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The Study of Synchronization in Coupled

Networks

Student: Yu-Hao Liang Advisor: Prof. Jonq Juang

Department of Applied Mathematics
National Chiao Tung University

Abstract

The purpose of this thesis is to study the onset of synchronization in
some common models. For the'coupled- chaotic systems, based on the
concept of matrix measure, we derive some criteria for the global stability of
the synchronous manifold. Comparing with. other developed criteria, our
criteria are easy to apply. By merely checking the structure of the vector
field of the single oscillator, we shall be able to determine if the coupled
system could acquire synchrony. Moreover, the considered coupled
networks could be quite general -including the time-varying networks.
Specifically, to illustrate the applicability of our developed criteria and to be
much relative to the real phenomena, the coupled Hindmarsh-Rose neurons
are considered. Some interesting phenomena under synchronization are
showed. For the coupled map lattices (CMLs), ones consider the local
stability problem. We shall give the necessary and sufficient conditions for
the local stability of the synchronous manifold for the arbitrary coupled
networks. Also, a simple algorithm for the construction the so-called
synchronization curve is given. Using it, one can simply explain the
phenomena of the wavelength bifurcation and the size dependence problem.
In addition, the effect of the wavelet transform method developed by Wei
and et al is considered for the CMLs. We shall show that both numerically
and theoretically, it enhances the onset of the synchronization.
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Chapter 1

Introduction

1.1 Synchronization in lattices of coupled systems

Synchronization is a common, significant phenomenon occurring in the natural world
no matter from the micro view or.the macro view. It depicts a group of different
individuals displaying the same'behaviors at the same time under certain interactions.
The purpose of it is to get them to solve problems cooperatively. For instance, in
the human brain, there aré about 10'° neurons. To integrate separately processing
information in the brain, they have to'synchronize their activity [14,31]. In the nights
of the South-East Asia, such as Thailand, Malaysia or Borneo, male fireflies accumulate
along the river banks flashing on and-eff simultaneously [13] in order to attract the
female fireflies cooperatively.

Correspondingly, in the technology field, synchronization now and then is de-
signed to occur in the experiment for some purpose, especially in the design of the
electronic circuit system. In engineering, it is studied as a tool for transmitting infor-
mation by using chaotic signals and monitoring dynamical systems [36].

So as an interesting, important topic, synchronization has drawn a great deal
of attention and is intensively studied in many fields, including neuron science, biol-
ogy, physics, engineering, and other fields of science [1,16,24,26,32-34,48,58,59,62,69,
71,73,77,84,90,94,96,99]. Consequently, several elegant theories and articles concerning
synchronization have been rapidly constructed and published in the past few decades.

The general approaches involved for driving the synchronization criteria are roughly the



Lyapunov function method (global results) and the master-stability function method
(local results), the analysis of the transversal Lyapunov exponents calculated from the
linearized equations for the perturbations transversal to the synchronous manifold.
Since in the real world the number of coupled units is usually large, the in-
creasing interest in synchronization phenomena has led many researchers to consider
synchronization in large networks of coupled systems with different coupling configu-
rations [1,2,27,48,66,74,85,86,97,100]. As a result, one of the most important questions
in synchronization phenomena is that how the coupling strengths and coupling config-
urations of the network influence the stability of the synchronous state. Furthermore,
one may ask the following controlling problem: Can one slightly modify the coupling
configuration of coupled systems to dramatically reduce the coupling strength needed
to acquire synchrony [51,52,98]7 In this thesis, we shall focus on these issues by con-

sidering various models that are frequently used to explain these phenomena.

1.2 Modeling

Based on the disparate individuals; the dynamics. of interesting qualities, like move-
ment, velocity, energy, potential, and so modeling are in the various fashions. Similarly,
connection and commutation between themselves have several types. Depending upon
the different models considered, there are different explanations as to why the units
in the coupled systems synchronize. In this context, we will introduce three different
kinds of models (Model I ~ Model III) that are often used to describe the real collec-
tive networks, and synchronization within. Specifically, the first two models (Model
I ~ Model II) are to be extensively studied. By it, in this section, we start with the

introduction of the models.

1.2.1 Model I: Coupled Chaotic Systems

The model under consideration in this subsection is of continuous time with continuous
state coupling. Specifically, we consider a unit with the interesting dynamics governed

by a set of ordinary differential equations, saying Cfi—‘f = f(«x,t). Here, z € R", and fisa



vector-valued function from R” xR to R” denoted by f(x,t) = (fi(x,t), -, fa(, t)".
Moreover, when there are connections/commutations between a group of such m units,
the induced whole dynamics under interaction is then described by

dwi
dt

:f(:ci,t)+d-2gij(t) Dz;, i=1,2,...,m, (1.1a)
j=1

where &; = (T4, Tiz, . . ., Tin)" € R™, d is the coupling strength, D = (d;;) € R™" is the
inner coupling matrix, and the quantity g¢,;(¢) describes the coupling weight from the
unit j to the unit i. Let © = (1, @2..., ®m)", and G(t) = (g;;(t)) € R™™. Then G(t)
represents the (outer) coupling configuration of the network at time ¢. Equivalently,

(1.1a) becomes

f(m17t>
&= : + (@)@ D)z = F(w,t) + d(G(t) ® D)z (1.1b)

f(@m,t)
where ® denotes the Kronecker product.

Such type of model can been seenin some nervous systems or designs of the elec-
tronic circuit systems [99]. For this model; general approaches to deal with the local
stability of the synchronization state;.include the master stability function-based crite-
ria [1,72,74,75,81] and the matrix measure criteria [17,18]. For the global stability, the
developing method includes the Lyapunov function-based criteria [2-4,8,78,100-104]
and the matrix measure approach [17,18], and et. al. Among the Lyapunov function-
based criteria, the connection graph approach proposed by Belykh [2-4,8] is sui generis
since the proposed criteria combine some graph theories to avoid the direct compu-
tation of the eigenvalues of the coupling matrix G(t). (Not surprisingly, quantities
related to the eigenvalues of matrix G(t) should play the decisive roles in the synchro-
nization phenomena realistically and theoretically.) What involved term to replace the
role of eigenvalues of G(t) is the total length of all paths passing through an edge in
the network connection graph inducing from G(t). Nevertheless, the method is limited

to the networks with cooperative couplings, i.e., g;;(t) > 0, Vi # j. As well, despite



the fact that the criterion based on the analysis of Lyapunov function guarantees the
onset of synchronization, it is not a general method since there is no procedure for
constructing the Lyapunov function for an arbitrary system. Similar problem occurs
in the matrix measure approach. Furthermore, such criteria may not hold when the
number of the coupled systems is large.

In the thesis, we shall present some criteria for the onset of synchronization in
this model. Instead of constructing the Lyapunov function, the developed criteria are
based on the completely different version of the matrix measure approach as proposed

in [17,18]. The approach can overcome the drawbacks mentioned above.

1.2.2 Model II: Coupled Map Lattices

The model considered in this subsection is essentially similar to that given in Model
I, except that the dynamics of unitswand the intersection ways are governed by some

maps. [t implies the equationsof the motion then read:
xi(k+1) = flwk)+d Y _gif(@(k), i=1,...,m (1.2a)
j=1

Here € R and f is a vector-valued function from R” x R to R". Based on the
structure of the modeling, ones‘usually call (1.2a)as the coupled map lattices (CMLs).

Set G = (g;;). Then in the vector-matrix form, (1.2a) becomes

z(k+1) = F(z(k)) + d(G® I)F(z(k)) (1.2b)

)

where (k) = (z1(k), ..., 2. (k)T, and F(xz(k)) = (f(x1(k)), ..., f(za. (k)T

This model, first introduced in 1980’s [20,56,93], has been the subject of much
recent research. It is studied in the populations, chemical reactions, information pro-
cessing, and biological networks and et. al [57]. Many dynamical behaviors have been
observed, including spatiotemporal chaos and synchronization. In this thesis, we shall
specifically focus on the issue of the synchronization.

The method developed to deal with the local stability problem for the synchro-
nization state is based on the master-stability function criteria [1,19,28-30,42,106].



For the global stability problem, the methods include constructing the Lyapunov func-
tion [64,65], applying the matrix measure criteria [61] and et. al. Nevertheless, compar-
ing with Model I (1.1a), these methods are more limited. More precisely, the criteria
limit to the special forms of the coupling matrix G.

In the thesis, we shall consider the local stability problem for the synchronization
state in the model with coupling matrix G arbitrary given and study some correspond-

ing problems.

1.2.3 Model III: Pulse Coupled Systems

The model introduced in this section is to explain the flashing synchrony in the fireflies
[13,69], and the rhythmic activity of cells of the heart pacemaker [47,68,76,89], of cells
of the pancreas [82] and of neural networks [12,13,25,76,80,88]. The most difference
between this model and Models I, 114s the interaction fashion. Interaction in Models
I, IT is “continuous in time”, while that in this'model is “fleeting and intermittent in
time”. Moreover, the reset miechanism occurs herein.“Such a coupling fashion is called
to be pulse-coupled, and the'model is called the integrate-and-fire model. We start with
introducing the Peskin’s model [76].

Let m be the number of‘the units in the coupled system, and the individual state
be denoted by x; (i = 1,2,--- ,m), where z;-are subject to the dynamics

dl’i
dt

with I; > r; > 0. As time progresses, suppose t— ! is the first time that some ith unit
reaches the threshold 1, i.e., z;(t—) = 1 (one also says such unit fires). Then z; is
reset, i.e.

zi(t—) =1 — x;(t+) =0, (1.4a)
and the firing effect from i to j (j # i) yields immediately:

zi(t=) = { 1 if x;(t—)+ g; > 1. (1.4b)

'We use symbols t— and t+ to represent the time instantly before and after the time ¢ , respectively.



Suppose in this instant, the kth unit fires, i.e., zx(t—) 4+ gr; > 1, then similar process
like (1.4) occurs again at once. This process at time ¢ is lasted until all effects of the
firing units are evaluated. In addition, the whole evolution dynamics shall repeat above
process once and once again. For the onset of synchronization in the integrate-and-fire
model, it means that all units fire simultaneously after some fixed time 7.

This model was later generalized by Mirollo and Strogatz [69]. It is assumed
that the state variable z; evolves according to x; = f;(¢;), where f; : [0,1] — [0,1] is
smooth, strictly increasing, and satisfies f;(0) = 0 and f;(1) = 1, and the dynamics of
phase ¢; is governed by

do; 1

=— <¢; <1 1.
= 0<6i< (1.5

Moreover, as time progresses, suppose t— is the first time that ¢;(t—) = 1 (corre-

spondingly, x;(t—) = 1) for some i (one also says such unit fires). Then let E;(t—) =
f(%(l —¢i(t—)) + ¢;(t—)), j = 1,2,>+-m,and undergo the process of the reset and
firing effects as given in (1.4).for E;(t—)j.= 1,25--- ,m to get E;(t+). Then the
phase ¢; at time t+ is defined as @;(t+) = g(E;(t+)). Here g is the inverse function
of f. In addition, the whole evolution dymamics shall repeat above process once and
once again.

As follows, we define some terminologies in_the model. We say ¢ = (¢, , dm)
is in the firing state if ¢; = 0 for some i.~For a given initial phase ¢(0), we say < t; >
is its firing time series if it is the increasing sequence that records the successive time
when phase ¢(t;) =: ¢ is in the firing state. Let r be the map defined in the set of
firing states by (@) = ¢+ (Such definition is well-defined). Then synchronization
in the model is defined to satisfy that for any ¢ in the firing state, there is N € N such
that r"(¢) = (0,---,0), Vn > N.

Note that the Peskin’s model is one of the special model proposed by Mirollo and
Strogatz with

I; T
fi(¢) = r_(l —€ ZTld))-
and .
In(——
L ()



In the article [76], Peskin conjectured that, first, for identical units, the coupled
system approaches synchronization for almost all initial conditions, and second, this
remains true even when the units are not quite identical. Herein, “identical” means
fi=f, T, =T, and g;; = g > 0. For the first conjecture, Mirollo and Strogatz [69] give
a rigorous proof for the case that f/” < 0. The second part of Peskin’s conjecture was
verified by Urbanczik and Senu [91] with flat units, i.e., f/ = 0. However, Bottani [11]
numerically showed that even concave-upward units, i.e., f/ > 0, can synchronize,
provided that the concavity is not too large. In the article [15], Chang and Juang
show that if the stability condition holds (see, Eq. (2.9) therein), then the nonidentical
coupled system with f/ < 0 will achieve synchrony for almost all initial conditions;
if both the stability condition (see, Eq. (2.9) therein) and absorption condition (see,
Eq. (3.19) and (3.20) therein) hold, then the coupled system with f/” > 0 will achieve
synchrony for almost all initial conditions.: The holding of the stability condition implies
a group of units reaching the threshold at the same time will remain coordinated in
the future, while the holding.of the-absorption condition implies the number of firing
units grows larger and larger.and ultimately all units fire simultaneously. We comment

that the stability condition requires that g;; >.0.

1.3 Organization and results of the thesis

The organization of the thesis is as follows. In Chapter 2, we study the global synchro-
nization in Model I (1.1), including the cases that coupling matrix G(t) therein is time
independence and time dependence. Some criteria for the onset of synchronization are
given. In Chapter 3, we take the coupled Lorenz equations, coupled Duffing equations,
and Hindmarsh-Rose neurons as examples to see the applications of the given criteria.
Specifically, we study furthermore the dynamics of the coupled Hindmarsh-Rose neu-
rons under synchronization. The developing method for these criteria includes roughly
the concepts of matriz measure, and coordinate transformation. In Chapter 4, we study
the local synchronization in Model II with coupling matrix G' generally given. Some

criteria for the local stability of the synchronization state are given. In addition, the



phenomenon of wavelength bifurcations, as the terminology using in [37], and the ap-
plication of wavelet transform method in Model II are discussed. Here, the wavelet
transform method is an approach which is first given out concerning about Model I
(see, e.g., [51,52,83,98]) in order to bring the synchronization easier to happen. It will
be shown that this method also applies well in the CMLs (1.2). In Chapter 5, we
summarize the results in this thesis and give some directions of the future work. We

remark that most results in the thesis are adopted from [49,50,53-55].



Chapter 2

Synchronization in Model 1

Before going into details of the derivation of synchronization for Model I, we first give

some needed preliminaries.

2.1 Preliminaries

First, we introduce the concept of matrix -measures: The following definitions and

properties of matrix measures can be referenced to the book by M. Vidyasagar [92].

Definition 2.1.1. ( [92]) Let || - ||i be an induced matriz norm on R™™. The matriz

||[T+eK]||;—1
—_—

measure of matriz K on R™"™ s defined to be pi(I<) = lim+
e—0

Lemma 2.1.1. ( [92]) Let || - ||x be an induced k-norm on R™ ™, where k = 1,2, cc.

Then each of matriz measure i (K), k = 1,2,00, of matrizc K = (k;;) on R™" is,

respectively,
poo(K) = max{ki; + > Jkil}
J#i
p(K) = max{k;; + > Jkil}
i#]
and

:U2(K) = )\max(KT + K)/2

Here Ayax(K) is the mazimum eigenvalue of K.



Theorem 2.1.1. ( [92]) (i) pi(cA) = au;(A), ¥V a > 0 (ii) p,(A+ B) < u;(A) +
wi(B). (iii) If X is an eigenvalue of A, then Re\ < pu(A). (iv) Consider the differential
equation &(t) = K(t)x(t)+v(t), t > 0, where x(t) € R", K(t) € R™*", and K(t),v(t)
are piecewise-continuous. Let ||-||; be a norm on R™, and ||-||;, p; denote, respectively,
the corresponding induced norm and matrix measure on R™™. Then whenevert > ty >

0, we have

(0l <l { / (K ()ds -+ / a{ [ t (K)o s
(2.1)

Next, we introduce a function being of type K, which generates a monotone
dynamics of the system of linear differential equations. For completeness and ease of
the references, we also recall the definitions of the above described concepts and their
properties [41,92].

Let R? = {x = (z1, 22, ... ,apn) €R™: &> 0,i=1,...,n} be the nonnegative
cone. Let a,b € R". We write'a < b if b +a € R
Definition 2.1.2. We say that.a function = (f,.-, fn) : D C R* — R" is of type
K on D if, for each i, f;(a)< f;(b) whenever a = ay;-..,a,) and b= (by,...,b,) are
m D with a < b and a; = b;:

The following theorem ameounts.to saying that a vector field being of type K is a
sufficient condition to generate a monotone dynamics.

Theorem 2.1.2. ( [{1]) Let f(t,x) be of type K on R™ for each fixed t and let x(t)
be a solution of &(t) = f(t,x) on |a,b]. Let z(t) be continuous on [a,b] and satisfy
Diz(t) < f(t,z). Here Dix(t) = hli)rglﬁ M Then z(t) < x(t) fora <t <b
provided that z(a) < x(a).

Consider linear system of differential equations in the homogeneous case

Y =A(t)y. (2.2)
t
- A(s))d
Here A(t) is an n X n matrix. Then clearly if lim M < —r for some r > 0.

Then y(t) converges to zero exponentially. The following propositions play one of the

critical steps in obtaining our main results.

10



Proposition 2.1.1. Suppose £(t), n(t) and ((t) are nonnegative functions on [0,00)

satisfying the following inequalities

Dig(t) < ar(t)§(t) + aa(t)n(t) + as(t)C(2), (2.3a)
Din(t) < ag(t)€(t) + az(t)n(t) + a7 ()¢ (1), (2.3b)
Di¢(t) < as(t)§(t) + as(t)n(t) + as(t)¢(t). (2.3¢)

Here a;(t), 1 = 4,5,...,9, are nonnegative functions on [0,00). Then £(t), n(t), and

— [t S S
((t) converge to zero exponentially provided that limw <

t— o0

—r, for some r > 0,

where
A(t) = ag(t) aot) ar(t) (2.4)

(ii) Suppose, in addition, that, a,(t), & =1,..0.9, are constants. Then £(t), n(t), and

C(t) converge to zero exponentially provided-that all-eigenvalues of A are negative.

