國立交通大學

應用化學所

碩士論文

碳六十與炔及三級膦之反應與化學性質探討

Reactivity and Chemical Property Studies of C₆₀, Alkynes and Phosphines

5

研究生:陳聖元

指導教授:莊士卿 博士

中華民國九十八年十二月

摘要	I
ABSTRACT	II
試謝	
表目録	v
圖目錄	VI
縮寫對照表	x
1 緒論	1
1.1 碳六十的發現	1
 3.2 碳六十的性質 	2
1.2.1 碳六十結構	
1.2.2 碳六十物理性質與光譜	
1.2.2.1 碳六十之溶解度	
1.2.2.2 碳六十之紫外可見光	4
1.2.2.3 紅外線光譜	5
1.2.2.4 循環伏安之測量	
1.3 碳六十相關反應	
1.3.1 環原反應	
1.3.2 親核加成	7
1.3.3 環化加成 1.996	
1.3.4 氦化反應	
1.3.5 自由基加成	
 1.4 碳六十於太陽能電池上的應用	
1.4.1 太陽能電池原理簡介:	
1.4.2 太陽能電池種類:	
1.4.3 基本參數介紹:	21
1.5 碳六十於醫療上應用	
1.5.1 酵素抑制	
1.5.2 Antiviral Activity	23
, 1.5.3 DNA 光裂解	
1.5.4 Diagnostic Applications	
1.5.5 Antimicrobial Activity	
1.5.6 Free Radical Scavenger	
7 以二级腾及目右协会不其之处叛制供二国理求工国理之洪上十份止枷	76
- 《一版碑仪万万征电:金~原放衣用一圆衣或上圆衣~缀八丨竹王钧	

	2.1	研究動機	26
	2.2	含 DMAD 之反應	29
	2.2	2.2.1 DMAD 與 HMPT、碳六十之反應	
	2.2	2.2.2 三圓環於酸性條件下擴環為五圓環之反應	
	2.3	含 DIMER 之反應	35
	2.	2.3.1 Dimer 與 HMPT、碳六十之反應	35
	2.	2.3.2 enyne 7 與 PPh ₃ 、碳六十之反應	
	2.4	HMPT 與碳六十之反應	40
	2.5	紫外光譜與循環伏安數據分析	43
	2.6	結論	47
3	對	對稱共軛多炔奥三級膦級碳六十之反應探討	48
	3 1	研究動爆	48
	2.2	^{**} 「九刧1版 合 DIMETLIVI HEVA-2 A-DIVAIEDIOATE 之反應	40
	J.Z	2.2.1 dimethyl hava 2.4 divingedicate @ electron denoting phocohing (HMDT) Tricyclohavy	Inhochinal、世上
	 بد	3.2.1 unnetnyi nexu-2,4-uiyileuloute 典 electron uonuting phosphine (HMPT・Incyclonexy)	phosphine)、碳六7
	~	之及應 49	70
	3	5.2.5 almethyl nexa-2,4-alynealoate 與P(OEL) ₃ (thethyl phosphile)、破って之及應	
	3.3	尔外无谱與循環伏安數據分析	80
	3.4		84
4	不	不對稱共軛多炔與三級膦級碳六十之反應探討	86
	4.1	研究動機	86
	4.2	含 Methyl 5-phenylpenta-2,4-diynoate 之反應	
	4.	1.2.1 methyl 5-phenylpenta-2,4-diynoate 與 PPh3、碳六十之反應	
	4.3	含 METHYL 7-PHENYLHEPTA-2,4,6-TRIYNOATE (20)之反應	
	4.	1.3.1 methyl 7-phenylhepta-2,4,6-triynoate 與 PPh₃、碳六十之反應	
	4.4	含 METHYL 9-PHENYLNONA-2,4,6,8-TETRAYNOATE (21) 之反應	
	4.4	1.4.1 methyl 9-phenylnona-2,4,6,8-tetraynoate 與 PPh3、碳六十之反應	
	4.5	紫外光譜與循環伏安數據分析	
	4.6	結論	
A	ند ريد	ær.	
豕 :	亏又剧	歉	

摘要

利用三級膦 (Phosphine) 和α位具有脂基之對稱炔類與碳六十反應,產生含有 葉立德的三圓環及五圓環結構之碳六十衍生物,並可觀察到 E,Z 異構物。

本篇論文則利用對稱與不對稱的雙炔類 (或三炔及四炔) 與三級膦及碳六十 進行同樣的反應,發現結果與過去文獻不同,由於雙炔 (或三炔及四炔) 在反應時 因共振的緣故,使碳六十上的三圓環結構在脂基的δ位,藉由核磁共振光譜、質 譜以及紅外線吸收光譜,更觀察到有兩個環氧基產生,並且分布於三圓環的兩側, 且葉立德在脂基的α位,但無法觀察到E,Z 異構物的現象。

ABSTRACT

Using teriary phosphine and α -alkynyl esters to react with C₆₀ to yield [60]fullerene derivatives incorporating cyclopropane and cyclopentane rings; we can observed E,Z isomers of these compounds.

In this thesis, we use symmetrical and unsymmetrical diynes (triynes or tetraynes) and teriary phosphines react with C_{60} via the same equation mentioned in last paragraph. Owing to the resonance of diynes (triynes or tetraynes) while reactions are proceeding, we get [60]fullerene derivatives whose cyclopropane rings are located on δ site of ester groups. Fuerthermore, we observed there are two epoxides which are divided from cyclopropane ring on products by analyzing NMR, Mass, and IR spectra. The ylides are located on α site of ester groups, but we can not observe the phenomenon of E,Z isomers.

誌謝

為期兩年半的碩士生涯總算是劃下了一個完整的句點,而長達18年的學生身 份也暫時告一段落,還有很多新的挑戰等著我去迎接。而在這短短的兩年半內要 感謝的人實在是太多了。

首先要感謝我的指導老師莊士卿不厭其煩的一直提醒我們該做的事,也很認真 的跟我們討論各自的實驗,讓我們一路做下來也都還算順利,也會偶爾耍個寶讓 實驗室不那麼嚴肅。

也要感謝家人這兩年來的放心,並且細心照顧,讓我可以專心做研究。

感謝我已經畢業的同事們, 俊瑋按部就班且堅毅的做事態度也未實驗室豎立了 典範,讓我也獲益良多。知蔚對於課本中的化學知識以及實驗技巧上有很多直得 我請教的地方, 也常常替我解答許多疑問, 實是我的良師益友。

實驗室的歡樂氣氛對於成員們來說是很重要的,在這裡總免不了要感謝實驗室 的兩位老印還有各位還在奮戰的學弟妹們,碩二的立祥、哩卡、阿龍、阿國還有 + ()以及碩一的正揚、淳安跟鈺偉,在我最後這黯淡的半年實驗室生活中增添了 許多樂趣。

也特別感謝許千樹教授實驗室全體同仁:晉彥學長、百哥、小明哥、小施哥、 群哥、小毛、秋翔、大砲、輝哥、叡哥、天心、憲哥、昌哥、洪爺、修哥、小誠、 土榮、佩榮、瑋鑚、安哥、小安、逸芃、美美,把我視為一份子,感謝你們在實 驗之餘偶爾也會陪陪我聊天解悶甚至討論互相的實驗。

六月後正為宿舍苦惱的我,一直得到各方援助,在這裡要再次特別感謝輝哥、 修哥、安哥、政哲、一哥、朝駿、小明哥幾位的鼎力相助,讓我可以成功進駐交 大宿舍,成為一個道地的交大人。也特別謝謝群哥在我掰咖時開車帶我去看秋翔 推薦的醫生,即使他並非良醫,我還是很感激。

在實驗室需要同伴來解悶,放假或不在實驗室時當然也需要朋友。小胖、聖傑、 脖子、士傑、豆豆、索隆、小眼、洨哲、費翔、阿魯、會晤、系冷、凱鴻、笑五、 賽婷、寶薛、小蠢、鞋鞋、小花、啾、比特、小虎、家怡、盧盧、逼哀、小太陽、 婉婷、易弘、覺嵐、曉涵、欣紜、維芝、怡珊、酒客、戴 gay、Lucy、依諾、小光、 阿海、芸軒等人,在各自的空閒時間能跟我一起去散散心或是聊聊天,這些日常 看似稀鬆平常的舉動都會給我無比的元氣,也帶給我許多歡樂,如果說是環境造 1896

如果沒有大家的支持鼓勵與陪伴,我想我的研究生涯不會如此的開心順利,點滴銘心,由衷感謝。

表目錄

表 2.1	化合物 9 之合成條件	.40
表 2.2	化合物 5、8、9、10 之能隙、還原電位、LUMO 及 HOMO	.46
表 3.1	鄰位有 HMPT 之化合物之 ³¹P NMR	.51
表 3.2	含三級膦碳六十衍生物之 IR 比較	.62
表 3.3	化合物 14 之 HPLC 追蹤	.80
表 3.4	化合物 11、12、13 之能隙、還原電位、LUMO 及 HOMO	.84
表 4.1	化合物 15、16、17 之羰基 IR 吸收值比較	.99

圖	1.1	1 碳六十之 ¹³ C NMR	3
圖	1.2	!碳六十在不同溶劑之溶解度表	4
圖	1.3	3 碳六十之紫外-可見光譜	5
圖	1.4	1 碳六十之紅外線吸收光譜	5
圖	1.5	;上) 碳六十之 CV 在 25 度下以乙腈為溶劑在掃描速率為 100 (MV/S)所下測量。下) 差式脈波伏安	法
(D	IFFEF	ERENTIAL PULSE VOLTAMMETRY, DPV:80 MV PULSE, 50 MS WIDTH, 200 MS PULSE PERIOD, 10 MV SC	AN RATE) .6
圖	1.6	5 碳六十之還原反應	7
圖	1.7	碳六十之親核加成反應	8
圖	1.8	3 碳六十之[3+2]環化加成反應	9
圖	1.9) 碳六十之 1,3-DIPOLAR 環化反應	9
圖	1.11	1 碳六十之[2+2]環化加成反應	10
圖	1.12	2 碳六十之[2+1]環化加成反應	10
圖	1.13	3 碳六十之[2+1]環化加成反應	10
圖	1.14	.4 碳六十之氫化反應	11
圖	1.15	5 碳六十之自由基加成	11
圖	1.16	6 BINGEL REACTION 之反應機構	12
圖	1.17	7 太陽能電池發電原理	17
圖	1.18	8 有機太陽能電池電子傳遞圖	18
圖	1.19	9 單層太陽能電池元件結構	19
圖	1.20	20 雙層異質接面型太陽能電池元件結構	19
圖	1.21	1 混掺異質接面型太陽能電池元件結構	20
圖	1.22	2 混掺異質接面串聯型太陽能電池元件結構	20
圖	1.23	13 光強度與短路電流成正比。一開始呈線性關係,當強度大到一定值時則呈 指數關	係。21
圖	1.24	24 THE C $_{60}$ IS COLORED MAGENTA, AND THE VAN DER WAALS SURFACE OF THE ACTIVE SITE AND LIGAN	D ARE
SH	owi	/N	23
圖	2.1	DMAD 與三級膦及碳六十反應之產物結構	27
圖	2.2	2 E,Z 異構物之轉换	28

圖	2.3 含有脂基之碳六十衍生物之 IR	31
圖	2.4 DMAD 之紅外線吸收光譜	32
圖	2.5 化合物 5 之紅外線吸收光譜	33
圖	2.7 化合物 6 之結構	35
圖	2.8 化合物 8 的變溫氫譜 (600 MHZ)	36
圖	2.9 化合物 8 的 HMQC (500 MHZ)	38
圖	2.10 化合物 8 的 HMBC (600 MHZ)	38
圖	2.11 化合物 8 (将碳六十之外的碳编號)	39
圖	2.12 化合物 10 的 HMQC(600 MHZ)	41
圖	2.13 HMPA 之紅外線吸收光譜	42
圖	2.14 化合物 5、6 之紫外可見光譜 臺圖	44
圖	2.15 化合物 5、6、8、9、10 之紫外可見光譜疊圖	45
圖	2.16 化合物 5、8、9、10 之環伏電位疊圖	46
圖	3.1 化合物 11 之 ¹ H NMR	50
圖	3.2 化合物 11 之 ¹³ C NMR 放大圖 (45-85 PPM)	51
圖	3.3 化合物 12 之 ¹³ C NMR 放大圖 (35-90 PPM)	52
圖	3.5 化合物 12 之紅外線吸收光譜	53
圖	3.6 化合物 11 之 ¹³ C NMR 放大圖 (158-170 PPM)	57
圖	3.7 化合物 12 之 ¹³ C NMR 放大圖 (600 MHZ)	57
圖	3.8 化合物 11 之 SP ³ +SP 碳放大圖 (35-90 PPM)	65
圖	3.9 化合物 11 之 MALDI TOF MS/MS	67
圖	3.10 化合物 13 之 MALDI TOF MS/MS	67
圖	3.11 碳六十上同一個六圓環之三個雙鍵皆反應之衍生物	70
圖	3.12 以 HUCKEL MODEL 計算 C60O3 異構物的能量,上排三個為最低能量之構 型,下排三個為三個	個最
高	能量之構型,以最低能量定為OEV。	71
圖	3.13 化合物 12 之 HMQC 光譜局部放大圖 (甲脂基部分)	72
圖	3.14 化合物 12 之 HMBC 光譜	72
圖	3.15 化合物 13 之 ¹ H NMR	74
圖	3.16 化合物 13 之 ³¹ P NMR	74

圖	3.17 化合物 13 之 ¹³ C NMR 放大圖 (155-175 PPM)	.74
圖	3.18 化合物 13 之 ¹³ C NMR 放大圖 (35-90 PPM)	.75
圖	3.19 化合物 13 之紅外線吸收光譜	.76
圖	3.20 化合物 13 之 HMQC 光譜 (600 MHZ)	.76
圖	3.21 化合物 13 之 HMBC 光譜(600 MHZ)	.77
圖	3.22 化合物 13 之 HMBC 光譜放大圖(600 MHZ)	.77
圖	3.23 化合物 14 之 ¹ H NMR (照鹵素燈前)	.78
圖	3.24 化合物 14 之 ¹ H NMR (照鹵素燈 10 分鐘後)	.79
圖	3.25 化合物 14 之 ³¹ P NMR	.79
圖	3.26 左) 化合物 5 與 11 疊圖 右) 左圖的局部放大圖	.80
圖	3.27 實線代表 C60O 在甲苯下的紫外可見光譜吸收,虛線代表 C60 在甲苯下的紫外可見光譜吸收。右上圖則溶	₽劑
為.	正已烷。	.81
圖	3.28 左) 化合物 11、12、13、14 疊圖 右) 左圖的局部放大圖	.82
圖	3.29 化合物 11,12,13 皆以鐵莘(FERROCENE)的半波還原電為為零的疊圖(左下與右	.83
ፑ	皆為放大圖)	.83
圖	4.1 UV – VIS SPECTRA OF: (A) M1 (), P1 (–); (B) M2 (), P2 (–), AND (C) M3 (), P3 (–) IN CHCL ₃	.86
圖	4.2 化合物 15 之 ¹ H NMR (300 MHZ)	.88
圖	4.3 化合物 13 與化合物 15 之 SP ³ +SP 碳叠圖 (35-90 PPM)	.89
圖	4.4 化合物 13 之紅外線吸收光譜	.90
圖	4.5 化合物 15 之紅外線吸收光譜	.91
圖	4.6 化合物 12、16 之 ¹ H NMR 光譜比較	.92
圖	4.7 化合物 12(下:150 MHZ)與化合物 16(上: 175 MHZ)之放大叠圖(35-90 PPM)	.93
圖	4.8 化合物 16 之紅外現吸收光譜	.93
圖	4.9 化合物 12 之紅外線吸收光譜	.94
圖	4.10 化合物 16 之 HMQC 局部放大圖	.94
圖	4.11 化合物 16 之 HMQC 局部放大圖	.94
圖	4.12 化合物 16 之 HMBC 局部放大圖	.95
圖	4.13 化合物 16 之 HMBC 局部放大圖	.96
圖	4.14 H與C ₆₁ 有偶合之構型	.96

圖	4.15 化合物 17 之 ¹³ C NMR 放大圖 (35-90 PPM)	98
圖	4.16 化合物 17 之紅外線吸收光譜	98
圖	4.17 TRI(P-TOLYL)PHOSPHINE 之紅外線吸收光譜	99
圖	4.18 環氧基之位置	.100
圖	4.21 化合物 16 之 ¹³ C NMR 放大圖 (35-90 PPM)	. 102
圖	4.22 化合物 16 之 ¹³ C NMR 放大圖 (155-175 PPM)	.103
圖	4.23 化合物 19 之 ¹³ C NMR 放大圖 (155-175 PPM)	.104
圖	4.24 化合物 15、18、19 之 ¹³ C NMR 放大叠圖 (35-90 PPM)	.104
圖	4.25 化合物 18 之紅外線吸收光譜	. 105
圖	4.26 化合物 19 之紅外線吸收光譜	. 105
圖	4.27 化合物 15、16、17 之紫外-可見吸收光譜	.106
圖	4.28 化合物 12、13、15、16 之紫外-可見吸收光譜	. 107
圖	4.29 (左)化合物 13、15、18、19 之紫外可見光譜(右) 左圖之放大圖	.108
圖	4.30 化合物 15、16、17 之環伏電位圖	.109
圖	4.31 化合物 15、18、19 之環伏電位圖	.110
圖	4.32 (左)化合物 13、15 之環伏電位圖(右)化合物 12、16 之環伏電位圖	.110

