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ABSTRACT

Title : Simultaneous two-dimensional nanometric-scale position monitoring
by probing a two-dimensional photonic crystal plate

Pages : 1 Page
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In this thesis, simultaneous.two-dimensional nanometric-scale position
monitoring is achieved in‘a simple and cost-effective interferometric setup by
real-time probing a two-dimensional hexagonal photonic crystal glass
substrate. To real-time monitor the two-dimensional translational movement in
nanometric-scale, an optical imaging system is built by probing a hexagonal
photonic crystal glass (HPCG) with a 633-nm He-Ne laser beam. The
translation movements in both directions are recorded in the phases of the
fields of the diffracted six spots in a linear relation. By carefully aligning the two
first-order spots and the zero-order spot to form chessboard-like interference
pattern on the CCD camera, the individual nanometric-scale movement
information can be determined by the phase change of the chessboard-like

interference pattern before and after moving. In principle it can attain the



nanometric-scale accuracy of position reading in both orthogonal moving
directions. The minimum detectable translational movement is dependent on
the period of the probed photonic crystal (1.28um in this study) and can be

down to 20nm as demonstrated in the present work.
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Chapter 1
Introduction

1.1Review of displacement measuring method

Optical measurement techniques have received increased attention in the past
years because in general optical methods have many advantages over other
measuring methods. They are usually non-invasive, capable of observing highly
transient phenomena and can have high spatial and temporal resolution. Precision
measurement of displacement or position has played an important role in
semiconductor technology, nanotechnology, biotechnology, and so on. It is expected
that optical precision measurement techniques for displacement or other physical
quantities will continue to be importantiin many new fields of technologies.

In the past several optical interferometer techniques have been widely used for
precision measurement.of displacement. They.include the heterodyne interferometers
[1-1]-[1-2], homodyne interferometers {1-3]-[1-4], grating interferometers [1-5]-[1-7],
and heterodyne grating interferometers [1-8]. Among them, a high resolution of 0.2
nm has been achieved by a heterodyne grating interferometer system. Besides
interferometers, there are some other methods without analyzing the interference
fringe shift. For example, they can be by monitoring the changes in the intensity of the
light reflected from a variable-air-gap optical waveguide [1-9], or be an astigmatic
detection system with a modified digital-versatile-disk optical head [1-10].

Generally, in a displacement measurement system with a grating, a coherent light
beam is emitted into the grating so that a plurality of diffraction beams are generated.
Parts of the diffraction beams interfere with a reference light beam, so that periodic
interference fringes are formed. Accordingly, when the grating moves, the

displacement of the grating is calculated from the variation of the above-described
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interference fringes. However, when the related technology was initially developed,
the above-described displacement measurement system is simply used to measure
the displacement in one-dimension due to the fabricating technique of the grating.
With the development of related technologies, multi-dimensional displacement
measurement systems can also be provided. For example, in a displacement
measurement system, gratings at a predetermined period respectively serve as
alignment marks for the corresponding displacement in each dimension, so that the
actual displacements are measured and recorded. Further, in a displacement
measurement system, the actual displacements in each dimension are obtained by
detecting the amplitude changes of the interference fringes in each dimension. In
the above-described multi-dimensional displacement measurement system, a plurality
of photo sensors disposed in each dimension are used to read the amplitudes of the
interference fringes for.obtaining the actual displacements in each dimension, which
in practice gives rise to an increase in costs and complexity of the whole displacement
measurement system. Furthermaore, the‘displacement measurement system having

many photo sensors may be difficult to be applied in practice.

1.2 Motivation of the thesis

The recent rapid progress of nanophotonics researches urgently requires the
technique to control the position of objects with nanometric precision. There is an
increasing demand for measuring long-range displacement with nanometric resolution.
The nanometric-scale position monitoring method in the literature mainly combines
the delicate optical methods with mechanical tuning elements. Though the best
achievable resolution can reach nanoscale, the above methods suffer from not only

the limitation of detection length but also the lack of simultaneous two- or even



three-dimensional displacement measurement in a simple setup. Besides, traditional
measurement system for two-dimensional movement is composed of two sets of
one-dimensional measurement system, which means that two sets of analyzing
devices are applied. For example, a planar encoder is proposed for sensing the
two-dimensional displacement of a two-dimensional grating [1-5]. In this system, two
phase-shift detection modules are provided to respectively analyze the x-and y-
measurement.

In our work, a simple way to achieve simultaneous two-dimensional
nanometric-scale position monitoring is proposed and demonstrated, which in
principle can attain the nanometric-scale accuracy of position reading in both
orthogonal moving directions. In the scheme we.combine three beams to yield an
interference pattern. In this way, the measurement can be achieved by only one CCD
camera. Besides, there is 'no complicated machinery=or expensive devices in our

system [1-11]-[1-13].

1.3 Structure of the thesis

The present thesis comprises five chapters. Chapter 1 is an introductory chapter
consisted of an introduction to optical precision measurements and the motivation of
our research. Chapter 2 describes the principles and analysis of our research work.
We explain how the optical phase variation results from the grating displacement. It
contains the theory of Fourier transform method, analysis of phase variation, and the
behavior of interference patterns. Chapter 3 describes our experimental procedures
for one-dimensional displacements, and shows the measurement results. Chapter 4
describes the procedures for two-dimensional position monitoring, and discusses the

measurement results. Finally, chapter 5 gives the conclusions and discusses possible



future works.
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Chapter 2

Principles

The aim of this thesis is to real-time monitor the two-dimensional translational
movement in nanometric-scale. Thus an optical imaging system is built by probing a
hexagonal photonic crystal glass (HPCG). The translation movements in both
directions are recorded in the phases of the fields of the diffracted spots. By carefully
aligning the first-order two spots and the zero-order spot to form chessboard-like
interference pattern, the individual nanometric-scale movement information can be
determined by the phase change of the chessboard-like interference pattern before
and after moving.