Proof. Let £(t), m(t) and ((t) satisfy the followingequation.

€ = ar(t)€ Haa (O +-as(t)C, /&0) = £(0),
= ag(t)€ +az ()7 + a7(£)¢7(0) = n(0),
¢ = as(t)€ + ag(t)f +as(t)¢, ¢(0) = ¢(0)

It is easily checked that the above system is of type K. Following from Theorem 2.1.2
that £(t) > £(t), m(t) > n(t), and ((t) > ((¢), for all t > 0, we see that the first
statement of the proposition holds as claimed. The second assertion of the proposition

is obvious. O

Proposition 2.1.2. Let & = A(t)x. Here A(t) is an nxn matriz. Suppose lim A(t) =
A. Then x(t) converges to the origin exponentially provided that all real parts of

eigenvalues of A are negative.

Proof. For any € > 0, there is a P, such that A can be decomposed into a Jordan form

of the form (see e.g., P.128 of [40]):

11



P.AP™' =D +€Q,

where D is a diagonal matrix with the diagonal entries being all the eigenvalues of A,

and @ is a matrix with its entries being either 0 or 1. Then P.A(t)P!' = P.(A(t) —

AP~ +eQ + D. Tt follows up(PA(H)P7) < po(P(A(t) — A)P7Y) + ea(Q) +
pa(D) < pa(P.(A(t) — A)P7Y) + en + pa(D). Since lim A(t) = A, we get

(P AP < (n+ 1)e+ po(D),

whenever t > t. for some t. > 0. Hence,

mfot /1’2(PEA(t)PE_1>d8

< (n+1)e+ ps(D).

t— o0 t
By the arbitrariness of ¢, take € = géﬁfi%) Then, we have
t —
mfo IL‘2(PeAt(t)Pe ')ds < N2<2D)

Thus, all solutions of § = (P.A(t)P.- ")y converges to the origin, and so are those of
T =A(t)x. O

Proposition 2.1.3. Let A and G be_matrices-of dimension m X m and n X n, respec-
twely, and I, be the p X p identity matrix.” Let \;, i = 1,--- |k, be all the eigenvalues
of G. Then the real parts of the eigenvalues of

aone (5 9)oc)

are negative provided that all real parts of the eigenvalues of matrices

- I, 0
a4 0)

are negative.
Proof. For any € > 0, there is P, such that
PGP ' =D +eQ,
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where D is a diagonal matrix with the diagonal entries being all the eigenvalues of G,

and @ is a matrix with its entries being either 0 or 1. Then

(I, ® P,) {(A®In)+ << I& g ) ®G)} (I, ® P71)

:{(A@In)+<€1 8)®D}+6<IS g)®Q

By taking e sufficiently small, we get real parts of the eigenvalues of
I, 0
(A®I,)+ (( 0 0 ) ®G)

(A®In)+<€1 g)®D (2.5)

are negative. Then, the proof is completed by noting that after some permutation,

matrix in (2.5) becomes diag(W7, - - -, W,,), where W, = M, forsome j =1... k. O

are negative iff those of

2.2 Global synchronization with time-invariant cou-
pling

In this section, we first consider synchronization of (1.1) with the time-invariant cou-

pling. It means we consider the synchronization in the following system.

da:i = .
dt :f(:cl,t)—i—d;ngw], 7,21,2,...,771, (26&)
where x; = (21, T2, - . ., Tin)T € R™, and f is a vector-valued function from R™ x R to
R" denoted by f(x,t) = (fi(ax,t),---, fa(z,t))". Or equivalently,
f(a:lv t)
T = : +d(G® D)x =: F(x,t) + d(G® D)z, (2.6b)
JF(@m,t)
where = (x1, @3 ..., x,)", and G = (g;).

As one usually concerns, synchronization is the phenomenon that units in a group
have their dynamical behaviors get closer and closer as time progresses, and eventually
they tend to be identical. So, mathematically, we define synchronization in the same

sense. Mention that such definitions are also set for the time-varying coupling.
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Definition 2.2.1. (i) The synchronous manifold 9 of Model I (1.1) is defined as the
set M={x=(x1, ,&n) :x;=x;, 1 <i,j <m}. (i) Model I (1.1) is said to be
locally synchronized if the synchronous manifold I is asymptotically stable under the

given coupling strength d.

Definition 2.2.2. Model I (1.1) is said to be globally synchronized if, under the given

coupling strength d, for all initial conditions x;(to) (1 =1,2,...,m) in R",
tlim lzi(t) —x;(t)]| =0, V1<i,j <m.
— 00
We next give the definition of the bounded dissipation of a system.

Definition 2.2.3. Model I (1.1) is called to be bounded dissipative (with respect to
a) if there is a bounded region By, (a) =: {x : ||z|| < a} such that for each parameter
d > 0, and each initial value x(0), there is a time ty, such that x(t) lies in By, (a)

whenever t > tg.

To prove global synchronization of coupled chaotic systems, one needs to assume
bounded dissipation, which plays the role of ana priori estimate. Without such an a
priori estimate, as in the case of the Rossler system, global synchronization is much
more difficult to obtain. Only local synchronization was reported numerically in litera-
ture (see e.g., [75]). An interesting question in this'direction is how bounded dissipation
of the coupled system is related to‘the uncoupled dynamics and its connectivity topol-
ogy. Not much general theorems have been provided so far. In just the case that G(t)
and D are specially given, it was shown in [7] that bounded dissipation of the single
oscillator implies that of the coupled oscillators. Moreover, the absorbing domain of
the coupled system is a topological product of the absorbing domain of each individual
system.

Now, we impose the conditions on coupling matrices G and D. We assume,

throughout the section, that

(i)A = 0 is a simple eigenvalue of G and

e= \/—%(l, 1,...,D)E  is its corresponding eigenvector; (2.7a)
(ii) All nonzero eigenvalues of G have negative real part. (2.7b)

14



Such assumption above is to ensure the invariant property of the synchronous man-
ifold 9t and make the dynamics of each unit under synchronization be the same as

that without coupling. We further assume that coupling matrix D is, without loss of

(I, 0
2-(5 ). 619

The index k, 1 < k < n, means that the first £ components of the individual

generality, of the form

system are coupled. If k # n, then the system is said to be partial-state coupled.
Otherwise, it is said to be full-state coupled.
To study synchronization of equation (2.6), we permute the state variables in the

following way:

L4 g
T; = : and & = : (2.8)

)

fl(jvt)
x = : +d(D'®G)x=: F(a:t)+ d(D @ G)z, (2.9a)
fu(@,1)
where
~ fi(wlvt)
fil®,t) = : (2.9b)
fi(mmvt)

The purpose of such a reformulation is two-fold. First, a transformation of coordinates
of & is to be applied to (2.9a) so as to isolate the synchronous manifold. Second, once
the synchronous manifold is isolated, proving synchronization of (2.6), is then equiva-
lent to showing that the origin is asymptotically stable with respect to reduced system
(2.12). To do this, we first make a coordinate change to decompose the synchronous

subspace. Let A be an m x m matrix of the form

15



0 :
E
: . N 0 =: ( oT ), (2.10a)
0 -~ 0 1 -1
vm vmo vmo ) em

where e is given as in (2.7a). It is then easy to see that EE” is invertible and that
A™'= (E"(EE"), e) (2.10b)

Setting
A=1,% A, (2.10c)

we see that

~

A(D@G)A = (I, A)(DRG) (I, A™)
EGET(EE")™! 0 )
e'GET(EE")™" 0

po( S 0) o100

:D@AGA‘1:D®<

We remark, via (2.10d), that-a(G) =& (G) =40}, where o(-) takes the spectrum of a
matrix. Multiplying A to the both side of equation (2.9a), we get

~

= AF(2,1) + dA(D ® G)A™'g

K

':,K

—AF(A'g,t)+d(D® ( ,f'; 8 ) )9 (2.11)
T1,i — L24
Y Yi
Let y = : Then g; = . Setting g; = . d
et g g en g xml_l’lm Lo etting y % z:: 25 an
" 7 2 T
7j=1
Y1
Y= : we have that the dynamics of ¥ is satisfied by following equation
Yn
=d(D® G)y+ F(y,t). (2.12)
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Here F is obtained from AF(A~'g,t) accordingly.

The task of obtaining global synchronization of system (2.6) is now reduced to
showing that the origin is globally and asymptotically stable with respect to system
(2.12). To this end, the space g is broken into two parts y., the coupled space, and

Y., the uncoupled space.

g = ( Ye ) and F(y,t) = ( ;—:C((Z’ ?) ) respectively. (2.13)
Y1 Yk+1

Here y. = : and y, = : . The dynamics on the coupled space with
Yk Yn

)

respect to the linear part is under the influence of G, which is asymptotically stable.
The dynamics of the nonlinear part on coupled space can then be controlled by choosing
large coupling strength. As a matter of fact, it is easier to obtain synchronization of
coupled chaotic systems with a larger coupled spaces On the other hand, the uncoupled
space has no stable matrix G40 play with. Thus, its corresponding vector field F, (¥, )
must have a certain structure to make the trajectory stay closer to the origin as time
progresses. As we shall explain latter.

Now, assume that F,(yt) satisfies a uniformly Lipschitz condition with a uni-

formly Lipschitz constant b;. That is;
1E.(g. )]l < billyll (2.14a)

whenever g in the ball B,,,_,),(«), and for all time ¢. Since the estimate in the right-
hand side of (2.14a) depends on the whole space y, condition (2.14a) is a mild as-
sumption provided that the coupled system is bounded dissipative. Write F,(¥,t)

as

= U ()Y, + Ru(y,1). (2.14D)

We assume further that the followings hold.

17



(i) U(t) is a block diagonal matrix of the form U (t) = diag(U,(¢),--- ,U;(t)) where
!
each U,(t), j =1,...,1, are matrices of size (m — 1)k; x (m — 1)k;. Here ij =
j=1

n —k, and k; € N. Assume that there exists a constant v > 0 such that matrix

measures f;(U;(t)) < —v, for all ¢ and all j. (2.14c)

R, (gv t)
(ii) Let R,(y,t) = : . Here [ is the number given in (i). Then R,;(y, 1),

RUl (gu t)
j=1,...,1, satisfy a strong uniformly Lipschitz condition with a strong uniformly

Yu1
Lipschitz constant by. Specifically, let y, = : , written in accordance with

gul
the block structure of U(t). Then we assume. that
Ye
_ gul
1R (7, Ol <2 : I (2.14d)
Yuj1
whenever g in the ball B(iy.(a), and forall j = 1,...,1 and all time ¢.

Specifically, we break the vector field F, into (time dependent) linear part U (¢)#,,
and nonlinear part R, (g,t). We will further break U(¢) into certain block diagonal
form if necessary. Note that form (2.14b) can always be achieved since the remainder
term R, still depends on the whole space . To take control of the dynamics on
the linear part, we assume that the matrix measure of each diagonal block U, (t) is
negative. As to contain corresponding dynamics on the nonlinear part, we assume that
(2.14d) holds. Note that though the nonlinear terms R,;(y,t) could possibly depend
on the whole space, their norm estimates are required to depend only on the coupled
space and uncoupled subspaces with their indices proceeding j. In this set up, the

nonlinear dynamics on uncoupled space can be iteratively controlled by choosing large
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coupling strength. We also remark that if (2.14c) and (2.14d) are satisfied for [, the
number of diagonal blocks, being one, then we do not need to further break U (t). Such
further breaking is needed only if (2.14c) and (2.14d) are not satisfied. The proof in

the following theorem gives exactly how the above strategy can be realized.

Theorem 2.2.1. Let G and D be given as in (2.7). Assume that F satisfies (2.14),
and system (2.12) is bounded dissipative with respect to .. Let A\; = max{\;|\;€ Re(c(Q))}.

If

l
Cbl b2 2 2
d > 1 — = dmin 2.15
o (1 ®) | (2.15)
where € > 0 and c is some constant depending on G and €, then tlim y(t) =0.
—00

Proof. Since system (2.12) is bounded dissipative with respect to «, without loss of

generality, we may assume that ||g(t)|| < a for all time ¢ >t Using (2.14b), we write

(2.12) as
Ye dI,@G) —0 )(y) ( F.(y.1) )
e = \ \“ = 2.16a
(yu) ( 0/ Tty )\ wi R.g.1) ) (2.162)
Applying the variation of constant, formula to (2.16a)-on y., we get
¢ ¢ v
Go(t) = el g (hy) + / e TUIEDF, (y(s), 5)ds. (2.16b)
to
Let Ay = max{ \;|\; € Re(o(G) — {0} ) }. Then
|e! TGN < cet (2.16¢)
for v = A\ + € and some constant c¢. Here 0 < € < —Ay. Thus,
t
lge(t)]] < ce® | g.(to)]| +cb1/ Mg (s)||ds
to
b
< celtmto)dvg 4 %% =: et 4 %Co. (2.16d)
Let 6 > 1, we see that
_ o
19l < ~cod, (2.17a)
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whenever ¢ > ty; for some t,; > 0. We then apply Theorem 2.1.1 on y,; and the
resulting inequality is

|Gur ()] < [|Gur (to,1) ]| exp {/ ui(Ul(s))ds}

to,1

- /t:’l P {/St 'ui(Ul(T))dT} [Ru1(y(s),s)|ds.

It then follows from (2.14c), (2.14d), and (2.17a) that

_ e ab ab
[Gur (B)]] < e 5;2005 < 3;2 cod” = EC 167 (2.17b)

whenever ¢ > t; ; for some ¢; 1 > ¢p;1. Inductively, we get

;0T j =201, (2.17¢)

lg(0)] = Zuym T IO <1+<”j>)”—bl<sl+1=:ha,

whenever ¢ > ¢, Choosing d.> (1 o (b ) )_ ‘!’ﬁ 51 we see that the contraction factor
h is strictly less than 1, and ||y(#)|| contracts as time progresses. To complete the proof

of the theorem, we note that 6 >"1 can be made arbitrary close to 1. Consequently, if
!

d > (1 + (%2)2) ® b then h can still be made to be less than 1. O

IZK
Remark 2.2.1. (i) In case that G is symmetric, then ¢ and € can be chosen to be 1

and 0, respectively. (ii) by and by could possibly depend on «.

Corollary 2.2.1. Suppose F' and G are given as in Theorem 2.2.1. Let

D= ( Dgxk 8 ) where Re(o(D)) > 0. (2.18)

Assume, in addition, that either o(G) or o(D) has no complex eigenvalue. Then

assertions in Theorem 2.2.1 still hold true, except dnin needs to be replaced by

cby by 5
(in = (=A1 — €) - min{Re( o(D) )} <1+(7)> . (2:19)
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Proof. Assumption on D is to ensure that (2.16¢) is still valid. Other parts of the

proof are similar to those in Theorem 2.2.1 and are thus omitted. O

We next turn our attention to finding conditions on the nonlinearities f;(u,t),
i=1,...,n, u € R", so that assumptions (2.14) are satisfied. To this end, we need

the following notations. Let @; and & be given as in (2.8). Define

T14 [@1]
[;]” = : and [Z]” = : (2.20)

xm—l,i [wn]

We then break F as given in (2.9a) into two parts so that the breaking is in consistent

with ¢ in (2.13). Specifically, we shall write

F@, 1) < 11::((2?) ) (2.21)

We are now in the position to state the following propositions.

Proposition 2.2.1. Suppose that fi{®, t),2 = 1,2, ., k satisfy a Lipschitz condition
in B,(5) with a Lipschitz constant by. That is

b

for all w, v in B,(5) and all time't. Then(2.14a) holds true.

. Afi(z,1)
Proof. Note that AF(x,t) = : where A is given as in (2.10a), and so
Af,(2,1)
~ fi(wljt)_fi(w%t)
[Afi(z,t)] = : i=1,2,...,n. (2.23)
fi(wm—lv t) - fl(wma t)
Since -
) Afi(@ 0]
Fc(gv t) = ~
Af@0) )
we conclude that (2.14a) holds. O
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From the above proposition, we see that the nonlinearities on the corresponding
coupled space are only assumed to be Lipchitz. The following proposition is very useful
in the sense that by checking how each component f; of the nonlinearity f is formed,

one would then be able to conclude whether (2.14c¢) and (2.14d) are satisfied.

Proposition 2.2.2. Let u = (uy,...,u,)" and v = (vy,...,v,)" be vectors in B,(%).
p

Let w, = Zki’ p =1,...,1, where kg = k, the dimension of coupled space, and
i=0

kr,... ki and | are given as in (2.14c). Write fo,,_ 4i(w,t) = fu,_vi(v,t), i =1,... k,

as

pr,l—l—i(ua t) - pr71+i('v7 t)
kp

= Z pr71+i,wp71+j(’u'v v, t) (uwpﬂ-i-j - Uwp71+j) + Twpfl"l'i(u’ v, t)'
j=1

(2.24a)

We further assume that the followings are true.

(i) Forp=1,...,1, let Quuwp = (Guytiswg s (W, v 1)), where 1 < i, j < k.
Then p1,(Vy,) < —v for all p; usv<in B,(5) and all time t, where * = 1,2, 0.
(2.24b)
(it) Let vy = (rw,_,11(u, v,t), .. .,rwp(u,v,t))T. We have that
Uy — v
7ol < b2 || : | (2.24c)

uu)p,1 - /Uwp,1

for all p, w,v in B,(5) and all time t.

