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在線性累積前景理論下最佳投資策略的選擇 

學生：傅 景 祥 

 

指導教授：吳 慶 堂 

國立交通大學應用數學系碩士班 

摘 要       

 本論文我們關心的是『如何投資在股票市場將使我們獲利最大』，此問題針

對於某些投資者在面對不確定的決策行為符合 Linear Cumulative Prospect Theory 

(線性累積前景理論, LCPT)。LCPT 為 Cumulative Prospect Theory 的一特例。本

論文採用連續型 Black-Scholes 金融市場模型含有一股票和一銀行帳戶。我們推

導出其最大獲利的總資產是由投資者的 probability weighting function (決策權數

函數) 和 discounted Radon-Nikodym derivative 共同決定。在本論文的最後，我

們給一例子算出其最大獲利，而且觀察當我們改變其參數時其最大獲利的變化。 
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ABSTRACT 

In this thesis we are concerned with the optimal portfolio selection for an 

investor who makes decision according to the Linear Cumulative Prospect Theory 

(LCPT).  LCPT is a special case of Cumulative Prospect Theory. We investigate the 

case of a continuous-time economy model with one risk-free asset and one risky asset. 

The maximum value of terminal wealth is a supremum relative to the probability 

weighting function and the discounted Radon-Nikodym derivative. We derive some 

numerical results and illustrate how these parameters affects the maximum value.
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CHAPTER 1

Introduction

The object of this thesis is to examine a very natural question: How can an investor

optimize the portfolio investment in a continuous-time economy model with one risk-free

asset and one risky asset under Linear Cumulative Prospect Theory (see, e.g., Schmidt

and Zank [18]). Linear Cumulative Prospect Theory is a special case of Cumulative

Prospect Theory(CPT). In this setting the utility function is linear. This question has

already been extensively studied under Expected Utility Theory, see, e.g., Merton [13].

Expected Utility Theory (EUT), developed by von Neumann and Morgenstern [22]

based on an axiomatic system, has an underlying assumption that decision makers are

rational and risk averse when they face uncertainties. However, empirical research has

shown that EUT fails to provide a good description of individual behavior under risk

and uncertainty. Examples are the famous paradoxes of Allais [1] and Ellsberg [7]. This

evidence has motivated the development of alternative theories, which are compatible

with observed choice behavior. The following anomalies for daily life in EUT:

• People evaluate assets on gains and losses relative to a reference point, not on

final wealth positions;

• People are not uniformly risk averse: they are risk averse on gains and risk taking

on loses, and more sensitive to losses than to gains;

• People overweight small probabilities and underweight large probabilities.

1



2 1. INTRODUCTION

In 1970s, the Prospect Theory (PT) is proposed by Kahneman and Tversky [20]

for decision making under uncertainty as a psychologically realistic alternative to EUT.

Starting from empirical evidence, the theory describes people decide which outcomes they

see as basically identical and they set a reference point and consider lower outcomes as

losses and larger as gains. And people behave as if they would compute their payoff utility,

based on the potential outcomes and their respective probabilities. In contrast to EUT,

it measures losses and gains, but not absolute wealth. Though prospect theory explained

the major violations of EUT in decision making under risk, there exist a problems.

• Prospect Theory violated the first-order stochastic dominance.

Cumulative Prospect Theory (CPT) is introduced by Kahneman and Tversky in 1992

[21]. This theory is a further development and variance of PT. The difference from

the original version of PT is that weighting is applied to the cumulative probability

distribution function, as in rank-dependent expected utility theory, rather than to the

probabilities of individual outcomes. In 2002, Daniel Kahneman was awarded the Nobel

Memorial Prize in Economics for his work in Prospect theory.

The central model of this paper is Linear Cumulative Prospect Theory (LCPT) which

is a special case of CPT. The main difference between CPT and LCPT is the utility

function in LCPT is linear. Linear utility has a long tradition in theoretical and empirical

research, in part due to its tractability. An axiomatic foundation of subjective expected

utility with linear utility was provided by de Finetti [8]. Preston and Baratta [15] who

used a linear utility model in order to estimate probability distortions. Edwards [6]

collected amount of data from a series of experiments which support our model. He

found evidence for sign-dependent probability distortions and also for linear utility. Many

other studies observed linear utility for losses, in particular for small stakes. Handa [9]
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axiomatized a model of subjective expected value, which was implicitly used by Preston

and Baratta and already discussed in Edwards. A model for decision under risk that

combines linear utility and distorted probabilities is the dual theory of Yaari [24].

Some research has already been done on optimal investment under CPT. Most of the

previous work takes place when no probability distortion exists or the form of the utility

function cannot be linear. The optimal portfolio choice problem for a loss-averse investor

is studied by Berkelaar, Kouweenberg and Post [2] in a complete market but where no

distortion is applied to the probabilities. This problem has been recently solved by Jin

and Zhou [11] in a continuous-time setting, within the complete market framework of

Black and Scholes. Their result is thus only valid for non-linear utility function.

