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ABSTRACT

In this thesis we are concerned with the optimal portfolio selection for an
investor who makes decision according to the Linear Cumulative Prospect Theory
(LCPT). LCPT is a special case of Cumulative Prospect Theory. We investigate the
case of a continuous-time economy model with one risk-free asset and one risky asset.
The maximum value of terminal wealth is a supremum relative to the probability
weighting function and the discounted Radon-Nikodym derivative. We derive some

numerical results and illustrate how these parameters affects the maximum value.
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CHAPTER 1

Introduction

The object of this thesis is to examine a very natural question: How can an investor
optimize the portfolio investment in a continuous-time economy model with one risk-free
asset and one risky asset under Linear Cumulative Prospect Theory (see, e.g., Schmidt
and Zank [18]). Linear Cumulative Prospect Theory is a special case of Cumulative
Prospect Theory(CPT). In this setting the utility function is linear. This question has

already been extensively studied under Expected Utility Theory, see, e.g., Merton [13].

Expected Utility Theory (EUT), developed by von Neumann and Morgenstern [22]
based on an axiomatic system, has ansunderlying assumption that decision makers are
rational and risk averse when they faee uncertainties. However, empirical research has
shown that EUT fails to provide a good description of individual behavior under risk
and uncertainty. Examples are the famous paradoxes of Allais [1] and Ellsberg [7]. This
evidence has motivated the development of alternative theories, which are compatible

with observed choice behavior. The following anomalies for daily life in EUT:

e People evaluate assets on gains and losses relative to a reference point, not on
final wealth positions;

e People are not uniformly risk averse: they are risk averse on gains and risk taking
on loses, and more sensitive to losses than to gains;

e People overweight small probabilities and underweight large probabilities.

1



2 1. INTRODUCTION

In 1970s, the Prospect Theory (PT) is proposed by Kahneman and Tversky [20]
for decision making under uncertainty as a psychologically realistic alternative to EUT.
Starting from empirical evidence, the theory describes people decide which outcomes they
see as basically identical and they set a reference point and consider lower outcomes as
losses and larger as gains. And people behave as if they would compute their payoff utility,
based on the potential outcomes and their respective probabilities. In contrast to EUT,
it measures losses and gains, but not absolute wealth. Though prospect theory explained

the major violations of EUT in decision making under risk, there exist a problems.

e Prospect Theory violated the first-order stochastic dominance.

Cumulative Prospect Theory (CPT) is introduced by Kahneman and Tversky in 1992
[21]. This theory is a further development and variance of PT. The difference from
the original version of PT is that weighting is‘applied to the cumulative probability
distribution function, as in rank-dependent expected utility theory, rather than to the
probabilities of individual outcomes. “In 2002, Daniel Kahneman was awarded the Nobel

Memorial Prize in Economics for his work in Prospect theory.

The central model of this paper is Linear Cumulative Prospect Theory (LCPT) which
is a special case of CPT. The main difference between CPT and LCPT is the utility
function in LCPT is linear. Linear utility has a long tradition in theoretical and empirical
research, in part due to its tractability. An axiomatic foundation of subjective expected
utility with linear utility was provided by de Finetti [8]. Preston and Baratta [15] who
used a linear utility model in order to estimate probability distortions. Edwards [6]
collected amount of data from a series of experiments which support our model. He
found evidence for sign-dependent probability distortions and also for linear utility. Many

other studies observed linear utility for losses, in particular for small stakes. Handa [9]
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axiomatized a model of subjective expected value, which was implicitly used by Preston
and Baratta and already discussed in Edwards. A model for decision under risk that

combines linear utility and distorted probabilities is the dual theory of Yaari [24].

Some research has already been done on optimal investment under CPT. Most of the
previous work takes place when no probability distortion exists or the form of the utility
function cannot be linear. The optimal portfolio choice problem for a loss-averse investor
is studied by Berkelaar, Kouweenberg and Post [2] in a complete market but where no
distortion is applied to the probabilities. This problem has been recently solved by Jin
and Zhou [11] in a continuous-time setting, within the complete market framework of

Black and Scholes. Their result is thus only valid for non-linear utility function.

