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摘摘摘摘    要要要要 

 論文名稱：透過二維光子晶體來監控二維奈米級的位置變化 

                                  校所別：國立交通大學光電工程研究所          頁數：1 頁 畢業時間：九十七學年度第二學期              學位：碩士  研究生：鍾佩芳                          指導教授：賴暎杰 老師 

 關鍵詞：位置監控、光子晶體、干涉、光學量測 

 

    在本論文中，我們提出一套簡易及低成本的干涉系統，藉著由偵測二維六角型光子晶體玻璃基板來即時監控二維之奈米等級位移量。這個即時監控二維奈米等級位移量的方法，是將波長為 633-nm 的氦氖雷射光源正向入射一個二維六角型光子晶體玻璃基板來產生遠場繞射光束。基板在作二維移動時，六道繞射光束的光場相位會隨著光子晶體玻璃基板的位移向量來作線性變動。當我們取兩道一階繞射光束與零階光束在兩個正交平面上形成二維的干涉圖形，利用
CCD 讀取並作訊號處理來量得移動前後之相位差，即可推算出裝置基板之移動平台的位移量，其量測二維位移量之準確度可到達奈米等級。最小可測量的位置變化量會與作為繞涉光柵的光子晶體之週期大小有關，而我們所用的二維光子晶體週期約為 1.28µm，最小可量測的位置變化量可到 20nm。 
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ABSTRACT 

 

Title：Simultaneous two-dimensional nanometric-scale position monitoring 

by probing a two-dimensional photonic crystal plate 

Pages：1 Page 

School：National Chiao Tung University  

Department：Institute of Electro-Optical Engineering 

Time：June, 2009                      Degree：Master  

Researcher：Pei-Fang Chung             Advisor：Prof. Yin-Chieh Lai 

 

Keywords：  position monitor、Photonic crystal、 Interferometer、Optical 

measurement 

  

  In this thesis, simultaneous two-dimensional nanometric-scale position 

monitoring is achieved in a simple and cost-effective interferometric setup by 

real-time probing a two-dimensional hexagonal photonic crystal glass 

substrate. To real-time monitor the two-dimensional translational movement in 

nanometric-scale, an optical imaging system is built by probing a hexagonal 

photonic crystal glass (HPCG) with a 633-nm He-Ne laser beam. The 

translation movements in both directions are recorded in the phases of the 

fields of the diffracted six spots in a linear relation. By carefully aligning the two 

first-order spots and the zero-order spot to form chessboard-like interference 

pattern on the CCD camera, the individual nanometric-scale movement 

information can be determined by the phase change of the chessboard-like 

interference pattern before and after moving. In principle it can attain the 
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nanometric-scale accuracy of position reading in both orthogonal moving 

directions. The minimum detectable translational movement is dependent on 

the period of the probed photonic crystal (1.28µm in this study) and can be 

down to 20nm as demonstrated in the present work.  
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Chapter 1 

Introduction 

1.1Review of displacement measuring method 

  Optical measurement techniques have received increased attention in the past 

years because in general optical methods have many advantages over other 

measuring methods. They are usually non-invasive, capable of observing highly 

transient phenomena and can have high spatial and temporal resolution. Precision 

measurement of displacement or position has played an important role in 

semiconductor technology, nanotechnology, biotechnology, and so on. It is expected 

that optical precision measurement techniques for displacement or other physical 

quantities will continue to be important in many new fields of technologies.  

In the past several optical interferometer techniques have been widely used for 

precision measurement of displacement. They include the heterodyne interferometers 

[1-1]-[1-2], homodyne interferometers [1-3]-[1-4], grating interferometers [1-5]-[1-7], 

and heterodyne grating interferometers [1-8]. Among them, a high resolution of 0.2 

nm has been achieved by a heterodyne grating interferometer system. Besides 

interferometers, there are some other methods without analyzing the interference 

fringe shift. For example, they can be by monitoring the changes in the intensity of the 

light reflected from a variable-air-gap optical waveguide [1-9], or be an astigmatic 

detection system with a modified digital-versatile-disk optical head [1-10].   

Generally, in a displacement measurement system with a grating, a coherent light 

beam is emitted into the grating so that a plurality of diffraction beams are generated.  

Parts of the diffraction beams interfere with a reference light beam, so that periodic 

interference fringes are formed.  Accordingly, when the grating moves, the 

displacement of the grating is calculated from the variation of the above-described 
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interference fringes.  However, when the related technology was initially developed, 

the above-described displacement measurement system is simply used to measure 

the displacement in one-dimension due to the fabricating technique of the grating.   

With the development of related technologies, multi-dimensional displacement 

measurement systems can also be provided.  For example, in a displacement 

measurement system, gratings at a predetermined period respectively serve as 

alignment marks for the corresponding displacement in each dimension, so that the 

actual displacements are measured and recorded.  Further, in a displacement 

measurement system, the actual displacements in each dimension are obtained by 

detecting the amplitude changes of the interference fringes in each dimension.  In 

the above-described multi-dimensional displacement measurement system, a plurality 

of photo sensors disposed in each dimension are used to read the amplitudes of the 

interference fringes for obtaining the actual displacements in each dimension, which 

in practice gives rise to an increase in costs and complexity of the whole displacement 

measurement system.  Furthermore, the displacement measurement system having 

many photo sensors may be difficult to be applied in practice. 

 

1.2 Motivation of the thesis 

The recent rapid progress of nanophotonics researches urgently requires the 

technique to control the position of objects with nanometric precision. There is an 

increasing demand for measuring long-range displacement with nanometric resolution. 

The nanometric-scale position monitoring method in the literature mainly combines 

the delicate optical methods with mechanical tuning elements. Though the best 

achievable resolution can reach nanoscale, the above methods suffer from not only 

the limitation of detection length but also the lack of simultaneous two- or even 
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three-dimensional displacement measurement in a simple setup. Besides, traditional 

measurement system for two-dimensional movement is composed of two sets of 

one-dimensional measurement system, which means that two sets of analyzing 

devices are applied. For example, a planar encoder is proposed for sensing the 

two-dimensional displacement of a two-dimensional grating [1-5]. In this system, two 

phase-shift detection modules are provided to respectively analyze the x-and y- 

measurement.  