The rest of this thesis is organized as follows: In Chapter 2 we examine the main

components of Linear Cumulative Prospect Theory and compares LCPT with CPT; In

Chapter 3 we introduce the model and the portfolio selection problem; In Chapter 4

we derive the main method to solve the portfolio selection problem, and then find the

maximum value and the optimal terminal wealth; In Chapter 5 a numerical example is

considered and we illustrate how these parameters affects the maximum value.





CHAPTER 2

The Comparison of LCPT and CPT

2.1. The form

Denote states space by Ω and subsets of Ω is denoted by A,B, .... The state space Ω

is endowed with a σ-algebra F of subsets of Ω. Subsets of Ω which are contained in F are

called events. A partition {A1, A2, ..., An} of Ω is a collection of disjoint events and the

union of which equals Ω. The set of outcomes is R which indicates money. the element of

the outcome is denoted by x, y, z, .... People tend to think of possible outcomes usually

relative to a reference point (also called the status quo) rather than to the final status.

Outcomes above the reference point are called gains and outcomes below the reference

point are called losses. Without loss of generality, we assume that reference point is given

by zero. Therefore, we refer to positive outcomes as gains and to negative outcomes as

losses.

Consider a prospect (lottery, random variable) f : Ω → R which assigns to each state

an outcome. The set of all prospects is denoted by L. we assume that prospects are

bounded (i.e., for any prospect f there exists c ∈ R such that |f(ω)| ≤ c for all states

ω ∈ Ω) and F -measurable (i.e., the inverse image of each interval of R is an event).

It is assumed that a decision maker has a preference relation over lotteries denoted

by º. As usual, Â denotes strict preference, ∼ denotes indifference. Sometimes we write

f ¹ g (f ≺ g) instead of g º f (g Â f). A functional V : L → R is a numerical

5



6 2. THE COMPARISON OF LCPT AND CPT

representation that the preference relation º, if for all f, g ∈ L,

f º g ⇐⇒ V (f) ≥ V (g).

Before starting the Cumulative Prospect Theory, we introduce two important termi-

nologies: utility function and probability weighting function.

Definition 2.1. (1) The utility function u(·) is defined as:

u(x) =





u+(x) if x ≥ 0,

−u−(−x) if x ≤ 0,

where u+ : R+ → R+ and u− : R+ → R+ are strictly increasing, concave with

u(0) = u+(0) = u−(0) = 0.

(2) The probability weighting functions w+ : [0, 1] → [0, 1] and w− : [0, 1] → [0, 1]

are differentiable and strictly increasing with w+(0) = w−(0) = 0 and w+(1) =

w−(1) = 1.

Cumulative Prospect Theory (CPT) holds if the preference relation can be rep-

resented by the functional:

V CPT (X) =

∫ ∞

0

w+(P{u(X) > y}) dy −
∫ 0

−∞
w−(P{u(X) < y}) dy, (2.1)

where u : R → R is the utility function and w+, w− : [0, 1] → [0, 1] are two probability

weighting functions defined as in Definition 2.1.

Remark 2.2. A capacity ν is a non-additive measure satisfying ν(Ω) = 1, ν(φ) = 0

and ν(A) ≥ ν(B) if A ⊇ B, e.g., the functions ν+ = w+ ◦ P, ν− = w− ◦ P are two

capacities. The integrals of equation (2.1) are called Choquet integrals with respect to

w+ ◦ P and w− ◦ P. (see, e.q., Choquet [5])
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As constructed by Tversky and Kahneman (1992), CPT treats gains and losses sepa-

rately.

Linear Cumulative Prospect Theory (LCPT) is a special case of CPT, the func-

tions u+ and u− are linear. More precisely, the utility function is of the form

u(x) =





x if x ≥ 0,

λx if x ≤ 0,

with the loss aversion parameter λ ≥ 1. In other words, LCPT holds if the preference

relation can be represented by the functional:

V LCPT (X) =

∫ ∞

0

w+(P{X > y}) dy −
∫ 0

−∞
w−(P{λX < y}) dy, (2.2)

where w+, w− are two probability weighting functions. Denoted that

V+(X) :=

∫ ∞

0

w+(P{X > y}) dy, (2.3)

V−(X) :=

∫ 0

−∞
w−(P{λX < y}) dy. (2.4)

2.2. The axiomatization

An important subset of prospects is the set of rank-ordered simple prospects. Rank-

ordered simple prospects take only finitely many outcomes and arrange the outcomes in

increasing order, such as

f = x1IA1 + x2IA2 + · · ·+ xnIAn , x1 ≤ x2 ≤ · · · ≤ xn,

where {A1, A2, ..., An} is a partition of Ω and IAi
is the indicator function of event Ai.