Then (2.14c¢) and (2.14d) hold true for x = 1,2, c0.

Proof. Since r;(u,v,t) depend on the whole space, f;(u,t) — f;(v,t) can always be
written as the form in (2.24a). Using (2.24a) and (2.23), we have that the matrices
U,(t) in the linear part of F,(¥,t) take the form

m—1
Up(t) =Y Quuwuirn(t) ® Dy, (2.25)
w=1
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where x,, are given as in (2.6a), and

1 1=j=w ..
(Dw)“ { 0 otherwise, l<ijsm—1

It then follows from Lemma 2.1.1, and (2.25) that p.(U,(t)) < —v for * = 1 or co. For
x = 2, we have that

m—1

U o{Quviin(®) + (Qu i p(®) '}

w=1

3 (@095 @t 22)

w=1

=0 (U,(t) + UpT(t)) ,

where o(A) is the spectrum of A. We remark that the first equality above can be
verified by the definition of eigenvalues due to-the structure of U,(t). It then follows
from Lemma 2.1.1 that ps(Uy(t)) < —=%. The remainder of the proof is similar to that
of Proposition 2.2.1, and is thus omitted. O

Remark 2.2.2. The upshot of Proposition 2.2.2 is that by only checking the “structure”
of the vector field f of the single oscillator, one should be able to determine if our
main result can be applied. To beé precise;-we begin with saving notations by setting f
as f = f(z,t) = (filz,t),..., fu(z,t))T. We then check the form of the difference
of “uncoupled” part of dynamics. That is, we write fi(u,t) — fi;(v,t) in the form of
(2.24a) with i = k+1,...,n. If (2.24b)-(2.24c) can be satisfied, then | =1 gets the
job done. Otherwise, we further break the uncoupled states into a set of smaller pieces

to see if the resulting (2.24b)-(2.24c¢) are satisfied.
We are now ready to state the main theorems of the paper.

Theorem 2.2.2. Assume that system (2.6) is bounded dissipative. Let coupling matri-
ces G and D satisfy (2.7) and the nonlinearities fi(x,t), i = 1,2,...,n, satisfy (2.22)
and (2.24). Suppose d is greater than dy,, as given in (2.15). Then system (2.6) is
globally synchronized.
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Proof. The proof is direct consequences of Propositions 2.2.1 and 2.2.2, and Theorem

2.2.1. 0

Theorem 2.2.3. Coupled system (2.6) with D given as in Corollary 2.2.1, is globally
synchronized provided that the coupled system is bounded dissipative, the nonlinearities
filx,t),i=1,2,...,n, satisfy (2.22) and (2.24), and d is greater than dyy,. Here dp,
is giwen in (2.19).

The actual way to apply the above Theorem 2.2.1, 2.2.2 to the real question is
postponed to the Chapter 3.

2.3 Global synchronization with time-varying cou-
pling

In this section, we consider the synchronization of Model (1.1). As given in (2.9a), we

can write the coupled system.equivalently as

fl(jvw

ISR
|
+
=
)
&)
Q
B
Ll
=
G2
+
=
)
&
Q
&

: (2.26)
fu(@,1)
where &;, & and f;(&,t) are defined-as in (2.8);(2.9b). Our basic strategy to get the
criteria of synchronization such as Theorem 2.2.2 is similar to that gotten there. What
makes the most difference is that in this case Eq. (2.16b) does not hold again. To
deal with it, we will apply Theorem 2.1.1. Nevertheless, in Theorem 2.1.1, what is
concerned is the matrix measure of a matrix not the eigenvalue of a matrix. Thus, one
needs to deal with the corresponding problem carefully. To do so, we make the usage
of the concept of “coordinate transformation”.

First, instead of defining E as in (2.10a), herein we let E be an (m — 1) x m
full-rank matrix with all its row sums being zero. Such a matrix is to be termed a

coordinate transformation. Define

A ( eb; ) (2.27a)



Then A™' = (ET(EE")™,e) and

. ({ EGW)ET(EE")"' 0
AGHA™ = ( ’G()ET(EET)" 0 )

_ ( i(b;g? g ) (2.27b)

Let A =1,% A and § = A&. Multiplying A to both sides of Equation (2.26), we get

y=AF(A'g,t)+d <D ® ( fé@ 8 )) 7.

Let 4 = (g1,...,9n)". Then

o= (s )= (2) (228)

Setting ¥y = (¥1,...,9,)T, we have that the dynamics of ¥ is now satisfied by the
following equation

y=dDRGs)y+ F(y,t), (2.29a)

where

Fyt) =, & E)- F(A4q,1). (2.29b)

Since the rank and therow sumsof B are m — 1-and 0, respectively, we conclude
that the task of obtaining global synchronization of system (1.1) is now reduced to
showing that the origin is globally and asymptotically stable with respect to system
(2.29a). The choice of a coordination transformation will greatly influence how negative
the matrix measure of Gg(t) could be, which plays the important role, among others,

to determine the global stability of (2.29a) with respect to the origin.

2.3.1 Matrices of the Coordinate Transformation

In what follows we shall address the question of how to choose a matrix E of the
coordinate transformation, and its corresponding properties. To make the origin an
asymptotically stable equilibrium of system (2.29a), one would like to have the matrix
measure of Gg(t) as smaller a negative number as possible. In fact, such an optimal
choice E can be achieved provided that the outer coupling matrix G(t) is symmetric,

nonpositive definite.
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Definition 2.3.1. Denote by € the set of (m — 1) x m coordinate transformations, i.e.,
¢ ={E e R™ Y™ E s full-rank, and all its row sums are zero}.
Let O C € be such that
O ={E € ¢ : E such that matriv A = (E*,e)" is orthogonal}.

Theorem 2.3.1. Assume that all eigenvalues of outer coupling matriz G(t) have non-
positive real parts. Then Ilg:féfQ pa(GE(t)) > ReXy(G(t)). Here ReXo(G(t)) is the second
largest real part of eigenvalues of G(t). If, in addition, G(t) is symmetric for all t,
then the above equality can be achieved by choosing any E in 9.

Proof. Tt follows from (2.27b) that the spectrum o(Gg(t)) of Gg(t) is equal to o (G(t))—
{0}. Using the fact that Re A\(K) < )\maX(KEKT) for any real matrix K, we have, via
Lemma 2.1.1, that uy(Gg(t)) > ReXy(G(t))In particular, if E € © and G(t) is
symmetric, then Gg(t) (= EG(t)ET) is symmetric and h(t) = 0. Here h(t) is given
as in (2.27b). Therefore, uo(Gp(t)) = Ao (G(t)). We have just completed the proof of

the theorem. m

The theorem above amounts to saying that'if G(t¢) is symmetric, nonpositive
definite, then any choice of E in'9 yields the smallest possible matrix measure of
Gg(t). This, in turn, gives one the best possible position to study the stability of
equation (2.29a) with respect to the origin.

Remark 2.3.1. In those earlier papers (see, e.g., [17,53,104]), the choice of the coor-

dinate transformations is either

1 -1 0 - 0 1 -1 0 - 0

o L P - R (2.30)
. N ". ". O . ". ". ". O
1 0 -~ 0 -1 0 .. 0 1 -1

The drawback for such a choice of E is that even if G(t) (= G) is the diffusive matriz

26



with periodic boundary conditions, i.e.,

-2 1 0 0 1

1 -2 1 0 0

o e e
Gity=| , (2.31)

0 0 1 -2 1

1 0 0 1 =2

mXxXm
the corresponding matriz measure of Gg,, i = 1,2 is positive whenever m > 7 (see
Table 2.1), while p13(Gg) = X\2(G) < 0 for all E € O regardless the size of G.
m| 4 5 6 7 8 9

E, | -1.79 -1 -051 -0.19 0.05 0.23
E, | -178 -1 -051 -0.19 0.05 0.23

Table 2.1: The table gives the matrix measures of Gg,, i = 1, 2, with various size of
G, which is given in (2.31). Since G is alcircular matrix, the matrix measures of G
with respect to E; and E, are equal: Note that the matrix measure of G is Ao (G),
VE € 9, which is negative regardless the size of G\

Theorem 2.3.2. For any outer coupling matriz G(t),.and any coordinate transforma-
tions E,, E, in O, u2(Gg, (1) = k(G (t)).

Proof. Since for any « € R™!, there is-z-="F,E x such that

=" E,(G(t)+ Gt)")Elx = 2" E,(G(t) + G(t)")E] 2.

q

By the definition of matrix measure, we have that us(Gg, (t)) = p2(Gg, (1)) O

In this section, matrix E in Equation (2.29a) is assumed to lie in © unless oth-
erwise stated. For ease of the notations, we shall drop the subscript E of Gg(t) if
E € ©. The remainder of the subsection is devoted to finding the matrix measure of

G (t) where its corresponding coupling matrix G(t) appears often in many applications.

Proposition 2.3.1. Assume that for each t, G(t) is a node-balancing matriz, i.e., its
row sums and column sums are equal. Then

na(G(1) = 2o UL, (2.32)
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whenever all eigenvalues of G(t) + G(t)T are nonpositive.

Proof. 1f G(t) is as assumed, then it follows from (2.27b) that

AG@A*:<€@ g)

Consequently, (2.32) holds as asserted. O

In what follows, some outer coupling matrices are to be provided. Their corre-

sponding matrix measures of G(t) and G, (t), i = 1 or 2, are to be compared.

Example 1. ( [2]) Consider the regular coupled network by adding to the pristine
world G (the ring of 2K-nearest coupled oscillators) an additional global coupling
such that the coupling p(t), 0 < p(t) < 1 is placed on all free spots of the matrix G
(see, e.g., [2]). Specifically, the resulting coupling matrix G(t) can be represented by a

circular matrix of the form

K m—2K—1 K
e |
G(t) = citt(=g(B;1, 1 2 L p(e), . v oop(t),1,.. D), (2.33)

where g(t) = 2K + (m — 2K — 1)p(t). Since G (1) is symmetric, we have that
p2(G (1) = X (G (1))

K m—K—1
— _ Iy (m=1)j lj
 Jnax ( g(t) =+ ;(w +w )+ p(t) l;ﬂ w ) .

Here w = exp(2mi/m). The matrix measures po(G(t)) and uy(Gg,(t)), i = 1,2, with
m =38, K =2, and p(t) =t, t € [0,1] are recorded in Figure 2.1.

Example 2. ( [52,98]) Let G = G(Bm), 0 < 8 <1 be the diffusive matrix of size m x m

with mixed boundary conditions. That is, if m > 2,

~1-8 1 0 - 0 B
1 -2 1 0 -~ 0
G = 0 (2.34)
. 0
0 0 1 -2 1
B0 0 1 -1-2

mxm,
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matrix measure

t

Figure 2.1: The matrix measures of G(t) and G, (t), i = 1,2, with G being given in
(2.33), m =8, K =2, and p(t) = t, are, respectively, represented by the solid line and
the dotted lines above. Lines for Gg,(t); i = 1,2 are coincided since G(t) is circular
for all ¢.

and if m = 2,

2 _ ( =1=6 1+4p
Gﬁz_( 1+ 8 —1—6),

For such G, 12(G) = X\(G) <.0. However, X\;(G) would move closer to the origin as the
number of nodes increases. As a result, synchronization of the network is more difficult
to be realized as the number m of nodes increases. In [52,98], a wavelet transformation
method is proposed to alter the connectivity topology of the network. In doing so,
X2(G(t)) = Aa(p(t)) becomes a quantity depending on wavelet parameter p(t). By
choosing suitable p(t), which is a wavelet transformation method [52,98] applied to
the coupling matrix ng), one would expect that As(p(t)) will move away from the
origin regardless the number of the nodes. Under such a reconstruction, the resulting

coupling matrix G(t) is of the following form

G(t) = G5 + pt)(G\F) w ee”), (2.35)
where € = (1,...,1)T € R¥. Here we assume p(t) > 0 and k = 2! for some [ € N, and

m = Nk for some N € N — {1}. Since the reconstructed matrix G(t) is symmetric,
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pa(G(t)) = M(G(t)) < 0. The matrix measures ps(G(t)) and po(Gg,(t)), i = 1,2,
with m =8, 8 = %, =1, and p(t) =t, t € [0,1] are recorded in Figure 2.2.

Or

matrix measure

-2.5
t

Figure 2.2: The matrix measures of G(t) and G, (t), i = 1,2, with G given in (2.35),
m=2_8, = %, [ =1, and p(t).= t;are, respectively, represented by the solid line and
the dotted lines above.

m
A

Example 3. Let G(t) = circ(=2,.2, 0, ..., 0);, a circulant matrix. Since G(t) is a
node-balancing matrix, ux(G(t)) = Aa(G(t)) < 0. Note that the values of puy(GE,),
i = 1,2, are positive provided that m > 5 (see Table 2.2).

m| 4 5 6 7 8 9
E, | -083 —0.17 024 054 0.78 0.98
E,| —0.83 —0.17 024 054 0.78 0.98

Table 2.2: The table gives the matrix measures of Gg,, i = 1, 2, with various size of
G, which is given in Example 3.

Proposition 2.3.2. Let E = (ey,...,e,1)T € O. If, in addition, {e;}]" " are
pairwise G(t)—conjugate, i.c., el G(t)e; = 0, V1 < i # j < m — 1, then G(t) is a
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diagonal matriz. Moreover,

n2(G(1) = A2 (G(1)), (2.36)

whenever all eigenvalues of G(t) are nonpositive.

Proof. Note that G(t) = EG(t)E" = (el G(t)e;). Hence, G(t) is a diagonal matrix.
Therefore, the assertion in (2.36) holds as asserted. O

Example 4. ( [17]) Let G(t) describe a star-typed coupled network of the form

—dy(t) di(t)
G(t) = - _a dli(t) (2.37)
1 - 1 —(m-1)

mxXm.

Here d;(t) is a real number. We next show that aset {e;}" ' of column vectors can be
chosen so that E = (e;, ..., eo1) € O andthat {e;}"" are pairwise G(t)-conjugate.
Define a; = (i(i +1)) /2, i =1, . | —m — 1. Let

i m—e—1
T

—— X
e, = (G ompazy—=tay, 0,17, 0

forallt=1,...m — 1. Then e;;4 =1,...,m—1 are orthonormal vectors. Moreover,
they are also G(t)-conjugate. To see this, we first note that d;(¢) is an eigenvalue of
G(t) and its associated eigenvectors are e;, i = 1,...,m — 2. Therefore, €] G(t)e; = 0
for all 1 <i+# j <m — 2. Some direct computation would yield that el G(t)e,,_; = 0
fori =1,...,m—2 and that e, ,G(t)e,,_1 = —d;(t) — (m —1). By Proposition 2.3.2,

we have that
,LL2(G'E(1€)) = max{—d;(t), —di(t) — (m — 1)} = —d;(t). (2.38)

The matrix measures p2(G(t)) and po(Gg,(t)), i = 1,2, with m = 8 and d;(t) = ¢,
t € [0,1] are demonstrated in Figure 2.3.
The remainder of the subsection is to address the system with even more complex

topology.
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2.5¢

matrix measure

Figure 2.3: The matrix measures of G(t) and Gg,(t), i = 1,2, with G being given in
(2.37), m = 8, and dy(t) = t, are, respectively, represented by the solid line and the
dotted lines above.

Proposition 2.3.3. Let G(t) = O(t) + P(t) with O(t) and P(t) having all its row
sums zero. Suppose further that P(t) is node-balancing. Then

Pt)+ P(t)T

p2(G(8)) < pa(Of)) s 5

),

whenever all eigenvalues of P(t) + P(#)*are nonpositive.

Proof. Noting that G(t) = EG(t)ET = O(t) + EP(t)E", we easily conclude that the

above inequality holds as asserted. O

Example 5. ( [2]) Consider the outer coupling matrix G(t) to be of the random type.
Specifically, G(t) is of the form:

K m—2K—-1 K

——
G(t) = cire(—2K,T,.. .. 1,0,....0,T, .. 1)+ P(t) = O + P(t), (2.39)
where P(t) =: (p;;(t)) is a symmetric matrix with all its row sums being zero, and

satisfies p;;(t) = 0 for (¢,7) with ¢ — jmod m < K or j —imod m < K, and p;;(t) =
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Sii(q) for (¢ — 1)1 < t < gr for all remaining pairs (i,j) with ¢ # j. Here each
of S;;(q) is a random variable that takes the value 1 with probability p and 0 with
probabilityl — p.

The random variables S;;(¢) are assumed to be all independent. To each realiza-
tion w of this stochastic process S(1), S(2), ..., where S(¢) = {S;;(¢) : i — j mod m <
K or j —i mod m < K}, i.e., to each switching sequence w, there corresponds a time-
varying system described by Equation (1.1b).

Since P(t) is symmetric, by Proposition 2.3.3,

p2(G(t)) < pa(0) + Ao(P (1)) < p12(0) = Xo(0) < 0.

Let G(t) = G. Generally speaking, infgee 12(Gg) # 12(Gg) for any E € 9.
Nevertheless, po(Gg) produces a good ippérbound of inf gee 12(G g).

To support the observation, we conclude this section by providing some additional
network topologies where the matrix measure of its corresponding Gg(t), E € O is
smaller than that of Gg,, i = 1,2. As a matter of fact, us(Gg,), i = 1,2, switch signs
as the number of nodes increases. In contrast, j,(Gg) mostly remains negative as the

size of the system grows.

Example 6. Consider a generalized wheel-typed coupled network of the form as illus-
trated in Figure 2.4(a). The inner nodes have the strong all-to-all connections. The
outer nodes are only directly connected with their nearest neighbors. The communi-
cations between the inner and outer nodes are through one way going from each inside
node to its nearest outside node. Specifically, such a network can be written as the

following.