The rest of this thesis is organized as follows: In Chapter 2 we examine the main
components of Linear Cumulative Prospect. Theory and compares LCPT with CPT; In
Chapter 3 we introduce the model and-the portfolio selection problem; In Chapter 4
we derive the main method to solve the portfolio selection problem, and then find the
maximum value and the optimal terminal wealth; In Chapter 5 a numerical example is

considered and we illustrate how these parameters affects the maximum value.






CHAPTER 2

The Comparison of LCPT and CPT

2.1. The form

Denote states space by €2 and subsets of €2 is denoted by A, B, .... The state space 2
is endowed with a o-algebra F of subsets of (2. Subsets of {2 which are contained in F are
called events. A partition {A;, As, ..., A, } of £ is a collection of disjoint events and the
union of which equals 2. The set of outcomes is R which indicates money. the element of
the outcome is denoted by x,vy, 2, .... People tend to think of possible outcomes usually
relative to a reference point (also called the status quo) rather than to the final status.
Outcomes above the reference point are called gains and outcomes below the reference
point are called losses. Without loss-of generality, we assume that reference point is given
by zero. Therefore, we refer to positive outcomes as gains and to negative outcomes as

losses.

Consider a prospect (lottery, random variable) f : 2 — R which assigns to each state
an outcome. The set of all prospects is denoted by L. we assume that prospects are
bounded (i.e., for any prospect f there exists ¢ € R such that |f(w)| < ¢ for all states

w € ) and F-measurable (i.e., the inverse image of each interval of R is an event).

It is assumed that a decision maker has a preference relation over lotteries denoted
by >=. As usual, > denotes strict preference, ~ denotes indifference. Sometimes we write

f =g (f < g) instead of ¢ = f (¢ = f). A functional V : £ — R is a numerical
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representation that the preference relation =, if for all f, g € L,

f=zg = V() =V

Before starting the Cumulative Prospect Theory, we introduce two important termi-

nologies: utility function and probability weighting function.

Definition 2.1. (1) The utility function u(-) is defined as:

ut(x) if x >0,
u(r) =
—u~(—z) ifz <0,

where vt : Rt — R* and v~ : Rt — R™" are strictly increasing, concave with

u(0) = u™(0) = u(0) = 0.

(2) The probability weighting functions aw? : [0,1] — [0,1] and w™ : [0,1] — [0, 1]
are differentiable and strictly increasing with w™(0) = w™(0) = 0 and w™(1) =

w (1) =1.

Cumulative Prospect Theory (CPT) holds if the preference relation can be rep-

resented by the functional:

VOPT(X) = / Wt BLu(X) > y}) dy — [ w0 <ma. e

where u : R — R is the utility function and w*,w™ : [0,1] — [0,1] are two probability

weighting functions defined as in Definition 2.1.

Remark 2.2. A capacity v is a non-additive measure satisfying v(Q2) = 1, v(¢) = 0
and v(A) > v(B)if A O B, e.g., the functions v* = wt o P, v~ = w™ o P are two
capacities. The integrals of equation (2.1) are called Choquet integrals with respect to

wt oP and w™ oP. (see, e.q., Choquet [5])
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As constructed by Tversky and Kahneman (1992), CPT treats gains and losses sepa-

rately.

Linear Cumulative Prospect Theory (LCPT) is a special case of CPT, the func-

tions u™ and u~ are linear. More precisely, the utility function is of the form

x ifx >0,
u(z) =
Ax o if x <0,

with the loss aversion parameter A > 1. In other words, LCPT holds if the preference
relation can be represented by the functional:

oo 0
viernx) = [Cut @ s ghdy - [ o @Y <yhdy @22)
0

—0o0

where w™, w™ are two probability weighting functions. Denoted that

V) =5 [ @E > o, (23)
Vo(X) = /_ w (P{AX < y})dy. (2.4)

2.2. The axiomatization

An important subset of prospects is the set of rank-ordered simple prospects. Rank-
ordered simple prospects take only finitely many outcomes and arrange the outcomes in

increasing order, such as

f=xla +22la, + - +x014,, 1 S a9 <o <y,

where {A1, Ag, ..., A, } is a partition of 2 and I4, is the indicator function of event A;.
It is understood that the rank-ordered simple prospect f assigns outcome z; for states

weA,i=12..n.
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Notation 2.3. We use the notation z4¢ for a prospect that giving outcome x on event

A and with prospect g on the complement A°.