It is understood that the rank-ordered simple prospect f assigns outcome xi for states

ω ∈ Ai, i = 1, 2, ..., n.
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Notation 2.3. We use the notation xAg for a prospect that giving outcome x on event

A and with prospect g on the complement Ac.

Now, we introduce several definitions of the preference relation º:

A1. Weak order : º is a weak order if º is complete (f º g or g º f for any two

prospects f, g) and transitive (f º g and g º h implies f º h).

A2. Continuity : º is continuous if for any prospect f the sets {g ∈ L : g º f}
and {g ∈ L : g ¹ f} are closed subsets under the supnorm ||f − g||∞ =

sup
ω∈Ω

|f(ω)− g(ω)|.

A3. Stochastic dominance: We say that (y1IA1 + · · ·+ ynIAn) is stochastically

dominant by (x1IA1 + · · ·+ xnIAn) if

(x1IA1 + · · ·+ xnIAn) Â (y1IA1 + · · ·+ ynIAn)

whenever xi ≥ yi for all i and xi > yi for at least one i with P(Ai) > 0.

Definition 2.4. The preference relation º satisfies sign-comonotonic tradeoff consis-

tency if there is no outcome x, x′, y, y′ such that both of the following two statements

hold at the same time.

(1) There exist rank-ordered simple prospects f, g which can be represented by the

same partition {A1, ..., An}, and a event Ai such that

xAi
f º yAi

g and x′Ai
f ¹ y′Ai

g.
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(2) There exist rank-ordered simple prospects h, k which can be represented using

the same partition {B1, ..., Bm}, and a event Bi such that

xBi
h ¹ yBi

k and x′Bi
h Â y′Bi

k.

whenever x, y, x′, y′ are of the same sign (i.e. either they are all gains or they are all

losses) and all involved prospects are comonotonic (i.e. the rank-order of outcomes should

remain the same).

Proposition 2.5 (Wakker and Tversky [23], Theorem 6.3). Suppose that º is the

preference relation on the set of prospects. The following two statements are equivalent:

(1) Cumulative Prospect Theory (CPT) holds with a continuous utility function;

(2) The preference relation º satisfies the following conditions:

(a) weak ordering;

(b) continuity;

(c) stochastic dominance;

(d) sign-comonotonic tradeoff consistency.

Further, both capacities are uniquely determined, and the utility function is a ratio scale.

Definition 2.6. The preference relation º satisfies independence of common incre-

ments if for any two rank-ordered simple prospects f, g with the same partition {A1, ..., An},
we have:

xAi
f º yAi

g ⇒ (x + a)Ai
f º (y + a)Ai

g,

for any outcome a ∈ R whenever x, y, x + a, y + a are of the same sign and all involved

prospects are comonotonic.
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Independence of common increments means that a common absolute change of an

outcome of the same rank does not reverse the preference between two prospects as long

as this change is not too large to affect the rank or the sign of the outcomes.

Proposition 2.7 (Schmidt and Zank [19], Theorem 4). Suppose that º is the prefer-

ence relation on the set of prospects. The following two statements are equivalent:

(1) Linear Cumulative Prospect Theory (LCPT) holds;

(2) The preference relation º satisfies the following conditions:

(a) weak ordering;

(b) continuity;

(c) stochastic dominance;

(d) independence of common increments;

Further, both capacities are uniquely determined, and the linear utility function is a ratio

scale.



CHAPTER 3

The Model

3.1. The Black-Scholes model of the market

Let T be a positive constant, called the terminal time. Consider (Ω, F , P), a complete

probability space and a standard Brownian motion (Wt)0≤t≤T with W0 = 0. Define

FW
t := σ

{
Ws : 0 ≤ s ≤ t

}
, t ∈ [ 0, T ] (3.1)

to be the natural filtration generated by (Wt) and let N denote the collection of all P-null

subsets of F . We shall use the augment filtration

Ft := σ
{FW

t ∪N }
, t ∈ [ 0, T ]. (3.2)

Suppose that there is a market in which two assets are traded continuously. One is

the bond with price process Bt which is subject to the following (stochastic) ordinary

differential equation:

dBt = rBt dt, t ∈ [ 0, T ]; B0 = 1, (3.3)

where r > 0 is the constant annualized risk-free interest rate, continuously compounded.

The other is a stock with price process St satisfying the following stochastic differential

equation (SDE):

dSt = St

[
α dt + β dWt

]
, t ∈ [ 0, T ]; S0 = s0 > 0, (3.4)

where α is the constant drift rate and β is the constant volatility.

