NARK & & b chBeioff A 2 fch = f2.0
2

Path Integrals on Riemann Surfaces of Genus N and

Its Applications on Differential Equations

BG4 % E

hEKE 3 R ou



NARH & & 1 BSR4 A 2 A S A2
2

Path Integrals on Riemann Surfaces of Genus N and Its

Applications on Differential Equations

Mogood o wiEE Student : Chien-Hsin Shih

dh R D FER Advisor : Jong-Eao Lee

Rz i+ g
&t BE

L=

A Thesis
Submitted to Department of Applied Mathematics
College of Science
National Chiao Tung University
In partial Fulfilment of the Reugirements
for the Degree of Master
in
Applied Mathematics
July 2011
Hsinchu, Taiwan, Republic of China

(\.3

dEAIR -00 & =



NAER & & S ff &4 % A = 42
2

Frd . %@ by Wz

o
¥
A

B2 ~ B 5 g T LT

2

B P U A~ Bue? 7838 S ? f(u)= W o f A complex plane
C, q - B % @& 3%k - & extended complex plane + 4 i % if & en
cut-structure & > f “hRiemann surface M - Pl f R - B s L R o
g oo AP AT NS BB 6 WA auBl o ol > APig
F¥ A BB apL T kA 0 &2 B 5 a-cycle 2 b-cycle ° 3 * principle of

deformation of paths k3H B iput ff A o pbeb > AP b an 2 B A

Hem Azt o



Path Integrals on Riemann Surfaces of Genus N and
Its Applications on Differential Equations

Author : Chien-Hsin Shih Advisor : Jong-Eao Lee

Department of Applied Mathematics
National Chiao Tung University

Abstract

Let Py(u) be a polynomial of u and let f(u) = /Py (u). f is a 2-valued function defined
on the complex plane C. We construct the Riemann surface R by a proper cut-structure
on the extended complex plane. Then f is a single-valued function on R. Then we do
evaluations of path integrals on R with its algebraic structure for f. In particular, we
evaluate integrals along two special paths, a — cycle and b — cycle, respectively. We apply
the principle of deformation of paths to evaluate those integrals. Furthermore, we apply

the above argument to differential equations.
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1 Introduction

1.1 Motivation

Let u be a twice differentiable function of . Consider the following differential equation

u" 4+ f(u) =0, (1)

where f is a polynomial of u. Multiply the equation by o/,

u'ul + f(u)u’ (2)

and integrate it using change of variables, we obtain

/u”(t)u’(t) dt + /f(u)u’(t) dt = E, where E is a constant. (3)
::/‘ /f ) du(t) = ()
— 2[ u'(t)]? + F(u(t)) = E, where F is an antiderivative of f. (5)
= u/(t) = £/2[E — F(u)] (6)
We obtain the first order differential equation
Y i) = /2B F )], 7)

or

/ﬁﬁéﬁmmp/ﬁ (8)

Since 2[E — F(u)] is a polynomial of u, it can be written as

2[FE — F(u)] = (u—up)(u —ug) ... (u—uy,)

= H(u - uk)?

k=1
where uy, ..., u, are the complex roots of the equation 2[E — F'(u)] = 0. Thus, equation

(8) can be written as

/¢mj%zm“:/“ ()

In order to solve for u, we need to evaluate the term

[ =

In the denominator, the uy’s are possibly complex numbers, and they are also the branch

points or poles. Here, u : C — C, we will see later that the integrand is in fact a
multiple-valued function. It is not so easy to evaluate the integral.

In this thesis, we will use the Riemann’s approach to evaluate the integrals of this
kind. In addition, we will also discuss how to compute the integrals using the computer

software “Mathematica’.



1.2 Stereographic Projection

In this section, we give a short introduction to the concept of stereographic projection.
The complex plane together with the point at infinity oo is called the extended complex
plane or the extended z-plane. One can think of the complex plane as passing through the
equator of a unit sphere centered at the point z = 0. To each point z in the plane there
corresponds exactly one point P on the surface of the sphere. The point P is determined
by the intersection of the line through the point z and the north pole N of the sphere
with that surface. In like manner, to each point P on the surface of the sphere, other than
the north pole N, there correspondings exactly one point z in the plane. By letting the
point N of the sphere corresponds to the point co, we obtain a one to one corespondence
between the points of the sphere and the points of the extended complex plane. The
sphere is known as the Riemann sphere, and the correspondence is called a stereographic

projection.

Figure 1

1.3 Some Basic Definitions

Definition 1. A function f of the complex variable z is analytic in an open set if it has

a derivative at each point in that set.

Definition 2. A branch of a multiple-valued function f is any single-valued funtion F

that is analytic in some domain at each point z of which the value F(z) is one of the

values f(z).

Definition 3. A branch cut is a portion of a line or curve that is introduced in order
to define a branch F of a multiple-valued function f. Any point that is common to all

branch cuts of f is called a branch point.

Definition 4. A set of points z = (x,y) in the complex plane is said to be an arc if
ZL‘:.T(t), y:y(t)a a<t<b,
where x(t) and y(t) are continous functions of the real parameter t.

2



It is convenient to describe the points of an arc C' by means of the equation
z=2(t), a<t<b,

where
2(t) = x(t) +iy(t).

Definition 5. An arc C' is a stmple arc if it does not cross itself; that is, C' is simple if
2(t1) # z(t2) when ty # ta. When the arc C is simple except for the fact that z(b) = z(a),

we say that C' is a simple closed curve.

Definition 6. A contour, or piecewise smooth arc, is an arc consisting of a finite
number of smooth arcs joined end to end. When only the initial and final values of z(t)

are the same, a contour C' is called a stmple closed contour.

Definition 7. An analytic function w = w(z) is called an algebraic function if it

satisfies a functional equation
ao(2)w" + ar (2wt + - Fan(2) =0, ao(z) #0, (10)
in which the a;(z) are polynomials in z with complex numbers as coefficients.

One simple example is the algebraic function, w = /2, defined by w? — z = 0. It
is not single-valued in the extended z-plane. In the next chapter, we will introduce a
new surface on which to consider the algebraic function defined, and on which it is a

single-valued function. This surface is called a Riemann surface.



2 Riemann Surfaces and Cut Structures

2.1 The Riemann Surface for f(z) = +/z

We begin with the algebraic function f(z) = /2 to explain how to construct the Riemann
surface for f(z) such that f is a single-valued function on it.
Let z = re'0+2km) £ 0 k € Z. Then

f(z):ﬁe%i(0+2k7r) (11)
:\/;eéweikw (12)

1, . .
{ Vrez® if kis even,

L (13)
—/re2? if k is odd.

Thus, f is a two-valued function in the extended z-plane. We use the following way to
construct the Riemann surface for f(z).

If we cut the extended z-plane along the negative real axis (the branch cut is drawn
using bold dashed line as in Figure 2) and restrict ourselves so as never to continue f(2)

over this cut, we get two single-valued branches of f(z), namely,
f(2) =v/res®, —m'<8 <,

and
fl2) =re?, 7 <6< 3n.

To build the Riemann surface for f(z), we take two replicas of the z-plane cut along
the negative real axis and call them sheet I and sheet II. The cut on each sheet has two
edges. We label the edge of the third quadrant with a + and the edge of the second
quadrant with a —. Then attach the + edge of the cut on sheet I to the — edge of the
cut on sheet II, and attach the — edge of the cut on sheet I to the + edge of the cut on

sheet II. Thus, whenever we cross the cut, we pass from one sheet to the other.

sheet | sheet Il

€l €l ——
- |

Figure 2

We imagine that the surface as two sheets lying over the extended z-plane, each cut
along the negative axis. Using stereographic projection, we can consider the two sheets

to be spheres. There is one cut on the surfaces of each sphere.

4



sheet 1

Figure 4

Now imagine that the spheres are made of rubber. By spreading the edges of the cuts,
we can deform each sheet into a hemisphere.  When each sheet is rotated so that the
openings of the hemispheres face each other, the edges marked + and — face each other
and the two hemispheres may be pasted together to give us a sphere. We call this surface

the Riemann surface of genus 0 for f(z) =./z, denoted by Ry (Figure 6).

sheet | sheet I1

Q0

Figure 5



sheet 1 sheet 11

o0 Figure 6

2.2 The Riemann Surface for f(z) = \/(z —r1)(z — r2)

In this section, we discuss how to construct the Riemann surface for the function f(z) =

V(z —=11)(2 —12), 71 # ro. We will find that this is essentially the same as the situation

for f(z) = v/z.

The two point z = ry and z = ry are branch points of f(z) = \/(z —71)(z — 12). We

obtain two single-valued branches of f(z) by cutting the z-plane along the line segment
joining r; and 75. As in section 2.1, we have two replicas of the z-plane along this cut.

Joining them, we obtain a two-sheeted Riemann surface on which f(z) is single-valued.

sheet | sheet |
Figure 7

If the surface were made of rubber, it could be deformed continuously into that of f(z) =
V2 by moving r; to oo and ro to 0 and deforming the cut into the negative real axis.

Thus this new surface may also be mapped topologically into a sphere.

sheet 1 sheet 11

l l Figure 8



sheet | sheet 11
1"2 ]/'2

h h

sheet I sheet 11
2

Figure 9

h Figure 10

Also, this surface is the Riemann surface of genus 0 for f(z) = \/(z — r1)(z — r2).

2.3 The Riemann Surface for f(z)=+/(z —71)(z —r2)(z — r3)

Now, we look another example whose Riemann surface is defferent from the ones in the
earlier examples.

Let f(z) = v/(z —11)(z — r2)(z — r3) be the algebraic function defined by w? = (2 —
r1)(z — r3)(z — r3), where 1,79, 73 are distinct. For each i, let z = r; 4+ re!0+2k™) £ (),

k € Z be in the cut plane. We have
Vz—r= \/(7‘1 + rei+2km) — (14)
— \/reil6+2km) (15)

B Vrez® i ks even,
—/rez® if k is odd.

(16)

Thus, we go from one point to the other by continuing f(z) over any closed path winding
once around one of the roots 7,79, 73, /2 — r; changes sign when the argument 6 =
arg(z — r;) changes by 2.

We cut the z-palne from r; to oo and from 75 to r3. Then we take two copies of the
cut z-plane and connect them crosswise over the cuts as before, we obtain a two-sheeted

Riemann surface on which f(z) is single-valued.

7



sheet | sheetll

+r1r2+r3 +r1r2+r3
Figure 11
sheet 1 sheet I1

Figure 12

Stretch each cut into a circular hole and rotate the spheres until the holes face each other,

as in Figure 13.

sheet 1

—h o — sheet 11

Figure 13

We may join them together so that each + edges is attached to the — edge of the corre-

sponding cut on the other sphere, as in Figure 14.
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sheet I1 Figure 14

Thus, The two-sheeted Riemann surface can be mapped topologically onto a torus. This

surface is called the Riemann surface of genus 1 for f(z), denoted by R;.

2.4 Riemann Surfaces of Genus N

We now generalize the results from section 2.1 to section 2.3. Let

f(2) = VP(z) = (z =) (z = 12) -+ (2 = 1),

where ry,ry, ..., 1, are the roots of the polynomial P(z) of order n.

If the number of roots is even, say n = 2/N + 2, we can separate the branch points into

pairs, (r1,72), (r3,74), ..., (ran41, Tan+2). This gives us § = N + 1 cuts in the cut plane

drawn in Figure 15.

_I_

r F, 13 Ty Bhva - e

Figure 15

There are N holes in the Riemann surface drawn in Figure 16.

Figure 16



If the number of roots is odd, say n = 2N +1, there must be a cut from oo to ;. The re-

maining branch points rq, ..., ran11 can be separated into pairs, (r2,73), ..., (Tan, Tan+1)-

n+1

This will give us “7= = N + 1 cuts in the cut plane dranw in Figure 17.

*© | U Hhy o Dva

Figure 17

There are also N holes in the Riemann surface drawn in Figure 18.

Figure 18

The surface in which there are N holes is called the Riemann surface of genus N,

denoted by Ry, as in Figure 16 and Figure 18.

2.5 To Draw Paths on Cut Planes and on Riemann Surfaces

In this section, we explain how to draw the paths on cut planes and on Riemann surfaces.
In the cut planes, we use solid lines to draw a path on sheet I and use dash lines to
draw a path on sheet II.
In the Riemann surfaces, we use dash lines to draw a path on the back of the surfaces

and use solid lines to draw a path on the front of the surfaces. Let f(z) = v/z.
sheet | sheet

€ € ——
. -

10



19

Let (I, +) denote the 4 edge of sheet I, (I, —) denote the — edge of sheet I, (11, +) denote
the + edge of sheet II, and (I, —) denote the — edge of sheet II. The path from point A
to point B denotes that start from A in sheet II, cross through the cut from (/7,—) to
(I,+), to B. v denotes a path in sheet I, from a point in (I,+) to a point in (I,—). 7
denotes a path in sheet I, from a point in (/1, —) to a point in (I, +). The corresponding

paths in Riemann surface is drawn in following figure.

sheet 1

———
e

sheet II Figure 20

a—cycle is a closed path that encloses a finite cut (the endpoint of cut is a finite number).
b — cycle is a closed path that starts from + edge of a cut (it maybe finite cut or infinte
cut) without encloed by any a — cycle, to + edge of another cut encloed by a a — cycle.
Then the path crosses through — edge of this cut and goes into sheet II, and finally arrives
to the — edge of the starting cut.

Let f(2) = v/2(z — 1)(2 — 2)(2 — 3)(z — 4). The a —cycles and b— cycles in cut plane

and their corresponding paths in Riemann surface are drawn in the following figures.

Figure 21

11



sheet 1

sheet I1 Figure 22

The numbers of a — cycles and b — cycles must be the same. In next few chapters, we

aim to evaluate the integrals along a — cycles and b — cycles.

12



3 Integrals for Horizontal Cuts

3.1 Two Examples

We give a few of examples to explain how to evaluate path integrals. We will use the
principle of deformation of paths (Theorem 1). It tells us that if a simple closed con-
tour(piecewise smooth arc) C is continously deformed into another simple closed coutour
Cs, always passing through points at which a function f is analytic, then the value of the
integral of f over C] never changes.

The circle

2 =2+ Re?, —m <0<,

is a circle centered at the point 2z, and with radius R. It is a simple closed curve, oriented

in the counterclockwise direction.

Cauchy-Goursat Theorem. If a function f is analytic at all points interior to and on
a simple closed contour C', then

f(2) dz = 0.
c

Theorem 1. Let C and Cy denote positively oriented simple closed contours, where Cy is
interior to Cy. If a function f is analytic in the closed region consisting of those contours

and all points between them, then

f(2) dz = f(z) dz.
C1 Co

Cl

Figure 23

Example 1. Let f(z) = \/z and let v be the positively oriented (counterclockwise oriented)

0

circular path z = €, —m < 0 < 7. This is a path looked like a circle centered at the point

0 with radius 1. Evaluate the integral f7 f(z) dz.

Solution.

(1) Integral along the circular path

13



Figure 24

267:>z:ei9

1. L
— z =e2" dz =ie"d.

, —nm<f<m

Then,

/7 f(2)de = / 7; f(e™Yie® dp

(2) Deformation of path

Figure 25

In Figure 25, v* is a line segment from —1 to 0 and +** is a line segment from 0 to —1.

14



Let C' =~y U —y™ U —~*. Since C is a simple closed contour,

/f(z)dz:O
:>/f yazt [ gt dz+/ f(z
= [ (- [ o) (/f o) o
:[yf(z)dz:L*f(z)dz+A**f(z)d,z. (17)

In (1), we have evaluated fv f(2)dz. Now we evaluate the value of the right hand side of
equation (17).

Since the points along the path +* is in the + edge of the cut plane, the points on ~+*
has the angle —.

ey = z=re r:150

— V2= \/Fe%i(_”) = —i\/r, dz = —dr

Then,

Similarly, the points along the path v** is in the — edge of the cut plane. So the points

on v** has the angle .

zENT = z=re™, r:0—>1

:>\/E:\/7_“e%”:i\/7, dz = —

Then,

15



Finally, we obtain the result

From (1) and (2), we have verified equation (17).

Example 2. Let f(2) = /(2 — 1)(z — 2) and let 7y be the positively oriented circular path
z=3+e’ —m <0 <m Evaluate the integral [ f(2) dz.

Solution.

Step 1. Draw the cut plane

Figure 26

If a point goes from point A | crossing through the left part of 1 on real axis ({z € R|z <
1}), to point B, it crosses two branch cuts. Then /z — 1 changes sign one time and
vz — 2 also changes sign one time. So f(z) totally changes sign two times. If a point goes
from point C, crossing through the line segment between 1 and 2 ({z € R|1 < z < 2}), to
point D, it crosses only one branch cut. Then v/z — 1 does not change sign but v/z — 2
changes sign one time. So f(z) totally changes sign only one times. Thus, there is only

one cut between 1 and 2 (Figure 25).

Step 2. Evaluate the integrals
(1) Integral along the circle

16
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Figure 27

3 e
267:>z:§+e , —m <<

— dz = ie"do.

/yf(z) dZZ/_T;\/(g—l—eie)—1\/(;+ei9)_2i6i9d9

= —0.7853951 .

Then,

(2) Deformation of path

Y

Figure 28

Since the points along the path v* is in the 4+ edge of the cut plane, the points on +* has

the angle —7.

ZGV*:>z:2—|—rei(_”):2—r, r:1—=0
— V2 — 2= re2 = i\ /r, dz = —dr.

Then,
IRCEY VT e i) (—dr)
-/ T (i) (i)
-/ TSR dr

= —0.392699: .

17



Similarly, the points along the path v** is in the — edge of the cut plane. So the points

on v** has the angle .

ZENT = z2z=241e"=2—71, r:0—>1

— Vz—2= \/Fe%” = ir, dz = —dr.

Then,
1
/ f(z)dz = / V1 —r(iy/r)(—dr)
,Y** 0
1
:—z'/ V1—ryrdr
0
= —0.392699: .
We obtain

/ f(z) dz + / f(z) dz = (—0.392699) + (—0.392699i)
»Y* ,Y**
= —(.785398: .

Again, we verify equation (17).
Note that,

Lf(z) dz=/ff(z) dz+/wf(z) dz
:i/lomﬁdwr(—i/olm\/?dr)

:i/lodeH (i/lo\/l——r\/Fdr)
zzi/lo\/ﬁﬁdr

:2A*f(z)dz.