In this Chapter, the prineiples of how to determine,the individual nanometric-scale
movement information are described. The first part is-a brief introduction of Fourier
transform for two-dimensional” periodic functions. it is then followed by the
mathematical model to=express. the diffraction pattern formed by a transparent
hexagonal-lattice glass. The third part is to explain how to obtain the displacement
from interference pattern, and the final part is to introduce the transform matrix for

obtaining displacement from phase variation.

2.1 Introduction of Fourier transform for

two-dimensional periodic function
If a two-dimensional function f(x, y) satisfies the Dirichlet conditions, it can be

decomposed into a linear combination of complex exponentials according to

fy =] [F me” ™ agin 2.1)



Here F( ¢ ,n) is given by

Fm = [ f@pre " dadp (2.2)

and is known as the two-dimensional Fourier transform of f( x, y ), with & and n being
the spatial-frequency variables corresponding to the x- and y-directions, respectively.
This function is also called the complex spatial-frequency spectrum of f(x, y), or more
simply, its spectrum. It is the spatial frequency domain representation of f(x, y).

The number of oscillations made by a time-varying sine wave per unit time is
described as the temporal frequency of the function. For a function that varies
sinusoidally with some spatial coordinate, the spatial frequency associated with the
function in that same direction indicates the number of repetitions the function makes

per unit distance [2-1]

2.2 The diffraction pattern-formed by a transparent
hexagonal-lattice glass

2.2-1 Introduction of diffraction

There are two types of diffraction phenomena, known as Fraunhofer diffraction (or
far-field diffraction, appears far from the aperture) and Fresnel diffraction (or near-field
diffraction, appears close to the aperture). The Fraunhofer diffraction occurs when the
source of light and the screen are effectively at infinite distances from the aperture or

obstacle that causes diffraction. Mathematically, Fraunhofer diffraction occurs when :

2
a

F=—<<I (2.3)
LA

where a is slit size, A is wavelength and L is distance from the aperture.

In this experiment, the period of the hexagonal photonic crystal glass (HPCG) plate is



1.28um and the wavelength of the source laser beam is 633nm. Since the outgoing
waves of the HPCG plate are planar on the image plane, it is a Fraunhofer diffraction

scheme.

2.2-2 The diffraction pattern produced by probing a

hexagonal photonic crystal glass

A repetitive array of diffracting elements, either apertures or obstacles, that has the
effects of producing periodic alterations in the phase, amplitude, or both of the
emergent wave is said to be a diffraction grating. In our measurement, the hexagonal
photonic crystal glass is regarded as a diffraction grating [2-3].

The organization of, the 'hexagonal photonic crystal glass is qualitatively
characterized by focusing the He-Ne lasersbeam on the sample. Fig.2.1 displays the
experimental setup for.observing the diffraction pattern. The laser beam was focus
onto a transparent hexagonal photonic erystal glass plate for normal incidence. The
imaging system of the prepared sample is locaied at the focal point of a converging
lens with 125-mm-long focal length. In the diffraction image shown on Fig.2.1, the
center spot is the zero-order diffraction beam, and the surrounding six spots are the
first-order diffraction beams. The first-order diffraction angle can be figured out from
the following expression :

asin@, =mA, m=0, 1, 2. (2.4)
Where a is the period of a HPCG plate, A is the wavelength of the laser beam, and m
is the order of diffraction beam. It is known as the grating equation for normal
incidence. According to Eq.2.4, the first-order diffraction angle 8 can be calculated to
be 27.96°. Also, it can be found experimentally that 6=26.56° from the way of

geometry analysis.



-, e ‘
Photonic crystal |

Fig.2.1 The picture of experimental setup and the diffraction image.

*ete%a%, @ O -
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(@) (b)
Fig.2.2 (a) Sketches of a hexagonal-lattice glass and (b) the corresponding
first-order diffraction pattern.
Fig. 2.2 shows the sketches of the structure of a hexagonal-lattice glass and the

diffraction pattern. According to Fig.2.2 (a), the transmittance of the HPCG plate can

9



be written in general as follows :

_ x . x_1 > 1
t(x,y)=g(x,y)® [comb(d~ )comb(d | )+ Comb(d 2)c0mb(d | 2)] (2.5)

x y x Y

Here t ( x , y ) denotes transmittance of the photonic crystal array, dx and dy are the
periods of the array along the x- and y- directions as shown on Fig.2.2(a), and g( x,Vy)
is the transmittance on one unit cell.

The Fraunhofer far field diffraction pattern of such a plate under normal plane wave
incidence is simply the Fourier transform of the distribution across the aperture (i.e.,
the transmittance function). Therefore, we process the transmittance function by
Fourier transform to obtain the scaled far field distribution. The Fourier transform of

the transmittance function can be expressedsin the following form :
u, (fafy) = Flex, v)}
n m iz(m+n
ulh D =2GU, s [ =)+ e™) (2.6)
m,n x y

Here f, and f, are the spatial frequencies of the image along the x- and y- directions as
shown on Fig.2.2 (b) and'G is the Fouriertransform of g(x, y). It is interesting to note
that the interference term in the right hand side gives rise to the hexagonal distribution

in the Fourier domain for a hexagonal structure.

2.2-3 The phase variation of diffraction beams after

moving diffraction grating

The relation between phase variations and displacements can be directly
understood from the translation property of Fourier transform, which states that a
translation of the input function g(x) changes the phase of the transformed function as

follows :



Fg(x+x)}=G(f)e™™ (2.7)

It shows that the movement information is encoded in the phase term of the Fourier
components in a linear relation.