In our work, a simple way to achieve simultaneous two-dimensional 

nanometric-scale position monitoring is proposed and demonstrated, which in 

principle can attain the nanometric-scale accuracy of position reading in both 

orthogonal moving directions. In the scheme we combine three beams to yield an 

interference pattern. In this way, the measurement can be achieved by only one CCD 

camera. Besides, there is no complicated machinery or expensive devices in our 

system [1-11]-[1-13].        

 

1.3 Structure of the thesis 

The present thesis comprises five chapters. Chapter 1 is an introductory chapter 

consisted of an introduction to optical precision measurements and the motivation of 

our research. Chapter 2 describes the principles and analysis of our research work. 

We explain how the optical phase variation results from the grating displacement. It 

contains the theory of Fourier transform method, analysis of phase variation, and the 

behavior of interference patterns. Chapter 3 describes our experimental procedures 

for one-dimensional displacements, and shows the measurement results. Chapter 4 

describes the procedures for two-dimensional position monitoring, and discusses the 

measurement results. Finally, chapter 5 gives the conclusions and discusses possible 
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future works. 
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Chapter 2 

Principles 

The aim of this thesis is to real-time monitor the two-dimensional translational 

movement in nanometric-scale. Thus an optical imaging system is built by probing a 

hexagonal photonic crystal glass (HPCG). The translation movements in both 

directions are recorded in the phases of the fields of the diffracted spots. By carefully 

aligning the first-order two spots and the zero-order spot to form chessboard-like 

interference pattern, the individual nanometric-scale movement information can be 

determined by the phase change of the chessboard-like interference pattern before 

and after moving.  

In this Chapter, the principles of how to determine the individual nanometric-scale 

movement information are described. The first part is a brief introduction of Fourier 

transform for two-dimensional periodic functions. It is then followed by the 

mathematical model to express the diffraction pattern formed by a transparent 

hexagonal-lattice glass. The third part is to explain how to obtain the displacement 

from interference pattern, and the final part is to introduce the transform matrix for 

obtaining displacement from phase variation. 

 

2.1 Introduction of Fourier transform for 

two-dimensional periodic function  

If a two-dimensional function f(x, y) satisfies the Dirichlet conditions, it can be 

decomposed into a linear combination of complex exponentials according to  

∫ ∫
∞

∞−

+= ηζηζ ηζπ ddeFyxf yxj )(2),(),(             (2.1) 
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Here F(ζ,η ) is given by  

  ∫ ∫
∞

∞−

+−= βαβαηζ βηαζπ
ddefF

j )(2),(),(              (2.2) 

and is known as the two-dimensional Fourier transform of f( x, y ), with ξ and η being 

the spatial-frequency variables corresponding to the x- and y-directions, respectively. 

This function is also called the complex spatial-frequency spectrum of f(x, y), or more 

simply, its spectrum. It is the spatial frequency domain representation of f(x, y).  

The number of oscillations made by a time-varying sine wave per unit time is 

described as the temporal frequency of the function. For a function that varies 

sinusoidally with some spatial coordinate, the spatial frequency associated with the 

function in that same direction indicates the number of repetitions the function makes 

per unit distance [2-1] 

 

2.2 The diffraction pattern formed by a transparent 

hexagonal-lattice glass 

2.2-1 Introduction of diffraction 

There are two types of diffraction phenomena, known as Fraunhofer diffraction (or 

far-field diffraction, appears far from the aperture) and Fresnel diffraction (or near-field 

diffraction, appears close to the aperture). The Fraunhofer diffraction occurs when the 

source of light and the screen are effectively at infinite distances from the aperture or 

obstacle that causes diffraction. Mathematically, Fraunhofer diffraction occurs when︰  

                                 1
2

<<=
λL

a
F                            (2.3) 

where a is slit size, λ is wavelength and L is distance from the aperture. 

In this experiment, the period of the hexagonal photonic crystal glass (HPCG) plate is 
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1.28µm and the wavelength of the source laser beam is 633nm. Since the outgoing 

waves of the HPCG plate are planar on the image plane, it is a Fraunhofer diffraction 

scheme. 

 

2.2-2 The diffraction pattern produced by probing a 

hexagonal photonic crystal glass 

A repetitive array of diffracting elements, either apertures or obstacles, that has the 

effects of producing periodic alterations in the phase, amplitude, or both of the 

emergent wave is said to be a diffraction grating. In our measurement, the hexagonal 

photonic crystal glass is regarded as a diffraction grating [2-3]. 

The organization of the hexagonal photonic crystal glass is qualitatively 

characterized by focusing the He-Ne laser beam on the sample. Fig.2.1 displays the 

experimental setup for observing the diffraction pattern. The laser beam was focus 

onto a transparent hexagonal photonic crystal glass plate for normal incidence. The 

imaging system of the prepared sample is located at the focal point of a converging 

lens with 125-mm-long focal length. In the diffraction image shown on Fig.2.1, the 

center spot is the zero-order diffraction beam, and the surrounding six spots are the 

first-order diffraction beams. The first-order diffraction angle can be figured out from 

the following expression︰ 

λθ ma m =sin , m=0, ±1, ±2,…                  (2.4) 

Where a  is the period of a HPCG plate, λ is the wavelength of the laser beam, and m 

is the order of diffraction beam. It is known as the grating equation for normal 

incidence. According to Eq.2.4, the first-order diffraction angle θ can be calculated to 

be 27.96°. Also, it can be found experimentally that θ＝26.56° from the way of 

geometry analysis.   
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Fig. 2.2 shows the sketches of the structure of a hexagonal-lattice glass and the 

diffraction pattern. According to Fig.2.2 (a), the transmittance of the HPCG plate can 

   

Fig.2.1 The picture of experimental setup and the diffraction image. 

