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I 

 

耦合網路的同步研究 

研究生：梁育豪                        指導教授： 莊  重 教授 

國立交通大學 

應用數學系 

 

摘   要 

 

本篇論文的目的是為研究一些常見耦合網路的同步化現象。對於

混沌耦合網路，基於矩陣測度的概念，我們發展出一些同步化平面的

全域穩定性判別定理。對比於其他研究，本篇論文所建立的方法是較

容易做驗證的：我們僅需確認單一未耦合系統的向量場結構，便能辦

別出耦合系統是否得能達成同步。此外，此處所考慮的耦合網路涵蓋

相當的廣泛，包含了時變的耦合網路。特別地，為了顯示我們發展出

的定理其可用性以及其和生物模型 的相關性，我們 將拿

Hindmarsh-Rose 神經元的耦合系統作為一同步化的探討例子（在這

裡，我們也將顯示一些神經元達成同步化時會出現的一些有趣動態行

為）。 

    對於耦合映像晶格系統(CMLs)，我們考慮同步化平面的鄰域穩定

性問題。我們將給出此穩定性的充分必要條件，並且提供了一個簡單
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的建構同步化曲線演算法。利用此同步化曲線，我們可以容易地解釋

波長分歧與系統大小相依性的問題。進一步地，我們考慮小波變換方

法對 CMLs 所造成的影響。我們將在數值上以及理論上顯示出此變換

方法在 CMLs模型中是可以提高同步化現象的發生。 
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The Study of Synchronization in Coupled 

Networks 

Student: Yu-Hao Liang               Advisor: Prof. Jonq Juang 

 

Department of Applied Mathematics 

National Chiao Tung University 

 

Abstract 

 

The purpose of this thesis is to study the onset of synchronization in 

some common models. For the coupled chaotic systems, based on the 

concept of matrix measure, we derive some criteria for the global stability of 

the synchronous manifold. Comparing with other developed criteria, our 

criteria are easy to apply. By merely checking the structure of the vector 

field of the single oscillator, we shall be able to determine if the coupled 

system could acquire synchrony. Moreover, the considered coupled 

networks could be quite general including the time-varying networks. 

Specifically, to illustrate the applicability of our developed criteria and to be 

much relative to the real phenomena, the coupled Hindmarsh-Rose neurons 

are considered. Some interesting phenomena under synchronization are 

showed. For the coupled map lattices (CMLs), ones consider the local 

stability problem. We shall give the necessary and sufficient conditions for 

the local stability of the synchronous manifold for the arbitrary coupled 

networks. Also, a simple algorithm for the construction the so-called 

synchronization curve is given. Using it, one can simply explain the 

phenomena of the wavelength bifurcation and the size dependence problem. 

In addition, the effect of the wavelet transform method developed by Wei 

and et al is considered for the CMLs. We shall show that both numerically 

and theoretically, it enhances the onset of the synchronization. 
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Chapter 1

Introduction

1.1 Synchronization in lattices of coupled systems

Synchronization is a common, significant phenomenon occurring in the natural world

no matter from the micro view or the macro view. It depicts a group of different

individuals displaying the same behaviors at the same time under certain interactions.

The purpose of it is to get them to solve problems cooperatively. For instance, in

the human brain, there are about 1010 neurons. To integrate separately processing

information in the brain, they have to synchronize their activity [14,31]. In the nights

of the South-East Asia, such as Thailand, Malaysia or Borneo, male fireflies accumulate

along the river banks flashing on and off simultaneously [13] in order to attract the

female fireflies cooperatively.

Correspondingly, in the technology field, synchronization now and then is de-

signed to occur in the experiment for some purpose, especially in the design of the

electronic circuit system. In engineering, it is studied as a tool for transmitting infor-

mation by using chaotic signals and monitoring dynamical systems [36].

So as an interesting, important topic, synchronization has drawn a great deal

of attention and is intensively studied in many fields, including neuron science, biol-

ogy, physics, engineering, and other fields of science [1,16,24,26,32–34,48,58,59,62,69,

71,73,77,84,90,94,96,99]. Consequently, several elegant theories and articles concerning

synchronization have been rapidly constructed and published in the past few decades.

The general approaches involved for driving the synchronization criteria are roughly the

1



Lyapunov function method (global results) and the master-stability function method

(local results), the analysis of the transversal Lyapunov exponents calculated from the

linearized equations for the perturbations transversal to the synchronous manifold.

Since in the real world the number of coupled units is usually large, the in-

creasing interest in synchronization phenomena has led many researchers to consider

synchronization in large networks of coupled systems with different coupling configu-

rations [1,2,27,48,66,74,85,86,97,100]. As a result, one of the most important questions

in synchronization phenomena is that how the coupling strengths and coupling config-

urations of the network influence the stability of the synchronous state. Furthermore,

one may ask the following controlling problem: Can one slightly modify the coupling

configuration of coupled systems to dramatically reduce the coupling strength needed

to acquire synchrony [51,52,98]? In this thesis, we shall focus on these issues by con-

sidering various models that are frequently used to explain these phenomena.

1.2 Modeling

Based on the disparate individuals, the dynamics of interesting qualities, like move-

ment, velocity, energy, potential, and so modeling are in the various fashions. Similarly,

connection and commutation between themselves have several types. Depending upon

the different models considered, there are different explanations as to why the units

in the coupled systems synchronize. In this context, we will introduce three different

kinds of models (Model I ∼ Model III) that are often used to describe the real collec-

tive networks, and synchronization within. Specifically, the first two models (Model

I ∼ Model II) are to be extensively studied. By it, in this section, we start with the

introduction of the models.

1.2.1 Model I: Coupled Chaotic Systems

The model under consideration in this subsection is of continuous time with continuous

state coupling. Specifically, we consider a unit with the interesting dynamics governed

by a set of ordinary differential equations, saying dx
dt

= f (x, t). Here, x ∈ R
n, and f is a
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vector-valued function from R
n×R to Rn denoted by f (x, t) = (f1(x, t), · · · , fn(x, t))T .

Moreover, when there are connections/commutations between a group of such m units,

the induced whole dynamics under interaction is then described by

dxi

dt
= f (xi, t) + d ·

m∑

j=1

gij(t)Dxj, i = 1, 2, . . . , m, (1.1a)

where xi = (xi1, xi2, . . . , xin)
T ∈ R

n, d is the coupling strength, D = (dij) ∈ R
n×n is the

inner coupling matrix, and the quantity gij(t) describes the coupling weight from the

unit j to the unit i. Let x = (x1,x2 . . . ,xm)
T , andG(t) = (gij(t)) ∈ R

m×m. Then G(t)

represents the (outer) coupling configuration of the network at time t. Equivalently,

(1.1a) becomes

ẋ =




f (x1, t)
...

f (xm, t)


+ d(G(t)⊗D)x =: F (x, t) + d(G(t)⊗D)x, (1.1b)

where ⊗ denotes the Kronecker product.

Such type of model can been seen in some nervous systems or designs of the elec-

tronic circuit systems [99]. For this model, general approaches to deal with the local

stability of the synchronization state, include the master stability function-based crite-

ria [1,72,74,75,81] and the matrix measure criteria [17,18]. For the global stability, the

developing method includes the Lyapunov function-based criteria [2–4,8,78,100–104]

and the matrix measure approach [17,18], and et. al. Among the Lyapunov function-

based criteria, the connection graph approach proposed by Belykh [2–4,8] is sui generis

since the proposed criteria combine some graph theories to avoid the direct compu-

tation of the eigenvalues of the coupling matrix G(t). (Not surprisingly, quantities

related to the eigenvalues of matrix G(t) should play the decisive roles in the synchro-

nization phenomena realistically and theoretically.) What involved term to replace the

role of eigenvalues of G(t) is the total length of all paths passing through an edge in

the network connection graph inducing from G(t). Nevertheless, the method is limited

to the networks with cooperative couplings, i.e., gij(t) ≥ 0, ∀i 6= j. As well, despite
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the fact that the criterion based on the analysis of Lyapunov function guarantees the

onset of synchronization, it is not a general method since there is no procedure for

constructing the Lyapunov function for an arbitrary system. Similar problem occurs

in the matrix measure approach. Furthermore, such criteria may not hold when the

number of the coupled systems is large.

In the thesis, we shall present some criteria for the onset of synchronization in

this model. Instead of constructing the Lyapunov function, the developed criteria are

based on the completely different version of the matrix measure approach as proposed

in [17,18]. The approach can overcome the drawbacks mentioned above.

1.2.2 Model II: Coupled Map Lattices

The model considered in this subsection is essentially similar to that given in Model

I, except that the dynamics of units and the intersection ways are governed by some

maps. It implies the equations of the motion then read:

xi(k + 1) = f (xi(k)) + d ·
m∑

j=1

gijf (xj(k)), i = 1, . . . , m. (1.2a)

Here x ∈ R
n and f is a vector-valued function from R

n × R to R
n. Based on the

structure of the modeling, ones usually call (1.2a) as the coupled map lattices (CMLs).

Set G = (gij). Then in the vector-matrix form, (1.2a) becomes

x(k + 1) = F (x(k)) + d(G⊗ I)F (x(k)), (1.2b)

where x(k) = (x1(k), . . . ,xm(k))
T , and F (x(k)) = (f (x1(k)), . . . ,f (xm(k)))

T .

This model, first introduced in 1980’s [20,56,93], has been the subject of much

recent research. It is studied in the populations, chemical reactions, information pro-

cessing, and biological networks and et. al [57]. Many dynamical behaviors have been

observed, including spatiotemporal chaos and synchronization. In this thesis, we shall

specifically focus on the issue of the synchronization.

The method developed to deal with the local stability problem for the synchro-

nization state is based on the master-stability function criteria [1,19,28–30,42,106].
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For the global stability problem, the methods include constructing the Lyapunov func-

tion [64,65], applying the matrix measure criteria [61] and et. al. Nevertheless, compar-

ing with Model I (1.1a), these methods are more limited. More precisely, the criteria

limit to the special forms of the coupling matrix G.

In the thesis, we shall consider the local stability problem for the synchronization

state in the model with coupling matrix G arbitrary given and study some correspond-

ing problems.

1.2.3 Model III: Pulse Coupled Systems

The model introduced in this section is to explain the flashing synchrony in the fireflies

[13,69], and the rhythmic activity of cells of the heart pacemaker [47,68,76,89], of cells

of the pancreas [82] and of neural networks [12,13,25,76,80,88]. The most difference

between this model and Models I, II is the interaction fashion. Interaction in Models

I, II is “continuous in time”, while that in this model is “fleeting and intermittent in

time”. Moreover, the reset mechanism occurs herein. Such a coupling fashion is called

to be pulse-coupled, and the model is called the integrate-and-fire model. We start with

introducing the Peskin’s model [76].

Let m be the number of the units in the coupled system, and the individual state

be denoted by xi (i = 1, 2, · · · , m), where xi are subject to the dynamics

dxi

dt
= −rixi + Ii, 0 ≤ xi ≤ 1, (1.3)

with Ii > ri ≥ 0. As time progresses, suppose t− 1 is the first time that some ith unit

reaches the threshold 1, i.e., xi(t−) = 1 (one also says such unit fires). Then xi is

reset, i.e.

xi(t−) = 1 → xi(t+) = 0, (1.4a)

and the firing effect from i to j (j 6= i) yields immediately:

xj(t−) →
{

xj(t−) + gji if xj(t−) + gji < 1,
1 if xj(t−) + gji ≥ 1.

(1.4b)

1We use symbols t− and t+ to represent the time instantly before and after the time t , respectively.
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Suppose in this instant, the kth unit fires, i.e., xk(t−) + gki ≥ 1, then similar process

like (1.4) occurs again at once. This process at time t is lasted until all effects of the

firing units are evaluated. In addition, the whole evolution dynamics shall repeat above

process once and once again. For the onset of synchronization in the integrate-and-fire

model, it means that all units fire simultaneously after some fixed time T .

This model was later generalized by Mirollo and Strogatz [69]. It is assumed

that the state variable xi evolves according to xi = fi(φi), where fi : [0, 1] → [0, 1] is

smooth, strictly increasing, and satisfies fi(0) = 0 and fi(1) = 1, and the dynamics of

phase φi is governed by
dφi

dt
=

1

Ti
, 0 ≤ φi ≤ 1. (1.5)

Moreover, as time progresses, suppose t− is the first time that φi(t−) = 1 (corre-

spondingly, xi(t−) = 1) for some i (one also says such unit fires). Then let Ej(t−) =

f( Ti

Tj
(1 − φi(t−)) + φj(t−)), j = 1, 2, · · · , m, and undergo the process of the reset and

firing effects as given in (1.4) for Ej(t−), j = 1, 2, · · · , m to get Ej(t+). Then the

phase φi at time t+ is defined as φi(t+) = g(Ej(t+)). Here g is the inverse function

of f . In addition, the whole evolution dynamics shall repeat above process once and

once again.

As follows, we define some terminologies in the model. We say φ = (φ1, · · · , φm)

is in the firing state if φi = 0 for some i. For a given initial phase φ(0), we say < ti >

is its firing time series if it is the increasing sequence that records the successive time

when phase φ(ti) =: φ(i) is in the firing state. Let r be the map defined in the set of

firing states by r(φ(i)) = φ(i+1) (Such definition is well-defined). Then synchronization

in the model is defined to satisfy that for any φ in the firing state, there is N ∈ N such

that rn(φ) = (0, · · · , 0), ∀n ≥ N .

Note that the Peskin’s model is one of the special model proposed by Mirollo and

Strogatz with

fi(φ) =
Ii
ri
(1− e−riTiφ).

and

T =
ln( Ii

Ii−ri
)

r
.
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In the article [76], Peskin conjectured that, first, for identical units, the coupled

system approaches synchronization for almost all initial conditions, and second, this

remains true even when the units are not quite identical. Herein, “identical” means

fi ≡ f , Ti ≡ T , and gij ≡ g > 0. For the first conjecture, Mirollo and Strogatz [69] give

a rigorous proof for the case that f ′′
i < 0. The second part of Peskin’s conjecture was

verified by Urbanczik and Senu [91] with flat units, i.e., f ′′
i ≡ 0. However, Bottani [11]

numerically showed that even concave-upward units, i.e., f ′′
i > 0, can synchronize,

provided that the concavity is not too large. In the article [15], Chang and Juang

show that if the stability condition holds (see, Eq. (2.9) therein), then the nonidentical

coupled system with f ′′
i < 0 will achieve synchrony for almost all initial conditions;

if both the stability condition (see, Eq. (2.9) therein) and absorption condition (see,

Eq. (3.19) and (3.20) therein) hold, then the coupled system with f ′′
i > 0 will achieve

synchrony for almost all initial conditions. The holding of the stability condition implies

a group of units reaching the threshold at the same time will remain coordinated in

the future, while the holding of the absorption condition implies the number of firing

units grows larger and larger and ultimately all units fire simultaneously. We comment

that the stability condition requires that gij > 0.

1.3 Organization and results of the thesis

The organization of the thesis is as follows. In Chapter 2, we study the global synchro-

nization in Model I (1.1), including the cases that coupling matrix G(t) therein is time

independence and time dependence. Some criteria for the onset of synchronization are

given. In Chapter 3, we take the coupled Lorenz equations, coupled Duffing equations,

and Hindmarsh-Rose neurons as examples to see the applications of the given criteria.

Specifically, we study furthermore the dynamics of the coupled Hindmarsh-Rose neu-

rons under synchronization. The developing method for these criteria includes roughly

the concepts of matrix measure, and coordinate transformation. In Chapter 4, we study

the local synchronization in Model II with coupling matrix G generally given. Some

criteria for the local stability of the synchronization state are given. In addition, the

7



phenomenon of wavelength bifurcations, as the terminology using in [37], and the ap-

plication of wavelet transform method in Model II are discussed. Here, the wavelet

transform method is an approach which is first given out concerning about Model I

(see, e.g., [51,52,83,98]) in order to bring the synchronization easier to happen. It will

be shown that this method also applies well in the CMLs (1.2). In Chapter 5, we

summarize the results in this thesis and give some directions of the future work. We

remark that most results in the thesis are adopted from [49,50,53–55].
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Chapter 2

Synchronization in Model I

Before going into details of the derivation of synchronization for Model I, we first give

some needed preliminaries.

2.1 Preliminaries

First, we introduce the concept of matrix measures. The following definitions and

properties of matrix measures can be referenced to the book by M. Vidyasagar [92].

Definition 2.1.1. ( [92]) Let || · ||i be an induced matrix norm on R
n×n. The matrix

measure of matrix K on R
n×n is defined to be µi(K) = lim

ǫ→0+

||I+ǫK||i−1
ǫ

.

Lemma 2.1.1. ( [92]) Let || · ||k be an induced k-norm on R
n×n, where k = 1, 2,∞.

Then each of matrix measure µk(K), k = 1, 2,∞, of matrix K = (kij) on R
n×n is,

respectively,

µ∞(K) = max
i

{kii +
∑

j 6=i

|kij|},

µ1(K) = max
j

{kjj +
∑

i6=j

|kij|},

and

µ2(K) = λmax(K
T +K)/2.

Here λmax(K) is the maximum eigenvalue of K.
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Theorem 2.1.1. ( [92]) (i) µi(αA) = αµi(A), ∀ α ≥ 0 (ii) µi(A + B) ≤ µi(A) +

µi(B). (iii) If λ is an eigenvalue of A, then Reλ ≤ µ(A). (iv) Consider the differential

equation ẋ(t) = K(t)x(t)+v(t), t ≥ 0, where x(t) ∈ R
n, K(t) ∈ R

n×n, and K(t), v(t)

are piecewise-continuous. Let || · ||i be a norm on R
n, and || · ||i, µi denote, respectively,

the corresponding induced norm and matrix measure on R
n×n. Then whenever t ≥ t0 ≥

0, we have

||x(t)||i ≤ ||x(t0)||i exp
{∫ t

t0

µi(K(s))ds

}
+

∫ t

t0

exp

{∫ t

s

µi(K(τ))dτ

}
||v(s)||i ds.

(2.1)

Next, we introduce a function being of type K, which generates a monotone

dynamics of the system of linear differential equations. For completeness and ease of

the references, we also recall the definitions of the above described concepts and their

properties [41,92].

Let Rn
+ = {x = (x1, x2, . . . , xn)

T ∈ R
n : xi ≥ 0, i = 1, . . . , n} be the nonnegative

cone. Let a, b ∈ R
n. We write a ≤ b if b− a ∈ R

n
+.

Definition 2.1.2. We say that a function f = (f1, . . . , fn) : D ⊂ R
n → R

n is of type

K on D if, for each i, fi(a) ≤ fi(b) whenever a = (a1, . . . , an) and b = (b1, . . . , bn) are

in D with a ≤ b and ai = bi.

The following theorem amounts to saying that a vector field being of type K is a

sufficient condition to generate a monotone dynamics.

Theorem 2.1.2. ( [41]) Let f (t,x) be of type K on R
n for each fixed t and let x(t)

be a solution of ẋ(t) = f (t,x) on [a, b]. Let z(t) be continuous on [a, b] and satisfy

Dlz(t) ≤ f (t, z). Here Dlx(t) = lim
h→0−

x(t+h)−x(t)
h

. Then z(t) ≤ x(t) for a ≤ t ≤ b

provided that z(a) ≤ x(a).

Consider linear system of differential equations in the homogeneous case

y′ = A(t)y. (2.2)

Here A(t) is an n× n matrix. Then clearly if lim
t→∞

∫ t

0
µ2(A(s))ds

t
≤ −r for some r > 0.