In two-dimension, when the translation in position is applied, similarly, the phases of
the far field components carry the position movement information. According to Eq.2.7,
if the two-dimensional translation x; and y; are simultaneously applied, the new

diffraction field can be expressed in the following form :

_ i2af,x, 27y
uf'(fx’fy)_uf(f)(;’fy)e le o
=g, (for [ +uy, (fon )0 +uy, (f, £+ (2.8)
Where u, (f..f,)u,(f.. st (f,, f,)arethe original scaled far field distribution of

spot 0, spot 1, spot 2 donated in-Fig.2.2 {(b) and'd,, 6+ and &, are the phase shifts of
spot 0, spot 1 and spot 2 before and .after the translation movement. Though the
diffracted spots remain the same configuration, the movement information is recorded
in the phase terms of the fields. By separately taking.the diffracted spot 1 and spot 2 to
interfere with the zero-order spot 0, the recorded phase information &1 and &, can be

estimated from the Fourier transform of the 2D interference pattern function.

2.3 Obtain the displacement from interference
pattern
2.3-1 The relation between phase variation and

displacement

First, we discuss the condition in one-dimension. When the diffraction grating is

moved a small distance Ay, the interference pattern movement is followed as shown in
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Fig.2.3. Comparing the pattern before and after the grating moving, the phase change
can be calculated. The formula for displacement Ay and phase change A 6 is

expressed as :

27m
A6 :7A)’ (2.9)

where d is the period of the grating and n is the order of diffraction. [2-2]

N

Fig.2.3 The interference: pattern (a) before and (b)-after moving the diffraction
grating
Then, in two-dimension,. from:Eq.2:8, “after . moving the diffraction grating, it
induceses a phase variation in-diffraction” beams and the interference pattern
produced by these diffraction beams will shift. Consider a spatially varying function
presenting the interference pattern shown in Fig.2.4 (a) and (c). We assume that the
function has a constant background with sinusoidal variation. If we now designate the
function to be h(x,y) and provides a phase shift 61 and 62 respectively in the x- and y-
directions, we may write
h(x,y) = (A+ Bcos[27L, (x + SD])(C + D cos[227, (y + 52)]) (2.10)
where &, and no are the spatial frequencies in the x- and y- directions. The profile of
h(x, y) in x-direction is shown in Fig.2.4 (e). Notice that h(x, y) can be put in the form
h(x,y) = f(x)g(y) (2.11)

where



f(x)=A+ Bcos[275,(x+ S1)] (2.12)
g(y) =C+ Dcos[271,(y + 62)] (2.13)
And we see that it is separable in x and y. The spatial-frequency spectrum of h(x, y) is

given by

HC )= | [ha.Bre ™" daip

= [ f@e " da[ g(Be™dp
= F(5)G(1) (2.14)

Here F(§) and G(n) are one-dimensional transform of f(x) and g(y), respectively, and it

is apparent that the transform of.separable function is itself separable. Thus, with

E(¢) =[A6(4) +%55(§0)]€j2”g51 (2.15)
G() =[C§<n>+2%55<;’—0)]eﬂ””52 216
We obtain
H(S,m)

j27co1 B 271col
= AS(L,m)e’*™ +5[5(§—{0,77)+5(§+§0,77)]e’ 5

| . 217
+C5(§,77)€’2m752+§[5(§,77—770)+5(§,77+,70)]€12m62 (217)

And we see that the two-dimensional spectrum of h(x, y) consists of a delta function at
the origin, which indicates the constant background, and two others located at {=%¢,
and n=0, as shown in Fig.2.4(b). The latter two indicate that the function varies
sinusoiadlly in the x-direction, with a frequency of &,. Similarly, two delta functions are

located at &=0 and n=zngp as shown in Fig.2.4 (d). This result is an idealization



because of our assumptions on the profile of the function and the fact that we have

neglected the finite size of the field [2-1].

h i )

N

=

h{xy) L

Fig. 2.4 The schema of spatially varying function and its spectrum (a)The function

spatially varying in the x-direction(b) The spectrum of sinusoidal function which

varies in the x-direction(c) The function spatially varying in the y-direction(d) The
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spectrum of sinusoidal function which varies in the y-direction(e) ldealized
surface-height variation of field
The movement of the diffraction grating will cause the phase variation of diffraction
beams and then the interference pattern produced by these diffraction beams will shift.
From Eqg.2.17, the shift in the interference pattern can be measured from the spectrum

of the interference pattern.

2.3-2 Properties of the spectrum

The spectrum resulted from processing a sinusoidal function by Fourier transform is
presented above. Here, we introduce some properties of the spectrum.

In Fig.2.4 (a), if the period of the sinusoidal function is increased, the separation &g
decreases. Considering.a perfectly. sinusoidal function without any constant term
added, it has a single frequency component. In other words, the spectrum is a pair of

Dirac delta functions located symmetrically with respect to the origin.
The phase ¢ of a real cosinusoidal function _cos(w, x + ¢) is equal to the complex

phase of its spectral component exp[I(@,x+ ¢)], which in turn is equal to the complex
phase of Fourier transform [d(w—w,)exp(ig)] of the cosine function at the frequency
w= Wws. An important and useful conclusion is that the phase of the real Fourier
components of a real function is equal to the complex phase of Fourier transform at
the frequency of that component [2-2].

Therefore, the phases 61 and &, can be identified by taking the arg of the processed
data from the complex Fourier component of the interference pattern. In this way, the
phase changes of the interference pattern can be inferred from monitoring the phase
difference &1 and &,. Once the phase &1 and &, are determined, the movement x; and

y1 can be decided.