   

(a) (b) 

Fig.2.2 (a) Sketches of a hexagonal-lattice glass and (b) the corresponding 

first-order diffraction pattern. 
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be written in general as follows︰ 

)]
2

1
()

2

1
()()([),(),( −−+⊗=

yxyx d

y
comb

d

x
comb

d

y
comb

d

x
combyxgyxt   (2.5) 

Here t ( x , y ) denotes transmittance of the photonic crystal array, dx and dy are the 

periods of the array along the x- and y- directions as shown on Fig.2.2(a), and g( x , y ) 

is the transmittance on one unit cell.  

The Fraunhofer far field diffraction pattern of such a plate under normal plane wave 

incidence is simply the Fourier transform of the distribution across the aperture (i.e., 

the transmittance function). Therefore, we process the transmittance function by 

Fourier transform to obtain the scaled far field distribution. The Fourier transform of 

the transmittance function can be expressed in the following form︰ 

)1)(,(),(

)},({)(

,

)(

,

∑ ++−−=

=

nm

nmi

y

y

x

xyxf

yxf

e
d

m
f

d

n
fGffu

yxtFffu

π        (2.6) 

Here fx and fy are the spatial frequencies of the image along the x- and y- directions as 

shown on Fig.2.2 (b) and G is the Fourier transform of g(x, y). It is interesting to note 

that the interference term in the right hand side gives rise to the hexagonal distribution 

in the Fourier domain for a hexagonal structure. 

 

2.2-3 The phase variation of diffraction beams after 

moving diffraction grating 

The relation between phase variations and displacements can be directly 

understood from the translation property of Fourier transform, which states that a 

translation of the input function g(x) changes the phase of the transformed function as 

follows： 
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02

0 )()}({
fxi

efGxxgF
π=+               (2.7) 

It shows that the movement information is encoded in the phase term of the Fourier 

components in a linear relation. 

In two-dimension, when the translation in position is applied, similarly, the phases of 

the far field components carry the position movement information. According to Eq.2.7, 

if the two-dimensional translation x1 and y1 are simultaneously applied, the new 

diffraction field can be expressed in the following form︰ 

11
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Where ),( yxof ffu , ),(1 yxf ffu , ),(2 yxf ffu are the original scaled far field distribution of 

spot 0, spot 1, spot 2 donated in Fig.2.2 (b) and δ0 , δ1 and δ2 are the phase shifts of 

spot 0, spot 1 and spot 2 before and after the translation movement. Though the 

diffracted spots remain the same configuration, the movement information is recorded 

in the phase terms of the fields. By separately taking the diffracted spot 1 and spot 2 to 

interfere with the zero-order spot 0, the recorded phase information δ1 and δ2 can be 

estimated from the Fourier transform of the 2D interference pattern function.                    

 

2.3 Obtain the displacement from interference 

pattern  

2.3-1 The relation between phase variation and 

displacement  

First, we discuss the condition in one-dimension. When the diffraction grating is 

moved a small distance ∆y, the interference pattern movement is followed as shown in 
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Fig.2.3. Comparing the pattern before and after the grating moving, the phase change 

can be calculated. The formula for displacement  ∆y and phase change Δθ is 

expressed as︰ 
                           y

d

n
∆=∆

π
θ

2
                           (2.9) 

where d is the period of the grating and n is the order of diffraction. [2-2]  

 

Fig.2.3 The interference pattern (a) before and (b) after moving the diffraction 

grating 

Then, in two-dimension, from Eq.2.8, after moving the diffraction grating, it 

induceses a phase variation in diffraction beams and the interference pattern 

produced by these diffraction beams will shift. Consider a spatially varying function 

presenting the interference pattern shown in Fig.2.4 (a) and (c). We assume that the 

function has a constant background with sinusoidal variation. If we now designate the 

function to be h(x,y) and provides a phase shift δ1 and δ2 respectively in the x- and y- 

directions, we may write  

    )])2(2cos[)])(1(2cos[(),( 00 δπηδπζ ++++= yDCxBAyxh     (2.10) 

where ξ0 and η0 are the spatial frequencies in the x- and y- directions. The profile of 

h(x, y) in x-direction is shown in Fig.2.4 (e). Notice that h(x, y) can be put in the form 

                              )()(),( ygxfyxh =                         (2.11) 

where  
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)]1(2cos[)( 0 δπζ ++= xBAxf                           (2.12) 

)]2(2cos[)( 0 δπη ++= yDCyg                 (2.13) 

And we see that it is separable in x and y. The spatial-frequency spectrum of h(x, y) is 

given by  

∫ ∫
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Here F(ξ) and G(η) are one-dimensional transform of f(x) and g(y), respectively, and it 

is apparent that the transform of separable function is itself separable. Thus, with 
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And we see that the two-dimensional spectrum of h(x, y) consists of a delta function at 

the origin, which indicates the constant background, and two others located at ξ=±ξ0  

and η=0, as shown in Fig.2.4(b). The latter two indicate that the function varies 

sinusoiadlly in the x-direction, with a frequency of ξ0. Similarly, two delta functions are 

located at ξ=0  and η=±η0 as shown in Fig.2.4 (d). This result is an idealization 
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because of our assumptions on the profile of the function and the fact that we have 

neglected the finite size of the field [2-1]. 

 
 

(a) (b)  

  

(c)  (d)  

 

(e)  

Fig. 2.4 The schema of spatially varying function and its spectrum (a)The function 

spatially varying in the x-direction(b) The spectrum of sinusoidal function which 

varies in the x-direction(c) The function spatially varying in the y-direction(d) The 
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spectrum of sinusoidal function which varies in the y-direction(e) Idealized 

surface-height variation of field 

The movement of the diffraction grating will cause the phase variation of diffraction 

beams and then the interference pattern produced by these diffraction beams will shift. 

From Eq.2.17, the shift in the interference pattern can be measured from the spectrum 

of the interference pattern. 