Then y(t) converges to zero exponentially. The following propositions play one of the

critical steps in obtaining our main results.
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Proposition 2.1.1. Suppose ξ(t), η(t) and ζ(t) are nonnegative functions on [0,∞)

satisfying the following inequalities

Dlξ(t) ≤ a1(t)ξ(t) + a4(t)η(t) + a5(t)ζ(t), (2.3a)

Dlη(t) ≤ a6(t)ξ(t) + a2(t)η(t) + a7(t)ζ(t), (2.3b)

Dlζ(t) ≤ a8(t)ξ(t) + a9(t)η(t) + a3(t)ζ(t). (2.3c)

Here ai(t), i = 4, 5, . . . , 9, are nonnegative functions on [0,∞). Then ξ(t), η(t), and

ζ(t) converge to zero exponentially provided that lim
t→∞

∫ t

0
µ2(A(s))ds

t
≤ −r, for some r > 0,

where

A(t) =




a1(t) a4(t) a5(t)
a6(t) a2(t) a7(t)
a8(t) a9(t) a3(t)




,

(2.4)

(ii) Suppose, in addition, that, ai(t), i = 1, . . . , 9, are constants. Then ξ(t), η(t), and

ζ(t) converge to zero exponentially provided that all eigenvalues of A are negative.

Proof. Let ξ(t), η(t) and ζ(t) satisfy the following equation.

ξ̇ = a1(t)ξ + a4(t)η + a5(t)ζ, ξ(0) = ξ(0),

η̇ = a6(t)ξ + a2(t)η + a7(t)ζ, η(0) = η(0),

ζ̇ = a8(t)ξ + a9(t)η + a3(t)ζ, ζ(0) = ζ(0).

It is easily checked that the above system is of type K. Following from Theorem 2.1.2

that ξ(t) ≥ ξ(t), η(t) ≥ η(t), and ζ(t) ≥ ζ(t), for all t ≥ 0, we see that the first

statement of the proposition holds as claimed. The second assertion of the proposition

is obvious.

Proposition 2.1.2. Let ẋ = A(t)x. Here A(t) is an n×n matrix. Suppose lim
t→∞

A(t) =

A. Then x(t) converges to the origin exponentially provided that all real parts of

eigenvalues of A are negative.

Proof. For any ǫ > 0, there is a Pǫ such that A can be decomposed into a Jordan form

of the form (see e.g., P.128 of [40]):
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PǫAP−1
ǫ = D + ǫQ,

where D is a diagonal matrix with the diagonal entries being all the eigenvalues of A,

and Q is a matrix with its entries being either 0 or 1. Then PǫA(t)P−1
ǫ = Pǫ(A(t)−

A)P−1
ǫ + ǫQ + D. It follows µ2(PǫA(t)P−1

ǫ ) ≤ µ2(Pǫ(A(t) − A)P−1
ǫ ) + ǫµ2(Q) +

µ2(D) ≤ µ2(Pǫ(A(t)−A)P−1
ǫ ) + ǫn+ µ2(D). Since lim

t→∞

A(t) = A, we get

µ2(PǫA(t)P−1
ǫ ) ≤ (n + 1)ǫ+ µ2(D),

whenever t ≥ tǫ for some tǫ > 0. Hence,

lim
t→∞

∫ t

0
µ2(PǫA(t)P−1

ǫ )ds

t
≤ (n+ 1)ǫ+ µ2(D).

By the arbitrariness of ǫ, take ǫ = −µ2(D)
2(n+1)

. Then, we have

lim
t→∞

∫ t

0
µ2(PǫA(t)P−1

ǫ )ds

t
≤ µ2(D)

2

Thus, all solutions of ẏ = (PǫA(t)P−1
ǫ )y converges to the origin, and so are those of

ẋ = A(t)x.

Proposition 2.1.3. Let A and G be matrices of dimension m×m and n× n, respec-

tively, and Ip be the p× p identity matrix. Let λi, i = 1, · · · , k, be all the eigenvalues

of G. Then the real parts of the eigenvalues of

(A⊗ In) +

((
I1 0
0 0

)
⊗G

)

are negative provided that all real parts of the eigenvalues of matrices

Mi := A+ λi

(
I1 0
0 0

)

are negative.

Proof. For any ǫ > 0, there is Pǫ such that

PǫGP−1
ǫ = D + ǫQ,
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where D is a diagonal matrix with the diagonal entries being all the eigenvalues of G,

and Q is a matrix with its entries being either 0 or 1. Then

(Im ⊗ Pǫ)

[
(A⊗ In) +

((
I1 0
0 0

)
⊗G

)]
(Im ⊗ P−1

ǫ )

=

{
(A⊗ In) +

(
I1 0
0 0

)
⊗D

}
+ ǫ

(
I1 0
0 0

)
⊗Q

By taking ǫ sufficiently small, we get real parts of the eigenvalues of

(A⊗ In) +

((
I1 0
0 0

)
⊗G

)

are negative iff those of

(A⊗ In) +

(
I1 0
0 0

)
⊗D (2.5)

are negative. Then, the proof is completed by noting that after some permutation,

matrix in (2.5) becomes diag(W1, · · · ,Wn), whereWi = Mj , for some j = 1 . . . , k.

2.2 Global synchronization with time-invariant cou-

pling

In this section, we first consider synchronization of (1.1) with the time-invariant cou-

pling. It means we consider the synchronization in the following system.

dxi

dt
= f (xi, t) + d ·

m∑

j=1

gij Dxj , i = 1, 2, . . . , m, (2.6a)

where xi = (xi1, xi2, . . . , xin)
T ∈ R

n, and f is a vector-valued function from R
n ×R to

R
n denoted by f (x, t) = (f1(x, t), · · · , fn(x, t))T . Or equivalently,

ẋ =




f (x1, t)
...

f (xm, t)


 + d(G⊗D)x =: F (x, t) + d(G⊗D)x, (2.6b)

where x = (x1,x2 . . . ,xm)
T , and G = (gij).

As one usually concerns, synchronization is the phenomenon that units in a group

have their dynamical behaviors get closer and closer as time progresses, and eventually

they tend to be identical. So, mathematically, we define synchronization in the same

sense. Mention that such definitions are also set for the time-varying coupling.
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Definition 2.2.1. (i) The synchronous manifold M of Model I (1.1) is defined as the

set M = {x = (x1, · · · ,xm)
T : xi = xj, 1 ≤ i, j ≤ m}. (ii) Model I (1.1) is said to be

locally synchronized if the synchronous manifold M is asymptotically stable under the

given coupling strength d.

Definition 2.2.2. Model I (1.1) is said to be globally synchronized if, under the given

coupling strength d, for all initial conditions xi(t0) (i = 1, 2, . . . , m) in R
n,

lim
t→∞

‖xi(t)− xj(t)‖ = 0, ∀1 ≤ i, j ≤ m.

We next give the definition of the bounded dissipation of a system.

Definition 2.2.3. Model I (1.1) is called to be bounded dissipative (with respect to

α) if there is a bounded region Bmn(α) =: {x : ‖x‖ ≤ α} such that for each parameter

d > 0, and each initial value x(0), there is a time t0, such that x(t) lies in Bmn(α)

whenever t ≥ t0.

To prove global synchronization of coupled chaotic systems, one needs to assume

bounded dissipation, which plays the role of an a priori estimate. Without such an a

priori estimate, as in the case of the Rössler system, global synchronization is much

more difficult to obtain. Only local synchronization was reported numerically in litera-

ture (see e.g., [75]). An interesting question in this direction is how bounded dissipation

of the coupled system is related to the uncoupled dynamics and its connectivity topol-

ogy. Not much general theorems have been provided so far. In just the case that G(t)

and D are specially given, it was shown in [7] that bounded dissipation of the single

oscillator implies that of the coupled oscillators. Moreover, the absorbing domain of

the coupled system is a topological product of the absorbing domain of each individual

system.

Now, we impose the conditions on coupling matrices G and D. We assume,

throughout the section, that

(i)λ = 0 is a simple eigenvalue of G and

e = 1√
m
(1, 1, . . . , 1)T1×m is its corresponding eigenvector; (2.7a)

(ii) All nonzero eigenvalues of G have negative real part. (2.7b)
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Such assumption above is to ensure the invariant property of the synchronous man-

ifold M and make the dynamics of each unit under synchronization be the same as

that without coupling. We further assume that coupling matrix D is, without loss of

generality, of the form

D =

(
Ik 0
0 0

)

n×n.

(2.7c)

The index k, 1 ≤ k ≤ n, means that the first k components of the individual

system are coupled. If k 6= n, then the system is said to be partial-state coupled.

Otherwise, it is said to be full-state coupled.

To study synchronization of equation (2.6), we permute the state variables in the

following way:

x̃i =




x1i
...

xmi




,

and x̃ =




x̃1
...
x̃n




.

(2.8)

Then (2.6b) can be written equivalently as

˙̃x =




f̃1(x̃, t)
...

f̃n(x̃, t)


 + d(D ⊗G)x̃ =: F̃ (x̃, t) + d(D ⊗G)x̃, (2.9a)

where

f̃i(x̃, t) =




fi(x1, t)
...

fi(xm, t)




.

(2.9b)

The purpose of such a reformulation is two-fold. First, a transformation of coordinates

of x̃ is to be applied to (2.9a) so as to isolate the synchronous manifold. Second, once

the synchronous manifold is isolated, proving synchronization of (2.6), is then equiva-

lent to showing that the origin is asymptotically stable with respect to reduced system

(2.12). To do this, we first make a coordinate change to decompose the synchronous

subspace. Let A be an m×m matrix of the form
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A =




1 −1 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 1 −1
1√
m

· · · · · · 1√
m

1√
m




m×m

=:

(
E

eT

)
, (2.10a)

where e is given as in (2.7a). It is then easy to see that EET is invertible and that

A−1 =
(
ET (EET )−1, e

)
.

(2.10b)

Setting

Â = In ⊗A, (2.10c)

we see that

Â(D ⊗G)Â−1 = (In ⊗A)(D ⊗G)(In ⊗A−1)

= D ⊗AGA−1 = D ⊗
(

EGET (EET )−1 0
eTGET (EET )−1 0

)

=: D ⊗
(

Ḡ 0
hT 0

)

.

(2.10d)

We remark, via (2.10d), that σ(Ḡ) = σ(G)− {0}, where σ(·) takes the spectrum of a

matrix. Multiplying Â to the both side of equation (2.9a), we get

˙̃y =: Â ˙̃x = ÂF̃ (x̃, t) + dÂ(D ⊗G)Â−1ỹ

= ÂF̃ (Â−1ỹ, t) + d(D ⊗
(

Ḡ 0
hT 0

)
)ỹ. (2.11)

Let ỹ =




ỹ1
...
ỹn




.

Then ỹi =




x1,i − x2,i
...

xm−1,i − xm,i

1√
m

m∑
j=1

xj,i




.

Setting ỹi =




ȳi

1√
m

m∑
j=1

xj,i




,

and

ȳ =




ȳ1
...
ȳn




,

we have that the dynamics of ȳ is satisfied by following equation

˙̄y = d(D ⊗ Ḡ)ȳ + F̄ (ȳ, t). (2.12)
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Here F̄ is obtained from ÂF̃ (Â−1ỹ, t) accordingly.

The task of obtaining global synchronization of system (2.6) is now reduced to

showing that the origin is globally and asymptotically stable with respect to system

(2.12). To this end, the space ȳ is broken into two parts ȳc, the coupled space, and

ȳu, the uncoupled space.

ȳ =

(
ȳc

ȳu

)

,

and F̄ (ȳ, t) =

(
F̄c(ȳ, t)
F̄u(ȳ, t)

)

,

respectively. (2.13)

Here ȳc =




ȳ1
...
ȳk




,

and ȳu =




ȳk+1
...
ȳn


. The dynamics on the coupled space with

respect to the linear part is under the influence of Ḡ, which is asymptotically stable.

The dynamics of the nonlinear part on coupled space can then be controlled by choosing

large coupling strength. As a matter of fact, it is easier to obtain synchronization of

coupled chaotic systems with a larger coupled space. On the other hand, the uncoupled

space has no stable matrix Ḡ to play with. Thus, its corresponding vector field F̄u(ȳ, t)

must have a certain structure to make the trajectory stay closer to the origin as time

progresses. As we shall explain latter.

Now, assume that F̄c(ȳ, t) satisfies a uniformly Lipschitz condition with a uni-

formly Lipschitz constant b1. That is,

‖F̄c(ȳ, t)‖ ≤ b1‖ȳ‖ (2.14a)

whenever ȳ in the ball B(m−1)n(α), and for all time t. Since the estimate in the right-

hand side of (2.14a) depends on the whole space ȳ, condition (2.14a) is a mild as-

sumption provided that the coupled system is bounded dissipative. Write F̄u(ȳ, t)

as

F̄u(ȳ, t) = U(t)ȳu + (F̄u(ȳ, t)−U(t)ȳu)

=: U(t)ȳu + R̄u(ȳ, t). (2.14b)

We assume further that the followings hold.

17



(i) U(t) is a block diagonal matrix of the form U(t) = diag(U1(t), · · · ,Ul(t)) where

each Uj(t), j = 1, . . . , l, are matrices of size (m− 1)kj × (m− 1)kj. Here

l∑

j=1

kj =

n− k, and kj ∈ N. Assume that there exists a constant γ > 0 such that matrix

measures µi(Uj(t)) ≤ −γ, for all t and all j. (2.14c)

(ii) Let R̄u(ȳ, t) =




Ru1(ȳ, t)
...

Rul(ȳ, t)


. Here l is the number given in (i). Then Ruj(ȳ, t),

j = 1, . . . , l, satisfy a strong uniformly Lipschitz condition with a strong uniformly

Lipschitz constant b2. Specifically, let ȳu =




ȳu1
...
ȳul


, written in accordance with

the block structure of U(t). Then we assume that

‖Ruj(ȳ, t)‖ ≤ b2 ‖




ȳc

ȳu1
...

ȳu j−1


 ‖ (2.14d)

whenever ȳ in the ball B(m−1)n(α), and for all j = 1, . . . , l and all time t.

Specifically, we break the vector field F̄u into (time dependent) linear part U(t)ȳu

and nonlinear part R̄u(ȳ, t). We will further break U(t) into certain block diagonal

form if necessary. Note that form (2.14b) can always be achieved since the remainder

term R̄u still depends on the whole space ȳ. To take control of the dynamics on

the linear part, we assume that the matrix measure of each diagonal block Uj(t) is

negative. As to contain corresponding dynamics on the nonlinear part, we assume that

(2.14d) holds. Note that though the nonlinear terms Ruj(ȳ, t) could possibly depend

on the whole space, their norm estimates are required to depend only on the coupled

space and uncoupled subspaces with their indices proceeding j. In this set up, the

nonlinear dynamics on uncoupled space can be iteratively controlled by choosing large
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coupling strength. We also remark that if (2.14c) and (2.14d) are satisfied for l, the

number of diagonal blocks, being one, then we do not need to further break U(t). Such

further breaking is needed only if (2.14c) and (2.14d) are not satisfied. The proof in

the following theorem gives exactly how the above strategy can be realized.

Theorem 2.2.1. Let G and D be given as in (2.7). Assume that F̄ satisfies (2.14),

and system (2.12) is bounded dissipative with respect to α. Let λ1 = max{λj |λj∈ Re(σ(Ḡ))}.
If

d >
cb1

−λ1 − ǫ

(
1 + (

b2
γ
)2
) l

2

=: dmin, (2.15)

where ǫ ≥ 0 and c is some constant depending on G and ǫ, then lim
t→∞

ȳ(t) = 0.

Proof. Since system (2.12) is bounded dissipative with respect to α, without loss of

generality, we may assume that ‖ȳ(t)‖ ≤ α for all time t ≥ t0. Using (2.14b), we write

(2.12) as

(
˙̄yc

˙̄yu

)
=

(
d(Ik ⊗ Ḡ) 0

0 U(t)

)(
ȳc

ȳu

)
+

(
F̄c(ȳ, t)
R̄u(ȳ, t)

)

.

(2.16a)

Applying the variation of constant formula to (2.16a) on ȳc, we get

ȳc(t) = e(t−t0)d(Ik⊗Ḡ)ȳc(t0) +

∫ t

t0

e(t−s)d(Ik⊗Ḡ)F̄c(ȳ(s), s)ds. (2.16b)

Let λ1 = max{ λj|λj ∈ Re( σ(G)− {0} ) }. Then

‖etd(Ik⊗Ḡ)‖ ≤ cetdν (2.16c)

for ν = λ1 + ǫ and some constant c. Here 0 < ǫ < −λ1. Thus,

‖ȳc(t)‖ ≤ ce(t−t0)dν‖ȳc(t0)‖+ cb1

∫ t

t0

ed(t−s)ν‖ȳ(s)‖ds

≤ ce(t−t0)dνα +
α

d

cb1
|ν| =: ce(t−t0)dνα +

α

d
c0. (2.16d)

Let δ > 1, we see that

‖ȳc(t)‖ ≤ α

d
c0δ, (2.17a)
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whenever t ≥ t0,1 for some t0,1 > 0. We then apply Theorem 2.1.1 on ȳu1 and the

resulting inequality is

‖ȳu1(t)‖ ≤ ‖ȳu1(t0,1)‖ exp
{∫ t

t0,1

µi(U1(s))ds

}

+

∫ t

t0,1

exp

{∫ t

s

µi(U1(τ))dτ

}
‖Ru1(ȳ(s), s)‖ds.

It then follows from (2.14c), (2.14d), and (2.17a) that

‖ȳu1(t)‖ ≤ αe−γ(t−t0,1) +
α

d

b2
γ
c0δ ≤

α

d

b2
γ
c0δ

2 =:
α

d
c1δ

2
, (2.17b)

whenever t ≥ t1,1 for some t1,1 ≥ t0,1. Inductively, we get

‖ȳuj(t)‖ ≤ α

d


b2

γ

√√√√
j−1∑

i=0

c2i


 δj+1 =:

α

d
cjδ

j+1, j = 2, . . . , l, (2.17c)

whenever t ≥ tj,1(≥ tj−1,1). Letting tl,1 = t1 and summing up (2.17a)-(2.17c), we get

‖ȳ(t)‖ =

√√√√
l∑

j=1

‖ȳuj(t)‖2 + ‖ȳc(t)‖2 ≤ α

d

(
1 + (

b2
γ
)2
) l

2 cb1
|ν| δ

l+1 =: hα,

whenever t ≥ t1. Choosing d >
(
1 + ( b2

γ
)2
) l

2 cb1
|ν| δ

l+1, we see that the contraction factor

h is strictly less than 1, and ‖ȳ(t)‖ contracts as time progresses. To complete the proof

of the theorem, we note that δ > 1 can be made arbitrary close to 1. Consequently, if

d >
(
1 + ( b2

γ
)2
) l

2 cb1
|ν| , then h can still be made to be less than 1.

Remark 2.2.1. (i) In case that Ḡ is symmetric, then c and ǫ can be chosen to be 1

and 0, respectively. (ii) b1 and b2 could possibly depend on α.

Corollary 2.2.1. Suppose F̄ and G are given as in Theorem 2.2.1. Let

D =

(
D̃k×k 0
0 0

)

n×n,

where Re( σ(D̃) ) > 0. (2.18)

Assume, in addition, that either σ(G) or σ(D̃) has no complex eigenvalue. Then

assertions in Theorem 2.2.1 still hold true, except dmin needs to be replaced by

dmin =
c b1

(−λ1 − ǫ) ·min{Re( σ(D̃) )}

(
1 + (

b2
γ
)2
) l

2

.
(2.19)
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Proof. Assumption on D is to ensure that (2.16c) is still valid. Other parts of the

proof are similar to those in Theorem 2.2.1 and are thus omitted.

We next turn our attention to finding conditions on the nonlinearities fi(u, t),

i = 1, . . . , n, u ∈ R
n, so that assumptions (2.14) are satisfied. To this end, we need

the following notations. Let x̃i and x̃ be given as in (2.8). Define

[x̃i]
− =




x1,i
...

xm−1,i




,

and [x̃]− =




[x̃1]
−

...
[x̃n]

−




.

(2.20)

We then break F̃ as given in (2.9a) into two parts so that the breaking is in consistent

with ȳ in (2.13). Specifically, we shall write

F̃ (x̃, t) =

(
F̃c(x̃, t)

F̃u(x̃, t)

)

.