Now, we introduce several definitions of the preference relation >:

Al. Weak order: = is a weak order if > is complete (f = g or g = f for any two

prospects f, g) and transitive (f = g and g = h implies f = h).

A2. Continuity: = is continuous if for any prospect f the sets {g € L:¢g = f}

and {g € L : g = f} are closed subsets under the supnorm ||f — g|lec =

sup /() — g()]

A3. Stochastic dominance: We say that (y;/4, + -+ ynla,) is stochastically

dominant by (x1la, + -+ + @pla, )if

(w1la, + -+ oplay) =@ la, + -+ ynla,)

whenever z; > y; for all i and z; > y; for at least one i with P(A;) > 0.

Definition 2.4. The preference relation > satisfies sign-comonotonic tradeoff consis-
tency if there is no outcome x,x’,y, 1y’ such that both of the following two statements

hold at the same time.

(1) There exist rank-ordered simple prospects f, g which can be represented by the

same partition {4y, ..., 4,}, and a event A; such that

za,f = yag and 2 f 2y, 9.



2.2. THE AXIOMATIZATION 9
(2) There exist rank-ordered simple prospects h, k which can be represented using

the same partition {Bjy, ..., B;,}, and a event B; such that
rph 2 ypk and 2 h - yp k.

whenever z, y, 2/, y' are of the same sign (i.e. either they are all gains or they are all
losses) and all involved prospects are comonotonic (i.e. the rank-order of outcomes should

remain the same).

Proposition 2.5 (Wakker and Tversky [23], Theorem 6.3). Suppose that > is the

preference relation on the set of prospects. The following two statements are equivalent:

(1) Cumulative Prospect Theory (CPT) holds with a continuous utility function;
(2) The preference relation = satisfies the following conditions:

(a) weak ordering;
(b) continuity;

(c) stochastic dominance;

(d) sign-comonotonic tradeoff consistency.

Further, both capacities are uniquely determined, and the utility function is a ratio scale.

Definition 2.6. The preference relation > satisfies independence of common incre-
ments if for any two rank-ordered simple prospects f, g with the same partition {Ay, ..., A, },

we have:
za,f ¥ Ya,g = (x+a)a,f > (y+a)a,g,

for any outcome a € R whenever z, y, x + a, y + a are of the same sign and all involved

prospects are comonotonic.
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Independence of common increments means that a common absolute change of an
outcome of the same rank does not reverse the preference between two prospects as long

as this change is not too large to affect the rank or the sign of the outcomes.

Proposition 2.7 (Schmidt and Zank [19], Theorem 4). Suppose that = is the prefer-

ence relation on the set of prospects. The following two statements are equivalent:

(1) Linear Cumulative Prospect Theory (LCPT) holds;

(2) The preference relation = satisfies the following conditions:
(a) weak ordering;
(b) continuity;

)
)

(c) stochastic dominance;
)

(d) independence of common increments;

Further, both capacities are uniquely determined, and the linear utility function is a ratio

scale.



CHAPTER 3

The Model

3.1. The Black-Scholes model of the market

Let T be a positive constant, called the terminal time. Consider (2, F, P), a complete

probability space and a standard Brownian motion (W;)o<i<r with Wy = 0. Define
FVi=c{W,:0<s<t}, te€][0,T] (3.1)

to be the natural filtration generated by (1) and let A/ denote the collection of all P-null

subsets of F. We shall use the augment filtration

Fo=o{ R UNT, € [0,T]. (3.2)