11



12 3. THE MODEL

Consider an investor with initial endowment x0 ≥ 0. Assume that the trading takes

place continuously in self-financing fashion, i.e. there is no consumption or income, and

no transaction costs. If the investor invested the amount of money π := (πt)0≤ t≤T in the

stock, then the corresponding wealth process (Xt)0≤ t≤T depends on x0 and π is governed

by the following equation (see, e.g., Karatzas and Shreve [12])

dXt =
[
rXt + πt (α− r)

]
dt + πt β dWt, t ∈ [ 0, T ]; Xo = x0. (3.5)

Note that πt is the amount invested in stock at time t, not the number of shares held.

3.2. Problem 1

Before we formulate our portfolio selection problem, we specify the EallowableF

investment policies with the following definition.

Definition 3.1. A portfolio process π is said to be admissible if πt ∈ Ft for all

0 ≤ t ≤ T and satisfies

E

[ ∫ T

0

πt
2 dt

]
< ∞. (3.6)

Our portfolio selection problem is to find the optimal admissible portfolio π∗ in terms

of maximizing the value of the terminal wealth XT under LCPT framework. The corre-

sponding model can be formulated as follows:

Maximize V LCPT (XT )

subject to





(Xt, πt) satisfies equation (3.5),

π is admissible.

(Problem 1)
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3.3. Problem 2

Observe that the wealth equation (3.5) admits an unique strong solution Xt for any

given portfolio πt at time t by standard SDE theory. However, the wealth process

(Xt)0≤ t≤T in equation (3.5) might not be nonnegative process, i.e., the wealth process

can take negative values. This is sometimes unacceptable for practical situation, since the

most investors cannot buy assets when their wealth is negative. Therefore, an important

restriction that we impose throughout this thesis is the prohibition of bankruptcy

of the investor. That is, we limit our consideration to portfolio π for which the corre-

sponding wealth processes (Xt)0≤ t≤T are such that Xt ≥ 0, a.s., for all t ∈ [ 0, T ]. Such

bankruptcy-averting policy of investment does exist for it at least allows us to deposit all

the money in the bank account.

Our first result makes the simplifying observation that the wealth process for all 0 ≤
t ≤ T , Xt is nonnegative if and only if the terminal wealth XT is nonnegative.

Proposition 3.2 (Bielecki, Jin, Pliska and Zhou [3], Proposition 2.1). Let (Xt)0≤ t≤T

be a wealth process with respect to an admissible portfolio π and let T be the terminal

time. Then

XT ≥ 0, a.s. ⇐⇒ Xt ≥ 0, a.s., ∀ t ∈ [0, T ]. (3.7)

The importance of Proposition 3.2 is that it enables us to replace the constraint

Xt ≥ 0, for all t ∈ [ 0, T ], by the terminal constraint XT ≥ 0.

Assumption 3.3. The terminal wealth XT ≥ 0, a.s.
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Therefore, Assumption 3.3 greatly simplifies our problem, which is formulated as

follows:

Maximize V+( XT ) =

∫ ∞

0

w+(P {XT > y}) dy

subject to





( Xt, πt ) satisies equation (3.5),

π is admissible,

XT ≥ 0, a.s.

(Problem 2)

3.4. Problem 3

Define

θ :=
α− r

β
(3.8)

as the usual market price of risk. Applying Girsanov’s Theorem, consider a risk-neutral

probability measure Q defined by

Q(A) =

∫

A

Zt dP for all A ∈ Ft, (3.9)

where

Zt := exp
{
− 1

2
θ2 t− θ Wt

}
(3.10)

is the Radon-Nikodym derivative. Note that E[ZT ] = 1. In particular, under this risk-

neutral probability measure Q, the discounted portfolio value process (e−rtXt)0≤ t≤T is a

martingale. This implies that

Xt = ertEQ

[
e−rT XT

∣∣∣Ft

]
=

e−r(T−t)

Zt

E
[
ZT XT

∣∣∣Ft

]
, a.s., t ∈ [0, T ], (3.11)

where EQ means the expectation with respect to the probability Q. Equation (3.11) tells

us that the process (Xt)0≤ t≤T also is uniquely determined when the random variable XT

is given. This leads to the following proposition.
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Proposition 3.4 (Karatzas and Shreve, [12], Definition 6.1 and Theorem 6.6). Let

X be an FT -measurable random variable such that X ≥ 0, a.s., and

EQ

[
e−rT X

]
= E

[
e−rT ZT X

]
= xo, (3.12)

then there exists an admissible portfolio π such that the corresponding wealth process

(Xt)0≤ t≤T satisfies XT = X, a.s., and X0 = x0.