Af(z) dz = 2/1%2 f(z) dz

3.2 The Problem in Using Mathematica

That is,

Before we use Mathematica to compute the integrals, we need to know what phenomena

will happens. Let z = re®

. We use the notation, arg z to denote the argument of the

complex number z. So, arg z = . Let (I) denote sheet I and let (I1) denote sheet I1. Let

w = f(z) = /z. In theoretical aspect,

™ 1 ™
ze(I):>—7r§argz<7r:>—§§§argz<5.

f maps the points on sheet I into the right-half plane {z € C| — 7 < arg z < T}.

18



sheet |

n
° | °
z e vz
Figure 29
And,
1 3
ZG(]I):>7T§argz<3ﬂ:>g§§argz<g.
f maps the points on sheet II into the left-half plane {z € C|§ < arg z < 37” :
sheet Il
NE
°
<-_- --yr—
i
o]
Z \/_

Figure 30

If you compute /= using Mathematica, you can discover that the range of f(z) = /2
are as same as the range described above except the points along the + edge of sheet I
that is, {z € Clarg z = —7}. For example, suppose that z = —2 € (I, +), where (I,+)
denotes the + edge of sheet 1.

ze(l,+) = arg z=—7

:>arg\/zz—g

— 2 =2¢""
. 1 o
= f(z)=V—-2= (261(_”)) 2 = 2e1(52) = —\/2;.

But in Mathematica, /—2 = \/2i. This value needs to time —1 to obtain the correct

value. Therefore,
z € (I,+) => vz =(—1) MATH (vz),

where MATH (/z) means the value of v/z computed by Mathematica. We use the notation

b

MATH (-) to denote the value of -7 computed by Mathematica.

Mathematica
— e J2i
Figure 31

19



Thus, if you want to compute an integral along the 4+ edge in sheet I, e.g., f71 o Vzdz
(integration along the line segment {z € (I,+)] — 1 < z < 0} from —1 to 0), you must
multiply the result value computed in Mathematica by —1 to obtain the correct value.
That is,

+

0
Vzdz = (—1) - MATH (/ Vz dz) = —0.666667:.
—1—0 -1

Suppose that f(z) = \/z. Let 6, = 6; + 27 and let z; = re’, -7 < 6, < 7 and
2o = re®2 1w < 0, < 37. Then 2 and 2z, are the same points in the complex plane C, but
in the cut plane, z; € (1) and 2z, € (I1) (Figure 32).

sheet |
z, i f(z)=+/z
<-—F-- —/\\\/El

T A
-
|

sheet 11
(2) =~z
2 iw
<3

Figure 32

Flzs) = /22 = \/;eéiez _ \/Fe%i(91+27r) _ \/;e%ieﬁm
= Vet = red - (<1) = =z = = f(z) (19)
This tells us that v/z|;; = —/z|r, the value of /2 in sheet II is the value of /2 in sheet
I multiplied by —1. Thus, if g(z) = \/h(z) where h(z) = (z — z1)(z — 22) - - (2 — 2x) =
H?Zl(z — 2;), we can assume that h(z) = Re for some positive real number R and 6.
Let h(2)|; = Re'™, —m < 6, < 7 and h(2)|;; = Re??, m < 0, < 37, where 0, = 0, + 27.

9| = Vh(2)|1r = VReif2 = V/ Rei01+2m) — \/Reiti ™
= VRe . (1) = (=1) - V/h(2)|[r = (1) - g9(2)|; (20)

3.3 Evaluating Integrals Using Mathematica

In Example 1 and Example 2, we use the analytic method to evaluate the integral. In

this section, we will explain how to modify the value computed in Mathematica.

20



Example 3. Fvaluate the integral in Example 1 Using Mathematica .

Solution.

(1)Along —1 == 0 (z € v*)(Figure 25)

arg z = —1 => y/z = (—1) - MATH (/2)

[Y* f(z)dz = /_ll}()f(z) dz

- /0(—1) - MATH (V/z) dz

:(—1)-MATH(/_01\/Zdz).

(2)Along —1 <— 0 (z € v**)(Figure 25)

arg z = ™ = \/z = MATH (/2)

/7** f(z)dz = /—1<—0 f(z) dz
= /0—1 MATH (v/z) dz

:MATH(/O_l\/Edz).

/ dz—/f dz+/ f(2) dz
:<_1).MATH(/Ofdz>+MATH(/ \/_dz)
:(_1>-MATH(/ \/_dz>+ MATH(/_l\/Edz)
()

Then,

—2) - MATH
= —1.33333:.
This agrees with the value f7 f(z)dz = —%i = —1.33333¢ in Example 1.

Example 4. Fvaluate the integral in Example 2 Using Mathematica .

Solution.
(1)Along 1 —— 2

arg(z—1)=0 = z—1=MATH(Vz—1)
arg(z —2) = -1 = z—2=(-1)-MATH (V2 — 2).

21
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Thus,
F() = VETTVETD = (—1) - mai (VE S TVE D).
Then, )
/* F(2) dz = (=1) - MATH (/ N W 2> .

(2)Along 1 +— 2

arg(z—1) =0 = +z—1=MATH (V2 —1)
arg(z —2) =7 => +/z—2=MATH (Vz — 2).

e F(2) = VE—TVE =2 = wati (Vo =1y =3)
Then,
/7** f(2) dz = maTH (/21 mm)
— (=1)- MATH (/12 mm)
/ /7 (2 d=
So,

/Wf(z) dz:L* f(z) dz+/7**f(z) dz

i /7 (e dz
_ (<2)- wamn ( / 2 mm)
= —0.785398: .

This value also agrees with the answer in Example 2.
In the next example, we evaluate an integral along a positively oriented simple closed

curve in which there are two branch cuts.

Example 5. Suppose that f(z) = \/(z —1)(z —2)(z — 3)(z — 4) and v is a positively
oriented simple closed curve that encloses all cuts (Figure 33). FEwvaluate the integral

J, f(z)dz.

Solution.
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Figure 33

According to the deformation of path, we have

/vf@‘) dZZ/liﬂlf(Z) dz+/l<_4f(z) dz (22)
(e [ geas [ e
+ ( /3 _ J@dst /2;3 f(2) dz + /1;2 1(2) dz) (23
= (/l%f(z) d2+/3i>4f(z) dz>
+ (/3{_4f(z) dz+/1<_ f(2) dz). (24)

Because of the two paths 2 —*y 3 and 2 +— 3 are not along any branch cut, the two
integrals f2 +,4f(2)dz and f2@3 f(2)dz in equation (23) are canceled by each other. Thus,
we only investigate the four integrals in equation (24).

Theoretical Evaluation

(1)Along 1 — 2

=247 =21 r:1—0=dz=—dr
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z2—=1>0 = arg(z—1)=0=2—-1=(1—r)e"
= z—1=+vI—rex0=1—r
2—2<0 = arg(z—2) = —71= 2 —2=rel™
— 2z -2= \/_62’(“:—'\/77
2—3<0 :>arg(z—3):—7rz>z—3—(1+7’)e’( ™
=z —3=+1+re™ = _i\/T+r
z—4<0 :>arg(z—4):—7r:>z—4 (2—1—7’)6’(_“)
= 7z — 4 =+/2 + rexi-m 247

/1 f(z)dz = /1 V1 —1r(=i/r)(=ivV1+7)(=ivV2 + 7)(—dr)

0
:i3/ V1—rVrvV1+rvV2+rdr
1

—i/ox/l—r\/F\/1+T\/2+rdr

= 0.760027 .

From the procedure above, we find that we can simplify the representation of V2 — k, k =
1,2,3,4. We only substitute z = 2 —r directly into /2 — k for each k£ and remember the

following rules :

z—k>0 =Vz—k=y/2-1)—k
—k<0 =Vz—k=/~(k—2)=(—i)WVk—2=—i\/k—(2—7)

ZG(I,—i—):{

w_»

The minus sign, , is necessary because z — k € (I,+) and arg(z — k) = —m. It is the

cause of the factor (—i) appearing.

z—k>0 = Vz—k=+(2-1)—k
k<0 = Ve—k=y/-(k-2)=ivk—z=i/k—(2-7)

ze(I,—):>{

It is important that we must make the number inside square roots to be positive. Thus,

we can also write

z—1>0 = arg(z—1)=0
:>\/z—1:\/(2—r)—1:\/1—r
2—2<0 = arg(z—2)=
G e = = Y
z2—3<0 = arg(z—3)=—7

—Vz-3=y@2-r)-3=/-(1+r)=

z2—4<0 = arg(z—4)=—n

~iVTTT
— Vi A= E- 1= /@F7) = —iVIFT

24



(2)Along 3 — 4
p=44+rC =4y 11— 0= dz=—dr

z—1>0 = arg(z—1)=0
—=Vz—1=/{@d-r)—1=/3—r
2—2>0 = arg(z—2)=0
N BN En e N
z—3>0 = arg(z—3)=0
—=Vz-3=y{@d-r)—-3=V1—-r
z2—4<0 = arg(z—4)=—n

— VEI= =)~ 1= —iyF

0
[, 1@ a= [ VBT A v )
3154 1
:i/o\/S—r\/Q—T\/l—r\/Fdr

= —0.76002: .

(3)Along 3 +— 4
z=44réCN =4y ¢:0-—1=— dz=—dr

z—1>0 = arg(z—=1)=0
= Vz—1=\/d-r)—1=/3—-r

z2—2<0 = arg(z—2)=0
e Y 7 sy B ey

z2—3<0 = arg(z—3)=0
—Vz-3=\/(4-1)-3=V1-7r

z2—4<0 = arg(z—4)=n

Sy SN/ 7 sy S S

/3;4f(z> dz = /01 V3 —=rV2 — VT —r(in/r)(—dr)
=i [ VEET IR
=~ (—/10\/3—T\/2—T\/1—r\/?dr)

=i [ E I

- / f(2) dz
34
= —0.76002¢ .
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(4)Along 1 +— 2
2=24re =21 r:0—1=dz=—dr

z—1>0 = arg(z—1)=0

e VETT = ST =V
2—2<0 = arg(z—2)=n7

N e AN = BN Y
2—3<0 = arg(z—3)=n

= Vz=3=/(2-r)-3=-(+r)=iVI+r
z2—4<0 = arg(z—4)=7

= Vz—4=\/2-r)—4=/-2+r)=iV2+r

/1<—2 fle) s = /0 VI=r(ivr) (VT +1)(ivV2 + 1) (~dr)

1
:—i3/ V1—7ryrvV1+rV2 47 dr
0

:i/lx/l—r\/F\/l—i—r\/Q—l—Tdr
0

0
:—i/ V1—rrV1+rvV2+rdr

2 / BT
1552
= 0.760027 .

/Vf(z) = [ 16 dz+/3L4f(z) dz+/3;4f(z) dz+/1é £(2) dz
:2/1 1) dz+2/3L4f(z)dz

L (/; feriss [ o)
( )

+
(0.76002i) + (—0.76002i))

2
=0

Using Mathematica
(1)Along 1 = 2

arg(z—1)=0 = Vz—1=MaTH(Vz—1)

arg(z —2) = -1 = z—2=(—1)-MATH (vz — 2)
arg(z —3) = —m = z—3=(—1) MATH (vz — 3)
arg(z —4) = -1 = Vz—4=(-1)-MATH (V2 —4).



/li}gf(z) dz = (—1)° - MATH (/12 \/z—l\/z—Z\/z—3\/z—4dz)
— (~1) - waTH (/12\/2—1\/z—2\/z—3\/z—4dz).

(2)Along 3 —— 4

arg(z —1)=0 = +/z—1=MATH(Vz —1)
arg(z—2) =0 = vz —2=MATH(Vz - 2)
arg(z—3) =0 = z—3=MATH (V2 —3)
arg(z —4) = -1 = z—4=(—1) -MATH (Vz —4).
/+ f(z)dz:(—l)-MATH(/ \/2—1\/2—2\/z—3\/z—4dz).
(3)Along 3 «— 4
arg(z—1) =0 = Vz—1=MATH(Vz—1)
arg(z —2) =0 = vz —2=MATH (V2 — 2)
arg(z —3) =0 = z —3=MATH (v/z — 3)
arg(z —4)=m = \/z—4 =MATH (vVz —4).

/?Hf(z) dz = MAB) (/43\/2—1\/z—2\/z—3\/z—4dz)

= (—1) - MATH (/34\/2—1\/z—2\/z—3\/z—4dz)

:/ f(z) dz

354

(4)Along 1 +— 2
arg(z—1) =0 = Vz—1=MATH (V2 —1)
arg(z —2) =m => /z—2=MATH (V2 —2)
arg(z —3) =7 = /z—3 =MATH (V2 — 3)
arg(z —4) =7 = +z—4=MATH (Vz —4).

/R_Qf(Z)dZ:MATH(/21\/2_1\/2_2\/z_3\/z_4dz)

:(—1)'MATH(/12\/2—1\/2—2\/z—3\/z—4dz)

= /1i>2 f(z) d=.
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Therefore,

Af@) dz:2/1i>2f(z) dz—|—2/3i>4f(z) i
= (—2) - MATH </12\/Z—1\/Z—2\/Z—3\/z—4dz>

+ (—2) - MATH (/4\/2—1\/2—2\/z—3\/z—4dz)

:(—2)-MATH</2\/z—1\/z—2\/z—3\/z—4dz

4
+/ \/z—l\/z—2\/z—3\/z—4dz)
3
= —3.15797 x 107" + 1.77636 x 107%;. (25)

To compare the values in equation (24) and equation (25), the two values in fact are
the same. Note that —3.15797 x 107 and 1.77636 x 107! are very small numbers, so

we can say them to be 0.

In the next example, we evaluate an integral along one b — cycle.

Example 6. Let f(2) = \/(z —1)(z — 2)(z — 3) and let v be the oriented positively cir-
cular path

S4e® if —wm<0<0, (in sheetI)
z = ,
S ye? if 2r <6 < 3. (in sheet II)

Solution.

Figure 34

1. Integral along the circle
Since f(2)|;r = —f(2)|1, we have

/7f<z>dz=/wf<>
:/ z) dz + (— /f
o

dz + f(z) dz
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3 ) .
z = 3 + e = dz =ie?de

[z [ G rem -1+ o -2+ e -3ict
[ G e -1 E v emy - 2fC v e - sict

= —0.958512.

2. Deformation of path
Theoretical Evaluation
(1) Along 1—2

z=247r M =21 11— 0= dz=—dr

z—1>0 = arg(z—1)=0
B W/ Y e
2—2<0 = arg(z —2)=—7
—=Vz—2=/(2—r)=2=—r=—i\r
2—3<0 = arg(z—3)= -7

= Vz-3=/2-1)-3=/-(1+r)=-ivT+r

/Hg fz) &2 /10 V1= r(=i/r)(=iv1+7)(—dr)

0
=—i2/ VI=r/irVI+rdr
1

:/O\/l—r\/?\/l—l—rdr.

(2) Along 1¢--2
Since f(2)|rr = —f(2)|r, we have [, f(z) dz=— [,__, f(2) dz. Therefore, we first

evaluate the value of the integral in sheet I then we multiply the value by —1.
2=24re =271 r:0—1=dz=—dr

z—1>0 = arg(z—1)=0
—Vi-1=/@2-r)-1=V1-r
2—2<0 = arg(z—2)=n
B e AN O N
2—3<0 = arg(z—3)=m

—=Vz—3=y2-r)-3=y/-(1+r)=iVlI+r
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[ s [ Ve me T )

:_ﬁ/olm_rﬁﬂwdr
:/01\/1—r\/F\/1+rdr.

Thus,

/162f(z) iz — —/R_Qf(z) i
:_/01\/1—r\/?\/1+rd7"

:/10\/1—r\/7_“\/1+7"dr

:/ f(z) dz
1—2
From (1) and (2), we obtain

Lf(z) dz:/l_ﬂf(z) dz+/1e“2f(z) dz
:/Hzf(z) dz+/H2f(z) i

:2/1_>2f(z) dz
0
:2/ V1 —ry/rv1+rdr

= —0.958512.

Using Mathematica

According to equation (26) to equation (28), we have

/f yaz=2 [ pe) e

Thus we only evaluate [, , f(2) dz.

Along 1—2:

arg(z —1)=0 = +/z—1=MATH (Vz—1)

(31)

arg(z —2) = —m = /z—2=(—1)-MATH (vz — 2)
arg(z —3) = -1 = z—3=(—1)-MATH (Vz — 3).

/1_>2f(2) dz = (—1)® - MATH (/12\/2_1\/2_2\/2_3d2)
:MATH(/IQVZ—M/Z*—Nz—Mz).
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So,

/Vf(z) dz:2/1_>2f(z) dz
:2-MATH</12\/z—1\/z—2\/z—3d2)

= —0.958512.

We give the final example to evaluate integrals along all a-cycles and b-cycles.

Example 7. Suppose that

f(z) = \/(z+ 5 (z4+3)(z+1)(z—1)(z —3)(z — 4)(z — 6)
= V(z=(=9)z = (=3)(z = (=) (z = 1)(z = 3) (= — 4)(z — 6).

Let ay,as,a3 be three a — cycles and let by, by, bs be three b — cycles drawing in Figure

35. Fwvaluate the siz integrals fak f(z)dz and fbk f(2)dz, k = 1,2,3 using the method of
deformation of path.

Figure 35

Solution.

a,

Figure 36
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Suppose that there is an a — cycle encloses a cut which is between z; to 2.

equation (18) in example 2, we have the result

[ a2 s

From equation (21) in example 3, we also have

/a ez = (2) s ( / £(2) dz)

1. To evaluate [, f(z)dz

Theoretical Evaluation

Along —3 SR

z=—147eCD = 1—7r 7r:2—0=dz=—dr

45 =0=+vz1b=vI_7
+3)=0=+V2z+3=V2—r
+1)=—-71=Vz+1=y—1=—iyr

z24+5>0 = arg

z
z24+3>0 = arg(z

z24+1<0 = arg(z

=z —1=\/—2+7r)=

1) =

z—3<0 = arg(z—3)=—-1=—=Vz-3=/—(4+r)=
)=
)=

z2—4<0 = argz—4)=—r=+z—4=+/—(5+r)=

=z 6= /(T 17) =

(
(
(
z—1<0 = arg(z —
(
(
z2—6<0 = arg(z2—6

—ivV2+r
—ivA+r
—iv/5+r
—iVT+r

[ 56 @ = i [ NSRS T T BT T

:i/O\/4—7‘\/2—7’\/F\/2+7‘\/4+T\/5+r\/7+7‘dr.

/a )z =2 /_ e

:22’/0\/4—7’\/2—r\/F\/2+r\/4+r\/5+7’\/7+rdr

= —144.283: .

