= 2

∫
u2

+−→−3.86
h(u) du+ 2

∫
−3.86 +−→u1

h(u) du

= 2 · (−1) ·math
(∫ 0

1.63

h(−3.86 + ri) i dr

)
+ 2 ·math

(∫ −1.63
0

h(−3.86 + ri) i dr

)
= 0.35043 .

Figure 116

3. Evaluate
∫
b1
h(u) du

Along u5 −→ u4, let d = |u4 − u5|.

u = 4.54 + rei(π−tan
−1 2.24

4.54−1.59
), r : 0 −→ d
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∫
b1

h(z) dz =

∫
u5−→u4

h(u) du+

∫
u5L99u4

h(u) du

= 2

∫
u5−→u4

h(u) du

= 2 · (−1) ·math
(∫ d

0

h(4.54 + rei(π−tan
−1 2.24

4.54−1.59
)) ei(π−tan

−1 2.24
4.54−1.59

) dr

)
= −0.293888− 0.309729i .

4. Evaluate
∫
b2
h(u) du∫

b2

h(u) du =

∫
b1

h(u) du+

(∫
u4−→u3

h(u) du+

∫
u4L99u3

h(u) du

)
+

(∫
u3−→u2

h(u) du+

∫
u3L99u2

h(u) du

)
=

∫
b1

h(u) du+ 0 +

(∫
u3−→u2

h(u) du+

∫
u3L99u2

h(u) du

)
=

∫
b1

h(u) du+ 2

∫
u3−→u2

h(u) du

=

∫
b1

h(u) du+ 2

∫
u3−→z0

h(u) du+ 2

∫
z0−→u2

h(u) du

Along u3 −→ z0, let d = |u3 − z0|.

u = 1.59− 2.24i+ rei(π−tan
−1 1.63−(−1.63)

1.59−(−3.86)
), r : 0 −→ 1.63

1.63 + 2.24
d

∫
u3−→z0

h(u) du

= 2 · (−1) ·math

(∫ 1.63
1.63+2.24

d

0

h(1.59− 2.24i+ rei(π−tan
−1 1.63−(−1.63)

1.59−(−3.86)
)) ei(π−tan

−1 1.63−(−1.63)
1.59−(−3.86)

) dr

)
= −0.106926− 0.209149i .∫

z0−→u2
h(u) du

= 2 ·math

(∫ d

1.63
1.63+2.24

d

h(1.59− 2.24i+ rei(π−tan
−1 1.63−(−1.63)

1.59−(−3.86)
)) ei(π−tan

−1 1.63−(−1.63)
1.59−(−3.86)

) dr

)
= −0.0424914 + 0.0339204i .

Therefore,∫
b2

h(u) du =

∫
b1

h(u) du+ 2

∫
u3−→z0

h(u) du+ 2

∫
z0−→u2

h(u) du

= (−0.293888− 0.309729i) + (−0.106926− 0.209149i) + (−0.0424914 + 0.0339204i)

= −0.149418− 0.332545i .
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Example 28. Given E = 10 and given six points, u1 = 2i, u2 = i, u3 = 1, u4 = 2, u5 =

2− i, u6 = 4 + i. Then

6∏
j=1

(u− uj)

= [u− i][u− 2i][u− 1][u− 2][u− (2− i)][u− (4 + i)]

= (−36 + 8i) + (66− 66i)u− (22− 117i)u2 − (27 + 81i)u3 + (27 + 25i)u4 − (9 + 3i)u5 + u6

= 2[10− F (u)].

Let

h(u) =
1√

2[10− F (u)]

=
1√

[u− i][u− 2i][u− 1][u− 2][u− (2− i)][u− (4 + i)]
.

Figure 117

Figure 118
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1. Evaluate
∫
a1
h(u) du∫

a1

h(u) du =

∫
1

+−→2

h(u) du+

∫
1
−←−2

h(u) du

= 2

∫
1

+−→2

h(u) du

= 2 ·math
(∫ 2

1

h(x) dx

)
= 1.80392− 0.410359i .

2. Evaluate
∫
a2
h(u) du∫

a2

h(u) du =

∫
4+i

+−→2−i
h(u) du+

∫
4+i

−←−2−i
h(u) du

= 2

∫
4+i

+−→2−i
h(u) du

= 2 · (−1) ·math
(∫ 0

2
√
2

h(2− i+ rei(
−7π
4

)) ei(
−7π
4

) dr

)
= −0.849439 + 0410231i .

Figure 119

3. Evaluate
∫
b1
h(u) du

∫
b1

h(z) dz =

∫
i−→1

h(u) du+

∫
iL991

h(u) du

= 2

∫
i−→1

h(u) du

= 2 · (−1) ·math

(∫ √2
0

h(i+ rei(
−π
4

)) ei(
−π
4

) dr

)
= 0.314384 + 1.42251i .
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4. Evaluate
∫
b2
h(u) du∫

b2

h(u) du =

∫
b1

h(u) du+

(∫
1

+−→2

h(u) du+

∫
1
−
L992

h(u) du

)
+

(∫
2−→4+i

h(u) du+

∫
2L994+i

h(u) du

)
=

∫
b1

h(u) du+ 0 +

(∫
2−→4+i

h(u) du+

∫
2L994+i

h(u) du

)
=

∫
b1

h(u) du+ 2

∫
2−→4+i

h(u) du

= (0.314384 + 1.42251i) + 2 · (−1)math

(∫ √5
0

h(2 + rei tan
−1 1

2 ) ei tan
−1 1

2 dr

)
= 0.133229 + 0.00918344i .
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7 Conclusion

In order to solve equations of the form u′′ + f(u) = 0, we need to evaluate the integrals

of the form ∫
1√∏n

j=1(u− uj)
du,

or ∫ √√√√ n∏
j=1

(u− uj) du,

where the u′ks play the roles of branch points. We build the Riemann surfaces of genus

N for

g(z) =

√√√√2N+1∏
j=1

(z − zj) dz,

or

g(z) =

√√√√2N+2∏
j=1

(z − zj) dz.

Then we evaluate integrals along a−cycles and b−cycles. We compute the values of those

integrals using the software “Mathematica”. If we evaluate integrals using Mathematica,

the signs of values computed by Mathematica is different from the signs of values computed

theoretically.

Suppose that sheet I and sheet II of cut plane for f(z) =
√∏2N+1

j=1 (z − zj) dz are

PI = {z ∈ C|α− 2π ≤ arg z < α}, and

PII = {z ∈ C|α ≤ arg z < α + 2π}.

Let Ic = [α− 2π,−π] and let z ∈ PI . In Mathematica,

arg(z − zj) ∈ Ic =⇒
√
z − zj = (−1) ·math

(√
z − zj

)
arg(z − zj) /∈ Ic =⇒

√
z − zj = math

(√
z − zj

)
If we want to evaluate integrals in sheet II, we use the property f(z)|II = f(z)|I to obtain

the correct values. When the cut plane is more complicated, we can use sign-regions to

help us to determine the signs of values computed by Mathematica.

The Riemann surfaces discussed in this thesis is two-sheeted. Of course, it is able to

discuss the algebraic structure of the corresponding cut plane for functions of the form

f(z) = 3

√∏2N+1
j=1 (z − zj) dz.
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