縮寫對照表

Chx	cyclohexyl
Cpt	cyclopentyl
DMAD	dimethyl acetylenedicarboxylate
HMPT	hexamethylphosphorus triamide
OBu	butoxy
OEt	ethoxy
OMe	methoxy
PCBM	phenyl-C ₆₁ -butyric acid methyl ester
Ph	phenyl
p-Tolyl	para-Tolyl

1.1 碳六十的發現

1966年, D. E. H. Jones 曾經提出合成以碳為基礎的中空籠狀化合物 (cage) 的 可能性,而現今,我們稱呼它為"Fullerene"。但並未引起當時科學家的興趣, 直到 1970年, Osawa 合成出心型環狀的 corannulene 1,才第一次有人模擬出擁有 點羣 I_h對稱的足球狀結構,也就是所謂的 C₆₀分子(fullerene) 2。

1985 年, Kroto 和 Smalley 以電射聚焦於石墨 (graphite) 才首度觀察到只有碳 元素的 clusters C_n (n=30~190),以 time-of-flight mass spectrometry 來觀察質量的分 布。發現只有具有偶數(n \geq 30)碳數的離子被看到。只有在某種條件下才會只產生 分子量為 720 的 C_{60} 及 840 的 C_{70} 兩種碳簇。1990 年物理學家 Wolfgang Kratschmer 及 Donald Huffman 等人以石墨作電極,在氦氣壓力下,藉電弧放電法使石墨轉成 碳灰,再透過昇華 (sublimation) 或以苯 (benzene) 萃取 (extraction) 進行純化。 其中又以碳六十最為常見。

1.2 碳六十的性質

1.2.1 碳六十結構

碳六十是個含有 60 個頂點的 32 面體,由 12 個五圓環以及 20 個六圓環所組成的共軛球狀物質,像一顆足球一樣,直徑為 7.1 Å,由於其具有點羣為 *I*_h的對稱中心,一般記為 [5,6]-fullerene-60-*I*_h。其中,每個碳原子都是以接近 sp^{2.28} 的混成軌域鍵結。

在[60]fullerene 上面有兩種長度的鍵分別為:鍵的兩邊皆為六環的 [6,6] 鍵結,此鍵長為 1.38 Å;鍵的一邊為五環,另一邊為六環的 [5,6] 鍵結,鍵長為 1.45 Å。如 3 所示。

4(C60平面展開圖)

核磁共振光譜 (NMR, Nuclear Magnetic Resonance) 是鑑定有機化學結構最常見的方法之一。C₆₀本身並沒有氫,所以無法從¹H NMR 上得到訊息,而在¹³C NMR上,可以見到具有對稱結構的碳六十只有一個訊號,位置在 142.5 ppm¹,如圖 1.1:

1.2.2 碳六十物理性質與光譜

1.2.2.1 碳六十之溶解度

由於富勒烯 (fullerene) 是個溶解度很差的物質,故反應前須注意有無完全溶 解,並依照反應需求選用適當的溶劑進行反應,。碳六十在不同溶劑的的溶解度 如圖 1.2,常用的為甲苯、二硫化碳,以1-氯萘為最佳:²

0.005 0.002 0.043 0.036 0.071	0.008 0.003 0.073	1.36 1.41	1.84 1.97	115	7.0
0.005 0.002 0.043 0.036 0.071	0.008 0.003 0.073	1.36	1.84 1.97	115	7.0
0.002 0.043 0.036 0.071	0.003	1.41	1.97	U 1	
0.043 0.036 0.071	0.073		1 0 0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	8.0
0.036	11	1.38	1.89	131	7.3
0.071	0.039	1.43	2.02	108	8.2
	0.19	1.41	1.99	195	8.0
4.6	9.8	1.48	2.20	154	8.8
2.2	4.6	1.48	-	154	8.8
1.3	2.9	1.47		158	8.6
A 4/			0.00	<i>(</i>)	
0.26	0.27	1.42	9.08	60	9.7
0.16	0.22	1.45	4.81	86	9.3
0.32	0.40	1.46	2.24	80	8.6
0.50	0.60	1.54	4.79	72	10.4
1.4	1.7	1.48	3.40	89	9.2
1.2	1.7	1.51	2.46	102	9.3
0.020	0.042	1.36	-	188	-
0.014	0.017	1.44	-	118	-
5.3	7.7	1.49	8.20	64	9.7
0.000	0.000	1.33	33.62	41	14.5
0.001	0.001	1.36	24.30	59	12.7
0.000	0.000	1.38	35.90	81	12.7
0.002	0.002	1.39	28.00	105	11.1
0.001	0.001	1.36	20.70	90	9.8
0.000	0.000	1.34	37.50	52	11.8
0.89	1.2	1.47	-	96	11.3
1.7	2.1	1.50	2.28	89	9.2
2.8	4.0	1.50	2.44	106	8.9
5.2	8.9	1.50	2.40	123	8.8
1.5	3.1	1.50	2.28	139	8.8
16	31	1.54	2.76	136	9.0
0.014	0.029	1.54	11.50	103	10.7
0.41	0.71	1.53	25.60	97	8.4
0.59	0.78	1.47	5.42	94	9.0
0.80	1.1	1.56	35.74	103	10.0
3.3	48	1.56	5 40	105	9.5
5.6	84	1.52	4 33	109	95
7.0		1.52	5 71	102	9.2
274	53	1.55	0.03	113	10.0
27	15	1.55	3.05	125	0.0
0.5	15	1.57	5.95	125	9.5
22	69	1.62	2.02	142	0.0
35	00	1.02	2.92	142	9.9
50	121	1.01	2.50	156	9.9
50	131	1.0/	2.50	155	10.0
51	97	1.03	5.00	130	9.8
2.0					
7.9	6.6	1.03	2.64	54	10.0
0.000	0.000	1.41	7.60	81	9.1
0.030	0.036	1.50	2.28	88	9.5
6.8	9.1	1.52	2.26	96	9.6
0.89	0.99	1.51	12.30	80	10.7
				L	
.2 碳六十	-在不同溶劑	之溶	解度	表	
	2.2 1.3 0.26 0.16 0.32 0.50 1.4 1.2 0.020 0.014 5.3 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.002 0.001 0.000 0.002 0.001 0.000 0.002 0.001 0.000 0.002 0.001 0.000 0.002 0.001 0.000 0.002 0.001 0.000 0.002 0.001 0.000 0.002 0.001 0.000 0.002 0.001 0.000 0.002 0.001 0.000 0.002 0.001 0.000 0.002 0.001 0.000 0.002 0.001 0.000 0.002 0.001 0.000 0.002 0.001 0.000 0.002 0.001 0.000 0.002 0.001 0.000 0.002 0.001 0.000 0.000 0.002 0.001 0.000 0.002 0.001 0.000 0.002 0.001 0.000 0.89 1.7 2.8 5.2 1.5 16 0.014 0.59 0.80 3.3 5.6 7.0 27 ^a 8.5 33 36 50 51 7.9 0.000 0.030 6.8 0.89 2.2 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	2.2 4.6 1.3 2.9 0.26 0.27 0.16 0.22 0.32 0.40 0.50 0.60 1.4 1.7 1.2 1.7 0.020 0.042 0.014 0.017 5.3 7.7 0.000 0.000 0.001 0.001 0.002 0.002 0.001 0.001 0.002 0.002 0.014 0.011 0.002 0.002 0.001 0.001 0.002 0.002 0.014 0.029 0.41 0.71 0.59 0.78 0.80 1.1 3.3 68 3.4 8.4 5.6 7.0 7.9 6.6 0.000 0.000 0.030 0.036 0.89 0.99 7.9 6.6 0.000 0.000 0.030 0.036 <	2.2 4.6 1.48 1.3 2.9 1.47 0.26 0.27 1.42 0.16 0.22 1.45 0.32 0.40 1.46 0.50 0.60 1.54 1.4 1.7 1.51 0.020 0.042 1.36 0.014 0.017 1.44 5.3 7.7 1.49 0.000 0.000 1.33 0.001 0.001 1.36 0.002 0.002 1.39 0.001 0.001 1.36 0.000 0.000 1.34 0.89 1.2 1.47 1.7 2.1 1.50 5.2 8.9 1.50 5.2 8.9 1.50 5.2 8.9 1.50 1.5 3.1 1.50 5.4 1.1 1.50 5.5 3.1 1.51 0.41 0.71 1.53 0.59 0.76 1.47 0.80 1.1 1.52 <td>2.2 4.6 1.48 - 1.3 2.9 1.47 - 0.26 0.27 1.42 9.08 0.16 0.22 1.45 4.81 0.32 0.40 1.46 2.24 0.50 0.60 1.54 4.79 1.4 1.7 1.48 3.40 1.2 1.7 1.51 2.46 0.020 0.042 1.36 - 0.014 0.017 1.44 - 5.3 7.7 1.49 8.20 0.000 0.000 1.33 33.62 0.001 0.001 1.36 24.30 0.000 0.000 1.38 35.90 0.000 0.000 1.38 35.90 0.002 0.0002 1.36 20.70 0.000 0.0001 1.36 24.0 1.5 3.1 1.50 2.44 5.2 3.1 1.50 2.44 5.2 3.1 1.50 2.44 1.5 3.1</td> <td>2.2 4.6 1.48 - 154 1.3 2.9 1.47 - 158 0.26 0.27 1.42 9.08 60 0.16 0.22 1.45 4.81 86 0.32 0.40 1.46 2.24 80 0.50 0.60 1.54 4.79 72 1.4 1.7 1.51 2.46 102 0.020 0.042 1.36 - 188 0.014 0.017 1.44 - 118 5.3 7.7 1.49 8.20 64 0.000 0.000 1.33 33.62 41 0.001 0.001 1.36 24.30 59 0.000 0.000 1.38 35.90 81 0.001 0.002 1.39 28.00 105 0.001 0.36 2.44 106 52 0.89 1.2 1.47 - 96 1.5 3.1 1.50 2.28 89 0.60 31</td>	2.2 4.6 1.48 - 1.3 2.9 1.47 - 0.26 0.27 1.42 9.08 0.16 0.22 1.45 4.81 0.32 0.40 1.46 2.24 0.50 0.60 1.54 4.79 1.4 1.7 1.48 3.40 1.2 1.7 1.51 2.46 0.020 0.042 1.36 - 0.014 0.017 1.44 - 5.3 7.7 1.49 8.20 0.000 0.000 1.33 33.62 0.001 0.001 1.36 24.30 0.000 0.000 1.38 35.90 0.000 0.000 1.38 35.90 0.002 0.0002 1.36 20.70 0.000 0.0001 1.36 24.0 1.5 3.1 1.50 2.44 5.2 3.1 1.50 2.44 5.2 3.1 1.50 2.44 1.5 3.1	2.2 4.6 1.48 - 154 1.3 2.9 1.47 - 158 0.26 0.27 1.42 9.08 60 0.16 0.22 1.45 4.81 86 0.32 0.40 1.46 2.24 80 0.50 0.60 1.54 4.79 72 1.4 1.7 1.51 2.46 102 0.020 0.042 1.36 - 188 0.014 0.017 1.44 - 118 5.3 7.7 1.49 8.20 64 0.000 0.000 1.33 33.62 41 0.001 0.001 1.36 24.30 59 0.000 0.000 1.38 35.90 81 0.001 0.002 1.39 28.00 105 0.001 0.36 2.44 106 52 0.89 1.2 1.47 - 96 1.5 3.1 1.50 2.28 89 0.60 31

1.2.2.2 碳六十之紫外可見光

碳六十在213、257、329 nm 有很強烈的吸收,404、408 nm 可以看到較小的 特性吸收峰³,而在500、540、570、600、625 nm 各有更小的吸收,如圖 1.3⁴。由 於碳六十在可見光區內 400 nm 左右有較明顯的特性吸收,其剛好位於綠光區,所 以使得碳六十溶液呈現紫色。

圖 1.3 碳六十之紫外-可見光譜

1.2.2.3 紅外線光譜

1988 年 Brunvoll 發表碳六十分子的振動頻率,碳六十共有 174 種振動模式,⁵ 只有四種在紅外線光譜儀可測得 (圖 1.4),⁶分別是:527,577,1182,1428 cm⁻¹。

圖 1.4 碳六十之紅外線吸收光譜

1.2.2.4 循環伏安之測量

由於碳六十有很好的親電性,很容易形成 C_{60}^{n-} ,可以輕易的與親電子試劑 (electrophile) 進行反應。經由理論計算,碳六十有三個能量一樣的最低空軌域 (LUMO, lowest unoccupied molecular orbital),最多應可以填六個電子,形成 C_{60}^{6} ⁻,我們可以利用循環伏安法 (CV, cyclic voltammetry) 看出,每一個波峰都是單 一個電子的傳遞過程,如圖 1.5⁷。

圖 1.5 上) 碳六十之 CV 在 25 度下以乙腈為溶劑在掃描速率為 100 (mV/s)所下測量。下) 差式脈波伏安法 (Differential Pulse Voltammetry, DPV: 80 mV pulse, 50 ms width, 200 ms pulse period, 10 mV scan rate)

1.3 碳六十相關反應

1.3.1 還原反應

首先,介紹碳六十的還原相關反應。最直接就是使用以先前介紹的電化學方 式產生的帶有負電荷的 C_{60}^{n-} (fulleride anions) 。如(圖 1.6),將 tetra-*tert*butylammonium perchlorate (TBAClO₄) 與碳六十在 benzonitrile solution 下反應,可 以形成深紅色的 C_{60}^{2-} 。它們也可以被用來合成有機碳六十衍生物 (organofullerene derivatives) 。

此外,碳六十的還原反應也可以很輕易的由鹼金與鹼土金屬的參與下達成。 將溶於氨水 (ammonia) 的金屬 (Rb) 滴定到含碳六十的氨水溶液,可以形成帶有 一個負電荷到五個負電荷的碳六十陰離子 (C₆₀ⁿ⁻, n=1-5)。可以從在極性溶劑 (polar solvent) 中的溶解度證明此反應產生鹽類 (salt) 的訊息。

1.3.2 親核加成

碳六十與有機鋰 (organolithium) 和格林納試劑 (Grignard reagent), 在 THF 下,很快就能形成中間產物 RC₆₀⁻;如果在甲苯下反應,由於溶劑與水不互溶,所

以會產生 C₆₀R_nM_n 沉澱。接著,加入 0.01N 的鹽酸 (HCI) 將中間產物質子化(圖 1.7)。理論上,產物應該會有 1,2-加成、1,4-加成、1,6-加成⁸,但是後兩者通常不穩 定。此種反應通常會在 6-6 鍵上 進行,若是在 5-6 鍵上形成產物,則易降低分子 對稱性而不為主要產物。

[3+2] Cycloaddtions

此類型多半由偶氮化合物(Diazo-compounds)、azides、trimethylenemethanes、 氮氧化物(nitril oxides)等含氮或氧的分子來參與反應。含氮的分子 Diazomethane 與碳六十的[3+2]環化反應是在 6-6 環上形成含氮的五圓環結構,經由加熱或照光 後,偶氮會形成氮氣離去,產生能量較低的[5,6]-open 和[6,6]-closed 的 C₆₁H₂兩個 結構 (圖 1.8)。

圖 1.9 碳六十之 1,3-dipolar 環化反應

[2+2] Cycloaddtions

只具有單一叁鍵或雙鍵的分子,可與碳六十進行[2+2]環化反應 (圖 1.11),在 這裡並未觀察到[4+2]環化反應,可能是因為若進行[4+2]環化反應,會導致連接處 並非 6-6 鍵或是 5-6 鍵造成不穩定。

圖 1.11 碳六十之[2+2]環化加成反應

[2+1] Cycloaddtions

常見的為 Carbenes (圖 1.12) 以及 Silylenes (圖 1.13) 與 C₆₀ 的加成反應:

圖 1.13 碳六十之[2+1] 環化加成反應

1.3.4 氢化反應

氫化反應 (Hydrogenations) 可以說是最早在碳六十上修飾官能基的第一個方法(圖 1.14),但是礙於太多 sp³的碳會在球體上造成張力 (strain),至今,我們還

是無法令這一個不飽和的分子,變為飽和的 C₆₀H₆₀,目前能在質譜上觀察到擁有 最高氫數的分子為 C₆₀H₅₂。9

圖 1.14 碳六十之氫化反應

1.3.5 自由基加成

碳六十上有 30 個雙鍵,可以很容易與光化學產生的自由基分子反應,如下圖

圖 1.15 碳六十之自由基加成

從上面的基本介紹可以知道在 C₆₀ 分子上,可以利用其雙鍵特性來進行很多不同種類的反應,而此篇論文裡,皆為在 C₆₀ 上接上三圓環的衍生物。Bingel reaction¹¹