(2.21)

We are now in the position to state the following propositions.

Proposition 2.2.1. Suppose that fi(x, t), i = 1, 2, . . . , k satisfy a Lipschitz condition

in Bn(
α
2
) with a Lipschitz constant b1. That is

|fi(u, t)− fi(v, t)| ≤
b1
k
‖u− v‖, i = 1, 2, . . . , k, (2.22)

for all u, v in Bn(
α
2
) and all time t. Then (2.14a) holds true.

Proof. Note that ÂF̃ (x̃, t) =




Af̃1(x̃, t)
...

Af̃n(x̃, t)




,

where A is given as in (2.10a), and so

[Af̃i(x̃, t)]
− =




fi(x1, t)− fi(x2, t)
...

fi(xm−1, t)− fi(xm, t)




,

i = 1, 2, . . . , n. (2.23)

Since

F̄c(ȳ, t) =




[Af̃1(x̃, t)]
−

...

[Af̃k(x̃, t)]
−




,

we conclude that (2.14a) holds.
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From the above proposition, we see that the nonlinearities on the corresponding

coupled space are only assumed to be Lipchitz. The following proposition is very useful

in the sense that by checking how each component fi of the nonlinearity f is formed,

one would then be able to conclude whether (2.14c) and (2.14d) are satisfied.

Proposition 2.2.2. Let u = (u1, . . . , un)
T and v = (v1, . . . , vn)

T be vectors in Bn(
α
2
).

Let wp =

p∑

i=0

ki, p = 1, . . . , l, where k0 = k, the dimension of coupled space, and

k1, . . . , kl and l are given as in (2.14c). Write fwp−1+i(u, t)−fwp−1+i(v, t), i = 1, . . . , kp,

as

fwp−1+i(u, t)− fwp−1+i(v, t)

=

kp∑

j=1

qwp−1+i,wp−1+j(u, v, t)(uwp−1+j − vwp−1+j) + rwp−1+i(u, v, t).

(2.24a)

We further assume that the followings are true.

(i) For p = 1, . . . , l, let Qu,v,p = (qwp−1+i,wp−1+j(u, v, t)), where 1 ≤ i, j ≤ kp.

Then µ∗(Vp) < −γ for all p, u, v in Bn(
α
2
) and all time t, where ∗ = 1, 2,∞.

(2.24b)

(ii) Let rp =
(
rwp−1+1(u, v, t), . . . , rwp

(u, v, t)
)T

. We have that

‖rp‖ ≤ b2 ‖




u1 − v1
...

uwp−1 − vwp−1


 ‖ (2.24c)

for all p, u, v in Bn(
α
2
) and all time t.

Then (2.14c) and (2.14d) hold true for ∗ = 1, 2,∞.

Proof. Since ri(u, v, t) depend on the whole space, fi(u, t) − fi(v, t) can always be

written as the form in (2.24a). Using (2.24a) and (2.23), we have that the matrices

Up(t) in the linear part of F̄u(ȳ, t) take the form

Up(t) =

m−1∑

w=1

Qxw,xw+1,p(t)⊗Dw, (2.25)
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where xw are given as in (2.6a), and

(Dw)ij =

{
1 i = j = w,

0 otherwise,
1 ≤ i, j ≤ m− 1.

It then follows from Lemma 2.1.1, and (2.25) that µ∗(Up(t)) < −γ for ∗ = 1 or ∞. For

∗ = 2, we have that

m−1⋃

w=1

σ{Qxw,xw+1,p(t) +
(
Qxw,xw+1,p(t)

)T}

= σ

{
m−1∑

w=1

(
Qxw,xw+1,p(t)⊗Dw +

(
Qxw,xw+1,p(t)

)T ⊗Dw

)}

= σ
(
Up(t) +UT

p (t)
)
,

where σ(A) is the spectrum of A. We remark that the first equality above can be

verified by the definition of eigenvalues due to the structure of Up(t). It then follows

from Lemma 2.1.1 that µ2(Up(t)) < −γ. The remainder of the proof is similar to that

of Proposition 2.2.1, and is thus omitted.

Remark 2.2.2. The upshot of Proposition 2.2.2 is that by only checking the “structure”

of the vector field f of the single oscillator, one should be able to determine if our

main result can be applied. To be precise, we begin with saving notations by setting f

as f = f (x, t) = (f1(x, t), . . . , fn(x, t))
T . We then check the form of the difference

of “uncoupled” part of dynamics. That is, we write fi(u, t) − fi(v, t) in the form of

(2.24a) with i = k + 1, . . . , n. If (2.24b)-(2.24c) can be satisfied, then l = 1 gets the

job done. Otherwise, we further break the uncoupled states into a set of smaller pieces

to see if the resulting (2.24b)-(2.24c) are satisfied.

We are now ready to state the main theorems of the paper.

Theorem 2.2.2. Assume that system (2.6) is bounded dissipative. Let coupling matri-

ces G and D satisfy (2.7) and the nonlinearities fi(x, t), i = 1, 2, . . . , n, satisfy (2.22)

and (2.24). Suppose d is greater than dmin, as given in (2.15). Then system (2.6) is

globally synchronized.
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Proof. The proof is direct consequences of Propositions 2.2.1 and 2.2.2, and Theorem

2.2.1.

Theorem 2.2.3. Coupled system (2.6) with D given as in Corollary 2.2.1, is globally

synchronized provided that the coupled system is bounded dissipative, the nonlinearities

fi(x, t), i = 1, 2, . . . , n, satisfy (2.22) and (2.24), and d is greater than dmin. Here dmin

is given in (2.19).

The actual way to apply the above Theorem 2.2.1, 2.2.2 to the real question is

postponed to the Chapter 3.

2.3 Global synchronization with time-varying cou-

pling

In this section, we consider the synchronization of Model (1.1). As given in (2.9a), we

can write the coupled system equivalently as

˙̃x =




f̃1(x̃, t)
...

f̃n(x̃, t)


+ d(D ⊗G(t))x̃ =: F̃ (x̃, t) + d(D ⊗G(t))x̃, (2.26)

where x̃i, x̃ and f̃i(x̃, t) are defined as in (2.8), (2.9b). Our basic strategy to get the

criteria of synchronization such as Theorem 2.2.2 is similar to that gotten there. What

makes the most difference is that in this case Eq. (2.16b) does not hold again. To

deal with it, we will apply Theorem 2.1.1. Nevertheless, in Theorem 2.1.1, what is

concerned is the matrix measure of a matrix not the eigenvalue of a matrix. Thus, one

needs to deal with the corresponding problem carefully. To do so, we make the usage

of the concept of “coordinate transformation”.

First, instead of defining E as in (2.10a), herein we let E be an (m − 1) × m

full-rank matrix with all its row sums being zero. Such a matrix is to be termed a

coordinate transformation. Define

A =

(
E

eT

)

.

(2.27a)
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Then A−1 =
(
ET (EET )−1, e

)
and

AG(t)A−1 =

(
EG(t)ET (EET )−1 0
eTG(t)ET (EET )−1 0

)
=:

(
ḠE(t) 0
h(t)T 0

)

.

(2.27b)

Let Â = In ⊗A and ỹ = Âx̃. Multiplying Â to both sides of Equation (2.26), we get

˙̃y = ÂF̃ (Â−1ỹ, t) + d

(
D ⊗

(
ḠE(t) 0
h(t)T 0

))
ỹ.

Let ỹ = (ỹ1, . . . , ỹn)
T . Then

ỹi =

(
Ex̃i∑m

j=1 xji/
√
m

)
=:

(
ȳi

ei

)

.

(2.28)

Setting ȳ = (ȳ1, . . . , ȳn)
T , we have that the dynamics of ȳ is now satisfied by the

following equation

˙̄y = d(D ⊗ ḠE(t))ȳ + F̄ (ȳ, t), (2.29a)

where

F̄ (ȳ, t) = (In ⊗E) · F̃ (Â−1ỹ, t). (2.29b)

Since the rank and the row sums of E are m− 1 and 0, respectively, we conclude

that the task of obtaining global synchronization of system (1.1) is now reduced to

showing that the origin is globally and asymptotically stable with respect to system

(2.29a). The choice of a coordination transformation will greatly influence how negative

the matrix measure of ḠE(t) could be, which plays the important role, among others,

to determine the global stability of (2.29a) with respect to the origin.

2.3.1 Matrices of the Coordinate Transformation

In what follows we shall address the question of how to choose a matrix E of the

coordinate transformation, and its corresponding properties. To make the origin an

asymptotically stable equilibrium of system (2.29a), one would like to have the matrix

measure of ḠE(t) as smaller a negative number as possible. In fact, such an optimal

choice E can be achieved provided that the outer coupling matrix G(t) is symmetric,

nonpositive definite.
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Definition 2.3.1. Denote by C the set of (m−1)×m coordinate transformations, i.e.,

C = {E ∈ R
(m−1)×m : E is full-rank, and all its row sums are zero}.

Let O ⊆ C be such that

O = {E ∈ C : E such that matrix A = (ET , e)T is orthogonal}.

Theorem 2.3.1. Assume that all eigenvalues of outer coupling matrix G(t) have non-

positive real parts. Then inf
E∈C

µ2(ḠE(t)) ≥ Re λ2(G(t)). Here Re λ2(G(t)) is the second

largest real part of eigenvalues of G(t). If, in addition, G(t) is symmetric for all t,

then the above equality can be achieved by choosing any E in O.

Proof. It follows from (2.27b) that the spectrum σ(ḠE(t)) of ḠE(t) is equal to σ(G(t))−
{0}. Using the fact that Reλ(K) ≤ λmax(

K+KT

2
) for any real matrix K, we have, via

Lemma 2.1.1, that µ2(ḠE(t)) ≥ Reλ2(G(t)). In particular, if E ∈ O and G(t) is

symmetric, then ḠE(t)
(
= EG(t)ET

)
is symmetric and h(t) = 0. Here h(t) is given

as in (2.27b). Therefore, µ2(ḠE(t)) = λ2(G(t)). We have just completed the proof of

the theorem.

The theorem above amounts to saying that if G(t) is symmetric, nonpositive

definite, then any choice of E in O yields the smallest possible matrix measure of

ḠE(t). This, in turn, gives one the best possible position to study the stability of

equation (2.29a) with respect to the origin.

Remark 2.3.1. In those earlier papers (see, e.g., [17,53,104]), the choice of the coor-

dinate transformations is either

E1 =




1 −1 0 · · · 0

1 0 −1
. . .

...
...

...
. . .

. . . 0
1 0 · · · 0 −1


 or E2 =




1 −1 0 · · · 0

0 1 −1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 1 −1




.

(2.30)

The drawback for such a choice of E is that even if G(t) (≡ G) is the diffusive matrix
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with periodic boundary conditions, i.e.,

G(t) ≡




−2 1 0 · · · 0 1
1 −2 1 0 · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · 0 1 −2 1
1 0 · · · 0 1 −2




m×m

, (2.31)

the corresponding matrix measure of ḠEi
, i = 1, 2 is positive whenever m > 7 (see

Table 2.1), while µ2(ḠE) = λ2(G) < 0 for all E ∈ O regardless the size of G.

m 4 5 6 7 8 9
E1 −1.78 −1 −0.51 −0.19 0.05 0.23
E2 −1.78 −1 −0.51 −0.19 0.05 0.23

Table 2.1: The table gives the matrix measures of ḠEi
, i = 1, 2, with various size of

G, which is given in (2.31). Since G is a circular matrix, the matrix measures of Ḡ
with respect to E1 and E2 are equal. Note that the matrix measure of ḠE is λ2(G),
∀E ∈ O, which is negative regardless the size of G.

Theorem 2.3.2. For any outer coupling matrix G(t), and any coordinate transforma-

tions Ep, Eq in O, µ2(ḠEp
(t)) = µ2(ḠEq

(t)).

Proof. Since for any x ∈ R
m−1, there is z = EqE

T
p x such that

xTEp(G(t) +G(t)T )ET
p x = zTEq(G(t) +G(t)T )ET

q z.

By the definition of matrix measure, we have that µ2(ḠEp
(t)) = µ2(ḠEq

(t)).

In this section, matrix E in Equation (2.29a) is assumed to lie in D unless oth-

erwise stated. For ease of the notations, we shall drop the subscript E of ḠE(t) if

E ∈ O. The remainder of the subsection is devoted to finding the matrix measure of

Ḡ(t) where its corresponding coupling matrix G(t) appears often in many applications.

Proposition 2.3.1. Assume that for each t, G(t) is a node-balancing matrix, i.e., its

row sums and column sums are equal. Then

µ2(Ḡ(t)) = λ2(
G(t) +G(t)T

2
), (2.32)
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whenever all eigenvalues of G(t) +G(t)T are nonpositive.

Proof. If G(t) is as assumed, then it follows from (2.27b) that

AG(t)A−1 =

(
Ḡ(t) 0
0 0

)

.

Consequently, (2.32) holds as asserted.

In what follows, some outer coupling matrices are to be provided. Their corre-

sponding matrix measures of Ḡ(t) and ḠEi
(t), i = 1 or 2, are to be compared.

Example 1. ( [2]) Consider the regular coupled network by adding to the pristine

world G (the ring of 2K-nearest coupled oscillators) an additional global coupling

such that the coupling p(t), 0 ≤ p(t) ≤ 1 is placed on all free spots of the matrix G

(see, e.g., [2]). Specifically, the resulting coupling matrix G(t) can be represented by a

circular matrix of the form

G(t) = circ(−g(t),

K︷ ︸︸ ︷
1, . . . , 1,

m−2K−1︷ ︸︸ ︷
p(t), . . . , p(t),

K︷ ︸︸ ︷
1, . . . , 1), (2.33)

where g(t) = 2K + (m− 2K − 1)p(t). Since G(t) is symmetric, we have that

µ2(Ḡ(t)) = λ2(G(t))

= max
1≤j≤m−1

(
−g(t) +

K∑

l=1

(ωlj + ω(m−l)j) + p(t)
m−K−1∑

l=K+1

ωlj

)
.

Here ω = exp(2πi/m). The matrix measures µ2(Ḡ(t)) and µ2(ḠEi
(t)), i = 1, 2, with

m = 8, K = 2, and p(t) = t, t ∈ [0, 1] are recorded in Figure 2.1.

Example 2. ( [52,98]) Let G = G
(m)
β , 0 ≤ β ≤ 1 be the diffusive matrix of size m×m

with mixed boundary conditions. That is, if m > 2,

G
(m)
β =




−1− β 1 0 · · · 0 β
1 −2 1 0 · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · 0 1 −2 1
β 0 · · · 0 1 −1− β




m×m,

(2.34)
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Figure 2.1: The matrix measures of Ḡ(t) and ḠEi
(t), i = 1, 2, with G being given in

(2.33), m = 8, K = 2, and p(t) = t, are, respectively, represented by the solid line and
the dotted lines above. Lines for ḠEi

(t), i = 1, 2 are coincided since G(t) is circular
for all t.

and if m = 2,

G
(2)
β =

(
−1− β 1 + β
1 + β −1 − β

)

.

For suchG, µ2(Ḡ) = λ2(G) < 0. However, λ2(G) would move closer to the origin as the

number of nodes increases. As a result, synchronization of the network is more difficult

to be realized as the number m of nodes increases. In [52,98], a wavelet transformation

method is proposed to alter the connectivity topology of the network. In doing so,

λ2(G(t)) = λ2(p(t)) becomes a quantity depending on wavelet parameter p(t). By

choosing suitable p(t), which is a wavelet transformation method [52,98] applied to

the coupling matrix G
(m)
β , one would expect that λ2(p(t)) will move away from the

origin regardless the number of the nodes. Under such a reconstruction, the resulting

coupling matrix G(t) is of the following form

G(t) = G
(m)
β + p(t)(G

(m
k )

β ⊗ ēēT ), (2.35)

where ē = (1, . . . , 1)T ∈ R
k. Here we assume p(t) ≥ 0 and k = 2l for some l ∈ N, and

m = Nk for some N ∈ N − {1}. Since the reconstructed matrix G(t) is symmetric,
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µ2(Ḡ(t)) = λ2(G(t)) < 0. The matrix measures µ2(Ḡ(t)) and µ2(ḠEi
(t)), i = 1, 2,

with m = 8, β = 1
2
, l = 1, and p(t) = t, t ∈ [0, 1] are recorded in Figure 2.2.
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Figure 2.2: The matrix measures of Ḡ(t) and ḠEi
(t), i = 1, 2, with G given in (2.35),

m = 8, β = 1
2
, l = 1, and p(t) = t, are, respectively, represented by the solid line and

the dotted lines above.

Example 3. Let G(t) = circ(

m︷ ︸︸ ︷
−2, 2, 0, . . . , 0), a circulant matrix. Since G(t) is a

node-balancing matrix, µ2(Ḡ(t)) = λ2(G(t)) < 0. Note that the values of µ2(ḠEi
),

i = 1, 2, are positive provided that m > 5 (see Table 2.2).

m 4 5 6 7 8 9
E1 −0.83 −0.17 0.24 0.54 0.78 0.98
E2 −0.83 −0.17 0.24 0.54 0.78 0.98

Table 2.2: The table gives the matrix measures of ḠEi
, i = 1, 2, with various size of

G, which is given in Example 3.

Proposition 2.3.2. Let E = (e1, . . . , em−1)
T ∈ O. If, in addition, {ei}m−1

i=1 are

pairwise G(t)−conjugate, i.e., eT
i G(t)ej = 0, ∀1 ≤ i 6= j ≤ m − 1, then Ḡ(t) is a
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diagonal matrix. Moreover,

µ2(Ḡ(t)) = λ2(G(t)), (2.36)

whenever all eigenvalues of G(t) are nonpositive.

Proof. Note that Ḡ(t) = EG(t)ET = (eT
i G(t)ej). Hence, Ḡ(t) is a diagonal matrix.

Therefore, the assertion in (2.36) holds as asserted.

Example 4. ( [17]) Let G(t) describe a star-typed coupled network of the form

G(t) =




−d1(t) d1(t)
. . .

...
−d1(t) d1(t)

1 · · · 1 −(m− 1)




m×m.

(2.37)

Here d1(t) is a real number. We next show that a set {ei}m−1
i=1 of column vectors can be

chosen so that E = (ei, . . . , em−1) ∈ O and that {ei}m−1
i=1 are pairwise G(t)-conjugate.

Define αi = (i(i+ 1))−1/2, i = 1, . . . , m− 1. Let

eT
i = (

i︷ ︸︸ ︷
αi, . . . , αi,−iαi,

m−i−1︷ ︸︸ ︷
0, . . . , 0)

for all i = 1, . . .m − 1. Then ei, i = 1, . . . , m− 1 are orthonormal vectors. Moreover,

they are also G(t)-conjugate. To see this, we first note that d1(t) is an eigenvalue of

G(t) and its associated eigenvectors are ei, i = 1, . . . , m− 2. Therefore, eT
i G(t)ej = 0

for all 1 ≤ i 6= j ≤ m− 2. Some direct computation would yield that eT
i G(t)em−1 = 0

for i = 1, . . . , m−2 and that eT
m−1G(t)em−1 = −d1(t)− (m−1). By Proposition 2.3.2,

we have that

µ2(ḠE(t)) = max{−d1(t),−d1(t)− (m− 1)} = −d1(t). (2.38)

The matrix measures µ2(Ḡ(t)) and µ2(ḠEi
(t)), i = 1, 2, with m = 8 and d1(t) = t,

t ∈ [0, 1] are demonstrated in Figure 2.3.

The remainder of the subsection is to address the system with even more complex

topology.
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Figure 2.3: The matrix measures of Ḡ(t) and ḠEi
(t), i = 1, 2, with G being given in

(2.37), m = 8, and d1(t) = t, are, respectively, represented by the solid line and the
dotted lines above.