Suppose that there is a market in which two assets are traded continuously. One is
the bond with price process B; which is subject to the following (stochastic) ordinary

differential equation:

dBt = 'FBt dt, t e [O,T], BQ = 1, (33)

where r > 0 is the constant annualized risk-free interest rate, continuously compounded.
The other is a stock with price process S; satisfying the following stochastic differential

equation (SDE):
dS; = Sifadt+ BdW,;], t€[0,T]; So=so>0, (3.4)

where « is the constant drift rate and (3 is the constant volatility.
11



12 3. THE MODEL

Consider an investor with initial endowment zy > 0. Assume that the trading takes
place continuously in self-financing fashion, i.e. there is no consumption or income, and
no transaction costs. If the investor invested the amount of money 7 := (7)o< i< in the
stock, then the corresponding wealth process (X;)o<:<r depends on zy and 7 is governed

by the following equation (see, e.g., Karatzas and Shreve [12])

dX, = rXt—i—wt(a—r)]dt—i—ﬂtﬁth, tel0,T], X, = . (3.5)

Note that 7 is the amount invested in stock at time ¢, not the number of shares held.

3.2. Problem 1

Before we formulate our portfolio selection problem, we specify the “allowable”

investment policies with the following definition.

Definition 3.1. A portfolio process m is said to be admissible if m, € F; for all

0 <t < T and satisfies

E{/OTWQ dt} < 00. (3.6)

Our portfolio selection problem is to find the optimal admissible portfolio 7* in terms
of maximizing the value of the terminal wealth X, under LCPT framework. The corre-

sponding model can be formulated as follows:

Maximize VICFT(X7p)

(X, m) satisfies equation (3.5), (Problem 1)
subject to

7 is admissible.
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3.3. Problem 2

Observe that the wealth equation (3.5) admits an unique strong solution X; for any
given portfolio m; at time ¢ by standard SDE theory. However, the wealth process
(Xt)o<t<7 in equation (3.5) might not be nonnegative process, i.e., the wealth process
can take negative values. This is sometimes unacceptable for practical situation, since the
most investors cannot buy assets when their wealth is negative. Therefore, an important
restriction that we impose throughout this thesis is the prohibition of bankruptcy
of the investor. That is, we limit our consideration to portfolio @ for which the corre-
sponding wealth processes (X;)o<:<7 are such that X; > 0, a.s., for all ¢ € [0,T"]. Such
bankruptcy-averting policy of investment does exist for it at least allows us to deposit all

the money in the bank account.

Our first result makes the simplifyingobservation that the wealth process for all 0 <

t < T, X; is nonnegative if and onlyif the terminal wealth X is nonnegative.

Proposition 3.2 (Bielecki, Jin, Pliska‘and Zhou [3], Proposition 2.1). Let (X;)o<i<T
be a wealth process with respect to an admissible portfolio m and let T be the terminal

time. Then

Xr >0, a.s. = X, >0, as.,Vtel0,T]. (3.7)

The importance of Proposition 3.2 is that it enables us to replace the constraint

X; >0, for all t €[0,T], by the terminal constraint X, > 0.

Assumption 3.3. The terminal wealth X1 > 0, a.s.
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Therefore, Assumption 3.3 greatly simplifies our problem, which is formulated as

follows:
Maximize Vi (Xr) :/ wh(P{Xr > y}) dy
0
Xi, satisies equation (3.5),
(X, m ) satisies equation (3.5) (Problem 2)
subject to 7 is admissible,
Xr >0, a.s.
3.4. Problem 3
Define
a—r
0 = 3.8
3 (3.8)

as the usual market price of risk. Applying Girsanov’s Theorem, consider a risk-neutral

probability measure QQ defined by
Q(A) = / Z, dP for all A € F;, (3.9)
A

where
|
7, = exp{—§92t—¢9Wt} (3.10)

is the Radon-Nikodym derivative. Note that E[Zr] = 1. In particular, under this risk-
neutral probability measure Q, the discounted portfolio value process (e " X})o< i< is a
martingale. This implies that

e—r(T—t)

Xt:e”E@[e‘TTXT’}}]: - E[ZTXT’E], as., te[0,T],  (3.11)

t

where Egp means the expectation with respect to the probability Q. Equation (3.11) tells
us that the process (X¢)o< <7 also is uniquely determined when the random variable Xr

is given. This leads to the following proposition.
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Proposition 3.4 (Karatzas and Shreve, [12], Definition 6.1 and Theorem 6.6). Let

X be an Fr-measurable random variable such that X > 0, a.s., and
Eqy [e_TTX] - E[e—TTZTX} = 2., (3.12)

then there exists an admissible portfolio m such that the corresponding wealth process