G(t) = ( g; gz )mm (2.40)
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where

corresponding to the all-to-all coupling, Go = 0, G3 = 0.11, and G4 = GE%) —0.11.
Here GE%) is the diffusive matrix with periodic boundary conditions and of size % x %.
The numerical computation suggests that the matrix measures of Gg,, i = 1,2, are
positive provided that m > 4 while that of Gg, E € O remains negative (see Table
2.3).

m | 4 6 8§ 10 5000

E,| 011 0.32 053 074 517.47

E, | 023 056 096 1.44 34843.01
E | -01 <01 -01'.-0.1 —0.1

Table 2.3: The table gives the matrix measures of Gg., i = 1, 2, and Gg, E € D with
various size of G, which is given in(2.40).

Example 7. Consider the prism-typed coupled network of the form as illustrated in
Figure 2.4(b). The difference between the generalized wheel-typed network and the
one considered here lies only on how the inner nodes communicate with each other (see

Figure 2.4). Specifically, such a network can be written as the following.

G, G
G(t)z(G; Gi)

where G = G$%>, Gy, =0, Gz =011, and G, = Gg%) — 0.1I. The numerical
computation suggests (see Table 2.4) that the matrix measures of Gg,, i = 1,2, are
positive provided that m > 4, while that of Gg, E € O stays negative until m = 86.
The example demonstrates that a coordinate transformation E, E € £, is indeed a

good candidate among all coordinate transformations.
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m| 4 6 8 86 88
E, | 034 032 035 465 472
E,| 034 056 073 479 486
E |01 —01 —0.1 —0.0006 0.0004

Table 2.4: The table gives the matrix measures of Gg,, i = 1, 2, and Gg, E € ® with
various size of G, which is given in Example 7.

2N-1 2N-1

Figure 2.4: Coupling Topologies: (a) Generalized wheel-typed coupled network with
m = 2N, and (b) Prism-typed coupled network with m = 2N. Networks (a) and (b)
appear in Examples 6 and 7, respectively:

2.3.2 Synchronization Criteria

In the section, we turn our attention back to the dynamics of (2.29a), and analyze the
stability of the origin of the system. Let y, y., and g, be defined as in (2.13). Then,
like (2.16a) , Equation (2.29a) can be rewritten as in the form

( ??ju ) N ( o @())é(t)) U[zt) ) ( zu ) + ( gig”t)) ) (2.41)

where R, (§,t) = F,(y,t) — U(t)y, for some matrix U(t). Now we impose the condi-

tions for coupling matrices G and D.
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(i) A =0 is a simple eigenvalue of G(t), V¢ > 0 and

e= \/im(l, 1,...,D)E is its corresponding eigenvector; (2.42a)
(ii) There is some X > 0 such that uy(G(t)) < =\, Vt > 0. (2.42Db)

(iii) Coupling matrix D is of the form

(I, 0
D= < 0 0 )M (2.42¢)

We are now in a position to state our first main theorem in the time-varying

coupled system.

Theorem 2.3.3. Let coupling matrices G(t) and D satisfy (2.42). Suppose that F,
given in (2.29a) or (2.41), satisfies (2.14a), (2.14c), and that (2.14d), and system
(2.29a) is bounded dissipative with wespect to .. Then tllglo y(t) = 0 for any initial
value provided that the coupling strength.d_satisfies the following inequality
N\ )

d>b—;(1+%>2, (2.43)
Proof. For any initial condition y(0); there istp-> 0such that ||y(t)|| < a for all t > .
Applying the matrix measure‘inequality (2.1) and hypotheses (2.14a), (2.42b) on y.,
for any t > ty, we have that

b
g, < ||l g.(t =Ad(t—tg) , “1¢
le(t)]] < l1ge(to)le +

o)

A’
1

—: (e7M(t=to) 4 cog)oz.

< (e—)\d(t—to) ‘l’

Let 6 > 1. We see that
o
15Ol < Zeod, (2.44a)

whenever ¢ > ¢, for some ¢y; > to. Similarly, applying inequality (2.1) and hypotheses
(2.14c¢), (2.14d) on g,

a (b «
70l < & (;%o) 7= o (2.44D)



whenever ¢ > ¢, ; for some t;; > ¢p1. Inductively, we have

_ « i
750l < e, (2.410)

whenever ¢ > t;,, for all j = 2,...,l. Here ¢; = %\/Zg:—é cf. Letting t; = ¢;; and
summing up (2.44a) to (2.44c), we get
l
b2\ 2 by

_ (0%
ool <5 (1+2) o < na,

whenever t > t;. Choosing d > (1 + :—%) ’ %15“’1, we see that the contraction factor h
is strictly less than 1, and ||g(t)|| contracts to zero as time progresses. Since § > 1 can
be made arbitrarily close to 1. Consequently, if d is chosen as assumed, then h can still

be made to be less than 1. The assertion of the theorem now follows. O

In the following, we drive another-set of hypotheses to replace that listed in
Theorem 2.3.3 to get the easily checkable criteria for the synchronization in coupled
system (2.26).

The following notation is needed. “Let w = (U, ..., Ui Uit1y ...y Ujy ..oy Up)T.
Denote by [u]! = (u;, uiy1, 7onyu;)E Write-the-differenice of f(-,¢) at w and v in the

form
fl(u7 t) o fl(vv t)

Flut) = f(v.t) = : =: Z — fu(v
Fulw, ) = fulv,1) (fu< 1)~ fl ,t))

_ fc(u7t) - fc('v,t)
=: ( Qv,t) [u— ’U]Z_H +r(u,v,t) ) ) (2.45)

where f.(-,t) € R¥ f,(-,t) € R"* and matrix Q(v,t) is of the size (n — k) x (n — k).
Since r(u,v,t) could depend on all components of u and v, such a decomposition in

(2.45) can always be achieved.

Proposition 2.3.4. Suppose f;(-,t), i = 1,...,k are uniformly Lipschitz, i.e., there

exists a positive constant r > 0 such that
|fiu, ) = fi(v, )] < rflu — v (2.46)
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foralli=1,... k. Then the inequality in (2.14a) is satisfied with by = rv'kcond(E,ET).
Here E; is given as in (2.30) and cond(E\ET) = ||E,E”|| ||(ELE")™}| is the condition
number of E1ET.

Proof. Note first that E;, = E;ETE and E = (E,ET)"'E,. Now,

Ef (&1 E\fi(&.t)
I1Fe(g, )]l = || B I =Ly (E,ET)™Y) K I
Ef.(&,1) E\ fi(z,1)
E\ fi(&,1)
< [(ELET) ] K I
E, fi(Z,1)
Since
fil@1,t) — fi(wa, ) T — T
1B fi(&, 0)]* = | : 12 < r? : I
film1st) — fi(xm, ) T — T,

forall i =1,...,k, we have that
L1 — T2
(g, )| < Vhr|(EED ] E |
Ly — Ty

Iy

=VEr|(B.EY) By L) |+ |l

L
= VEr|(BxE") | |(BE" @ L) (E ® L)x|
< Vkrcond(E,E7) || 9] (2.47)
The proof of the proposition is completed. O

We next turn our attention to the structure of the vector field of the uncoupled

parts.

Proposition 2.3.5. (i) Suppose matriz Q(v,t) can be written as the block diagonal
form

Q(v,t) = diag(Q1(v,1),...,Q(v,1)),
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where the size of matrices Q;(v,t) are k; x k;, Vj =1,...1 and indexes I, k; are given

as in (2.14c). Moreover, there is some v > 0 such that

12(Qj(v, 1)) < —. (2.484)

Here v is independent of v,t. Then the inequality in (2.14c) is fulfilled.
(11) Denoted by s1 = k and s; = k + Zi;ll ki, j =2,...,1, where k; and | are defined
in (2.14c). Let E = (€;;)m—1)xm- Suppose, for any 1 < j <1, there is 6 > 0 such that

I[r(w, v, )75 || < 0w — v] . (2.48D)

Then the inequality in (2.14d) is satisfied with by = 6| E|||| E,\ET||. Here

E = (e;j41) € RMDXm=D 1 < 5 <m — 1. (2.48¢)
Proof. Write F,(y,t) as (Fu,(y,t),..., Fu(y,t))T, which is in consistence with the
block diagonal form of U (t). Now, for <3<,

Z?:l el,kf8j+l (wka t)
l

Eij-i-l(jat) ZZL:]_ em—Lk‘ij-i-l(wk‘at)

Efsj"’kj (',i’ t) Z;cnzl elykfsj"rkj (wkv t)
l
Yot Em— kS i (T, )
> e ks (T t)
!
ZZ;l 61,k‘f8j+k)j (wk, t)

=: Ph.

Yot €m—t1 e fs 41 (T, 1)
l
Y onet em—t s,k (Ths T)

Here P is a permutation matrix. That is, we exchange a certain rows of Fuj('g,t)

to obtain F'. Using the fact that the row sums of E are all zeros, we have that for

1§i§m—1,8j+1§l§8j+kj,
Z einfi(@r, t) = Z eik(fi(@r, 1) — filx1,1)). (2.49)
k=1 k=2
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To save notations, Vi = 1...,k;, we denote by [r, i(x;, 1, 1)]jZ, the vector
(T5j+i($2> I, t)> T5j+i(w3a T, t), SRR r5j+i(wm> Ly, t))T

Applying (2.45) and (2.48a)- (2.48¢), we shall be able to rewrite h as

m S k‘ S k
> hes €1k Qj (1, t) [Ty, — ml]sjif Yo €1 k[T (wk, Ty, t)]sjilj
: +
m sj+k; m itk
Yoo em—1kQj (1, t)[2) — e’Ifl]st D b Em—1,k ['r(a:k, L1, t)]sjilj
i+k; ~
Qj(@1, )22, ernmels iy Elr,, -+1(w1> @1, t)|%s
- : + PT

m si+k; r m
Q;(@1, )[4 em- 1]y Elrs; h; (1, 21, 1)] 12,
Ejsj--i-l T‘SJ—i-l wl>wlvt)]lm2

= (Im—1®Qj(a:1>t))PT +PT Ik ®E

Ea}s]‘-i-kj TSJ—"_k wl?wl?t)]ﬁQ

+k;
$2> xy,t ]sJ»—i-lJ
:qMA®Qm%mP%w+#H@®mP ;

) . k
[r(:z:m, I, t)]ijif

Therefore,
Ui(t) = Pl ® Q; (1, 1)) P7, (2.50a)
and o
E [r(w% wbt)]sj--i-lj
R.;(y,t) = (I, ® E)P : (2.50b)

[T(wmv L, t)]zjilj

The first assertion of the position now follows from (2.50a), po(U;(t)) = p2(Q,(x1, 1)) <

—~. Upon using the similar techniques as those in establishing the inequality in (2.47)
we conclude that (2.48a)- (2.48¢) hold as asserted. O

Now, we are in the position to impose the hypotheses for synchronization. We
remark that although these conditions are quite like those given in (2.22) and (2.24),

to be self-contained and clear, we list corresponding the hypotheses herein.

(H1) System (1.1a) is bounded dissipative with respect to a.
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(H2) Functions f;(-,t), i =1,...,kin (1.1a) are uniformly Lipschitz in region B given
in (H1). That is, there is a constant r > 0 such that | f;(u,t)— fi(v, t)| < r|lu—v|,

whenever ¢ is sufficiently large, and u, v in B.

(H3) The matrix Q(v,t), which is given as in (2.45), is of block diagonal form, i.e.,
Q(v,t) = diag(Q1(v,t), - - ,Qi(v,t)). Here the sizes of Q;(v,t),j=1,...,1, are
k; x k;. Moreover, there is some v > 0 such that matrix measures p2(Q;(v, 1)) <

—, for all 5, whenever ¢ is sufficiently large, and v in B.

(H4) Denoted by s; = k and s; = /4:+EJ.;1 ki, j=2,...,1, where k; and [ are defined

(2

n (H4). Suppose, for any 1 < j <, there is a § > 0 such that

S—l—k S
[ (w, 0, )]G 107 | < Olffue = 0]y,

for ¢ sufficiently large, and u, v in B. Here [u)! is defined to be (u;, ..., u;)7.

Remark 2.3.2. Using the similar techniques-as developed in the proof of Propositions
2.83.4 and 2.3.5, we may also~conclude that the global theorems obtained in [17] may
still be valid by using the coordinate transformation. developed here in this paper. Con-

sequently, the size limit problem of their approach can-be remouved.

The main criterion for synchronization in the time-varying coupled system is now
stated in the following. The proof of the main-theorem follows directly from Theorem

2.3.3 and Propositions 2.3.4 and 2.3.5.

Theorem 2.3.4. Let the coupling matrices G(t) and D satisfy (2.42). Suppose hy-
potheses (H1), (H2), (H3), and (Hj) hold true. Then coupled system (2.26) achieves

global synchronization whenever

d> (2.51)

vk cond(E,ET) | E|?| E.ET|]?
3 1+ 2

where E, E1, and E are given as in Theorem 2.3.1, (2.30), and (2.48¢), respectively.

Remark 2.3.3. The small price to pay by introducing the coordinate transformation
E is that the lower bound, given as in the right hand side of (2.51), on the coupling

strength d, is size dependent.
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Chapter 3

Applications for Model 1

3.1 Synchronization in coupled Lorenz and coupled
Duffing systems

To see the effectiveness of our mainresults in Chapter 2, we consider two examples in
this chapter. These are coupled Lorenz equations[8,63], and coupled Duffing oscilla-
tors [105].

Example 1: We shall begini with Lorenz equations. Let = (21, 79, 23)7,

f(x,t) = f(x) = (0(B2=11), T2~ T3 — 2123, —b3 + $1$2)T

= (fi(z), fo(@), f5(x)"

Here 0 = 10, 7 = 28 and b = §. 1In the following cases (a), (b), (c) and (d), G
1 00
denotes the diffusive coupling with zero flux and D is, respectively, 0 00
0 0O
0 0O 0 00 0 00
010 0 00 and [ 0 1 1 |]. For the first three cases, it was shown
0 0O 0 01 0 0 1
in [5] that such the coupled system (2.6) has the topological product of an absorbing
domain , ,
b (r +
By = {23 +ak+ (x5 —1—0)? < 74% _‘3 = 8} (3.1)
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Hence, in each case, we will concentrate on the illustration of how our main results

may or may not be applied.

(a) Let D = D, = For “coupled” nonlinearity fi, we get that

O O =
o O O
o O O

|fi(u) = fi(v)] = o|(uz — v2) — (ug —v1)| < \/§U||’U' —v|.

Hence, condition (2.14a) is satisfied. For “uncoupled” nonlinearities f, and f3,

we see that

fa(u) = fo(v) = (—ug — ugug + ruq) — (—ve — vivg + 701)

= [—(ug — v3) —uy(ug — v3)] + (r — vs)(ug — v1) (3.2a)

and

f3('u,) — fg(’U) = (U1U2 — bU3) . (’011)2 — b’Ug)
= [uua = o). — blus < w3)] + vo(ug — v1). (3.2b)

Writing (3.2a)-(3.2b) in the vector form, we get

( fo(u) = fo(v) ) _ ( =1 (=) ) ( Uy — Uy ) n ( (r —v3)(u1 — 1) )
fa(u) — f3(v) ui(b) v —=b U3/~ w3 vo(uy — v1)

_. Uz — V2

- Qu,v,l(t) ( Uy =% > + rr. (32C)
Clealy, f12(Qu1 (1)) = max{—1, —b} = —1 < 0, and [jr1]| < (o+v/B) - | — ], where
its estimate depends only on coupled space. Hence, conditions (2.24b), and (2.24c) are
satisfied.
0 0O
010

(b) Let D = Dy = As in the case (a), the “coupled” nonlinearity f, is

000
clearly Lipschitz on the absorbing domain. The difference of “uncoupled” nonlinearities

f1 and f3 are given as follows.

fi(u) = fi(v) = [—o(uy —v1)] + o(ug — v2),
fa(u) = f3(v) = [=b(uz — v3)] + ui(uz — v2) + va2(ur — v1),
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If [ =1 is chosen, then (2.24c) is violated. For in the case, the norm estimate in the
right hand side of (2.24c) can only depend on us — vo. Now, if we choose [ = 2 and
pick the space of the first diagonal block being the one associated with the nonlinearity
fi1, then Q1 = (—0) and r; = o(uy — v3). Consequently, (2.24b) and (2.24c) are
satisfied. Moreover, we have Q2 = (—b) and 7y = u;(ug — v2) + v2(uy — v1), which
depends only on the coupled space and the first uncoupled space. Thus, r, satisfies
(2.24c).

00
0 0

0
(c) For illustration, we also consider D = D3 = 0 In this case, the un-
1

0 0
coupled nonlinearities of f; and f, both contain the terms zo and z;. The only fea-
sible choice to break the uncoupled space is not to do any breaking. Consequently,
Quu,1 = 7 7 . For such Q. , 1, its matrix measure can not stay neg-

v r—ug(t) —1 Vi
ative for all time. An indicated, see e.g., [63], Synchronization fails for this type of

partial coupling.

0 00
(dLet D=D,=1 0 11 To apply Theorem 2.2.3, we first note that for D =
0 0 1
000
Ds;=1| 0 1 0 | thecorresponding coupled system is indeed globally synchronized,
0 01
and hence, so is the coupled system with D = D,. Note that bounded dissipation of

the coupled system can be verified similarly as in [63].