Proposition 2.3.3. Let G(t) = O(t) + P (t) with O(t) and P (t) having all its row

sums zero. Suppose further that P (t) is node-balancing. Then

µ2(Ḡ(t)) ≤ µ2(Ō(t)) + λ2(
P (t) + P (t)T

2
),

whenever all eigenvalues of P (t) + P (t)T are nonpositive.

Proof. Noting that Ḡ(t) = EG(t)ET = Ō(t)+EP (t)ET , we easily conclude that the

above inequality holds as asserted.

Example 5. ( [2]) Consider the outer coupling matrix G(t) to be of the random type.

Specifically, G(t) is of the form:

G(t) = circ(−2K,

K︷ ︸︸ ︷
1, . . . , 1,

m−2K−1︷ ︸︸ ︷
0, . . . , 0,

K︷ ︸︸ ︷
1, . . . , 1) + P (t) =: O + P (t), (2.39)

where P (t) =: (pij(t)) is a symmetric matrix with all its row sums being zero, and

satisfies pij(t) ≡ 0 for (i, j) with i − jmod m ≤ K or j − imod m ≤ K, and pij(t) =
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Sij(q) for (q − 1)τ ≤ t < qτ for all remaining pairs (i, j) with i 6= j. Here each

of Sij(q) is a random variable that takes the value 1 with probability p and 0 with

probability1 − p.

The random variables Sij(q) are assumed to be all independent. To each realiza-

tion ω of this stochastic process S(1), S(2), . . ., where S(q) = {Sij(q) : i− j mod m ≤
K or j − i mod m ≤ K}, i.e., to each switching sequence ω, there corresponds a time-

varying system described by Equation (1.1b).

Since P (t) is symmetric, by Proposition 2.3.3,

µ2(Ḡ(t)) ≤ µ2(Ō) + λ2(P (t)) ≤ µ2(Ō) = λ2(O) < 0.

Let G(t) ≡ G. Generally speaking, infĒ∈C µ2(ḠĒ) 6= µ2(ḠE) for any E ∈ O.

Nevertheless, µ2(GE) produces a good upper bound of infĒ∈C µ2(ḠĒ).

To support the observation, we conclude this section by providing some additional

network topologies where the matrix measure of its corresponding ḠE(t), E ∈ O is

smaller than that of ḠEi
, i = 1, 2. As a matter of fact, µ2(ḠEi

), i = 1, 2, switch signs

as the number of nodes increases. In contrast, µ2(ḠE) mostly remains negative as the

size of the system grows.

Example 6. Consider a generalized wheel-typed coupled network of the form as illus-

trated in Figure 2.4(a). The inner nodes have the strong all-to-all connections. The

outer nodes are only directly connected with their nearest neighbors. The communi-

cations between the inner and outer nodes are through one way going from each inside

node to its nearest outside node. Specifically, such a network can be written as the

following.

G(t) ≡
(

G1 G2

G3 G4

)

m×m,

(2.40)
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where

G1 =




−(m
2
− 1) 1 · · · 1

1
. . .

. . .
...

...
. . .

. . . 1
1 · · · 1 −(m

2
− 1)




m
2
×m

2

corresponding to the all-to-all coupling, G2 = 0, G3 = 0.1I, and G4 = G
(m

2 )
1 − 0.1I.

Here G
(m

2 )
1 is the diffusive matrix with periodic boundary conditions and of size m

2
×m

2
.

The numerical computation suggests that the matrix measures of ḠEi
, i = 1, 2, are

positive provided that m ≥ 4 while that of ḠE, E ∈ O remains negative (see Table

2.3).

m 4 6 8 10 5000
E1 0.11 0.32 0.53 0.74 517.47
E2 0.23 0.56 0.96 1.44 34843.01
E −0.1 −0.1 −0.1 −0.1 −0.1

Table 2.3: The table gives the matrix measures of ḠEi
, i = 1, 2, and ḠE, E ∈ D with

various size of G, which is given in (2.40).

Example 7. Consider the prism-typed coupled network of the form as illustrated in

Figure 2.4(b). The difference between the generalized wheel-typed network and the

one considered here lies only on how the inner nodes communicate with each other (see

Figure 2.4). Specifically, such a network can be written as the following.

G(t) ≡
(

G1 G2

G3 G4

)

m×m,

where G1 = G
(m

2 )
1 , G2 = 0, G3 = 0.1I, and G4 = G

(m
2 )

1 − 0.1I. The numerical

computation suggests (see Table 2.4) that the matrix measures of ḠEi
, i = 1, 2, are

positive provided that m ≥ 4, while that of ḠE, E ∈ O stays negative until m = 86.

The example demonstrates that a coordinate transformation E, E ∈ O, is indeed a

good candidate among all coordinate transformations.

34



m 4 6 8 86 88
E1 0.34 0.32 0.35 4.65 4.72
E2 0.34 0.56 0.73 4.79 4.86
E −0.1 −0.1 −0.1 −0.0006 0.0004

Table 2.4: The table gives the matrix measures of ḠEi
, i = 1, 2, and ḠE, E ∈ D with

various size of G, which is given in Example 7.
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2N

2N-1 N+3

i

(b)

Figure 2.4: Coupling Topologies: (a) Generalized wheel-typed coupled network with
m = 2N , and (b) Prism-typed coupled network with m = 2N . Networks (a) and (b)
appear in Examples 6 and 7, respectively.

2.3.2 Synchronization Criteria

In the section, we turn our attention back to the dynamics of (2.29a), and analyze the

stability of the origin of the system. Let ȳ, ȳc, and ȳu be defined as in (2.13). Then,

like (2.16a) , Equation (2.29a) can be rewritten as in the form

(
˙̄yc

˙̄yu

)
=

(
d(Ik ⊗ Ḡ(t)) 0

0 U(t)

)(
ȳc

ȳu

)
+

(
F̄c(ȳ, t)
R̄u(ȳ, t)

)

,

(2.41)

where R̄u(ȳ, t) =: F̄u(ȳ, t)−U(t)ȳu for some matrix U(t). Now we impose the condi-

tions for coupling matrices G and D.

35



(i) λ = 0 is a simple eigenvalue of G(t), ∀ t ≥ 0 and

e = 1√
m
(1, 1, . . . , 1)T1×m is its corresponding eigenvector; (2.42a)

(ii) There is some λ > 0 such that µ2(Ḡ(t)) ≤ −λ, ∀t ≥ 0. (2.42b)

(iii) Coupling matrix D is of the form

D =

(
Ik 0
0 0

)

n×n.

(2.42c)

We are now in a position to state our first main theorem in the time-varying

coupled system.

Theorem 2.3.3. Let coupling matrices G(t) and D satisfy (2.42). Suppose that F̄ ,

given in (2.29a) or (2.41), satisfies (2.14a), (2.14c), and that (2.14d), and system

(2.29a) is bounded dissipative with respect to α. Then lim
t→∞

ȳ(t) = 0 for any initial

value provided that the coupling strength d satisfies the following inequality

d >
b1
λ

(
1 +

b22
γ2

) l
2

. (2.43)

Proof. For any initial condition ȳ(0), there is t0 > 0 such that ‖ȳ(t)‖ ≤ α for all t ≥ t0.

Applying the matrix measure inequality (2.1) and hypotheses (2.14a), (2.42b) on ȳc,

for any t ≥ t0, we have that

‖ȳc(t)‖ ≤ ‖ȳc(t0)‖e−λd(t−t0) +
b1α

λd

≤ (e−λd(t−t0) +
b1
λd

)α

=: (e−λd(t−t0) + c0
1

d
)α.

Let δ > 1. We see that

‖ȳc(t)‖ ≤ α

d
c0δ, (2.44a)

whenever t ≥ t0,1 for some t0,1 > t0. Similarly, applying inequality (2.1) and hypotheses

(2.14c), (2.14d) on ȳu1,

‖ȳu1(t)‖ ≤ α

d

(
b2
γ
c0

)
δ2 =:

α

d
c1δ

2, (2.44b)
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whenever t ≥ t1,1 for some t1,1 > t0,1. Inductively, we have

‖ȳuj(t)‖ ≤ α

d
cjδ

j+1, (2.44c)

whenever t ≥ tj,1, for all j = 2, . . . , l. Here cj = b2
γ

√∑j−1
i=0 c

2
i . Letting t1 = tl,1 and

summing up (2.44a) to (2.44c), we get

‖ȳ(t)‖ ≤ α

d

(
1 +

b22
γ2

) l
2 b1
λ
δl+1 =: hα,

whenever t > t1. Choosing d >
(
1 +

b22
γ2

) l
2 b1

λ
δl+1, we see that the contraction factor h

is strictly less than 1, and ‖ȳ(t)‖ contracts to zero as time progresses. Since δ > 1 can

be made arbitrarily close to 1. Consequently, if d is chosen as assumed, then h can still

be made to be less than 1. The assertion of the theorem now follows.

In the following, we drive another set of hypotheses to replace that listed in

Theorem 2.3.3 to get the easily checkable criteria for the synchronization in coupled

system (2.26).

The following notation is needed. Let u = (u1, . . . , ui, ui+1, . . . , uj, . . . , un)
T .

Denote by [u]ji = (ui, ui+1, . . . , uj)
T .Write the difference of f (·, t) at u and v in the

form

f (u, t)− f (v, t) =




f1(u, t)− f1(v, t)
...

fn(u, t)− fn(v, t)


 =:

(
fc(u, t)− fc(v, t)
fu(u, t)− fu(v, t)

)

=:

(
fc(u, t)− fc(v, t)

Q(v, t) [u− v]nk+1 + r(u, v, t)

)
, (2.45)

where fc(·, t) ∈ R
k, fu(·, t) ∈ R

n−k, and matrix Q(v, t) is of the size (n− k)× (n− k).

Since r(u, v, t) could depend on all components of u and v, such a decomposition in

(2.45) can always be achieved.

Proposition 2.3.4. Suppose fi(·, t), i = 1, . . . , k are uniformly Lipschitz, i.e., there

exists a positive constant r > 0 such that

|fi(u, t)− fi(v, t)| ≤ r‖u− v‖ (2.46)
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for all i = 1, . . . , k. Then the inequality in (2.14a) is satisfied with b1 = r
√
kcond(E1E

T ).

Here E1 is given as in (2.30) and cond(E1E
T ) = ‖E1E

T‖ ‖(E1E
T )−1‖ is the condition

number of E1E
T .

Proof. Note first that E1 = E1E
TE and E = (E1E

T )−1E1. Now,

‖F̄c(ȳ, t)‖ = ‖




Ef̃1(x̃, t)
...

Ef̃k(x̃, t)


 ‖ = ‖(Ik ⊗ (E1E

T )−1)




E1f̃1(x̃, t)
...

E1f̃k(x̃, t)


 ‖

≤ ‖(E1E
T )−1‖ ‖




E1f̃1(x̃, t)
...

E1f̃k(x̃, t)


 ‖.

Since

‖E1f̃i(x̃, t)‖2 = ‖




fi(x1, t)− fi(x2, t)
...

fi(x1, t)− fi(xm, t)


 ‖2 ≤ r2‖




x1 − x2
...

x1 − xm


 ‖2

for all i = 1, . . . , k, we have that

‖F̄c(ȳ, t)‖ ≤
√
kr‖(E1E

T )−1‖ ‖




x1 − x2
...

x1 − xm


 ‖

=
√
kr‖(E1E

T )−1‖ ‖(E1 ⊗ In)




x1
...

xm


 ‖

=
√
kr‖(E1E

T )−1‖ ‖(E1E
T ⊗ In)(E ⊗ In)x‖

≤
√
kr cond(E1E

T ) ‖ȳ‖. (2.47)

The proof of the proposition is completed.

We next turn our attention to the structure of the vector field of the uncoupled

parts.

Proposition 2.3.5. (i) Suppose matrix Q(v, t) can be written as the block diagonal

form

Q(v, t) = diag(Q1(v, t), . . . ,Ql(v, t)),
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where the size of matrices Qj(v, t) are kj × kj, ∀j = 1, . . . l and indexes l, kj are given

as in (2.14c). Moreover, there is some γ > 0 such that

µ2(Qj(v, t)) ≤ −γ. (2.48a)

Here γ is independent of v, t. Then the inequality in (2.14c) is fulfilled.

(ii) Denoted by s1 = k and sj = k +
∑j−1

i=1 ki, j = 2, . . . , l, where ki and l are defined

in (2.14c). Let E = (ei,j)(m−1)×m. Suppose, for any 1 ≤ j ≤ l, there is δ > 0 such that

‖[r(u, v, t)]sj+kj
sj+1 ‖ ≤ δ‖[u− v]

sj
1 ‖. (2.48b)

Then the inequality in (2.14d) is satisfied with b2 = δ‖Ẽ‖‖E1E
T ‖. Here

Ẽ = (ei,j+1) ∈ R
(m−1)×(m−1), 1 ≤ i, j ≤ m− 1. (2.48c)

Proof. Write F̄u(ȳ, t) as (Fu1(ȳ, t), . . . ,Ful(ȳ, t))
T , which is in consistence with the

block diagonal form of U(t). Now, for 1 ≤ j ≤ l,

Fuj(ȳ, t) =




Ef̃sj+1(x̃, t)
...

Ef̃sj+kj(x̃, t)


 =




∑m
k=1 e1,kfsj+1(xk, t)

≀∑m
k=1 em−1,kfsj+1(xk, t)

...∑m
k=1 e1,kfsj+kj (xk, t)

≀∑m
k=1 em−1,kfsj+kj(xk, t)




= P




∑m
k=1 e1,kfsj+1(xk, t)

≀∑m
k=1 e1,kfsj+kj(xk, t)

...∑m
k=1 em−1,kfsj+1(xk, t)

≀∑m
k=1 em−1,kfsj+kj (xk, t)




=: Ph.

Here P is a permutation matrix. That is, we exchange a certain rows of F̄uj(ȳ, t)

to obtain F . Using the fact that the row sums of E are all zeros, we have that for

1 ≤ i ≤ m− 1, sj + 1 ≤ l ≤ sj + kj,

m∑

k=1

ei,kfl(xk, t) =

m∑

k=2

ei,k(fl(xk, t)− fl(x1, t)). (2.49)
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To save notations, ∀i = 1 . . . , kj, we denote by [rsj+i(xl,x1, t)]
m
l=2 the vector

(rsj+i(x2,x1, t), rsj+i(x3,x1, t), . . . , rsj+i(xm,x1, t))
T .

Applying (2.45) and (2.48a)- (2.48c), we shall be able to rewrite h as




∑m
k=2 e1,kQj(x1, t)[xk − x1]

sj+kj
sj+1

...∑m
k=2 em−1,kQj(x1, t)[xk − x1]

sj+kj
sj+1


+




∑m
k=2 e1,k[r(xk,x1, t)]

sj+kj
sj+1

...∑m
k=2 em−1,k[r(xk,x1, t)]

sj+kj
sj+1




=




Qj(x1, t)[
∑m

k=1 e1,kxk]
sj+kj
sj+1

...

Qj(x1, t)[
∑m

k=1 em−1,kxk]
sj+kj
sj+1


+ P T




Ẽ[rsj+1(xl,x1, t)]
m
l=2

...

Ẽ[rsj+kj(xl,x1, t)]
m
l=2




= (Im−1 ⊗Qj(x1, t))P
T




Ex̃sj+1
...

Ex̃sj+kj


+ P T (Ikj ⊗ Ẽ)




[rsj+1(xl,x1, t)]
m
l=2

...
[rsj+kj(xl,x1, t)]

m
l=2




= (Im−1 ⊗Qj(x1, t))P
T ȳuj + P T (Ikj ⊗ Ẽ)P




[r(x2,x1, t)]
sj+kj
sj+1

...

[r(xm,x1, t)]
sj+kj
sj+1




.

Therefore,

Uj(t) = P (Im−1 ⊗Qj(x1, t))P
T , (2.50a)

and

Ruj(ȳ, t) = (Ikj ⊗ Ẽ)P




[r(x2,x1, t)]
sj+kj
sj+1

...

[r(xm,x1, t)]
sj+kj
sj+1




.

(2.50b)

The first assertion of the position now follows from (2.50a), µ2(Uj(t)) = µ2(Qj(x1, t)) ≤
−γ. Upon using the similar techniques as those in establishing the inequality in (2.47),

we conclude that (2.48a)- (2.48c) hold as asserted.

Now, we are in the position to impose the hypotheses for synchronization. We

remark that although these conditions are quite like those given in (2.22) and (2.24),

to be self-contained and clear, we list corresponding the hypotheses herein.

(H1) System (1.1a) is bounded dissipative with respect to α.
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(H2) Functions fi(·, t), i = 1, . . . , k in (1.1a) are uniformly Lipschitz in region B given

in (H1). That is, there is a constant r > 0 such that |fi(u, t)−fi(v, t)| ≤ r‖u−v‖,
whenever t is sufficiently large, and u, v in B.

(H3) The matrix Q(v, t), which is given as in (2.45), is of block diagonal form, i.e.,

Q(v, t) = diag(Q1(v, t), · · · ,Ql(v, t)). Here the sizes of Qj(v, t), j = 1, . . . , l, are

kj ×kj. Moreover, there is some γ > 0 such that matrix measures µ2(Qj(v, t)) ≤
−γ, for all j, whenever t is sufficiently large, and v in B.

(H4) Denoted by s1 = k and sj = k+
∑j−1

i=1 ki, j = 2, . . . , l, where ki and l are defined

in (H4). Suppose, for any 1 ≤ j ≤ l, there is a δ > 0 such that

‖[r(u, v, t)]sj+kj
sj+1 ‖ ≤ δ‖[u− v]

sj
1 ‖,

for t sufficiently large, and u, v in B. Here [u]ji is defined to be (ui, . . . , uj)
T .

Remark 2.3.2. Using the similar techniques as developed in the proof of Propositions

2.3.4 and 2.3.5, we may also conclude that the global theorems obtained in [17] may

still be valid by using the coordinate transformation developed here in this paper. Con-

sequently, the size limit problem of their approach can be removed.

The main criterion for synchronization in the time-varying coupled system is now

stated in the following. The proof of the main theorem follows directly from Theorem

2.3.3 and Propositions 2.3.4 and 2.3.5.

Theorem 2.3.4. Let the coupling matrices G(t) and D satisfy (2.42). Suppose hy-

potheses (H1), (H2), (H3), and (H4) hold true. Then coupled system (2.26) achieves

global synchronization whenever

d >
r
√
k cond(E1E

T )

λ

(
1 +

δ2‖Ẽ‖2‖E1E
T‖2

γ2

) l
2

(2.51)

where E, E1, and Ẽ are given as in Theorem 2.3.1, (2.30), and (2.48c), respectively.

Remark 2.3.3. The small price to pay by introducing the coordinate transformation

E is that the lower bound, given as in the right hand side of (2.51), on the coupling

strength d, is size dependent.
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Chapter 3

Applications for Model I

3.1 Synchronization in coupled Lorenz and coupled

Duffing systems

To see the effectiveness of our main results in Chapter 2, we consider two examples in

this chapter. These are coupled Lorenz equations [8,63], and coupled Duffing oscilla-

tors [105].

Example 1: We shall begin with Lorenz equations. Let x = (x1, x2, x3)
T ,

f (x, t) = f (x) = (σ(x2 − x1), rx1 − x2 − x1x3, −bx3 + x1x2)
T

=: (f1(x), f2(x), f3(x))
T

.

Here σ = 10, r = 28 and b = 8
3
. In the following cases (a), (b), (c) and (d), G

denotes the diffusive coupling with zero flux and D is, respectively,




1 0 0
0 0 0
0 0 0




,


0 0 0
0 1 0
0 0 0




,




0 0 0
0 0 0
0 0 1




,

and




0 0 0
0 1 1
0 0 1


. For the first three cases, it was shown

in [5] that such the coupled system (2.6) has the topological product of an absorbing

domain

B0 = {x2
1 + x2

2 + (x3 − r − σ)2 <
b2(r + σ)2

4(b− 1)
=: β}. (3.1)
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Hence, in each case, we will concentrate on the illustration of how our main results

may or may not be applied.