就是非常具有代表性的一個結構,此反應(圖 1.16)是利用鹼 (DBU) 拔走丙二酸二 乙脂 (Diethyl malonate) 在 α 位上具有較強的酸性的氫,使碳上帶負電荷而接上溴 (Bromide) 來作為離去基 (leaving group) 在鹼性條件下第二個氫很快的也被拔 掉,整個分子變成帶負電荷的親核試劑去攻打 C60 得到一個三環在 C60 上的產物。 此種 [2+1] 環化反應最直接可以利用在分子上產生一個負電荷來當作親核試劑進 而攻打 C_{60} , Bingel reaction 是直接在分子上產生負電荷。在此,則是利用本就具 有高度電子密度的炔 (alkyne) 或是烯 (alkene) 分子, 在作為親核試劑的三級膦存 在下,使三級膦攻打炔進而形成由兩個分子所組成的一種帶有負電荷的親核試 劑,前提是此種炔或烯必須旁邊接有拉電子基使 α 位缺電子,親核試劑(這裏使 33 用三級膦) 才會有所作用 OEt EtO 18'EtO₂C CO₂Et CO₂Et EtO₂C 60 -Br :н

圖 1.16 Bingel reaction 之反應機構

C₆₀衍生物在太陽能電池上的應用也是常被拿來討論的,目前能夠做到最高效率的 PCBM 早在 1995 就被 Wudl 實驗室所發表,¹²直至現在還無人能夠以其他碳六十衍生物取代 PCBM 超越其效率。

1.4 碳六十於太陽能電池上的應用

現今文明發展迅速,對於能源的需求量與日俱增,然而傳統的石化能源(石油、 天然氣與煤等),因為長年大量開採,將很快面臨能源短缺危機,近年來油價節節 高漲就是個明顯例子。此外,使用石化能源也會造成環境汙染的問題,例如溫室 效應與酸雨等現象。因此,發展便宜、方便、無污染的替代能源已成為各界的共 識,希望能替地球盡一份心力,給下一帶更好的環境。無污染的再生能源主要有 太陽能、風力、水力、地熱等,而太陽能是其中最容易取得的能源。

早在1954年,貝爾實驗室就以矽 (Silicon,Si) 為原料製做出第一個無機太陽 能電池,當時元件的能量轉換效率 (power conversion efficiency, PCE) 就已經可以 達到 6%,到目前為止,單晶矽砷化鎵 (GaAs) 太陽能電池的轉換效率已經可以達 到接近理論值的 24.7%,而 GaInP、GaInAs 以及 Ge 的多層元件效率更可高達 39.3%。¹³由於單晶矽的製作成本太高,儘管多層元件的效率再繼續提升,製作成 本也未必能降低,如此,很難普遍使用於日常生活中。也因如此,製作成本低的 有機太陽能電池 (organic solar cell) 即使其效率並沒有無機材料來的高,卻也逐漸 受到重視。

要以太陽能作為取代的能源,就需要先了解它的優缺點。能讓我們引起興趣 想利用是因為它取得方便,太陽照射的範圍很廣,儘管因為緯度或雲層等因素讓 各地取得太陽能資源多少有所不同,但是它不需要開採挖掘也不需要運輸,就可 以直接利用,不只是方便,更節省了額外的運輸等設備成本;其次,使用太陽能 作為能源,不會有廢水污染、廢氣,熱還有噪音等汙染,對人體跟生態都是無害 的,大大提升了它的價值;而根據天文計算,太陽還可以持續 100 億年,這意味 著我們再也不需要再擔心能源會有竭盡的一天;另外,地球每年接受太陽的能量 約比全世界每年所消耗的總量還多三萬倍,所以欲使太陽能成為能源供應其中一 種方式,如何能有效利用它將會是重要的課題。

雖說地表上的太陽能隨處可取,但是它的強度,也就是單位時間內投射到單 位面積上的太陽能並沒有想像中的強;而太陽能最大的弱點就是並非全天候供 應,畫夜的變化以及陰雨天將使得很多時候無法供應能量,需要儲能的設備來克 服此困難;在地球不同緯度所受到的太陽輻射大不相同,同一個地方在同一天內 日出和日落的太陽輻射強度遠不如正午前後,這些因素都會使太規模的利用太陽 能的困難度增加。

1.4.1 太陽能電池原理簡介

在眾多太陽光電池中較普遍且較實用的有單晶矽太陽光電池、多晶矽太陽光 電池及非晶矽太陽光電池等三種。

太陽光電池主要功能在將光能轉換成電能,這個現象稱之為光伏效應(photo voltaic effect)。光伏效應在19世紀即被發現,早期用來製造硒光電池,直到電晶 體發明後半導體特性及相關技術才逐漸成熟,使太陽光電池的製造變為可能。太 陽光電池之所以能將光能轉換成電能主要有兩個因素:一是光導效應 (photo conductive effect),二是內部電場,因此在選取太陽能電池的材料時,必須要考 慮到材料的光導效應及如何產生內部電場。

光照射在物質上時,部份的光會被物質吸收,部份的光則經由反射或穿透等 方式離開物質,選取太陽光電池材料的第一考量就是吸光效果要很好,如此才能 使輸出功率增加。選取太陽光電池材料的第二考量是光導效果,欲選取光導效果 佳的材料首先必須瞭解太陽光的成分及其能量分佈狀況,進而找出適當的物質作 為太陽光電池的材料。

當電子從外界獲得能量時將會跳到較高的能階,電子處在較高的能階時並不 穩定,很快就會把獲得的能量釋放回到原來的能階。如果電子獲得的能量夠高就 擺脫原子核的束縛成為自由電子,電子空出來的位置則稱為電洞。自由電子可能 會因為摩擦或碰撞等因素損失能量,最後受到電洞的吸引而結合。例如,矽的最 外層電子要成為自由電子需要吸收1.1eV的能量,當矽最外層子吸收到的光能量超 過 1.1eV 時將會產生自由電子及電洞,稱之為光生電子電洞對(light-generated electron-hole pairs)。電子電洞對的數目越多導電的效果也越好,因為光使得導電 效果變好的現象稱之為光導效應 (photo conductive effect)。

自由電子與電洞的多寡對電氣特性有很大的影響,越多的自由電子與電洞可以使導電性增加,同時也可以使輸出電流增加,因此可以推測陽光越強時生成的自由電子與電洞越多,則輸出電流也越大。然而如果只是單純的產生自由電子與

電洞,將會因為摩擦及碰撞等因素失去能量,最後自由電子會與電洞復合而無法 利用。為更有效的利用由電子與電洞來產生電流,因此必須加入電場使自由電子 與電洞分離進而產生電流。產生電場的方式很多如 PN 接面、金屬半導體接面等, 其中最常用的方式為 PN 接面。

提高自由電子濃度常用的方法是在矽中加入少量的五價原子,五價原子的四 個價電子與矽鍵結後剩下一個價電子,使剩下的價電子游離只需要 0.05eV,比原 來的 1.1eV 小很多,在室溫超過 200 K 時即可使所有雜質產生自由電子,同樣在矽 中加入少量的三價原子可以提高電洞濃度。在矽中加入五價原子後稱之為 N 型半 導體,加入三價原子後稱之為 P 型半導體。N 型半導體及 P 型半導體雖然帶有自 由電子或電洞但本身仍然保持電中性,如果 N 型半導體及 P 型半導體政雜質濃度 均匀分佈則內部沒有電場存在。若將 N 型半導體及 P 型半導體投和在一起,會因 為兩邊自由電子與電洞的濃度不同產生擴散。N 型半導體中自由電子濃度較高, 因此自由電子由 N 型半體向 P 型半導體擴散,同樣的電洞會由 P 型半導體向 N 型 半導體擴散。擴散的結果使得接面附近的 N 型半導體失去電子得到電洞而帶正 電,P 型半導體失去洞得到電子而帶負電。

因為電荷密度不均因此在接面附近產生電場,如果有自由電子或電洞在電場 內產生,則會因為受到電場的作用而移動,自由電子向N型半導體移動,而電洞 向P型半導體移動,因此這個區域缺乏自由電子或電洞而稱之為空乏區。當光照 射在空乏區內將矽原子的電子激發產生光生電子與電洞對(圖 1.17),電子與電洞對 會因為電場作用而使電池內的電荷往兩端集中,此時只要外加電路將兩端連接即 可利用電池內的電力,這即是所謂的光電效應,也是太陽光電池的轉換原理。

而使用有機材料的太陽能電池分為(1)染料敏化太陽能電池 (Dye-sensitized solar cell,DSSC) 、(2)有機光伏電池 (Organic Photovoltaic solar cell,OPV)。碳六十 在太陽能電池上的應用屬於後者,而產生電流的機制與前面所述相同,接為吸收

陽光後,得到一能量而使得電子從 HOMO 躍遷至 LUMO 而在 LUMO 產生電洞, 而所選的陰極需要與材料的電子予體 (donor) 能階接近, 陽極需與材料的電子受 體 (acceptor) 能量接近,使得電子電洞能夠往電極兩端傳遞進而在外部產生電流 達到光電轉換的效果(圖 1.18)。

1.4.2

僅將材料夾在 aluminium 與 indium tin oxide (ITO) 中間,是為單層結構(圖 1.19)14。由於單一種類的分子可以涵蓋的吸收光波長範圍有限,其光電轉換效率最 高僅到 0.62%。15

圖 1.19 單層太陽能電池元件結構

b) 雙層異質接面型太陽能電池 (bilayer heterojunction solar cell)

1986年,由C. W. Tang 提出以CuPc為電子予體及 perylene 衍生物為電子受
體兩層疊在一起(圖 1.20),組成異質接面的結構,使光電轉換效率提升至 0.95%。

圖 1.20 雙層異質接面型太陽能電池元件結構

c)混掺異質接面型太陽能電池 (bulk-heterojunction solar cell)

圖 1.21 則為 Bulk heterojunction 的元件結構,其中材料部分,則是利用熱處理, 使其材料排列良好,而電子受體和電子予體的介面混合的情況,可增加接觸的表 面積,可增加電荷分離的效率,也是目前較常使用的結構之一,目前最高可做到 6%。¹⁷

圖 1.22 混摻異質接面串聯型太陽能電池元件結構

1.4.3 基本參數介紹:

a) 短路電流 I_{SC} :

當元件不受偏壓時所測量到的逆向光電流值為短路電流 (I_{sc}) 短路電流與光 強度成正比關係如圖 1.23¹⁹, 激子被分離後載子能不能成功移至電極是短路電流大 小一個很重要的因素, 一般受到材料中載子移動速率 (Carrier mobility) 、載子生 命週期 (Carrier lifetime) 、與載子擴散長度 (Carrier diffution length) 影響。

圖 1.23 光強度與短路電流成正比。一開始呈線性關係,當強度大到一定值時則呈 指數關係。

b) 開路電壓 V_{OC} :

太陽能電池元件受光後會產生逆向光電流,若元件受正向偏壓情況下,偏壓 會逐漸把光電流抵銷,而當偏壓大到一定的值時,整體元件淨電流為零,可視為 開路 (open circuit),而此時偏壓值即為開路電壓 (Voc)而言內建電場的大小、電 子予體(donor)材料的最高填電子軌域(HOMO)與電子受體(acceptor)材料的最低為 填電子軌域(LUMO)會影響開路電壓值。 c) 填充因子 (Fill Factor、FF) :

關於填充因子的大小我們可以由 2-1 式求得,(VI)_{MAX} 代表元件輸出之最大功 率。可以把填充因子視為載子傳遞與在結合間的對抗,並可以代表元件串、並聯 電阻間一個綜合的表現。我們可以由 IV 特性曲線檢單看出 FF 的好壞,當逆向電 流在短路的情況附近,特性曲線受外加偏壓的影響愈小(斜率愈小)代表元件有愈大 的 FF。令外我們若由 2-2 式定義載子移動距離 d、電場 E、若 d、E 視為固定值, 載子遷移率(μ)與載子生命週期(τ)愈大,FF 愈大。

$$FF = \frac{V_{MAX} I_{MAX}}{V_{oc} I_{sc}}$$
(1-1)
$$d = \tau \times \mu \times E$$
(1-2)
(1-2)
(1-2)
(1-2)
(1-2)
(1-2)
(1-2)
(1-2)
(1-3)
(1-3)

1.5 碳六十於醫療上應用

1.5.1 酵素抑制

早在 1993 年, Friedman 等人,已經發現某些水溶性碳六十分子與 human immunodeficiency virus HIV-1 的蛋白酵素 (protease) 的活化位 (active site) 會有

凡得瓦 (van der Waals) 交互作用,佔用疏水表面積約 298 Å²,並且看到 ligand 與蛋白質 (protein) 有結合 (association) 的現象,如圖 $1.24 \circ 20$

■ 1.24 The C₆₀ is colored magenta, and the van der Waals surface of the active site and ligand are shown.

1.5.2 Antiviral Activity

碳六十衍生物 (如圖 1.25) 在 1993 年被 Schinazi et al²¹用來對已感染急性或慢性 HIV-1 的細胞作抗病毒活性的測試(EC₅₀ 7.3 ±3.8 μM),對於慢性感染的 H9 細胞 也有不錯的抗病毒活性(EC₅₀ 10.8 ±8.2 μM),雖然抗愛滋藥物(AZT)有更高的活性
(EC₅₀ 0.003-0.004 μM),但是其對於感染的 H9 細胞沒有活性反應。若能提高碳六 十衍生物的抗病毒活性,在未來的實用性就更高了。

圖 1.26

1.5.4 Diagnostic Applications

碳六十內包有金屬的衍生物稱為 Endohedral metallofullerenes,其在醫療上也

有所用途。例如,水溶性的 M@C₈₂(OH)₃₀可用在核磁共振中當顯影劑,²²或用來作為放射藥物;²³還可將放射性金屬置於碳六十內部,並在體內追蹤其至特定位置來 殺死癌細胞。

1.5.5 Antimicrobial Activity

碳六十衍生物也被認為有殺死微生物的用途。其可藉由附著進入磷脂雙層來 造成細菌等內部的黏膜被破壞造成死亡。此外,具有羧基的碳六十衍生物 (carboxyfullerene) 可以抑制由大腸桿菌誘導造成的腦膜炎。²⁴

1.5.6 Free Radical Scavenger 當人體內存在自由基時會競爭迫害健康細胞的成對電子,產生電子轉移的反應現象,會使組織細胞失去正常功能,甚至破壞遺 DNA,造成突變引起癌症。又 研究指出,一個碳六十分子最多可以加成 34 個甲基自由基在上面,⁸並且穩定存 在,現象顯示,碳六十衍生物可以幫助消去體內自由基,減少因其所造成的疾病。

上述這麼多碳六十衍生物在人體醫療上的用途,可知,若能有效增加其水溶性,則能更廣泛為藥物所使用,對於醫學上有很大的幫助。

2 以三級膦及具有拉電子基之炔類製備三圓環或五圓環之碳六十衍生物

2.1 研究動機

有鑑於含氮化合物在醫學上有很多著墨,^{25,26,27}而且在利用 HMPT 此三級膦作 為親核試劑與碳六十的反應上,²⁸過去很少有文獻提及,所以在此,以 HMPT 與其 他三級膦作為主要與多炔化合物反應的試劑。

在過去文獻裡,我們知道了三級膦會與具有拉電子基的炔反應,^{29,30,31}進而在 碳六十上進行環化加成,這是既快速又方便的一種製作含有三圓環 C₆₀衍生物的方 法。^{32,33,34}

此章節主要探討的是碳六十衍伸物的化學。上述兩者反應後會形成 phosphoramidous ylide,進而加成到碳六十上面。此類具有高極性官能基的碳六十 衍伸物在生物學上有很重要的應用。^{24,25,26}所以我們利用此類反應來建立一個修改 碳六十上高極性官能基的方法。

Scheme2.1

首先, 膦(Phosphine) 為一個鹼性的親核試劑 (Nucleophile), 當它碰到親電子 (electrophilic)的部位時,就會以膦上面的的孤對電子 (lone pair electrons) 去攻擊缺

電子的區域,在 Scheme2.1 裡,我們看到孤對電子攻打炔的碳而形成一個正負電荷 分離的中間產物 (intermediate,如上圖箭頭右邊)。此過渡態產物的負端電子再攻 碳六十(fullerene cage),進行親核性環加成反應 (nucleophilic cycloaddition),形 成下圖 2.1 的碳六十衍生物 (fullerene derivative)。

圖 2.1 DMAD 與三級膦及碳六十反應之產物結構

由於此反應機制較為簡易,其結構可以直接從¹H、¹³C、³¹PNMR 中鑑定出來, 藉由 IR 來觀察此碳六十衍伸物上是否有 carbonyl 的官能基,確認反應物有效的接 到碳六十上,再由質譜 (MS) 來做分子量上的檢驗。此外,也可另外測量其紫外 可見光 (UV-Visible) 吸收光譜,看此類衍生物在可見光區的吸收光譜的變化,是 否會對製作成太陽能電池元件之後,得到轉換效率上的關聯。

我們可以看到,此類化合物的負端剛好位於 carbonyl group 的 α 位置,即會產 生共振 (resonance),造成如圖 2.2 中的順反異構化產物。

Z form

圖 2.2 E,Z 異構物之轉換

此共振式,可從變溫的¹HNMR 來做驗證,在常溫的時候,因為共振速率快, 順反異構物不易觀察,當溫度低到-30°C,便可以較容易看出順反異構物的比例。 27,31,32,33,35 變化了很多不同種類的三級膦,而每 在參考文獻裡的一系列反應, 種三級膦對此反應的反應速率皆不同,所以需要以變化反應溫度或是稀釋 DMAD (或其他具有拉電子基的炔類) 來進行反應。 在換了很多個不同的三級膦之後,都能得到產物,唯一不同的就只是反應速 率的差別而已。但是親電試劑就一定要使用有拉電子基在旁的炔類才可以進行反 應。使用的不同三級膦可分為兩類:分別為具有推電子配位基 (PR3:R= NMe2、 cvclohexyl 等) 以及拉電子配位基 (PR3: R=Phenyl、OMe、OEt 等) 兩種。此類反