(e) The work that are most related to ours are those in [4,8]. While their estimates for
dpin Seems to be sharper than ours, which we shall illustrate in case (f), their connec-
tivity topology requires that off-diagonal entries be nonnegative. We only assume our

connectivity topology satisfies (2.7). Consider for instant the following matrix:

-1 2 0 -1
-1 -1 0 2
G= 2 -1 -3 2

o 0 3 =3
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Such G has some negative off-diagonal entries and satisfy (2.7a) and (2.7b). In fact,
the eigenvalues of G are 0, —1 £ v/5i, and —6. Clearly, applying our results, we
see immediately that the coupled system (2.6) with D = D;, i = 1,2,4, is globally
synchronized. Numerical results (see Figure 3.1.) indeed confirm synchronization of
such connectivity topology. We remark that by constructing the Lyapunov function
as given in [63], one would be able to show bounded dissipation of the coupled system

with this particular connectivitv tonoloev.
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Figure 3.1: The difference of each eomponent of two coupled oscillators in case (e).

(f) In this part, we shall compute the lower bound for global synchronization for case
(
dimin, given in (2.15), we note that G = E;GEI (E,ET) ! = Ey(ETE,)ET (E,ET) !

= E,EI. Here E, is given as in (2.30). Since G is symmetric, ¢ and ¢, given as in

a) by using our method, those obtained in [8] and MSF, respectively. To compute

(2.16¢), can be chosen to be 1, and 0, respectively. Consequently,
B V20+\/1+ B+ 20/ + 02

dmin - .
4sin®(5%)

(3.3)

Here 4sin®(;%) = |\;|. Applying Theorem 2.2.3, we see that the coupled system is
globally synchronized provided that the coupling strength d is greater than d,,;,. For
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m =4, dpi, ~ 1189. In [8], the bound dmin for threshold of global synchronization is

Jmin = {
b(b+1)(r+0)?

Here a = et~ — 7 For m = 4, dmin ~ 1039, which is slightly better than dpi,.

m? if m is even

(m? —1) if m is odd

®|Q ol

Using the MSF-criteria, we numerically (see Figure 3.2.) compute the maximum
Lyapunov exponent of the variational equations with respect to the parameter a. We

have in this example that if

a=d\ < =T.778, (3.4)
then its maximum Lyapunov exponent is negative. Here \; = —4sin? % 1s the largest
nonzero eigenvalues of G. Hence if d > %178 ~ 13.3, then local synchronization of the

coupled system (2.6) can be realized.

Figure 3.2: The vertical axis denotes the maximum Lyapunov exponent of the varia-
tional equations. While the horizontal axis represents oo = d\.

(g) Let coupling matrix G(t) be time dependent as given in (2.33), (2.35), (2.37) or
(2.39), and the coupling matrix D = D;, ¢ = 1,2. Then by Theorem 2.3.4 and
above arguments, we can also have coupled system is globally synchronized whenever
the coupling strength d is sufficient large. Fig. 3.3 illustrates the phenomenon of
synchronization with G(¢) of the form (2.37), d;(t) = 2 — sin(t), and D = D;.

5=
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Figure 3.3: The difference of components of the first two coupled oscillators. Here the
x-component partial-state coupling is considered. and the G(t) is given as in (2.37)

with d;(¢) = 3 —sin(t) and m = 8.

Example 2: Now, we consider the coupled Duffing oscillators, where the individual
system considered is defined by

@)= “ar; — 75 + ados wt (3.5a)

i’g = T, (35b)
where o and a are positive constants. Letting © = (21, 72), we have
f(wvt) = (fl(wvt)u f2(w)) = (—Oé.Tl - $§ + acos wt, xl)v (36&)

Assume coupling matrices D and G are, respectively,

D(c) = ( (1) 8 ) (3.6b)
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and

—2 e—r 0 - 0 e+r
e+r —2 e—r . 0
Gern=| Y (3.6¢)
0 . . =2 e—1
e—r 0 oo 0 e+ —2e

where € > 0 and r are scalar diffusive and gradient coupling parameters, respectively.

In this way, the coupled Duffing systems can be written as

x, = —ax; — T + g(t) + dcG(e,r)&s + dG (e, 1) (3.7a)
Zy =&, (3.7b)

Here &3 = (23,,...,23,,)", and g(t) = acos(wt) (1,---,1)". Note that

fo(u) =ifa(v) =0(ug = v2)F (u1 — v1)

and so the matrix measure o0f the corresponding Qy +.1-is zero. To apply our theorem,
we need to make the following coordinate change.

Letting yo = @ and y; = gxy + prs, we sée that (3.5) becomes

U = (g —a)y; + pla= Z5)3;2 < qy; + qacoswt =: fi(y) (3.8a)
. —p 1 _
o=t = J2(y), (3.8b)

and the corresponding coupled system (3.7) becomes

P N P
Yy = (5 — )1 + pla — g)yz —qy5 +g(t)

+d(qgc—p)G(e,m)ys + dG(e, 7)Yy (3.9a)
. . 1.
Y2 = _€y2 + Yy, (3.9b)
p q

where g3 = (475....,952)" and g(t) = acos(wt) (1,---,1)". In the following, we

choose (p, q) to be (¢ —%,1) as ¢ > 0, and to be (—1,—%) as ¢ = 0, respectively. Then
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in the case of ¢ > 0, (3.9) becomes

. . 1. 1. . .
y1 = dG(e,r)y; + (c — a — E)yl +(a—c+ a)’yz — ’yg’ +g(t) + G(e, 7)o

= dG(e,r)§1 + Fu(g,1)
. .
Yo = — TY2 + Y1
€= 4

The purpose of the coordinate transformation is two-fold. First, to make the dynamics
of the linear part on the uncoupled space stable. In this case, the coefficient of ¥y,
becomes negative when d > % Second, to make sure the parameters in the nonlinear
part of coupled space contain no bad influence of d, coupling strength. Otherwise, we
may not be able to control its corresponding dynamics by choosing d large.

It is then easy to check that assumptions for Theorem 2.2.1 are all satisfied, and
similar arguments can be followed for the case of ¢ = 0. What the remainder is the
checking of the bounded disspation of the coupled. system.

Consider the following scalar-valued function as the Lyapunov function of the

coupled system (3.7)

U(il, .’ig) -

+c< jg,il > (310)

Taking the time derivative of U along solutions of the coupled system (3.7), we have

dU . = . .-
%:<w1,m1>+;xi72xi71+c<w1,m1>—|—c<w2,w1>

=(c—a) <&, T > —ca < Xo, &) > —C < Tg, T > + < &y + Xy, g(t) >
+d< &, G(e,r)&, > +2dc < Ty, G(e,7) Ty > +dc* < Ty, G(e,7)To >

=(c—a) <&, T > —ca < Xy, &) > —C < To, T > + < &y + Xy, g(t) >

+d (&7, &7) (( i 2 )‘X’G(E’T)) (i; )

<(c—a) <&y, & > —ca < To, & > —C < Ty, Ty >+ < &y + o, g(t) >
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Note that the last inequality holds true since

(2 5)eor)(( 5)eoua)
_ ( i cc2 ) ® (Gle,r) + G(e,r)"),

and G(e,7) + G(e,7)T is a nonpositive definite matrix. On the other hand, since

i=1 i=1
we have
au 2 . . C o~ oua . -
o < (c —a)||Z1[|3 + cal|zell2]| 21l — Ellwzllz + vVma(||@:1]]2 + cl|Z2]|2)

=t u(|[@1]|2, [|22]]2).
We are now in a position to show bounded dissipation of the coupled system (3.7).
Proposition 3.1.1.

(i) If ¢ satisfies the inequality

. 4o 4o
0<c< mln{r,a} = m

3.11
o (3.11)
Then there exists a constant cy-so that 220 for ||&||3 + || Z2|3 > co.
(i) If c =0, then the first assertion of the proposition still holds true.
Proof. Suppose ||&2]]2 > 1. Then
~ ~ ~ ~ ~ C - ~ ~
u([[Z1 12, |#2]]2) < (¢ = @)|| 21| + carl|@ala[|E1]]2 — EH"BzH% +vma([|Z1]]2 + cf|@2||2)

=:a([| 1|2, |2Z2]|2).

It then follows from (3.11) that the the level curve of 4 is a bounded closed curve.
We shall call such curve ellipse-like is an elliptic in the plane. Thus, there exists a
¢; so that % < 0 whenever ||@s||? + ||€2]3 > ¢1 and || &> > 1. Let [|&]]> < 1 and

|Z2]|3 + ||€2]|3 > co. Here ¢y is a constant to be determined. Then
(|12, |222) < (¢ — @)|@1][2 + (ca + Vma) [#1]|2 + vmac =: h([|21]2).
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Since h(||&1]|2) is a parabola-like curve which is open downward, there exists a c3 > 1
such that h(||Z1]]2) < 0 whenever |||z > c3. Thus, if cg > c2+1, then u(|| @1 |2, ||Z2]]2) <
0 whenever ||Z5]]2 < 1 and ||@]|3+ ||Z2]|3 > co. Picking ¢y = max{cy, ¢}, we have that

the assertion of the proposition holds true. O

Proposition 3.1.2. Assume (3.11) holds true. Then lim U(&, &) = 0o, where r =
T—00
Vz? + |2

Proof. From (3.10), we have that
~ ~ 1 ~ 2 - z?Q ~ ~
U(&y, @) = §||331|| + ;T < T Ty >
1, . 1. . .
> Sl + @l — el - |

Let ;-0 > ¢*. Then suppose ||&|| >b;; We have

L L. . M\ #3 8 .
U@, &2) > Sl @74 liall’ = ell@ @l =: m ([l [ 22]).
Since the level curve of hy(||@&1, [[@2]|) is elliptic-like in the plane. Thus, for any given
M > 0, there exists a d; > O-such/that U(Z,, &5) > M whenever ||Z,]]? + [|Z,]|? > d?
and ||i2|| > bl.
Let ||5:2|| S bl. Then

S IS - - -
U(@1, @) > S[@]* = chil|@]| = ha(ll@1]], |12,

since hao(||Z1|], ||®2]|) is a parabola-like curve which is open upward in the plane. Thus,
for any given M > 0, there exists a dy > 0 such that U(&;,&;) > M whenever
|21 ||>+ || Z2]|?> > d3 and ||Z2]] < by. Picking § = max{dy, d»}, we have that U(Z,, €5) >
M for all ||&1]|? + ||&2]|?> > 6°. Thus, the assertion of the proposition holds true. [

Theorem 3.1.1. The coupled system (3.7) is bounded dissipative if condition (3.11)
holds true.

Proof. The proof is direct consequences of Propositions 3.1.1 and 3.1.2. O
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Thus, summarizing above results and applying Theorem 2.2.1, we get the follow-

ing conclusion.

Theorem 3.1.2. Let f, D(c) and G(e,r) be given as in (3.6a), (3.6b) and (3.6¢),
respectively. Let 0 < ¢ < 34 Then the coupled Duffing system (3.7) is globally

4+a?m”

synchronized provided that d is chosen sufficiently large.

Proof. 1t remains only to verify that G(e,r) satisfies assumptions (2.7a) and (2.7b).

Indeed G(¢,r) is a circulant matrix (see e.g., [22]), the eigenvalues A\ of G(e,r) are

2k 2k
A = —26(1—COS—7T)—’i2TSiH—7T, k=0,...,m—1.
m m

O

3.2 Synchronizationin Hindmarsh-Rose Neurons with
Chemical and Electrical Synapses

3.2.1 Introduction of the Hindmarsh-Rose Neurons

The fundamental building block of every nervous system is the neuron. There is an
increasing trend [35,43,67] towards studying the dynamical behavior of relatively large
networks of neurons, and modeling/enmulating stich networks is also on the rise. Neural
synchronization has been suggested as particularly relevant for neuronal signal trans-
mission and coding in the brain. Brain [14,24,33,34,73,84,86,90] oscillations that are
ubiquitous phenomena in all brain areas eventually get into synchrony and consequently
allow the brain to process various tasks from cognitive to motor tasks. Indeed, it is
hypothesized that synchronous brain activity is the most likely mechanism for many
cognitive functions such as attention, feature binding, learning, development and mem-
ory function.

In the last decades, many biological neuron models have been proposed for an
accurate description and prediction of biological phenomena. The pioneering work in
such direction is due to Hodgkin and Huxley. To simplify such a model, simpler approx-

imations, namely, the second order systems such as the FitzHugh-Nagumo(FN) and
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Morris-Lecar neuron models have been proposed. However, the second order models
are not able to reproduce some interesting phenomena such as terminating themselves
by triggering a set of stable firings. Hence, the Hindmarsh-Rose(HR) model was added
a third dynamical component, whose role is to tune the above subsystem over the
mono- and bistability regions in order to activate or terminate the neuronal response.
The third order system of HR has turned out to be accurate in capturing both qualita-
tive and quantitative aspects of experimental data [23,45,46,87]. Furthermore, major
neuronal behaviors such as spiking, bursting, and chaotic regime have been produced
by such HR model [23,39,44].

In a human brain, there are about 10'° neurons with an approximate 10* links
between them. Neurons are sparsely connected and their underlying network has small-
world property [14] though they are within only a few synaptic steps from other neu-
rons. Neurons in a population synchronize their activity using electrical and chemical
synapses with other neurons in the same population as well as with neurons from other
populations. Note that the electrical coupling via gap junctions is linear and directly
depends on the difference of the membrane potentials: And the chemical coupling is
pulsatile and often modeled.as a static sigmoidal nonlinear input-output function with
a threshold and saturation.

In this section, we study the multi-state-and multi-stage synchronization in en-
sembles of electrically and chemically coupled HR neurons whose connection topol-
ogy with respect to the electrical coupling is allowed to be complex including, e.g.,
Newman-Wattts networks, and whose coupling through chemical synapse is unidirec-
tional from presynaptic cell to the postsynaptic cell. By multi-state synchronization,
we mean that given a fixed set of parameters, the corresponding system is capable of
producing the coexistence of stable regular bursting and periodic/steady-state synchro-
nization, depending on the choice of initial conditions. By varying certain parameters,
if the associated system is capable of yielding different types of synchronization such
as chaotic, periodic or steady-state synchronization, then the system is said to exhibit
the multi-stage synchronization.

More closely related work can be refereed to the articles by Jalili [48], Kopell and

93



Ermentrout [58], Belykh, Lange and Hasler [6], Checco, Righero, Biey and Kocarev [16],
and Wang etc., [94-96]. In [58], the single neuron model is a quadratic integrate and
fire. They obtained that the chemical and electrical couplings play complementary roles
in the coherence of rhythms in inhibitory networks. In [6], densely coupled HR system
with only chemical coupling was studied. They demonstrated the bound of the min-
imum chemical strength for obtaining the steady-state synchronization only depends
on the number of signals each neuron receives, independent of all other details of the
network topology. These two works used both numerical and analytical techniques to
address local synchronization. Coupled HR system with only chemical coupling was
also investigated in [16]. They have found multi-stage synchronization. However, the
presence of multi-state synchronization has not been addressed there. Furthermore,
their results are based on the Master Stability Equation, which is numerical in nature.
Whereas the results in [48], though the same model as ours were studied, was numer-
ical. The work done in [94-96] dealt with only €lectrical coupling. However, effects
of delay on synchronization were investigated there, where some interesting results are

obtained when delays are varied.

3.2.2 Synchronization of the Hindmarsh-Rose Neurons

The HR model was obtained by biolegical consideration over the response to stimuli

of a real neuronal cell. The motion of the model reads as follows:

i=flz)+y—z+g
§=—y—5c*+1, (3.12)
Z = p(b(zr — x9) — 2).

Here f(z) = ax?® — 2®, x is the membrane potential, y and z are the recovery(fast) and
the adaptation(slow) current, respectively. The roles played by the system parameters
are roughly the following. ¢ mimics the membrane input current for biological neurons;
a allows one to switch between bursting and spiking behaviors and to control the spiking
frequency; p controls the speed of variation of the slow variable z, and in the presence

of spiking behaviors, it governs the spiking frequency, whereas in the case of bursting,
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it affects the number of spikes per burst; b governs adaptation; a unitary value of
b determines spiking behavior without accommodation and subthreshold adaptation,
whereas around b = 4 give strong accommodation and subthreshold overshoot, or even
oscillations; xg sets the resting potential of the system. Hereafter, the parameters are
chosen and fixed as follows: zg = —1.6, p = 0.01, b = 4, ¢ = 4, and a = 2.6. The
dynamics of the neuron with such set of parameters is regular bursting (see, e.g., [87]).
Moreover, the dynamics on the corresponding synchronous manifold of the coupled
HR neurons may generate multistability region (see equation (3.16) and Table 3.1)
containing a stable regular bursting, a stable periodic solution and a stable fixed point.

Neuronal synaptic connections are either chemical or electrical, and chemical con-
nections might be excitatory or inhibitory. Moreover, the electrical coupling through
gap junctions is bidirectional, whereas the chemical synapse is unidirectional from the
presynaptic cell to the postsynaptic.cell: » In fact, the current g¢;; injected from the
presynaptic cell j to the postsynaptic cell i, is"a noenlinear function of the membrane
potential z; of the presynaptic cell and a linear function of the membrane potential x;

of the postsynaptic cell. The current ¢;; has the following form

Gig=gs(v=m0)p (/) (3.13a)

where g, is the strength of chemical coupling-and v is the synaptic reversal potential. If
x; < v, the current injected to the cell is positive and depolarizes it, thus the coupling
is excitatory. On the other hand, for x; > v, the injected current to the cell is negative
and consequently hyperpolarizes it, thus introducing inhibitory coupling. In this thesis,
we numerically choose v = 2 so that x;(t) < v for all ¢, thus the synapse is depolarizing
(excitatory). It is certainly interesting to justify that such choice of v is always possible.