(a) Let D = D1 =




1 0 0
0 0 0
0 0 0




.

For “coupled” nonlinearity f1, we get that

|f1(u)− f1(v)| = σ|(u2 − v2)− (u1 − v1)| ≤
√
2σ‖u− v‖.

Hence, condition (2.14a) is satisfied. For “uncoupled” nonlinearities f2 and f3,

we see that

f2(u)− f2(v) = (−u2 − u1u3 + ru1)− (−v2 − v1v3 + rv1)

= [−(u2 − v2)− u1(u3 − v3)] + (r − v3)(u1 − v1) (3.2a)

and

f3(u)− f3(v) = (u1u2 − bu3)− (v1v2 − bv3)

= [u1(u2 − v2)− b(u3 − v3)] + v2(u1 − v1). (3.2b)

Writing (3.2a)-(3.2b) in the vector form, we get
(

f2(u)− f2(v)
f3(u)− f3(v)

)
=

(
−1 −u1(t)
u1(t) −b

)(
u2 − v2
u3 − v3

)
+

(
(r − v3)(u1 − v1)

v2(u1 − v1)

)

=: Qu,v,1(t)

(
u2 − v2
u3 − v3

)
+ r1. (3.2c)

Clearly, µ2(Qu,v,1(t)) = max{−1,−b} = −1 < 0, and ‖r1‖ ≤ (σ+
√
β) · |u1−v1|, where

its estimate depends only on coupled space. Hence, conditions (2.24b), and (2.24c) are

satisfied.

(b) Let D = D2 =




0 0 0
0 1 0
0 0 0




.

As in the case (a), the “coupled” nonlinearity f2 is

clearly Lipschitz on the absorbing domain. The difference of “uncoupled” nonlinearities

f1 and f3 are given as follows.

f1(u)− f1(v) = [−σ(u1 − v1)] + σ(u2 − v2),

f3(u)− f3(v) = [−b(u3 − v3)] + u1(u2 − v2) + v2(u1 − v1).
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If l = 1 is chosen, then (2.24c) is violated. For in the case, the norm estimate in the

right hand side of (2.24c) can only depend on u2 − v2. Now, if we choose l = 2 and

pick the space of the first diagonal block being the one associated with the nonlinearity

f1, then Qu,v,1 = (−σ) and r1 = σ(u2 − v2). Consequently, (2.24b) and (2.24c) are

satisfied. Moreover, we have Qu,v,2 = (−b) and r2 = u1(u2 − v2) + v2(u1 − v1), which

depends only on the coupled space and the first uncoupled space. Thus, r2 satisfies

(2.24c).

(c) For illustration, we also consider D = D3 =




0 0 0
0 0 0
0 0 1




.

In this case, the un-

coupled nonlinearities of f1 and f2 both contain the terms x2 and x1. The only fea-

sible choice to break the uncoupled space is not to do any breaking. Consequently,

Qu,v,1 =

(
−σ σ

r − u3(t) −1

)
. For such Qu,v,1, its matrix measure can not stay neg-

ative for all time. An indicated, see e.g., [63], synchronization fails for this type of

partial coupling.

(d) Let D = D4 =




0 0 0
0 1 1
0 0 1




.

To apply Theorem 2.2.3, we first note that for D =

D5 =




0 0 0
0 1 0
0 0 1




,

the corresponding coupled system is indeed globally synchronized,

and hence, so is the coupled system with D = D4. Note that bounded dissipation of

the coupled system can be verified similarly as in [63].

(e) The work that are most related to ours are those in [4,8]. While their estimates for

dmin seems to be sharper than ours, which we shall illustrate in case (f), their connec-

tivity topology requires that off-diagonal entries be nonnegative. We only assume our

connectivity topology satisfies (2.7). Consider for instant the following matrix:

G =




−1 2 0 −1
−1 −1 0 2
2 −1 −3 2
0 0 3 −3




.
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Such G has some negative off-diagonal entries and satisfy (2.7a) and (2.7b). In fact,

the eigenvalues of G are 0, −1 ±
√
5i, and −6. Clearly, applying our results, we

see immediately that the coupled system (2.6) with D = Di, i = 1, 2, 4, is globally

synchronized. Numerical results (see Figure 3.1.) indeed confirm synchronization of

such connectivity topology. We remark that by constructing the Lyapunov function

as given in [63], one would be able to show bounded dissipation of the coupled system

with this particular connectivity topology.
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Figure 3.1: The difference of each component of two coupled oscillators in case (e).

(f) In this part, we shall compute the lower bound for global synchronization for case

(a) by using our method, those obtained in [8] and MSF, respectively. To compute

dmin, given in (2.15), we note that Ḡ = E2GET
2 (E2E

T
2 )

−1 = E2(E
T
2 E2)E

T
2 (E2E

T
2 )

−1

= E2E
T
2 . Here E2 is given as in (2.30). Since Ḡ is symmetric, c and ǫ, given as in

(2.16c), can be chosen to be 1, and 0, respectively. Consequently,

dmin =

√
2σ
√
1 + β + 2σ

√
β + σ2

4 sin2( π
2m

)
.

(3.3)

Here 4 sin2( π
2m

) = |λ1|. Applying Theorem 2.2.3, we see that the coupled system is

globally synchronized provided that the coupling strength d is greater than dmin. For
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m = 4, dmin ≈ 1189. In [8], the bound d̄min for threshold of global synchronization is

d̄min =

{
a
8
m2 if m is even

a
8
(m2 − 1) if m is odd

.

Here a = b(b+1)(r+σ)2

16(b−1)
− σ. For m = 4, d̄min ≈ 1039, which is slightly better than dmin.

Using the MSF-criteria, we numerically (see Figure 3.2.) compute the maximum

Lyapunov exponent of the variational equations with respect to the parameter α. We

have in this example that if

α = dλ1 < −7.778, (3.4)

then its maximum Lyapunov exponent is negative. Here λ1 = −4 sin2 π
8
is the largest

nonzero eigenvalues of G. Hence if d > −7.778
λ1

≈ 13.3, then local synchronization of the

coupled system (2.6) can be realized.
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Figure 3.2: The vertical axis denotes the maximum Lyapunov exponent of the varia-
tional equations. While the horizontal axis represents α = dλ.

(g) Let coupling matrix G(t) be time dependent as given in (2.33), (2.35), (2.37) or

(2.39), and the coupling matrix D = Di, i = 1, 2. Then by Theorem 2.3.4 and

above arguments, we can also have coupled system is globally synchronized whenever

the coupling strength d is sufficient large. Fig. 3.3 illustrates the phenomenon of

synchronization with G(t) of the form (2.37), d1(t) =
3
2
− sin(t), and D = D1.
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Figure 3.3: The difference of components of the first two coupled oscillators. Here the
x-component partial-state coupling is considered. and the G(t) is given as in (2.37)
with d1(t) =

3
2
− sin(t) and m = 8.

Example 2: Now, we consider the coupled Duffing oscillators, where the individual

system considered is defined by

ẋ1 = −αx1 − x3
2 + a coswt (3.5a)

ẋ2 = x1, (3.5b)

where α and a are positive constants. Letting x = (x1, x2)
T , we have

f (x, t) = (f1(x, t), f2(x)) = (−αx1 − x3
2 + a coswt, x1), (3.6a)

Assume coupling matrices D and G are, respectively,

D(c) =

(
1 c
0 0

)
(3.6b)
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and

G(ǫ, r) =




−2ǫ ǫ− r 0 · · · 0 ǫ+ r

ǫ+ r −2ǫ ǫ− r
. . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . . −2ǫ ǫ− r
ǫ− r 0 · · · 0 ǫ+ r −2ǫ




,

(3.6c)

where ǫ > 0 and r are scalar diffusive and gradient coupling parameters, respectively.

In this way, the coupled Duffing systems can be written as

˙̃x1 = −αx̃1 − x̃3
2 + g(t) + dcG(ǫ, r)x̃2 + dG(ǫ, r)x̃1 (3.7a)

˙̃x2 = x̃1. (3.7b)

Here x̃3
2 = (x3

1,2, . . . , x
3
m,2)

T , and g(t) = a cos(wt) (1, · · · , 1)T . Note that

f2(u)− f2(v) = 0(u2 − v2) + (u1 − v1)

and so the matrix measure of the corresponding Qu,v,1 is zero. To apply our theorem,

we need to make the following coordinate change.

Letting y2 = x2 and y1 = qx1 + px2, we see that (3.5) becomes

ẏ1 = (
p

q
− α)y1 + p(α− p

q
)y2 − qy32 + qa coswt =: f̄1(y) (3.8a)

ẏ2 =
−p

q
y2 +

1

q
y1 =: f̄2(y), (3.8b)

and the corresponding coupled system (3.7) becomes

˙̃y1 = (
p

q
− α)ỹ1 + p(α− p

q
)ỹ2 − qỹ3

2 + g(t)

+ d(qc− p)G(ǫ, r)ỹ2 + dG(ǫ, r)ỹ1 (3.9a)

˙̃y2 = −q

p
ỹ2 +

1

q
ỹ1, (3.9b)

where ỹ3
2 = (y31,2, . . . , y

3
m,2)

T and g(t) = a cos(wt) (1, · · · , 1)T . In the following, we

choose (p, q) to be (c− 1
d
, 1) as c > 0, and to be (−1,−1

d
) as c = 0, respectively. Then
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in the case of c > 0, (3.9) becomes

˙̃y1 = dG(ǫ, r)ỹ1 + (c− α− 1

d
)ỹ1 + (α− c+

1

d
)ỹ2 − ỹ3

2 + g(t) +G(ǫ, r)ỹ2

=: dG(ǫ, r)ỹ1 + F̃c(ỹ, t)

˙̃y2 = − 1

c− 1
d

ỹ2 + ỹ1.

The purpose of the coordinate transformation is two-fold. First, to make the dynamics

of the linear part on the uncoupled space stable. In this case, the coefficient of ỹ2

becomes negative when d > 2
c
. Second, to make sure the parameters in the nonlinear

part of coupled space contain no bad influence of d, coupling strength. Otherwise, we

may not be able to control its corresponding dynamics by choosing d large.

It is then easy to check that assumptions for Theorem 2.2.1 are all satisfied, and

similar arguments can be followed for the case of c = 0. What the remainder is the

checking of the bounded disspation of the coupled system.

Consider the following scalar-valued function as the Lyapunov function of the

coupled system (3.7)

U(x̃1, x̃2) =
1

2
< x̃1, x̃1 > +

m∑

i=1

x4
i,2

4
+ c < x̃2, x̃1 >, (3.10)

Taking the time derivative of U along solutions of the coupled system (3.7), we have

dU

dt
=< x̃1, ˙̃x1 > +

m∑

i=1

x3
i,2xi,1 + c < x̃1, x̃1 > +c < x̃2, ˙̃x1 >

= (c− α) < x̃1, x̃1 > −cα < x̃2, x̃1 > −c < x̃2, x̃
3
2 > + < x̃1 + cx̃2, g(t) >

+ d < x̃1,G(ǫ, r)x̃1 > +2dc < x̃1,G(ǫ, r)x̃2 > +dc2 < x̃2,G(ǫ, r)x̃2 >

= (c− α) < x̃1, x̃1 > −cα < x̃2, x̃1 > −c < x̃2, x̃
3
2 > + < x̃1 + cx̃2, g(t) >

+ d
(
x̃T
1 , x̃

T
2

)(( 1 c
c c2

)
⊗G(ǫ, r)

)(
x̃1

x̃2

)

≤ (c− α) < x̃1, x̃1 > −cα < x̃2, x̃1 > −c < x̃2, x̃
3
2 > + < x̃1 + cx̃2, g(t) >
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Note that the last inequality holds true since

((
1 c
c c2

)
⊗G(ǫ, r)

)
+

((
1 c
c c2

)
⊗G(ǫ, r)

)T

=

(
1 c
c c2

)
⊗ (G(ǫ, r) +G(ǫ, r)T ),

and G(ǫ, r) +G(ǫ, r)T is a nonpositive definite matrix. On the other hand, since

< x̃2, x̃
3
2 >=

m∑

i=1

x4
2,i ≥

1

m

(
m∑

i=1

x2
i,2

)2

≥ 1

m
‖x̃2‖42,

we have

dU

dt
≤ (c− α)‖x̃1‖22 + cα‖x̃2‖2‖x̃1‖2 −

c

m
‖x̃2‖42 +

√
ma(‖x̃1‖2 + c‖x̃2‖2)

=: u(‖x̃1‖2, ‖x̃2‖2).

We are now in a position to show bounded dissipation of the coupled system (3.7).

Proposition 3.1.1.

(i) If c satisfies the inequality

0 < c < min{ 4α

4 + α2m
,α} =

4α

4 + α2m
. (3.11)

Then there exists a constant c0 so that dU
dt

< 0 for ‖x̃2‖21 + ‖x̃2‖22 ≥ c0.

(ii) If c = 0, then the first assertion of the proposition still holds true.

Proof. Suppose ‖x̃2‖2 ≥ 1. Then

u(‖x̃1‖2, ‖x̃2‖2) ≤ (c− α)‖x̃1‖22 + cα‖x̃2‖2‖x̃1‖2 −
c

m
‖x̃2‖22 +

√
ma(‖x̃1‖2 + c‖x̃2‖2)

=: ū(‖x̃1‖2, ‖x̃2‖2).

It then follows from (3.11) that the the level curve of ū is a bounded closed curve.

We shall call such curve ellipse-like is an elliptic in the plane. Thus, there exists a

c1 so that dU
dt

< 0 whenever ‖x̃2‖21 + ‖x̃2‖22 ≥ c1 and ‖x̃2‖2 ≥ 1. Let ‖x̃2‖2 < 1 and

‖x̃2‖21 + ‖x̃2‖22 ≥ c2. Here c2 is a constant to be determined. Then

u(‖x̃1‖2, ‖x̃2‖2) ≤ (c− α)‖x̃1‖22 + (cα +
√
ma)‖x̃1‖2 +

√
mac =: h(‖x̃1‖2).
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Since h(‖x̃1‖2) is a parabola-like curve which is open downward, there exists a c3 > 1

such that h(‖x̃1‖2) < 0 whenever ‖x̃1‖2 ≥ c3. Thus, if c2 ≥ c23+1, then u(‖x̃1‖2, ‖x̃2‖2) <
0 whenever ‖x̃2‖2 < 1 and ‖x̃1‖22+ ‖x̃2‖22 ≥ c2. Picking c0 = max{c1, c2}, we have that
the assertion of the proposition holds true.

Proposition 3.1.2. Assume (3.11) holds true. Then lim
r→∞

U(x̃1, x̃2) = ∞, where r =
√

‖x̃1‖2 + ‖x̃2‖2.

Proof. From (3.10), we have that

U(x̃1, x̃2) =
1

2
‖x̃1‖2 +

m∑

i=1

x4
i,2

4
+ c < x̃2, x̃1 >

≥ 1

2
‖x̃1‖2 +

1

4m
‖x̃2‖4 − c‖x̃2‖ · ‖x̃1‖,

Let 1
4m

b21 > c2. Then suppose ‖x̃2‖ > b1, we have

U(x̃1, x̃2) ≥
1

2
‖x̃1‖2 + c2‖x̃2‖2 − c‖x̃2‖‖x̃1‖ =: h1(‖x̃1‖, ‖x̃2‖).

Since the level curve of h1(‖x̃1‖, ‖x̃2‖) is elliptic-like in the plane. Thus, for any given

M > 0, there exists a d1 > 0 such that U(x̃1, x̃2) > M whenever ‖x̃1‖2 + ‖x̃2‖2 ≥ d21

and ‖x̃2‖ > b1.

Let ‖x̃2‖ ≤ b1. Then

U(x̃1, x̃2) ≥
1

2
‖x̃1‖2 − cb1‖x̃1‖ =: h2(‖x̃1‖, ‖x̃2‖),

since h2(‖x̃1‖, ‖x̃2‖) is a parabola-like curve which is open upward in the plane. Thus,

for any given M > 0, there exists a d2 > 0 such that U(x̃1, x̃2) > M whenever

‖x̃1‖2+‖x̃2‖2 ≥ d22 and ‖x̃2‖ ≤ b1. Picking δ = max{d1, d2}, we have that U(x̃1, x̃2) >

M for all ‖x̃1‖2 + ‖x̃2‖2 ≥ δ2. Thus, the assertion of the proposition holds true.

Theorem 3.1.1. The coupled system (3.7) is bounded dissipative if condition (3.11)

holds true.

Proof. The proof is direct consequences of Propositions 3.1.1 and 3.1.2.
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Thus, summarizing above results and applying Theorem 2.2.1, we get the follow-

ing conclusion.

Theorem 3.1.2. Let f , D(c) and G(ǫ, r) be given as in (3.6a), (3.6b) and (3.6c),

respectively. Let 0 ≤ c < 4α
4+α2m

. Then the coupled Duffing system (3.7) is globally

synchronized provided that d is chosen sufficiently large.

Proof. It remains only to verify that G(ǫ, r) satisfies assumptions (2.7a) and (2.7b).

Indeed G(ǫ, r) is a circulant matrix (see e.g., [22]), the eigenvalues λk of G(ǫ, r) are

λk = −2ǫ(1− cos
2kπ

m
)− i 2r sin

2kπ

m
, k = 0, . . . , m− 1.

3.2 Synchronization in Hindmarsh-Rose Neurons with

Chemical and Electrical Synapses

3.2.1 Introduction of the Hindmarsh-Rose Neurons

The fundamental building block of every nervous system is the neuron. There is an

increasing trend [35,43,67] towards studying the dynamical behavior of relatively large

networks of neurons, and modeling/emulating such networks is also on the rise. Neural

synchronization has been suggested as particularly relevant for neuronal signal trans-

mission and coding in the brain. Brain [14,24,33,34,73,84,86,90] oscillations that are

ubiquitous phenomena in all brain areas eventually get into synchrony and consequently

allow the brain to process various tasks from cognitive to motor tasks. Indeed, it is

hypothesized that synchronous brain activity is the most likely mechanism for many

cognitive functions such as attention, feature binding, learning, development and mem-

ory function.

In the last decades, many biological neuron models have been proposed for an

accurate description and prediction of biological phenomena. The pioneering work in

such direction is due to Hodgkin and Huxley. To simplify such a model, simpler approx-

imations, namely, the second order systems such as the FitzHugh-Nagumo(FN) and
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Morris-Lecar neuron models have been proposed. However, the second order models

are not able to reproduce some interesting phenomena such as terminating themselves

by triggering a set of stable firings. Hence, the Hindmarsh-Rose(HR) model was added

a third dynamical component, whose role is to tune the above subsystem over the

mono- and bistability regions in order to activate or terminate the neuronal response.

The third order system of HR has turned out to be accurate in capturing both qualita-

tive and quantitative aspects of experimental data [23,45,46,87]. Furthermore, major

neuronal behaviors such as spiking, bursting, and chaotic regime have been produced

by such HR model [23,39,44].

In a human brain, there are about 1010 neurons with an approximate 1014 links

between them. Neurons are sparsely connected and their underlying network has small-

world property [14] though they are within only a few synaptic steps from other neu-

rons. Neurons in a population synchronize their activity using electrical and chemical

synapses with other neurons in the same population as well as with neurons from other

populations. Note that the electrical coupling via gap junctions is linear and directly

depends on the difference of the membrane potentials. And the chemical coupling is

pulsatile and often modeled as a static sigmoidal nonlinear input-output function with

a threshold and saturation.

In this section, we study the multi-state and multi-stage synchronization in en-

sembles of electrically and chemically coupled HR neurons whose connection topol-

ogy with respect to the electrical coupling is allowed to be complex including, e.g.,

Newman-Wattts networks, and whose coupling through chemical synapse is unidirec-

tional from presynaptic cell to the postsynaptic cell. By multi-state synchronization,

we mean that given a fixed set of parameters, the corresponding system is capable of

producing the coexistence of stable regular bursting and periodic/steady-state synchro-

nization, depending on the choice of initial conditions. By varying certain parameters,

if the associated system is capable of yielding different types of synchronization such

as chaotic, periodic or steady-state synchronization, then the system is said to exhibit

the multi-stage synchronization.

