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摘     要 

 

 

對於品質特性可以藉由剖面資料加以描述的製程，基於資料縱深

測度，我們提出一些無母數製程監控方法。我們首先回顧剖面資料監

控、數據平滑化、主成分分析、階層式集群方法與資料縱深測度管制

圖等文獻。在此我們聚焦於階段二的非線性剖面資料監控。對於所提

出的製程監控方法，其最大優點在於不需要對剖面資料做有母數形式

之分配假設。我們根據平均連串長度，透過模擬的方式與現存藉由無

母數迴歸且在高斯分配假設下所發展出來的監控方法做比較。對於階

段一的分析，我們提出一個具啟發性的診斷程序藉此去除潛在失控的

剖面資料。在此透過一組生物鑑定實驗資料與一組垂直密度剖面資料

(VDP)來展示我們所提出的診斷程序。 

 

 

 

 

關鍵字：剖面、數據平滑化、主成分分析、階層式集群方法、資料縱

深測度、平均連串長度。 

 

 

 

 
     



Profile Monitoring via Oja Data Depth

Student: Shin-Hua Wang Advisor: Dr. Jyh-Jen Horng Shiau

Institute of Statistics

National Chiao Tung University

Abstract

We propose and study some nonparametric process monitoring schemes based

on data depth for processes where the quality of a product could be characterized by

a function or a profile. We start by reviewing some literatures on profile monitoring,

data smoothing, principal component analysis, hierarchical clustering methods, and

data-depth-based control charts. We focus on Phase II profile monitoring for non-

linear profiles with random effects. The great advantage of the proposed monitoring

schemes is that neither a parametric form nor distributional assumptions about the

profiles are required. We compare the proposed schemes with some existing schemes

developed via nonparametric regression but under Gaussian assumption in terms of

the average run length by simulation. For Phase I analysis, we provide a heuristic

diagnosis procedure for screening out potential out-of-control profiles. The bioassay

data and vertical density profile (VDP) data are used to demonstrate the diagnostic

scheme.

Key Words: profile, data smoothing, principal component analysis, hierarchical

clustering, data depth, average run length.
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1 Introduction

Statistical process control (SPC) has been widely used for process improvement in many

fields, especially in industries. The control chart is a primary and powerful tool in SPC

for monitoring the quality of processes or products. Classical control charts are mostly

developed for applications where the quality characteristic is a (univariate or multivariate)

random variable measured from the processes or products of interest. However, in many

applications, the quality characteristic is a function of one or more explanatory variables

rather than a variable. This functional quality characteristic is often called a profile.

Classical control charting consists of two phases. In Phase I, the main objective is

to quickly guide the process into an in-control state and collect some in-control data

to characterize (or model) the in-control process, which would be used in Phase II to

construct reliable control limits for effective on-line monitoring of future production.

In this study, we propose and study a new “nonparametric” control scheme based on

the notion of data depth for profile monitoring. The term “nonparametric” here means

we do not assume specific distributional properties on profile data. The only assumption

required is that the underlying functions of profiles are smooth. Our focus is mainly

on developing control schemes for Phase II profile monitoring. The control schemes are

constructed by employing statistical methods to profile data, including data smoothing,

principal component analysis, and data depth. For Phase I analysis, it is difficult to

develop a control chart based on data depth. Nevertheless, we will describe a heuristic

diagnosis procedure for screening out potential out-of-control profiles in the historical data

set collected in Phase I. For this purpose, clustering techniques may be useful here.

The rest of this paper is organized as follows. Section 2 provides a brief literature

review on profile monitoring including techniques for linear/nonlinear profiles with fixed-

effects/random-effects as well as the techniques we use in constructing the proposed profile

monitoring schemes. Section 3 presents the proposed Phase II profile monitoring schemes.

Section 4 describes a screening procedure for finding out-of-control profiles in the Phase

I sample. Section 5 gives the results of our simulation and comparative studies. Section

6 concludes this paper with a brief summary and some remarks.
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2 Literature Review

In this section, we first review recent works on profile monitoring including linear and

nonlinear profiles in the literature. Then we review the statistical techniques that we use

in developing the proposed monitoring schemes in this study.

2.1 Profile Monitoring

2.1.1 Linear Profiles

Kang and Albin (2000) described the output quality characteristic of a process as a

random response y that is a linear function (or profile) of an independent variable x.