 

2.3-2 Properties of the spectrum 

The spectrum resulted from processing a sinusoidal function by Fourier transform is 

presented above. Here, we introduce some properties of the spectrum.  

In Fig.2.4 (a), if the period of the sinusoidal function is increased, the separation ξ0 

decreases. Considering a perfectly sinusoidal function without any constant term 

added, it has a single frequency component. In other words, the spectrum is a pair of 

Dirac delta functions located symmetrically with respect to the origin.  

The phase φ of a real cosinusoidal function )cos( φω +xs  is equal to the complex 

phase of its spectral component )](exp[ φω +xI s , which in turn is equal to the complex 

phase of Fourier transform )]exp()([ φωωδ is−  of the cosine function at the frequency 

ω= ωs. An important and useful conclusion is that the phase of the real Fourier 

components of a real function is equal to the complex phase of Fourier transform at 

the frequency of that component [2-2]. 

Therefore, the phases δ1 and δ2 can be identified by taking the arg of the processed 

data from the complex Fourier component of the interference pattern. In this way, the 

phase changes of the interference pattern can be inferred from monitoring the phase 

difference δ1 and δ2. Once the phase δ1 and δ2 are determined, the movement x1 and 

y1 can be decided. 
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2.4 The transform matrix for obtaining displacement 

from phase variation 

According to Eq.2.9, the relation between movements and phase changes is linear. 

Therefore, through a two-by-two transform matrix as follows ： 
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The movements in the x- and y- directions can be determined from the two phase 

variations. The transform matrix also can be expressed in another way shown in the 

following form ：  





∆+∆=∆

∆+∆=∆

yMxM

yMxM

22212

12111

θ

θ
                   (2.19) 

The two functions represent two planes respectively. In our wok, we measure several 

sets of (∆x, ∆y, ∆θ1) and (∆x, ∆y, ∆θ2) to fit the planes. Then, the transform matrix can 

be found. 
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Chapter 3 

Experiment of one-dimensional measurement 

To test the nanometric-scale movement detection, the one dimensional position 

reading is executed first and the experimental results are presented in this Chapter. 

The sample is mounted on a translation stage comprised of a linear motor stage and a 

piezoelectric translator (PZT) stage with sub-nm position resolution. The accurate 

movement of one period is achieved by shifting the translation stage to an 

approximate distance and then iteratively fine-tuning the PZT stage to match the 

phase distribution of the interference pattern on the CCD camera. The iteration 

process terminates when the phase distribution obtained in this step matches that of 

last step, and the accurate amount of movement is recorded by the Michelson 

interferometer. 

 

3.1 Experimental setup  

3.1-1 Fabrication of a transparent hexagonal-lattice glass 

The hexagonal photonic crystal glass plates used in our experiment are provided 

by the research group at NCU. They used a closed packing monodisperse 

polystyrene sphere as a mask, and by different dry etching recipes, the patterns can 

be transferred into the substrate surface. After etching, a transparent hexagonal 

photonic crystal glass (HPCG) sample substrate with a large patterned surface was 

obtained. The sample can be highly uniform over inch square. Since no 

photolithography process and no vacuum chamber are required, this method is 

inexpensive and rapid. The period (lattice constant) of the HPCG is determined by the 

diameter of microspheres, which ranges from 200 nm-700 nm to 1-2 micrometer. The 
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SEM picture of the surface of a HPCG plate is shown on Fig.3.1. The period is 

approximately 1.28µm. 

 

(a)  

 

(b)  

Fig.3.1 The SEM picture of the surface of a HPCG plate. (a) Overview(b) The 

period of HPCG is approximately 1.28 µm. 

In our experiment, the transparent hexagonal-lattice glass is seen as a 

two-dimensional diffraction grating for measurements. Since the detectable 

displacement resolution is mainly determined by the grating period, the smaller the 
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grating period, the higher the resolution of the detectable displacement resolution. 

Besides, the smaller period of the diffraction grating will produce a bigger diffraction 

angle, advantageous for us to capture the diffraction beams in shorter distance. As a 

result of that, the experimental setup can be reduced and simplified.  

 

3.1-2 Experimental setup  

The one dimensional position measurement is executed first. The real-time 

interferometric position monitoring method is based on our previous work in a 1D 

grating case [3-1]-[3-5]. The whole position monitoring system of one-dimension is 

illustrated in Fig.3.2. Fig.3.3 shows the actual picture. A single-polarization 633-nm 

He-Ne laser beam is focused onto the photonic crystal plate with a spherical lens of 

125-mm focal length. A 440×480 monochrome CCD camera with a pixel width of 

7.15-µm is utilized to record the interference pattern produced by spot 0 (the 

zero-order beam) and spot 1 (the first-order beam). The sample, a HPCG plate, is 

mounted on a translation stage comprised of a linear motor stage and a piezoelectric 

translator (PZT) stage with sub-nm position resolution. By PZT, the sample can be 

controlled to make one-dimensional movement in the vertical direction of incident 

beam. And, the accurate amount of movement is recorded by the Michelson 

interferometer. 
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Fig.3.2 Schematic diagram of the 1-D displacement measurement 

 

 

Fig.3.3 The actual system of the 1-D displacement measurement 

 

 

3.1-3 Observing variation by rotating diffraction grating  

  When rotating the HPCG plate, in principle, the rotation of the six-spot diffracted 
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image follows. However, the phenomena do not happen in every position of HPCG 

plate. The diffraction pattern of HPCG plate is not stably produced every time. 

When the HPCG plate rotates with an increasing angle, approximately to 10 degree, 

the diffracted image becomes a twelve-spot or other kind of symmetrical pattern. It 

indicates that the structure of the sample is periodic, but the angle of the axis of the 

photonic crystal for each area might be different. Therefore, it produces different 

diffraction patterns and these patterns appear simultaneously. As shown in Fig.3.1 

(a), we can find that the arrangement of photonic crystal is periodic in micro square 

and there are some defects. From another point of view, our system may also 

provide an optical method for measuring the uniformity of the periodic-patterning 

samples. Besides, the six-spot diffraction image can exist only when the HPCG 

plate is in the focal plane of Lens 1.  