More closely related work can be refereed to the articles by Jalili [48], Kopell and
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Ermentrout [58], Belykh, Lange and Hasler [6], Checco, Righero, Biey and Kocarev [16],

and Wang etc., [94–96]. In [58], the single neuron model is a quadratic integrate and

fire. They obtained that the chemical and electrical couplings play complementary roles

in the coherence of rhythms in inhibitory networks. In [6], densely coupled HR system

with only chemical coupling was studied. They demonstrated the bound of the min-

imum chemical strength for obtaining the steady-state synchronization only depends

on the number of signals each neuron receives, independent of all other details of the

network topology. These two works used both numerical and analytical techniques to

address local synchronization. Coupled HR system with only chemical coupling was

also investigated in [16]. They have found multi-stage synchronization. However, the

presence of multi-state synchronization has not been addressed there. Furthermore,

their results are based on the Master Stability Equation, which is numerical in nature.

Whereas the results in [48], though the same model as ours were studied, was numer-

ical. The work done in [94–96] dealt with only electrical coupling. However, effects

of delay on synchronization were investigated there, where some interesting results are

obtained when delays are varied.

3.2.2 Synchronization of the Hindmarsh-Rose Neurons

The HR model was obtained by biological consideration over the response to stimuli

of a real neuronal cell. The motion of the model reads as follows:

ẋ = f(x) + y − z + q,

ẏ = −y − 5x2 + 1, (3.12)

ż = µ(b(x− x0)− z).

Here f(x) = ax2 − x3, x is the membrane potential, y and z are the recovery(fast) and

the adaptation(slow) current, respectively. The roles played by the system parameters

are roughly the following. q mimics the membrane input current for biological neurons;

a allows one to switch between bursting and spiking behaviors and to control the spiking

frequency; µ controls the speed of variation of the slow variable z, and in the presence

of spiking behaviors, it governs the spiking frequency, whereas in the case of bursting,

54



it affects the number of spikes per burst; b governs adaptation; a unitary value of

b determines spiking behavior without accommodation and subthreshold adaptation,

whereas around b = 4 give strong accommodation and subthreshold overshoot, or even

oscillations; x0 sets the resting potential of the system. Hereafter, the parameters are

chosen and fixed as follows: x0 = −1.6, µ = 0.01, b = 4, q = 4, and a = 2.6. The

dynamics of the neuron with such set of parameters is regular bursting (see, e.g., [87]).

Moreover, the dynamics on the corresponding synchronous manifold of the coupled

HR neurons may generate multistability region (see equation (3.16) and Table 3.1)

containing a stable regular bursting, a stable periodic solution and a stable fixed point.

Neuronal synaptic connections are either chemical or electrical, and chemical con-

nections might be excitatory or inhibitory. Moreover, the electrical coupling through

gap junctions is bidirectional, whereas the chemical synapse is unidirectional from the

presynaptic cell to the postsynaptic cell. In fact, the current qij injected from the

presynaptic cell j to the postsynaptic cell i, is a nonlinear function of the membrane

potential xj of the presynaptic cell and a linear function of the membrane potential xi

of the postsynaptic cell. The current qij has the following form

qij = gs(v − xi)p(xj), (3.13a)

where gs is the strength of chemical coupling and v is the synaptic reversal potential. If

xi < v, the current injected to the cell is positive and depolarizes it, thus the coupling

is excitatory. On the other hand, for xi > v, the injected current to the cell is negative

and consequently hyperpolarizes it, thus introducing inhibitory coupling. In this thesis,

we numerically choose v = 2 so that xi(t) < v for all t, thus the synapse is depolarizing

(excitatory). It is certainly interesting to justify that such choice of v is always possible.

The chemically synaptic coupling function is modeled by the sigmoidal function

p(xj) =
1

1 + exp{−λ(xj − θs)}
, (3.13b)

where θs = −0.25 is the threshold and λ = 10. The threshold is chosen so that every

spike in the single neuron burst can reach the threshold. In the limit λ → ∞, the

above sigmoid function reduces to a Heaviside step function.
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We are now in a position to consider a network of m excitatory HR neurons with

bidirectional electrical coupling and unidirectional excitatory chemical coupling. The

equations of motion are the following. For, i = 1, . . . , m,

ẋi = f(xi) + yi − zi + q + d

m∑

j=1

gijxj − gs(xi − v)

m∑

j=1

cijp(xj),

= f(xi) + yi − zi + q + d
m∑

j=1

gijxj − gsk(xi − v)p(xi)− gs(xi − v)
m∑

j=1

dijp(xj),

ẏi = −yi − 5x2
i + 1, (3.14)

żi = µ(b(xi − x0)− zi),

where

G =: (gij),
m∑

j=1

gij = 0 for all i, (3.15a)

C =: (cij), cij = 0 or 1, cii = 0,

m∑

j=1

cij = k for all i, (3.15b)

and

S =: (dij), and dij =

{
−k if i = j,
cij if i 6= j.

(3.15c)

Here k represents the number of chemical signals each neuron receives. Moreover, d is

the coupling strength for electrical synapses via gap junctions, and coupling matrix G

is a symmetric matrix with vanishing row sums and nonnegative off-diagonal entries.

It should be noted that the symmetry of G is a biological assumption. From the

mathematical side, our analysis here is capable of treating unsymmetrical matrices

with both positive and negative off-diagonal entries. C is the connection matrix of

the chemical coupling which is not necessarily symmetric; cij = 1 if neuron i receives

synaptic current(via chemical synapses) from neuron j, otherwise cij = 0. The matrix

S has all row sums being zero and nonnegative off-diagonal entries.

We next describe the synchronous equation of HR network (3.14). On the syn-
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chronous manifold, its dynamics is governed by the following equations

ẋ = f(x) + y − z + q − kgs(x− v)p(x),

ẏ = −y − 5x2 + 1, (3.16)

ż = µ(b(x− x0)− z).

To study local synchronization, we begin with the derivation of the variational

equation of (3.14) along the synchronous manifold M. The equation is

u̇i = f ′(x(t))ui + vi − wi +

[
d

m∑

j=1

gijuj

]
− kgsp(x(t))ui

−
[
gs(x(t)− v)p′(x(t))

m∑

j=1

cijuj

]
,

v̇i = −vi − 10x(t)ui, (3.17)

ẇi = µ(bui − wi),

where x(t) lies on the synchronous manifold of (3.14) and satisfies equation (3.16).

In vector-matrix form, (3.17) becomes

u̇ = {[f ′(x(t))− kgsp(x(t))] I + dG

− gs(x(t)− v)p′(x(t))C}u + v −w,

= {[f ′(x(t))− kgsp(x(t))− kgs(x(t)− v)p′(x(t))] I

+ dG− gs(x(t)− v)p′(x(t))S}u+ v −w, (3.18a)

v̇ = −10x(t)u− v, (3.18b)

ẇ = µbu− µw. (3.18c)

To study synchronized HR neurons (3.14), we first apply a coordinate transforma-

tion, developing in Subsection 2.3.1, on G so that the resulting matrix has a negative

matrix measure as possible. The structure of linear system (3.18) is then explored so

that the theory of some monotone dynamics and time averaging estimates described

in Section 2.1 can be applied to make the linear system asymptotically stable.
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Let E be chosen from O given in Definition 2.3.1 and define A as in it. Let

x̃ = A




u1
...
um


 , ỹ = A




v1
...
vm


 , z̃ = A




w1
...

wm


 ,

and x̄ = (x1, . . . , xm−1)
T . As well, ȳ, z̄ be similarly defined, and for any given matrix

B, we define

B = EBE†. (3.19)

Then their motions of dynamics read

˙̄x = {[f ′(x(t))− kgsp(x(t))− kgs(x(t)− v)p′(x(t))] I

+ dG+ gs(v − x(t))p′(x(t))S}x̄+ ȳ − z̄,

:= H̃(t)x̄+ ȳ − z̄. (3.20a)

˙̄y = −10x(t)x̄− ȳ, (3.20b)

˙̄z = µbx̄− µz̄. (3.20c)

Instead of calculating the transverse Lyapunov exponents of the corresponding

variational equation (3.17) of equation (3.14), we would prove directly that the origin

of (3.20) is asymptotically, exponentially stable. As a consequence, all transverse

Lyapunov exponents of (3.14) are negative.

Sufficient conditions to obtain the synchronization of coupled HR system (3.14)

are stated precisely in the following.

Theorem 3.2.1. (i) Assume x(t) satisfies synchronous equation (3.16). Let λ2 be the

second largest eigenvalue of coupling matrix G. Let r2 = µ2(S), the matrix measure of

S with respect to 2-norm. Here S is defined in (3.19). Set α =: −1− r2
k
and

hkgs,α(x) = f ′(x) + kgs [−p(x)− (v − x)p′(x)α] . (3.21a)

Define

sup
x

hkgs,α(x) =:

{
(hα)kgs if kgs 6= 0,

d1 if kgs = 0,
(3.21b)
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where hα is a constant and d1 = max
x∈R

f ′(x) ≈ 2.253. Let d0 = sup
x(t)

10|x(t)| ≤ 20. Then

coupled HR system (3.14) is locally synchronized provided that

(−λ2)d+ (−hα)kgs > 24 > d0 + b, for kgs > 0, and

−λ2d > 26.253 > d0 + b+ d1, for kgs = 0. (3.21c)

(ii) Assume that lim
t→∞

x(t) = xc. Let lim
t→∞

H̃(t) := H̃c. Here H̃(t) is defined in (3.20a).

Then system (3.14) is locally synchronized if all real parts of eigenvalues of




H̃c I −I

−10xcI −I 0
µbI 0 −µI


 =: Hc

are negative.

Proof. To obtain local synchronization of (3.14), we study equations (3.20). Note that

for excitatory HR neurons, x(t) < v = 2 for all t. Clearly, µ2(H̃(t)) ≤ λ2d+hαkgs =: λ.

Here hα is defined in (3.21b). Then by equation (3.20), we have

Dl‖x̄(t)‖ ≤ λ‖x̄(t)‖+ ‖ȳ(t)‖+ ‖z̄(t)‖, (3.22a)

Dl‖ȳ(t)‖ ≤ d0‖x̄(t)‖ − ‖ȳ(t)‖, (3.22b)

Dl‖z̄(t)‖ ≤ µb‖x̄(t)‖ − µ‖z̄(t)‖. (3.22c)

Applying Proposition 2.1.1-(ii), we see that the first part of the assertion of the

theorem holds true provided the real parts of the eigenvalues of

B =




λ 1 1
d0 −1 0
µb 0 −µ


 (3.23)

are negative. Indeed, the Routh-Hurwitz Criterion asserts that it occurs whenever

−λ > d0 + b. So the first assertion of the Theorem holds true.

The last assertion of the Theorem is a direct consequence of Proposition 2.1.2.

If the steady-state synchronization is considered, then some easier verifiable con-

ditions than those stated in Theorem 3.2.1-(ii) can be obtained.
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Corollary 3.2.1. Let d = 0. Assume lim
t→∞

x(t) = xc. Then system (3.14) without

electrical coupling is locally synchronized if the real parts of the eigenvalues of A are

negative, where

A =




hkgs,−1(xc) 1 −1
−10xc −1 0
µb 0 −µ


 . (3.24)

Proof. Note that Hc with d = 0 has the following form.




f ′(xc) + kgs [−p(xc) + (v − xc)p
′(xc)] 1 −1

−10xc −1 0
µb 0 −µ




⊗ Im−1 +

(
I1 0
0 0

)
⊗ (gs(v − xc)p

′(xc)S).

Applying Proposition 2.1.3, we have that system (3.14) is locally synchronized provided

that 


γ 1 −1
−10xc −1 0
µb 0 −µ


 ,

where γ = f ′(xc) + kgs [−p(xc) + (v − xc)p
′(xc)] + gs(v − xc)p

′(xc)λ̄i and λ̄i ∈ σ(S),

have all its eigenvalues with negative real parts.

Define matrix A(x) as

A(x) =




f ′(xc) + x 1 −1
−10xc −1 0
µb 0 −µ




.

Then it can be proved by applying the Routh-Hurwitz Criterion that for any y < x ≤ 0,

if all eigenvalues of A(x) have positive real parts, then so do those of A(y).

Upon using the above observation and the fact that λ̄i, the real parts of eigenval-

ues of S, are negative, we conclude that the assertion of the Corollary holds true.

Corollary 3.2.2. Let C be a node-balancing matrix, i.e., its row sums and column

sums are equal. Assume lim
t→∞

x(t) = xc. Then system (3.14) is locally synchronized if

all real parts of the eigenvalues of A, as given in (3.24), are negative.
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Proof. As in the proof of Corollary 3.2.1, it suffices to show that all real parts of the

eigenvalues of dG + gs(v − xc)p
′(xc)S are negative. However, by Theorem 2.1.1, we

have λmax(dG+ gs(v − xc)p
′(xc)S) ≤ µ2(dG + gs(v − xc)p

′(xc)S) ≤ dµ2(G) + gs(v −
xc)p

′(xc)µ2(S) ≤ 0. Thus, the proof of the Corollary is completed.

Remark 3.2.1. (i) To acquire synchronization of coupled networks, the second largest

eigenvalue of the coupling matrix plays an inescapable and decisive role. Indeed, in

certain cases, such as the system is fully coupled, the necessary and sufficient condition

[83] with k = 0 for local synchronization is

hmax + dλ2 < 0.

Here hmax is the largest Lyapunov exponent of the individual oscillator. In most of

interesting networks, λ2 becomes closer to the origin from the left as the number of

oscillators grows. Hence, it takes greater coupling strengths to synchronize the larger

system. In other cases, such as the coupled map lattices (1.2), the system exhibits the

size instability phenomena, that is, the system with the number of nodes greater than

a certain critical value loses its synchrony regardless how strong the coupling strength

is. Such size instability is induced by the competition between a certain eigenvalues,

including λ2, of the coupling matrix, we will study it in the next chapter.

(ii) If the connection C is symmetric, then r2 is the second largest eigenvalue of

S. It is easy to see that if the connection network is all-to-all coupled, then k = m− 1,

r2 = −m, and so α = 1
m−1

≤ 1. It can be computed that the denser the network is

coupled, the larger α is. Hence, α is an indicator of how densely coupled the system is.

Note also that −1 < α ≤ 1. We shall call α the density of the coupling network.

We also mention that the computation cost to verify the synchronous conditions

(3.21c) or (3.24) is very little as compared to that of computing second Lyapunov

exponent of the network. Specifically, if HR system (3.14) is both electrically and

chemically coupled, one needs to check the inequality (3.21c) to see if the system is

synchronized. To check the steady-state synchronization, one only needs to verify the

sign of the largest real part of eigenvalues of a 3 × 3 matrix, A, see (3.24), regardless

of the number of neurons.
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3.2.3 Further Discussions and Numerical results

In the subsection, we shall focus on applying Theorem 3.2.1 and Corollaries 3.2.1, 3.2.2

to coupled HR neurons (3.14) to extract more detailed synchronization phenomena.

To this end, we need to know, firstly, the dynamics on synchronous manifold.

(I) Dynamics on synchronous manifold

We begin with the study of the dynamics of synchronous equation (3.16). Its

dynamics is to be provided numerically. For q = 4, a = 2.6, x0 = −1.6, µ = 0.01, b = 4

and v = 2, the single HR neuron model, i.e., gs = 0, is capable of producing major

neuronal behavior, bursting. (see e.g., [44]). Furthermore, such neuron is excitatory,

i.e., x(t) < v = 2 for all t ≥ 0. We shall treat kgs as a bifurcation parameter. The

corresponding dynamical behavior of equation (3.16) is summarized in Table 3.1. A

similar result to Table 3.1 was also reported in Fig. 2 of [16]. On the synchronous

manifold, the solution trajectory x(t) of (3.16), depending on initial conditions and

kgs, may settle into various stable states. Figure 3.4 provides the maximum Lyapunov

exponent (MLE) of synchronous equation (3.16) versus kgs. For 0 ≤ kgs ≤ 0.85, there

is a set of initial conditions with positive measure for which their corresponding MLE is

positive. However, for 0.809 ≤ kgs ≤ 0.85, there is also a set of initial conditions with

positive measure for which its corresponding MLE is negative. For instance, if 0.809 ≤
kgs ≤ 0.813, then there are sets of initial conditions with positive measure so that the

solution trajectories of (3.16) converge to a stable periodic solution (see Fig. 3.5) and

stable regular bursting (see Fig. 3.6), respectively. Specifically, let (xc, yc, zc) be the

steady state of (3.16) (see, Fig. 3.7), and let

Cr = {(x, y, z) : |x− xc| < r, |y − yc| < r, and |z − zc| < r}, (3.25a)

and

Ir = {(x, y, z) : |x− xc| > r, |y − yc| > r, and |z − zc| > r}. (3.25b)

In fact, our numerical results suggest that the following hold. Pick, for instance,

kgs = 0.812. If the initial condition (x0, y0, z0) is randomly chosen from C0.02 (resp.,
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I1), then its trajectory converges to a periodic orbit (resp., a stable regular bursting)

(see Figs. 3.5, 3.6). Similarly, for kgs ∈ [0.814, 0.85], synchronous equation (3.16)

also exhibits rich dynamics showing the coexistence of stable multi states. Moreover, if

kgs ≥ 0.814, the numerical results suggest that the corresponding steady state is locally

stable. In fact, a direct calculation shows that a Hopf bifurcation occurs near 0.813.

Furthermore, if one performs the linearized stability at the steady-state (xc, yc, zc), then

one sees that (xc, yc, zc) is stable whenever kgs ≥ 0.814 (see Fig. 3.8). Such analysis of

linearized stability provided some supportive evidence for the validity of Table 3.1.

Table 3.1: The dynamics of synchronous equation (3.16) with various range of kgs.
The multi-stability of (3.16) is observed with kgs ∈ [0.809, 0.85].

kgs kgs < 0.808 0.809 ≤ kgs ≤ 0.813 0.814 ≤ kgs ≤ 0.85 kgs ≥ 0.87
Stable regular bursting Stable regular bursting

Types Stable regular bursting Stable steady state
Stable periodic solution Stable steady state

In summary, the numerical results suggest that on the synchronous manifold,

for kgs small, the regular bursting behavior of single HR persists. For kgs in an in-

termediate range, the multistability of equation (3.16) occurs. Depending on initial

conditions, the coexistence of multi stability states including a stable regular burst-

ing and a stable periodic solution/a stable fixed point could be observed. When kgs

becomes large, equation (3.16) has a globally asymptotically stable fixed point. Such

complex dynamical behavior of synchronous equation (3.16) leads to the possibility of

stable multi-state synchronization of coupled HR neurons (3.14). If the initial condi-

tions and the range of kgs are so chosen that the corresponding synchronous equation

leads to a regular bursting solution, then the associated coupled HR neurons (3.14)

achieves stable regular bursting synchronization. Likewise, we define stable periodic

synchronization and stable steady-state synchronization accordingly. As we can see,

via Table 3.1, that for 0.809 ≤ kgs ≤ 0.85, the coexistence of stable multi-state syn-

chronization of coupled HR neurons (3.14) could be observed. It should also be mention

that the theory of weakly coupled oscillators has often been used to analyze networks

of neuron coupled by small chemical synapses gs, see e.g. [60], and the many related

63



work cited therein. Using this theory enables one to obtain some extensive analytical

insight. Furthermore, the ups and downs of synaptic strength can be controlled. For

instant, N -methyl-aspartate receptors can both boost and dampen synaptic efficiency

in the brain [10]. Such observations give the justification for the consideration of small

chemical synapses gs.
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Figure 3.4: The maximum Lyapunov exponent (MLE) of synchronous equation (3.16)
is computed for various kgs. For 0 ≤ kgs ≤ 0.85, MLE> 0 for a set of initial conditions
with positive measure. For kgs ∈ [0.809, 0.85], there is also a set of initial conditions
for which its corresponding MLE< 0.
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Figure 3.5: The solution trajectory with randomly chosen initial conditions from C0.02

converges to a stable periodic orbit. Here kgs = 0.812.