(Xt)o<i<T satisfies Xpr = X, a.s., and Xy = xy.
Notation 3.5. Denoted the discounted Radon-Nikodym derivative by
—rt 1 2
pri=e¢e Zt:exp{—(r+§9)t—9Wt} (3.13)

and

p = pr= state price density random variable. (3.14)

Due to (3.13) we see that p is a-log-normal random variable. Let N(-) and (-) be
the distribution function and probability density function of a standard normal random
variable, respectively. Therefore, the distribution function F, and probability density

function f, of p are given by

Inx —

) and f,(x) = %anx — ,u> (3.15)

o

(2) = N(

o

where p and o are the mean and standard deviation of the random variable In p. Precisely,

1
,u:—(r+§02)T and o> =0T (3.16)

In view of Proposition 3.4 and using equation (3.14), in order to solve Problem 2

we only need first to solve the following maximization problem in the terminal wealth, X:
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Maximize V+(X):/ wH(P{X > y})dy
0

ElpX | =g,
[pX] 0 (Problem 3)
subject to X is Fr-measurable,
X >0, a.s.

Remark 3.6. Once Problem 3 is solved with an optimal solution X*, the optimal
wealth process (X} )o<i<r can be got by equation (3.11). Therefore, in the rest of the

thesis we will focus on Problem 3.



CHAPTER 4

Main Results

4.1. Problem 4
Now we consider the general maximization problem :

Maximize V,(X) = / wh(P{X > y})dy
0
E[pX ] = o, (Problem 4)

subject to
X >0, a.s.

The objective of Problem 4 is to find the optimal random variable X*. Here we turn
finding the optimal random variable X *-into seeking the distribution function of X* by

the following steps.

Lemma 4.1 (Ross [17], Chapter 5 theoretical exercises 28.). Let X be a continuous
random variable having the distribution function F(-). Then the random variable 1 — F(X)

follows uniform distribution over the interval (0, 1), that is,

1 — F(X) ~ U(0,1). (4.1)

Recall that for the distribution function F'(-) of X defined by F(z) = P{X < z} and

F(-) satisfies

1. F(-) is nondecreasing and right continuous.

2. lim F(b) =1 and blim F(b)=0.

b—oo

17
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If the distribution function F(-) is strictly increasing and continuous, then F~' :
[0,1] — R exists. Unfortunately, the distribution function does not have an inverse in
general. Therefore, we defined the following general inverse function of the distribution

function.

Definition 4.2. Let F(-) be the distribution function of X. We defined the inverse

function of F(-), for y € [0,1],
Fly)=inf{z e R: F(z) >y} with inf ¢ = oo. (4.2)

Some properties of the inverse of the distribution function are :

1. F~!(-) is nondecreasing and left continuous.
2. F7Y(F(x)) < .

3. F(F'(y)) >y

4. F~1(y) <z if and only if y < F(z).

5. If Y ~ U(0,1) then F~1(Y") has the same distribution as X.

The property 5 tells us that the inverse of the distribution function can translate

results the uniform distribution to the other distributions.

Proposition 4.3 (Jin and Zhou [11], Lemma C.1). If X* is the optimal solution for
Problem 4 and G*(-) is the distribution function of X*, then (G*)™*(1 — F,(p)) has the

same distribution as X* and
Xt = (@) (1= Fy(p)). (4.3)

where (G*)7Y(+) is the inverse function of G*(-).
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We denote
U:=1-F,(p) (4.4)
where F)(-) is the distribution function of p. Then U ~ U(0,1), p = F,;'(1 — U) and

X = G HU), a.s. Therefore,

E[pX]|=E[F,'(1-0)G ' U)] = /0 G7l(s)- F, ' (1 —s)ds. (4.5)

p

Now we turn to the objective functional of Problem 4,/ wh(P{X > y})dy, set
0

X =G Y(U), we have
| wr e >
:/Ooow+(1—IP>{Gl(U) <y} dy
:Awwwl_nggG@»ww

- [Tt - G

o

[t = cw) [ [ v - cwie ) ay

0

Here we need an important assumption.