 

3.2 Measurement procedures and results 

One axial slice of the intensity distribution of the interference fringe is recorded on 

the CCD camera to illustrate the imaging processing algorithm. The visibility of the 

interference pattern can be optimized by adjusting the polarizer and half-wave plate 

located on the path of the zero-order beam. The intensity of the first-order diffracted 

probe beam A is denoted as IA, and the intensity of the zero-order beam B is assumed 

to be IB. The intensity distribution of the interference fringe on the CCD along the 

x-axis, which is perpendicular to the bisector of the two interfering beams, is given by 

])
2

sin(2cos[2 2
int δ

θ
+⋅⋅++= kxIIIII BABA

                 (3.1)                       

Where k=2π/λ is the wave vector, θ2 is the interfering angle and δ is the phase 

difference between the two interfering beams. The phase difference δ contains two 
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contributions: 

differencepathmovementgratingbycaused δδδ +=           (3.2) 

where δcaused by grating movement is the phase change of the diffracted probe beam A 

caused by the movement of the sample, and δpath difference is the phase change caused 

by the optical path difference between the zero-order and the first-order beams. Since 

δpath difference is constant during the scan, the grating phase change (caused by the 

displacement of the grating) can be inferred from monitoring the phase difference δ. 

The interference pattern Iint is processed by the Fourier transform to obtain the 

corresponding spatial frequency spectrum. The spectrum is then filtered to keep only 

the positive frequency part and is inverse-Fourier-transformed back to the original 

domain. The phase δ can then be identified by taking the arg of the processed data. 

Figure 3.4 shows the typically resulted periodic pattern along the x-axis captured by 

the CCD camera (grey solid line), the pattern after the filtering-taking-real-part 

procedure (grey dotted line) and the obtained phase distribution by taking the arg of 

the filtered data (bold solid line). 

 

Fig.3.4 Typical 1D interference pattern captured by CCD, the pattern after 

processing and the calculated phase distribution. 



 24 

In practice, the whole algorithm is implemented with the LabVIEW software for 

automatically controlling the whole measuring process. The accurate movement of 

one period is achieved by shifting the translation stage to an approximate distance 

and then iteratively fine-tuning the PZT stage to match the phase distribution of the 

interference pattern on the CCD camera. The iteration process terminates when the 

phase distribution obtained in this step matches that of last step. The resulted 

accurate amount of movement is recorded by the Michelson interferometer.  

The sample period is approximately 1357 nm from the measurement. The period 

should keep the same value when the sample is rotated 60 degree due to geometric 

symmetry. Fig.3.5 indicates reasonable data trend as expected. 

 

Fig.3.5 Number of period versus translational distance for HPCG crystal axis 

placed at 0° and 60°. 

We further investigate the position monitoring accuracy by introducing different 

phase shifts within one period. Fig.3.6 lists the statistical data for average 

displacement and standard deviation of total 50 measurements per phase shift. In our 

preliminary experimental setup, the position monitoring accuracy of the whole system 

is better than 1.8nm, which means the accuracy of the position-seeking feedback 

control loop is set to be 0.5 degree of the array period. From Fig.3.6, an 8 nm 
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movement (2 degree phase shift with respect to one period of the HPCG sample) can 

be easily detectable with 0.94nm uncertainties. 

 

Fig.3.6. One-dimensional position monitoring statistics according to the amount of 

phase shifts with respect to one period 
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Chapter 4 

Experiment of two-dimensional measurement 

The aim of this work is to achieve simultaneous two-dimensional nanometric-scale 

position monitoring in a simple and cost-effective interferometric setup. We will 

present our experimental results of two-dimensional nanometric position 

measurement in this Chapter. The first part of this Chapter is the experimental setup, 

and the second part is the description of the monitoring program, and the final part is 

the demonstration of the measurements and results. 

 

4.1 Experimental setup 

4.1-1 Components of the interferometer 

Several components required to build our interferometer system are described 

below: 

1. Light source 

In general, lasers are in demand as a light source in order to make interference. For 

continuous measurements, gas lasers are suitable because of their long coherent 

length [4-1]. 

  In our experiment, the Helium neon laser is used. The coherent length of a Helium 

neon lasers with a low power (2-50 m W , λ=632.8nm) is 15-22cm. The coherence 

length, an important property in interferometry, is the optical path difference between 

the two interfering beams for which the fringe visibility falls to zero [4-2]. It is an 

important condition for arranging the optical components of three beams to yield a 

visible interference fringe. 

2. Diffraction grating 
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  In our measurement, the hexagonal photonic crystal glass is regarded as a 

two-dimensional diffraction grating.  

3. Beam expander 

A beam expander consists of an input objective, a lens and a pinhole shown on 

Fig.4.1. The pinhole is placed at the focus of the objective. This spatial filter provides a 

simple way to block out random fluctuations from the intensity profile of the laser 

beam [4-2]. For the purpose to obtain a suitable beam size, the beam expander is 

arranged in our system.  

 

Fig.4.1 Beam expander 

4. Mirrors, Lenses 

Mirrors are required to reflect the diffraction beams to the same plane for 

interference. In order to avoid light power losses through reflection and absorption 

and to enhance mechanical stability, generally, as few mirrors as possible should be 

used [4-1]. 

5. Polarizer 

A polarizer is a device that converts an unpolarized or mixed-polarization beam of 

electromagnetic waves into a beam with a single polarization state. These devices 

may vary in effectiveness and some of them may be called leaky or partial polarizers 

[4-3]. In our experiment, polarizers are inserted in order to adjust the intensity of 

beams.  
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6. Half-wave plate 

A wave plate is an optical device that alters the polarization state of a light wave 

traveling through it. A half-wave plate, a common type of wave plate, retards one 

polarization by half a wavelength, or 180 degrees. In our experiment, half-wave plates 

are inserted in order to rotate the polarization.  