Using Mathematica

Along —3 1
arg(z+5) =0 = Vz+5=MATH (V2 +5)
arg(z +3) = — Vz+3=MATH (Vz + 3)
arg(z+1)= -1 = Vz+1=(-1) -MATH (Vz+1)
arg(z— 1) =—m = z—1=(-1)-MATH (vz — 1)
arg(z —3) = —m = z—3=(—1)-MATH (vz — 3)
arg(z —4) = —m = z—4=(—1)-MATH (Vz — 4)
arg(z —6) = -7 = /z—6=(—1)-MATH (2 —6).

From

(32)
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/_3;1“2) dz = (—1)° - MATH (/_3 V+5)(z+3)(z+1)(z—1)(z—3)(z — 4)(z — 6) dz)

= (—1) - MATH </_ VE+5)(E+3)(z+1)(z—1)(z—3)(z — 4)(z — 6) dz)

3
= —72.1417: .

/a1 f(z)dz = 2/_3i>_1 f(z) dz
— (=2) - MATH (/_1 VEIRGET3GTD)E-DE -3 -4 -6 dz>

3
= —144.283: .

2. To evaluate [, f(2)dz

Theoretical Evaluation

Along 1 3

z2=3+4+reMN =31 r:2-—0=dz=—dr

z245>0 = arg(z+45)=0=+z+5=vV8—r
24+43>0 = arg(2+3)=0=Vz+3=V6—r

(

(

241>0 = arglz+1)=0=z+1=4—r

z2—1>0 = arg(z—1)=0=Vz—1=v2—r
(2=3)==m=Vz-3=—r=—ir
(z—4) =
(2 —6) =

z2—3<0 = arg(z

—4
z2—6<0 = arg(z—26

z—4<0 = arg(z

—m=+Vz—4d=+/—(1+r)=—i/1+r
=z —6=+/—-B+7r)=—ivV3+r

0
/ f(z)dz:—(—i)g/ V8 —1vV6 — VA —rvV2 —ryrV1+rV3+rdr
1 2

i3

:_@'/0\/8—r\/ﬁ—r\/4—r\/2—r\/F\/1+r\/3+7"d7“-

/@ F(2)dz = 2 /1L3 (2) d

:—22’/0\/8—7“\/6—7"\/4—7’\/2—7‘\/Fx/1+7"\/3—1—7“d7‘

= 88.2841: .

Using Mathematica
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Along 1 =53

arg(z +5) = —> Vz+5=MATH (V2 +5)

arg(z + 3) = —> 2+ 3 =MATH (V2 + 3)

arg(z + 1) = — Vz+1=MATH (V2 +1)
arg(z—1)=0 = +z—1=MATH(Vz—1)

arg(z —3) = -1 = z—3=(-1)-MATH (V2 — 3)
arg(z —4) = —m = z—4=(-1)-MATH (Vz — 4)
arg(z —6) = —m = /z—6=(—1)-MATH (vz — 6).

(—1)% - MATH (/1 V(z+5)(z+3)(z+1)(z—1)(z — 3)(z — 4)(z — 6) dz)

(—1) - MATH (/1 Vz+5)(z+3)(z+1)(z —1)(z = 3)(z — 4)(z — 6) dz)

= 44.142; .

/a2 f(2)dz = 2/1l>3f(z) dz
(—2) - MATH </13 V(E+5)(2+3)(z+1)(z—1)(z —3)(z — 4)(z — 6) dz)

= 88.2841: .

3. To evaluate [, f(2)dz

Theoretical Evaluation

Along4i>6:

=647 =671, r:2—0=dz=—dr
z45>0 = arg(z+5)=0=+Vz+5=+11—r
243>0 = arg(z+3)=0=Vz+3=vV9—r
2+1>0 = arg(z+1)=0=+Vz+1=7—7
z—1>0 = arg(z—1)=0=+vz—-1=b—r
2—3>0 = arg(z—3)=0=+Vvz—-3=+3—r
z2—4>0 = arg(z—4)=0=+z2—-4=2—r
2—6<0 = arg(z—6)=—-71=Vz—06=+v—r=—i\r

—(—1) /20 V11 —1vV9 — VT — V5 — V3 — V2 — 11 dr

:i/O\/ll—7’\/9—7’\/7—7“\/5—7“\/3—T\/2—r\/?dr.
2

34



/a3f(z)dz:2/4i>6f(z) dz
:22’/20\/11—r\/9—r\/7—r\/5—7"\/3—7"\/2—7“\/?(17”

= —198.138:.

Using Mathematica

Along 4 =56
arg(z +5) = —> 2z +5=MATH (V2 +5)
arg(z + 3) = —> 2+ 3 =MATH (V2 + 3)
arg(z + 1) = = Vz+1=MATH (V2 +1)
arg(z—1)=0 = +z—1=MATH(Vz—1)
arg(z —3) = —> 2z —3=MATH (V2 — 3)
arg(z —4) = — Vz—4=MATH (Vz — 4)
arg(z —6) = —m = /z—6=(—1)-MATH (v/z — 6)

/4i)6f(2)dzz(—l)-MATH(/4 \/z+5(Z+3)(Z+1)(Z—1)(2—3)(2—4)(2—6)dz)

= —99.0688: .

/ag F(2)dz = 2/@6 £(2) dz

= (—2) - MATH </4 V(45 (z+3) (24 1)(z—1)(2—3)(z — 4)(z — 6) dz)

= —198.138:.

From example 6 and equation (31), we have

[ r@a=2] | j@e (34)
b—cycle Z1i>22
and .
/ f(2) dz =2 - MATH (/ f(2) dz) : (35)
b—cycle z1
4. To evaluate [, f(z)dz
, - <\ N
\
-:--.:*i ----- - - .
t\5, ~y t- 1+ 3 4 T %
1
Figure 37
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Theoretical Evaluation

Along —5 -3

/5%3

z—6<0

— arg(z — 6

z=-3+47¢CV =3 p r:2—0=dz=—dr
z+5>0 = arg(z+5)=0=+Vz+5=v2—r
24+3<0 = arg(z+3)=-—m1=Vz+3=—1=—i/r
z41<0 = argz+l)=—-m1=+Vz2+1=/-2+7r)=—iv2+r
p—1<0 = arglz—1)=—n1=Vz—1=+/-(@d+r)=—ivi+r
2-3<0 = arg(z—3)= 1=z -3=+/-(6+7)=—iv/6+r
z2—4<0 = argz—4)=—-m1=+Vz—4d=/—(T+r)=—i/T+r

(2 —6) =

f(2) dz =

PR/ SN [ gy S Y/ g

—(=0)° /20 V2 =124+ VA + V6 + VT V94 dr

:/Ox/ﬁﬁ\/2+r\/4+r\/6—l—r\/7+r\/9+rdr

| =2 [ 5w

:2/0\/2—r\/F\/2+r\/4—|—7’\/6+r\/7+r\/9+rdr

QU

z

= —291.688.
Using Mathematica
Along —5 3
arg(z +5) = —
arg(z +3) = -1 =
arg(z+1)= -1 =
arg(z — 1) = -1 =
arg(z —3) = -1 =
arg(z —4) = -1 =
arg(z —6) = -1 =
/ f(2) dz=(—1)" - MATH </
-5t 3 -5

3

z+5 = MATH (vz + 5)

z+3 = (—1)-MATH (V2 + 3)
z+1=(—1) -MATH (vz + 1)
z—1=(-1)-MATH (V2 — 1)
z—3=(—1)-MATH (vVz — 3)
z—4=(—1)-MATH (vVz — 4)
z—6=(—1) -MATH (vz — 6).

V(+5)(z+3)(z+1)(z—1)(z—3)(z —4)(z — 6) dz>

— MATH (/_ VeI r DG -1)G -3z —-4(—0) dz)

5

= —145.844.
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/bl f(2)dz = 2/_5i>_3f(z) dz
— 2. MATH </_3 VE+5)E13)(E+ ) —1)(z—3)(z—4)(z—6) dz)

5
= —291.688.

5. To evaluate [, f(z)dz

f"—-<--..-.~
// \\

7/ AN

/ N
- l-_- < ----- -7--- -trec : -_- --_--

3 3 F 1 y+3 4+ 6

b2
Figure 38

+ B f(z) dz—l—/ i f(2) dz—l—/ B f(z) dz
—le--1 3e--—1 —5¢--—3
Theoretical Evaluation
(1)Along —5 — —3
z=-34+7re =31 r:2—0=dz=—dr

)=0=+Vz+5=v2—r

)= —T= V2 +3 =T =—iJr
N=-m=+Vz+1=+/-2+7r)=—ivV2+r
1) =

) =

) =

z24+5>0 = arg(z

+
z+3<0 = arg(z+
z24+1<0 = arg(z+
—r =z 1l=/—(d+7r)=—ivitr
—r=+Vz2-3=+/—-(6+r)=—iv/6+7r

z2—4<0 = argz—4)=—n1=+Vz—4d=/—(T+r)=—i/T+r

2—6<0 = arg(z—6)=-—m1=vVz-6=+/—9+7r)=—ivI+r
Let u1(r) = vV2 —r/rv2 + rvV4 + 16 + rv/7+1rv/9 +r. Then

/_5;_3f(z) dz = —(—i)® /20u1(7~) dr:/;m(r) dr
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z2—3<0 = arg(z—3

(
(
(
z2—1<0 = arg(z —
(
(
(




(2)Along —5 ¢«-- —3

The same procedure in example 6, we first evaluate —5 <— —3.

/ o f@dz= /0 " iOus(r) (=dr) = —i° /0 " (r) dr = /O S (r) dr

/_56_3 f(2) dz = — /_5;_3 f(2) dz = — /02 w (r) dr

Then

From (1) and (2), we have
/_ o JE)dzr /_ - @ d== /_ EICLE (36)
=2 /2 : s (r) dr. (37)
(3)Along —3 — —1

z=—14reSP ==l -1, r:2<>0=>dz=—dr

z+5>0 = arg(z+5)=0= Vz+5=v4—r
=0=Vz+3=V2—r
—m= Vz+1=—i/r
i T=z—1=—i\/2+r
2—3<0 = arg(z—3)=-n1=+V2z-3=—iVd+r

Z+3>O :}argz+3
z+1
1

(
(
z4+1<0 = arg(
z—1<0 = arg(z
(
(
(

)
)
) =
=
) =
)=

4)=—-r1=\2—4=—i/5+r
6)=—1=+vz—6=—i/T+r

Let us(r) =4 —1rv2 — r/1V2 +rv/4+ rv/5 + /7 +r. Then

/3Ll f(2) dz = —(=i)° /20 us(r) dr = @/20 un(r) dr.

(4)Along —3 «-- —1

/3;1f(z) dz = —i° /02 us(r) dr = _Z-/O2 () dr.

z2—4<0 = arg(z
z—6<0 = arg(z

Then



From (3) and (4), we have

/_3;_1 f(z)dz+ /_36“_1 f(2) dz

(5)Along —1 —5 1

=147t =1—r r:2—0=dz=—dr

z45>0 = arg(z+5)=0=Vz+5=16—r
243>0 = arg(z2+3)=0=+Vz+3=vV4—r
(z—f—l)—():\/z—i—l—\/Q—r
z2—1<0 = arg(z—1)=—71—= 1=—iyr
(2 -3) =
(2 —4) =

z24+1>0 = arg

z2—3<0 = arg(z—3 —T = Vz—=3=—1v2+r
2—4<0 = arg(z—4)=—1=+Vz—4=—i/3+r

2—6<0 = arg(z—6)=—71=+V2—6=—i/b+r

Let us(r) =6 —rv/4d — rv/2 — ry/r/2+ 1rv/3+ 1rv/5+ r. Then

/1L1 f(z) dz = =(=i)* /20 us(r) dr = — /20 us(r) dr.

(6)Along —1 ¢~ 1

Then

From (5) and (6), we have
d dz = d
/_1i>1 flz) dz + /—1«--1 fz) dz=2 /—1i>1 flz) dz

_ 9 /20 us(r) dr.

According to equation (36), (37), (38), (39), (40), (41), and (42),
[y az=2 /_Si)_g £(2) dz +2 /_@1 £(2) d

:2/20u1(7“) dr + (—2/20u3(r) dr)

= —291.688 + 101.116
= —190.572.

39

(38)

(39)

(40)

(41)

(42)



Using Mathematica
(1)Along —5 — —3

arg(z +5) = — 2z +5=MATH (V2 +5)

arg(z +3) = -1 = Vz+3=(—1)-MATH (2 + 3)
arg(z+1)= -1 = Vz+1=(-1) MATH (Vz +1)
arg(z—1) = -1 = z—1=(-1)-MATH (vVz — 1)
arg(z —3) = —m = z—3=(—1)-MATH (vz — 3)
arg(z —4) = —m = z—4=(—1)-MATH (Vz — 4)
arg(z —6) = -7 = /z—6=(—1)-MATH (2 —6).

=

;%

o
VR
—
ot |

w
&H

(2) dz) = MATH

VR
—
ot |
w
=
&
S|
)
~_

/5L3f(2) dz = (—1)5 .

(2)Along —5 ¢-- —3

arg(z+5) =0 = +/z+5=MATH (V2 +5)
arg(z +3) =m = /z+ 3 = MATH (V2 + 3)
arg(z+1) =1 = z+1=MATH (Vz + 1)
arg(z — 1) =m =z — 1 =MATH (V2 — 1)
arg(z —3)=m = /z—3 =MATH (v/z — 3)
arg(z —4) =7 = /z— 4 =MATH (v/z — 4)
arg(z —6) =7 = /z— 6 =MATH (vz —0) .

-5

/_5 V(z+5)(z+3)(z+1)(z—1)(z —3)(z — 4)(z — 6) dz)

I

DO

=

)%

T
I/~

= —291.688.
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(3)Along —3 —— —1

o~ o~ o~ o~ o~ o~~~

~— ~— — S S ~—

arg

arg

N

N— N N N —

A~~~ I/~ /N

~— — ~— ~— ~~—

—~ o~~~

o) d:)

-1
3

“naTh ( /

) dz)

-1
3

/3L1 f(2) dz = (—1)° - MATH (/

(4)Along —3 «-- —1

AN N TN TN N N TN

zZ+5
z+3
z+1

S— N N N N N

MATH

T —> 1z —3 = MATH
T = z—4
T =— +/z— 6= MATH

o~ o~ o~ o~ o~ o~

~— N~ — S

arg
arg
arg
arg
arg
arg
arg

From (3) and (4),
/

(5)Along —1 — 1

LELL

T

o~ o~ o~ o~ o~ o~

~— o — ~— ~—

arg

arg

arg

41



/_1i>1 () dz = (—1)* - MATH (/_11 £(2) dz> _ MATH (/_11 £(2) dz)

(6)Along —1 «-- 1

arg(z4+5) =0 = +z+5=MATH (vz+5)
arg(z +3) =0 = +/z+3=MATH (V2 +3)
arg(z+1) =0 = Vz+1=MaTH (V2 +1)
rg(z—1)=n = z—1=MATH (V2 — 1)
arg(z —3) =7 = /z—3=MATH (V2 — 3)
arg(z —4) =1 = /z—4=MATH (V2 — 4)
arg(z—6) =7 => +/z—6=MATH (vz —6).

/bz £(2) d < /_ ECLE /_ ) dz) + ( /_ e /_ e dz)

—291.688 4 101.116
—190.572.

6. To evaluate [, f(z)dz
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+ 5 -3 + -1

Figure 39

—
=
N
au
Q

I

—

ot

l+

4f(z) alz—l—/_5 i4f(z) dz

_ /_5;_3f(2) dz+/_3i>_lf(z) dz~|—/_1i>1f(z) dz+/1;3f(z) "
+/3 f(z) dz + f(2) dz+/h_3f(z) d2+/1€_1f(z) I

=V 3¢-4

S O O
—3¢--—1 —5¢--—3
We only need to evaluate the four integrals, f1—33 f(2)dz, fh?,g f(2)dz, f3L4 f(2)dz, and

f3;4 f(2) dz. The other six integrals are as same as the six integrals evaluated in 5.
Theoretical Evaluation
(DAlong 1 — 3

z=3+4+7¢N =3 —p 1:2-0=dz=—dr

z2+5>0 = arg(z+5)=0=+Vz2+5=v8—r
243>0 = arg(z+3)=0=+Vz+3=16—r
24+41>0 = argz+1)=0=Vz+1=v4d—r
z2—1>0 = argz—1)=0=+vVz—-1=V2—r
2—3<0 = arg(z—3)=—-71=+Vz—-3=—iyr
z2—4<0 = arg(z—4)=—-m1=+Vz—4=—i/1+r

2—6<0 = arg(z—6)=—-71=+Vz—-6=—iy/3+r
Let uq(r) =8 —1rv/6 — rv/4 —rv/2 — ry/rv/1 +1rv/3 +r. Then

/1i>3f(z) dz = —(—i)3/20 ua(r) dr = —z'/20 wa(r) dr.

(2)Along 1 «-- 3

/1é3f(z) dz = —i /02 wa(r) dr = i/: wa(r) dr.
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Then

/16“3 f(z) dz

From (1) and (2), we have

(3)Along 3 —— 4

_/1<_3f(z) dz:—z'/02u4(r) dr
:i/20u4(7’) dr:—/llﬁf(z) dz.

=447t =4—p r:1—0=dz=—dr

z2+5>0
z24+3>0
z24+1>0
z—1>0
z—3>0
z—4<0
z2—6<0

— arg(z+5)=0=+2+5=v/9—r
= arg(z+3)=0= V2 +3=V7T—7r

(

(
— arg(z+1)=0=+Vz+1=V5—r
— arg(z—1)=0=+Vz—-1=+3-—r
— arg(z—3)=0= Vz—-3=+V1—r
= arg(z —4) = —1 = Vz —4 = —i/r
— arg(z —6) = —1T = V2 —6=—ivV2+r

Let us(r) =v9 —rV/7—rvb —rv/3=rv1 —ryrv2+r. Then

/3i>4 f(2) dz = —(—i)Q/lo us(r) dr = /10 s () dr.

(4)Along 3 «-- 4

/3<_4f(z) dz = —i /01 us(r) dr = /01u5(r) dr.

Then

3e--4

From (3) and (4), we have

f(z) dz = —/3{_4]“(2) dz = —/Olug,(r) dr

:/10u5(7‘) dr:/BLélf(z) d-.

/+ f(2) dz + f()dz_2/+ f(2) dz
3—4 3¢--4 3—4

- 2/10u5(r) dr.
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So, we have

™ | | O < |
N _ _
N (N (W ISR

AN N N T AN N N N N
LR R Ll L NN 0 | = e
o - sl K A
ZZZZAAA ZZZZZAA
E D= = = =
=B <L

StaTH ( /1 to) dz) _ /1 ERCLE

/h__gf(z) dz = _/1<—3f<z> dz = —/1i>3f(z) A=

f(z)dz+2/1+1f(z) dz—|—2/3+4f(z) dz

2/20u1(r) dr+ (—2/20u3(r) dr) +2/10u5(7") dr

—291.688 + 101.116 + (—30.8213)

-3
= —221.393.