應生成的碳六十衍生物,再加入 HBr 或是 HOAc 之後可能會有不同的化合物產生,

而這些不同結構的變化來自於三級膦上面不同的配位基團 (ligand) 所造成。

本章節利用兩末端為甲脂基 (methyl carboxylate group) 的炔類 (alkyne) 或烯 炔類 (enyne) 跟膦 (phosphine) 反應, 在碳六十上進行環化加成反應。當親核試劑 HMPT (hexamethylphosphorous triamide) 與 DMAD (dimethyl acetylenedicarboxylate)作用後與碳六十會進行[2+1]環化加成反應,產生具有三圓環 (cyclopropane ring) 在碳六十上的衍生物。

2.2 含 DMAD 之反應

2.2.1 DMAD 與 HMPT、碳六十之反應

以 DMAD 滴入溶有碳六十、HMPT 的溶液中,所形成的產物對氯仿 (chloroform) 的溶解度很好,且紫外可見光譜測得其在 489 nm 有較明顯的吸收 峰,故溶液呈現紫紅色。首先比對質譜,HRMS (FAB⁺) 中測得 (M + H⁺) m/z = 1026.1583,推測其分子確實由碳六十、HMPT 與 DMAD 所構成。

1896

由於 HMPT 有可能與 DMAD 形成不穩定中間產物後,會再以負電荷攻擊 DMAD,所以反應中的 DMAD 須緩慢滴入裝有碳六十以及 HPMT 的反應瓶中,故 反應進行先以 HMPT 當親核試劑,作為反應的開端,其推測結構如 Scheme 2.2 中 所示。

29

Scheme 2.2

在¹HNMR中,在2.87 ppm的一個很寬 (broad)的訊號為 (NMe₂)₃,由於並 非每個氫都處於同樣的化學環境,所以訊號不是呈現一個細長的單重峰;一般來 說,甲氧基 (OCH₃, methoxy group)的訊號會出現在 3.0 ppm-4.0 ppm;此結構氫 譜中,3.70 ppm 與 3.74 ppm 為三級膦旁的甲氧基,其訊號代表著在室溫下,化合 物5的Eform與Zform可以輕易的被觀察到,所以這兩組訊號各代表著這兩個幾 何異構物 (geometric isomers) 的初步證明;而 3.96 ppm 的單一訊號則是離三級膦 較遠的甲氧基。³¹P NMR 中有兩根很接近的訊號分別為 61.68 ppm、61.78 ppm, 可用來佐證此結構有兩個異構物存在,其兩訊號比例差異不懸殊(積分比約為 3:2),以至於在¹³C NMR 中的某些 sp²碳,可以被觀察到較明顯的兩組訊號。另外, 紅外線光譜 (Infrared Spectroscopy) 中,也可利用觀察羰基 (carbonyl group) 訊號 來證明有異構物的存在;理論上,羰基的訊號應該出現在1740 cm⁻¹,但由於 C=O 雙鍵旁邊所接的官能基會影響所測得的值;圖 2.3¹⁰ 有一些碳六十上具有脂類的羰 基在 IR 上所被觀測的例子。 CO2Et CO₂Et 8 Me b ÓМе 1745 cm⁻¹ 1756(a),1718(b) cm⁻¹

1684 cm⁻¹

1678 cm⁻¹

圖 2.3 含有脂基之碳六十衍生物之 IR

經過實際測量,也可以得知 DMAD 中羰基的 IR 特性吸收峰在 1730 cm⁻¹左 右,如圖 2.4³⁵:

但是在化合物5中,除了原本的1737 cm⁻¹,又多了一根1620 cm⁻¹(圖2.5)的 訊號,這是因為磷旁邊帶負電的碳,其電子與羰基的 C=O 雙鍵產生共振,使得 C=O 的鍵級 (Bond Order) 小於2,所以訊號會往右邊偏移,由此更可肯定三級膦 與兩個酯基的相對關係,以及此結構具有幾何異構物的說法。

圖 2.5 化合物 5 之紅外線吸收光譜

各種訊息不斷給予鑑定此結構具有幾何異構物的可能性。最後,以¹³C NMR 來做最後一道佐證的關卡;再標記碳譜上第 59、60 (75.15、75.52 ppm)和 61 (50.82 ppm)號碳以後,繼續把重點放在脂基雙鍵上的碳與甲氧基上,170 ppm 左右為羰 基的訊號,而化合物5的碳譜中出現兩組異構物的訊號,分別為 169.78 ppm、171.02 ppm (d, ${}^{3}J_{PC} = 23.1 \text{ Hz}$); 169.42 ppm (d, ${}^{3}J_{PC} = 17.0 \text{ Hz}$),169.99 ppm。另外, ylide 碳上還有一個特徵訊號,大約在 40 ppm 左右有一組 (或兩組)雙重峰訊號,其具 有很大的偶合常數,由於距離磷只有一個鍵,造成其 ${}^{1}J$ 值約在 100-200 赫茲 (Hz) 之間[45.46 ppm (d, ${}^{1}J_{PC} = 197.9 \text{ Hz}$),47.45 ppm (d, ${}^{1}J_{PC} = 207.3 \text{ Hz}$)]。由這些不同的訊 息中,我們可以確定此[2+1]環化反應的結構。

2.2.2 三圓環於酸性條件下擴環為五圓環之反應

C₆₀衍生物中,三圓環的化合物較常被發表,例如 PCBM、Bingel reaction 的產物…等; 文獻中指出α位含有 ylide 的三圓環在加醋酸 (acetic acid) 會開環 (ring opening) 變成五圓環 (圖 2.6),³⁶所以我們拿化合物 5 加醋酸,觀察磷上含氮的 ylide 是否會進行同樣反應。

此結構比照加酸前,最明顯的就是多了一個羥基 (hydroxy group),而此官能 基在 IR 最容易被觀察到,我們看到了化合物 6 的紅外線光譜中有一個很明顯的 broad 訊號出現在 3487 cm⁻¹,且只看到一個 OCH₃ 的訊號出現在 3.94 ppm (¹H NMR),依照與 OCH₃ 的積分值比例為 3:1 斷定 4.76 ppm 為 OH 的訊號,也表示 著少了一個脂基。OH 旁的碳在 90-100 ppm (¹³C NMR) 也會有受到磷而分裂的二 重峰 (doublet) 訊號,根據光譜顯示應為文獻中所提及的結構,最後予以質譜的驗 證,(M+H⁺) m/z = 1012.1434,確認產物與預期分子量一致,其結構如圖 2.7:

圖 2.7 化合物 6 之結構

2.3 含 enyne 7 之反應

2.3.1 enyne 7 與 HMPT、碳六十之反應

到目前為止,已知HMPT、DMAD 與碳六十會產生[2+1]環化反應,預期 HMPT、enyne 7^{37} 與碳六十也會產生三圓環 (cyclopropane ring); ³³ 有鑑於 enyne 結 構中雙鍵上兩個氫在氫譜上應該有有兩組二重峰 (doublets : 6.46 ppm, J = 16 Hz; 6.87 ppm, J = 16 Hz),理應可以在 ¹H NMR 中看到類似的分裂,事實上卻只觀察 到 5.68 ppm 以及 6.22 ppm 兩個較寬的訊號,說明了並非我們所預期的結構,但可 以確定的是此結構 (M+H⁺) m/z = 1052.1741 為三個反應物分子量總合。

圖 2.8 化合物 8 的變溫氫譜 (600 MHz)

雙鍵上的 J_{HH,trans} 消失表示反應後,產物的雙鍵消失或是雙鍵上只具有一個 氫,又在變溫氫譜¹H NMR (圖 2.8) 中看到兩個較小的 OCH₃ 訊號隨著溫度降低慢 慢變明顯,且-25°C 下¹³P NMR 在 57.80 ppm 出現小峰,加上紅外線光譜的羰基 在 1615、1738 cm⁻¹ 的兩個訊號,可以得知 HMPT 接在其中一個脂基的α位上形 成磷葉立德(phosphorus ylide)造成異構化,如此一來,氫譜上就只剩下兩個未知的

氫,便假設反應機構如 Scheme 2.3:

鑑定至此,還不確定的兩個氫可以嘗試用 HMQC 與 HMBC (Heteronuclear Multiple Bond Correlation),以 ${}^{1}J_{CH}$ 與 ${}^{n}J_{CH}$ (n \geq 2)兩種氫與碳對應關係來解結構; 光譜如下。

由圖 2.9 中得知,¹³C NMR 中 37.67 ppm 是 NMe₂ 的碳,而 49.08、52.26 ppm

則代表兩個 OCH₃,126.26 ppm 對應 6.22 ppm 的氫,依照其碳譜的化學位移推測 應該為雙鍵上的氫,另一個氫在 2D 光譜裡面看不見訊號,只能繼續以圖 2.10 來 觀察與 H_a距離兩個鍵以上的碳;圖中可見 H_a與 62.25,71.22,82.90,148.31 ppm 有 關聯性的訊號出現,中間兩者為碳六十上的 4、5 號碳 (圖 2.11)的訊號,前者則 為 3 號碳的訊號,後者為雙鍵上沒有氫的 1 號碳,比對至此,其氫碳之間的相對 關係恰與 Scheme 2.3 中的產物結構符合。此結構產物並非原本預期的三圓環產物, 而是產生了另一種的五圓環結構。

2.3.2 envne 7 與 PPh₃、碳六十之反應

由於化合物 8 並不符合文獻所預期的結構,在此,選擇重複文獻的實驗³³,以 enyne 7、triphenyl phosphine 與碳六十在甲苯下反應,依照化合物 8 的合成步驟在 條件上做些微調整。實驗條件與結果如下頁表 2.1:

表 2.1 化合物 9 之合成條件

	C ₆₀	enyne 7	PPh ₃	Temp	structure
文獻	1 eq	1.9 eq	2 eq	50 °C	三圓環
本章	1 eq	1.2 eq	10 eq	50 °C	五圓環

化合物9的合成是同樣也在 50°C 下進行的反應,所以上表的重複實驗中,由 於反應性較低,相對的需把親核試劑 PPh3做增量的調整,意外的發現主要產物在 ¹H NMR 中有兩組單重峰 (singlet) 的氫訊號 (4.7 ppm-6.6 ppm),有兩組與化 合物8結構相似的訊號,並沒有出現雙鍵上兩個氫的 dd 分裂,可知產物為五圓環 並非文獻所報導的三圓環結構。另外,兩隻 OCH3都有明顯分裂;³¹P NMR 在 17.83 ppm、20.39 ppm 也有兩個訊號;第59、60 號碳有各有兩組相近的訊號,種種訊息 都告訴我們在室溫下就可以觀察到兩組異構物,並且結構與化合物 8 相似。而文 獻中的產物在此條件中雖有被觀察到,但是為數極少 (trace)。

2.4 HMPT 與碳六十之反應

在 Scheme 2.4 的反應中,使用鄰一二氯苯 (o-DCB) 作為溶劑時,觀察到副產物 (side product) 化合物 10 的生成,且與主要產物 5 的比例大約是 1:6,在¹H NMR 中,只有明顯的兩組 doublet,其中一組為 NMe₂ 的氫 (3.27 ppm),剩下另一組 (7.34 ppm) 偶合常數為 27 赫茲的二重峰 (doublet),且質譜 (M+H⁺) m/z = 857.0845, 證實了沒有 DMAD 參與反應的產物,只有 HMPT 與碳六十反應。HMPT 同樣做為

親核試劑,只是這次攻打的對象並非 DMAD 而是碳六十。

HMQC 圖譜 (圖 2.12) 中,只看見三個點,其中有一個是代表氣仿的氫與碳 有關聯的訊號;另外兩個點分別為 37.83 ppm (¹³C NMR) 對應 3.27 ppm (¹H NMR) 與 57.53 ppm (¹³C NMR) 對應 7.34 ppm (¹H NMR),前者為已知的 HMPT,由於具 有三個 NMe₂,在¹H NMR 中的積分值理論上應為 18 的倍數,但實際積分值卻為 13.25 的倍數 (假設 7.34 ppm 為一個氫),與兩組 NMe₂所擁有的 12 個氫很接近, 又 在 紅 外 線 光 譜 中 見 到 1509 cm⁻¹ 有 P=O 雙 鍵 的 訊 號 (與 HMPA, Hexamethylphosphor- triamide,中 P=O 訊號接近,圖 2.13³⁸),可能由系統中少量的 H₂O 作為質子 (proton) 提供者以及參與水解產生 P=O 雙鍵。於是推測其結構與機 制如 Scheme 2.4 所示。

2.5 紫外光譜與循環伏安數據分析

圖 2.14 的藍色線條表示化合物 5 在濃度 5.0×10⁵ M 下所測得的紫外-可見光 譜,而紅色線條表示化合物 6 在濃度 2.7×10⁻⁵ M 下所測得的紫外-可見光譜,而 實線代表光徑為 10 mm 所測得的曲線,虛線代表光徑為 1 mm 所測得的曲線。通 常紫外光區的 213、257、329 nm 為碳六十的吸收,由圖可知,在接上官能基修飾 以後此區域 (400 nm 以下) 並沒有增加或減少 peak 數量,327 nm 的訊號昇高,可 能是因為接上的官能基在此些區域也有吸收;而原本碳六十在 408 nm 也有小的特 性吸收峰,在此類化合物中,位移到了 430 nm 左右。在可見光區部分化合物 5 在 489 nm 有個明顯的吸收峰,540 nm 有個較不明顯的吸收峰,而化合物 6 中此兩吸 收峰幾乎消失,仔細觀察光徑 10 mm 的曲線可以發現,化合物 6 在 400 到 600 nm 之間還是有兩個緩降的起伏吸收訊號,在此推測三圓環在 489 與 540 nm 左右的吸 收會比五圓環明顯。 圖中光徑 10 mm 的曲線還可見在 700nm 左右有明顯的吸收

峰,此吸收峰的位置則關係到能隙 (band gap) 的大小。

圖 2.15 化合物 5、6、8、9、10 之紫外可見光譜疊圖

圖 2.15 中為此章節所合成之化合物的紫外一可見光譜比較,化合物 6、8 和 9 皆為五圓環結構, 化合物 8 和 9 不同的地方在於磷旁邊的配位基各為苯 (Ph) 和 二甲基氮 (NMe₂),在吸收峰波長方面看此两不同取代基的差異並不會影響紫外 一可見光的吸收。在此章中,若以三圓環與五圓環比較化合物 5 與化合物 6、8 和 9 會發現在 500 nm 附近的吸收峰有明顯的不同,三圓環在較高的 489 nm 而五圓環 則在較低的 474 nm 左右,540 nm 的部分由於吸收峰不明顯,看不出什麼改變。跟 之前所比較的化合物皆不同的 10 號曲線在整個吸收波段的訊號都顯得特別小,由 此可猜測單純的磷化物直接在碳六十上修飾對於紫外一可見吸收光譜可能不會有 太大影響。

圖 2.16 為還原電位的比較;由循環伏安法來測量化合物的還原電位,在此我 們使用 HPLC 級的鄰二氯苯 (o-DCB) 作為溶劑,參考電極為銀電極 (浸在溶有 0.005 M 的硝酸銀溶液中),工作電極為碳纖維電極,輔助電極則為鉑電極,而下 圖為已將參考用的鐵莘 (ferrocene) 的半波還原電位定為零以利比較。

表 2.2 化合物 5、8、9、10 之能隙、還原電位、LUMO 及 HOMO

化合物	Band Gap	還原電位	LUMO	HOMO
5	1.72	-1.25	3.58	5.30
8	1.67	-1.24	3.60	5.27
9	1.68	-1.27	3.56	5.24
10	1.70	-1.19	3.64	5.35

以1240 除以 UV-vis 光譜中波長最長的吸收峰做切線對 X 軸所得到的值,可 以得到化合物的能隙值 (Band Gap) ,而 LUMO 可以由環伏電位的圖中得知, LUMO 的值加上能隙值即可獲得 HOMO。表 2.2 中,化合物 10 的第一還原電位最 大,其獲得電子能力最強很接近碳六十的-1.13²⁷,表示單純磷化物修飾於碳六十上 並沒有顯著改變;而三圓環化合物 5 接受電子的能力介於 8 與 9 之間;化合物 8 與 9 的結構一樣,只有磷的配位基為甲基氮 (化合物 8) 與苯 (化合物 9) 的不同, 化合物 9 的 HOMO 因為有了芳香環的介入而比化合物 8 來的高,相反的,LUMO 卻降低了;若以越高 LUMO 的電子受體材料與某一固定電子受體材料做為元件搭 配的話,其 LUMO 越高越有利於 Voc 的提升。由表 2.2 可看出 LUMO 最高的是化 合物 9,但是由於它的溶解度不佳,所以選擇第二高的化合物 5 來做元件。