Notation 3.5. Denoted the discounted Radon-Nikodym derivative by

ρt := e−rtZt = exp
{
− (

r +
1

2
θ2

)
t− θ Wt

}
(3.13)

and

ρ := ρT = state price density random variable. (3.14)

Due to (3.13) we see that ρ is a log-normal random variable. Let N(·) and ψ(·) be

the distribution function and probability density function of a standard normal random

variable, respectively. Therefore, the distribution function Fρ and probability density

function fρ of ρ are given by

Fρ(x) := N
( ln x− µ

σ

)
and fρ(x) :=

1

xσ
ψ

( ln x− µ

σ

)
(3.15)

where µ and σ are the mean and standard deviation of the random variable ln ρ. Precisely,

µ = −( r +
1

2
θ2 )T and σ2 = θ2 T (3.16)

In view of Proposition 3.4 and using equation (3.14), in order to solve Problem 2

we only need first to solve the following maximization problem in the terminal wealth, X:
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Maximize V+(X) =

∫ ∞

0

w+(P {X > y}) dy

subject to





E[ ρX ] = x0,

X is FT -measurable,

X ≥ 0, a.s.

(Problem 3)

Remark 3.6. Once Problem 3 is solved with an optimal solution X∗, the optimal

wealth process (X∗
t )0≤ t≤T can be got by equation (3.11). Therefore, in the rest of the

thesis we will focus on Problem 3.



CHAPTER 4

Main Results

4.1. Problem 4

Now we consider the general maximization problem :

Maximize V+(X) =

∫ ∞

0

w+(P {X > y}) dy

subject to





E[ ρX ] = x0,

X ≥ 0, a.s.

(Problem 4)

The objective of Problem 4 is to find the optimal random variable X∗. Here we turn

finding the optimal random variable X∗ into seeking the distribution function of X∗ by

the following steps.

Lemma 4.1 (Ross [17], Chapter 5 theoretical exercises 28.). Let X be a continuous

random variable having the distribution function F (·). Then the random variable 1−F (X)

follows uniform distribution over the interval (0, 1), that is,

1− F (X) ∼ U(0, 1). (4.1)

Recall that for the distribution function F (·) of X defined by F (x) = P{X ≤ x} and

F (·) satisfies

1. F (·) is nondecreasing and right continuous.

2. lim
b→∞

F (b) = 1 and lim
b→−∞

F (b) = 0.

17
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If the distribution function F (·) is strictly increasing and continuous, then F−1 :

[0, 1] → R exists. Unfortunately, the distribution function does not have an inverse in

general. Therefore, we defined the following general inverse function of the distribution

function.

Definition 4.2. Let F (·) be the distribution function of X. We defined the inverse

function of F (·), for y ∈ [0, 1],

F−1(y) = inf{x ∈ R : F (x) ≥ y} with inf φ = ∞. (4.2)

Some properties of the inverse of the distribution function are :

1. F−1(·) is nondecreasing and left continuous.

2. F−1(F (x)) ≤ x.

3. F (F−1(y)) ≥ y.

4. F−1(y) ≤ x if and only if y ≤ F (x).

5. If Y ∼ U(0, 1) then F−1(Y ) has the same distribution as X.

The property 5 tells us that the inverse of the distribution function can translate

results the uniform distribution to the other distributions.

Proposition 4.3 (Jin and Zhou [11], Lemma C.1). If X∗ is the optimal solution for

Problem 4 and G∗(·) is the distribution function of X∗, then (G∗)−1
(
1− Fρ(ρ)

)
has the

same distribution as X∗ and

X∗ = (G∗)−1
(
1− Fρ(ρ)

)
, (4.3)

where (G∗)−1(·) is the inverse function of G∗(·).
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We denote

U := 1− Fρ(ρ) (4.4)

where Fρ(·) is the distribution function of ρ. Then U ∼ U(0, 1), ρ = F−1
ρ (1 − U) and

X = G−1(U), a.s. Therefore,

E[ ρX ] = E[ F−1
ρ (1− U)G−1(U) ] =

∫ 1

0

G−1(s) · F−1
ρ (1− s) ds. (4.5)

Now we turn to the objective functional of Problem 4,

∫ ∞

0

w+(P {X > y}) dy, set

X = G−1(U), we have

∫ ∞

0

w+(P {X > y}) dy

=

∫ ∞

0

w+(1− P {G−1(U) ≤ y}) dy

=

∫ ∞

0

w+(1− P {U ≤ G(y)}) dy

=

∫ ∞

0

w+(1−G(y)
)
dy

=
[
y · w+

(
1−G(y)

)]∞
0

+

∫ ∞

0

y · (w+)′(1−G(y))G′(y) dy

Here we need an important assumption.

Assumption 4.4. We assume that the limit

lim
y→∞

[y · w+(1−G(y))] = 0 (4.6)

This assumption is very rational because lim
y→∞

w+(1 − G(y)) = 0 and usually the utility

function u(·) is bounded.