Assumption 4.4. We assume that the limit

lim [y - w™ (1 = G(y))] =0 (4.6)

Yy—oo

This assumption is very rational because lim w*(1 — G(y)) = 0 and usually the utility

Yy—oo

function u(-) is bounded.

Let s = G(y). Then we can get

/OOOW(P{X > y})dy:/o G(s) - () (1 — s) ds (4.7)
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4.2. Problem 5

Proposition 4.3 suggests that in order to solve Problem 4 we only needs to seek
among random variables of the form G~(U), where G(-) is the distribution function of
a nonnegative random variable. Applying (4.5) and (4.7), we turn Problem 4 into the

following problem.

Maximize v(G) := /0 G (s) - (wh)' (1 —s)ds

1
/ G~ Y(s) - F, N (1 — s)ds = o, (Problem 5)
subject to 0

p

G(-) is the distribution function of a nonnegative r.v.

The following result, which is straightforward in view of Lemma 4.1 and Proposition

4.3, means that Problem 4 is equivalent to Problem 5.

Proposition 4.5 (Jin and Zhou {11}, Proposition C.1).

If G*(+) is optimal for Problem 5, then
X" = (G")7H(U)
s optimal for Problem 4. Conversely, if X* is optimal for Problem 4, then its distribution

function G*(-) is optimal for Problem 5 and X* = (G*)"1(U), a.s..

4.3. Problem 6

Denoting
9() =G(). (4.8)
Since g(-) is the inverse of the distribution function, so ¢ : [0, 1] + [0, 0o] is nondecreasing

and left continuous with g(0) = 0.
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Then we can rewrite Problem 5 into
1
Maximize / g(s) - (wh)(1 —s)ds
0

1
/ g(s) - Fp_l(l — s8)ds = xp,
subject to 0

g :10,1] — [0, o] is nondecreasing and left continuous with g(0) = 0.
(Problem 6)

4.4. Main idea and results

Our main idea is to find an inequality, with which we can solve Problem 6. The
inequality have relation that the objective is less than or equal to the first constrain.
Since the integrations of Problem 6 can be express convolution or inner produce type, we
found some useful weighted inequalities for monotone functions, which play a key role in

solving Problem 6 :

Proposition 4.6 (Heinig and Maligranda [10], Theorem 2.1). Let 0 < p < g < o0,

u(s),v(s) >0 and f(0) =0. The inequality

([ utrseoras)™ <l |

holds for all nondecreasing f : [0,1] — [0, 00] if and only if

(/tl u(s) ds) v < M(/tlv(s) ds)l/p forall 0 <t <1. (4.10)

1

v(s)f(s)P ds) v (4.9)

Taking p = g = 1, we get the following corollary.

Corollary 4.7. Let u(s),v(s) > 0 and f(0) = 0. The inequality

1

</01 u(s)f(s) dS) < M</o v(s)f(s) ds), (4.11)
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holds for all nondecreasing f : [0,1] — [0, 00| if

M= sip ( /t Culs) as) ( /t lv(s)ds>1. (4.12)

Moreover, M is the best constant satisfying (4.11). Equation (4.12) admits an optimal

solution t*, then "=" holds when f(x) = X 1)(x) where X is any nonnegative constant.

Since the probability weighting function w™ () is strictly increasing and differentiable,
we get the derivative (w*)'(s) > 0 for all 0 <'s < 1. And F,'(-) is the inverse function of
the distribution function, so F,"(-) is nondecreasing, that is, F},'(s) > 0 forall 0 < s < 1.

We use the result of Corollary 4.7 for Problem 6. If

M = sup (/tl(er)'(l —3) ds) </t1 FoH(1— 3)ds>_1, (4.13)

0<t<1

then the following inequality

</01 g(s) - (wh)' (1= s) ds) & 1\4(/01 g(s) - Fl(1—s) d5> (4.14)

holds for all nondecreasing g : [0, 1] = [0, 00] with g(0) = 0. That is, the optimal value of
Problem 6 is M -z, if the equality of (4:14)-holds. The constant M given by (4.13) can

be simplified by

M = sup <w+(1—t)—w*(O))(/Ol_tFl;l(s)ds)_l (4.15)

0<t<1

= sup [w*(c) : (/OC EF7l(s) ds) _1} (4.16)

0<c<1
Equation (4.16) admits an optimal solution ¢*, then the optimal function of Problem 6

is of the form

9" () = (G*) ' (z) = Ma_e=1y(2), x € [0,1] (4.17)

*

where A > 0 is the constant satisfying A\ - / Fp_l(s) ds = xy. But when M = oo, then
0

*

/ F'(s)ds =0 and A does not exist.
0
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Remark 4.8. A maximization problem is called well-posed if the supremum of its

objective is finite; otherwise it is called ll-posed.