2.6 結論

成功製做出含氮的碳六十衍生物,雖然對水並沒有好的溶解度,但是新的結構在應用方面也多了另一個選擇。使用 enyne 7 以及 HMPT 反應時,會在碳六十上 形成五圓環結構,若改以 PPh3時,發現不只可以形成文獻中提到的三圓環結構, 也會形成五圓環結構。而使用 DMAD 為反應的炔類所得到的化合物 5 在加入醋酸 後也會變成五圓環結構。並且發現直接以碳六十與 HMPT 反應,可以得到化合物 10。

1896

3 對稱共軛多炔與三級膦級碳六十之反應探討

3.1 研究動機

有鑒於前一章節推測三圓環在紫外一可見光譜吸收中表現的比五圓環來的 好,且化合物5在LUMO的表現也不差。此章節則以不同的磷化物為親核試劑來 與反應性更好的 dimethyl hexa-2,4-diynedioate 反應,而此結構與 DMAD 僅相差一 個参鍵,我們預期此類產物也會為三圓環,同樣比較其紫外一可見光譜吸收以及 循環伏安曲線,以利未來的元件製作。

在此章節所用的 dimethyl hexa-2,4-diynedioate 簡稱 diyne 1,此反應物是由 methyl propiolate 在充满氧氧的反應瓶裡,以 Hay Catalyst 催化使兩個具有甲脂基 (-CO₂Me) 的末端烘相互偶合 (coupling) 形成的³⁹。

此反應中預期磷上的孤對電子也會如形成化合物 5 一樣,攻擊羰基α位上的 碳,假設經由與化合物 5 一樣的反應機構,產生三圓環的碳六十衍生物,並且保 有一個参鍵,預測的反應機構如下 (Scheme 3.1):圖中三級膦的孤對電子打再 diyne 1 的α位上形成 A,在攻擊碳六十形成 B,碳六十的負電再攻擊缺電子的雙鍵形成 含有 ylide 的結構 11a,而此結構具有共振式產生異構化 (11b, 11c)。

此節以推電子的三級膦來做為親核試劑,先將1當量碳六十以及10當量三級 膦並以1,2-二氯苯 (o-DCB)將其溶解置於圓肚瓶,再以5 mL/h的速度將1.2當 量的 diyne 1 打入反應瓶中 (式 3-1);而 diyne 1 本身應為無色至淡黃色液體,在完 全抽乾溶劑後顏色會變深。在滴入 diyne 1 的過程中,可以觀察到反應中顏色改變 比使用 DMAD 時還要快,約莫半小時就呈現紫褐色,此顏色可能為產物的顏色或 是 diyne 1 (其抽乾後會呈現深褐色) 所造成。經過 TLC 檢驗後,得知此兩個不同 三級膦參與反應下只得到一個產物,即使溶液顏色與多數三圓環的碳六十衍生物 在溶液中所呈現的紫紅色有差異,在此還是假設其反應照著 Scheme 3.1 所進行。

根據文獻以及第二章實驗結果的經驗,若出現異構物在室溫轉變到低溫下通 常磷光譜可以看到兩根訊號,但是此化合物的³¹P NMR 不僅在室溫下只在 62.67 ppm 有一根訊號,-50°C 的低溫下也只看到 63.43 ppm 一個訊號;由磷葉立德的 C=P 在¹³C NMR 的二重峰數量也可以看出是否具有異構物,表 3.1 中有幾個含有 HMPT 的磷葉立德的化合物其 C=P 訊號都很接近 46 ppm。⁴⁰化合物 **11** 中 C=P 訊 號在 49.06 ppm 且 ${}^{1}J_{PC} = 196.3 \text{ Hz}$,與表 3.1 的值相近。

表 3.1 鄰位有 HMPT 之化合物之 ³¹P NMR

圖 3.2 化合物 11 之¹³C NMR 放大圖 (45-85 ppm)

圖 3.3 化合物 12 之¹³C NMR 放大圖 (35-90 ppm)

而圖 3.2 中位於 49.02 ppm 的二重峰 (${}^{1}J_{PC} = 196.3 H2$),其化學位移與表 3.1 的 幾個類似結構相近且只有一組二重峰,否定了產物具有異構化的說法,但也很有 可能其異構化速率太快導致 ${}^{31}P$ NMR 觀測不到;接著,在標記 ${}^{13}C$ NMR 訊號時也 出現了不符合的現象,而使用 PCy3 當親核試劑時也有一樣的狀況,若比照化合物 5 的 ${}^{13}C$ NMR 訊號,可以標記出 77.22 (化合物 11)、78.57 (化合物 11);76.11 (化 合物 12)、78.55 (化合物 12) ppm 分別為此兩化合物碳六十上的 sp³ 訊號 (第 59、 60 號碳),而 75.69 (化合物 11)、83.46 (化合物 11);75.20 (化合物 12)、82.57 (化合 物 12) ppm 的兩根訊號為未反應的参鍵。49.45 (化合物 11)、53.44 (化合物 11);48.42 (化合物 12)、53.18 (化合物 12) ppm 為兩個 OCH3 訊號以及 48.68 (化合物 11)、48.21 (化合物 12) 為第六十一號碳的訊號。而訊號較小的雙重峰為 C=P 的訊號,其偶合 常數大於一百;除了一般正常的三圓環 sp³、兩個 sp (炔)、兩個 OCH3 以及 C=P 這 幾個碳以外,還多出四個訊號 (圖 3.2、3.3 中打圖的訊號)。

圖 3.5 化合物 12 之紅外線吸收光譜

若依照 scheme 3.1 的結構所示,應該會出現六個 sp³以及兩個炔類的 sp 訊號共 八個,由於多出了四個 sp³碳 (圖 3.2、3.3 打圈處)的訊號,在分子量不變的情況 下,結構就顯的不是原本預測的這麼單純,故提出了多個假設的反應機構以推測 可能的產物結構。

基於在紅外吸收光譜中觀察到1750與1625 cm⁻¹左右有兩個羰基的吸收峰(圖 3.4、3.5),表示兩個羰基具有不同的化學環境,進而假設磷上的孤對電子與推測的 一樣,反應的第一步皆為攻擊 diyne 1 羰基的α碳位置,形成在雙鍵上帶有負電荷 的中間體 (F, Scheme 3.2),假設以下反應機制:

此推測結構 (Scheme 3.2) 中,在¹H NMR 中是看不出差異的,³¹P NMR 理應 因為異構化而有兩個訊號才對,除此之外,兩個羰基一個有共振而另一個無,符 合紅外吸收光譜所顯示的兩個羰基訊號,而炔類的吸收很小,並不一定看的到, 而二氧化碳的紅外線光譜位於 2353 cm⁻¹;除了³¹P NMR 不合以外,Scheme 3.2 的 第三步中,A上碳六十上的電子與参鍵反應變成一四圓環的中間產物 B,而雙鍵上 的負電荷並不穩定,故很快的變成参鍵並且將環張力大的四圓環斷開將原本 diyne 1 的兩個参鍵拆成兩邊形成 C 且可能暫時脫去三級膦並形成平衡,最後再以三級 膦的孤對電子打在三鍵上並與碳六十上另一個雙鍵反應形成 E,計算其 sp³的碳共 有八個,再加上炔上的兩個 sp 碳共十個,比碳譜上測得的十二個碳還少了兩個, 故 ¹³C NMR 碳數上也不合。

比對 ¹³C NMR 上多出的 sp³ 訊號,與接在氧上的碳位 置範圍接近,故假設 OCH₃ 可能從羰基離去,從脂類變酮類,進而接到碳六十上的雙鍵上,近而增加 ¹³C NMR 中 sp³ 的碳數,反應機構假設如 Scheme 3.3:碳六十上的負電荷攻擊羰基使得 OCH₃ 脫去形成親核試劑,攻擊碳六十上的雙鍵,如此一來 sp³ 的碳數就會增加兩個,與 烘類 (sp) 碳數總和為十個碳,還是比碳譜測量的碳少兩個;比較文獻中類似結構 (22) 的碳譜,兩個羰基中碳的位置分別在 185.15 ppm 的二重峰 ($^{2}J_{PC} = 10.6$ Hz) 以 及 178.94 ppm, ⁴¹與此結構中 ¹³C NMR 的位置 [圖 3.6、圖 3.7:分別在 168.72 ppm 的二重峰 ($^{2}J_{PC} = 19.2$ Hz) 與 164.64 ppm 以及 169.35 ppm 的二重峰 ($^{2}J_{PC} = 15.3$ Hz) 與 164.99 ppm] 相差超過十個 ppm,比較文獻得知酮類在 ¹³C NMR 中比脂類較為 downfield,總結此結構除了碳數少二以外, ¹³C NMR 也存有疑點。

圖 3.7 化合物 **12** 之 ¹³C NMR 放大圖 (600 MHz)

綜觀此小節兩個碳六十衍生物的紅外吸收光譜發現参鍵的吸收特別小,因此 假設第二個参鍵也參與反應,但又因為¹³C NMR 在 100 至 120 並無訊號,因此在 產物不會有雙鍵產生的前提下假設以下幾個反應機制 (Scheme 3.4、Scheme 3.5、

Scheme 3.6) :

Scheme 3.4

Scheme 3.4 中,先形成第三步的三圓環結構 (G),且葉立德 (ylide) 位於脂類

的α碳上,由葉立德上的電子打向γ碳上形成 spiro 的結構 (H),且另一個参鍵變成 雙鍵且帶有負電荷,雙鍵又繼續與碳六十反應 (I),將負電荷轉移到 spiro 環上, 經過三圓環的斷鍵之後有兩種可能產物路徑:一種為保留兩個脂類,但是會有雙 鍵在結構中(J);一種為甲氧基脫去,形成具有 spiro 結構的 ylide ketone (K)。前者 只有六個 sp³的碳,比一開始假設的三圓環結構還少兩個碳,此假設結構雖與¹H NMR 和紅外線吸收光譜訊息吻合,但是多出了一個雙鍵,明顯與¹³C NMR 不合, 故不列入可能結構。後者的 sp³碳數為十個,而 spiro 兩邊分別是三圓環以及四圓 環而四圓環上含有葉立德在酮基的α位上,由於四圓環與五圓環張力不同,電子 雲密度分不也不同,所以在此羰基的化學位移與五圓環中羰基的位置可能會不 同,加上碳數不合,所以此結構也不太可能產生。

Scheme 3.5

另一種同為兩個参鍵皆反應完的可能機制如 Scheme 3.5:首先以三級膦攻擊 diyne 1 的β碳位置,進行類似[4+2]環化反應在碳六十上形成六圓環,經過外接六 圓環與碳六十上的雙鍵電子轉移後,形成類似圖 3.9 結構的中間體 23,⁴²,如此一 來即使形成 ylide,碳上的負電荷也不會共振到脂類的 C=O 雙鍵並且符合 ³¹P NMR 的一根訊號,但由於 L 的環張力太大,所以三級膦的三圓環斷開產生正負電荷分 離的過度狀態 M,經由負電荷與碳六十上雙鍵反應產生了一個多環且形狀扭曲的 產物 N,由於此預測結構的環張力太大故並不會進行此反應路徑。

或是假設磷上的孤對電子打在 diyne 1 的β碳後 (Scheme 3.6), 與碳六十的雙 鍵反應後,電子再攻擊另一個β碳使参鍵斷開形成雙鍵上帶有負電的過度狀態 (O),接著經過 5-exo-dig 的環化將分子上的参鍵變成帶負電的雙鍵 (P),再藉著電 子與碳六十反應後將兩個雙鍵都變成 sp³的碳,並且在脂基的β位置成功形葉立德 (Q),此結構還具有 12 個 sp³碳,與¹H NMR、¹³C NMR、³¹P NMR、MASS 皆吻合, 但是 Q 中三級膦旁邊有個四級碳的鍵角大於 109.5° 導致張力過大,故此結構也不 太可能形成。由於假設各種不同結構若要比較核磁共振光譜中 sp 與 sp³碳的位置

較為複雜難比較,因此整理皆具有葉立德型態的結構之紅外線吸收光譜比較,若 葉立德位於羰基的α碳上會明顯比單純脂類的羰基之紅外線吸收波數更低如表 3.2,各個化合物的波數皆有兩個值,而較大的數值是單純的脂類 C=O 雙鍵的吸 收,較小的則是在脂基的α位上有三級膦的吸收;觀察同樣的炔類與不同的三級 膦反應會對羰基在紅外吸收光譜的數值的不同。

表 3.2 含三級膦碳六十衍生物之 IR 比較

反應物化合物	炔	三級膦	IR (羰基)
40	DMAD	PPh ₂ OMe	1728, 1631
41 DMAD		$P(OEt)_3$	1733, 1629
42	DMAD	$P(OMe)_3$	1734, 1628
43	DMAD	$P(OBu)_3$	1734, 1631
44	DMAD	$P(Chx)_3$	1726, 1610
45	DMAD	$P(Cpt)_3$	1724, 1606
46	DMAD	PPh ₃	1729, 1621
47	DMAD	$P(d_5-Ph)_3$	1728, 1619
48 DMAD		P(p-tolyl) ₃	1728, 1615
5	DMAD	HMPT	1738, 1620

6	DMAD	HMPT	1722, 1607
11	Diyne 1	HMPT	1750, 1629
12	Diyne 1	$P(Chx)_3$	1744, 1621
13	Diyne 1	PPh ₃	1749, 1628
14	Diyne 1	P(OEt) ₃	1750, 1631

表 3.2 內化合物 40-48 已在過去文獻發表,在此將使用含有一個参鍵的 DMAD 與各種不同的三級膦及碳六十反應之衍生物之紅外線吸收整理列於表內,31,32,33而 化合物 5 所含的三級膦之前沒出現過的 HMPT,比較結果發現若使用拉電子基如 苯基或是烴氧基 (alkoxy group) 時,羰基的紅外吸收峰數值都會比較高,尤其在 α 位具有三級膦的羰基更為明顯,其波數最大差值可以到 25 cm⁻¹;而化合物 5 加 醋酸之後的產物結構上改變了,從三圓環變成五圓環,而且三級膦旁的脂基脫去 一個甲氧基變成了酮基,由於從 C-C(O)-C 夾角為 120°變成了 C-C(O)-C 夾角介於 108°與120°之間的五圓環且造成環張力的增加,故使得 C=O 的紅外吸收往較低波 數位移了 13 個波數 (從 1620 cm^{-1} 到 1607 cm^{-1})。根據文獻以及化合物 5 的紅外 吸收光譜得知,若使用 DMAD 以及不同種類 (具有拉電子或推電子基) 的三級膦 與碳六十反應所得的衍生物,其兩個脂基的 C=O 吸收峰分別會出現在 1724 至 1738 cm^{-1} 之間(單純脂類)以及1606至1629 cm^{-1} 之間(α 位有三級膦之脂類),而此 小節所改進的 diyne 1 比 DMAD 多了一個参鍵,其測量值很明顯都在 1750 cm⁻¹ 左 右與文獻中測量值不同,故推測若参鍵尚存在且緊鄰著一個甲脂基,此時甲脂基 會因為参鍵的 sp 混成軌域使得碳上的電負度增強,可能影響到葉立德與脂基共振 的程度,故造成 C=O 雙鍵的吸收有些許增強,而另一個 C=O 吸收範圍為 1621 cm⁻¹

至 1631 cm⁻¹,與使用 DMAD 時所得到結果差不多,但是若在β位則葉立德仍可以 根参鍵甚至更遠的甲脂基共振,但是無文獻可比對紅外線吸收光譜,故依照表 3.2 之比較可以假設使用 diyne 1 做反應所得的衍生物上的三級膦較有可能位於脂基的 α位上。

但是 ³¹P NMR 中即使在低温 (-50°C) 也只能看到一根訊號也就是α位沒有 三級膦而不會有異構化發生,此訊息與紅外吸收光譜的數據互不支持,其中應該 以 ³¹P NMR 的數據較有參考性,除了前面兩種假設的反應機構 (β位具有三級膦的 脂基)外還有一種可能機構 (Scheme 3.7)。此假設的三圓環結構中,磷的附近並沒 有可供共振的結構,故³¹P NMR 測出應為一根訊號,並且也符合¹H NMR,但是 經由表 3.2 中知道有共振的 C=O 吸收值與沒有共振的吸收數值相差很大 (大於 100 cm⁻¹),而在 Scheme 3.7 結構中 ylide 經由参鍵應該不會有如 ylide 在脂基α位那麼 明顯共振到羰基,所以兩個脂基的紅外吸收光譜與文獻中使用 DMAD 所得的產物 應有所偏移,而實際測量值相差 10 cm⁻¹ 以內,倒是為共振的脂基吸收相差大於 10 cm⁻¹,令人懷疑此結構的可能性。推論至此,主要不合的數據資料有:¹³C NMR 碳數不合、紅外吸收光譜存有疑問。

有鑒於紅外吸收光譜中,任一位置的化學鍵振動吸收並非只有一種可能性,若 以其吸收值來判定官能基或是構型較為不具說服力,所以先專注於¹³C NMR 碳數 不合的問題。根據表 3.2 中以 DMAD 為主的碳六十衍生物的¹³C NMR 光譜中得知, 在 75 ppm 會有兩根很近的訊號,那是在碳六十上第 59、60 號碳;兩根甲基因為 有氫所以訊號很大容易判斷;第 61 號碳通常在甲基的附近;且有一組二重峰,其 偶合常數大於 100 Hz 為葉立德上碳的訊號,所以在圖 3.8 中,扣掉多出的四根打 圖的訊號,剩下的就是參鍵的訊號,在 77 ppm 的左右兩邊(70 ppm 與 82 ppm 左右), 而第 59、60 號碳位於 77.22 與 78.57 ppm。由於在此章節中,變換不同三級購所得 到的產物都與打圈的四根訊號有很接近的化學位移,並且其訊號的相對高低也都 幾乎一樣,所以大膽假設此為兩個氧接在碳六十上形成兩個環氧三圓環結構 (epoxide) 如 24,雖然如此假設,但是到目前尚未能確定氧的位置,只知道多了兩 個氧就可以符合¹³C NMR 光譜。