N

3f(2’) dz = (—1)® "MATH (/13 f(2) dz> = —MATH (/13 f(2) dz)

/1i>3f(z) do+ [ gz = /@3;‘(2) i — /@?’f(z) i
=0
— z+ 5= MATH

Tha™
N
=
—
N
~
S~
—
— o
0 N———
—! I IR o L |
TN N TN TN AN N TN [ A~~~ Y~ I/~ /N N/~
(o] n M — — M <H O < n M —A — M <H O
I Il I ) + + + 1 0 1 s + + + 1 0 1
N .m N NN N NN W __ N NN NN W
d e S N N N N N N S Nt N N N N
< 0 b 0 o0 b B0 o &0 b 0 o0 b B0 ®Bo
N T R R T T T N L T - T R T T T
/NM\ m3 T «© S T «© «© & o = ~ <t T &« S T «© «© &
S— Q | —~ ~
© h._% L,_ X2 be ._%
[O + - ¥ S— ()
Mal / — o~ < [ap)
) ) 1] — )
= = — =
oo| S S — s}
= = g =
= < < <
n| —~ —~ o —~
— QY = el
U( ~— F ~—
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/3i>4f(z) dz = (=1)? - MATH (/341”(2) dz) — MATH (/34f(z) dz)

(4)Along 3 «-- 4

/3(_4f(z) dz = MATH </43f(z) dz> = —MATH </34f(z) dz) — _/3i,4f<z) "

= 2 - MATH

/3 V(Z+5)(z+3)(z4+D(z = 1)(z—3)(z — 4)(z — 6) dz)

7 N\

= —30.8213.

Thus,

[ sy a= = ( /_ RO /_ e dz) + < /_ )+ /_ e dz)

= +</ f(z) dz+ f(z) dz)
354 3¢--4
= —291.688 + 101.116 + (—30.8213)

= —221.393.

3.4 Generalization of Integrals Along Horizontal Cuts

We evaluate the integrals on the Riemann surface of genus N. If the Riemann surface is
of genus N, then there are 2N + 1 or 2N + 2 branch points.

Case 1. The number of branch points is odd (2N + 1 branch points)
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2 23 % Iy, Zon  ZoNa

Theoretical Evaluation

Along 2y, - Zokt1, 1et d = |zopq1 — 2ok
2= Zopa1 + re'-™ = Zopr1 — 7T, T:d—0=>dz=—dr
For j=1,2,--- 2k,

arg(z —zj) =0 = /2 — 2z, = \/(22k+1—7‘)—zj

For j =2k+1,2k+2,--- ,2N + 1,

arg(z — zj) = —m = /2 — z; = —i\/zj — (29641 — 1)

Let
IN+1

u(r) = (ﬁ \/(22k+1 —r) = Zj) ( H \/Zj — (Zok+1 — 7")) .

j=2k+1

47

Figure 40

Figure 41



Then
0
/ f(z)dz= —(—i)(2N+1)_(2k+1)+1/ u(r) dr
Z2ki>22k+1 d
0
= —(—z’)QN—%H/ u(r) dr
d
0
_ Z-2N2k+1/ u(r) dr
d
0
= 22k z/ u(r) dr
d

Thus,

/ak f(2)dz = Q/ZQkLz%H f(2) dz (45)
= (—l)N"f-2z/dOu(r) dr (46)

Note that the value of the integral is a pure imaginary number.
Using Mathematica
For j =1,2,--- 2k,

arg(z — zj) = 0 ==/2— 2z; = MATH (\/z — ;)

For j =2k+1,2k+2,--- ,2N + 1,

arg(z — zj) = —m = /2 — z; = (—1) - MATH (/2 — 2;)

Then,
/ F(2) dz = (—1)ENFD=CRDH1 gy (/m+1 f(z) dz)
+
22k —22k+1 2ok
22k+1
= (—1) - MATH (/ f(2) dz)
22k
Thus,

/ak f(z)dz = 2/Z%i>z2k+1 f(z) dz (47)
= (—2) - MATH </Z%+1 f(2) dz) (48)

22k

(2) To evaluate fbk f(2)dz
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Figure 42

Before our compuation, we first discuss the integrals of the two kinds of path drawn in

Figure 43 and Figure 44.
Class 1. Along a path that there is a cut on it

( ------------
G-----------p
+ 7
Zm-1 Zm Figure 43

Since f(2)|ir = —f(2)|1,

So, we have

/zmliwm J(2) d=+ / =0

Class 2. Along a path that there is no cut on it

.
G ©
Zp-1 Zm Figure 44

Since f(2)|1r = —f(2)Ir,

R

- (_ /zmlimm 7] dz)

- /zm_li)zm flz) dz

49
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So, we have

/zm_1—>zm f(z) dz + /zm_le--zm f(z)dz=2 /zm_1—>zm f(z) d=. (50)

Thus, we only need to evaluate the integrals [ f(z)dzfor j=1,2,--- 2k —1 and

Zj—Zj41
add them together. That is,

dz =2 d d c d
by f(Z) ’ </Z‘1—>Z2 f(z) o /2‘3—>Z4 f<2) o " /22k1—>22k f<2) Z)

k

9 Z/Z £(2) d (51)

m=1 2m—1—""22m

-y — e @ e e —— O
Z z —l_
Zy 20 Dyp 2mt o Zamn* *° Zaka Zypq Z2r Figure
45

Theoretical Evaluation

Along 2o, 1—>2om, let d = |29, — 2om-1]-
z:zgm—i—rei(_”) =2o9m — 1T, T:d— 0= dz= —dr
Forj=1,2,--- 2m — 1,

arg(z — zj) = 0= \/z — 2z; = \/ (22 — 7") — 2;

For j =2m,2m+1,--- 2N + 1,

arg(z — zj) = —m => /2 — 2z; = \/z] (zom —

Let
2m—1 2N+1
(H zZm _Z]> (H \/ Z2m ) .
Jj=2m
Then

/z . f(z) dz = —(—i)PNHD-2m /d Ou(r) dr
= —(—iq)*N2mt2 /dO u(r) dr
v [ ) dr

20



Thus,

k

[roe=23 [ e -

k/2 0

—2y (—pNm /d u(r) dr (53)

Note that the value of the integral is a real number.
Using Mathematica
Forj=1,2,--- 2m —1,

arg(z — zj) = 0 => \/z — z; = MATH (\/z — ;)

For j =2m,2m +1,--- 2N + 1,

arg(z — zj) = —m = /2 — z; = (—1) - MATH (\/z — zj)

Then,
/ () dE = (L)@ ( / £(2) dz>
29m—1—">22m 22m—1
= MATH (/ f(z) dz)
22m—1
Thus,

k
/b flz)dz=2)" f(2) dz (54)

22m—1—""22m

_ zmzk:l MATH ( / mm £(2) dz) (55)

Case 2. The number of branch points is even (2N + 2 branch points)

Zons2

Figure 46
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1 <k < N in Figure 46. Let

2N+2

fR)=V(E—2)(z—2) (2 — 2on42) = H V2= %

* DNy ZiN+2

ay Figure 47
Theoretical Evaluation
+
Along zopy1 — Zokt2, let d = |2op2 — 2241
2 = Zogao + re'-™ = Zogao — T, T:d— 0= dz = —dr

For j=1,2,---,2k+1,

arg(z—zj):o:vz_zj:\/(22k+2_7~)_zj

For j =2k +2,2k+3,--+ , 2N + 2,

arg(z — zj) = —T => /2 — %, = —i\/zj — (2242 — 1)

Let
2k+1 2N+2
U(T) = <H \/(22k+2 —7’) _Zj> < H \/Zj — (22k+2 —T>> .
j=1 j=2k+2
Then
0
/ f(Z) dz = _(_Z-)(2N+2)(2k+2)+1/ U(T) dr
22k+1i>22k+2 d
0
— _(_Z-)2N2k+1/ u(r) dr
d
0
= (—1)N_k . z/ u(r) dr
d
Thus,

/a k f(z) dz =2 / — f(z) dz (56)
= (-1)N"F.2i /do u(r) dr (57)

52



Note that the value of the integral is a pure imaginary number.
Using Mathematica
For j =1,2,--- 2k 41,

arg(z — zj) =0 => \/z — z; = MATH (/2 — 2;)
For j = 2k + 2,2k +3,--- 2N +2,

arg(z — z;) = —m => /2 — z; = (—1) - MATH (/2 — 2;)

Then,

22k42
/ N f(2) dz = (=1)@N+D=C+DHL Ay (/ f(2) dz)
22k 41 722k42 22k+1

= (—1) - MATH </sz+2 f(2) dz)

/a k f(2)dz=2 / e f(2) dz (58)

= (—2) - MATH (/22k+2 f(z) dz) (59)

Thus,

(2) To evaluate [, f(z)dz

e EEEN——————————— EEEE-

Zogsn * ZyN4 )

Figure 48

Using similar arguments in class 1 and class 2 of Case 1, we also can see that

dz = d d d
RCL 2( /Zﬁzsf@ . /Zﬁ%f(z) S /H /(2) )

k

=2 Z/ f(z) dz (60)

m=1"Y ?2m—22m+1

23
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Z, 00 Iy Zom Zome Zome2® *® Zop1 0 Zop Zak+1

Figure 49

Theoretical Evaluation

Along zo,—2om+1, let d = |zomi1 — 2Zom]-
2= Zoma1 + re'-m) = Zoma1 — T, 1:d— 0= dz= —dr
For j =1,2,---,2m,

arg(z — z;) =0 => /2 — z; = \/(22m — 1) — 2

For j=2m+1,2m+2,--- 2N + 2,

arg(z — zj) = —m = /2 — 2z = \/zj (zom — T

Let
2m 2N+2
:(H\/(ZQW—T)—ZJ'>< H \/ 25 — (22m — )
j=1 j=2m-+1
Then
0
/ f(z) dz = —(—i)(2N+2)_(2m+1)+1/ u(r) dr
2om—>22m+1 d
0
- —(—i)ZN_QmH/ u(r) dr
d
0
= (—1)Nm/ u(r) dr
d
Thus,

/bk dz =2 Z /ngﬂzmﬂ ) dz (61)
_ zmzl(_mN—m /dou(r) dr (62)

Note that the value of the integral is a real number.
Using Mathematica
For j=1,2,--- . 2m,

arg(z — zj) = 0 => /2 — z; = MATH (\/z — ;)

For j=2m+1,2m+2,--- ;2N + 2,

arg(z — zj) = —m = /z — z; = (—1) - MATH (w/z — zj)

o4




Then,
Z22m—+1
/ f(2) dz = (=1)ENFD=CmEDHL Ay (/ f(z) dz)
22m—>22m+1 Z22m
Z22m+1
= MATH (/ f(2) dz)
22m
Thus,
k
/ f(z)dz=2 Z/ f(z) d= (63)
bk m=1 Zom—22m+1
k Z22m+1
=2 Z MATH </ f(z) dz) (64)
m=1 “2m
Example 8. Let
2N+2

fe =11 ve==

Suppose that Im(z9;—1) = Im(29;), 5 =1,2,-<- ;N + 1. The cuts are drawn in Figure 50.
Let Re(zj) = xj,j = 1,2, ce ,2N+ 2 and [m(Zgj_l) = Im(zgj) = y],j = 1,2, cee ,N + 1.

Evaluate [, f(z)dz and [, f(z)dz.

-----

3

ZZN+1@--------:-0 22N+2

Figure 50
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~
sz-%—l@----------@ Z2k+2
+ 7

ZZN+1®--------—-|_-O ZZN+2

Figure 51 Figure 52
Solution.
(1) To evaluate [, f(2)dz (Figure 51)
Theoretical Evaluation
Along zop 41 = Zoky2, let d = [zopi0 — Zogy1]-

2 = Zokyo + ret-™ = Zogao — 7T, T:d— 0= dz = —dr

For j = 2k + 2,

arg(z — Zopta) = —M = V2 — Zopr2 = —ir
For other 7,

arg(z — zj) # -1 = /2 — z; = \/(22k+2 —r)— 2

Let

u(r) = <2ﬁ1 \/(22k+2 )= Zj) (\/F) ( 2ﬁ2 \/Zj — (22k42 — 7")) :

=1

Then

Jj=2k+3

/ZWL%Q f(2) dz = =(=i) /dOU(r) dr = i/ClOu(r) dr

/akf(z) dz:2i/dou(r) dr.

Thus,

26



Using Mathematica

Along 2o 41 - Z2k+2-
For j = 2k + 2,

arg(z — zopya) = —T => /2 — 2912 = (—1) - MATH (\/z — z2k+2)

For other 7,
arg(z — z;) # —1 => /2 — z; = MATH (\/z — ;)
Then,
22k+2
/ £(2) dz = (1) - MaTH / £(2) d
22k+1i>z2k+2 29k41
Thus,

/a fe) d =2 / RCL

= (=2)-MATH </Z%+2 f(2) dz)

(2) To evaluate [, f(z)dz (Figure 52)
For j =2,3,--- |k,

/ . f®) dz+/ o f(2) dz
Z2j-1--222j 22j—1—22j

:—/ f(z) dz+/ f(z) d=
Zgj_1i>22j ZQj—li%ZQj
=0.

So,

/b fled = ( / PR / e dz)

+ i </z2j_1—>zz,-+2 flz) dz + /zzj_le--zwﬁ 1 dz>

+ / f(2) dz—l—/ f(z) dz
22k+1i>z2k+2 Z2k+1(;252k+2

:(_1).2/ RIS f(2) dz

225 —1—722542

=2 /do <21kj[11 \/(22k+2 ) zj> (\/;) (%fj; \/zj — (22hp2 — 7’)) dr.
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Theoretical Evaluation

Along z; — 2, let d = |z, — 2.

z=z4+1e N =20 -1, r:d — 0= dz = —dr

For j =2,
arg(z — z9) = —m = /2 — 29 = —i\/T
For other j,
gz =) £~ = VEm 5 =\l =)~ 5
Let s
u(T) = ( (2’2—7”>—21) (\/7_") <H \/Zj—(ZQ—T)> .

j=3

Then

[ s@d == [urrar=i [Cuy o

+
Along Z9j—1 — 22j+2, let

| 2051 — 29511

f = — arctan d= |22j—1 — 22j+2|'

| 22541 = Z2542|
z=2(r) = Zyg +re? rid > 0= dz = dr
Then,

d2N+2

/ f(z) dz :/0 H \/012(r) — 2| e?dr.
22j—1""22j+2 j=1

Thus,

k

f(z)dz:(—l)-Q/Z ) f(z)dz+22/

1—22 j=1 22j—1—"22j+2

:(_1)-2z‘/dou<7“> d’“”é/o

Using Mathematica

f(z) dz +/ f(z)dz

by
d2N+2

U \/mewdr—l-/akf(z)dz.

Along z; L 29, let d = |29 — 2.
For 7 =2,

arg(z — z2) = —m => V2 — 23 = (—1) - MATH (V2 — 22)
For other j,

arg(z — zj) # —m = \/z — z; = MATH (/2 — 2;)

o8



Then,

/ZILZ2 f(z) dz=(—1) - MATH (/: f(2) dz)

+
Along Z2j—1 — 22j+2, let

| 2951 — 22511

f§ = — arctan d= |Zgj_1 — 22j+2|'

)
| 29541 — 22j42]
2= 251 +7’619, r:d— 0= dz=e’dr

Then,

d
/ f(2) dz = MATH (/ f(z25-1 + Teie)eiedr) '
22j—1—"22j42 0

Thus,

by,

F(2)dz = (<1) - zfmimf(z) dz + 22/%1_)% f(2) dz + / £(2) dz
—(=1)-2- (=1) - uATH (/ £(2) dz> 4 22:MATH (/Odf(zgjl 4 rew)ewdr>

+ (=2) - MATH </Z%+2 f(z) dz)

22 k d
= 2. MATH (/ f(z) dz> +2 Z MATH (/ fz2j-1 + Teif?)emdr)
z1 j=1 0

+ (=2) - MATH (/Z%+2 f(2) dz) :

29



4 Integrals for Vertical Cuts

4.1 Cut Structures for Vertical Cuts

We first define the branches for vertical cuts. Let f(z) = v/z and let z = re?, where

0 = arg z. We define two single-valued branches of f as

f(z) = rez", T T
2 2

and -
f(z) = re2®, g << g

And we define sheet I and sheet 11 as
3T T
SheetI:{z€C|—7§argz<§},

and

b}
sheet II = {z € Clg <arg z < g}

To Label the second quadrant with a + and label the first quadrant with a —.

sheet | sheet |l
A A
g T gg=" 0T 19"
21 2 2 1 2
' :
1 _
Jr! Jr!

Figure 53

Then we can use the same method used in section 2.1 to construct the Riemann surface
for f. (see Figure 6)

4.2 The Problem in Using Mathematica

We use (I) to denote sheet I and (/1) to denote sheet II. We can see

€e(l) = 5 < < — = 5 <1 <
- — —— < —ar —.
z 5 Sargz<g 1 I8 2 < o

. . . 371" T
f maps the points on sheet I into the region {z € C| — 7 < arg z < 7}.
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A .
1 L7
+:_ //
! .
‘\#\\\‘_;il—’f7zéi/z.
z Nz
Figure 54
And,
G(H):>7r< <57T:>7r<1 <57T
z — arg z - — —arg z —.
g MBSy T =M RSy

f maps the points on sheet II into the region {z € C|] < arg z < %’T}

sheet Il
0
- ¥
: /
P 7/
z TITT A
Figure 55
Let z € I, = [-3F, —n] C (I). For example, suppose that z = —1 +i € (I).
arg z = =" and z = el (=),

5 5
argz:—zﬁelc—_—>arg\/§:—g

— f(2) =vV—1+i= ()2 = (57

But in Mathematica,

37r)

—14i=T) = VI i=eF
3

We find that ¢F) = (—1) - (7).

i(-— Mathematica

theoretical

Figure 56
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Thus we have the result
3
z € sheet I and —g <argz < —m = /z = (—1) - MATH (V/2)
Let 6 = arg z, and let
T 7
A= Cl—-=-<0<-
3
BT:{Z€C|—I7T§9§_%}7

BMz{zeCEgegg}.

sheet |
o= Tug-C" v

2, 2 4
_I_ : _ /\ BM' y-

: ¢

1

A
BT
Figure 57
Theoretically,

f(sheet I) = AU By.

In Mathematica,
f(sheet T) = AU By,.

4.3 Evaluating Integrals Using Mathematica

Example 9. Let f(z) = \/z and let v be the positively oriented (counterclockwise oriented)
circular path z = €, =3 < § < Z. Fvaluate the integral f7 f(z) dz.