(II) Neurons with only chemical synapse

In [6], a local steady-state synchronization of bursting neurons with no electrical
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Figure 3.6: The solution trajectory with randomly chosen initial conditions from I1
converges to a stable regular bursting. Here kgs = 0.812.
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Figure 3.7: Fixed points (xc, yc, zc) for different values kgs. The fixed point (xc, yc, zc)
tends to (2,−19, 14.4) as kgs tends to infinity.

coupling is studied without providing mathematical details. Moreover, their approach

fails to see if synchronization of neurons can be achieved when the networks are in-

termediately and sparsely coupled. Their major contribution was to prove that the

bound for achieving synchronization of HR neurons depends only on the number k of

chemical signals each neuron receives, and is independent of all other details of the

network topology. From (3.21a) and (3.21c), it is clear that the larger the density α

of the network is, the greater chance coupled HR neurons (3.14) gets synchronized. In

the following, we shall prove that the system of coupled HR neurons (3.14) achieves
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steady-state synchronization regardless how sparsely the network is coupled provided

that kgs ≥ 0.87.

By Corollary 3.2.1, it suffices to show that the maximum real part λmax(A)

of eigenvalue of matrix A defined in (3.24) is negative. From Fig. 3.8, we see that

λmax(A) < 0 whenever kgs ≥ 0.814. Upon taking into consideration of the dynam-

ics on synchronous manifold as provided in Table 3.1, we have the following conclusion.

Coupled HR neurons (3.14) with d = 0 achieves the steady-state synchronization

for a set of initial conditions with positive measure whenever kgs ≥ 0.814 regardless

how sparsely the network is coupled, which improves the result obtained in [6]. More-

over, the system acquires the steady-state local synchronization for all initial conditions

sufficiently close to each other whenever kgs ≥ 0.87.

Numerically, the following scenarios are also observed. Coupled two HR neurons

achieves synchronization only when kgs ≥ 0.809. Stable regular bursting and steady-

state synchronization is found on a set of initial conditions with positive measure,

respectively, whenever kgs ≈ 0.85. Such numerical results are illustrated in Figs. 3.9

and 3.10.
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Figure 3.8: The maximum eigenvalue of the linearized operator with respect to the
synchronous equation (3.16) is computed for various kgs.

66



0 200 400 600 800 1000
10

-8

10
-6

10
-4

10
-2

10
0

x
1
-x
2

t

0 200 400 600 800 1000
-4

-2

0

2

x
1

t

Figure 3.9: The time series of x1(t) − x2(t) and x1(t). The graphs demon-
strate the stable regular bursting synchronization. Here gs = 0.85, initial =
[−2,−18, 3,−2.5,−18.5, 2.5].
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Figure 3.10: The time series of x1(t)−x2(t) and x1(t). The graphs demonstrate the sta-
ble steady-state synchronization. Here gs = 0.85, initial = [0.026, 1, 6.5, 0.126, 1.1, 6.6].

(III) Neural synchronization with only electrical synapse

For gs = 0, by Theorem 3.2.1, we obtain stable regular bursting synchronization

whenever d > d0+b+d1
−λ2

=: dmin. Consider, for instance, a ring of 2K-nearest-neighbor

mutually coupled networks, the predicted minimum electrical coupling strength dmin is
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computed with the number m of neurons and K being given. Note that in such case

λ2 = −4
K∑

i=1

sin2 iπ

m
=

sin
(
(K + 1

2
)2π
m

)
− sin π

m

sin π
m

− 2K. (3.26a)

The results are listed in Table 3.2. For instance, given a number of (104 + 1)

neurons, it takes the electrical coupling strength 6.66×107 or greater to reach synchrony

for a network with the nearest-neighbor coupling. It only takes 2.7 × 10−3 or greater

to do so for an all-to-all network. If the coupling matrix G is of high dimension

and without fine structure for computers to be able to calculate its second largest

eigenvalue effectively, one may use some known estimates to find the upper bound of

λ2. For instance, we have that (see e.g., [70])

λ2 ≤
−2

(m− 1)ρ̄(G)− m−2
2 ,

(3.26b)

where ρ̄(G) is the mean distance of the graph associated with G. Upper bounds for

dmin by using (3.26b) are listed in the Table 3.2, too. For m = 104 + 1, the upper

bounds of dmin are 3.29× 108 and 65640, respectively, for a network with the nearest-

neighbor coupling and all-to-all coupling. In a nutshell, connecting each neuron to

more neighbors is an effective way for large-size networks to lower the synchronization

threshold.

The upper bound for λ2 in (3.26b) is quite good for the sparsely coupled networks.

Indeed, in the case of the nearest-neighbor coupling, the exact value of λ2 and its

estimated upper are both O( 1
m2 ). On the other hand, if the network is densely coupled,

the upper bound in (3.26b) gives a poor estimate for λ2. Nevertheless, if one picks other

type of upper bound for λ2, better estimates could be expected. For example, it is also

known, see e.g. [103], that

λ2 ≤ −m

β
, (3.26c)

where β > 0 is such that βG + L is negative semidefinite. Here L is the Laplacian

matrix of the complete graph, i.e., L = m(I − eeT ), where e is given as in (2.7a).

For the all-to-all coupling, it is readily verified that βG + L with β = 1 is negative
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Table 3.2: The first component of the pair in the table gives the predicted minimum
electrical coupling strength dmin by using the exact value of λ2. For instance, with
m = 102 + 1, K =

[
m−1
4

]
= 25, the predicted minimum electrical coupling strength is

dmin = 1.4. The second component of the pair in the table is the upper bound of dmin

by using (3.26b).

m 21 102 + 1 104 + 1

K = 1 (the nearest-neighbor coupling) (296, 1320) (6786, 32824) (6.66 × 107, 3.29 × 108)

K = [m−1
4 ] (6.10, 269) (1.40, 1320) (0.0145, 1.32 × 105)

K = m−1
2 (the all-to-all coupling) (1.26, 138) (0.27, 663) (0.0027, 65640)

semidefinite. Consequently, the equality in (3.26c) can be achieved, which yields the

best possible estimate.

(IV) Neural synchronization with both excitatory chemical and electrical

synapses

Herein, networks with both excitatory electrical and chemical connections are

considered. To extract more information on synchronization of the system, we further

assume C to be a node-balancing matrix. We first observe that x(t) < v and p′(x(t)) ≥
0 for all t. So hα, defined in (3.21b), is decreasing in α. If

(−λ2)d+ (−h−1)kgs > 24, (3.27)

then (3.21c) is also satisfied. The synchronization region satisfying (3.27) and kgs ≥
0.87 is demonstrated in Fig. 3.11. That is to say, if (−λ2d, kgs) is chosen from the

shaded region in Fig. 3.11, then multi-state or single-state synchronization can be

realized depending on the range of kgs. Consider, for instance, coupled two HR neurons.

Let kgs = 0.812 and d = 30. If (xi(0), yi(0), zi(0)) ∈ C0.02 (resp., I1), i = 1, 2, as given

in (3.25a) (resp., (3.25b)), and are distinct, then the stable periodic (resp., stable

regular bursting) synchronization occurs (see Figs. 3.12, 3.13).

We further observe that there exists a t1 such that h−1 < 0 (resp., h−1 > 0)

whenever kgs ∈ [0, t1) =: J1 (resp., kgs ∈ (t1, 0.87] =: J2) (see Fig. 3.11). Here

t1 ≈ 0.6044. Hence, both chemical and electrical synapses enforce the synchronization

69



phenomena whenever kgs ∈ J1. For kgs ∈ J2, the chemical synapses play dragging

roles for system to reach synchrony. To synchronize, the electrical synapses have to be

strong enough to suppress the dragging force created by chemical synapses. Such t1 is

called a turning point for h−1.

We are then led to compute turning points for hα (see Fig. 3.14). For α ≥ −0.67

the corresponding turning points are kgs = 0.87. Hence, for 0 ≤ kgs < 0.87, if the

density α of the coupling network is at least −0.67, then chemical synapses can also

enforce the synchrony of the system.

To summarize, a synchronization region is obtained in Fig. 3.11. Particularly,

multi-state synchronization of coupled HR neurons can be realized whenever kgs ∈
[0.809, 0.85] and (−λ2d, kgs) lies in the synchronization region. Furthermore, for 0 ≤
kgs < 0.87, if the density α of the coupling network is at least −0.67, then chemical

synapses can enforce the synchrony of the system.

To conclude this section, we will elaborate more on some crucial points.

(i) As evidence in Table 3.1, the multi-stable state, which depends on the choice of

the initial conditions exist in excitatory HR neuron. In fact, other choice of parameters,

such as a = 3, µ = 0.006, q = 3, x0 = 1.56, b = 4, would result the neurons burst

irregularly (chaotically). Under such circumstance, the presence of both stable chaotic

attractor and stable periodic state can be detected. And our approach can be applied

to the above described scenario as well.

(ii) From inequality (3.21c), we see that the denser the coupling network is, or

equivalently, the larger the density α is, the easier the system gets synchronized.

(iii) We mention that free packages SLEPc developed by V. Hernández, J. E. Román,

A. Tomás, and V. Vidal [38] can be used to compute λ2 efficiently.

(iv) In vivo experiments, the strength of an excitatory mono-synaptic connection

has a biologically realistic value gs = 0.66 × 10−3 (see e.g., [9]). Using such gs and

our theory, we may conclude that if the number of presynaptic neurons that connect

to a single cortical neuron is greater than 1319 and in between 1226 and 1288, then

the system may reach steady-state synchronization and multistate synchronization,
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respectively. It should be mentioned that the quantitative description of the circuit

of cat area 17 is given in [9]. Depending on the cell type and its layer location, the

presynaptic synapses could range from 0 to 3500. For instance, it seems that excitatory

cell types ss4(L4), p5(L2/3), p6(L4) and p6(L5/6) are the most likely candidates to

generate multistate synchronization.
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Figure 3.11: The shaded area is the synchronization region satisfied by (3.27) and
kgs ≥ 0.87.
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Figure 3.12: The time series of x1(t) − x2(t) and x1(t). The graphs demonstrate the
stable periodic synchronization. Here d = 30, gs = 0.812, initial = [0.26459e − 1 +
r, 0.996499 + r, 6.5058 + r, 0.26459e− 1− r, 0.996499− r, 6.5058− r] and r = 0.001.
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Figure 3.13: The time series of x1(t) − x2(t) and x1(t). The graphs demonstrate the
stable regular bursting synchronization. Here d = 30, gs = 0.812, initial= [0.26459e−
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Figure 3.14: Turning points of hα.
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Chapter 4

Synchronization in Model II

In this chapter, we consider the synchronization in CMLs (1.2). Throughout the chap-

ter, we, as usual, assume coupling matrix G satisfies

(i) λ = 0 is a simple eigenvalue of G and

e = 1√
m
(1, 1, . . . , 1)T1×m is its corresponding eigenvector. (4.1)

4.1 Local Synchronization Criteria

To study the stability of the synchronous manifold M = {xi = s, ∀i} of CMLs (1.2),

we consider the variational equation of (1.2):

ξ(k + 1) = DF (s(k))ξ(k) + d(G⊗ I)DF (s(k))ξ(k)

= [I ⊗Df (s(k)) + d (G⊗ I) (I ⊗Df (s(k)))] ξ(k), (4.2a)

where ξ = (ξ1, . . . , ξm) and each ξi is the perturbation to the ith oscillator. Let

J = P−1GP , where J = [0]⊕ J1 ⊕ · · · ⊕ Jp is the real Jordan Canonical form of G.

Applying the change of variables η = (P−1 ⊗ I)ξ, we get

η(k + 1) = [(I + dJ)⊗Df (s(k))]η(k),

or, equivalently, in block diagonal form,

ηi(k + 1) = [(I + dJi)
k ⊗Df k(s(1))]ηi(1)

=: Ai(k)ηi(1). (4.2b)
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Let σ(A) denotes the spectrum of A. Then σ(Ai(k)A
∗
i (k)) equals to

σ([(I + dJi)
k ⊗Df k(s(1))] [(I + dJ∗

i )
k ⊗ (Df k(s(1)))∗])

= σ([(I + dJi)
k (I + dJ∗

i )
k]⊗ [Df k(s(1)) · (Df k(s(1)))∗])

= σ((I + dJi)
k (I + dJ∗

i )
k) · σ(Df k(s(1)) · (Df k(s(1)))∗)

= σ((I + dJ̄i)
k (I + dJ̄∗

i )
k) · σ(Df k(s(1)) · (Df k(s(1)))∗),

where J̄ = [0] ⊕ J̄1 ⊕ · · · ⊕ J̄p is the Jordan Canonical form of G. Consequently, the

Lyapunov exponents of (1.2) are

hj + lim
k→∞

ln
√

λw,i

k .

Here hj are the Lyapunov exponents of the individual system f and λw,i are the

eigenvalues of (I + dJλi
)k(I + dJ∗

λi
)k where Jλi

is a Jordan block of matrix G and

λi is an eigenvalue of G. Let the size of matrix Jλi
be ki × ki, and let N = Jλi

− λiI.

It should be noted that for sufficiently large k,

(I + dJλi
)k = ((1 + dλi)I + dN)k = (1 + dλi)

k(I + αN)k

= (1 + dλi)
k(I +

ki−1∑

j=1

(
k

j

)
αjN j)

=: (1 + dλi)
kTi,

where α = d/(1 + dλi). Clearly, the order of the magnitude of each entry of TiT
∗
i is at

most O(k2ki−2). We conclude, via the Gershgörn disk theorem, that all eigenvalues of

TiT
∗
i are of the order O(k2ki−2). Consequently, the Lyapunov exponents of (1.2) are

hj + ln |1 + dλi|. (4.3)

We summarize the above as follows.

Theorem 4.1.1. Let coupling matrix G satisfy (4.1). Then CMLs (1.2) achieves local

synchronization provided that

hmax + ln |1 + dλi| < 0, i = 2, . . . , m, (4.4)

where hmax is the largest Lyapunov exponent of the individual map f and λi ∈ σ(G)−
{0}, i = 2, . . . , m. Otherwise, CMLs (1.2) will not acquire local synchronization.
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Remark 4.1.1. The decoupling form (4.2b) of variational equation (4.2a) was first

observed and proposed by Pecora and Carroll [75].

We shall assume from here on that the real parts of the eigenvalues of G are

nonpositive. To find the range of the coupling d so that (4.4) is fulfilled, we need to

solve the following min max problem.

min
d∈R

max
2≤i≤m

|1 + dλi| = min
d>0

max
2≤i≤m1

|1 + dλi|

=: min
d>0

max
2≤i≤m1

ri(d) =: min
d>0

r(d). (4.5)

Here m1 is the number of eigenvalues lying in upper complex plane or on the real axis.

The curves ri(d) are termed the ith-mode of the transverse Lyapunov exponent curves.

The equalities above are due to the facts that |1+dλi| = |1+dλ̄i|, the real parts of the
eigenvalues of G are nonpositive and (4.4) is violated whenever d ≤ 0. Without lose of

generality, we may assume those distinct nonzero eigenvalues are λi, i = 2, . . . , m1, with

0 < |λ2| ≤ · · · ≤ |λm1 |. The coupling value d := dc solving the min max problem (4.5)

is the optimal choice of the coupling in the sense that it gives the fastest convergent

rate of the initial values toward the synchronous state. To understand how r(d) is

formed, we need to know the ordering of ri(d). For d > 0, direct computations yield

ri(d) =
[
|λi|2d2 + 2Re(λi)d+ 1

] 1
2

=

[
|λi|2

(
d− Re(−λi)

|λi|2
)2

+
|λi|2 − Re2(λi)

|λi|2

] 1
2

=:
[
|λi|2 (d− ci)

2 + tan2 θi
] 1

2

.
(4.6a)

Moreover, ri(d) ≥ rj(d) if and only if

Re(λi) ≥ Re(λj) if |λi| = |λj|, (4.6b)

and

(|λi|2 − |λj|2)(d− dij) ≥ 0 if |λi| 6= |λj |, (4.6c)

where

dij =
2(Re(−λi)− Re(−λj))

|λi|2 − |λj|2 .

(4.6d)
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Let Ai = {j : 2 ≤ j ≤ m1 and |λi| = |λj|}. Then max
j∈Ai

|1+dλj| = |1+dλw|, where w is so

chosen that Re(λw) ≥ Re(λj) for all j ∈ Ai. This gives that within each of the index set

Ai, their corresponding quantities |1+dλi| are well ordered for any d > 0. Consequently,

to solve (4.5), we may assume, without loss of generality, that 0 < |λ2| < · · · < |λm1 |
from here on. Using the terminology in [37], we see that the numbers 2 and m1

correspond to the longest and shortest wavelength modes, respectively. The numbers

in between 2 and m1 are to be called intermediate wavelength modes. Since dij = dji,

for any i and j, we consider only dij with i > j. Our reduction process is now complete.

The following procedures are proposed to determine the “actual” node points of

r(d) from the candidate set {dij : i > j}.

(A) Set k0 = 0, and k1 = max{l|Re(λi) ≤ Re(λl), ∀i = 2 . . . , m1}. Let k2 be the

largest index so that 0 < dk2k1 ≤ dwk1 for all k1 < w ≤ m1.

(B) Let k3 be the largest index so that dk2k1 < dk3k2 ≤ dwk2 for all k2 < w. The

process can be continued until kp = m1 for some p ≤ m1.

The next result shows that {ki}pi=1 is the set of “actual” node points of r(d).

Theorem 4.1.2. Let coupling matrix G satisfy (4.1). Assume that the real parts of the

eigenvalues of G are nonpositive. Then r(d) = rki(d) whenever dkiki−1
≤ d ≤ dki+1ki

,

i = 1, . . . , p. Here dk1,k0 = 0 and dkp+1kp = ∞.

Proof. Denote by Ij = [dkjkj−1
, dkj+1kj ]. It then follows from (4.6c) that if i > j and

dij > 0, then ri(d) > rj(d) whenever d > dij and ri(d) < rj(d) whenever 0 < d < dij.

We then conclude that

(i) the ordering of ri(d) and rj(d) remains the same until both curves meet; (4.7a)

(ii) if ri(d
∗) > rj(d

∗) for some d∗ > 0 with i > j, then ri(d) > rj(d) for all d ≥ d∗.
(4.7b)

Using the first inequality in (4.6a), we have that r(d) = rk1(d) for ǫ1 > d ≥ 0. Here ǫ1

is sufficiently small. It then follows from (4.7a), (4.7b) and procedure (A) that r(d) =

rk1(d) on I1. Upon using (4.7a), we conclude that r(d) = rk2(d) for d ∈ (dk2k1 , dk2k1+ǫ2).

76



Here ǫ2 is sufficiently small. Similarly, r(d) = rk2(d) on I2. We omit the proof of the

remaining assertions of the theorem due to the similarity.

Note that not all cki given in (4.6a) could be critical points of r(d). In fact, the

critical points of r(d) may not even come from the set {cki}. We next identify the

“actual” critical points of r(d). Our next main result shows that r(d) has exactly one

critical point.

Theorem 4.1.3. The curve r(d) has a unique critical point dc that solves the min max

problem (4.5). Moreover, the optimal range of coupling d to sustain stably synchronous

chaos of (1.2b) is (dl, dr). Here dl and dr, dl < dr, are the intersection points (if exist)

of the straight line y = e−hmax and the curve y = r(d). Consequently, CMLs (1.2b)

acquires local synchronization if and only if d ∈ (dl, dr).

Proof. We break up the proof of the theorem into the following three steps.