Assuming there are m profiles and each profile has p measurements, they modeled these

linear profiles as

yij = A0 + A1xj + εij, i = 1, . . . , m, j = 1, . . . , p, (2.1.1)

where yij denotes the response of the ith profile at the jth measurement xj, the inter-

cept A0 and the slope A1 are fixed parameters, and εij’s are independent and identically

distributed (i.i.d.) as N(0, σ2
e). Kang and Albin (2000) used the least squares estimators

ai0 = yi − ai1x (2.1.2)

and

ai1 =
Sxy(i)

Sxx

(2.1.3)

to estimate A0 and A1 of the ith profile, respectively, where yi =
∑p

j=1 yij/p, x =
∑p

j=1 xj/p, Sxy(i) =
∑p

j=1 yij(xj −x), and Sxx =
∑p

j=1(xj −x)2. By treating the residuals

of each profile fitting as a subgroup, Kang and Albin (2000) combined the EWMA chart

and the R chart for Phase II profile monitoring. Note that ai0 and ai1 are correlated.

Considering the same model (2.1.1), Kim et al. (2003) first coded the x-values by

centering so that the average coded value is zero. With this decoding, the least squares

estimators of the intercept and slope for each sample are independent, which allows them

to combine three independent EWMA charts to monitor the intercept, slope, and σ2
e

simultaneously. For more details, see the original papers. Since A0 and A1 are constants,

we may say that (2.1.1) is a fixed-effect model.
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For applications where slight random deviations in the intercept and slope are allowed,

Shiau, Lin, and Chen (2006) considered the following random-effect model:

yij = Ai0 + Ai1xj + εij, i = 1, . . . ,m, j = 1, . . . , p, (2.1.4)

where random coefficients Ai0’s and Ai1’s are i.i.d. as N(α0, σ
2
0) and N(α1, σ

2
1), respec-

tively, and the error variables εij’s are i.i.d. as N(0, σ2
e). Moreover, they assumed that Ai0,

Ai1, and εij are mutually independent. Following Kim et al. (2003), Shiau, Lin, and Chen

(2006) first coded the x-values such that x = 0 after centering. Then for i = 1, . . . , m,

the least squares estimators of Ai0 and Ai1 are

α̂i0 = yi (2.1.5)

and

α̂i1 =
Sxy(i)

Sxx

, (2.1.6)

respectively, where yi =
∑p

j=1 yij/p, Sxy(i) =
∑p

j=1 xj(yij − yi)/p =
∑p

j=1 xjyij/p, and

Sxx =
∑p

j=1 x2
j/p. Shiau, Lin, and Chen (2006) showed that α̂10, . . . , α̂m0 are i.i.d. as

N(α0, σ
2
0 + σ2

e/p), α̂11, . . . , α̂m1 are i.i.d. as N(α1, σ
2
1 + σ2

e/Sxx), and these statistics are

mutually independent. With these distributional properties, they proposed a monitoring

scheme accordingly. For more details, see Shiau, Lin, and Chen (2006).

2.1.2 Nonlinear Profiles

Profiles that can not be well described by a linear model are often regarded as nonlinear

profiles. To model nonlinear profiles, one popular approach is via nonlinear parametric

regression as follows:

yij = f(xij, βi) + εij, i = 1, . . . , m, j = 1, . . . , p, (2.1.7)

where xij is the K × 1 vector of regressors for the jth observation of the ith profile, βi is

the P × 1 vector of parameters for the ith profile, f is nonlinear in the parameters, and

the random errors εij’s are usually assumed to be i.i.d. as N(0, σ2
e). In many applications,

there is only one regressor (K = 1) but having more than one parameter (P > 1) to

monitor. In matrix form, the scalar model given in (2.1.7) is expressed by

yi = f(Xi,βi) + εi, i = 1, . . . , m, (2.1.8)

3



where yi = (yi1, yi2, . . . , yip)
′, Xi = (x′i1, . . . , x

′
ip), f(Xi,βi) = (f(xi1,βi), . . . , f(xip,βi))

′,

and εi = (εi1, εi2, . . . , εip)
′.