Theorem 4.9. The following statements are equivalent:

(1) Problem 6 is well-posed for any xo > 0.

c -1
(2) The optimal ratio M = sup [w*(c) : (/ Fl(s) ds) 1 < 00.
0

(3) tim (2

< Q.
c—0 F;l(c)

Furthermore, when one of the above (1)-(3) holds, the optimal solution to Problem 6 is

of the form

¢ (@) = (G*) () :xo(/oc ) ds)* Iy (z), 2 €0,1]. (4.18)

PROOF. (1) <= (2) is clear.
(2) <= (3). Since 0 < wh(c) < 1;0°< /0 Fr¥(syds < ™ for 0 < ¢ < 1 and wh(c),

p 2

C C —1
/ F1(s)ds are strictly increasing for.c, then the [uﬁ(c) : (/ Fi(s) ds) } may be
0 0

infinity only when ¢ = 0. Therfore,

< 00,

(2) = lim [uﬁ(c) | /0 F(s) ds>_l

c—0

Applying I'Hépital Rule to w*(c)/ [ F,"(s)ds, we obtain (3). Equation (4.17) says
1

g*(x) = M(1—c+17(x) where A > 0is a constant. A must satisfy/ g*(s)-Fp_l(l—s) ds = xy,
0

*

1

then we get A = x0</ F7l(s) ds)i .
0

We now summarize the main result in the following theorem.
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Theorem 4.10. Assume that lir% [(w*)(¢)/F, ()] < oo. Then the mazimal value

at terminal time T under LCPT s given by

sup [uﬁ(c) | /0 F(s) ds)_l} 20 (4.19)

0<c<1
Equation (4.19) admits an optimal solution ¢*. Then the corresponding optimal terminal

wealth to Problem 3 is
. -1
X* = 2y (E[pI{p<F;1(C*)} ]) Ity 05 (4.20)

—1
Remark 4.11. Since E[p] = T, so <E[pI{p<F;1(C*)}]) > e and e is the
ratio that all the money put in the bank account. Therefore, It means that the payoff

—1
<E[pI{p<F;1(c*)} ]) - o is better than the payoff if we invest all money in the bond.

The optimal terminal wealth X* mentioned in (4.20) tells us two different stories in
economical view at terminal time. In thecases of {p-< [ 1(¢*)} the payoff we gain is more
than that we get from the bond market, and this payoff is fixed due to the deterministic
coefficient. Furthermore, in the rest of part {p-> F,'(c*)} all the assets turn out to be
zero. Those cases of {p < F,'(c*)} are profitable to the investors. It might be that the

noise W; of the stock price does not fluctuate dramatically.

4.5. The optimal wealth process and the optimal strategies

In this section, we want to find a portfolio 7 replicating the optimal terminal wealth

X* of (4.20). Recall that p = pr with
L
pt::exp{—(rJréG)t—@Wt}, 0<t<T.

Let N(-) and v(:) be the distribution function and probability density function of a

standard normal random variable respectively. p(t,T") := pr/p; conditional on F; follows
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a log-normal distribution with parameter (u,07), where
L 2 _ p2
ut:—(r+§9 WT —t) and o; =0°(T —1t)

-1
and \ := zg <E[PI{p<Fg1(c*)}]> :
By (3.11), the replicating wealth process is given by
X, = E[pt,T)X*|F]

= \E [ p(t, T)I{p(t T)<F, ' (c*)/pe} |}—t ]