The chemically synaptic coupling function is modeled by the sigmoidal function

B 1
p(l’j) - 1+ eXp{—)\(SL’j - ‘98)}7

where 6, = —0.25 is the threshold and A = 10. The threshold is chosen so that every

(3.13h)

spike in the single neuron burst can reach the threshold. In the limit A — oo, the

above sigmoid function reduces to a Heaviside step function.
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We are now in a position to consider a network of m excitatory HR neurons with
bidirectional electrical coupling and unidirectional excitatory chemical coupling. The

equations of motion are the following. For, 2 =1,...,m,

SL’ f(xz> + Yi — % + q + dzgmxy gs i chp x]

7=1 7=1
= f(z) +yi—z+q+ dzgz‘jﬁl’j — gsk(z; — v)p(x;) — gs(z; — v) Z dijp(x;),
Jj=1 ]
Y = —y; — br? + 1, (3.14)
Zi = pu(b(x; — o) — 24),
where
G =: (gi;), Zgw = 0 for all 7, (3.15a)
7j=1
C =: (cij), ciy= 0-0rd, ¢; =0, ZCU = k for all 1, (3.15Db)
PN
and
— .. k=,
S =(d;;), andd;; = { v/ (3.15¢)

Here k represents the number of chiemical signals each neuron receives. Moreover, d is
the coupling strength for electrical synapses via gap junctions, and coupling matrix G
is a symmetric matrix with vanishing row sums and nonnegative off-diagonal entries.
It should be noted that the symmetry of G is a biological assumption. From the
mathematical side, our analysis here is capable of treating unsymmetrical matrices
with both positive and negative off-diagonal entries. C' is the connection matrix of
the chemical coupling which is not necessarily symmetric; ¢;; = 1 if neuron ¢ receives
synaptic current(via chemical synapses) from neuron j, otherwise ¢;; = 0. The matrix
S has all row sums being zero and nonnegative off-diagonal entries.

We next describe the synchronous equation of HR network (3.14). On the syn-
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chronous manifold, its dynamics is governed by the following equations

&= f(x)+y—2+q—kg(x —v)p(x),
Gyt 1, (3.16)
2= pu(b(x — xy) — 2).

To study local synchronization, we begin with the derivation of the variational

equation of (3.14) along the synchronous manifold 9. The equation is

;= f(x(t))u; +v; —w; +

dzglju]] kgsp ( ))

- [gs(x(t) - v)p’(l‘(t))zcij“j] )

w; = p(bu; — wy),

where z(t) lies on the synchronous manifold of (3.14)-and satisfies equation (3.16).

In vector-matrix form;+(3.17) becomes

= {[f'(x(t)) = kgsp(z(t)] T+ dG
gs(x(t) — )P (2(t)Clu +v —w

= {1f"(@(t)) — kgap(z(t)) — kgs(x(t) — v)p'(x(t)] T
+dG — gy(x(t) — v)p'(x(1))Stu + v — w, (3.18a)
v =—10z(t)u — v, (3.18b)
w = pbu — pw. (3.18c¢)

To study synchronized HR neurons (3.14), we first apply a coordinate transforma-
tion, developing in Subsection 2.3.1, on G so that the resulting matrix has a negative
matrix measure as possible. The structure of linear system (3.18) is then explored so
that the theory of some monotone dynamics and time averaging estimates described

in Section 2.1 can be applied to make the linear system asymptotically stable.
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Let E be chosen from © given in Definition 2.3.1 and define A as in it. Let

Uy U1 wy
z=A L, Yy=A : ,z=A ,
Un, U W,
and & = (T1,...,Tm_1)’. As well, g, z be similarly defined, and for any given matrix
B, we define
B =EBE". (3.19)

Then their motions of dynamics read

x = {[f'(x(t)) — kgsp(x(t)) — kgs(x(t) — v)p(x(t))]
+dG + gs(v —x(t))p' (2(t)) S}z + 9 — Z,
= Hl)E+7— % (3.20a)
y=—10z(t)x <y, (3.20b)
z = pbx — pz. (3.20¢)

Instead of calculating the transverse Lyapunov exponents of the corresponding
variational equation (3.17) of equation(3:14); we would prove directly that the origin
of (3.20) is asymptotically, exponentially stable..As a consequence, all transverse
Lyapunov exponents of (3.14) are negative.

Sufficient conditions to obtain the synchronization of coupled HR system (3.14)

are stated precisely in the following.

Theorem 3.2.1. (i) Assume x(t) satisfies synchronous equation (3.16). Let Ay be the

second largest eigenvalue of coupling matriz G. Let ro = us(S), the matriz measure of

S with respect to 2-norm. Here S is defined in (3.19). Set a =: —1 — 2 and

Phgea(®) = f'(2) + kgs [-p(z) — (v — 2)p'(2)a] . (3.21a)
Define ‘
SUp g, () = { (hczl)l’fgs Z zgi o (3.21b)
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where hey is a constant and dy = max f(x) = 2.253. Let dy = sup 10|z(t)| < 20. Then
jAS] x(t)
coupled HR system (3.14) is locally synchronized provided that
(=X2)d + (—ha)kgs > 24 > dy + b, for kgs >0, and

—Xod > 26.253 > dg + b+ dy, for kg, = 0. (3.21¢)

(i) Assume that tlim x(t) = x.. Let tlim ﬁ(t) .= H,. Here ﬁ(t) is defined in (3.20a).
—00 —00

Then system (3.14) is locally synchronized if all real parts of eigenvalues of

H I -I B
—10x I -1 0 | = H.
wbl 0 —ul

are negative.

Proof. To obtain local synchronization of (3:14), we study equations (3.20). Note that

for excitatory HR neurons, z(t)«< v = 2 for all £.-Clearly, us(H (t)) < Aad+hakgs =: .
Here h,, is defined in (3.21b): Then by equation (3.20), we have

Dilz@) | < M@+ o) =z, (3.22a)
Dilly@\, < dollz(@)if: =g @I (3.22b)
Dil[z(®)[f < pbllz )l =uliz(®)]- (3.22¢)

Applying Proposition 2.1.1-(ii), we see that the first part of the assertion of the

theorem holds true provided the real parts of the eigenvalues of

A1
B=|d -1 0 (3.23)
po 0 —p

are negative. Indeed, the Routh-Hurwitz Criterion asserts that it occurs whenever
—A > dy+ b. So the first assertion of the Theorem holds true.

The last assertion of the Theorem is a direct consequence of Proposition 2.1.2. [

If the steady-state synchronization is considered, then some easier verifiable con-

ditions than those stated in Theorem 3.2.1-(ii) can be obtained.
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Corollary 3.2.1. Let d = 0. Assume tlim x(t) = x.. Then system (3.14) without
—00
electrical coupling is locally synchronized if the real parts of the eigenvalues of A are

negative, where
[ hgeal) 1 -1
A= —10z, -1 0 |. (3.24)
pb 0 —p
Proof. Note that H, with d = 0 has the following form.
f/(zc) + kgs [_p(xc) + ('U - zc)p/(xc)] I -1
—10z,. -1 0

b 0 —p

L+ (g o) @ (ol — (@)

Applying Proposition 2.1.3, we have that system (3.14) is locally synchronized provided
that

¥ &1
— 10z —1 0],
b 0% =p

where v = f'(z.) + kgs [—p(xe) + (0 — 2 )p'(@)] + 9s(v — z)p' (2)Ni and N; € o(S),
have all its eigenvalues with negative real parts.
Define matrix A(x) as
Fitwareer” 1 -1
A(z) = —10z, -1 0
b 0 —u
Then it can be proved by applying the Routh-Hurwitz Criterion that for any y < z < 0,
if all eigenvalues of A(x) have positive real parts, then so do those of A(y).
Upon using the above observation and the fact that 5\2-, the real parts of eigenval-

ues of S, are negative, we conclude that the assertion of the Corollary holds true. [

Corollary 3.2.2. Let C be a node-balancing matriz, i.e., its row sums and column
sums are equal. Assume tlim x(t) = x.. Then system (3.14) is locally synchronized if

—00
all real parts of the eigenvalues of A, as given in (3.24), are negative.
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Proof. As in the proof of Corollary 3.2.1, it suffices to show that all real parts of the
eigenvalues of dG + g,(v — x.)p'(x.)S are negative. However, by Theorem 2.1.1, we
have Amax (dG + g5(v — 2.)p'(2.)S) < pa(dG + g5(v — x)p' (2)S) < dpa(G) + gs(v —

ze)P () p2(S) < 0. Thus, the proof of the Corollary is completed. O

Remark 3.2.1. (i) To acquire synchronization of coupled networks, the second largest
eigenvalue of the coupling matriz plays an inescapable and decisive role. Indeed, in
certain cases, such as the system is fully coupled, the necessary and sufficient condition

[83] with k =0 for local synchronization is
Pmax + dAg < 0.

Here hp,., is the largest Lyapunov exponent of the individual oscillator. In most of
interesting networks, Ay becomes closer to the origin from the left as the number of
oscillators grows. Hence, it takes greater coupling strengths to synchronize the larger
system. In other cases, such as the coupled map lattices (1.2), the system exhibits the
size instability phenomena, that is, the system with the number of nodes greater than
a certain critical value loses-its synchrony regardless how strong the coupling strength
is. Such size instability is mduced by the competition. between a certain eigenvalues,
including o, of the coupling matriz, we will study it-in the next chapter.

(i) If the connection C is'symmetric, them rs is the second largest eigenvalue of
S. It is easy to see that if the connection network is all-to-all coupled, then k = m —1,
ro = —m, and so a = ﬁ < 1. It can be computed that the denser the network is
coupled, the larger o is. Hence, a is an indicator of how densely coupled the system is.

Note also that —1 < a < 1. We shall call « the density of the coupling network.

We also mention that the computation cost to verify the synchronous conditions
(3.21c) or (3.24) is very little as compared to that of computing second Lyapunov
exponent of the network. Specifically, if HR system (3.14) is both electrically and
chemically coupled, one needs to check the inequality (3.21c) to see if the system is
synchronized. To check the steady-state synchronization, one only needs to verify the
sign of the largest real part of eigenvalues of a 3 x 3 matrix, A, see (3.24), regardless

of the number of neurons.
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3.2.3 Further Discussions and Numerical results

In the subsection, we shall focus on applying Theorem 3.2.1 and Corollaries 3.2.1, 3.2.2
to coupled HR neurons (3.14) to extract more detailed synchronization phenomena.

To this end, we need to know, firstly, the dynamics on synchronous manifold.

(I) Dynamics on synchronous manifold

We begin with the study of the dynamics of synchronous equation (3.16). Its
dynamics is to be provided numerically. For ¢ =4, a = 2.6, xg = —1.6, u = 0.01, b =4
and v = 2, the single HR neuron model, i.e., g, = 0, is capable of producing major
neuronal behavior, bursting. (see e.g., [44]). Furthermore, such neuron is excitatory,
ie., z(t) < v =2 for all t > 0. We shall treat kg as a bifurcation parameter. The
corresponding dynamical behavior of equation (3.16) is summarized in Table 3.1. A
similar result to Table 3.1 was also reported in Fig. 2 of [16]. On the synchronous
manifold, the solution trajectery z(t) of (3.16), depending on initial conditions and
kgs, may settle into various stable states: Figure 3.4 provides the maximum Lyapunov
exponent (MLE) of synchronous equation (3:16) versus kgs. For 0 < kg, < 0.85, there
is a set of initial conditions with positive measure for which their corresponding MLE is
positive. However, for 0.809 <'kg, < 0.85, there is‘also a set of initial conditions with
positive measure for which its corresponding MLE is negative. For instance, if 0.809 <
kgs < 0.813, then there are sets of initial conditions with positive measure so that the
solution trajectories of (3.16) converge to a stable periodic solution (see Fig. 3.5) and
stable regular bursting (see Fig. 3.6), respectively. Specifically, let (z.,y., z.) be the
steady state of (3.16) (see, Fig. 3.7), and let

CT = {(:L’,y,z) : |LL’ - xc‘ <, ‘y - yc| <, and |Z - Zc‘ < T}? (325&)

and

I ={(z,y,2) : |t — x| >r |y —vye| >r, and |z — z.| > r}. (3.25b)

In fact, our numerical results suggest that the following hold. Pick, for instance,

kgs = 0.812. If the initial condition (xg, 3o, 29) is randomly chosen from Cp o (resp.,
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I,), then its trajectory converges to a periodic orbit (resp., a stable regular bursting)
(see Figs. 3.5, 3.6). Similarly, for kg, € [0.814,0.85], synchronous equation (3.16)
also exhibits rich dynamics showing the coexistence of stable multi states. Moreover, if
kgs > 0.814, the numerical results suggest that the corresponding steady state is locally
stable. In fact, a direct calculation shows that a Hopf bifurcation occurs near 0.813.
Furthermore, if one performs the linearized stability at the steady-state (x., y., z.), then
one sees that (x.,y., 2.) is stable whenever kgs > 0.814 (see Fig. 3.8). Such analysis of

linearized stability provided some supportive evidence for the validity of Table 3.1.

Table 3.1: The dynamics of synchronous equation (3.16) with various range of kgs;.
The multi-stability of (3.16) is observed with kg, € [0.809, 0.85].

kgs || kgs < 0.808 | 0.809 <kgs <0.813 | 0.814<kgs<085 | kgs > 0.87
Stable regular bursting | Stable regular bursting
Types Stable regular bursting Stable steady state
Stable periodic solution Stable steady state

In summary, the numerical results suggest that on the synchronous manifold,
for kgs small, the regular bursting behavior of single HR persists. For kg, in an in-
termediate range, the multistability of-equation (3:16) occurs. Depending on initial
conditions, the coexistence of multi stability states.including a stable regular burst-
ing and a stable periodic solution/a stable-fixed point could be observed. When kg;
becomes large, equation (3.16) has a globally asymptotically stable fixed point. Such
complex dynamical behavior of synchronous equation (3.16) leads to the possibility of
stable multi-state synchronization of coupled HR neurons (3.14). If the initial condi-
tions and the range of kg, are so chosen that the corresponding synchronous equation
leads to a regular bursting solution, then the associated coupled HR neurons (3.14)
achieves stable regular bursting synchronization. Likewise, we define stable periodic
synchronization and stable steady-state synchronization accordingly. As we can see,
via Table 3.1, that for 0.809 < kg, < 0.85, the coexistence of stable multi-state syn-
chronization of coupled HR neurons (3.14) could be observed. It should also be mention
that the theory of weakly coupled oscillators has often been used to analyze networks

of neuron coupled by small chemical synapses g;, see e.g. [60], and the many related
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work cited therein. Using this theory enables one to obtain some extensive analytical
insight. Furthermore, the ups and downs of synaptic strength can be controlled. For
instant, N-methyl-aspartate receptors can both boost and dampen synaptic efficiency
in the brain [10]. Such observations give the justification for the consideration of small

chemical synapses g;.

X:0.85
Y:2e-4
™ |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

kgs

Figure 3.4: The maximum Lyapunov.exponent (MLE) of synchronous equation (3.16)
is computed for various kg,. For.0 < kg, < 0.85, MLE> 0 for a set of initial conditions
with positive measure. For kgs € [0.809;0.85]; there is also a set of initial conditions
for which its corresponding MLE<0.
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Figure 3.5: The solution trajectory with randomly chosen initial conditions from Cf g2
converges to a stable periodic orbit. Here kg, = 0.812.

(IT) Neurons with only chemical synapse

In [6], a local steady-state synchronization of bursting neurons with no electrical
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Figure 3.6: The solution trajectory with randomly chosen initial conditions from I,
converges to a stable regular bursting. Here kgs = 0.812.

Fixed Point
/

20 A . o]
0

Figure 3.7: Fixed points (z., y., z.) for different values kg,. The fixed point (z., y, 2.)
tends to (2, —19,14.4) as kg, tends to infinity.

coupling is studied without providing mathematical details. Moreover, their approach
fails to see if synchronization of neurons can be achieved when the networks are in-
termediately and sparsely coupled. Their major contribution was to prove that the
bound for achieving synchronization of HR neurons depends only on the number £ of
chemical signals each neuron receives, and is independent of all other details of the
network topology. From (3.21a) and (3.21c), it is clear that the larger the density «
of the network is, the greater chance coupled HR neurons (3.14) gets synchronized. In

the following, we shall prove that the system of coupled HR neurons (3.14) achieves
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steady-state synchronization regardless how sparsely the network is coupled provided

By Corollary 3.2.1, it suffices to show that the maximum real part Aya(A)
of eigenvalue of matrix A defined in (3.24) is negative. From Fig. 3.8, we see that
)\maX(Z) < 0 whenever kg, > 0.814. Upon taking into consideration of the dynam-

ics on synchronous manifold as provided in Table 3.1, we have the following conclusion.

Coupled HR neurons (3.14) with d = 0 achieves the steady-state synchronization
for a set of initial conditions with positive measure whenever kgs > 0.814 regardless
how sparsely the network is coupled, which improves the result obtained in [6]. More-
over, the system acquires the steady-state local synchronization for all initial conditions
sufficiently close to each other whenever kgg > 0.87.

Numerically, the following scenarios are also’observed. Coupled two HR neurons
achieves synchronization only when-kgs > 0.809. Stable regular bursting and steady-
state synchronization is found ‘on a set of initial conditions with positive measure,

respectively, whenever kg, ~= 0.85. Such numerical results are illustrated in Figs. 3.9

and 3.10.

Figure 3.8: The maximum eigenvalue of the linearized operator with respect to the
synchronous equation (3.16) is computed for various kgs.
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Figure 3.9: The time series of z1(t) — x2(t) and x;(¢t). The graphs demon-
strate the stable regular bursting synchronization. Here g, = 0.85, initial =
[—2,-18,3,—2.5,—18.5,2.5].
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Figure 3.10: The time series of x1(t) —z5(t) and x1(t). The graphs demonstrate the sta-
ble steady-state synchronization. Here g5 = 0.85, initial = [0.026, 1,6.5,0.126, 1.1, 6.6].