Having these estimates of βi, one can then monitor the process with standard multi-

variate control charting schemes. Similar to linear profiles, fixed-effect and random-effect

models can be considered for different applications. For profiles with random effects,

using the vertical density profiles (VDP) data given in Walker and Wright (2002) as an

example, Williams et al. (2003) compared three T 2 control charts for monitoring VDP

data by fitting a particular nonlinear regression model to data. For robustness, Shiau,

Yen, and Feng (2006) proposed a Hotelling T 2 chart based on the Minimum Covariance

Determinant (MCD) estimators. For getting more model flexibility, Shiau et al. (2009)

employed the technique of principal component analysis to deal with the covariance struc-

ture of the nonlinear profiles with random effects via nonparametric regression. For more

on monitoring nonlinear profiles, readers are referred to the afore mentioned articles and

the references cited therein.

2.2 Data Smoothing

Data analysis is a process of obtaining insights from data by employing statistical tech-

niques. But quite often, noise may be too large to reveal the interesting features in the

data. For many applications, the underlying profiles are smooth and then smoothing is a

useful pre-processing technique to filter out the random noises from raw sample profiles.

The notion of data smoothing is to fit a smooth function whose final form is flexible

and depends on data and the level of smoothness chosen. In other words, the technique

lets data speak for themselves in presenting their characteristics. One of the popular

approaches of data smoothing is to fit noisy sample profiles by splines. Frequently, cubic

splines (i.e., the piecewise cubic polynomials with continuous second derivatives) are used.

The spline smoothing technique that we use in this paper is smoothing splines, which is

available in statistical package R.

2.3 Principal Component Analysis

Principal component analysis (PCA) is a popular technique in multivariate data analysis.

The following materials on PCA are from Johnson and Wichern (2007). The idea of PCA

is to find a small number of directions (as linear combinations of the original variables)

4



that can explain most of the variability in data. Therefore, PCA is often employed for

dimension reduction.

Suppose that Y is a p-variable random vector following a multivariate distribution.

If we want to keep all the total variability (as in the variance-covariance structure) of

the multivariate distribution, then p components are usually required. But often much of

this variability could be accounted for with just a smaller number (denoted by k) of the

principal components obtained from PCA. In other words, we could get almost as much

information with these k principal components as there is in the original p variables. These

k principal components then could be used as a surrogate of the initial p variables for

subsequent analysis. In this sense, the general purpose of dimension reduction is achieved.

In fact, these principal components simply are eigenvectors of the variance-covariance

matrix of the multivariate distribution. If this variance-covariance matrix needs to be

estimated from data, then the sample version of PCA can be employed.

Since PCA is a dimension reduction technique, the important issue about how many

principal components should be taken arises. One of popular criteria is to take the first

k principal components such that the amount of the total variation explained by these k

principal components reaches a satisfactory level.

2.4 Hierarchical Clustering Methods

Hierarchical clustering methods proceed by either a series of successive mergers or a series

of successive divisions. Agglomerative hierarchical methods start with the individual

objects. Initially, there are as many clusters as objects. These initial clusters are merged

according to their similarities. The most similar objects are merged first. Repeat the

merging process until all subgroups are merged into one single cluster.

Divisive hierarchical methods work in the opposite direction. The initial single cluster

of all objects is divided into two subgroups such that the objects in one subgroup are

most faraway from the objects in the other subgroup. Then these subgroups are further

divided into dissimilar subgroups. The dividing procedure continues until there exist as

many subgroups as objects, that is, until each object itself becomes one cluster. Results

of agglomerative or divisive hierarchical methods can be displayed in a two-dimensional

plot known as dendrogram. With this dendrogram, we can trace the mergers or divisions

that have been made at successive levels.
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Three popular linkage methods are often used in hierarchical clustering methods, single

linkage (minimum distance or nearest neighbor), complete linkage (maximum distance or

farthest neighbor), and average linkage (average distance). The single linkage occurs

if groups are merged according to the distance between their nearest members. The

complete linkage occurs if groups are merged according to the distance between their

farthest members. For the average linkage, groups are merged according to the average

distance between pairs of members in the respective groups.

In this paper, we adopt an agglomerative hierarchical procedure with single linkage.

For the distance between objects, we use Euclidean distance in this paper. The follow-

ing are the steps in the agglomerative hierarchical clustering algorithm for clustering N

objects:

1. Start with N clusters, each cluster containing a single object and an N × N sym-

metric matrix of distances (or similarities) denoted by D = {dij}, where dij is the

distance (similarity) between the ith and jth clusters.

2. In this distance matrix, search for the nearest (most similar) pair of clusters ac-

cording to the distance elements. Denote the distance between the two most similar

clusters, U and V , by dUV .