(Step I) We first claim that the number of cki lying in the interior
◦
Ii of Ii is at most

one. Indeed, suppose there exist cka ∈
◦
Ia and ckb ∈

◦
Ib with cka < ckb. Then the following

hold true. (i) rka(ckb) > rka(cka). (ii) rka(cka) > rkb(cka). (iii) rkb(cka) > rkb(ckb).

Inequalities (i) and (iii) hold true since cka and ckb are, respectively, the minimum

points of rka(d) and rkb(d). The fact that rka(d) lies above all other curves on Ia leads

to inequality (ii). Combining these inequalities, we have that rka(ckb) > rkb(ckb), a

contradiction to the fact that rkb is the maximum curve on Ikb .

(Step II) We next show that if cki ∈
◦
Ii, then r(d) is decreasing on (0, cki) and

increasing on (cki,∞). Indeed, for d ∈ Ii+1, r(d) = rki+1
(d) > rki(d) > rki(dki+1ki) =

rki+1
(dki+1ki). Using the conclusion in Step I and the fact that r2ki(d) is parabolic,

we conclude that rki+1
(d) must be increasing on Ii+1. On the other hand, rki−1

(d)

must be decreasing on Ii−1 since rki−1
(d) > rk(d) > rki(dkiki−1

) = rki−1
(dkiki−1

). The

monotonicity of r(d) on each interval Ij, 1 ≤ j ≤ m1, can be similarly determined.

(Step III) Since r(d) is decreasing initially on I1 and increasing eventually on Ip,

there must have at least one critical point. If such points do not lie in the set of node

points, then r(d) has a unique critical point. Suppose cki /∈
◦
Ii for all i = 1, . . . , p. Then

r(d) is monotonic on each interval Ii. Suppose r(d) first changes its monotonicity at
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dkl+1kl for some l. Then a similar argument as given in the Step II shows that once

r(d) becomes increasing on Il+1 it will stay increasing the rest of the way. We have

just completed the proof of the theorem.

Now, we define some terminologies occurring in Theorem 4.1.3. The curve r(d)

given in is to be called the synchronization curve of CMLs (1.2), and the interval

Nm,f := (dl, dr) is termed the synchronization interval. (1.2), if exists. The value

dc is called the optimal coupling strength of CMLs. The value r(dc) is called the

synchronization index of CMLs since local synchronization occurs iff it is less than

e−hmax. The value hmax + ln r(dc) is called the Lyapunov index of CMLs.

Remark 4.1.2. (i) The optimal coupling strength dc ∈ (dl, dr) and depends only on the

connectivity topology. (ii) If the straight line y = e−hmax and the curve y = r(d) do not

intersect, then CMLs (1.2) will not achieve synchronization for any coupling strength.

Suppose dr and dl exist. Then as soon as d exceeds dr, a certain wavelength mode is

excited, which, in turn, causes the instability of the synchronous state. The illustration

in Examples 2 and 3 shows that the excited wavelength mode could be either the shortest

wavelength mode, the intermediate wavelength mode or the longest wavelength mode.

In any event, dr is the exact critical value where wavelength bifurcation (WB), as the

terminology using in [37], occurs. On the other hand, dl is the exact critical value where

all wavelength modes become deexcited enough to induce the stability of the synchronous

state.

Theorem 4.1.4. Suppose the coupling matrix G ∈ R
m×m has nonpositive real eigen-

values. Denote by {λi}m1
i=2 the distinct nonzero eigenvalues of G. Then

(i) The synchronization curve is

r(d) =

{
λ2(d), d ∈ [0, dm12] = I1
λm1(d), d ∈ (dm12,∞) = I2

. (4.8a)

(ii) The optimal coupling strength is

dc = dm12 =
−2

λ2 + λm1

. (4.8b)
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(iii) The synchronization interval is, if exists,

Nm,f :=

(
1− e−hmax

−λ2
,
1 + e−hmax

−λm1

)
. (4.8c)

(iv) The synchronization index is

t2,m :=

∣∣∣∣
λ2 − λm1

λ2 + λm1

∣∣∣∣ . (4.8d)

(v) The Lyapunov index is

δm,f := hmax + ln |t2,m|. (4.8e)

Consequently, depending on the quantity of hmax, either CMLs (1.2) achieves no syn-

chronization or short wavelength bifurcation occurs as d varies.

Proof. It is easily seen that k1 = 2 and k2 = m1 since dij = −2
λi+λj

. Thus, r(d) is

as asserted. It then follows from the facts that cm1 = − 1
λm1

< −2
λ2+λm1

< − 1
λ2

= c2,

dc = dm12. Solving equations y = r(d) and y = e−hmax , we have that dl and dr are as

claimed.

4.2 Application: Local Synchronization in coupled

logistic maps

We illustrate our theorems with the following examples.

Example 1: Let the oscillators be diffusively coupled with periodic boundary condi-

tions. It means coupling matrix G is given in the form of (2.31). Then for such G,

m1 = m, −λm1 = 4 sin2 [
m
2 ]π
m

and −λ2 = 4 sin2 π
m
.

Let f(x) = 4x(1 − x), 0 ≤ x ≤ 1. Then hmax = ln 2, and the corresponding

candidates for dl and dr are, respectively,
1
8
sin−2 π

m
and 3

8
sin−2 [m

2
]π

m
. However, dl ≤ dr

only if m ≤ 5 . Hence, we conclude that the maximum size of the number of oscillators

to sustain synchronous chaos is 5.
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We next compare our results with those obtained in [19,79]. Their sufficient

conditions on the coupling strength for obtaining stable synchronization are, respec-

tively, given as follows. 1−e−hmax

m
< d gij < 1+e−hmax

m
, and

(∑m
k=1,k 6=i |gki − gji|

)
+

∣∣ 1
d
+ gii − gji

∣∣ < 1
d
e−hmax , for all i, j with i 6= j. However, the first inequality above fails

to find any suitable coupling strength provided that G has zero off-diagonal elements.

If G is given as above with m ≥ 4 and f(x) = 4x(1 − x), then the second inequality

also fails to find any suitable coupling strength.

Example 2: Consider synchronization in a directed ring of 2K nearest neighbors

coupled oscillators [1] with K = 2 and m = 9. Specifically, the coupling matrix G

under consideration is a circulant matrix of the form

G = circ(−30, 13, 2, 0, . . . , 0, 5.4, 9.6).

The spectrum of G is {−30 + 13e
2(j−1)π

9
i + 2e

4(j−1)π
9

i + 5.4e
14(j−1)π

9
i + 9.6e

16(j−1)π
9

i : j =

1, . . . , 9}. Here λ2 ≈ −11.4024+1.1629i, λ3 ≈ −33.0293+2.1855i, λ4 ≈ −45+5.8890i

and λ5 ≈ −45.5683+3.3483i. Direct computations yield that d42 ≈ 0.0348 < d52 < d32,

d54 ≈ 0.0406, and c5 < c4 < d42 < d54 < c2 ( see Fig. 4.1 ). Consequently,

r(d) =





r2(d), d ∈ I1 = [0, d42]
r4(d), d ∈ I2 = [d42, d54]
r5(d), d ∈ I3 = [d54,∞]

,

the node points of r(d) are d42 and d54, and the critical point of r(d) occurs at d42. Let

fµ(x) = µx(1 − x). For µ = 4, since e−hmax = e− ln 2 = 0.5 < r(d42), synchronization

interval does not exist. As µ varies from µ∞ ≈ 3.57 to µ = 4, scenarios (i) no syn-

chronization, (ii) short wavelength bifurcation(SWB) and (iii) immediate wavelength

bifurcation(IWB) can be clearly observed from the figure.

On the other hand, the maximum size of the number of oscillators on such con-

nectivity topology to sustain stably synchronous chaos is 7. The claim above is done

by checking the intersection of the equations y = 1
2
and y = r(d) for all m ≤ 8.
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Figure 4.1: Graph of r(d) in Example 2. Here d42 ≈ 0.0348, d54 ≈ 0.0406, r(d42) ≈
0.6040, r(d54) ≈ 0.8604, c5 ≈ 0.02182, c4 ≈ 0.02185 and c2 ≈ 0.0868. The critical point
of r(d) is d42.

Example 3: The following example shows that long wavelength bifurcation(LWB) is

also possible. Let G be given as follows:



−30 3 12 5 10
10 −30 3 12 5
5 10 −30 3 12
12 5 10 −30 3
3 12 5 10 −30




.

The spectrum of G is {0,−35.2639+10.7719i =: λ2,−39.7361+2.5429i =: λ3, λ̄2, λ̄3}.
Then the graph of r(d) is demonstrated in Fig. 4.2. Consider f(x) = 4x(1− x). Then

the longest wavelength mode becomes excited to induce instability as d is increased

beyond dr.

Example 4: To illustrate the accuracy of our theorems, synchronization intervals

established in Theorem 4.1.4 are compared with those obtained by the computer simu-

lation. In particular, theoretically and numerically predicted synchronization intervals

for three examples above are almost identical. Such comparisons are recorded in Fig.

4.3. They are “almost” identical. This simulation is so setup that the differences be-

tween the initial values xi are within 10−5. Synchronization is achieved when their

differences are within 10−15.
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r2(d) r3(d)

Figure 4.2: Graph of r(d) in Example 3. Here d32 ≈ 0.0396, c2 ≈ 0.0259, c3 ≈ 0.0251,
dl ≈ 0.0149 and dr ≈ 0.0369. The critical point of r(d) is c2.

4.3 Wavelet Transform Method for Coupled Map

Lattices

In this section, we consider how the wavelet transform method [98] affects the stability

of synchronous manifold of (1.2). As required hypothesis in [98], we as well assume

coupling matrix G being symmetric and satisfies (4.1), and the number m of nodes

being equal to m̃2i.

Write G as

G =




G11 · · · G1m̃
...

. . .
...

Gm̃1 · · · Gm̃m̃




m×m

.

Here, the dimension of each small block matrices is 2i × 2i. By the i-scale wavelet

operator W [21,98], the matrix G is transformed into W (G) of the form

W (G) =




W11 · · · W1m̃
...

. . .
...

Wm̃1 · · · Wm̃m̃




m×m

.

where each entry of Wpq (1 ≤ p, q ≤ m̃) is the average of entries of Gpq. After
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Figure 4.3: Three typical synchronization intervals (SIs) for coupled logistic map with
various coupling matrices are shown. Solid (bold) lines are SIs obtained by computer
simulation. Dotted (fine) line lines are SIs predicted by our theorems. All scaled for
clear visualization.

reconstruction [98], the coupling matrix G becomes

G+K ·W (G) =




G̃11 · · · G̃1m̃
...

. . .
...

G̃m̃1 · · · G̃m̃m̃




m×m

.

where K is a wavelet parameter. In summary, the effects of the wavelet transform

method can be viewed as the changes of eigenvalues of the coupling matrix and vary

dramatically for different m’s. The eigenvalues of G+KW (G) are denoted by λi(K),

with 0 = λ1(K) > λ2(K) ≥ · · · ≥ λm(K). Clearly, Theorem 4.1.4 is still valid for such

new coupling matrix. Note that the corresponding δm,f , dc, Nm,f and t2,m defined in

Theorem 4.1.4 now depend on the wavelet parameter K as well. To emphasize such

dependence, we shall write them as δm,f(K), dc(K), Nm,f (K) and t2,m(K), respectively.

In the following, we consider the applications of the wavelet transformation

method in the case that f in CMLs (1.2) is the logistic map, i.e., f = fµ(x) = µx(1−x),

and the coupling matrix G ∈ R
m×m is the diffusive matrix with periodic boundary con-

ditions as given in (2.31).
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Example A. m = 4 (No improvement)

Fig. 4.4(a) shows the calculated eigenvalues λi(K) of the coupling matrix as a

function of wavelet parameterK. The coupling matrices before and after reconstruction

are denoted by G+KW (G) = [G̃pq], with K = 0 and K > 0, respectively, where

G̃11 = G̃22 =

(
−(4+K)

2
2−K
2

2−K
2

−(4+K)
2

)
,

G̃12 = G̃21 =

(
K
2

2+K
2

2+K
2

K
2

)
.

The solid line is λ2(K), while the dotted line is λ4(K). Note that as K is increased, a

crossing appears at K = 1. This crossing makes the analytical identification of λi(K) a

difficult task. Thus, the optimal K is numerically determined from Fig. 4.4(b), where

t2,m, the synchronization index, is obtained from Fig. 4.4(a). We set K = Km,min is the

number for which t2,m(Km,min) is a minimum. Fig. 4.4(b) shows that Km,min ∈ [0, 1].

Thus, it is clear that no enhancement of synchronization is expected.

Example B. m = 8 (Significantly improved)

For m = 8, the enhancement of synchronization is shown. Fig. 4.5(a) shows the

eigenvalues λi(K) of the coupling matrix as a function of the wavelet parameter K. In

this case,

G̃pq =

(
−(4+K)

2
2−K
2

2−K
2

−(4+K)
2

)
, if p = q,

G̃pq =

(
K
4

K
2

4+K
2

K
4

)
= G̃T

qp = G̃41 = G̃T
14, if q − p = 1,

G̃pq =

(
0 0
0 0

)
, otherwise.

Note that two crossing points appear. Similarly, the synchronization index,

t2,8(K) is shown in Fig. 4.5(b). It is observed that K8,min ∈ (1.13, 1.204). Thus, using

an optimal K (in the min region), it is expected to have a significant improvement over

K = 0.
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Given the optimal K, the effects of the wavelet transform method on synchro-

nization with different growth rates and coupling strength are further investigated.

Fig. 4.5(c) shows the Lyapunov index of coupled system (1.2) withK = 0 andK = 1.15.

These two graphs are identical with a vertical shift. It is seen, via Fig. 4.5(c), that if

µ > µ8 ≈ 3.67, so as δ8,µ > 0, then the local synchronization is lost without the wavelet

transform method. However, with wavelet transform method (K = 1.15), δ8,µ(1.15) < 0

for all µ’s, and so the local synchronization of (1.2) is preserved. Fig. 4.5(d) and

Fig. 4.5(e) shows the optimal length of the coupling strength as a function of growth

rate without the transform (K = 0) and with the optimal transform (K = 1.15),

respectively.

The numerical simulation for obtaining the interval of synchronization recorded

in Fig. 4.5(f) and Fig. 4.5(g) again confirms our theoretical prediction above. Without

the transform (K = 0), there is a narrow region for the complete synchronization.

In dark areas around µ = 3.64 and 3.85, each cell shows a periodic window-type

of behavior. In gray areas, different initial conditions give rise to different scenarios

of partial synchronization (for example, even/odd cells are synchronized). With the

wavelet transform method, there is a very significant increase in dark areas as compared

to those in Fig. 4.5(f). The applicable ranges of the coupling strength and the growth

rate are significantly improved. The numerically produced Fig. 4.5(f) and Fig. 4.5(g)

are in agreement with our theoretically predicted Fig. 4.5(d) and Fig. 4.5(e).

Example C. m = 40 (Effects on large m)

The wavelet transform method is most dramatic for a large number of oscillators.

Fig. 4.6(a) shows the maximum number of oscillators for which the local synchroniza-

tion of the system with or without the wavelet transform method can still be sustained.

The numbers are obtained by Theorem 4.1.4. It is seen, via Fig. 4.6(a), that the good

improvement on the maximum number of oscillators allowed is that even without choos-

ing the optimal K. The graphs in Fig. 4.6(a) are decreasing with respect to the growth

rate µ of the map, except at those µ’s yielding the window behavior. Asm increases, the
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dominant eigenvalue approaches zero. Hence, local synchronization becomes unobserv-

able. Furthermore, the change of the dominant eigenvalue due to the wavelet transform

method is very significant. Fig. 4.6(b) shows that if µ0 = 3.5699456 < µ < µ1 = 3.5708,

then coupled system (1.2) acquires synchronization with m = 40 and K = 1. However,

it is easily verified from Theorem 4.1.4 that if µ = µ1, then the maximum number of os-

cillators allowed for synchronization without the wavelet transform method is m = 24.

It should be noted that in producing Fig. 4.6(a) only the end points of synchronization

intervals are recorded. For those µ’s, where µ > 3.571, exhibiting the window behavior,

the end points of synchronization intervals lie outside the interval (0.1, 0.5).

With the wavelet transform method, global synchronization can be achieved for

m = 40. In the case of m = 8, the transform enhances the synchronization effect. In

this case, there is a very significant region, as shown in the dark areas in Fig. 4.6(c).

Without the transform, synchronization for such a large number of oscillators would

not be possible. This demonstrates the dramatic effects of the transform with relatively

large m.
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Figure 4.4: (a) Eigenvalues λi(K) of the coupling matrix as a function of wavelet parameter
K for m = 4. The solid line is λ2(K), while the dotted line is λ4(K). (b) Synchronization
index of the coupling matrix as a function of wavelet parameter K. (c) Theoretical predicted
synchronization intervals which are in agreement with Fig.4.4 (d) and (e). (d) Numerically
produced synchronization intervals without the wavelet transform method. (e) Numerically
produced synchronization intervals with (K = 0.9) the wavelet transform method. The dark,
gray, and white regions represent in complete synchronization, partial synchronization, and
out of synchronization, respectively. The dark areas around µ = 3.64 and µ = 3.85 are
caused by periodic windows. They are consistent with the results of Fig. (a)-(c), where
Km,min ∈ [0, 1].
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Figure 4.5: (a) Eigenvalues λi(K) of the coupling matrix as a function of wavelet parameter
K for m = 8. (b) Synchronization index of the coupling matrix as a function of wavelet
parameter K. (c) Lyapunov index versus growth rate µ. (d) White region gives the syn-
chronization intervals for K = 0. (e) White region gives the synchronization intervals with
K = 1.15. (f) Numerically produced synchronization intervals without the wavelet transform
method. (g) Numerically produced synchronization intervals with (K = 1.15) the wavelet
transform method.
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Figure 4.6: (a) Maximum number of oscillators allowed for which (1.2) acquires synchro-
nization. (b) Lyapunov index versus growth rate µ. Here µ0 = 3, 5704 and µ1 = 3.57085. (c)
Numerically produced synchronization intervals with K = 1 and m = 40.
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Chapter 5

Conclusion

In this thesis, we consider the synchronization problems in the lattices of the coupled

systems (1.1) and (1.2). Some criteria and applications are drawn.

First, for the coupled system (1.1), we have developed theories (see Theorems 2.2.2,

2.2.1, 2.3.4) to prove the occurring of global synchronization, and a rigorous lower

bound on the coupling strength to acquire global synchronization is obtained. The re-

sults can be applied to quite general connectivity topology including the time-varying

coupling. Moreover, by merely checking the structure of the vector field of single os-

cillator and verifying bounded dissipation of the coupled system, we shall be able to

determine if the coupled system is synchronized or not.

In Chapter 3, to see the applicability of the developed theorems, the coupled

Lorentz and coupled Duffing oscillators are considered as examples. Moreover, synchro-

nization of coupled Hindmarsh-Rose neurons with excitatory chemical and electrical

synapses is analytical studied. Particularly, multi-state and multi-stage synchroniza-

tion are observed with the presence of both chemical and electrical synapses. A mea-

surement for the density of the network is introduced to ensure that chemical synapses

play positive effects on the synchronization of the system of coupled neurons.

Secondly, the necessary and sufficient condition for the local synchronization in

the CMLs (1.2), as a version of the MSF criterion proposed by Pecora and Carroll [75]

in (1.1), is supplied for arbitrary coupling matrix G, see, for examples, Theorems 4.1.1,

4.1.3, 4.1.4. We also show analytically and numerically that the wavelet transformation
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method applied well in the CMLs. The result is illustrated in Fig. 4.5, for instance.

Before concluding the thesis, we mention some possible future work. First, it

is of great interest to show how bounded dissipation of the coupled system is related

to the uncoupled dynamics and its connectivity topology. Second, the analysis of the

local (global) synchronization in the CMLs with the partial-state coupling is also worth

studying.
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