Let s = G(y). Then we can get

∫ ∞

0

w+(P {X > y}) dy =

∫ 1

0

G−1(s) · (w+)′(1− s) ds (4.7)
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4.2. Problem 5

Proposition 4.3 suggests that in order to solve Problem 4 we only needs to seek

among random variables of the form G−1(U), where G(·) is the distribution function of

a nonnegative random variable. Applying (4.5) and (4.7), we turn Problem 4 into the

following problem.

Maximize v(G) :=

∫ 1

0

G−1(s) · (w+)′(1− s) ds

subject to





∫ 1

0

G−1(s) · F−1
ρ (1− s) ds = x0,

G(·) is the distribution function of a nonnegative r.v.

(Problem 5)

The following result, which is straightforward in view of Lemma 4.1 and Proposition

4.3, means that Problem 4 is equivalent to Problem 5.

Proposition 4.5 (Jin and Zhou [11], Proposition C.1).

If G∗(·) is optimal for Problem 5, then

X∗ := (G∗)−1(U)

is optimal for Problem 4. Conversely, if X∗ is optimal for Problem 4, then its distribution

function G∗(·) is optimal for Problem 5 and X∗ = (G∗)−1(U), a.s..

4.3. Problem 6

Denoting

g(·) := G−1(·). (4.8)

Since g(·) is the inverse of the distribution function, so g : [0, 1] 7→ [0,∞] is nondecreasing

and left continuous with g(0) = 0.
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Then we can rewrite Problem 5 into

Maximize

∫ 1

0

g(s) · (w+)′(1− s) ds

subject to





∫ 1

0

g(s) · F−1
ρ (1− s) ds = x0,

g : [0, 1] 7→ [0,∞] is nondecreasing and left continuous with g(0) = 0.

(Problem 6)

4.4. Main idea and results

Our main idea is to find an inequality, with which we can solve Problem 6. The

inequality have relation that the objective is less than or equal to the first constrain.

Since the integrations of Problem 6 can be express convolution or inner produce type, we

found some useful weighted inequalities for monotone functions, which play a key role in

solving Problem 6 :

Proposition 4.6 (Heinig and Maligranda [10], Theorem 2.1). Let 0 < p ≤ q < ∞,

u(s), v(s) ≥ 0 and f(0) = 0. The inequality

( ∫ 1

0

u(s)f(s)q ds
)1/q

≤ M
( ∫ 1

0

v(s)f(s)p ds
)1/p

(4.9)

holds for all nondecreasing f : [0, 1] → [0,∞] if and only if

( ∫ 1

t

u(s) ds
)1/q

≤ M
( ∫ 1

t

v(s) ds
)1/p

for all 0 ≤ t < 1. (4.10)

Taking p = q = 1, we get the following corollary.

Corollary 4.7. Let u(s), v(s) ≥ 0 and f(0) = 0. The inequality

( ∫ 1

0

u(s)f(s) ds
)
≤ M

( ∫ 1

0

v(s)f(s) ds
)
, (4.11)
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holds for all nondecreasing f : [0, 1] → [0,∞] if

M = sup
0≤ t<1

( ∫ 1

t

u(s) ds
)( ∫ 1

t

v(s)ds
)−1

. (4.12)

Moreover, M is the best constant satisfying (4.11). Equation (4.12) admits an optimal

solution t∗, then ”=” holds when f(x) = λI(t∗,1](x) where λ is any nonnegative constant.

Since the probability weighting function w+(·) is strictly increasing and differentiable,

we get the derivative (w+)′(s) ≥ 0 for all 0 ≤ s ≤ 1. And F−1
ρ (·) is the inverse function of

the distribution function, so F−1
ρ (·) is nondecreasing, that is, F−1

ρ (s) ≥ 0 for all 0 ≤ s ≤ 1.

We use the result of Corollary 4.7 for Problem 6. If

M = sup
0≤ t<1

( ∫ 1

t

(w+)′(1− s) ds
)(∫ 1

t

F−1
ρ (1− s)ds

)−1

, (4.13)

then the following inequality

( ∫ 1

0

g(s) · (w+)′(1− s) ds
)
≤ M

( ∫ 1

0

g(s) · F−1
ρ (1− s) ds

)
(4.14)

holds for all nondecreasing g : [0, 1] → [0,∞] with g(0) = 0. That is, the optimal value of

Problem 6 is M · x0 if the equality of (4.14) holds. The constant M given by (4.13) can

be simplified by

M = sup
0≤ t<1

(
w+(1− t)− w+(0)

)( ∫ 1−t

0

F−1
ρ (s) ds

)−1

(4.15)

= sup
0< c≤1

[
w+(c) ·

( ∫ c

0

F−1
ρ (s) ds

)−1]
(4.16)

Equation (4.16) admits an optimal solution c∗, then the optimal function of Problem 6

is of the form

g∗(x) = (G∗)−1(x) = λI(1−c∗,1](x), x ∈ [0, 1] (4.17)

where λ > 0 is the constant satisfying λ ·
∫ c∗

0

F−1
ρ (s) ds = x0. But when M = ∞, then

∫ c∗

0

F−1
ρ (s) ds = 0 and λ does not exist.
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Remark 4.8. A maximization problem is called well-posed if the supremum of its

objective is finite; otherwise it is called ill-posed.