(IIT) Neural synchronization with only electrical synapse

For g; = 0, by Theorem 3.2.1, we obtain stable regular bursting synchronization

whenever d > dOLj\tdl =: dpin. Consider, for instance, a ring of 2K -nearest-neighbor

mutually coupled networks, the predicted minimum electrical coupling strength d;, is
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computed with the number m of neurons and K being given. Note that in such case

K . . .
17T S1n
Ao = —4 in? — = m m _ oK. 3.26
2 g sin” 7 (3.26a)

The results are listed in Table 3.2. For instance, given a number of (10* + 1)
neurons, it takes the electrical coupling strength 6.66 x 107 or greater to reach synchrony
for a network with the nearest-neighbor coupling. It only takes 2.7 x 1072 or greater
to do so for an all-to-all network. If the coupling matrix G is of high dimension
and without fine structure for computers to be able to calculate its second largest
eigenvalue effectively, one may use some known estimates to find the upper bound of
Ag. For instance, we have that (see e.g., [70])

—9

(m = 1A(G) — =52

)

Ay < (3.26D)

where p(G) is the mean distance of the graph associated with G. Upper bounds for
dmin by using (3.26b) are listed in-the Table 3.2, too. For m = 10% + 1, the upper
bounds of dyi, are 3.29 x 10% and 65640, respéctively, for a network with the nearest-
neighbor coupling and all-te-all coupling. In a nutshell, connecting each neuron to
more neighbors is an effective’way for large-size networks to lower the synchronization
threshold.

The upper bound for A, in (3.26b) is quite good for the sparsely coupled networks.
Indeed, in the case of the nearest-neighbor coupling, the exact value of Ay and its
estimated upper are both O(#) On the other hand, if the network is densely coupled,
the upper bound in (3.26b) gives a poor estimate for Ay. Nevertheless, if one picks other
type of upper bound for Ay, better estimates could be expected. For example, it is also
known, see e.g. [103], that

m

A< =7 (3.26¢)

where 5 > 0 is such that G + L is negative semidefinite. Here L is the Laplacian
matrix of the complete graph, i.e., L = m(I — ee”), where e is given as in (2.7a).

For the all-to-all coupling, it is readily verified that SG + L with § = 1 is negative
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Table 3.2: The first component of the pair in the table gives the predicted minimum
electrical coupling strength d,,;, by using the exact value of ;. For instance, with
m=10%+1, K = [mT_l} = 25, the predicted minimum electrical coupling strength is
dmin = 1.4. The second component of the pair in the table is the upper bound of d,;,
by using (3.26b).

m 21 10 +1 10" 41
K =1 (the nearest-neighbor coupling) | (296,1320) | (6786,32824) | (6.66 x 107,3.29 x 10%)
K =[] (6.10,269) | (1.40,1320) (0.0145,1.32 x 10°)
K = ™1 (the all-to-all coupling) (1.26,138) (0.27,663) (0.0027,65640)

semidefinite. Consequently, the equality in (3.26¢) can be achieved, which yields the

best possible estimate.

(IV) Neural synchronization with beth excitatory chemical and electrical
synapses

Herein, networks with “both excitatory electrical and chemical connections are
considered. To extract more information on synchronization of the system, we further
assume C to be a node-balancing matrix.-We-first observe that z(t) < v and p'(z(t)) >
0 for all t. So h,, defined in (3.21b); is decreasing in . If

then (3.21c) is also satisfied. The synchronization region satisfying (3.27) and kg, >
0.87 is demonstrated in Fig. 3.11. That is to say, if (—Xad, kgs) is chosen from the
shaded region in Fig. 3.11, then multi-state or single-state synchronization can be
realized depending on the range of kg,. Consider, for instance, coupled two HR neurons.
Let kgs = 0.812 and d = 30. If (2;(0),v:(0), 2;(0)) € Coo2 (resp., I1), i = 1,2, as given
in (3.25a) (resp., (3.25b)), and are distinct, then the stable periodic (resp., stable
regular bursting) synchronization occurs (see Figs. 3.12, 3.13).

We further observe that there exists a ¢; such that h_y < 0 (resp., h_; > 0)
whenever kgs € [0,t;) =: Jy (vesp., kgs € (t1,0.87] =: J3) (see Fig. 3.11). Here

t1 ~ 0.6044. Hence, both chemical and electrical synapses enforce the synchronization
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phenomena whenever kgs € J;. For kgs € Jo, the chemical synapses play dragging
roles for system to reach synchrony. To synchronize, the electrical synapses have to be
strong enough to suppress the dragging force created by chemical synapses. Such t; is
called a turning point for h_;.

We are then led to compute turning points for A, (see Fig. 3.14). For a > —0.67
the corresponding turning points are kg, = 0.87. Hence, for 0 < kg, < 0.87, if the
density « of the coupling network is at least —0.67, then chemical synapses can also

enforce the synchrony of the system.

To summarize, a synchronization region is obtained in Fig. 3.11. Particularly,
multi-state synchronization of coupled HR neurons can be realized whenever kgs €
[0.809,0.85] and (—Xaod, kgs) lies in the synchronization region. Furthermore, for 0 <
kgs < 0.87, if the density o of the coupling network is at least —0.67, then chemical
synapses can enforce the synchrony of the system:

To conclude this section, we will elaborate.more on some crucial points.

(i) As evidence in Table 3.1, the multi-stable state; which depends on the choice of
the initial conditions exist in.excitatory HR neuron. Infact, other choice of parameters,
such as a = 3, u = 0.006, ¢.= 3, g = 1.56,.b = 4, would result the neurons burst
irregularly (chaotically). Under such-circumstance, the presence of both stable chaotic
attractor and stable periodic state can be detected. And our approach can be applied
to the above described scenario as well.

(ii) From inequality (3.21c), we see that the denser the coupling network is, or
equivalently, the larger the density « is, the easier the system gets synchronized.

(iii) We mention that free packages SLEPc developed by V. Herndndez, J. E. Romadn,
A. Tomas, and V. Vidal [38] can be used to compute A, efficiently.

(iv) In vivo experiments, the strength of an excitatory mono-synaptic connection
has a biologically realistic value g, = 0.66 x 1073 (see e.g., [9]). Using such g, and
our theory, we may conclude that if the number of presynaptic neurons that connect
to a single cortical neuron is greater than 1319 and in between 1226 and 1288, then

the system may reach steady-state synchronization and multistate synchronization,
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respectively. It should be mentioned that the quantitative description of the circuit
of cat area 17 is given in [9]. Depending on the cell type and its layer location, the
presynaptic synapses could range from 0 to 3500. For instance, it seems that excitatory

cell types ss4(L4), p5(L2/3), p6(L4) and p6(L5/6) are the most likely candidates to

generate multistate synchronization.

Sync. Region

0.87

kgs

06044 — — — — — = — = — — — — — — — —
05

10 20 26253 30 40
-Aad

Figure 3.11: The shaded area is the synchronization region satisfied by (3.27) and
kgs > 0.87.
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Figure 3.12: The time series of x1(t) — x2(t) and x1(t). The graphs demonstrate the
stable periodic synchronization. Here d = 30, g; = 0.812, initial = [0.26459¢ — 1 +
7,0.996499 + r, 6.5058 + ,0.26459¢ — 1 — r,0.996499 — r, 6.5058 — r| and r = 0.001.
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Figure 3.13: The time series of x1(t) — x2(t) and x1(¢). The graphs demonstrate the
stable regular bursting synchronization. Here d = 30, g, = 0.812, initial= [0.26459¢ —
1+ 7,0.996499 + r, 6.5058 + r, 0.26459e.— 1~ 1, 0.996499 — r, 6.5058 — r| and r = 1.
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Figure 3.14: Turning points of h,,.
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Chapter 4

Synchronization in Model 11

In this chapter, we consider the synchronization in CMLs (1.2). Throughout the chap-

ter, we, as usual, assume coupling matrix G satisfies

(i) A =0 is a simple eigenvalue of G and

e= \/—lm(l, 1,.« DT is its corresponding eigenvector. (4.1)

4.1 Local Synchronization Criteria

To study the stability of the synchronous manifold 9t = {x; = s, Vi} of CMLs (1.2),

we consider the variational equation of (1.2):
§(k+1) = DF(s(k))&(k) + d(G © I)DF (s(k))§(k)
=@ Df(sk)) +d(GI)(I®DFf(s(k)]&F), (4.2a)

where & = (&,...,&,) and each &; is the perturbation to the ith oscillator. Let
J =P 'GP, where J = [0]® J, & - - & J,, is the real Jordan Canonical form of G.
Applying the change of variables n = (P! @ I)&, we get

n(k+1) = [ +dJ)® Df(s(k))|n(k),
or, equivalently, in block diagonal form,

mi(k +1) = [(I +dJ;)* @ Df*(s(1))] mi(1)
= Ai(k)ni(1). (4.2b)
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Let 0(A) denotes the spectrum of A. Then o(A;(k)A;(k)) equals to

1)

o([(I+dJ;)* @ DF*(s(1)] (L +dJ})" @ (DfH(s(1)))
o([(I+dJy)" (I +dJ7)* @ [DfH(s(1)) - (DFH(s(1)))])

= o((I+dJ;)* (I +dJ7)") - a(DfH(s(1)) - (DfH(s(1))))
o (I +dJy)* (I +dJ})*) - o(Df(s(1)) - (DFF(s(1)))"),

where J = [0] ® J; & - -+ ® J,, is the Jordan Canonical form of G. Consequently, the

Lyapunov exponents of (1.2) are

In /A
h]—l—hm - ’

k—o0 k‘

Here h; are the Lyapunov exponents of the individual system f and \,; are the
eigenvalues of (I 4 dJy,)*(I + dJ} )F where J,, is a Jordan block of matrix G and
A; is an eigenvalue of G. Let the size of matrix Jy, be k; X k;, and let N = J,, — A\ 1.
It should be noted that for sufficiently large £,

(I +dJy,)" ={(1 +dX)I + dN)* = (L'+ d\)*(I + aN)*
ki—1
k 1 k I NI
(1 + d\)F(T + ;:1 (j)a N7)

Il

where ao = d/(1 4 d);). Clearly, the'order of the magnitude of each entry of T;T;" is at
most O(k?*=2). We conclude, via the Gershgorn disk theorem, that all eigenvalues of

T, T} are of the order O(k?"~%). Consequently, the Lyapunov exponents of (1.2) are
h; +1n |14 dX\;| (4.3)
We summarize the above as follows.

Theorem 4.1.1. Let coupling matriz G satisfy (4.1). Then CMLs (1.2) achieves local

synchronization provided that
Ppar +1In |1 4+dX\;| <0 i=2,...,m, (4.4)

where hyay 18 the largest Lyapunov exponent of the individual map f and \; € 0(G) —
{0}, i=2,...,m. Otherwise, CMLs (1.2) will not acquire local synchronization.
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Remark 4.1.1. The decoupling form (4.2b) of variational equation (4.2a) was first
observed and proposed by Pecora and Carroll [75].

We shall assume from here on that the real parts of the eigenvalues of G are
nonpositive. To find the range of the coupling d so that (4.4) is fulfilled, we need to

solve the following min max problem.

min max |1 4 dX\;| = min max |1+ d\|

deR 2<i<m d>0 2<i<mq
gL, ) = () (45

Here m, is the number of eigenvalues lying in upper complex plane or on the real axis.
The curves r;(d) are termed the ith-mode of the transverse Lyapunov exponent curves.
The equalities above are due to the facts that |1+d)\;| = |1+d)\;|, the real parts of the
eigenvalues of G are nonpositive and (4.4) is violated whenever d < 0. Without lose of
generality, we may assume those distinet-nonzero eigenvalues are \;, ¢ = 2,...,my, with
0 <|A2| <+ < |A\n,|- The coupling value d:= d, solving the min max problem (4.5)
is the optimal choice of the coupling-in the sense that it gives the fastest convergent
rate of the initial values toward the synchronous state. To understand how 7(d) is

formed, we need to know the ordering of r;(d).-For /d > 0, direct computations yield
ri(d) = [ 2% F2Re())d +1]°
)\ 2 12 _ Re2(\) | 2
_ [IW (d_ Re( AZ)) AP~ Re (AZ)]

=

Ail? Ailf?

= [|N]? (d = ¢;)” + tan? 6;] (4.6a)
Moreover, r;(d) > r;(d) if and only if

Re(\;) > Re()) if |\ = [N, (4.6b)
and

(Xl = I\ = dig) > 0 [Ni] 5 |2, (4.6¢)
where

di; — 2(Re(—X\;) — Re(—1))) (4.6d)

Al =117
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Let A; ={j:2<j<my and |\]| = |A,|}. Then 1;%2}1>i<|1+d)\j| = |14dA,|, where w is so
chosen that Re(\,) > Re()\;) for all j € A;. This gives that within each of the index set
Aj;, their corresponding quantities |1+d);| are well ordered for any d > 0. Consequently,
to solve (4.5), we may assume, without loss of generality, that 0 < [ < -+ < | A
from here on. Using the terminology in [37], we see that the numbers 2 and m,
correspond to the longest and shortest wavelength modes, respectively. The numbers
in between 2 and m; are to be called intermediate wavelength modes. Since d;; = dj;,
for any ¢ and j, we consider only d,; with ¢ > j. Our reduction process is now complete.

The following procedures are proposed to determine the “actual” node points of

r(d) from the candidate set {d;; : ¢ > j}.

(A) Set ky = 0, and k; = max{{|Re(\;) < Re(\), Vi = 2...,my}. Let ks be the
largest index so that 0 < dj,k, < dyi, for all k4 <w < m;y.

(B) Let k3 be the largest index so that di,r, < drsp, < duk, for all ks < w. The

process can be continued until-%, = n; for some p < m;.
The next result shows that {k; }._; is the set of “actual” node points of r(d).

Theorem 4.1.2. Let coupling matriz G satisfy (4.1).. Assume that the real parts of the
eigenvalues of G are nonpositive. Then r(d).= Ty, (d) whenever dyx, | < d < dy,,,, ,

t=1,...,p. Here dy, , =0 and dy, Q.

p+1kp —
Proof. Denote by I; = [dy;k,_,,d It then follows from (4.6¢) that if ¢ > j and

d;; > 0, then r;(d) > r;(d) whenever d > d;; and r;(d) < r;(d) whenever 0 < d < d;.
We then conclude that

j—19 j+1kj]'

() the ordering of r;(d) and r;(d) remains the same until both curves meet; (4.7a)
(i1) if 7;(d*) > r;(d") for some d* > 0 with ¢ > j, then r;(d) > r;(d) for all d > d".
(4.7b)

Using the first inequality in (4.6a), we have that r(d) = r, (d) for e, > d > 0. Here €
is sufficiently small. It then follows from (4.7a), (4.7b) and procedure (A) that r(d) =
Tk, (d) on I;. Upon using (4.7a), we conclude that r(d) = 74,(d) for d € (dgyk, , Aok, +€2)-
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Here €, is sufficiently small. Similarly, 7(d) = ry,(d) on Is. We omit the proof of the

remaining assertions of the theorem due to the similarity. O

Note that not all ¢, given in (4.6a) could be critical points of r(d). In fact, the
critical points of 7(d) may not even come from the set {cg,}. We next identify the
“actual” critical points of 7(d). Our next main result shows that r(d) has exactly one

critical point.

Theorem 4.1.3. The curve r(d) has a unique critical point d. that solves the min maz
problem (4.5). Moreover, the optimal range of coupling d to sustain stably synchronous
chaos of (1.2b) is (d;,d,). Here d, and d,., d; < d,., are the intersection points (if exist)
of the straight line y = e~ and the curve y = r(d). Consequently, CMLs (1.2b)

acquires local synchronization if and only if d € (d;,d,.).

Proof. We break up the proof of the theorem into the following three steps

(Step I) We first claim that the number of cx; lylng in the interior I of I; is at most
one. Indeed, suppose there exist cj, € I and cy, '€ Ib with ¢, < cx,. Then the following
hold true. (i) ry,(ck,) > 7Tka(ck,)e (i) rg(er,) > Tiy(ck,). (i) 7, (ck,) > i, (k)
Inequalities (i) and (iii) hold true since ¢, and cg, -are, respectively, the minimum
points of 74, (d) and 7, (d). The fact'that 7, (d) lies:above all other curves on I, leads
to inequality (ii). Combining these inequalities, we have that 7y, (ck,) > 75, (Ck,), &
contradiction to the fact that ry, is the maximum curve on Iy, .

(Step II) We next show that if ¢, € ji-, then r(d) is decreasing on (0, ¢x,) and
increasing on (cx,,00). Indeed, for d € I;1q, v(d) = 1y, (d) > ri,(d) > 14, (dp,1k,) =

Thipy (diik;)- Using the conclusion in Step I and the fact that r} (d) is parabolic,

we conclude that r4,,,(d) must be increasing on I;1;. On the other hand, ry, ,(d)
must be decreasing on [;_y since ry, ,(d) > ri(d) > ri,(dk, ) = 7k, (dgk,_,). The
monotonicity of 7(d) on each interval I;, 1 < j < my, can be similarly determined.