2.4 The transform matrix for obtaining displacement

from phase variation

According to Eq.2.9, the relation between movements and phase changes is linear.

Therefore, through a two-by-two transform matrix as follows

EIFEARI
AG, M, M, | Ay
The movements in the x- and y- directions can be determined from the two phase

variations. The transform matrix also can be expressed in another way shown in the

following form

{A&l = M, Ax#+ M, Ay (2.19)

A, =M jiAx + M, Ay
The two functions represent two planes respectively. In.our wok, we measure several
sets of (Ax, Ay, AB1) and (Ax, Ay, ABy).to.fit the planes. Then, the transform matrix can

be found.
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Chapter 3

Experiment of one-dimensional measurement

To test the nanometric-scale movement detection, the one dimensional position
reading is executed first and the experimental results are presented in this Chapter.
The sample is mounted on a translation stage comprised of a linear motor stage and a
piezoelectric translator (PZT) stage with sub-nm position resolution. The accurate
movement of one period is achieved by shifting the translation stage to an
approximate distance and then iteratively fine-tuning the PZT stage to match the
phase distribution of the interference pattern on the CCD camera. The iteration
process terminates when the phase distribution obtained in this step matches that of
last step, and the accurate amount ©f movement . is recorded by the Michelson

interferometer.

3.1 Experimental setup

3.1-1 Fabrication of‘a transparent hexagonal-lattice glass

The hexagonal photonic crystal glass plates used in our experiment are provided
by the research group at NCU. They used a closed packing monodisperse
polystyrene sphere as a mask, and by different dry etching recipes, the patterns can
be transferred into the substrate surface. After etching, a transparent hexagonal
photonic crystal glass (HPCG) sample substrate with a large patterned surface was
obtained. The sample can be highly uniform over inch square. Since no
photolithography process and no vacuum chamber are required, this method is
inexpensive and rapid. The period (lattice constant) of the HPCG is determined by the

diameter of microspheres, which ranges from 200 nm-700 nm to 1-2 micrometer. The



SEM picture of the surface of a HPCG plate is shown on Fig.3.1. The period is

approximately 1.28um.

L iy (I antD
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(b)
Fig.3.1 The SEM picture of the surface of a HPCG plate. (a) Overview(b) The

period of HPCG is approximately 1.28 ym.
In our experiment, the transparent hexagonal-lattice glass is seen as a
two-dimensional diffraction grating for measurements. Since the detectable

displacement resolution is mainly determined by the grating period, the smaller the
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grating period, the higher the resolution of the detectable displacement resolution.
Besides, the smaller period of the diffraction grating will produce a bigger diffraction
angle, advantageous for us to capture the diffraction beams in shorter distance. As a

result of that, the experimental setup can be reduced and simplified.

3.1-2 Experimental setup

The one dimensional position measurement is executed first. The real-time
interferometric position monitoring method is based on our previous work in a 1D
grating case [3-1]-[3-5]. The whole position monitoring system of one-dimension is
illustrated in Fig.3.2. Fig.3.3 shows?the actual picture. A single-polarization 633-nm
He-Ne laser beam is focused onto the photonic crystal plate with a spherical lens of
125-mm focal length. A 440x480 monochrome:.CCD.camera with a pixel width of
7.15-um is utilized to.record the interference pattern produced by spot 0 (the
zero-order beam) and spot 1 (the'firsi-order.beam). The sample, a HPCG plate, is
mounted on a translation stage comprised of a linear motor stage and a piezoelectric
translator (PZT) stage with sub-nm position, resolution. By PZT, the sample can be
controlled to make one-dimensional movement in the vertical direction of incident
beam. And, the accurate amount of movement is recorded by the Michelson

interferometer.
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Fig.3.3 The actual system of the 1-D displacement measurement

3.1-3 Observing variation by rotating diffraction grating

When rotating the HPCG plate, in principle, the rotation of the six-spot diffracted
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image follows. However, the phenomena do not happen in every position of HPCG
plate. The diffraction pattern of HPCG plate is not stably produced every time.
When the HPCG plate rotates with an increasing angle, approximately to 10 degree,
the diffracted image becomes a twelve-spot or other kind of symmetrical pattern. It
indicates that the structure of the sample is periodic, but the angle of the axis of the
photonic crystal for each area might be different. Therefore, it produces different
diffraction patterns and these patterns appear simultaneously. As shown in Fig.3.1
(a), we can find that the arrangement of photonic crystal is periodic in micro square
and there are some defects. From another point of view, our system may also
provide an optical method for measuring the uniformity of the periodic-patterning
samples. Besides, the six-spot diffraction image can exist only when the HPCG

plate is in the focal plane of Lens 1.

3.2 Measurement procedures and results

One axial slice of the intensity distribution of-the:interference fringe is recorded on
the CCD camera to illustrate the imaging ‘processing algorithm. The visibility of the
interference pattern can be optimized by adjusting the polarizer and half-wave plate
located on the path of the zero-order beam. The intensity of the first-order diffracted
probe beam A is denoted as Ia, and the intensity of the zero-order beam B is assumed
to be Ig. The intensity distribution of the interference fringe on the CCD along the
x-axis, which is perpendicular to the bisector of the two interfering beams, is given by

Ly =1,+15+21,14 -cos[kx-2sin(&)+§]
2 (3.1)
Where k=2n/A is the wave vector, 6, is the interfering angle and d is the phase

difference between the two interfering beams. The phase difference & contains two
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contributions:

0=0

caused by grating movement

+0

path difference (3.2)
where Scaused by grating movement 1S the phase change of the diffracted probe beam A
caused by the movement of the sample, and dpat diterence IS the phase change caused
by the optical path difference between the zero-order and the first-order beams. Since
dpath difference 1S constant during the scan, the grating phase change (caused by the
displacement of the grating) can be inferred from monitoring the phase difference é.
The interference pattern iy is processed by the Fourier transform to obtain the
corresponding spatial frequency spectrum. The spectrum is then filtered to keep only
the positive frequency part and.is inverse-Fourier-transformed back to the original
domain. The phase é can then be identified by taking the arg of the processed data.
Figure 3.4 shows the typically resulied periodic pattern along the x-axis captured by
the CCD camera (grey solid line), the pattern after the filtering-taking-real-part
procedure (grey dotted line) and.the_obtained phase distribution by taking the arg of

the filtered data (bold solid line).
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Fig.3.4 Typical 1D interference pattern captured by CCD, the pattern after

processing and the calculated phase distribution.
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In practice, the whole algorithm is implemented with the LabVIEW software for
automatically controlling the whole measuring process. The accurate movement of
one period is achieved by shifting the translation stage to an approximate distance
and then iteratively fine-tuning the PZT stage to match the phase distribution of the
interference pattern on the CCD camera. The iteration process terminates when the
phase distribution obtained in this step matches that of last step. The resulted
accurate amount of movement is recorded by the Michelson interferometer.

The sample period is approximately 1357 nm from the measurement. The period
should keep the same value when the sample is rotated 60 degree due to geometric

symmetry. Fig.3.5 indicates reasonable data trend as expected.
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Fig.3.5 Number of period versus translational distance for HPCG crystal axis

placed at 0° and 60°.

We further investigate the position monitoring accuracy by introducing different
phase shifts within one period. Fig.3.6 lists the statistical data for average
displacement and standard deviation of total 50 measurements per phase shift. In our
preliminary experimental setup, the position monitoring accuracy of the whole system
is better than 1.8nm, which means the accuracy of the position-seeking feedback

control loop is set to be 0.5 degree of the array period. From Fig.3.6, an 8 nm

24



movement (2 degree phase shift with respect to one period of the HPCG sample) can

be easily detectable with 0.94nm uncertainties.

Phase shift (degree)
5 60 180 360

[

Average displacement

8.12 19.06 | 439.67 | 664.51 | 1357.51
(nm)

Standard deviation

0.94 1.65 5.70 12.63 18.03
(nm)

Fig.3.6. One-dimensional position monitoring statistics according to the amount of

phase shifts with respect to one period
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Chapter 4

Experiment of two-dimensional measurement

The aim of this work is to achieve simultaneous two-dimensional nanometric-scale
position monitoring in a simple and cost-effective interferometric setup. We will
present our experimental results of two-dimensional nanometric position
measurement in this Chapter. The first part of this Chapter is the experimental setup,
and the second part is the description of the monitoring program, and the final part is

the demonstration of the measurements and results.

4.1 Experimental setup

4.1-1 Components of the interferometer

Several components.required to build our interferometer system are described
below:

1. Light source

In general, lasers are in demand as a light source in order to make interference. For
continuous measurements, gas lasers are suitable because of their long coherent
length [4-1].

In our experiment, the Helium neon laser is used. The coherent length of a Helium
neon lasers with a low power (2-50 m W , A=632.8nm) is 15-22cm. The coherence
length, an important property in interferometry, is the optical path difference between
the two interfering beams for which the fringe visibility falls to zero [4-2]. It is an
important condition for arranging the optical components of three beams to yield a
visible interference fringe.

2. Diffraction grating
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In our measurement, the hexagonal photonic crystal glass is regarded as a
two-dimensional diffraction grating.
3. Beam expander

A beam expander consists of an input objective, a lens and a pinhole shown on
Fig.4.1. The pinhole is placed at the focus of the objective. This spatial filter provides a
simple way to block out random fluctuations from the intensity profile of the laser
beam [4-2]. For the purpose to obtain a suitable beam size, the beam expander is

arranged in our system.

Input objective lens

inhol
dl_' pinhole ’_\_1_>

— | .

Figi4.1 Beam expander

4. Mirrors, Lenses

Mirrors are required to reflect the diffraction beams to the same plane for
interference. In order to avoid light power losses through reflection and absorption
and to enhance mechanical stability, generally, as few mirrors as possible should be
used [4-1].
5. Polarizer

A polarizer is a device that converts an unpolarized or mixed-polarization beam of
electromagnetic waves into a beam with a single polarization state. These devices
may vary in effectiveness and some of them may be called leaky or partial polarizers
[4-3]. In our experiment, polarizers are inserted in order to adjust the intensity of

beams.
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6. Half-wave plate

A wave plate is an optical device that alters the polarization state of a light wave
traveling through it. A half-wave plate, a common type of wave plate, retards one
polarization by half a wavelength, or 180 degrees. In our experiment, half-wave plates

are inserted in order to rotate the polarization.

4.1-2 Interferometer for measuring displacement in

two-dimension

Fig.4.2 displays the experimental setup and Fig.4.3 shows the actual experimental
setup for two-dimensional measurement. To show the feasibility of our system, the
displacement provided by, two linear stages was measured. The HPCG plate regarded
as a diffraction grating is. mounted on these two crossed linear stages. The movement
accuracy of both stages is 4nm. By controlling stages, HPCG can make translational
movement in two-dimension. A single-polarization 633<nm laser beam is focus on the
HPCG plate with a spherical lens of 125-mm focal length. For measuring
two-dimensional translational movements, we choose three beams, including one
zero-order diffraction beam and two first-order diffraction beams, to produce a
chessboard-like interference pattern. Therefore, there are three optical paths from

HPCG to CCD camera. The actual optical diffraction pattern is shown on Fig.4.4.
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Fig.4.3 The actual experimental setup for two-dimensional measurement



Fig.4.4 The actual optical diffraction image of diffraction pattern in two-dimensional
measurement

For getting an interference pattern as clear as possible, some characteristics have
to be noticed. First, to obtéﬁn good visibility fringes, the amplitudes of the two
interfering beams must' be nearly eg'ualr.‘ However, Wthere is intrinsic difference on

intensity between the zero-order diffraction béam and the first-order diffraction beam.