Theorem 4.9. The following statements are equivalent:

(1) Problem 6 is well-posed for any x0 ≥ 0.

(2) The optimal ratio M = sup
0≤ c≤1

[
w+(c) ·

( ∫ c

0

F−1
ρ (s) ds

)−1
]

< ∞.

(3) lim
c→0

(w+)′(c)
F−1

ρ (c)
< ∞.

Furthermore, when one of the above (1)-(3) holds, the optimal solution to Problem 6 is

of the form

g∗(x) = (G∗)−1(x) = x0

( ∫ c∗

0

F−1
ρ (s) ds

)−1

I( 1−c∗,1 ](x), x ∈ [0, 1]. (4.18)

Proof. (1) ⇐⇒ (2) is clear.

(2) ⇐⇒ (3). Since 0 ≤ w+(c) ≤ 1, 0 ≤
∫ c

0

F−1
ρ (s) ds ≤ erT for 0 ≤ c ≤ 1 and w+(c),

∫ c

0

F−1
ρ (s) ds are strictly increasing for c, then the

[
w+(c) ·

( ∫ c

0

F−1
ρ (s) ds

)−1
]

may be

infinity only when c = 0. Therfore,

(2) ⇐⇒ lim
c→0

[
w+(c) ·

( ∫ c

0

F−1
ρ (s) ds

)−1
]

< ∞,

Applying l’Hôpital Rule to w+(c)/
∫ c

0
F−1

ρ (s) ds, we obtain (3). Equation (4.17) says

g∗(x) = λI(1−c∗,1](x) where λ > 0 is a constant. λ must satisfy

∫ 1

0

g∗(s)·F−1
ρ (1−s) ds = x0,

then we get λ = x0

( ∫ c∗

0

F−1
ρ (s) ds

)−1

.

¤

We now summarize the main result in the following theorem.
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Theorem 4.10. Assume that lim
c→0

[
(w+)′(c)/F−1

ρ (c)
]

< ∞. Then the maximal value

at terminal time T under LCPT is given by

sup
0≤ c≤1

[
w+(c) ·

( ∫ c

0

F−1
ρ (s) ds

)−1
]
· x0 (4.19)

Equation (4.19) admits an optimal solution c∗. Then the corresponding optimal terminal

wealth to Problem 3 is

X∗ = x0

(
E[ ρ I{ρ<F−1

ρ (c∗)} ]
)−1

I{ρ<F−1
ρ (c∗)} a.s. (4.20)

Remark 4.11. Since E[ ρ ] = e−rT , so
(
E[ ρ I{ρ<F−1

ρ (c∗)} ]
)−1

≥ erT and erT is the

ratio that all the money put in the bank account. Therefore, It means that the payoff
(
E[ ρ I{ρ<F−1

ρ (c∗)} ]
)−1

· x0 is better than the payoff if we invest all money in the bond.

The optimal terminal wealth X∗ mentioned in (4.20) tells us two different stories in

economical view at terminal time. In the cases of {ρ < F−1
ρ (c∗)} the payoff we gain is more

than that we get from the bond market, and this payoff is fixed due to the deterministic

coefficient. Furthermore, in the rest of part {ρ ≥ F−1
ρ (c∗)} all the assets turn out to be

zero. Those cases of {ρ < F−1
ρ (c∗)} are profitable to the investors. It might be that the

noise Wt of the stock price does not fluctuate dramatically.

4.5. The optimal wealth process and the optimal strategies

In this section, we want to find a portfolio π replicating the optimal terminal wealth

X∗ of (4.20). Recall that ρ = ρT with

ρt := exp
{
− (

r +
1

2
θ2

)
t− θ Wt

}
, 0 ≤ t ≤ T.

Let N(·) and ψ(·) be the distribution function and probability density function of a

standard normal random variable respectively. ρ(t, T ) := ρT /ρt conditional on Ft follows
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a log-normal distribution with parameter (µt,σ
2
t ), where

µt = −( r +
1

2
θ2 )(T − t) and σ2

t = θ2(T − t) (4.21)

and λ := x0

(
E[ ρ I{ρ<F−1

ρ (c∗)} ]
)−1

.