 

4.1-2 Interferometer for measuring displacement in 

two-dimension 

Fig.4.2 displays the experimental setup and Fig.4.3 shows the actual experimental 

setup for two-dimensional measurement. To show the feasibility of our system, the 

displacement provided by two linear stages was measured. The HPCG plate regarded 

as a diffraction grating is mounted on these two crossed linear stages. The movement 

accuracy of both stages is 4nm. By controlling stages, HPCG can make translational 

movement in two-dimension. A single-polarization 633-nm laser beam is focus on the 

HPCG plate with a spherical lens of 125-mm focal length. For measuring 

two-dimensional translational movements, we choose three beams, including one 

zero-order diffraction beam and two first-order diffraction beams, to produce a 

chessboard-like interference pattern. Therefore, there are three optical paths from 

HPCG to CCD camera. The actual optical diffraction pattern is shown on Fig.4.4.  
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Fig.4.2 Schematic diagram of the experimental setup for two-dimensional 

measurement  

 

 

Fig.4.3 The actual experimental setup for two-dimensional measurement 
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Fig.4.4 The actual optical diffraction image of diffraction pattern in two-dimensional 

measurement 

For getting an interference pattern as clear as possible, some characteristics have 

to be noticed. First, to obtain good visibility fringes, the amplitudes of the two 

interfering beams must be nearly equal. However, there is intrinsic difference on 

intensity between the zero-order diffraction beam and the first-order diffraction beam. 

For this reason, the polarizer is used to modulate the intensity of beams. Nevertheless, 

a polarizer not only will decrease the intensity, but also will change the polarization. In 

order to get effective interference phenomena, the polarization of three beams must 

be on the same plane. For this purpose, a half-wave plate is placed in order to rotate 

the polarization. In use of these two optical devices (polarizers and half-wave plates), 

the analyzable interference is easily obtained.      

Thinking about the interference pattern of these three beams to be monitored by a 

CCD camera, we have to consider about the beam size. The CCD camera we used is 

a 640×480 monochrome CCD camera with a pixel width of 9.2-µm.  When the size of 

the beam is 3mm, pixels of CCD can be effectively used, and all these data can be 

effectively analyzed. The beam size of the 633nm He-Ne laser beam is approximately 

1 mm, and the beam width after focusing onto the HPCG sample is calculated to be 
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24µm. To obtain a 3mm beam size, it is necessary to expand the beam. In Fig4.2, the 

focal length of the first lens (lens 1) is 125-mm, and the focal length of the others 

( lens 2,3,4) is 400- mm. In this arrangement, the size of the beam can be expanded 

to approximately be triple, 3.2 mm, right suitable for us to monitor the interference 

pattern.  

Because one of the key factors for displacement resolutions of the whole system is 

determined by the resolution of the CCD camera, the larger fringe period produces the 

improved displacement resolution. The interference angle of two beams, which 

producing interference, must be very small in order to get large fringe period on the 

CCD camera. We simply use 50% mirrors to combine them. The zero-order beam and 

one of the first-order beams can propagate in nearly the same optical path between 

the 50% mirror and the CCD camera by carefully aligning.  

Adjusting the incidence angle on the CCD camera can change the distribution of the 

interference pattern. For the ease to observe, we modulate respectively a horizontal 

periodic interference pattern and a perpendicular periodic interference pattern shown 

on Fig.4.5 (b) and (c). These two interference patterns are formed by interfering the 

zero-order beam with the first-order beam. Then, the net pattern becomes a 

chessboard-like pattern shown on Fig.4.5 (a). The optical phase variation resulting 

from the movement of grating can be measured by this optical interferometer. Besides, 

there is another undesired oblique periodic interference pattern formed by the two 

first-order beams as shown on Fig.4.5 (d).  
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(a) (b) 

  

(c)  (d)  

Fig.4.5 The actual interference pattern caught by the CCD camera (a) the 

measured chessboard-like interference pattern(b)formed by the zero-order beam 

and the first-order beam(c) formed by the zero-order beam and the first-order 

beam(d) formed by two first-order beams 

 

4.2 Monitoring program 

To analyze the interference pattern, the system is implemented with the LabVIEW 

software for obtaining the phase information. First, we transform the picture captured 

by the CCD camera to an array, shown on Fig.4.5, which we can analyze by the 

LabVIEW software.  

FFT is a general method proposed for the analysis of the fringe pattern. The flow 
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chart of the FFT algorithm is shown in Fig.4.6 [4-5]-[4-6]. First, the interference pattern 

is processed by the FFT to obtain the corresponding spatial frequency spectrum. After 

FFT, we need to separate the picture array to four parts from the origin and rearrange 

these four parts to get the pattern with a peak in the central area shown on Fig4.7. 

This arrangement is for avoiding the problem of fast variation term. 

From Fig.4.7, we can find one peak (the highest one) at the origin presenting the 

DC term. It indicates the average background. The others surrounding the origin 

present the AC terms. And, in the ξ-axis direction, the peak beside the central (peak 2) 

comes from the periodic function in the x-axis direction as mentioned in 2.3-1. 