Solution.

(1) Integral along the circular path

A
e

[

NP
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zEy=z=¢" —

v 5
A
>
A

vl 3

— dz = ie"db.

Then,

/Wf(z) dz = MATH ((—1) : /_; f(e®)ie® db + /_i f(e®yie® d@)

= MATH ((—1) : / Vet e df + /2 eif je'® d8>
3
_r _

™

= —0.942809 + 0.942809¢ .

(2) Deformation of path

A
fi-
ll

i
X2

Figure 59

Theoretical Evaluation

Along i — 0(z € 7*)
z=ri, r:1— 0= dz=1dr

3 . —3T
arg z = —5m = Vz = /Jri] 1)

0
[ @i [ VEeia
v 1

= —0.471405 4 0.471405¢ .

To use the similar method of deriving Equation(18), we can know that

/f(z) dz = 2/ f(z) dz
¥ A
= —0.942809 + 0.942809: .

Using Mathematica

arg z = —gﬂ' —> /z = (—1) - MATH (V/?)
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/7* () dz = (=1) - MATH (/lof(m')i dr)

= (—1)- MATH (/10\/51 dr>.

[yf(z) dz:2/7*f(z) dz

= —0.942809 + 0.942809¢ .

Then,

Example 10. Suppose that f(z) = /(2 —i)(z — 2i)(z — 3i)(z — 4i) and 7 is a positively

oriented simple closed curve that encloses all cuts. Evaluate the integral f7 f(2)dz.

Figure 60

Solution.
Theoretical Evaluation
(1)Along 4i — 3

z=ri, r:4— 3= dz=1dr

For k = 1,2, 3,
arg(z — ki) :—iwj\/z—k@: Vri — ki| 50,
and
1 G
arg(z — 4i) = —om = Vz —4i = /|ri — 4i] D
Then,

3 4
/ f(z)dz = / (H Vri — kz|) <ei(_413m)>3 ) dr
4534 4\

i—

= —0.76002.
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(2)Along 2i — i
z=ri, r:2— 1= dz=1dr

arg(z — i) = ——7r:>\/z_z Vr ol
For k =2,3,4,

1 Cm
arg(z — ki) = —gm = Vz — ki = \/|ri — ki] 9

Then,

/Ziim‘f( dz_/ (HW) (D) i ar

= 0.76002 .

Thus,

Using Mathematica

(1)Along 4i — 3
z=ri, r:4— 3= dz=1dr

For k = 1,2,3,
arg(z—ki):—gﬂﬁ z—ki=(— )MATH(\/Z—]Ci),

and

1
arg(z — 4i) = T = V2 - 4i = MATH (\/z — 4@')

/4 (&) dz = (1) wars ( / 3 (H m) ; dr)

= —0.76002.

Then,

(2)Along 2 —y
z=ri, r:2— 1= dz=1dr
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arg(z —1i) = —§7r = Vz—i=(—1) - MATH (W)

2
For k = 2,3,4,

1
arg(z — ki) = T = Ve - ki = MATH (\/z - /m)

Then,

/Ziin‘f(Z) dz = (—1) - MATH (/21 <£[ \/m> i dr)

= 0.76002 .

Thus,

Example 11. Suppose that

f(2) = V(2 —i)(z = 2i)(z — 3i)) (2 — 43) (2 — 5i)(z — 61).

Let ay, as be two a — cycles and let by, by be two b— cycles drawing in Figure 61. Evaluate
the four integrals fak f(z)dz and fbk f(2)dz, k = 1,2 using the method of deformation of
path.

Figure 61

Solution.
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6i
+i—
507

Figure 62

1. To evaluate [ f(z)dz

Theoretical Evaluation

Along2ii>z',
z=ri, r:2— 1= dz=1dr

3 (_8m
arg(z — i) = 5T = Vz—i=1/|ri—i =),

For k = 2,3,4,5,6,

1 (_m
arg(z — ki) = 25T = Vz —ki=/|ri — ki] D

Then,

/a f(z) dz = 2/2ii>if<2) dz
o T ) e (o)
2/2 (k \/m> e (e ) v dr

:2/21(k m)d

= —6.08344: .

=1
6

=1

Using Mathematica

Along 2i — 4,
z2=ri, r:2— 1= dz=1dr

arg(z —1i) = —gw — Vz—1i=(—1) - MATH (\/E) )
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For k = 2,3,4,5,6,
1
arg(z — ki) = —T = V2 - ki = MATH (\/z - kz)

Then,
dz = d
/a1f<z> : 2/Mf<z> :

:2-(—1)-MATH(/21<

= —6.08344: .

6 Ve — k:z) 1 dr)

=1

2. To evaluate [, f(2)dz

Theoretical Evaluation

Along4z'i>3i,
z=ri, r:4— 3= dz=1dr

For k = 1,2, 3,
. 3 - - o i(—3T)
arg(z — ki) = ~ Vz —~ki =/|ri — ki| "~
For k =4,5,6,
1 o
arg(z — ki) = <5m = Ve—=Fki = /|ri — ki|] D
Then,

/a2 f(z)dz =2 /4@31- £(2) dz
~ [ (T () () s
:2-(—1)/43 (ﬁM) i dr

k=1
= 2.889371 .

Using Mathematica

Along 4i — 3i,
z=ri, r:4— 3= dz=1dr

For k =1,2,3,

arg(z — ki) = —gﬂ' = Vz—ki=(—1)-MATH (\/z - k:z)
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For k =4,5,6,
1
arg(z — ki) = —T = V2 - ki = MATH <\/z - kz)

Then,

/a2f(z) dz = 2/4ii>3if(z) dz
=2-(—1)*-MATH (/43 (ﬁﬂ) z‘dr)

k=1
= 2.88937: .

Figure 63

3. To evaluate [, f(z)dz
Theoretical Evaluation
(1)Along 5i — 44

z=ri, r:5—4=dz=1dr

For k =1,2,3,4,

arg(z — kl) = —gﬂ' _— \/Z — ki = \/‘7“7, — kl’ €i(7%)

For k = 5,6,

1 o
arg(z — ki) = —gm = Vz — ki =\/|ri — ki| 9
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Then,

/5i—>4i f<2) dz * /5;:«——4i f(z> dZ
=2 /5i—>4i f<z> o
4 (6 4 2
:2/ (H \/m> (e“‘T“) (e@'%")) i dr
5 \k=1
:2¢é4<6vﬂfﬁﬂ>im

= 3.43541.

k=1

(2)Along 3i —» 2i

z2=7ri, 1:3—2=>dz=/1dr

For k = 17 27
arg(z — ki) = —gw — Vz— ki =/|ri — ki| )
For k = 3,4,5,6,
1 -
arg(z - k"&) — —57'(' == \/z N kf’l = \/|TZ o k”l| el(_z)
Then,
/ f(2) dz+/ f(z) dz
3i—2i 3ie--2i
IR
3i—2i
’ - . —3m 2 s 4
=2 [ (TR ) (<) () i
3 \k=1
2 /6
:2”/ <H\/m> i dr
3 \k=1
= —3.43541.
Thus,

dz = d p
/bl f(z)dz 2/5H4¢f(z) ZH/sH%f(Z) ;
=0.

Using Mathematica
(1)Along 5i — 4i

Z:’I’Z'7 re5 — 4 =— dz = idr
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For k =1,2,3,4,
arg(z — ki) = —gﬂ' = Vz—ki=(—1) - MATH (\/z - kz)
For k = 5.6, 1
arg(z — ki) = T = Ve - ki = MATH (\/z — k;z)

Then,

/ f(z) dz +/ f(z) dz

5i—sdi Bie--di
= 2/ f(z) dz
5i—sdi

=2-<—1>4/:<6

= 3.43541.

Vri — kz) 1 dr
1

k=

(2)Along 3i — 2i
z=ri, r:3— 2= dz=1dr

For k=1,2,

arg(z — ki) = —gﬂ' = 2z —ki=(—1) - MATH (\/z - k:z)
For k =3,4,5,6,

1
arg(z — ki) = 5T = Vi ki = MATH (\/z - kz)

Then,
/ 1) dz+/ f(2) dz
3i—2i 3ie--2i
= 2/ f(z) dz
3i—2i
2 6
:2.(_1)2/ <H \/ri—ki) i dr
3 \k=1
= —3.43541.
Thus,

1) dz:2/5i_>4if(z) dz+2/ £(2) dz

3i—21

=0.

4. To evaluate [, f(z)dz : We have done in 3.

f(z)dz = 2/ f(2) dz = 3.43541 .
b2 5i—4i
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Next, we discuss how to determine the region needed to change the sign of a given

function f.

Example 12. Let f(z) = \/z — z1/z — 22. Determine the region needed to change the
sign in sheet I of the cut plane for f.

Solution.

R R
............ 1 ZZlé
i
RZ : R5
z
-y
Figure 64

We separate the cut plane to six region, Rj,Rs, Rs, Ry, Rs, Rg (Figure 64). Let
I. = [-2F, —7]. We investigate the sign of each \/z — z; for all z € sheet L

2

If z € Ry,

arg(z — z1) € [, => vz — 21 = (1) - MATH (V2 — 21)

arg(z — z3) € I. = /2 — 2z = (—1) - MATH (\/z — 22) )
Then,

f(z) = (=1)* - MATH (f(2)) = MATH (f(2)) -

If z € Ry,

arg(z — z1) € I => /2 — z1 = (1) - MATH (V2 — 21)

arg(z — z2) ¢ I. => \/z — 25 = MATH (Vz — 22) .
Then,

f(z) = (=1) - MaTH (f(2))

If z € Rs,

arg(z — 1) ¢ . = /2 — 21 = MATH (V2 — 71)

arg(z — 22) ¢ I, => /2 — 2o = MATH (V2 — 22) .
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Then,
f(z) = MATH (f(2)) .
IfZ€R4UR5UR6,

arg(z — ) ¢ I, = z—zleATH( z—zl)
arg(z — 22) ¢ I => /2 — 2o = MATH (V2 — 22) .
Then,
F(2) = Mt (£(2)).

Thus, the region needed to change the sign is R,. We call such region the sign-region of

f.

Example 13. Let f(z) = /z —21\/2 — 200/2 — 23. Determine the region needed to
change the sign in sheet I of the cut plane for f.

Solution.

R, Z+:—
..................... L
R, I
.................... e
R3 gt
R4

Figure 65

From example 11, we know that it does not to change sign on the right-half side of
sheet I. So we only discuss the left-half side.
We separate the left-half side to four region, R, Rs, R3, Ry (Figure 65). Let I. =

Then,



If z € Ry,

arg(z —z1) € I, = Vz — 2z = - MATH (vz — 21)
arg(z —z) € I, = 2z — 2o = - MATH (v/z — 22)
arg(z — z3) € I, = /2 — z3 = MATH (\/z — zg) .
Then,
f(2) = (=1)% - MATH (f(2)) = MATH (f(2)).
If z € R3,
arg(z — z1) € I. = 2z — z; = (—1) - MATH (\/z — 21)
arg(z — z) € [, = Z_ZQZMATH( z—22)
arg(z — z3) € I, = Z—ZgzMATH( z—z3)
Then,
f(z) = (=1)MATH (f(z))
If 2 € Ry,
arg(z — z1) € d, = /2 — 21 = MATH (\/z — zl)
arg(z — z3) € I, = \/z — 2 = MATH (\/z — ZQ)
arg(z — z3) € [, = \/z — z3 = MATH (\/z — z3) )
Then,

f(2) = MaTH (f(2)).

Thus, the sign-region are R; and Rj.

We generalize the result of example 11 and example 12 in next two examples.

Example 14. (There are odd branch points)

Let
IN+1

fR)=V(E—2)(z—2) (2 — 2on11) = H V2= 2%,

where Re(zx),k = 1,2,--- 2N + 1, are all the same (Figure 62). Determine the region

needed to change the sign in sheet I of the cut plane for f.

Solution.
We separate the left-half side to the 2N + 1 region, Ry, Ry, -+, Roni1. Let I, =
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|
R2N+2 -I-:—
.............. Zanin
Ryy.
2o
................... :
R,y +:_
.............. Zan-11
[ ]
[ ]
[ ]
Zy
|
L.
R4 z, -
R 1
.................... ;j;'_
RZ 7z :
R

Figure 66

(l)zejo_l,j:1,2,~~ , N+ 1.
For k=1,2,---,25 — 2,

arg(z — zp,) € Iy => /2 — 2z, = (~1) - MATH (V2 — )
For k=2j—1,2j,--- 2N +1,
arg(z — zx) ¢ 1. = \/z — z;, = MATH (\/z — Zk)

Then,
F(2) = (—1)572 MATH (f(2)) = MATH (£(2))

(2) z€ Ryj, j=1,2,--- N+ 1.
For k=1,2,--- 25 — 1,

arg(z — z) € I, = /2 — 2y = (—1) - MATH (V= — )
For k=2j,2j+1,-- ,2N +2,
arg(z — zx) € 1. = /2 — 2z, = MATH (\/z — zk)

Then,
f(z) = (=1)%7" - MaTH (f(2)) = (—1) - MATH (f(2)).

Thus, the sign-region are Ry, Ry, -, Rono.

75



Example 15. (There are even branch points)

Let
2N+2

f2)=V(z—2)(z —2) (2 — zan12) = H VE—Z),

where Re(z;),j = 1,2,--- ,2N + 2, are all the same (Figure 67). Determine the region

needed to change the sign in sheet I of the cut plane for f.

Solution.
We separate the left-half side to the 2N + 2 region, Ry, Ry, -+, Ronio. Let I, =
[_37”7 _W]
R2N+3
ZoN+2
....................... -
Rynia +:—
ZoN+1yg
[ ]
[ )
[}
Zy
1
Oy
. 1
.................... i
R, 7 :

T Figure 67

(1)Z€R2j_1,j:1,2,--' , N + 2.
For k=1,2,--- 25 — 2,

arg(z — z;) € I, = /2 — 2y = (—1) - MATH (vz — )
For k =2j —1,2j,--- 2N + 1,
arg(z — zx) ¢ 1. = \/z — z;, = MATH (\/Z — zk)

Then,
F(2) = (—1)572 MATH (f(2)) = MATH (£(2))

(2)Z€R2j,j:1,2,"' ,N—|—1
For k=1,2,--- 25 — 1,

arg(z — z;) € I, = /2 — 2z = (—1) - MATH (v/z — )
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For k=2§,2j+1,--- ,2N +2,

arg(z — zx) € 1. = /2 — 2z, = MATH (\/z — zk)

Then,
f(z) = (=1)%~" - MaTH (f(2)) = (~1) - MATH (f(2))

Thus, the sign-region are Ry, Ry, -, Rono.

4.4 Generalization of Integrals Along Vertical Cuts
Case 1. The number of branch points is odd (2N + 1 branch points)

Let
2N+1

) =V(E—2)(z—2) (2= 2vn) = H Vz—z.

Aussume that Im(z;) > Im(zj41) for j = 1,2,--- ,2N. Let y; to denote the imaginary

part of z; for all j. That is, y; = Im(z;).

+1—
1

1= =~ -~

~ -
~ . > -

Figure 70

Figure 68 Figure 69
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(1) To evaluate [, f(2)dz (Figure 69)

Theoretical Evaluation

+
Along zop — 2ok41,

2=7Tl, T:Yok — Yopy1 —> dz =idr

For j =1,2,--- 2k,

arg(z — z;) = —17r = \/z—z; =\/|ri — z; e=7)
J 92 J J

For j =2k+1,2k+2,--- ,2N + 1,

3 am
arg(z — z;) = —57 = /2 —zj =\/|ri — 2z =)

Then,

/ f(2) dz:2/ f(z) dz
ak szi%zzk-u
e N@NAD -2k N2k [y+r [2NED
=9 <€z(73)) (61(7)) / H [lri — 2| | i dr
Y2k j=1
A _onl_ Y2k+1 2N+1
— 2. (D)L 2’“/ IT \/Iri ==l | i dr
Y2k j=1
N | A Y2k+1 2N+1
=2 (D) (2N+3)/ IT \/Iri— =l idr
Y2k j=1
. _ S — Y2k+1 2N+1
_ g ()N (@) <2N+3>/ I iri—=l) idr
Y2k j=1
. Y2k+1 2N+1
=2 (caphet 0 [T firi s ) dar
Y2k j=1

Note that |Re([, f(2)dz)| = |[Im([, f(2)dz)|. It is due to (=250,

Using Mathematica

Along zy, i> 22k+1,
Z2="Th, T Yo — Yopr1 —> dz = 1idr
For j=1,2,--- 2k,
1

arg(z — z;) = —5T => /%~ % = MATH <\/m'—zj)
For j — 2k +1,2k+2,--- 2N + 1,
3

arg(z — z;) = T = A4 = (—1) - MATH (N/rz' - zj)
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Then,

/ f(z) dz:2/ f(z) dz
ag Z2kL32k+1
Y2k+1 2N+1
= 2. (=1)@N+D=2k  yaTH (/ <H \/ri—zj> idr)
Y2k j=1

Y2k+1 2N+1
:2-(—1)-MATH</ <H\/ri—zj>idr>.
Y2k j=1

(2) To evaluate [, f(z)dz (Figure 70)
To use the similar method of deriving Equation (49) in case 1 of (2) in section 3.4, we

obtain

. f(z)dz=2 </z1—>z2 f(z) dz+ /z3_>z4 flz)dz+---+ /Z%_l_m% f(z) dz)

k

=2 Z/Z f(z) dz (65)

m=1 2m—1—""22m

Theoretical Evaluation

Along Zom—1""22m,
Z2=7l T Yomo1 — Yo =—> dz = idr

Forj=1,2,--- . 2m —1,

arg(z — z;) ———7r=>\/z—z] Vi — 2| D)

For j =2m,2m+1,--- 2N + 1,

_l
arg(z — z;) ———w:w/z—z] A/ — 2| e

Then,

e\ (2N+1)—(2m—1) , __\2m—1 2N+1
/ F(z) dz = <€z<%)> <€z(T)> / H |ri — 2]
22m—1—""22m Yam—1
SN+ @m-1)-Cm-1 [ (T [
_(Z( )) / <H ’M—Z]>
Yoam—1
4(N 1)—(2N+1 g
_ (ei(%))* (N—m+1)—(2N+ )/ H /]m — 2l
Y2m—1
N 1 2N+1) ey
_ (ez(—ﬂ')) —m+ ezg —(@2N+ / (H 1/|m—z]>
Yam—1

i Y2m 2N+1
_ <_1>me+1ez<ﬂ4+l H i — 2 )

y2m 1

79



Thus,

k

/bk f(z)dz=2)" /Zzw_wzm f(2) dz

v B e (2N
= 2. (=Nl =T E | | \/|ri—z;| | idr.
m=1"YY2m-1 j=1

Note that |Re([, f(2)dz)| = |[Im(/[, f(2)dz)|.