由於以 FAB 測量的能量太強, 訊號強度都偏低並不是很容易看見氧化結構之訊 號, 只能在 M⁺加上 30-36 附近找到第二個較高強度之訊號值(在此 M 為碳六十、 炔類、三級膦三者分子量相加),所以我們改用 MALDI TOF MS/MS 測量, 在最大 根的 peak 旁邊還有一個 M+16 以及 M+32 的訊號如圖 3.9 (化合物 11), 而在化 合物 13 中 (圖 3.10), 卻只有看到 M+16 的訊號, 對於到底是一個氧或是兩個氧 存在著疑問, 因此將先前推測過可能的結構加上一個或兩個氧重新檢驗其可能性。

圖 3.10 化合物 13 之 MALDI TOF MS/MS

討論已推測過的結構之前,還有一種可能形成的三圓環結構並且被兩個氧所 氧化,反應機構如 Scheme 3.8,當三級膦打在脂基的α位之後,經由共振形成三個 雙鍵相鄰的過度狀態,接到碳六十上後形成三圓環,在經由共振將三個相鄰的雙 鍵變成一個参鍵且葉立德在相鄰的位置,經過氧化後接上兩個氧。由於¹H NMR 只能判斷有無三級膦上以及甲脂基上的氫,故經檢驗後只要有看到應有的訊號即 算光譜吻合,不太具有判斷結構上的幫助;sp³+sp 碳共有十二個,所以¹³C NMR 也符合;由於此結構可能會有異構化,故³¹P NMR 不一定符合;而此結構的兩個 甲基在紅外線吸收光譜中葉立德旁邊的脂基吸收值在範圍內,但是另一組不合, 因為脂基旁邊緊鄰的是 sp³碳並非 sp 碳,根據表 3.2 所整理出的結論,其吸收數值 應座落在 1735 cm⁻¹上下。

Scheme 3.8

或是 scheme 3.3 中的結構的一個雙鍵被氧化 (25) ,也可以在 ¹³C NMR 中看 到十二個 sp³訊號,而此結構還會有另一種可能,若 OCH₃ 脫去以後,因為氧原子 的關係就近打在離羰基較近的雙鍵上形成 26 的結構 (25、26 中的環氧基也可能在 另一邊的[6,6]環上),此結構唯一不合的地方就是酮基在¹³C NMR 的訊號應該在 180 ppm 上下,而在此卻只出現在 168 ppm 左右,由於找不到類似的酮基結構也具 同樣在 170 ppm 出現訊號,故此結構雖然只有¹³C NMR 的一個訊號不合,但還是 存有疑問。

若回歸 27 結構所示會發現,不論在¹H NMR、¹³C NMR、紅外吸收光譜中皆 吻合;理論上α位上有葉立德就應該要有共振產生異構化而有兩個³¹P NMR 訊 號,但是若在碳六十上另外兩個雙鍵都氧化形成環氧基 (28),可能會因為立體障 礙的關係變成有共振但是鍵無法旋轉,導致觀察不到異構化。

多數脂基 (非碳六十衍生物) 旁為参鍵或是 sp³碳其紅外吸收光譜都大約座落 在 1704-1716 cm⁻¹之間,表示有無在参鍵旁邊不太會影響到脂基的紅外線吸收, 故在已確定氧化下,改以三級膦攻擊 diyne 1 的β碳並形成三圓環,但還不知道氧 的位置在哪,至此先推測兩個氧會與参鍵在同一個六圓環上 (27a、28a)。三級購 到底攻擊脂類的α或β碳一直令人猶豫,但是經由紅外線吸收光譜又並不是那麼的 有說服力,畢竟每種不同結構會有不同結果,所以重新檢視¹³C NMR,比較不同 結構的²J_{PC}以及³J_{PC},發現³J_{PC}大於²J_{PC},而且在大部分的時候²J_{PC}並不是很容易 觀測到,即使觀測到值也很小約在 10 Hz 上下或更小,反觀這一小節幾個化合物 J_{PC}的值大約都落在 15 Hz 左右,而且每一個化合物都觀測的到 J_{PC}值,若依照偶 合常數²J 或³J 大小來判斷,三級膦上孤對電子所攻擊的位置也有可能為脂類的β 碳。

圖 3.11 碳六十上同一個六圓環之三個雙鍵皆反應之衍生物

關於氧化方面也有文獻指出碳六十上若有環氧基在質譜中並不是很容易觀 測到,若以 thermospray 方法測量 C₆₀O 相對於 TD-FAB-MS 與 TD-CI-MS 所得到的 值分別為 2.5 倍以及 100 倍,⁴³而含有 C₆₀O₂與三圓環結構在碳六十上同一個六環 上的衍生物結構如圖 3.11 並非第一次被發現,⁴⁴但是由於此結構是由以分離出的 C₆₀O₂來反應,故氧的位置早已被限制。已知有兩個環氧基,只需決定三圓環結構 之外的另外兩個環氧基的位置即可; 而過去文獻曾以模擬計算比較 C₆₀O₃之異構物 能量大小如圖 3.12,⁴⁵ 推測若已有一個三圓環在碳六十上而另外兩個環氧基的位置 會跟圖中能量為 0 eV 的位置相同。故 27a、28a 結構應改為 27b、28b。

圖 3.12 以 Huckel Model 計算 C₆₀O₃ 異構物的能量,上排三個為最低能量之構型,下排三個為三個最高能量之構型,以最低能量定為0 eV。

圖 3.14 化合物 12 之 HMBC 光譜

將化合物 12 送測 HMQC (圖 3.13) 以及 HMBC (圖 3.14) 後,在 HMQC 中只 有四個訊號,其中兩個是 OCH₃上氫根碳的相關聯訊號,另外兩個點則是 P(Chx)₃ 的訊號;而 HMBC 只有兩個訊號,各為兩個 OCH₃對應到兩個羰基上的碳,兩者 皆為 ³J_{PC} 的相關連,證實了兩個 OCH₃都在脂基旁邊,也說明了並不是五圓環的結 構。此小節所推測的兩結構 (27b、28b) 是可能的。 3.2.2 dimethyl hexa-2,4-diynedioate 與 electron withdrawing phosphine (triphenyl phosphine)、碳六十之反應

式 3-2 為此節之反應。有了前一小節的結構推論,在此也可以大膽的假設由 於兩個環氧基的加入,使得原本在溶液中應該呈現紫紅色的三圓環結構變成了褐 色,而此小節所使用的三級膦的配位基為拉電子基(苯基),相較於推電子基,最 明顯的差異就在於反應速率,直接的影響到反應開始後,溶液從紫色變色所需的 時間。若使用推電子配位基的三級膦反應大概在開始後半小時開始變色;使用苯 配位基的三級膦需要至少一小時才會開始變色,而 diyne 1 的反應性比 DMAD 好 很多,即使在室溫下也可以反應,當 diyne 1 注射結束之後靜置攪拌的時間越久, 就會出現越來越多極性很大的物質,不管使用多大極性的溶劑這些物質在 TLC 上 始終在原點不會移動,直接造成降低產率的原因之一;注射的速度最好為 3-5 mL/h (注射溶液總量為 10 mL),若是注射雙炔的速率太快也會影響到產率,因為雙炔 接受三級膦的電子以後除了找碳六十反應以外,也會找尚未反應的雙炔,若同一 時間點溶液中的雙炔濃度過高會自行聚合,變成黑黑稠稠的外觀,最後產生不溶 的固體,使得產率降低,所以對於雙炔或更高共軛系統的反應物來說,其反應時 間與條件是比較不好調控的。

圖 3.18 化合物 **13** 之 ¹³C NMR 放大圖 (35-90 ppm)

與前一小節相同的反應,本預計只會出現一個產物,但是在¹H NMR 卻出現 兩組 OCH₃(3.29、3.39 ppm 與 3.69、4.03 ppm) 訊號且比例為 3:1 (圖 3.15),且 ³¹P NMR 也是有兩個化學位移接近的訊號 (18.09、17.26 ppm) 且比例跟氫譜一樣都是 3:1 (圖 3.16),像是異構物;但是仔細比較¹³C NMR,除了環氧基那四個碳以外, 羰基 (圖 3.17) 以及 sp³+sp 碳 (圖 3.19) 都有兩組訊號 (打〇以及打X),所以推測 甲氧基在氫譜 (圖 3.18) 3.29、3.39 ppm 為有環氧基的化合物,而 3.69、4.00 ppm 則沒有環氧基在上的結構之訊號。

但是在紅外線吸收並不會明顯觀測到有兩組羰基的吸收訊號,因為環氧基離 羰基距離太遠,不太會影響到 C=O 雙鍵附近的電荷密度,在圖 3.19 中可以清楚的 看到只有一組羰基的訊號,在此圖的炔類吸收較前面兩張清楚,2329 cm⁻¹為二氧 化碳的吸收,而 2158 cm⁻¹就是代表炔類的吸收,也提供了還有一個参鍵沒有參與 反應的訊息。

圖 3.19 化合物 13 之紅外線吸收光譜

由於在³¹PNMR 中也觀測到兩根訊號, 說明此兩混合物皆具有三級膦在化合

物上,因此將此樣品做 HMQC (圖 3.20)與 HMBC (圖 3.21、圖 3.22) 之量測獲得 更多的訊息來判斷其為混合物或是異構物。 IN Service proceedings of the service proceeding of the service proceeding

圖 3.20 化合物 13 之 HMQC 光譜 (600 MHz)

圖 3.22 化合物 13 之 HMBC 光譜放大圖(600 MHz)

圖 3.20 的 HMQC 中四個 OCH₃ 相互關聯的訊號說明了圖 3.18 將化合物的訊號 分成圈叉兩組是沒錯的,而 HMBC (圖 3.21、3.22) 只看到了有氧化之化合物的兩 個 OCH₃與 C=O 有關連,說明了此化合物的甲氧基並無脫去形成 25 或 26 之構型, 結構應該是三圓環並且有兩個環氧基在上。

3.2.3 dimethyl hexa-2,4-diynedioate 與 P(OEt)3 (triethyl phosphite)、碳六十之反應

此小節使用比苯基拉電子能力較弱的配位基 (式 3-3),並以 TLC 追蹤反應, 1896 大約在開始半小時後就有褐色產物出現,此時 diyne 1 才滴入反應瓶 1/4 的量,隨 著時間增加會漸漸出現極性比褐色產物小一點的淡紫紅色的點 (可能為未被氧化 的產物)出現,直到反應結束皆維持一定比例 (紫紅/褐≦1,from ¹H NMR),圖 3.24 中打叉的訊號為 TLC 上紫紅色點,而主要產物為的褐色化合物 (圖中 3.23 打圈之 訊號)。但是在管柱分離時,不管怎麼降低極性或是增長管柱總是看不到兩個顏色 的區段,只看得到主要的褐色產物,或許是在通過管柱時,紫紅色 (三圓環皆呈現 此顏色)產物會與 silica gel 暫時反應變成極性較大的褐色 (三圓環氧化)產物,使 得在管柱裡看不到明顯的紫紅色,通完管柱後以 HPLC 分析,發現還是有兩個訊 號,¹H NMR 也可看出兩組訊號。曾經在偶然的一次發現,若將管柱分離後的混合物溶在甲苯內並取 1 mL 並且觀測其變化,若產物的量很微小的話可以在 HPLC 上看到紫紅色那個時間點會出現的訊號完全消失,僅剩下褐色的訊號。

圖 3.25 化合物 14 之 ³¹P NMR

因此突發奇想,將反應結束的溶液快速通過很短的管柱先分離碳六十後,會 得到兩個比例較相近的混合溶液,由¹H NMR 可以看到明顯的兩組訊號(下頁表 3.3,反應結束),再把兩個混合的產物溶在大量的甲苯下靜置並觀察 HPLC 變化, 最後,比例大約維持在紫紅/褐=5/95 (經 HPLC 積分所得之比值:表 3.3,反應結束 後 24.5 h) 的比例,其中 7.8 分鐘為沒有環氧基的結構之訊號,而 9.6 分鐘為有環 氧基的結構之訊號;也試過將混合物溶在氯仿中並照鹵素燈,會發現只需要十分 鐘兩組訊號就會幾乎變為一組 (圖 3.24),其磷光譜也只有一個訊號 (圖 3.25),但 是也只能維持 90%以上的純度。

表 3.3 化合物 14 之 HPLC 追蹤

反應結束

反應結束後2h

反應結束後 24.5 h

3.3 紫外光譜與循環伏安數據分析

圖 3.26 左) 化合物 5 與 11 疊圖 右) 左圖的局部放大圖

圖 3.26 的實線表示化合物 5 在濃度 5.0×10⁻⁵ M 下所測得的紫外-可見光譜, 而虛線表示化合物 11 在濃度 5.0×10⁻⁵ M 下所測得的紫外-可見光譜。首先比較同 樣以 HMPT 為親核試劑,但不同炔類反應的化合物 5 與 11 的吸收光譜 (圖 3.26), 其所使用的炔類分別為 DMAD (化合物 5) 以及 diyne 1 (化合物 11)。

圖 3.27 實線代表 C60O 在甲苯下的紫外可見光譜吸收, 虛線代表 C60 在甲苯下的紫 1896 外可見光譜吸收。右上圖則溶劑為正已烷。

而使用這兩種烘類代表著應該可以觀測出多了一個参鍵在紫外一可見光譜中 的差別,但是化合物 11 不只多了一個参鍵還多了兩個環氧基在碳六十上,所以還 須知道 C₆₀O₂ 的吸收峰才能夠比較出参鍵的差異,不過在此環氧基的位置尚未明 朗,所以未做此比較;圖 3.27 為 C₆₀O 的紫外一可見吸收光譜,⁴²可以看到氧化後, 虛線的 408 nm 碳六十特徵峰消失了,卻在 424 nm 多了一個特徵峰;680 nm 也多 了一個小吸收峰而這個吸收峰可以決定能隙的大小,而碳六十在 540、600 nm 兩 處本有明顯吸收峰,被氧化後變小只能看到微微凸起,另外在 496 nm 有一較寬的

吸收峰是 C60O 才有的特徵吸收峰。

圖 3.28 左) 化合物 11、12、13、14 疊圖 右) 左圖的局部放大圖

圖 3.28 的紅色線條表示化合物 11 在濃度 4.7×10⁵ M 下所測得的紫外-可見光 譜;藍色線條表示化合物 12 在濃度 5.0×10⁵ M 下所測得的紫外-可見光譜;綠色 色線條表示化合物 13 在濃度 3.0×10⁻⁵ M 下所測得的紫外-可見光譜;紫色線條表 示化合物 14 在濃度 3.6×10⁵ M 下所測得的紫外-可見光譜。408 nm 為碳六十在可 見光區內最明顯的特徵吸收,而碳六十在經過此小節幾個官能基修飾後,圖中可 見 408 nm 的吸收峰位移到了 430 nm;而四個化合物在 500 nm 都在緩降的過程中 有較小的凸起吸收峰,由以化合物 14 最為明顯,此代表著化合物具有環氧結構; 除了化合物 13 比較不明顯以外,其餘三個化合物在 540 nm、640 nm 左右都可以 看到些微凸起吸收。變換官能基並無發現特別不同的吸收峰,只在 700 nm 以上的 吸收峰位置有較大差距。

下皆為放大圖)

圖 3.29 為還原電位的比較;由循環伏安法來測量化合物的還原電位,在此我 們使用 HPLC 級的鄰二氯苯 (o-DCB) 作為溶劑,參考電極為銀電極 (浸在 0.005 M 的硝酸銀溶液中),工作電極為碳纖維電極,輔助電極則為鉑電極,已將參考用的 鐵莘 (ferrocene) 的半波還原電位定為零。

此圖中各化合物的還原峰看起來很亂,幾乎每個還原峰前面都還會有一個小

峰,並非與第二章的化合物一般每個化合物都可以清楚的讀到三個峰值,幾乎每 個峰都很完整,但除了化合物 13 為混合物,化合物 11 與 12 皆為單一化合物,所 以在化合物還原峰前面所出現的凸起小峰應該是因為化合物本身所造成;有趣的 是以混合物的化合物 13 測量,竟然發現在第二還原峰之前本會有的一個小凸起消 失了,其餘峰值與另兩個化合物皆相同。

由於化合物 14 的照光會有不同變化,所以並無測量環伏電位做比較。下表 3.4 中可見若以不同的三級膦做反應其能隙差異並不大,化合物 11、12、13 的 LUMO 都比第二章所有產物還低,同為三圓環的化合物 5,其值約在 3.58 還比此章節三 個化合物高了至少 0.11 V,有環氧基在碳六十上的化合物接受電子的能力比沒有氧 在結構上的化合物來的高,但是若以同一種電子予體高分子混摻只能得到較低的 Voc。由於結構尚未明朗,故此節之碳六十衍生物尚未做元件測試。

化合物	Band Gap	還原電位	LUMO	HOMO
11	1.69	-1.14	3.70	5.38
12	1.69	-1.05	3.78	5.47
13	1.69	-1.12	3.71	5.40

表 3.4 化合物 11、12、13 之能隙、還原電位、LUMO 及 HOMO

3.4 結論

此小節以 diyne 1 欲合成類似化合物 5 之碳六十衍生物,並且更換不同三級 膦,反應條件也一樣,但是在核磁共振光譜中卻不如我們所預期,多了四個 sp³碳 的訊號,比照化合物 5 及其類似結構光譜,加上 ALDI TOF/TOF MASS 測量發現 有比預測分子量多 16 和 32 的訊號,故多出的 sp³碳應為連接氧的碳 (由 epoxide 產生之訊號),因此假設了各種不同反應機構,假設出不同的三圓環或五圓環的結 構,將各結構以紅外線吸收光譜、碳譜與磷譜來刪去不可能的結構,最後舉出三 個較可能的結構 25、26、28,再以二維的 HMBC 證明兩個甲氧基與 C=O 緊鄰, 故只有可能為三圓環之結構。由於結構類似,在能隙中並無觀察到明顯差異;表 3.3 說明化合物 12 之 LUMO 最低,相較其他兩個化合物至少低了 70 mV,故若將 其送元件可能對光電轉換效率會有些微影響。

4 不對稱共軛多炔與三級膦級碳六十之反應探討

4.1 研究動機

擁有 π 共軛越多的分子,其吸收光譜會產生紅位移,也就是往長波長移動,
當 π → π*能階差越小時,UV-Vis 吸收光譜即會看見紅位移現象(如圖 4.1)⁴⁶,
造成能隙(band gap)減小。以 M 為例,從一個三鍵時的吸收在紫外光部分,直到
四個共軛三鍵出現時,吸收峰偏移(shift)到了可見光範圍。

圖 4.1 UV-Vis spectra of: (A) M1 ([…]), P1 (-); (B) M2 ([…]), P2 (-), and (C) M3 ([…]),

P3 (-) in CHCl₃.