A Y(e*)/pe 1
_ A / g ¢<M> dy.
0t Jo Oy

Define
N O g —
fltaa)i= 2 [ it (U= gy,
0

O¢ Ot

It is well known that the replicating pertfolio is

T = — (%) Ta(t, pt) pi;

see, e.g., Bielecki [3], Equation(7.6). Now we calculate

(m Fpl(c*)a: e — In pt> (Fpplt(;*) >

Plugging it in (4.22), we get the following result.

fx(ta pt) = —)\@b

Theorem 4.12. The wealth-portfolio pair replicating X™ is given by

/pt lny Hi
Xy = _/ o )dy7
a—r In F74e*) — e —Inpy\ fF ()
T = )\<—2 >¢< . - t)( 5 )7
16} o OtPt

-1
where X = xg (E[PI{p<F;1(C*)} ]> ’
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(4.21)

(4.22)

(4.23)

(4.24)

(4.25)






CHAPTER 5

Numerical Result

In this chapter, we give some numerical results for the maximum value at the terminal

time T

sup {uﬁ(c) . (/OCFpl(s) ds)_l} 20 = M - 20

0<c<1

of Theorem 4.10, and observe how these parameters affect the maximal value.

Example 5.1. consider the case where the terminal time 7' = 5 (years), the interest
rate r = 0.01, the drift rate of the stock a = 0.05 and the volatility of the stock g = 0.2.

We assume the probability weighting functionfor gain w™(+) is of the form

Bl 7 il

)

which is proposed by Prelec [14].

0.8}
0.67
0.4y

0.2

0.2 0.4 0.6 0.8 1
)1.2

FIGURE 5.1. The probability weighting function w*(p) = e=(-1nP

27
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Recall that the distribution function of p is

Inx —p 1 1 Inx —p
F,,(m)-N( . )—§+§erf( . ) (5.1)
where
L
p o= —(r+ 59 )T : the mean of Inp
0 = 0T : the variance of Inp
a—r . ,
0 = : the usual market price of risk

g
2 T e
erf (x) = ﬁ/o e~ dt : the error function

Therefore, the inverse function of F,(-) is F,'(y) = exp {u +ov2erf 1 (2y — 1)} In this

example, the values for parameters are shown-in.Table 1.

Parameters T r a  pBd I o

Values 5 0.01 0.05 0.2 0.2 -0.15 0.447214

TABLE 1. Parameters in Example

-1

We plot the graph of w*(c) - </ EF7l(s) ds) for 0 < ¢ <1 as in the Figure 5.2..
0
From the graph , we observe that the maximum does exist and the approximate values

of ¢* and M are

c* 0.253411,

Q

M =~ 1.82713.
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1.5}

1.25;

0. 75}

0.25

0.2 0.4 0.6 0.8 1

c -1
FIGURE 5.2. The graph of w*(c) - </ Fi(s) ds)
0

p

Second, we only change the terminal time 7" when the other parameters fix and ob-

serve the ¢* and M in the Table 2.

T (years) 0.5 1 2 3 4 5 6

M 1.18922 1.26449 1.40291 15398 1.68045 1.82713 1.98128

e’ 1.00501 1.01005 1.02027°1.03045 1.04081 1.05127 1.06184

TABLE 2

Finally, we change the drift rate of the stock o and the volatility of the stock 5 when
the other parameters fix. Observe that a and 8 how to affect the maximum ratio M in

the Table 3.
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The value of drift rate «

M| —-0.03 —-0.02 —-0.01 0 0.01 0.02 0.03
0.2 | 1.82713 1.54742 1.34950 1.21287 1.12410 1.21287 1.34950
The 0.3 11.47355 1.34950 1.25255 1.17848 1.12410 1.17848 1.25255
value 0.4 1.34950 1.27450 1.21287 1.16314 1.12410 1.16314 1.21287
of 0.5 1.28838 1.23602 1.19163 1.15451 1.12410 1.15451 1.19163
volatility 0.6 | 1.25255 1.21287 1.17848 1.14899 1.12410 1.14899 1.17848
6] 0.7 11.22921 1.19751 1.16957 1.14516 1.12410 1.14516 1.16957
0.8 1.21287 1.1866 1.16314 1.14235 1.12410 1.14235 1.16314

TABLE 3
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