Similarly, in the η-axis direction, the peak beside the central (peak 3) comes from the 

periodic function in the y-axis direction. The separation between peak 1 and peak 2 or 

peak 3 depends on the period of interference pattern in the x- or y- directions. These 

peaks bring the phase information of interference pattern. When the HPCG moves, 

the phases of the zero-order beam do not change. However, the phases of the 

first-order beams will change. Therefore, we can find displacements of the HPCG 

from the phase difference between the zero-order and the first-order components 

before and after the HPCG moving. The required phases can be calculated from the 

peak points in the complex spatial-frequency spectrum.  
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Fig.4.6 The flow chart for FFT algorithm 
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Fig. 4.5 The image transformed from the measured chessboard-like interference 

pattern by the LabVIEW software. 
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Fig.4.7 The complex spatial-frequency spectrum of the interference pattern 

For obtaining the phase changes from the complex spatial-frequency spectrum, 

filtering techniques can be used. The spectrum is then filtered to keep only the 

positive frequency part. We choose two points from the Fourier spectrum, including 

the point at origin (peak 1) and the point beside the origin one with the highest peak 

(peak 2 or peak 3), to be processed by the inverse Fourier transform to back to the 

original domain. Then, we can obtain a distinguished 1D interference pattern shown 

on Fig4.8. It is the result after filtering out all the undesired noises and signals. From 

this pattern, we can monitor the real-time phase changes. The point we choose from 

the ξ-axis direction and the η-axis direction can respectively produce the x- and y- 

direction interference patterns. Comparing the difference of the filtered interference 

fringes before and after moving, the phase changes can be decided. Besides, from 

the filtered interference pattern, the measurement resolution is approximately 

20nm. 
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(b) 

Fig.4.8 The filtered interference pattern (a) in the x-direction (b) in the y-direction.  
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4.3 Measurements and results   

4.3-1 Determining the transform matrix 

  To find the relation between the phase changes and displacements, we 

preliminarily move one stage to make the diffraction grating experience 

one-dimensional movement. We record the phases before and after moving the 

stages. To avoid confusion, we restrict all the phase to be between π and –π. The 

plots of the phase changes ∆θ1 and ∆θ2 as a function of ∆x with ∆y=0 is shown in 

Fig4.9 (a, b). Fig.4.9 (c, d) show the plots of the phase changes ∆θ1 and ∆θ2 as a 

function of ∆y with ∆x=0. As is shown in Fig.4.9, the phase changes are linearly 

periodic with respect to the position displacement. We thus confirm that the 

variation of the phase changes is as expected when performing different 

movements. Besides, it should be noticed that it is necessary to plus or subtract 

2nπ when the displacement exceeds one period. After this process, one obtains 

Fig.4.10. From Fig.4.10, one displacement value will be corresponding to one 

phase change value.  

 

(a) 
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(b) 

 

(c)  

 

(d)  

Fig.4.9 The original plot of phase-changes versus displacement (a) Variation of x 

displacement with x phase change(b) Variation of x displacement with y phase 

change(c) Variation of y displacement with x phase change(d) Variation of y 

displacement with y phase change   
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(a) 

 

(b) 

 

(c) 
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(d) 

Fig.4.10 The chart of phase-changes versus displacement after correcting the 

phase-change value(a) Variation of x displacement with x phase change(b) Variation 

of x displacement with y phase change(c) Variation of y displacement with x phase 

change(d) Variation of y displacement with y phase change  

 

From Eq.2.19, the data of (∆x, ∆y, ∆θ1) can contribute to a plane. From the fitted 

plane of those data, we can find the elements M11 and M12 of the transform matrix. 

Similarly, the elements M21 and M22 can be obtained from the plane equation of (∆x, 

∆y, ∆θ2).Then, we find the whole transform matrix shown in Eq.4.2. For the ease to 

figure out displacements from phase- changes, the matrix is processed by the 

inverse transform to obtain the final formula between displacements and 

phase-changes as follows ﹕   
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4.3-2 Measurement of two-dimensional movement 

  To test the accuracy of the transform matrix that we figure out from 

one-dimensional measurements described on 4.3-1, several sets of 

two-dimensional measurements are performed. The average phase-changes for 

different two-dimensional movements are substituted into Eq.4.2 to obtain the 

measured displacements. The statistics presented in Fig.4.11 shows that the 

difference between movements of stages (red points) and measured results (black 

points). Detailed data, including standard deviation, are listed in Fig.4.12. From 

Fig.4.12, we can find that the accuracy deteriorates with increasing measured 

length. The standard deviation shown in Fig.4.12 grows, when the distance of 

movement increases. The results also imply the best accuracy of our system for 

simultaneously two-dimensional movement is approximately 20nm.   

 

Fig.4.11 The results of two-dimensional measurements by probing the HPCG 

plate. Red one presents stage displacements, and black one presents measured 

displacements. 
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Fig.4.12 Statistics for sets of two-dimensional movements 

 

4.3-3 Analysis  

In the measurement, when the HPCG sample moves, the laser beam will scan 

an area of the HPCG plate instead of the same position. Suppose that our system 

has the potential to perform two-dimensional long-distance displacement 

measurement, the laser beam will be incident on very different points of the HPCG 

plate for each measurement. The laser beam would scan the HPCG randomly and 

might scan over the whole plate. However, it is possible that some uncertainties 

come from the distortion in the periodic structure of the HPCG plate. From the SEM 

picture of the HPCG shown in Fig.3.1 (a), we can find that the structure is not so 

perfectly periodic in the used sample. Therefore, the following measuring method is 

designed to observe the influence by the uniformity of the HPCG plate. 

To confine the probing area to a small part, we control the stages to move a 

round trip. In this way, the influence of the HPCG plate would be reduced. Then, 

the following measurement procedures are performed in the same way mentioned 

before. Fig.4.13 shows the results of scanning certain area and also lists the 
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results of scanning the HPCG plate randomly. From Fig.4.12, a 1562nm movement 

is measured to 1614nm with 20.435nm uncertainties by the method of probing in 

the same position, and 1554nm with 82.71nm uncertainties by the method of 

scanning diffraction grating randomly. The comparison indicates that confining the 

probing region could be advantageous to obtain more accurate measurement 

results and the standard deviation is not increasing with the increasing distance of 

movement. Therefore, the results support that the accuracy is improved by the way 

of remaining the incident laser beam in a tiny part of the diffraction grating. We 

conclude that the measured results will depend on where the laser beam probes 

into due to the imperfect HPCG plate. In other words, the accuracy depends on the 

uniformity of the HPCG plate. From another point of view, since the position 

reading errors for random scanning the HPCG sample is due to the uniformity 

problem of the sample, this method may be used as a simple optical means for 

monitoring the uniformity of the photonic crystal plate. 