Using Mathematica

AlOHg 29m—1""22m,
Z2=7Tl, T Yom_1 — Yo —> dz = 1dr
Forj=1,2,--- . 2m —1,
1

arg(z — z;) = —5T = \/# = % = MATH (wri—zj)
For j =2m,2m+1,--- 2N + 1,
3

arg(z — z;) = == lo ki ay (=1) - MATH < ri— zj>

Then,

/ f(2) dz:2/ f(2) dz
b 22m—1""722m
Y2m 2N+1
=2 (=1)BNHI-Crm D yaTH (/ ( 11 m> idr)
Y2m-—1 j=1

yom  [2N+1
:2-MATH</ (H \/m’—zj>idr>.
Y2m—1 j=1

Case 2. The number of branch points is even (2N + 2 branch points)

Let
2N+2

J(2)= V(= 21)(z = 2) -+ (2 — zan42) = H VZ—z.

Aussume that Im(z;) > Im(zj41) for j =1,2,--- | 2N +1. Let y; to denote the imaginary
part of z; for all j. That is, y; = Im(z;).
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Zyna 1

- N -
Zyyin Zynun | Zonsa |
Figure 71 Figure 72 Figure 73

(1) To evaluate [, f(2)dz (Figure 72)

Theoretical Evaluation

Along zop41 - 29k+2;
Z2=7Tl, T:Yoks1 — Yokto = dz =idr
For j=1,2,--- ,2k+1,
arg(z — zj) = —%W = /2 —z;=/Iri — z =)

For j =2k +2,2k+3,--- ,2N + 2,

3 [ i(-27)
arg(z—zj):—§7r2> 2z —z; =/|ri —z;| "4
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Then,

/ f(2) dz:2/ f(z) dz
ag 22k+1i>22k+2
2N 42

L —3ay\ (2N+1)—(2k+1) N 2k [Y2k42
=2 <el(%)> <el(T)> / ( H A/ |Ti — Z]|> 1dr
j=1

Y2k+1

2N+2

e — _ _ Y2k+4-2
= 2. ()R | (H Vi zj|> i dr
j=1

Y2k+1

2N+2

_ _ _ Y2k+42
s 7 (i)
j=1

Y2k+1

Yy 2N+2
g (eiCm) N (ei(Z))_ZN/ o (H JIri _zj|> i dr
j=1

Y2k+1
2N+2

(H \/|m'—zj|> i dr.
j=1

Note that this value is a pure imaginary number.

el

=2. (e"(

—9. (_1>N*k+1€i(*%7r) /y2k+2

Y2k+1

Using Mathematica

+
Along zop41 — Zok+2,
2="Tly T VYokil — Yokro =—> dz = idr

For j=1,2,--- 2k +1,
1

arg(z — z;) = —oT = \/# ~ % = MATH <\/rz' - zj>

For j =2k +2,2k+3,--- ,2N + 2,
3
arg(z — z;) = —gT = VE Ty = (—1) - MATH («/m’ - zj)
Then,

/ f(2) dz:2/ f(z) dz
ag 22k+1i>22k+2
2N+2

Y2k+1
— 2 A (_1)(2N+1)—(2k+1) . MATH / H
Y2k

J=1

Yok+2 2N+2
= 2 - MATH / H‘/M—Zj idr| .
Y2k+1 j=1

m) idr)

(2) To evaluate [, f(z)dz (Figure 73)
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/bk f(z) dz = </z2_>z3 f(z) dz+ /24_%25 f(z)dz+---+ /Z%_w%+1 f(2) dz)

222 f(z) dz

22m—>22m+1

Theoretical Evaluation

Along z9,,—>2oma1,
Z2=Tl, T Yom — Yome1 —> dz = 1dr

For j=1,2,--- . 2m,

ar (Z—Z“):—lﬂ':} z—z;=1/|ri — 2 =1
8 j 5 j j

For j =2m+1,2m +2,--- 2N + 2,

5 i i(—3F)
al"g(Z—Zj):—§7T:> z—zj=/|ri—z|e" T4

Then,

e\ @NA2)-2m o N2m fvemir [2NH2
/ f(2) dz = <ez<%>> (ezw)) / ( II Iri—=l) iar
22m—r22m+1 Y2m j=1
\ i [Yamer 2N
)) 3[(2N+2)—2m]—2 / H /—]ri—zj\ : dr
Y2m j=1
L. L1 1 yomi1 [2N+2
= (i) D 2N/ (H ,/|m—zj|> i dr
j=1

ENE]

— (e

Y2m

; Neml | joxyy—an [Uemit (222
= (el(’”)) (el(z)) / H \/|mi—z;| | @ dr
Y2m j=1
e omi1 [2N+2
= (—1)N_m+1e’(_27r)/ H \ri—z| | i dr.
Y2m j=1

Thus,
k
/bk f(z)dz = 27; /%—mm+1 f(z) dz

i N k Yoam+1 2N+2
=2- (—1)N7m+161(*7“) Z/ ( H \/|ri — zj|> 1 dr.
Y2m j=1

m=1

Using Mathematica

Along 29, —>2om i1,
Z2=7Ti T Yo — Yoma1 —> dz = idr
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For 7 =1,2,--- 2m,
1

arg(z — z;) = —oT = \/# — % = MATH <\/ri — zj>
Forj=2m+1,2m+2,--- 2N + 2,
3
arg(z — z;) = T = A4 = (—1) - MATH (\/ri - zj)

Then,

/bk f(z) dz = 2/22m—>z2m+1 f(z) dz

yomi1 [2N+2
= 2. (=1)BN*+2=2m _yiaTh (/ ( H N zj> i dr)
Yam j=1
yomi1 [2N+2
:2-MATH</ (H \/m'—zj)idr).
Y2m j=1

Next, we investigate the sign-regions for other complicated examples.

Example 16. Suppose that

@) =75

J=1

and the cutted plane (sheet 1) is drawn below. To determine the sign-regions of f.

R, +E - R, R,
L, i o 74
R2 E Rg :
1 z 1
L, H P Ry R,
R, H R, ' i
H ' ' z
Ly 4 +1— ! P
R E
T PRy i
1 +i1 — 1
L, % ' R T =
RS R]] E ' :
L, ' Zs i
R Ry, R E
L bz,
Figure 74
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Solution.

First we draw a horizontal line from each end point of every cut to the direction of
minus real asix, Li, Lo, L3, Ly, L5, Lg. Then these horizontal lines and all cuts separate
3 ]

the complex plane to several regions, Ry,--- , Rig. Let I, = [, —7

z € Ry

— arg(z — zx) € I. for all k

= f(2) = (=1)" - MATH (f(2)) = (=1) - MaTH (f(2)) .

z € Ry
{ arg(z — z) € I, ifk=2,3,5,6,7,

arg(z — zx) ¢ 1. otherwise.

= [(2) = (=1)° - MATH (f(2)) = (—1) - MATH (f(2)).

z € Ris
{ arg(z —z) € I if k=57,

arg(z — z) ¢ 1. otherwise.

— f(2) = (=1)” - MATH (f(=)) = MATH (f(2)).

To discuss the other regions using the above method, you can find that the sign-regions
are the gray regions drawn in Figure 74.

We also give a simple method of finding the sign-regions. For z € Ry, e,g, z € Ry,
we imgine that there is a coordinate with orgin z. If there are odd branch points in the
forth quadrant, then f(z) = (—1) - MATH (f(2)). If there are even branch points in the
forth quadrant, then f(z) = MATH (f(2)). Finally the sign-regions is shown below.

:
1
L, : + s
+i- i
L : o2 :
2 N H :
: : '
H ! : o Z
L, 2 ! H i °
- i :
i = E
L4 b 23 +E_ _|_: _
; ;
L ® 7z, i
L 1
6 © Z,
Figure 75
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Example 17. Suppose that

f(2) = Ve = (1 +20)][ = (1 = 20)][e = (2 + )]z — (2 —9)].

Evaluate the integral [, f(z)dz.

1+2i
A\
1
1
1
- 2+i
1 O
H P
i :
1 1,
1 & 1
w v
1 1
! 1
H 1
b ' +i—
i :
! 1
H 19}
/ 1 2—i
1
1
1
1
O
1-2i

Figure 76

Solution.
We evaluate this integral along two different, but equivalent paths, respectively.
(1) Along the paths in Figure 77

1+2i

1

i

+:_ 2+i
1

T A
i 7
:
1 *-:' * %
i b, '::b3
H S
E b** +IE'_
1 L
e . 2. Y
%\ . z

1 2-i

N HE

H !

(]

O

1-2i

Figure 77

Since the path b] lies in a sign-region, we obtain

f(z)dz + f(z)dz=2 [ f(2)dz
b b

— 2. (1) MATH < /1 ) dz>
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Since b} and b3* are two paths in sheet Il and f(z)|;; = (—1) - f(2)|r,

/f M+/f m:g/f )dz

~ (1 QLLPHZZf@)dz

Furthermore, b% lies in a sign-region, so
» Y3 )

/b§f(2) dz+/b§* f(z)dz = (_1).2/2“L2if(2) i

If z € b3, then

-2 e (| 6 i)

= 2 - MATH (/ . f(z)dz)
24+1—2—1

arg(z — (2— 1)) € [, = z—(2—i):(—1)-MATH( z—(2—i)>
)

where I, = [—%

/f dz+/f dz_2/f

We obtain

/ _

(2) Along the

(z = (

arg(z (2—|—Z %[ :>\/Z— 1—|—Z —MATH( Z—(2+i))
(z = (
(z = (

1-2i) ¢ I, :>\/z—1—22—MATH<\/ 1—21>
142i) ¢ L= /2 — (L +2i) MATH(\/ 1+21>

* —7]. Hence,

—1) - MATH (/“LQl f(2) dz>

(Af m+/f )
2 (—1) - MATH </1—ii>1—2if<2) dz) + 2 - MATH (/2+ii>2—i f(z) dz>

+2-(—1) - MATH </ f(z)dz)
1—i52-
-2 -1
—1)/ f(1+ri)idr+2/ f@4+ri)idr+2-( /fx—@
-1 1
—0.13095 — 11.5969: .

paths in Figure 78
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2+i

D

| OmSmmmeem======

| O e s s s s s s s e e s e m ===

—_

Figure 78

/1+2z'i>1+z'f(z> dz = (—1) - MATH (/:f(l —l—rz')idr)

and
| f@e=tn ) e
1+2i¢=-1+i 1420144
2
= (=1) - MATH </ f(1+ m’)z’dr)
1
= (-1 d
( )/1+2ii>1+if(2) :
Thus,
/ f(z)dz+/  f(s)dz=0.
1425144 1+42ie--1+i
Similarly,

/ f(z)dz+/ . f(2)dz=0
14+it1—4 T—ie—-1+i

/ N f(z)dz+/  f(z)dz=0
1—i—51—2¢ 1—24¢—-1—4

So, we have

/ f(z)dz+/ f(2)dz=0
142i-51-2; 1-2i¢"-142i

and

[ e [ pea=o
24itio g 2—ic=-24i
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It remains to evaluate the integrals along the slant paths f1—2i—>2+i f(2) dz—{—f%ie__l_% f(2)dz.

/ f(z) dz+/ f(z)dz
1-2i—2+i 2pic--1-2
= d

2 /1—2i—>2+i f(Z) :

V10
3

V10
= 2/ f(l — 21+ 7“61tan713)61tan713 dr + 2 - (_1) /r f(l —2i+ Teztan*13)€ztan*13dr
0 V!

= —0.13095 — 11.5969: .

Thus,

/f(z) dz = 2/ f(z)dz = —0.13095 — 11.5969 .
b 1-2i—2+41

Example 18. Suppose that

N+1

=1l vE==svz-7.

=1

satisfying that Re(z;) < Re(zj+1) and Im(z;) = Im(z;+1) for all j and suppose that N +1
is odd. The cut plane is drawn in Figure 79. Evaluate fak f(z)dz and fbk f(z)dz.

________

=
=5

i i +H- - +i-

+

R ——

S
| rmmmmmmm

™

%N
N

=~
N

Figure 79

Solution.
1. Evaluate [, f(z)dz
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Z Z 2k Zy Zka Zy Zyn
TR SR Ti— -] [ \+i- THE
i : : : IS i :
i H H H H i H s
Z Z, Ziq Zy w a, Iy a
Figure 80
Let z; = x; + iy, for all j.
“Yk+1
/ f(2)dz = MATH / f(@pqr +ri)idr
+.—
Zk41—>Zk41 Yk+1
Yk+1
/ f(2)dz = (—1) - MATH / f(zpyq +ri)idr
Zk+1(;zk+1 “Yk+1
—Yr+1
= MATH / f(xpyq +ri)idr
Yk+1
= / f(z)dz
Zk+1i>2k+1
Thus,
/ f(z)dz:Z/ f(2)dz
ak Zk+1i>zk+1
“Yr+1
=2 MATH / f(xper +ri)idr | .
Yk+1
2. Evaluate [, f(z)dz
Z Z Zy ZNs
W W i i ¥ ¥
+Ha: i i i : i
: i : : i :
W/ [ Heodo i
.’ 2 1 1 i 3
Z 2 Zy Zya

Figure 81

Forj=1,2,--k,

/ F() d= + / f(2)dz =0
Zk41 i)Ek_H Zk+1('t‘zk+1
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So,

k

f(z)dz:22/ f(2)dz
bk .721 Ej—>zj+1
Let z; = xj + 1y, for all j and let
g Em =zl 2y
Zi =%l -

— — i -1 —
For 2 € Z; — zj41, let z=%; +re'™ 4 p:0 — |z;4; — Z;|. Then

) |zj4+1—%;] - .
/ f(Z) dz = (—1)1 - MATH / f(zj + Teztan d)eztan ddT’
ZjTrE 0

Therefore,

£

o [lEi—El L
f(Z)dZ = MATH [ 2 Z(—l) / f(zj + rettan d)eztan dd?” .
0

Example 19. Suppose that

f(2) =]z = (=1+9)][z = 0][z — 2][z = (1 + 39)][z = (1 +50)][z — (2 + 20)][z — (2 — 2i)].

The cut plane is drawn in Figure 82. FEvaluate fbk f(z)dz for k =1,2,3.

)

.

[
|

w

Grmm
[\

|
IS

Figure 82

Solution.
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(o )

o
|
N

Figure 83

1. Evaluate [, f(2)dz

dz = d dz = d
by flz)dz /—1+i—>2if(2) Z+/—1+ie--2if(2) : 2/—1+i—>2if(2) :

Along —1 414 —> 2i, let z = (=1 4+ 4+ re’@, 7:0— V2.
f(2)dz = 2/ f(2)dz
by ~1i—2i

\/5 Lo Lo
= 2. MATH / JU(=1+1)+ rez(z))ez(z) dr
0
= 0.0529343 — 18.48551 .

2. Evaluate be f(z)dz

dz = d d
b fz)dz 2/1+i—>2if(Z) o 2/0—>1+5¢f(2) :

Along 0 —> 1+ 5, let z = ref®™ '3 10 — /26.

/0_>1 52.f(z)dz: 2-(—1)-MATH (/0

3v26
5

2v26
5

f(rei tan—1 B)eitanfl 3 d?“)

2v26
5

\/% . —1 . 1
+ 2. (_1) . MATH / f(reztan 3)€2tan 3 dr
3

V26

5

+ 2 - MATH (/ freitan! 3)gitan™3 dr)

= —67.2252 + 88.1591: .
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Thus,

/ F(2)dz = 2/ £(2) dz+2/ () dz
bo —141—21 0—> 1454
= (0.0529343 — 18.48557) + (—67.2252 4 88.15914)

= —67.1723 + 69.67367 .

3. Evaluate fbg f(z)dz

b fle)de=2 /—1+z'—>2z‘ flz)dz+2 /O—>1+5i fle)dz+2 /1+3i—>2+2i flz)dz

Along 14 3i — 24 2i, let z = (14 3i) + /") r: 0 — V2.

V2
/ f(z)dz =2 - MATH / F((1+ 30) + rel)ei= D) gr
1+3i—2+42¢ 0
— 9.0209 + 17.2364i .

Thus,

b fle)de=2 /—1+i—>2i feNedE /0—>1+5z‘ o\ 2 / flz)az

143i—2+2i
= (0.0529343 — 18.4855¢) + (—67.2252 4 88.15914) + (9.0209 + 17.23644)

= —58.1514 + 86.91%..
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5 Integrals for Slant Cuts

5.1 Cut Structures for Slant Cuts

Let f(2) = /z and let z = re? where 6 = arg 2. Define two single-valued branches of f

as
fo) = Ve, —T<o<
and 0
f(z) = red, T<6<—

Define sheet I and sheet II as
7T T
sheetI:{ze(C]—Zgargz<Z},

and 0
sheet 11 = {2 € (CE <arg z < Iﬂ}

To Label a 4+ and label a — as in Figure 84.

sheet | sheet Il
:% 0= %—q
+,/5 +,/4 0
'V L. / 4

7\ e
Vs Vs
@ at
Figure 84

Then we can use the same method used in section 2.1 to build the Riemann surface for
f. (see Figure 6)

More generally, suppose that 0 < o < 7. we can define two single-valued branches of

f as
f(z) = \/Fe%ig, a—21 <0 <a,

and
f(z) = \/Fe%ia, a<f0<a+2r.

Define sheet I and sheet II as

sheet I = {z € Cla — 27 < arg z < a},
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and

sheet Il = {z € Cla < arg z < a+ 27}.

To Label a 4+ and label a — as in Figure 85.

sheet | sheet Il
0=0-2n 0 =a
+ A, + A
,/, ,/, 0=0+2n
’ ’
’ ’
¢ ’
g ¢’
Figure 85

5.2 The Problem in Using Mathematica
Let (I) to denote sheet I and let (/1) to denote sheet II. Then
€ (I) =~ < & T <Z
—— <ar = —— <ar —.
z L Saga<y g Sargz <
f maps the points on sheet I into the region {z € C| — 7” <1 sarg z < gt
sheet |
_~m
7]
0=

4
/

\\—|—

4

— v 7

Figure 86
And,
G(H):W< <97T:7r<1 <97r
— arg z — — —arg z —_—.
g =MEES T T =M

f maps the points on sheet II into the region {z € C|g < arg 2z < %r}.
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sheetll

g="
4,1 on
+ 4 og=-2"
4
/’ - .z
4
g
Z. ™ -7
S
Figure 87
Let z € I. = [—%, —m] C (I). For example, suppose that z = % - \/752 € (I). Then
arg z = =" and z = (=55,
5) 5)
argz:—ge]c:arg\/z:_g
1 3 _5x —bm
— f(2) =1/ =+ L—Z — (g(%))é — (=)
2 2
But in Mathematica,
1 3 7r 1 3 ™
3 + \/7_2 = ¢3) = 3 + gz = ¢'(5)
Note that ¢/(5) = (=1) - (76",
V3 (= Mathematica

theoretical
> i(_sn)
e
Figure 88

Thus we have the result
7
z € sheet I and —ZWgargzg—ﬂ:>\/_:(—1)~MATH(\/E)
Let 0 = arg z, and let
s T
A= Cl—=-<0<-—
3
Br={zeC|-T<o<-T}

BM:{zeCEgegg}.
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Figure 89

Theoretically,
f(sheet I) = AU Br.