By (3.11), the replicating wealth process is given by

Xt = E
[
ρ(t, T )X∗∣∣Ft

]

= λ E
[
ρ(t, T )I{ρ<F−1

ρ (c∗)}
∣∣Ft

]

= λ E
[
ρ(t, T )I{ρ(t,T )<F−1

ρ (c∗)/ρt}
∣∣Ft

]

=
λ

σt

∫ F−1
ρ (c∗)/ρt

0

ψ
( ln y − µt

σt

)
dy.

Define

f(t, x) :=
λ

σt

∫ F−1
ρ (c∗)/x

0

ψ
( ln y − µt

σt

)
dy.

It is well known that the replicating portfolio is

πt = −
(α− r

β2

)
fx(t, ρt) ρt; (4.22)

see, e.g., Bielecki [3], Equation(7.6). Now we calculate

fx(t, ρt) = −λψ

(
ln F−1

ρ (c∗)− µt − ln ρt

σt

)(F−1
ρ (c∗)

ρt
2

)
. (4.23)

Plugging it in (4.22), we get the following result.

Theorem 4.12. The wealth-portfolio pair replicating X∗ is given by

Xt =
λ

σt

∫ F−1
ρ (c∗)/ρt

0

ψ
( ln y − µt

σt

)
dy, (4.24)

πt = λ
(α− r

β2

)
ψ

(
ln F−1

ρ (c∗)− µt − ln ρt

σt

)(F−1
ρ (c∗)

σtρt

)
, (4.25)

where λ = x0

(
E[ ρ I{ρ<F−1

ρ (c∗)} ]
)−1

.





CHAPTER 5

Numerical Result

In this chapter, we give some numerical results for the maximum value at the terminal

time T

sup
0≤ c≤1

[
w+(c) ·

( ∫ c

0

F−1
ρ (s) ds

)−1
]
· x0 =: M · x0

of Theorem 4.10, and observe how these parameters affect the maximal value.

Example 5.1. consider the case where the terminal time T = 5 (years), the interest

rate r = 0.01, the drift rate of the stock α = 0.05 and the volatility of the stock β = 0.2.

We assume the probability weighting function for gain w+(·) is of the form

w+(p) = e−(− ln p)1.2

,

which is proposed by Prelec [14].

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 5.1. The probability weighting function w+(p) = e−(− ln p)1.2

27
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Recall that the distribution function of ρ is

Fρ(x) = N
( ln x− µ

σ

)
=

1

2
+

1

2
erf

( ln x− µ

σ

)
, (5.1)

where

µ = −(r +
1

2
θ2) T : the mean of ln ρ

σ2 = θ2 T : the variance of ln ρ

θ =
α− r

β
: the usual market price of risk

erf (x) =
2√
π

∫ x

0

e−t2 dt : the error function

Therefore, the inverse function of Fρ(·) is F−1
ρ (y) = exp

{
µ + σ

√
2 erf−1(2y − 1)

}
. In this

example, the values for parameters are shown in Table 1.

Parameters T r α β θ µ σ

Values 5 0.01 0.05 0.2 0.2 -0.15 0.447214

Table 1. Parameters in Example

We plot the graph of w+(c) ·
( ∫ c

0

F−1
ρ (s) ds

)−1

for 0 < c ≤ 1 as in the Figure 5.2..

From the graph , we observe that the maximum does exist and the approximate values

of c∗ and M are

c∗ ≈ 0.253411,

M ≈ 1.82713.
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0.2 0.4 0.6 0.8 1

0.25

0.5

0.75

1

1.25

1.5

1.75

Figure 5.2. The graph of w+(c) ·
( ∫ c

0

F−1
ρ (s) ds

)−1

Second, we only change the terminal time T when the other parameters fix and ob-

serve the c∗ and M in the Table 2.

T (years) 0.5 1 2 3 4 5 6

M 1.18922 1.26449 1.40291 1.5398 1.68045 1.82713 1.98128

erT 1.00501 1.01005 1.0202 1.03045 1.04081 1.05127 1.06184

Table 2

Finally, we change the drift rate of the stock α and the volatility of the stock β when

the other parameters fix. Observe that α and β how to affect the maximum ratio M in

the Table 3.
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The value of drift rate α

M −0.03 −0.02 −0.01 0 0.01 0.02 0.03

0.2 1.82713 1.54742 1.34950 1.21287 1.12410 1.21287 1.34950

The 0.3 1.47355 1.34950 1.25255 1.17848 1.12410 1.17848 1.25255

value 0.4 1.34950 1.27450 1.21287 1.16314 1.12410 1.16314 1.21287

of 0.5 1.28838 1.23602 1.19163 1.15451 1.12410 1.15451 1.19163

volatility 0.6 1.25255 1.21287 1.17848 1.14899 1.12410 1.14899 1.17848

β 0.7 1.22921 1.19751 1.16957 1.14516 1.12410 1.14516 1.16957

0.8 1.21287 1.1866 1.16314 1.14235 1.12410 1.14235 1.16314

Table 3
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