For this reason, the polérizer isused to modulate the intensity of beams. Nevertheless,
a polarizer not only will Jecrease the intehs;t”yL, but a!so will change the polarization. In
order to get effective interference phenomena, the polarization of three beams must
be on the same plane. For this purpose, a half-wave plate is placed in order to rotate
the polarization. In use of these two optical devices (polarizers and half-wave plates),
the analyzable interference is easily obtained.

Thinking about the interference pattern of these three beams to be monitored by a
CCD camera, we have to consider about the beam size. The CCD camera we used is
a 640x480 monochrome CCD camera with a pixel width of 9.2-um.  When the size of
the beam is 3mm, pixels of CCD can be effectively used, and all these data can be

effectively analyzed. The beam size of the 633nm He-Ne laser beam is approximately

1 mm, and the beam width after focusing onto the HPCG sample is calculated to be
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24pm. To obtain a 3mm beam size, it is necessary to expand the beam. In Fig4.2, the
focal length of the first lens (lens 1) is 125-mm, and the focal length of the others
(lens 2,3,4) is 400- mm. In this arrangement, the size of the beam can be expanded
to approximately be triple, 3.2 mm, right suitable for us to monitor the interference
pattern.

Because one of the key factors for displacement resolutions of the whole system is
determined by the resolution of the CCD camera, the larger fringe period produces the
improved displacement resolution. The interference angle of two beams, which
producing interference, must be very small in order to get large fringe period on the
CCD camera. We simply use 50% mirrors to combine them. The zero-order beam and
one of the first-order beams:Can propagate in nearly the same optical path between
the 50% mirror and the CCD camera by carefully aligning.

Adjusting the incidence angle on the CCD camera can change the distribution of the
interference pattern. For the ease to' observe, we modulate respectively a horizontal
periodic interference pattern.and a:perpendicular.periodic interference pattern shown
on Fig.4.5 (b) and (c). These‘two interference patterns are formed by interfering the
zero-order beam with the first-order beam. Then, the net pattern becomes a
chessboard-like pattern shown on Fig.4.5 (a). The optical phase variation resulting
from the movement of grating can be measured by this optical interferometer. Besides,
there is another undesired oblique periodic interference pattern formed by the two

first-order beams as shown on Fig.4.5 (d).
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Fig.4.5 The actual interference: pattern~caught by the CCD camera (a) the
measured chessboard-like interference pattern(b)formed by the zero-order beam
and the first-order beam(c) formed by the zero-order beam and the first-order

beam(d) formed by two first-order beams

4.2 Monitoring program

To analyze the interference pattern, the system is implemented with the LabVIEW
software for obtaining the phase information. First, we transform the picture captured
by the CCD camera to an array, shown on Fig.4.5, which we can analyze by the
LabVIEW software.

FFT is a general method proposed for the analysis of the fringe pattern. The flow
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chart of the FFT algorithm is shown in Fig.4.6 [4-5]-[4-6]. First, the interference pattern
is processed by the FFT to obtain the corresponding spatial frequency spectrum. After
FFT, we need to separate the picture array to four parts from the origin and rearrange
these four parts to get the pattern with a peak in the central area shown on Fig4.7.
This arrangement is for avoiding the problem of fast variation term.

From Fig.4.7, we can find one peak (the highest one) at the origin presenting the
DC term. It indicates the average background. The others surrounding the origin
present the AC terms. And, in the &-axis direction, the peak beside the central (peak 2)
comes from the periodic function in the x-axis direction as mentioned in 2.3-1.
Similarly, in the n-axis direction, the peak beside the central (peak 3) comes from the
periodic function in the y-axis direction. The separation between peak 1 and peak 2 or
peak 3 depends on the period of interference pattern in the x- or y- directions. These
peaks bring the phase.information of interference patiern. When the HPCG moves,
the phases of the zere-order beam do not.change.sHowever, the phases of the
first-order beams will change. ‘Therefore; we can find displacements of the HPCG
from the phase difference between the zero-order and the first-order components
before and after the HPCG moving. The required phases can be calculated from the

peak points in the complex spatial-frequency spectrum.
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Fig.4.6 The flow chart for FFT algorithm
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Fig.4.7 The complex spatial-frequency spectrum_of the interference pattern

For obtaining the phase changes from the complex spatial-frequency spectrum,
filtering techniques can be used. The .spectrum is then filtered to keep only the
positive frequency part.-We choose two -points from the Fourier spectrum, including
the point at origin (peak 1)“and:-the point beside the origin one with the highest peak
(peak 2 or peak 3), to be processed by the inverse Fourier transform to back to the
original domain. Then, we can obtain a distinguished 1D interference pattern shown
on Fig4.8. It is the result after filtering out all the undesired noises and signals. From
this pattern, we can monitor the real-time phase changes. The point we choose from
the ¢-axis direction and the n-axis direction can respectively produce the x- and y-
direction interference patterns. Comparing the difference of the filtered interference
fringes before and after moving, the phase changes can be decided. Besides, from

the filtered interference pattern, the measurement resolution is approximately

20nm.
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Fig.4.8 The filtered interference pattern (a) in the x-direction (b) in the y-direction.