In Mathematica,

f(sheet I) = AU By,.

5.3 Evaluating Integrals Using Mathematica

Example 20. Let f(z) = \/z and let v be the positively oriented (counterclockwise ori-
ented) circular path z = e?, —%’r <0 < . Bvaluate the integral f7 f(z) dz.

Figure 90

Solution.

(1) Integral along the circular path

zeEy = z=2¢", —£§9<%:>dz:iei9d9.
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Then,

/f( ) dz = MATH ( / f(e®)ie® df + f( 9yt d0>
.,
= MATH < /7 Vil e df + / Vit jet? dQ)

= (0.510245 + 1.23184¢ .

(2) Deformation of path
Theoretical Evaluation

Along V2 ‘[@ — 0(z € v¥)

z = rei(_%{), r:1—0=—dz= e =)y

7 . —7m
argz:—zwiﬁ:\/?e’(%)

0
/ f(2) dz:/ Ve ) g
r* 1

=0.255122 + 0.615927 .
To use the similar method of deriving Equation(18), we can know that
/f(z) dz= 2/ f(z)dz
v ga
=0.510245 + 1.231847 .

Using Mathematica
Along vz *[z — 0(z € v*)

p=rdCT) il —0=dz=ePdr

arg z = —Zw = 2z = (1) - MATH (V/2)

0
/ f(z) dz = (=1) - MATH (/ Frel ) =) dr)
v* 1

0
—1) - MATH (/ Vel ) ¢l ) dr) .
1

Lf(z) iz — ZL*f(z) 0

= 0.510245 + 1.231841 .

Then,
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Example 21. Suppose that

f(2) =z = (1+i)vz— (2+2i0).

Let v be the positively oriented circular path

eSS T g T
TETa TRt Ty =TS
FEvaluate the integral f7 f(z) dz.
9:77n
6
2+2i
T *I A
( y':_'o_
1+i Y
62;575
6
Figure 91

Solution.
Similar to the method of finding sign-regions for vertical cuts, the sign-region is shown in

Figure 91.
(1) Integral along the circular path

3 3 . 7 .
zefy:>z:§+§i+ew, —Iﬂ§0<%:>dz:iewd0.

_In
/f(z) dz = MATH (/ ' f(; + ;z + e?ie® d@)
g -0

5T

s 3 3 < -
+(=1) - MATH (/ ' f(§ + 5@' + e?)ie’ d&)
_ I
6
i3 3 o
+ MATH </4 f(— + —Z + 610)2.619 de)
sz 2 2
= 1.5708.

(2) Deformation of path
Theoretical Evaluation

Along 2 +2i —» 1+i(z € v*)

z = 1+i+rei(_%ﬂ), riV2 — 0= dz =y
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Then,

T

r—(14i)=|l+i+rdCT) — (144D

= Vz—(1+41i) = \/|1 i+ ref-T) — (1 _|_Z')|€i(—%”)

ks

2= (2420) = |1+ i+ 7T — (24 20)[l )

= Vz—(2+2i) = \/|1 + i 4 et — (2+2¢)|ei(—%”)

/Wf(z)dz:2/w*f(z)dz

0
:2/ \/\1+z'+rei<—%”> - (1+¢)\\/|1+z'+rei<—%> — (24 20)] €T gy
V2

= 1.5708.

Using Mathematica
Along 2+ 2 =5 1+i(z €~

z:1+i+rei("%), T \/§—> 0= dz = ei(*%)dr

arg (z—(1+i))——£7rz> S )= () vamn (VE— (119)

arg (z—(2+2i)):—?17r:> z—(2—|—2i):MATH< z—(2—1—22’)>

Lf(z)dz _ ZL*f(z)dz

0
=2-(—~1)-MATH (/ \/1 it et — (14 2')\/1 i+ re ) — (24 2i) ) dr)
V2

= 1.5708.

Example 22. Suppose that
f(2)=vz— (1 +i)Vz— (2+2)Vz— (34 3i)/2 — (4+4i)\/2 — (5 + 5i)
=[] Vz— (k+ ki).

Let ay,ay be two a— cycles and let by, by be two b— cycles drawing in Figure 92. Evaluate
the four integrals fak f(2)dz and fbk f(2)dz, k = 1,2 using the method of deformation of
path.
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Figure 92

Solution.

Figure 93

1. Evaluate [, f(z)dz
Theoretical Evaluation

Along 2 + 2i =5 1 +14,

z=1 +i+rei(’%r), V2 — 0= dz = e dr
For k =1,
arg(z — (1+0)) = — o7 = vz~ (059 = /[ i +re) - (149)] )
For k =2,3,4,5,
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Then,

/f(Z)dz:2/ £(2) dz
@ 242i5 144
: : L —Tr N4 o
= 2/ <H \/|1 i+ re=T) — (k+ kz’)|) (=) (e“(%)> G g
V2 \i21

= —8.8736 + 3.675571 .

Using Mathematica
Along 2 + 2i =5 1 +14,

z:1+i+rei(*%), rovV2 — 0= dz = ) dre

For k=1,

arg(z — (1 +14)) = —;—iﬂ = z—(1+4+1i)=(—1) MATH <\/1+i—|—rei(_7f) — (1+z’)) .

For k = 2,3,4,5,

arg(z — (k+ ki) = —ZW == /2 —(k + ki) = MATH (\/1 +i4reCT) — (k+ kz)) .

Then,
dz =2 d
/a1 fz) dz /2+2ii>1+z‘ @)=

0 5
=2-(—1) - MATH / \/1 FitreCT) — (k4 ki) | €T dr
V2 \is1

= —8.8736 + 3.675571 .

2. Evaluate [ f(z)d»
Theoretical Evaluation

Along 4 + 4i — 3 + 34,

z=3+3 +7“ei(_%r), riV2 — 0= dz =Ty

For k =1,2,3,

arg(z — (k+ ki) = _Z_ZW — 2z — (k+ ki) = \/|3 + 304 rel ) — (k + ki) o (=)

For k = 4,5,

arg(z — (k+ ki) = —%7? —= 2z — (k+ ki) = \/|3 + 304 rel ) — (k + ki) (= 35)
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Then,

/ f(z)dZZZ/ f(z) dz
a2 444i-15343i
2/0 ﬁ VI3 i el — (1 4 i) <ei(87ﬂ))3 (6“5’7))2 (1) ¢
= 1+ re — . :
V2 \kZ1

= 5.69991 — 2.36098¢ .

Using Mathematica
Along 4 + 44 3+ 31,

z=3+ 3% +Tei(_%ﬂ), rovV2 — 0= dz = ei(—%’r)dr

For k = 1,2,3,

arg(z—(k+ki)) = —;17'( = /2 — (k+ ki) = (—1)-MATH (\/3 +3i 4 relT) — (k4 kz))

For k = 4,5,

arg(z — (k + ki)) = —%T = /2 — (k+ ki) = MATH <\/3 +3i 4 rel =) — (k + k‘z))

Then,

/ fz)dz =2 /4+4‘ +y343i feEdz

0 5
=2.(—1)2- MATH / \/\3 + 30+ re ) — (k4 ki)| | €CF) dr
V2 \k=1

= 5.69991 — 2.36098¢ .

Figure 94
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3. Evaluate [, f(2)dz
Theoretical Evaluation

(1)Along 5+ 5i — 4 4 4i

Z=4+4i+7“ei(7%ﬂ), V2 0= dz = Tar
For k=1,2,3,4,

: 7 V/ - i) NpEE
arg(z—(k+kz)):—zlﬂ:> z—(k+ki)=\/|4+4i+re'"7) — (k+ ki)' s
For k =5,

3 _— e
arg(z — (5+50) = =7 = V72— (5+5i) = \/|4 + 4+ rel ) — (54 5i)| £ F)

Then,

/ feyds+ [ f(2) dz
5+5i—4+41 54+5i¢--4+417
=2 / f(z) dz

5+5i—4+41

0 5 =T 4 T . s
= 2/ (H \/’4 + 4is re =T~ (k ki)|> (el(T?)> ) ) gy
k=1

NG)
= —3.67557 — 8.8736¢ .

(2)Along 3 + 3i — 2+ 2i
2=2+2+ Tei(_%ﬂ), riV2 — 0= dz = Dy

For k =1,2,

arg(z — (k+ ki) = —ZZW =z — (k+ ki) = \/|2 + 20+ i) — (k + ki) )

For k = 3,4, 5,
. 1 . . (T . i(_iﬂ)
arg(z — (k4 ki)) = —gT = V2= (k+ki)=\/|2+2i+re'CT) — (k+ ki)| "8

Then,

/ f(z) dz +/ f(z) dz

343i—2+42i 343ie--2+2i
= 2/ f(z) dz
343i—2+42i

= —1.31458 — 3.17369: .
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Thus,

by fle)dz=2 /5+5i—>4+4i flz) dz + 2/ f(z) dz

34+3i—2+2i
= —4.99015 — 12.0473: .

Using Mathematica
(1)Along 5+ 5i — 4 4 4i

z=4+4% —i—?‘ei(_%ﬂ), V2 0= dz = & Tar
For k£ =1,2,3,4,

arg(z—(k+ki)) = —;w = /2 — (k+ ki) = (—1)-MATH (\/4 + 4i 4 e — (k4 ki))

For k =5,

1 S Tn
arg(z — (5 + 57)) = T = V- (54 5i) = MATH (\/4 + 4i 4 el T — (5 + 51))

Then,

/ f(z) dz —i—/ f(z) d=
5+5i—rd-+di 5+ Bieo-d-tdi
= 2/ f(z) dz
B 5i—dt4i
0. (/.5 ;
:2-(—1)4/ H\/4+4z‘+rei<—%”> — (k+ ki) | &) dr
V2 \k<1
= —3.67557 — 8.8736¢ .

(2)Along 3 + 3i — 2+ 24
2 =242 +reCT) riV2 5 0= dz =T dr
For k=1,2,

arg(z—(k+ki)) = —;lw = /2 — (k+ ki) = (—1)-MATH (\/2 +2i 4 el T — (k+ k:z))

For k = 3,4,5,

arg(z — (k+ ki) = —%T = /2 — (k + ki) = MATH (\/2 +2i 4+ ref 1) — (k+ kz))
Then,

/ f(z) dz —i—/ f(z) dz
343i—242i 343ic--242i
= 2/ f(z) dz
343i—2+42i
0 5 .
=2 (—1)2/ H \/4 i 41T — (k4 ki) | €05 dr
V2 \iZo

= —1.31458 — 3.17369: .
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Thus,

[ f(z)d =2 /5 St / f(2) d

34+31—2421

= —4.99015 — 12.0473: .

4. Evaluate be f(z)dz : We have done in 3.

f(z)dz = 2/ f(2) dz = —3.67557 — 8.87361 .
bo 5+5i—>4+4i

Example 23. Let

2N+1

fR)=V(E—2)(z—2) (2 — 2on11) = H VZ—%

and
IN42

9(2)2\/(Z—Zl)(z—z2)"'(2—22N+1): H VET

i(a—2m)

where z; is of the form z; = rje . That is, these z; are lies on a slant cut of angle

a. The cuts of f and g are drwan in Figure 95 and Figure 96, respectively.

Figure 95 Figure 96

Let I. = [ — 27, —7]. To Apply the similar method using in example 13 and example
14 for vertical cuts, we are able to easily determine the sign-regions for f and g. The
sign-regions for f and for g are all Ry, Ry,--- , Ronio which are shown in Figure 95 and

Figure 96, respectively.
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5.4 Generalization of Integrals Along Slant Cuts

Case 1. The number of branch points is odd (2N + 1 branch points)

Let
2N+1

fR)=V(E—2)(z—2) (2 — zan11) = H VZE— %

Aussume that Re(z;) = Im(z;) for j =1,2,--- 2N + 1.

Figure 97

(1) To evaluate [, f(2)dz

Figure 98
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Theoretical Evaluation

+
Along zop — 2op11, let d = |22k — Z2k+1|-
s =TT L —w
z=2(r) = 2op1 + TGZ(T), rod— 0= dz = T dr

For j =1,2,--- 2k,

3 -
arg(z — zj) = 7 — /2 — z; =/ |2(r) — 2 (%)

For j =2k +1,2k+2, - ,2N + 1,

arg(z — z;) *——7‘(':>\/Z—ZJ \02(r) = 2] € -

2/ ) dz
Z2k—>22k+1
2( ) (2N+1)—2k <ei( ) / <2ﬁ1 - Z]) s 4

Then,

\
| |

Using Mathematica

+
Along zop — 2911, let d = |2zop — 2opa1|-
(=71 7
z=2(r) = zopr1 + 7’6@(7), rod —0= dz = T dr

For j=1,2,--- 2k,

3

arg(z — z;) = —3T = V%~ % = MATH ( 2(r) — zj)

For j =2k +1,2k+2,--+ ,2N + 1,

arg(z — z;) = —;lw . /i=% = (=) MATH ( () — zj>

Then,
/ f(2) dz:2/ . f(z) dz
k 2k 2k+1 . N
=2. (—1)(2N+1)_2k - MATH (/ < H z(r) — zj> ei(_Th) d?“)
d 5
2N+1
:2-(—1)-MATH</ (H —z]) =) )

(2) To evaluate [, f(z)dz
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Figure 99

To use the similar method of deriving Equation (49) in case 1 of (2) in section 3.4, we

obtain

dz = d dz + - - d
by f(Z) : <\/z1—>ZQ f(Z) o /z‘3—>24 f(Z) o * /Z2k1—>22k f<z) z)

2y ) 6)

Z2m—1 —>22m

Theoretical Evaluation

Along zo;,—1 — zom, let d = |zom 1 — Zom|-
Z = Zom + €i(_Th), r:d—0=dz= ) dr
Forj=1,2,--- . 2m —1,

3 / (s
al"g(z — Z]) = —171' — z—z;= |Z(’I") — Zj 61(_%)

For j =2m,2m+1,--- 2N + 1,

7 / (T
al"g(z — Z]) = —Zﬂ' - A zZ; = ‘Z(T) — Zj 61(_%)
Then,

/Z - £z )dz—< i 37r)>(2N+1)(2ml) <ei( 1 >2m 1/ <2ﬁ1 _2]) e

Thus,

f dz—ZZ/ ) dz

22m— 14)Z2m

k 0 /2N+1
o _an\ 2N+ —(2m—1) , .o\ 2m—1 o
=2 (¢37) (=) Y / <]1 |z<r>—zj|) e dr.
m=1"4d 7=1



Using Mathematica

Along zo;,—1 — zom, let d = |zom—1 — Zom|.

s =TT

z =T, r:deO:>dz:ei(7T7ﬂ)dr
For j=1,2,--- . 2m —1,
3
arg(z — zj) = —3T = /%~ % = MATH ( 2(r) — zj)

For j =2m,2m+1,--- 2N + 1,

arg(z — 2;) = —;lw s /7= % = (=1) - MATH ( (r) — zj>

Then,

/bk F(2) dz =2 / L

0 /2N+1 .
= 2. (=1)@NHD=Cm=D) a7y </ ( H \/2(r) — zj> =) dr)
d \ G2
0 /2N+1 i
= 2. MATH (/ (H \/2(r) = zj) e (=i") d?“) :
RN\

Case 2. The number of branch points is even (2N + 2 branch points)

Let
2N+2

F(2) =V(z— 21) (2= 22) (2 = zon12) = H VZE— %

Aussume that Re(z;) = Im(z;) for j =1,2,--- 2N + 2.

.
Zyn+

+o

z

v e
o

Figure 100
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(1) To evaluate fak f(z)d=

Figure 101

Theoretical Evaluation

+
Along zop11 — Zak+2, let d = [2op1 — Zorpal.
() — = _ (=)
z2=2(r)=zopgpo+reta ) rid— 0= dz=¢€"%dr

Forj=1,2,--- 2k+1,

arg(z — z;) :——ﬂ:> [z — 2 = \[|2(r) — 2] ¢ j(—31)

For j =2k + 2,2k +3,--- ,2N + 2,

arg(z—zj *_—77:>\/Z—ZJ @/ _de %)

Then,

/ f(2) dZ:2/ f(2) dz
ag 22k+41 i’z2k+2
o an\ QN42)—(2k+1) /| 2%+1 2N+2
— 2 <€l(?)) (el = ) / H / . Z‘y

Using Mathematica

+
Along zop41 — Zogro, let d = |zok — 2zop 1.
= = i(=17) . _i(Em
z2=2(r)=zopro+ret v rid— 0= dz=¢€"%dr
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Forj=1,2--- 2k+1,
3
arg(z — z;) = —3T = V%~ % = MATH 2(r) — z;

For j =2k +2,2k+3, -+ ,2N + 2,

arg(z — z;) = —;lw s /i=% = (<1) - MATH ( () — zj>

Then,

/ f(2) dz:Q/ f(z) dz
ag 22k+1i)32k+2
0 /2N+2 .
= 2. (=1)BNHFD=Ck+D ATy (/ ( H 2(r) — zj> el dr)
d

— 2. MATH </do (2]ﬁ2\/z(r) — zj> i) dr)

(2) To evaluate [, f(z)dz

Figure 102

To use the similar method of deriving Equation (49) in case 1 of (2) in section 3.4, we

obtain

bi f(z) - </Z2—>ZS f(Z) * " /24—>z5 f(z> * A /zzk—>22k+1 f(Z) dz)
k
—2}" / £(2) d (67)
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Theoretical Evaluation

Along zo,, — Zomy1, let d = |zom — 2oma1|-
2 = Zom41 + Tei(_Th), rod—s 0= dz =G dr
For 7 =1,2,--- 2m,

arg(z — z;) ———7rz>\/z—z] \/ |z —zje—?”