碳六十衍生物除了本身的共軛雙鍵以外,其上也能修飾共軛系統,此篇論文 所合成的化合物 11-14,就是其中一種形式。有鑑於此現象,所以在合成上有了延 伸共軛單位的想法,希望能讓碳六十衍生物擁有更多的共軛參鍵 (triple bonds),針 對此合成方向討論結果。

4.2 含 Methyl 5-phenylpenta-2,4-diynoate 之反應

首先介紹如何合成不對稱雙炔 Methyl 5-phenylpenta-2,4-diynoate (以下皆簡稱 diyne 2) ,其與 diyne 1 的差別只在於另一端分別為甲脂基與苯基,故製備方法雷 同。取 1-苯基乙炔 (phenyl acetylene) 以及丙炔酸甲酯(methyl propiolate) 當量數 為 1:1,通氧氟後在 Hat Catalyst 催化下經過十二小時攪拌,會產生兩反應物各自 偶合 (homocoupled) 的 29、30 與互相偶合 (heterocoupled) 的 diyne 2 (Scheme 4.1) ,以正已烷與二氯甲烷比例 1:1 的沖提液收取中間的產物即可獲得,產率約 為 10%。

Scheme 4.1

在第三章使用 diyne 1 時,就發現若將其抽乾秤重會使液體由透明無色漸漸變 成淡黃色到最後的黑色,所以此種共軛参鍵的化合物應該是空氣敏感,所以往後 在做這一系列的共軛参鍵化合物時,經過管柱分離後皆不抽乾溶劑,但又需要得 知產物有多少,跟下反應時取藥的問題,所以我們使用 1,3,5 - 三甲苯 (mesitylene),做為標準物來定量,已知標定物的量那我們就可以用¹H NMR 的積 分值的比例來求得欲標定物的量,當標定物加入含有產物的溶液後只需要取少量 的溶液出來並抽乾溶劑即可測¹H NMR,此法既可以定量也較不容易使化合物變 質,由於常溫或是空氣中會不穩定,所以使用完應放冰箱保存。

4.2.1 methyl 5-phenylpenta-2,4-diynoate 與 PPh3、碳六十之反應

將 diyne 1 其中一邊的甲脂基換成苯基,增強了共軛,理論上可以使紫外-可 見吸收光譜產生紅位移,此章即以此類共軛炔類 (一邊為苯基一邊為甲脂基) 做反 應。 1896

此節反應與製備化合物 13 類似 (式 4-1),只是將共軛参鍵的一邊從甲脂基 改為苯基,故反應時,三級膦會攻擊靠近脂類那一端的参鍵,故只需將化合物 13 離参鍵較遠端的甲脂基換成苯基。在圖 4.2 上可以看到剩下主要一根 OCH₃ 訊號在 3.09 ppm,而 3.14 ppm 的訊號可能為未氧化的產物。

圖 4.3 化合物 13 與化合物 15 之 sp³+sp 碳疊圖 (35-90 ppm)

此化合物溶解度極差,以溶解碳六十衍生物能力最佳的二硫化碳溶解後靜置 半小時後就開始有沉澱產生,造成獲得¹³C NMR 的困難導致其測得光譜解析度都 很差,但圖 4.3 中除了化合物 15 的兩根 sp³碳的訊號 (61.84、65.47 ppm) 與化合 物 13 的訊號相比有些偏移以及 C=P 訊號位置不同以外,可看出化合物 13 未打) 的訊號與化合物 15 的化學位移相近,較明顯的不同就是使用只有一個脂基的雙炔 使得碳譜少了一個 OCH₃ 的訊號, 至此可以判斷化合物 15 即為使用不對稱雙炔所 形成的產物,依照碳譜訊號推測結構應該相似。

有鑒於使用對稱與不對稱雙炔類所得到的產物(化合物13、化合物15)在¹³C NMR 中訊號位移以及 sp³碳的數量大致相同,且因此類(化合物15-17)化合物 溶解度較差便無測量 HMQC 以及 HMBC,所以認為化合物15 結構應如30。改變 炔類反應物,可見到有些微變化反映在產率之上,化合物13 產率為38%而化合物 15 產率為22%,而且後者還需要加熱到80°C才會反應,若在室溫則幾乎不反應, 由此得知 diyne 2 的反應性比 diyne 1 來的低。

圖 4.4 化合物 13 之紅外線吸收光譜

圖 4.5 化合物 15 之紅外線吸收光譜

圖 4.4、4.5 為化合物 13 與化合物 15 此雨者的紅外線吸收光譜,由於一個脂 基換成了苯基所以化合物 15 的光譜中並沒看到 1749 cm⁻¹ 的訊號表示其三級購並 非位於脂類的β位上,而是在α位上,與第三章的結論並不吻合,若要在³¹P NMR 下只看到一根訊號又符合葉立德在α位上就只能猜測結構應為 31、32,藉由一個 甲脂基的脫去使得葉立德雖旁邊有氧可以共振,但無法因共振產生 E,Z 異構物; 雖然化合物 13 在 ¹³C NMR 看來是混合物,但是在紅外線吸收光譜中並無顯著影響 吸收。

4.2.2 methyl 5-phenylpenta-2,4-diynoate 與 P(Chx)3、碳六十之反應

式 4-2 所得之產物在氫譜上 (圖 4.6),皆以 P(chx)3 做反應的兩個化合物 (12、 16) 可以看見產物上的環已烷在 2 ppm 之前的訊號是很類似的,但是後者在 2 至 3 ppm 卻比前者多了好幾個小峰;苯基的部分雖然積分比為 3:2,但是積分比為 2 的部分卻是由兩組二重峰所組成,有別於一般只有兩組的苯基訊號。

碳譜(圖 4.7)中可見,化合物 12 以及 16 之 C=P (ylide) 碳之化學位移分別位於 40.25 (d, ¹J_{PC}=113.8 Hz)、 40.42 (d, ¹J_{PC}=111 Hz),顯示其應為相同化學環境,化 合物 16 比 12 少了一根 OCH₃ 訊號,另外仍舊有兩個偏移較大的 sp³碳的訊號為 61.84、62.51 ppm,其餘的 sp³碳訊號大致相同,可見使用不同雙炔類所得到的產 物上,有一組的環氧三圓環結構其鄰近的化學環境一樣,而另一組的化學環隨著 雙炔類的不同而改變。

圖 4.7 化合物 12(下:150 MHz)與化合物 16(上: 175 MHz)之放大疊圖(35-90 ppm)

不僅氫譜可以見到化合物 12 與 16 的些微差異,在紅外線吸收光譜中也發現 同樣的事情,有別於化合物 13 與 15 在紅外線吸收光譜的相似度,化合物 16 之紅 外線吸收光譜 (圖 4.8) 在 1200 cm⁻¹以及 1400 cm⁻¹ 的吸收峰顯得較化合物 12 (圖 4.9)雜亂,可能因為測量的儀器不同所造成的結果,所以此兩光譜不易比較其相似 度來推測結構類似,只能看出少了 1744 cm⁻¹ 的脂類吸收說明反應物確實為 diyne 2。

圖 4.8 化合物 16 之紅外現吸收光譜

圖 4.11 化合物 16 之 HMQC 局部放大圖

由化合物 12、13 的 HMBC 圖譜(圖 3.21、3.26)可以確定 OCH₃ 為脂類,而 將反應物之一的 diyne 1 改成 diyne 2後,也拿化合物 16 測 HMQC (圖 4.10、4.11)與 HMBC (圖 4.12、4.13),在 HMQC 中觀察到 7.81 (d, J=7.5 Hz),7.95 (d, J=7.5 Hz) ppm 兩個氫的訊號與 131.40,132.57 ppm 有偶合知其為反應物 diyne 2 的苯基訊號, 3.25 ppm 的氫則與 48.43 ppm 的脂類碳 (OCH₃) 偶合,而 3.87 ppm 可以看到一個 較小的訊號,其為是化合物 16 在通過 silica gel 純化時 C=P(Chx)₃ 脫去了 P(Chx)₃ 變成 CH₂ 的另一化合物之甲脂基訊號(參照本實驗室曾政國實驗部分),而在 P(Chx)₃與 enyne 7 與碳六十的反應中也同樣發生了在 silica gel 中 P(Chx)₃即脫離的 現象(參照本實驗室賴立祥實驗部分),說明了酸性條件下,此類化合物可能會產 生脫去三級購的並以氫取代之情形,然而,值得注意的是化合物 17 在碳譜中並沒 有觀察到三級購脫去的情形,與其他兩種三級購有不同的結果。

圖 4.12 化合物 16 之 HMBC 局部放大圖

ppm

圖 4.14 H 與 C₆₁ 有偶合之構型

7.95

33

此雨訊息說明了苯基有兩個氫與 C₆₁ 存在著 ³J_{CH} 的關係,其相對位置如圖 4.14,又知道三級膦位於甲脂基的α位,若將苯基換為甲脂基,則此相對位置與 Scheme 3.8 所推測的結構 (**33**) 雷同,如此一來就可以解釋氫譜苯環區的兩組二重 峰是因為立體障礙的關係而使得連接 C₆₁ 的單鍵較難旋轉才觀察到兩個別的苯環 上氫的訊號。

4.2.3 methyl 5-phenylpenta-2,4-diynoate 與 P(p-Tolyl)3、碳六十之反應

C₆₀+《_______、 + P(p-Tolyl)₃ 化合物 16 式 4-3 此節反應為式 4-3。P(p-Tolyl)₃為 PPh₃上苯基的對位多了一個推電子的甲基使 得磷上的孤對電子親核性更強,故理論上其反應性會比 PPh₃好一些,但是在相同 條件下 (溫度、當量數) 比較此兩種三級膦的產物之產率,卻是化合物 15 (22%) 比 此小節的化合物 17 (12%) 來的高,原因是因為在追蹤反應時,以甲苯當沖提液跑 TLC 片,發現有越來越多極性大的非產物在基線上,即使增加極性至甲苯:乙酸 乙脂=10:1 也不會移動,所以提早在注射 diyne 2 結束後三十分鐘即收反應,反 應時間比 15 少了 1.5 小時導致其產率較低;而基線上不動的高極性物質如前一章 所提及推測也是三級購與炔類反應後,形成雙鍵上帶電子的中間產物並且繼續與 炔類反應而成,因為三級購須與其他親核性物質競爭反應使得產率降低。

圖 4.16 化合物 17 之紅外線吸收光譜

由於圖 4.15 的基線在此系列化合物中較平且無雜訊,所以可以清楚的觀察出 39.76 ppm 只有一組葉立德 (ylide) 的 sp³碳,其餘 sp³碳也都是一根訊號並無分裂, 表示在此類型化合物並沒有異構物的形成。紅外線吸收光譜 (圖 4.16) 中,3271 cm⁻¹ 為儀器系統中的水氣造成,並非因為化合物中有 OH 基;由於此化合物較不 好测得光譜所以導致訊號很小,不容易觀測到脂基上的氫,C-H的部份幾乎只觀 測到苯甲基的訊號,至於沒看到 3000 cm⁻¹ 以上的吸收可歸咎於訊號太小,而且 tri(p-tolyl)phosphine 的紅外線吸收光譜 (圖 4.17) 中 3000 cm⁻¹ 的訊號本就不明顯, 若化合物 17 的訊號本身太弱的話就更不容易觀測到 3000 cm⁻¹ 的訊號了。

圖 4.17 tri(p-tolyl)phosphine 之紅外線吸收光譜

表 4.1 化合物 15、16、17 之羰基 IR 吸收值比較

反應物 化合物	炴類	189至級購	IR (羰基)
15	Diyne 2	$P(Chx)_3$	1615
16	Diyne 2	PPh ₃	1628
17	Diyne 2	P(p-Tolyl) ₃	1607

依照 4.2.2 小節的分析,由 HMBC 推測結構為三圓環,以 diyne 2 為反應物所 拿到的產物上之三級膦位於α位,對照表 4.1 可知之紅外線吸收光譜並無 1750 cm⁻¹ 的脂類訊號可以確定上述為真,而且表中還可以觀察到三個三級膦的配位基推電 子程度為 P(Chx)₃> P(p-Tolyl)₃> PPh₃,但是其脂基之紅外線吸收光譜卻是 16>15> 17,可見使用推或拉電子的配位基對於旁邊脂基的紅外線吸收光譜並無直接影 響。氫、碳跟磷的核磁共振光譜卻只有一組訊號,並沒有異構化的訊號出現(只有 三級膦脫去所得之化合物之訊號),並且在苯環區可以發現兩組二重峰,每個二重峰代表一個氫,若要符合上述訊息,則產物的結構應為34。

圖 4.18 環氧基之位置 圖 4.19 化合物 12、13、15、16 之碳譜(epoxide 部分)

34 結構中,氧的位置為圖 4.18 中所示,綜觀第三章以及第四章的¹³C NMR 可 以發現 epoxide 的四個 sp³碳可分為兩組。由於 PPh₃、P(Chx)₃ 此兩種三級膦皆有與 diyne 1 與 diyne 2 反應生成碳六十衍生物 (13 與 15 含有 PPh₃、12 與 16 含有 P(Chx)₃),所以拿此四個化合物的碳譜疊圖比較差異,圖 4.19 中比較化合物 15 與 化合物 13 或是化合物 16 與化合物 12,可以發現打○的兩根環氧基上碳的訊號位 移較少,而打X的訊號位移較明顯,若以三圓環為對稱面將碳六十分成兩邊,則應 有一組 epoxide 與三級膦在同一側,因為有而另一組因為其鄰近化學環境不同(苯 基或甲脂基)所造成。

4.3 含 methyl 7-phenylhepta-2,4,6-triynoate (20)之反應

由於無法購得雙炔 35、37,所以將 1-苯基乙炔與三甲基矽乙炔 (Trimethylsilylacetylene)進行偶合反應,再以氟化銫 (CsF)去掉三甲基矽,得到参 鍵共軛的末端炔 (37),而反應若有未分離完全的 36 在過量的氟化銫存在下會反應 形成丁炔揮發,再以丙炔酸甲酯與 37 再次進行偶合反應可得到 triyne (20)。

4.3.1 methyl 7-phenylhepta-2,4,6-triynoate 與 PPh3、碳六十之反應

礙於 P(Chx)3較不容易完全除乾淨,且 HMPT 對酸性環境較為敏感,所以選用 PPh3來與 20 (triyne) 反應 (式 4-4),由於 PPh3皆有與 diyne 1、diyne 2 反應,相 信用此三級膦在比較與不同多炔類反應所得之產物的光譜時會較有幫助。

依照前面所推測的結構,若將雙炔換成参炔則碳譜會多兩個 sp 碳的訊號,而 已知化合物 15 有 11 根 sp³+sp 碳的訊號,所以在此應該要看到 13 根訊號,但是 圖 4.21 中打圈的訊號只有 12 根,因此回顧第三章與本章 4.2 小節的化合物,發現 幾個化合物的 OCH₃ 與 C₆₁ 兩個碳之化學位移都很接近,而此兩訊號在同樣含有 PPh₃ 的化合物 15 中為 50.67、50.82 ppm,故推斷圖 4.21 中打圈的訊號應為 13 根, 因為 50.57 ppm 處代表兩個碳的訊號重疊。