4.3 Measurements and results

4.3-1 Determining the transform matrix

To find the relation between the phase changes and displacements, we
preliminarily move one stage to make the diffraction grating experience
one-dimensional movement. We record the phases before and after moving the
stages. To avoid confusion, we restrict all the phase to be between 1 and —11. The
plots of the phase changes A64 and A6, as a function of Ax with Ay=0 is shown in
Fig4.9 (a, b). Fig.4.9 (c, d) show the plots of the phase changes A6, and A6, as a
function of Ay with Ax=0. As is shown in Fig.4.9, the phase changes are linearly
periodic with respect to the<position displacement. We thus confirm that the
variation of the phase changes i as«expected when performing different
movements. Besides, it should be noticed.that it is necessary to plus or subtract
2nt when the displacement exceeds one period. After this process, one obtains
Fig.4.10. From Fig.4.10, one displacement value will be corresponding to one

phase change value.
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Fig.4.9 The original plot of phase-changes versus displacement (a) Variation of x

displacement with x phase change(b) Variation of x displacement with y phase
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displacement with y phase change
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Fig.4.10 The chart of phase-changes versus displacement after correcting the
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change(d) Variation of y displacement with y.phase change

From Eq.2.19, the data of (Ax, Ay, AB1) can contribute to a plane. From the fitted
plane of those data, wescan find the elements My and M, of the transform matrix.
Similarly, the elements M»iand-M, can be obtained from the plane equation of (Ax,
Ay, AB2).Then, we find the whole transform matrix shown in Eq.4.2. For the ease to
figure out displacements from phase- changes, the matrix is processed by the
inverse transform to obtain the final formula between displacements and

phase-changes as follows :

{Ax}_'Mu MDT[AQI}
Ay _le M, A6,
[ 7126 22781 [ A4,
|—221.67 —4747] | A6,
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4.3-2 Measurement of two-dimensional movement

To test the accuracy of the transform matrix that we figure out from
one-dimensional measurements described on 4.3-1, several sets of
two-dimensional measurements are performed. The average phase-changes for
different two-dimensional movements are substituted into Eq.4.2 to obtain the
measured displacements. The statistics presented in Fig.4.11 shows that the
difference between movements of stages (red points) and measured results (black
points). Detailed data, including standard deviation, are listed in Fig.4.12. From
Fig.4.12, we can find that the accuracy deteriorates with increasing measured
length. The standard deviation. shown'insFig.4.12 grows, when the distance of
movement increases. The“results also imply thetbest accuracy of our system for
simultaneously two-dimensional- movementiis approximately 20nm.

(nm) displacement

1500 | ®

L . Stage displacement (nm)
1000 - . Meazured dizplacement (nm)

500 |

-2
e
o
0

Fig.4.11 The results of two-dimensional measurements by probing the HPCG
plate. Red one presents stage displacements, and black one presents measured

displacements.
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rating Measured Standard
Displacement (nm) Displacement (nm) Deviation (nm}

28 19 19

44 35 19

178 173 27

268 285 37

576 527 47

721 699 80

594 840 81
1562 1554 52

Fig.4.12 Statistics for sets of two-dimensional movements

4.3-3 Analysis

In the measurement; when'the HPCG sample moves, the laser beam will scan
an area of the HPCG plate instead of'the same position. Suppose that our system
has the potential tos« perform+ two-dimensional” long-distance displacement
measurement, the laser beam will be incident-onwery different points of the HPCG
plate for each measurement. The laser beam would scan the HPCG randomly and
might scan over the whole plate. However, it is possible that some uncertainties
come from the distortion in the periodic structure of the HPCG plate. From the SEM
picture of the HPCG shown in Fig.3.1 (a), we can find that the structure is not so
perfectly periodic in the used sample. Therefore, the following measuring method is
designed to observe the influence by the uniformity of the HPCG plate.

To confine the probing area to a small part, we control the stages to move a
round trip. In this way, the influence of the HPCG plate would be reduced. Then,
the following measurement procedures are performed in the same way mentioned

before. Fig.4.13 shows the results of scanning certain area and also lists the
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results of scanning the HPCG plate randomly. From Fig.4.12, a 1562nm movement
is measured to 1614nm with 20.435nm uncertainties by the method of probing in
the same position, and 1554nm with 82.71nm uncertainties by the method of
scanning diffraction grating randomly. The comparison indicates that confining the
probing region could be advantageous to obtain more accurate measurement
results and the standard deviation is not increasing with the increasing distance of
movement. Therefore, the results support that the accuracy is improved by the way
of remaining the incident laser beam in a tiny part of the diffraction grating. We
conclude that the measured results will depend on where the laser beam probes
into due to the imperfect HPCG plate. In other words, the accuracy depends on the
uniformity of the HPCG plate. From another point of view, since the position
reading errors for random scanning.the HPCG sample is due to the uniformity
problem of the sample, this method may be used'as a simple optical means for

monitoring the uniformity of the photonic crystal plate:

Scan randomly Scan certain area
Displacement measuring result | Standard measuring result | Standard
(nm) (nm) deviation (nm) deviation
{nm) (nm)
178 173 27 173 14
268 285 a7 278 17
1662 1554 82 1614 20

Fig.4.13 Comparison between two different methods (a) scanning the HPCG plate
randomly, (b) scanning it into certain small area.
For confirming the influence by the uniformity of the diffraction grating, we
replace the HPCG plate with a blazed grating (BG) provided by the ITRI group, which
is more uniform but the period is bigger, 83.5um. To make the BG on a PET film, a

mechanically grooved structure was first formed on a printing roller, which was made
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by using a roller cutter with the designed profile, as shown in Fig. 4.14(a). Then the
UV resin was dispensed on the PET film, imprinted by the roll, and cured with UV
source, as shown in Fig. 4.14(b) [4-4]. The diffraction pattern of BG is shown in Fig.
4.15. The clear diffraction pattern can be obtained without the beam focusing into
the blazed grating. Remind that in the setup of probing the HPCG plate, the beam
has to be focused into the HPCG plate, otherwise a visible pattern can’t be
formed, This should be caused by the less periodicity of the HPCG. When the beam
is focused, the size of beam becomes smaller. Therefore, the area of being probed

is smaller, and thus comparatively more periodic to yield clear diffraction patterns.