For j=2m+1,2m+2,--- ;2N + 2,

7 (o
arg(z — 2) = — 71 => /2 = 2 = [ |2(r) = ] /)

Then,

A\ CN42)—2m . 22 n
/ f()dz—< (3)> (e“%)) / H\/ r) =z | ) dr.
22m—>22m+1
Thus,

k

. f(2) dz = Qle /22m_>22m+1 f(z)dz

—2- (e ())”N“) i (g(%))

Using Mathematica

S ()

=1

Along 2y, — Zom41, let d = |20m — Zomy1].

77r)

z = relT), r:yd—>O:>dz:e"(777ﬂ)dr

For j =1,2,--- 2m,

3
arg(z — z;) = —3T = /%~ % = MATH 2(r) — z;

Forj=2m+1,2m+2,--- ,2N + 2,

7

arg(z — z;) = i = /2 —zj = (—1) - MATH ( z(r) — zj>

Then,

/b k F(z) dz =2 / o f(2) dz

= 2. (=1)@NFD=2m \ary (/do <2ﬁ2 \/7—%> (=) dr)
s (T ) )
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Next, we give two more complicated examples.

Example 24. Let z1 = —1, 29 =14, 23 =0, 24 = 2+ 21, 25 = 241, 26 = (2—1-\/5)—1—22', Zr =
3—id, 28 =4+ (V3 —1)i. Suppose that f(z) = H?Zl VZ — %;. Ewvaluate the integrals
|, f(z)dz and [, f(2)dz, k =1,2,3 drawn in Figure 103.

Figure 103

Solution.

Figure 104
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1. Evaluate [, f(z) dz

/ f(z) dz = (/ f(2) dz—l—/ f(2) dz)
a1 (V3-1)+(v3-1)i-50 (vV3=1)+(v3-1)i<—0
—i—(/ f(2) dz—l—/ f(2) dz)
1+i—(V3-1)+(V3-1)i 14ic—(V3-1)+(v3-1)i
+ (/ f(2) dz—i—/ f(2) dz)
24+2i—5 144 2426 +i
= 2 - MATH (/ f(2) dz)
(V3—1)+(v/3—1)i—50
+2-(—1)-MATH (/ f(z) dz)
1+i—55 (VB=1)+(V3—1)i

+ 2 - MATH (/ f(z) dz)
242i—514i
0
— 2. MATH (/ F(e' T ) dr)

V3(V/3-1)

ﬂ(\/g_l) Lo =TT s =TT
+2-(—1)-MATH / f(e ) ) dr
V2

\/5 s =TT - =17
+2 - MATH / F(eX ) 150 dr
2v2

= 54.6154 + 25.4057% .

2. Evaluate [ f(z) dz

/ f(z) dz:/ f(z) dz—i—/ f(z) dz
as (2-4V/3)+2i—>2+i (2+V/3)+2ic—2+i

/ £(2) dz)
(2+V/3)+2i—>2+i
0
= 2 - MATH (/ F24i+reTe) s dr)
2

= 19.3388 — 40.8839¢ .

_2-(—1)-MATH(

3. Evaluate [, f(z)dz

dz = d d
/ag fz) dz /3ii>4+(\/§1)if<2) z+/3i<;4+(\/§1)if<2) :

=2-(—1) - MATH (/ f(2) dz)
3—i—344(v/3—1)i

—5m

0
=2-(—1) - MATH (/ fB—i+ rei(_Tfm)) e(=") dr)
2

= 35.7104 — 61.8018¢ .
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Figure 105

4. Evaluate [, f(2) dz

. f(z)dz = </0"9_i f(2) dz—{—/m__if(z) dz) + (—1)/a1 f(z) dz
:2/0<__if(z) dz—l—(—l)/al () d

— 2. (1) Math (/m__if(z) dz> +(=1) / (2) dz

0

=2.(=1) - MATH ( f(m')z'dr> + (—1)(54.6154 + 25.4057:)

-1

= —43.5559 — 11.1194: .

+.
+ .
2+ 2 (2+‘/§)+2"_,
. .o -
R :'&J . ;:¢: -
PR ' P Ar
. " 1 AR e
v %o
LR 4 1 LR &4
o & . 'l' .
. " o -
.. — - "t U" s
i D AT e LT o5 4+ (oD
. ’ & >
R4 ’
v 9 'I
L, 4
0 j* K
1
—1 ‘s 1 T I'
S . ’
. ’
- 1 4
e ’
.
¥ v
—1
3-i

Figure 106
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5. Evaluate [, f(2) dz

. f(z)dz= </O_Z f(z) dz + /m__if(z) dz) + (/%%_iof(z) dz + /m“_o f(2) dz)
T ( /2 Cr /2 e dz) (=) / RCEE
_ 2. (1) MATH (/m__i £(2) dz> 4042 (—1)- MATH (/M_w £(2) dz)
+(—1)/a2f(z) i

0 1
=2-(—1) - MATH </ f(m’)z’dr) +2-(—1) - MATH (/ f(2 +m’)z’dr>
—1 2
+ (—1)(19.3388 — 40.8839)
= 17.9344 — 31.2184s.

6. Evaluate [, f(2) dz

f(z) dz
b3

— [ sy e+ ( / ey f(z) dz)
ba 2+4i—4-+(1/3—1)i 24i¢--4+(1/3-1)i

11-4v/3

= (17.9344 — 31.2184i) + 2 - MATH (/ 240+ et #5 ) dr)
0

= 36.6632 + 8.921941 .

Example 25. Let 2 = —1, 2y =i, 23 = 0, 24 = 2424, 25 = 2+1, 2 = (24+V3)+2i, 2 =
3—4, 28 =4+ (V3 —1)i. Suppose that f(z) = H§:1 VZ — zj. Ewvaluate the integrals
fak f(2)dz and fbk f(2)dz, k=1,2,3 drawn in Figure 107.

Figure 107
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Solution.

T

9‘..............\@.

~.

Figure 108

1. Evaluate fal f(z) dz

/al f(z)dz= /1+z'i>o F(z)dz.+ /pm;o £(z) dz
= 2. MATH (/1+ii>o f(2) dz>

0
— 2 . MATH (/ f(Tei(_Th)) =) d?“)
V2
= —0.876621 — 5.4111: .

2. Evaluate [ f(2) d»

/a2f(z) dz:/1i>2f<z) dz+/1;2f(z) ds
= 2 - MATH ([sz(z) dz)
— 2. MATH (/jf(g;) dx)

= 3.70585 + 0.993793: .

3. Evaluate [, f(z)dz

/a () ds = /3 L /3 RCE

= 2 - MATH (/ f(z) dz)
34i—ts3—i

0
= 2. MATH (/ F(3 — i+ reil=)) iS5 dr)
NG

= 23.1466 + 24.56321 .
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Figure 109

4. Evaluate [, f(2) dz

. f(z)dz= /i—>1+if(z> dz +/ f(2) dz

je--1+41

= 2 MATH </01f(:c—|—i)dx)

= 3.29859 + 1.338877 .

5. Evaluate [, f(2) dz

. f(z)dz= /a1 f(2) dz+ . f(z) dz + </1+i_>1 f(z) dz + /1+z'e--1 f(2) dz)
:/ f(z)dz+ | f(2) dz+2/ ‘ f(z) dz
ar by 14+i—1

0
= (—0.876621 — 5.41114) + (3.29859 + 1.33887i) + 2 - (—1) - MATH (/ F(L+ri)i dr)
1

= 0.63586 — 1.78728: .

6. Evaluate [, f(2) dz

1+—

= (=1)-(=1) - MATH (/21 f(x) cl:z:)
= (—1) - MATH (/12 f(z) dIB)

~ [ sea

/1+ Sz [ pedz=o (68)

f(z) dz = (—1)/ f(z) dz

Te--2

So,
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Thus,
z)dz = z) dz z) dz ) dz z) dz
bs fz) by fz) dzt (/1%2 fz) dzt 16772 ) (/—)3+2 +/2<-_3+if( ) )
f(z)dz+0+2~(—1)~MATH( )
o —)3+z

— (0.63586 — 1.78728i) + 2 - - MATH (/ (24 re@) ellE )dr)

= —23.3469 + 13.0985¢ .

Example 26. Let 2y = —1 4+ 21,20 = =2+ 4,23 = -2 —1,24 = —1 — 20,25 =1 — 20,25 =
2—id,27 =2+1i,25 = 1+ 2i. Suppose that f(z) = H§:1 V% — zj. Bvaluate the integrals
f f(2)dz and fb 2)dz, k =1,2,3 drawn in Figure 110.

Figure 110

Solution.
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=
«
‘\
‘5

-1-2i

Figure 111

1. Evaluate [, f(2) dz

/a1 f(z)dz = /—2—1i>—1—2z' flz)dz+ /—2—1'(;—1_21' f(2) dz

= 2 MATH </_2_’ . _1_2‘f(z) dz)

0
— 2. MATH </ f(=1—=2i+ Tei(_TM)) ei1") dT’)
V2
= —41.8808 4 41.8808: .

2. Evaluate [ f(2) d»

/a ) dz = /2 L, S /2 NCL
—(<1)-2- maTH ( /2 e dz)

0
=(—1)-2-MATH </ f(l—20+ rei(#)) i) dr)
V2

= —41.8808 — 41.8808: .
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3. Evaluate [, f(2) dz

dz = d d
/ag f(z) dz /1+2ii>2+i fz) dz+ /1+2i<;2+i /(=) d=
= (—1)-2-MATH (/ f(2) dz)
14+2i5944

0
= (—1)-2- MATH (/ F(1+ 20+ rel5M) 15 dr>
V2

=49.0544 — 125.2¢ .

“hw2is 4 20
r=a )
P ‘s‘
Poe N
’ S
P s
—241 @ “
+ & © 2+i +
A
. —
]
1
]
[
—-2—i ! o
V. T
\‘“ . * '&J 2_l
R .’
LIRS ,'O *
‘Q > ¢ @ ’
s‘ ~< 'Oo
EE—————— . .
© _;Gf,
—1-2i 1—-2i

Figure 112

4. Evaluate [, f(2) dz

dz = d d
b1f<Z) : /—2+z’—>—2—if<z> Z+\/—2+ie———2—z‘f(2) :

= 2 - MATH (/1 f(—=24+ri) z’dr>

= —98.10877 .
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5. Evaluate [, f(»

dz

( —24+i——2—1
( 2 it —1-2i
( —1-2i—1-2¢
( 2—i- -)1 2z

f(z)dz+0+
b1

+

—98.1087i + (—1)

f(2) d=+ /_ L dz)
£(2) dz + /_ e dz)
f(2) d= + / e dz)
o) dz + /2 ) dz)
2 / (1) /

-2 - MATH (/_1f(—2 + 1) idr)

2—

5124

0
+(—=1)-2-(—1) - MATH (/ f(1—2i+ rei(%)) (=i dr)
V2

= 139.99 — 56.2279; .

—1+2‘l. ~"-1.+2i
r= ]
04 .~ Q‘s
,' RS
VY “s‘
T — 'O . Q‘s
—2+i e Se s
+ Vﬁ\ J.b 2+1
1 1
' [
[ 1
4 ' ' | '.
[ 1
2V vl
] ok
L S 0'0
S o A
AR * 'O
‘;‘s o"
s 4
So---p--c by
—>
_1-2i 1-2i

Figure 113
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6. Evaluate [, f(2) dz

f(2) dz+0+2/ f(z) dz

—1-2i—1-2¢ 2—1—2+1

(=2 /1+2ii>2+i fz) dz

— —98.1087i 4 (—1) - 2 - MATH </_1 F(=2+7i) idr)
1

f(z)dz = f(z)dz+0+2/
by by

+ 2 - MATH (/1 f(2+ i) z’dr)
-1

\/i - =57 . =5
+(=1)-2-(=1) - MATH (/ F(14 20 + refTa)) ) dr)
0

= —49.0544 + 223.309: .
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6 An Application on Differential Equations
The umdamped pendulum equation can be written as
u" + cosu = 0. (69)

Weknowthatcosu-l——,u +3 u + 5 u +- —I—®u2”+---,—oo<u<oo. We use

the first three terms to be an estlmatlon of cosu.

Ly 14
cosu~1— Eu + Zu
Let . .
R !
flu) =1 Tk + Tk
Then, equation (69) becomes to
u" + f(u) =0
In sectionl.1, we have derived that
1 N2
§(u) + F(u) = E. (70)

This equation is the principle of conservation law T"+ V = E, where T" = %(u’ )2 is the
kinetic energy, V = F(u) is the potential energy, and F is the total energy. Equation (70)
implies that

/ JRIE i P /dt'

Here, the solution u is in the Riemann surface of \/2[E — F(u)].

Example 27. Given that E =5 and

1
d———
/f s=u u+5

Let
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up = —3.86 — 1.637,

where

Uy = —3.86 + 1.63¢ ,

= 1.59 — 2.241,
uy = 1.59 — 2.244 ,

us

Figure 114

Figure 115
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1. Evaluate [ h(u) du

/a1 h(u) du = (/u4i>1.59 h(u) du + /u4<—1.59 h(u) du) + (/1.59i>u3 h(u) du + /1.59<_u3 h(u) du)

_ 2/ h(u) du + 2/ h(u) du
wg—31.59 1.59Fug

0 —2.24
= 2 - MATH (/ h(1.59 + m’)idr) +2-(—1) - MATH (/ h(1.59 + m’)idr)
2 0

.24

= —0.587776 .

2. Evaluate [ h(u) du

/a 2 h(w) du
- ( /u QL_SBGh(u) du + / o h(w) du> + ( /_ e h(u) du + /_ s h(u) du)

:2/u ) h(u)du+2/ h(u) du

2 —+—3.86 —3.86—u;
0 —1.63
=2-(—1) - MATH (/ h(—3.86 + m’)idr) +2 - MATH (/ h(—3.86 + m’)z’dr)
1.63 0
= 0.35043 .
+i—
u, i
n :
u, EI E
[ RS E E
\ i :
R VS i 3
4 N $ s
u R 1!
| DV
1/[3
Figure 116

3. Evaluate [, h(u) du

Along us — ug, let d = |uy — us).

2.24

u = 4.54 + relmtan! 1) 0 —d
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/bl h(z) dz = h(u) du+ /%éu‘1 h(u) du

U5 —ruU4g

2/ h(u) du
U5 —r U4

d
=2-(—1)- MATH (/ h(4.54 + rel T ) ) @ilTten T 5 gs) dr)
0

= —0.293888 — 0.309729: .

4. Evaluate [, h(u) du

/b () = /b () du+ < /  hwdus / )
4 ( / hw) du+ u)
:/blh(u)du+0+(/u3_>u2 du+/w . )

:/b h(u) du—|—2/u‘_>u h(u) du
:/b h(u) du+2/u_>z h(u) du+2/ h(w) du

20— U2
Along ug — 2o, let d = |ug — zo].

—1.63)

. 7 1.63
— 1.59 — 2,244 4 @ ERETSG) gy 0
U 59 1+ re r:0 163+ 224

/ h(u) du
u3—r20
#63.2451 . _1 1.63 1.63) —1 1.63—(—1.63)
=2.(=1) - MATH / B(1.59 — 2.24i + re Tt TR Tt IS gy
0

= —0.106926 — 0.209149: .

/ h(u) du
Z0—rU2
d
— 2. MATH ( B(1.59 — 2.24i + re T TRt it IS dr)
Tost 2zl
= —0.0424914 + 0.0339204¢ .
Therefore,

/bzh(u) du:/blh(u) du+2/w_>z h(u) du+2/z_m2h(u) du

— (—0.293888 — 0.309729i) + (—0.106926 — 0.209149i) + (—0.0424914 + 0.03392041)
= —0.149418 — 0.3325451 .
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Example 28. Given E = 10 and given siz points, uy = 2i,us = i,u3 = 1,usy = 2, us
2—1t,ugs =4+1i. Then

[T —u)

-

<

[u = i][u = 2d][u = 1w = 2J[u — (2 = i)][u— (4 + )]
(—36 + 8
2

= ) + (66 — 660)u — (22 — 1178)u® — (27 + 81i)u® + (27 + 25¢)u* — (9 + 3i)u® + u°
= 2[10 — F(u)].
Let
1
ilu) = 200 — F(u)]

1
VIw=u—=2i][u = 1w = 2w — 2 = )fu — 4+ 0]

Figure 118

129



1. Evaluate [ h(u) du

/al i(u) dUZ/lLQh(u) du+/1@2h(u) du
=2 /1 | ) du

= 2 - MATH </12 h(x) d:c)

= 1.80392 — 0.410359: .

2. Evaluate [ h(u) du

/ h(u) du = / h(u) du +/ h(u) du
as ati—t2- Aic—2—i

= / h(u) du
4tithog

0
=2-(—1)- MATH (/ h(2—i+ rei(_Th)) T dr
2v2

= —0.849439 + 04102315 .

V2 o
—2.(—1) - MATH / h(i 4 re' 7)) ) dr
0

= 0.314384 + 1.42251¢ .
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4. Evaluate [, h(u) du

/b2 h(u) du = /b1 h(u) du + (/1i>2 h(u) du + /16"2 h(u) du)
4 ( /2 ) dus /2 i du)
_ /b h(u) du+0+ ( /2 L dut /2 ) du>

_ /b () du+2 /2 ) du

V5
= (0.314384 + 1.42251i) + 2 - (—1)MATH (/ h(2 4+ rettan! %) pitan™! 3 dr)
0

= 0.133229 + 0.00918344¢ .

131



7 Conclusion

In order to solve equations of the form «” + f(u) = 0, we need to evaluate the integrals

of the form

or

where the uj s play the roles of branch points. We build the Riemann surfaces of genus

N for
2N+1

o) =\ [] (- %) az,

or
2N+2

9(z) = | [ z—2)d=

j=1

Then we evaluate integrals along a—cycles and b—cycles. We compute the values of those
integrals using the software “Mathematica”. If we evaluate integrals using Mathematica,
the signs of values computed by Mathematica is different from the signs of values computed
theoretically.

Suppose that sheet I and sheet 1T of cut plane for f(z) = \/ H?f;r Yz — 2;) dz are

Pr={z¢eCla—2r <arg z < a}, and

Pr={zeCla<arg z < a+2r}.

Let I. = [a — 27, —7] and let z € P;. In Mathematica,

arg(z — 2;) € I = \/z — z; = (—1) - MATH (/2 — 2))
arg(z = %) ¢ I = /2= 2 = wamh (/2 = %))

If we want to evaluate integrals in sheet II, we use the property f(z)|;; = f(2)|; to obtain
the correct values. When the cut plane is more complicated, we can use sign-regions to
help us to determine the signs of values computed by Mathematica.

The Riemann surfaces discussed in this thesis is two-sheeted. Of course, it is able to

discuss the algebraic structure of the corresponding cut plane for functions of the form

F(2) = YT 2 — ) d.
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