 

Fig.4.13 Comparison between two different methods (a) scanning the HPCG plate 

randomly, (b) scanning it into certain small area.  

For confirming the influence by the uniformity of the diffraction grating, we 

replace the HPCG plate with a blazed grating (BG) provided by the ITRI group, which 

is more uniform but the period is bigger, 83.5µm. To make the BG on a PET film, a 

mechanically grooved structure was first formed on a printing roller, which was made 
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by using a roller cutter with the designed profile, as shown in Fig. 4.14(a). Then the 

UV resin was dispensed on the PET film, imprinted by the roll, and cured with UV 

source, as shown in Fig. 4.14(b) [4-4]. The diffraction pattern of BG is shown in Fig. 

4.15. The clear diffraction pattern can be obtained without the beam focusing into 

the blazed grating. Remind that in the setup of probing the HPCG plate, the beam 

has to be focused  into the HPCG plate, otherwise a visible pattern can’t be 

formed, This should be caused by the less periodicity of the HPCG. When the beam 

is focused, the size of beam becomes smaller. Therefore, the area of being probed 

is smaller, and thus comparatively more periodic to yield clear diffraction patterns.  

                

 

(a) (b) 

Fig. 4.14 To make the BCSG on a PET film, a mechanically grooved structure was 

first formed on a printing roller using a roller cutter with the designed profile as shown 

in (a).Then the UV resin was dispensed on the PET film, imprinted by the roll, and 

cured with UV source as shown in (b). 

The diffraction pattern from probing the blazed grating is shown on Fig.4.15. 

Repeating the same measurement procedure mentioned above, the statistics are 

listed in Fig.4.16. The standard deviation didn’t increase with the distance of 

movement now. For the reason that there is a better periodic surface for the blazed 

grating, this is an expected result. We conclude that better uniformity of the 

diffraction grating can improve the uncertainties of measurements. However, as 

one can see by comparing Fig. 4.12 to Fig. 4.16, the large period of the blazed 

grating limits the scale of the measurable displacement and resolution. Thus, the 
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smaller period of the probing sample is required for performing delicate position 

monitoring. 

 

Fig.4.15 The diffraction pattern of probing the blazed grating 

 

Fig.4.16 The statistics of measurement by probing a blazed diffraction grating, the 

period of which is 85µm  

4.3-4 Discussion   

To observe the stability of our system, we record the phase values without 

moving the diffraction grating. As is shown in Fig.4.17, the phase is not stable. As 

we know, the optical interferometer used in non-isolation always suffers from large 

errors or noise, most from atmospheric influences, background vibration, and 



 46 

thermal drift.  

The final data we need is the comparison before and after moving the stages. 

Therefore, we perform measurements in a very short time period to keep the 

environmental condition being the same. For long term running, decreasing the 

environmental fluctuations will be the most important requirement of the current 

experiment. 

 

(a) 

 

(b) 

Fig.4.17 The disturbance of phase caused by environment (a) in the  x-direction (b) 

in the y-direction 

  Except for the disturbance of environment, the minimum detectable translation 

movement and the position accuracy of the whole system are mainly limited by the 

wavelength of the probe laser beam and the period of the photonic crystal plate. In 

principle, it can be down to nanometric-scale for long range position monitoring under 

the condition that the sample can be highly uniform over large scale.  

  In the view of signal processing, if we could obtain an interference pattern from the 
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higher order beams, the signal of the phase information would increase. In this way, 

the measurement resolution can be better and the minimum detectable measurement 

can be smaller. However, the intensity of the higher-order diffraction beams of the 

HPCG may not be strong enough to yield an interference pattern. In conclusion, 

except for improving the set-up of interferometer, the improvement of diffraction 

grating also can be very advantageous for the measurement system.   
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Chapter 5 

Conclusions and future work 

5.1 Conclusions 

In this thesis, real-time interferometric two-dimensional nanometric-scale position 

monitoring is proposed and demonstrated via a simple two-dimensional 

interferometric setup by probing a two-dimensional hexagonal photonic crystal plate. 

To real-time monitor the two-dimensional translational movement in the 

nanometric-scale, an optical imaging system is built by probing a hexagonal photonic 

crystal glass (HPCG) with a 633-nm He-Ne laser beam. The translation movements in 

both directions are recorded in the phases of the fields of the diffracted six spots. By 

carefully aligning the first-order two spots and the zero-order spot to form a 

chessboard-like interference pattern on the CCD camera, the individual 

nanometric-scale movement information can be determined by the phase-changes of 

the chessboard-like interference pattern before and after moving. In principle it can 

attain the nanometric-scale accuracy of position reading in both orthogonal moving 

directions. Thus the simultaneous two-dimensional nanometric-scale position 

monitoring is achieved in a simple and cost-effective interferometric setup, and the 

minimum detectable translational movement is dependent on the period of the probed 

photonic crystal, and can at least be down to 20nm as demonstrated in the present 

work.  

 

5.2 Future work 

  To attain a two-dimensional nanometric-scale position monitoring system with high 

performance, there may be three key factors for the future improvement of the present 
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proposed measurement system. They are the uniformity of the gratings, the reduction 

of environmental noises and the use of high order diffraction beams. 

The uncertainties of the measurement depend on the uniformity of the diffraction 

grating directly. Therefore, the better uniformity of the diffraction grating period, the 

longer displacement we can measure. To apply our system for longer distance 

measurement, we should use grating samples with as small and uniform period as 

possible.   

Besides, as mentioned in 4.3-4, the unstable temperature, which would cause the 

optical table or components to expand or shrink, disturbs our measurements. 

Therefore, in principle with a temperature monitor one could compensate the error 

signal resulted from the temperature variation.  

  In the view of signal processing, interfering with the higher order beams can obtain 

better phase information. Therefore, the interferometer with the selection of other 

diffraction beams (for example, three first-order beams) can be approached in the 

future. 
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