(Step III) Since r(d) is decreasing initially on /; and increasing eventually on I,
there must have at least one critical point. If such points do not lie in the set of node
points, then r(d) has a unique critical point. Suppose ¢, ¢ ji foralli=1,...,p. Then

r(d) is monotonic on each interval I;. Suppose r(d) first changes its monotonicity at
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dy, .k, for some [. Then a similar argument as given in the Step II shows that once
r(d) becomes increasing on I, it will stay increasing the rest of the way. We have

just completed the proof of the theorem. O

Now, we define some terminologies occurring in Theorem 4.1.3. The curve r(d)
given in is to be called the synchronization curve of CMLs (1.2), and the interval
Ny g = (d;,d,) is termed the synchronization interval. (1.2), if exists. The value
d. is called the optimal coupling strength of CMLs. The value r(d.) is called the
synchronization index of CMLs since local synchronization occurs iff it is less than

e~ max  The value hyq, + Inr(d,) is called the Lyapunov index of CMLs.

Remark 4.1.2. (i) The optimal coupling strength d. € (d;, d,) and depends only on the
connectivity topology. (ii) If the straight line y = e "= and the curve y = r(d) do not
intersect, then CMLs (1.2) will not achieve synchronization for any coupling strength.
Suppose d, and d; exist. Then_as soon as d exceeds d,., a certain wavelength mode is
excited, which, in turn, causeS the instability of the synchronous state. The illustration
in BExamples 2 and 3 shows that the excited wavelength mode could be either the shortest
wavelength mode, the intermediate wavelength mode or the longest wavelength mode.
In any event, d,. is the exact critical walue where wavelength bifurcation (WB), as the
terminology using in [37], occurs: On the otherhand, d, is the exact critical value where
all wavelength modes become deexcited ‘enough to induce the stability of the synchronous

state.

Theorem 4.1.4. Suppose the coupling matrix G € R™*™ has nonpositive real eigen-

values. Denote by {\;}i~ the distinct nonzero eigenvalues of G. Then

(i) The synchronization curve is

. )\g(d), d € [O,dmlg] = Il
T(d) - { )‘m1 (d), d c (dmlg,OO) _ I2 . (48&)

(i) The optimal coupling strength is

—2

= —. 4.8b
V- (4.8b)

dc = dm12

78



(iii) The synchronization interval is, if exists,

1 _ e_hmax 1 + e_hmax
Nm = 5 . 4.8
= () (4.80)

(iv) The synchronization indez is

)\2 - )\ml
A2+ Ay

|

. (4.8d)

(v) The Lyapunov index is
Om.f = Pmax + 1|t 1] (4.8¢)

Consequently, depending on the quantity of hmax, either CMLs (1.2) achieves no syn-

chronization or short wavelength bifurcation occurs as d varies.

Proof. It is easily seen that k; = 2 and ks =.m, since d;; = —/\f/\ Thus, r(d) is
iTAj
_ 1 -2 1
as asserted. It then follows from the facts that ¢, = — pw- < wo o < -3 = O

d. = dyy,o. Solving equations 4 = #(d) and y = e " we have that d; and d, are as

claimed. [

4.2 Application: Local Synchronization in coupled
logistic maps

We illustrate our theorems with the following examples.

Example 1: Let the oscillators be diffusively coupled with periodic boundary condi-
tions. It means coupling matrix G is given in the form of (2.31). Then for such G,
my =m, —Apy, = 4 sin? @ and —\y = 4 sin? -

Let f(z) = 42(1 —2), 0 < x < 1. Then hpae = In2, and the corresponding
-2 m

m

3 .2 [Fr
and £ sin~” ~2—. However, d; < d,

candidates for d; and d,. are, respectively, %sin =

only if m <5 . Hence, we conclude that the maximum size of the number of oscillators

to sustain synchronous chaos is 5.
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We next compare our results with those obtained in [19,79]. Their sufficient
conditions on the coupling strength for obtaining stable synchronization are, respec-
tively, given as follows. $ < dgy < W, and <ka:17k# | gni —gji|) +
}é + Gii — gj,-} < ée_hm‘“, for all 7, j with ¢ # j. However, the first inequality above fails
to find any suitable coupling strength provided that G has zero off-diagonal elements.
If G is given as above with m > 4 and f(x) = 4x(1 — x), then the second inequality

also fails to find any suitable coupling strength.

Example 2: Consider synchronization in a directed ring of 2K nearest neighbors
coupled oscillators [1] with K = 2 and m = 9. Specifically, the coupling matrix G

under consideration is a circulant matrix of the form

G = cire(—30, 13, 2,0, ..., 0, 5.4, 9.6).

2(j=1)x 4(j<1)x 14— . 16(~1)
9 9

The spectrum of G is {—30 + 13¢ '+ 2¢ ‘+54e 9 ‘4+96e 9 i j=
1,...,9}. Here Ay = —11.4024 + 1.16291, A3 ~ —33.0293 + 2.1855i, \y ~ —45 + 5.8890i
and A5 &~ —45.5683+ 3.3483i: Direct computations yield that dy ~ 0.0348 < d55 < d3a,
dsy &~ 0.0406, and c5 < ¢y <'dys < ds4 <€ ( see Fig: 4:1 ). Consequently,

ra(d), d e I.=]0,dy]
r(d) = X0 rald)y.d-€ 15 = [dys, ds4)
rs(d), " d'€ I3 = [ds4, 0]
the node points of r(d) are dso and dsy, and the critical point of r(d) occurs at dys. Let
fu(r) = px(1 —x). For p = 4, since e hmer = ¢=2 = 0.5 < r(dys), synchronization
interval does not exist. As p varies from ps & 3.57 to p = 4, scenarios (i) no syn-
chronization, (ii) short wavelength bifurcation(SWB) and (iii) immediate wavelength
bifurcation(IWB) can be clearly observed from the figure.
On the other hand, the maximum size of the number of oscillators on such con-
nectivity topology to sustain stably synchronous chaos is 7. The claim above is done

by checking the intersection of the equations y = % and y = r(d) for all m < 8.
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1.2¢

0.5

0

0 ¢ Cq daodsy 0.08¢c2 0.1

Figure 4.1: Graph of r(d) in Example 2. Here dys =~ 0.0348, d54 ~ 0.0406, 7(d4) ~
0.6040, r(ds4) =~ 0.8604, c5 ~ 0.02182, ¢4 ~ 0.02185 and ¢y ~ 0.0868. The critical point
of r(d) is dys.

Example 3: The following example shows that long wavelength bifurcation(LWB) is

also possible. Let G be given as follows:

=30 3 12 5 10
10 -30 3 N 5
o 10 =30 3 12
12 5] 10 -30 /.3
2 12 5 1030
The spectrum of G is {0, —35.2639 41077195 =: Ay, —39.7361 4 2.5429i =: A3, Ay, A3}.
Then the graph of r(d) is demonstrated in Fig. 4.2. Consider f(z) = 4z(1 — x). Then
the longest wavelength mode becomes excited to induce instability as d is increased
beyond d,.
Example 4: To illustrate the accuracy of our theorems, synchronization intervals
established in Theorem 4.1.4 are compared with those obtained by the computer simu-
lation. In particular, theoretically and numerically predicted synchronization intervals
for three examples above are almost identical. Such comparisons are recorded in Fig.
4.3. They are “almost” identical. This simulation is so setup that the differences be-

tween the initial values @; are within 107°. Synchronization is achieved when their

differences are within 1071°.
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T2 (d) i
|
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0 d, d. d.dsy 005

Figure 4.2: Graph of r(d) in Example 3. Here d3s ~ 0.0396, co =~ 0.0259, c3 ~ 0.0251,
d; ~ 0.0149 and d, ~ 0.0369. The critical point of (d) is co.

4.3 Wavelet Transform Method for Coupled Map
Lattices

In this section, we consider how the wavelet- transform method [98] affects the stability
of synchronous manifold of«(1.2). As required hypothesis in [98], we as well assume
coupling matrix G being symmetric and satisfies (4.1), and the number m of nodes
being equal to m2¢.

Write G as

G o Gy
G = : . :
Gin - Gam

mXm
Here, the dimension of each small block matrices is 2° x 2¢. By the i-scale wavelet
operator W [21,98], the matrix G is transformed into W (G) of the form
Wi o Wi
WG =1
Wﬁl o Wm G mXm

where each entry of W,, (1 < p,q¢ < m) is the average of entries of G,,. After



£
= | F—
g 0/2 0.25 0.3 0.35 0.4
s
B
g I I I
L o 0.25 0.5 0.75 1
G
L 00—
0.01 0.02 0.03 0.04

d (coupling strength)

Figure 4.3: Three typical synchronization intervals (SIs) for coupled logistic map with
various coupling matrices are shown. Solid (bold) lines are SIs obtained by computer
simulation. Dotted (fine) line lines are Sls predicted by our theorems. All scaled for
clear visualization.

reconstruction [98], the coupling matrix G becomes

Gy Gus,
G+ K-W(G)= : :
Gar /G X
where K is a wavelet parameter. In.summary; the effects of the wavelet transform
method can be viewed as the changes of eigenvalues of the coupling matrix and vary
dramatically for different m’s. The eigenvalues of G + K W(G) are denoted by \;(K),
with 0 = A (K) > Ao(K) > -+ > A\, (K). Clearly, Theorem 4.1.4 is still valid for such
new coupling matrix. Note that the corresponding 0,, ¢, d¢, Ny, y and g, defined in
Theorem 4.1.4 now depend on the wavelet parameter K as well. To emphasize such
dependence, we shall write them as 0,, ¢(K), d.(K), Ny, s(K) and ts ,, (K), respectively.
In the following, we consider the applications of the wavelet transformation
method in the case that f in CMLs (1.2) is the logistic map, i.e., f = f,(z) = px(1—x),
and the coupling matrix G' € R™*™ is the diffusive matrix with periodic boundary con-

ditions as given in (2.31).
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Example A. m =4 (No improvement)

Fig. 4.4(a) shows the calculated eigenvalues \;(K) of the coupling matrix as a
function of wavelet parameter K. The coupling matrices before and after reconstruction
are denoted by G + KW (G) = [épq], with K = 0 and K > 0, respectively, where

. . —(4rK)  2-K
G11=G22:< 02K ﬂ>7

2 2

- - K 24K
G =Gy = 2f % .
2

2
The solid line is A\o(K), while the dotted line is A\y(K). Note that as K is increased, a

crossing appears at K = 1. This crossing makes the analytical identification of \;(K) a
difficult task. Thus, the optimal K is numerically determined from Fig. 4.4(b), where
ta.m, the synchronization index, is obtained. from Fig. 4.4(a). We set K = K, min is the
number for which ts,,, (K min) 18 @ minimum.-Fig. 4.4(b) shows that K, min € [0, 1].

Thus, it is clear that no enhancement of synchronization is expected.
Example B. m = 8 (Significantly improved)

For m = 8, the enhancement of synchronization is shown. Fig. 4.5(a) shows the

eigenvalues \;(K) of the coupling matrix as a function of the wavelet parameter K. In

) —UHK) 2K
Gy = ﬁ —(431() , ifp=gq,
2

this case,

2
K
4

épq:(ﬂ

2

00 .
g = ( 00 ) , otherwise.

Note that two crossing points appear. Similarly, the synchronization index,

tas(K) is shown in Fig. 4.5(b). It is observed that Ky, € (1.13,1.204). Thus, using

XX

):égp:@l:éa, fg_p=1,

Q

an optimal K (in the min region), it is expected to have a significant improvement over
K =0.
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Given the optimal K, the effects of the wavelet transform method on synchro-
nization with different growth rates and coupling strength are further investigated.
Fig. 4.5(c) shows the Lyapunov index of coupled system (1.2) with K = 0 and K = 1.15.
These two graphs are identical with a vertical shift. It is seen, via Fig. 4.5(c), that if
> pg ~ 3.67, so as g, > 0, then the local synchronization is lost without the wavelet
transform method. However, with wavelet transform method (K = 1.15), d5 ,(1.15) < 0
for all u’s, and so the local synchronization of (1.2) is preserved. Fig. 4.5(d) and
Fig. 4.5(e) shows the optimal length of the coupling strength as a function of growth
rate without the transform (K = 0) and with the optimal transform (K = 1.15),
respectively.

The numerical simulation for obtaining the interval of synchronization recorded
in Fig. 4.5(f) and Fig. 4.5(g) again confirms our theoretical prediction above. Without
the transform (K = 0), there is a_narrowsregion for the complete synchronization.
In dark areas around p = 3.64 and 3.85, each cell shows a periodic window-type
of behavior. In gray areas, different-initial conditions give rise to different scenarios
of partial synchronization (for example, even/odd cells are synchronized). With the
wavelet transform method, there is a very significant increase in dark areas as compared
to those in Fig. 4.5(f). The applicable ranges of the coupling strength and the growth
rate are significantly improved. ‘The-numerically’ produced Fig. 4.5(f) and Fig. 4.5(g)
are in agreement with our theoretically predicted Fig. 4.5(d) and Fig. 4.5(e).

Example C. m = 40 (Effects on large m)

The wavelet transform method is most dramatic for a large number of oscillators.
Fig. 4.6(a) shows the maximum number of oscillators for which the local synchroniza-
tion of the system with or without the wavelet transform method can still be sustained.
The numbers are obtained by Theorem 4.1.4. It is seen, via Fig. 4.6(a), that the good
improvement on the maximum number of oscillators allowed is that even without choos-
ing the optimal K. The graphs in Fig. 4.6(a) are decreasing with respect to the growth

rate p of the map, except at those u’s yielding the window behavior. As m increases, the

85



dominant eigenvalue approaches zero. Hence, local synchronization becomes unobserv-
able. Furthermore, the change of the dominant eigenvalue due to the wavelet transform
method is very significant. Fig. 4.6(b) shows that if g = 3.5699456 < pu < puy = 3.5708,
then coupled system (1.2) acquires synchronization with m = 40 and K = 1. However,
it is easily verified from Theorem 4.1.4 that if 4 = pq, then the maximum number of os-
cillators allowed for synchronization without the wavelet transform method is m = 24.
It should be noted that in producing Fig. 4.6(a) only the end points of synchronization
intervals are recorded. For those p’s, where > 3.571, exhibiting the window behavior,
the end points of synchronization intervals lie outside the interval (0.1,0.5).

With the wavelet transform method, global synchronization can be achieved for
m = 40. In the case of m = 8, the transform enhances the synchronization effect. In
this case, there is a very significant region, as shown in the dark areas in Fig. 4.6(c).
Without the transform, synchronizatien for such a large number of oscillators would
not be possible. This demonstrates the dramatiec effects of the transform with relatively

large m.
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Figure 4.4: (a) Eigenvalues \;(K) of the coupling matrix as a function of wavelet parameter
K for m = 4. The solid line is A\2(K'), while the dotted line is A4(K). (b) Synchronization
index of the coupling matrix as a function of wavelet parameter K. (c¢) Theoretical predicted
synchronization intervals which are in agreement with Fig.4.4 (d) and (e). (d) Numerically
produced synchronization intervals without the wavelet transform method. (e) Numerically
produced synchronization intervals with (K = 0.9) the wavelet transform method. The dark,
gray, and white regions represent in complete synchronization, partial synchronization, and
out of synchronization, respectively. The dark areas around p = 3.64 and pu = 3.85 are
caused by periodic windows. They are consistent with the results of Fig. (a)-(c), where
Km,min € [0, 1].
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Figure 4.5: (a) Eigenvalues \;(K) of the coupling matrix as a function of wavelet parameter
K for m = 8. (b) Synchronization index of the coupling matrix as a function of wavelet
parameter K. (c) Lyapunov index versus growth rate p. (d) White region gives the syn-
chronization intervals for K = 0. (e) White region gives the synchronization intervals with
K =1.15. (f) Numerically produced synchronization intervals without the wavelet transform
method. (g) Numerically produced synchronization intervals with (K = 1.15) the wavelet

transform method.
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Figure 4.6: (a) Maximum number of oscillators allowed for which (1.2) acquires synchro-
nization. (b) Lyapunov index versus growth rate pu. Here g = 3,5704 and p; = 3.57085. (c)
Numerically produced synchronization intervals with K = 1 and m = 40.
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Chapter 5

Conclusion

In this thesis, we consider the synchronization problems in the lattices of the coupled
systems (1.1) and (1.2). Some criteria and applications are drawn.

First, for the coupled system (1.1), we have developed theories (see Theorems 2.2.2,
2.2.1, 2.3.4) to prove the occurring -of global synchronization, and a rigorous lower
bound on the coupling strength to_acquirerglobal synchronization is obtained. The re-
sults can be applied to quite general connectivity topology including the time-varying
coupling. Moreover, by merely checking the structure of the vector field of single os-
cillator and verifying bounded dissipation-of-the coupled system, we shall be able to
determine if the coupled system is synchronized or not.

In Chapter 3, to see the applicability of the developed theorems, the coupled
Lorentz and coupled Duffing oscillators are considered as examples. Moreover, synchro-
nization of coupled Hindmarsh-Rose neurons with excitatory chemical and electrical
synapses is analytical studied. Particularly, multi-state and multi-stage synchroniza-
tion are observed with the presence of both chemical and electrical synapses. A mea-
surement for the density of the network is introduced to ensure that chemical synapses
play positive effects on the synchronization of the system of coupled neurons.

Secondly, the necessary and sufficient condition for the local synchronization in
the CMLs (1.2), as a version of the MSF criterion proposed by Pecora and Carroll [75]
in (1.1), is supplied for arbitrary coupling matrix G, see, for examples, Theorems 4.1.1,

4.1.3, 4.1.4. We also show analytically and numerically that the wavelet transformation

90



method applied well in the CMLs. The result is illustrated in Fig. 4.5, for instance.

Before concluding the thesis, we mention some possible future work. First, it
is of great interest to show how bounded dissipation of the coupled system is related
to the uncoupled dynamics and its connectivity topology. Second, the analysis of the
local (global) synchronization in the CMLs with the partial-state coupling is also worth
studying.
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