而脂基的部分可以看到只有一個被磷分裂的訊號在 169.02 ppm (圖 4.22),由於共軛炔的另一頭是苯基,所以同樣少了另一根甲脂基上羰基之訊號。

4.4 含 methyl 9-phenylnona-2,4,6,8-tetraynoate (21)之反應

Scheme 4.3

為了方便起見,將之前的4-苯基丁二炔(37)做為反應物之一,這樣就只需要在做戊炔酸甲酯(39),即可將兩個不同取代基的丁二炔偶合形成四個共軛炔的化合物21;若為不對稱的多炔類,由 diyne 2 至 triyne 到 tetrayne 的產率不難發現此化合物取得不易,偶合步驟的產率會隨著叁鍵越多而越來越低 [由 48%(diyne 2)

降至 21% (20)甚 16% (21)],且共軛越多保存越不易,最好使用剛收到的多炔產物 來下反應,不要使其暴露於空氣或室溫下太久。

4.4.1 methyl 9-phenylnona-2,4,6,8-tetraynoate 與 PPh3、碳六十之反應

碳譜(圖 4.24)中,168.28 ppm 有偶合常數為 14.9 Hz 的雙重峰,如同化合物 18 一樣只看到一個脂基的訊號,而圖 4.24 可數出化合物 19 的 sp³+sp 碳有十五個,

49.67 ppm 有兩個碳的訊號重疊 (C₆₁ 以及甲脂基 CH₃ 的碳),此疊圖也可以看到 epoxide 中連接氧的四個 sp³ 碳位置沒有因為換了不同的共軛参鍵而有明顯變化, C₅₉、C₆₀在三個化合物中也幾乎沒有位移,只觀察到炔的訊號改變較大;圖中也可 以發現即使化合物含有兩個或三個共軛参鍵也皆有產生三級膦脫去的現象,這是 不對稱共軛炔 (diyne 2、20、21) 才會有的現象,在對稱的共軛炔 (diyne 1) 裡並 沒有觀察到類似的現象。

圖 4.26 化合物 19 之紅外線吸收光譜

圖 4.25、4.26 兩圖為不同儀器所測量之紅外線吸收光譜,前者所用之儀器 有很多吸收峰測不出來,但主要訊息在於脂基的吸收,對於判斷結構並不會有太 大的影響。

4.5 紫外光譜與循環伏安數據分析

圖 4.27 為以 diyne 2 為反應物所製備之化合物之紫外—可見吸收光譜, 紅色線 條表示化合物 15 在濃度 4.2×10⁻⁵ M 下所測得, 黑色線條表示化合物 16 在濃度 4.9×10⁻⁵ M 下所測得, 青色線條表示化合物 17 在濃度 4.9×10⁻⁵ M 下所測得, 而實 線代表光徑為 10 mm 所測得的曲線, 虛線代表光徑為 1 mm 所測得的曲線。濃度 相差不大之下, 並沒有觀察到吸收度特別好的化合物, 在右邊的放大圖清楚看到

化合物 15 與 17 之吸收度的趨勢是類似的,其原因應該是因為所使用的三級膦一個是三苯基膦(化合物 15),另一個為三甲苯基膦(化合物 17),在節構上並無太大不同。而化合物 16 則是使用三環已烷基膦,與同濃度的化合物 17 比較,在400-539 nm 處看到化合物 17 的吸收度較好,但是在 539-655 nm 的吸收度卻略低於化合物 16,655-800 nm 間,兩化合物的吸收度曲線則很接近。

圖 4.28 為比較此章以及第三章含有 PCy3 或是 P(Chx)3 的四個化合物之紫外-可見吸收光譜。在右邊的放大圖可以明顯看出含有 PCy3 的化合物 12 跟化合物 16 的吸收度趨勢一樣;除了 494 nm 處的凸起吸收比另外三個化合物明顯之外,含有 P(Chx)3 的化合物 13 與化合物 15 的吸收度曲線趨勢也一樣,另外可以看到化合物 15 在 535 nm 之後的吸收度下降的比化合物 13 更多,若仔細觀察,會發現化合物

15、16在535 nm後的緩降吸收峰皆比化合物12、13來的快,在430-535 nm之 間則是化合物15、16的吸收度較大,因為並沒有太明顯得凹陷導致較難看出494 nm 的小凸起峰,而此兩組化合物中,結構唯一的不同就是化合物12、13中三圓環的 另一頭是甲脂基,而化合物15、16中三圓環的另一頭是苯基,可推測在此結構中 苯基可以幫助化合物在430-535 nm 區段有更好的吸收。

 15、18、19的吸收度曲線,除了濃度不同以外並無什麼變化,一樣可見由於結構 較其他三個少了苯基的關係使得化合物13在533nm之前的吸收度曲線比較低。

圖 4.30 為化合物 15、16、17 之還原電位的比較;由循環伏安法來測量化合物 的還原電位,在此我們使用 HPLC 級的鄰二氯苯 (o-DCB) 作為溶劑,參考電極為 銀電極 (浸在 0.005 M 的硝酸銀溶液中),工作電極為碳纖維電極,輔助電極則為 鉑電極,已將參考用的鐵莘 (ferrocene) 的半波還原電位定為零。此三個化合物均 為以 diyne 2 參與反應所得之產物,圖中可以觀察化合物到接受電子的能力是 15> 17>16,化合物 16 所用的三級購為含有推電子配位基的 P(Chx)₃,而化合物 15 以 及 17 則是使用含拉電子基的 PPh₃ 以及 P(p-Tolyl)₃ 的三級購,其中又以使用 PPh₃ 的化合物的半波還原電位較低,也就是其 LUMO 是三個化合物中最低的。若與化 合物 11 至 13 比較,可清楚看出,使用 diyne 2 所製備的化合物之 LUMO 反而升高, 變得比較不容易接受電子,原本將一邊甲脂基換成苯基是希望苯基能幫助電子傳

遞,卻會導致 LUMO 都比使用 diyne 1 所得的化合物更高。

圖 4.32 (左)化合物 13、15 之環伏電位圖(右)化合物 12、16 之環伏電位圖

圖 4.31 為三苯基膦與共軛多炔 (雙炔、三炔以及四炔) 與碳六十反應所得之 化合物的還原電位比較。此三個化合物的第一個半波還原電位數值差異不大(最大 與最小數值只差了 0.027 伏特),可以合理推測共軛参鍵越多,對還原電位的影響 並不是很大,反倒是官能基的不同對於還原電位的影響可能會比較大,所以圖 4.32 中做了此類比較(結構中含有相同的三級膦以及以不同的雙炔反應),左邊為含有 PPh3 的化合物 13 與 15,右邊為含有 P(Chx)3 的化合物 12 與 16,可以清楚看出其 中差異,以 diyne 1 為反應物的化合物 12、13 之第一個半波還原電位分別為-1.05 與-1.12 伏特,反觀以 diyne 2 為反應物的化合物 15、16 之第一個半波還原電位分 別為-1.23 與-1.30,其中化合物 16 的 LUMO 還比化合物 12 高出了 0.25 V (表 4.2)。 故在此結構中若將一個甲脂基變成苯基將會使得到電子的能力降低。

表 4.2 化合物 15、16、17、18、19 之能隙、還原電位、LUMO 及 HOMO

化合物	Band Gap	還原電位	LUMO	HOMO	
15	1.69	-1.23	3.61	5.29	
16	1.68	-1.30	3.54	5.21	
17	1.68	-1.28	3.56	5.24	
18	1.68	-1.24	3.60	5.28	
19	1.69	-1.21	3.63	5.32	

4.6 結論

此章在最後推測出最可能結構。在製備此系列化合物後,對照碳譜卻發現碳 數不合的現象,各化合物多出的碳數又很一致,其化學位移也很接近,此時以質 譜以及碳譜之化學位移的位置先判斷多出的訊號為環氧基,並且利用 HMQC 與 HMBC 卻認碳氫的相對關係,逐步將結構解出,而此反應脫離不了文獻中所述之 三圓環結構,其有些許變化則因為參與反應的炔類為共軛炔,所以在三級膦與炔 反應之中間產物會先共振才與碳六十反應,最後在光譜上皆只看到一組化合物的 訊號並無異構物,在此也比對了類似結構 (脂基的α位有三級膦,β位有烯類)的 文獻,^{39,47,48,49}皆只看到一組化合物的光譜,所以有理由相信是因為其異構化速率 太快,導致儀器測量不出,並且所氧化的位置很有選擇性。

性質測量的部分觀察到,不管是更換共軛炔類或是三級膦,對於其紫外可見 光之吸收並不會有太大的影響,但是在循環伏安電位測量上就出現了變化,使用 不同官能基的共軛炔類就可以有明顯的 LUMO 變化,若只改變三級膦的種類,對 於化合物 LUMO 的貢獻並不高。

參考文獻

- 1 Johnson, R. D.; Meijer, G.; Bethune, D. S. J. Am. Chem. Soc. 1990, 112, 8983-8984.
- 2 Ruoff, R. S.; Tse, D. S.; Malhotra, R.; Lorents, D. C. J. Phys. Chem. 1993, 97, 3379-3383.
- 3 Buvari-Barcza, A.; Rohonczy, J.; Rozlosnik, N.; Gilanyi, T.; Szabo, B.; Lovas, G.; Braun, T.; Samu, J.; Barcza, L. J. Chem. Soc., Perkin Trans. 2 2001, 191–196.
- Ajie, H.; Alvarez, M. M.; Anz, S. J.; Beck, R. D.; Diederich, F.; Fostiropoulos, K.; Huffman, R.; Krätschmer, W.; Rubin, Y.; Schriver, K. E.; Sensharma, D.; Whetten, R. L. J. Phys. Chem. 1990, 94, 8630–8633.
- 5 Cyvin, S. J.; Brendsdal, E.; Cyvin, B. N.; Brunvoll, J. Chem. Phys. Lett., **1988**, 143, 377–380.
- 6 Krätschmer, W.; Fostiropoulos, K.; Huffman, D. R. Chem. Phys. Lett., **1990**, 170, 167–170.
- 7 Xie, Q.; Perez-Cordero, E.; Echegoyen L. J. Am. Chem. Soc. 1992, 114, 3978-3980.
- 8 Fagan, P. J.; Krusic, P. J.; Evans, D. H.; Lerke, S. A.; Johnston, E. J. Am. Chem. Soc. **1992**, *114*, 9697–9699.
- 9 Henderson, C. C.; Cahill, P. A. Science 1993, 259, 1885-1887.
- 10 Kusic, P. J.; Wasserman, E.; Keizer, P. N.; Morton, J. R.; Preston, K. F. Science 1991, 254, 1183–1185.
- 11 Bingel, C. Chem. Ber. 1993, 126, 1957-1959.
- 12 Hummelen, J. C.; Knight, B. W.; Lepeq, F.; Wudl, F. J. Org. Chem. 1995, 60, 532-538.
- 13 Green, M. A.; Emery, K.; King, D. L.; Hishikawa, Y.; Warta, W. Prog. *Photovolt: Res. Appl.* **2007**, *15*, 35–40.
- 14 Jain, V.; Rajbongshi, B. K.; Mallajosyula, A. T.; Bhattacharjya, G.; Iyer, S. K.; Ramanathan, G. Solar Energy Materials & Solar Cells 2008, 92, 1043–1046.
- 15 Ghosh, A. K.; Feng, T. J. Appl. Phys. 1978, 49, 5982-5989.
- 16 Tang, C. W. Appl. Phy. Lett. 1986, 48, 183-185.
- 17 Park, S. H.;Roy, A.; Beaupré, S.; Cho, S.;Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A. J. *Nature Photonics*, **2009**, *3*, 297–302.
- 18 Kim, J. Y.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T. -Q.; Dante, M.; Heeger, A. J. Science 2007, 317, 222–225.
- 19 Antoniadis, H.; Hsieh, B. R.; Abkowitz, M. A.; Jenekhe, S. A.; Stolka, M. *Synthetic Metals* **1994**, *62*, 265–271.
- 20 Friedman, S. H.; DeCamp, D. L.; Sijbesma, R. P.; Srdanov, G.; Wudl, F.; Kenyon, G. J. Am. Chem. Soc. 1993, 115, 6506–6509.
- 21 Schinazi, R. F.; Sijbesma, R.; Srdanov, G.; Hill, C. L.; Wudl, F. Antimicrob. Agents Chemother. **1993**, *37*, 1707–1710.

- 22 Wilson, L.J. Interface, **1999**, 8, 24–28.
- 23 Cagle, D. W.; Kennel, S. J.; Mirzadeh, S.; Alford, J. M.; Wilson, L. J. Proc. Natl. Acad. Sci. USA. 1993, 96, 5182–5187.
- 24 Tsao, N.; Luh, T. Y.; Chou, C. K.; Wu, J. J.; Lin, Y. S.; Lei, H. Y. Antimicrob. Agents Chemother. 2001, 45, 1788–1793.
- 25 Sijbesma, R.; Srdanov, G.; Wudl, F.;Castoro, J. A.; Wilkins, C.; Friedman, S. H.; DeCamp, D. L.; Kenyon, G. L. J. Am. Chem. Soc. 1993, 115, 6510–6512.
- 26 Friedman, S. H.; DeCamp, D. L.; Sijbesma, R. P.; Srdanov, G.; Wudl, F.; Kenyon, G. L. J. Am. Chem. Soc. 1993, 115,6506–6509.
- 27 Tokuyama, H.; Yamago, S.; Nakamura, E.; Shiraki, T.; Sugiura, Y. J. Am. Chem. Soc. 1993, 115, 7918–7919.
- 28 Chen, S. -Y.; Cheng, R. -L.; Tseng, C. -K.; Lin, Y. -S.; Lai, L. -H.; Venkatachalam, R. K.; Chen, Y. -C.; Cheng, C. -H.; Chuang, S. -C. J. Org. Chem. 2009, 74, 4866–4869.
- 29 Leroux, Y.; El Manouni, E.; Burgada, R. Tetrahedron Lett. 1981, 22, 3393-3396.
- 30 Asghari, S.; Tajbakhsh, M.; Taghipour, V. Tetrahedron Lett. 2008, 49, 1824–1827.
- 31 Nourmohammadian, F.; Gholami, M. D. Synth. Commun., 2008, 38, 2731-2740.
- 32 Chuang, S. -C.; Islam, A.; Huang, C. -W.; Shih, H. -T.; Cheng, C. -H. J. Org. Chem. 2003, 68, 3811–3816.
- 33 Chuang, S. -C.; Lee, D. -D.; Santhosh, K. C.; Cheng, C. -H. J. Org. Chem. 1999, 64, 8868-8872.
- 34 Chuang, S. -C.; Santhosh, K. C.; Lin, C. -H.; Wang, S. -L.; Cheng, C. -H. J. Org. Chem. 1999, 64, 6664–6669.
- 35 http://www.sigmaaldrich.com/spectra/ftir/FTIR007736.PDF
- 36 Chuang, S. -C.; Islam, A.; Huang, C., -W.; Shih, H., -T.; Cheng, C. -H. J. Org. Chem. 2003, 68, 3811–3816.
- 37 Wenkert, E.; Adams, K.A.H.; Leicht, C. L. Can. J. Chem. 1963, 41, 1844-1846.
- 38 http://www.sigmaaldrich.com/spectra/ftir/FTIR008083.PDF
- 39 Varela, J. A.; Castedo, L.; Maestro, M.; Mahía, J.; Caá, C. *Chem. Eur. J.* **2001**, *7*, 5203–5213.
- 40 Attanasi, O. A.; Baccolini, G.; Boga, C.; Crescentini, L. D.; Giorgi, G.; Mantellini, F.; Nicolini, S. *Eur. J. Org. Chem.* **2008**, *35*, 5965–5973.
- 41 Chuang, S. -C.; Islam, A.; Huang, C. -W.; Shih, H. -T.; Cheng, C. -H. J. Org. Chem. **2003**, *96*, 3811–3816.
- 42 Iwamatsu, S. -I,; Vijayalakshmi, K. P.; Kitamura, Y.; Hamajima, M.; Koike, I.; Murata, S. Physics of Solid State **2002**, *44*(7), 1203–1204.
- 43 Creegan, K. M.; Robbins, J. L.;Robbins, W. K.; Millar, J. M.; Sherwood, R. D.; Tindall, P. J.; Cox, D. M.; Smith, III, A. B.; McCauley, Jr, J. P.; Jones, D. R.; Gallagher, R. T. J. Am. Chem. Soc. 1992, 114, 1103–1105.
- 44 Balch, A. L.; Costa, D. A.; Noll, B. C.; Olmstead, M. M. J. Am. Chem. Soc. 1995,

117, 8926-8932.

- 45 Curry, N. P.; Doust, B.; Jelski, D. A. Journal of Cluster Science, 2000, 12, 385-390.
- 46 Kijima, M.; Kinoshita, I.; Shirakawa, H. J. Mol. Struct. 2000, 521, 279-283.
- 47 Labuschagne, A. J. H.; Malherbe, J. S.; Meyer, C. J.; Schneider, D. F. Synth. Commun., 2002, 32(2), 297–304.
- 48 Kondratov, I. S.; Gerus, I. I.; Furmanova, M. V.; Vdovenko, S. I.; Kukhar, V. P. *Tetrahedron*, **2007**, *63*, 7246–7255.
- 49 Nourmohammadian, F.; Gholami, M. D. Synth. Commun., 2008, 38, 2731-2740.