Roller cutter __ UV resin
0 __ Roller
0 o
PET {
Roller 0 I
Enter ﬁ Out

UV optical source

(a) (b)
Fig. 4.14 To make the BCSG on.a 'PET film;"a mechanically grooved structure was
first formed on a printing roller using a roller-cutter with the designed profile as shown
in (a).Then the UV resin was dispensed on the PET film, imprinted by the roll, and
cured with UV source as shown in (b).

The diffraction pattern from probing the blazed grating is shown on Fig.4.15.
Repeating the same measurement procedure mentioned above, the statistics are
listed in Fig.4.16. The standard deviation didn’t increase with the distance of
movement now. For the reason that there is a better periodic surface for the blazed
grating, this is an expected result. We conclude that better uniformity of the
diffraction grating can improve the uncertainties of measurements. However, as
one can see by comparing Fig. 4.12 to Fig. 4.16, the large period of the blazed

grating limits the scale of the measurable displacement and resolution. Thus, the
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smaller period of the probing sample is required for performing delicate position

monitoring.

Fig.4.15 The diffraction pattern of probing the blazed grating

diSGprIgE:r;?'nentl[n _Measured Standard dewiation

m) displacement{nm) (nrm)
1000 1710 1313
4000 4181 2404
gO00 B110 2268
go0o BO70 28687
10000 11280 2408
14000 13515 2634
16000 17004 2864
20000 19554 2811
26000 29560 2273
28000 28180 2445
20000 J066E 1873

Fig.4.16 The statistics of measurement by probing a blazed diffraction grating, the

period of which is 85um

4.3-4 Discussion

To observe the stability of our system, we record the phase values without
moving the diffraction grating. As is shown in Fig.4.17, the phase is not stable. As
we know, the optical interferometer used in non-isolation always suffers from large

errors or noise, most from atmospheric influences, background vibration, and
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thermal drift.

The final data we need is the comparison before and after moving the stages.

Therefore, we perform measurements in a very short time period to keep the

environmental condition being the same. For long term running, decreasing the

environmental fluctuations will be the most important requirement of the current

experiment.
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Fig.4.17 The disturbance of phase caused by environment (a) in the x-direction (b)

in the y-direction

Except for the disturbance of environment, the minimum detectable translation

movement and the position accuracy of the whole system are mainly limited by the

wavelength of the probe laser beam and the period of the photonic crystal plate. In

principle, it can be down to nanometric-scale for long range position monitoring under

the condition that the sample can be highly uniform over large scale.

In the view of signal processing, if we could obtain an interference pattern from the
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higher order beams, the signal of the phase information would increase. In this way,
the measurement resolution can be better and the minimum detectable measurement
can be smaller. However, the intensity of the higher-order diffraction beams of the
HPCG may not be strong enough to yield an interference pattern. In conclusion,
except for improving the set-up of interferometer, the improvement of diffraction

grating also can be very advantageous for the measurement system.
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Chapter 5
Conclusions and future work

5.1 Conclusions

In this thesis, real-time interferometric two-dimensional nanometric-scale position
monitoring is proposed and demonstrated via a simple two-dimensional
interferometric setup by probing a two-dimensional hexagonal photonic crystal plate.
To real-time monitor the two-dimensional translational movement in the
nanometric-scale, an optical imaging system is built by probing a hexagonal photonic
crystal glass (HPCG) with a 633-nm He-Ne laser beam. The translation movements in
both directions are recorded:in the phases of the fields of the diffracted six spots. By
carefully aligning the first-order twao spots and' the zero-order spot to form a
chessboard-like interference pattern on+ the” CCGD camera, the individual
nanometric-scale movement information can be determined by the phase-changes of
the chessboard-like interference’ pattern-before and after moving. In principle it can
attain the nanometric-scale accuracy. of positionreading in both orthogonal moving
directions. Thus the simultaneous two-dimensional nanometric-scale position
monitoring is achieved in a simple and cost-effective interferometric setup, and the
minimum detectable translational movement is dependent on the period of the probed
photonic crystal, and can at least be down to 20nm as demonstrated in the present

work.

5.2 Future work

To attain a two-dimensional nanometric-scale position monitoring system with high

performance, there may be three key factors for the future improvement of the present
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proposed measurement system. They are the uniformity of the gratings, the reduction
of environmental noises and the use of high order diffraction beams.

The uncertainties of the measurement depend on the uniformity of the diffraction
grating directly. Therefore, the better uniformity of the diffraction grating period, the
longer displacement we can measure. To apply our system for longer distance
measurement, we should use grating samples with as small and uniform period as
possible.

Besides, as mentioned in 4.3-4, the unstable temperature, which would cause the
optical table or components to expand or shrink, disturbs our measurements.
Therefore, in principle with a temperature monitor one could compensate the error
signal resulted from the temperature variation.

In the view of signal processing, interfering with the higher order beams can obtain
better phase information. Therefore, the interferometer with the selection of other
diffraction beams (for example, three first-order beams) can be approached in the

future.
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