3. First, merge the clusters U and V and label the newly formed cluster by (UV ). Then

update the elements in the distance matrix by (i) removing the rows and columns

corresponding to clusters U and V and (ii) adding a row and a column giving the

distances between the new cluster (UV ) and the remaining clusters.

4. Repeat steps 2 and 3 until all objects are merged into one single cluster. While

merging, record the identities of clusters that are merged and the corresponding

dendrogram (i.e., clustering tree) levels at which the mergers take place.

For more detailed discussions on clustering methods, see, for example, Johnson and

Wichern (2007) and the references cited therein.

2.5 Data Depth

The data depth is a measure of how central a given point is with respect to a multivariate

distribution. There are several notions of data depth mentioned in Liu et al. (2004). For

6



convenience, the simplicial depth will be introduced as an illustrative example and the

Oja depth will be used to construct our profile monitoring schemes in this study.

2.5.1 Simplicial Depth

First, we use the simplicial depth proposed by Liu (1990) as an example to illustrate the

general notion of data depth.

When m random observations X1, . . . , Xm come from a k-dimensional distribution

with the cumulative distribution function (c.d.f.) F , we denote it by {X1, . . . , Xm} ∼ F .

For simplicity, assume that X1, . . . , Xm are distinct and any k + 1 of them will form a

(nondegenerate) simplex. Let s[Xi1 , . . . , Xik+1
] denote the closed simplex with vertices

{Xi1 , . . . , Xik+1
} and I(·) be the indicator function, i.e., I(Ω) = 1 if Ω occurs and I(Ω) = 0

otherwise, where Ω denotes a specific event. Suppose that {X1, . . . , Xm} ∼ F are given.

Each sample point is regarded as a k × 1 vector and {X1, . . . , Xm} is called a reference

sample. Then the sample simplicial depth of any point y ∈ Rk, y /∈ {X1, . . . , Xm}, is

defined as

DF ∗m(y) =

(
m + 1

k + 1

)−1 ∑

(∗)
I(y ∈ s[Xi1 , . . . , Xik+1

]), (2.5.1)

where (∗) runs over all possible subsets of {X1, . . . , Xm,y} of size (k+1) and the notation

F ∗
m stands for the empirical c.d.f. of the sample points in {X1, . . . , Xm,y}. If y ∈
{X1, . . . , Xm}, i.e. y = Xi for some i, then

DFm(y) =

(
m

k + 1

)−1 ∑

(∗∗)
I(y ∈ s[Xi1 , . . . , Xik+1

]), (2.5.2)

where (∗∗) runs over all possible subsets of {X1, . . . , Xm} of size (k +1) and the notation

Fm stands for the empirical c.d.f. of the sample points in {X1, . . . , Xm}. A large value

of DF ∗m(y) indicates that y is contained in many closed simplices constructed from the

reference sample, and thus it is relatively central within the data cloud. On the contrary,

a small value of DF ∗m(y) indicates a relatively outlying position of y.

If the multivariate distribution F is known, then the simplicial depth of any point y

with respect to the distribution F is defined as

DF (y) = PF{y ∈ s[Z1, . . . , Zk+1]}, (2.5.3)

where Z1, . . . , Zk+1 are (k + 1) random variables following the multivariate distribution

F . Many basic properties of the simplicial depth DF (·) can be found in Liu (1990). In
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particular, the convergence of DFm(·) to DF (·) allows us to approximate DF (·) by DFm(·)
when the multivariate distribution F is unknown.

2.5.2 Oja Depth

For any k + 1 points Z1, . . . , Zk+1 ∈ Rk, the simplex s[Z1, . . . , Zk+1] has a k-dimensional

volume defined as

4(s[Z1, . . . , Zk+1]) =
1

k!
| det((1,Z ′

1)
′, . . . , (1, Z ′

k+1)
′) |

=
1

k!
| det




1 1 · · · 1

z11 z21 · · · zk+1,1

z12 z22 · · · zk+1,2

...
...

. . .
...

z1k z2k · · · zk+1,k




|, (2.5.4)

where Z1 = (z11, . . . , z1k)
′, . . ., Zk+1 = (zk+1,1, . . . , zk+1,k)

′.

Oja (1983) proposed a location measure for the empirical distribution of the sample

points in {X1, . . . , Xm}, called the Oja median, as the location that minimizes the average

volume of all the possible k-dimensional simplices as follows:

min
y∈Rk

1(
m
k

)
∑

1≤i1<···<ik≤m

4(s[y,Xi1 , . . . , Xik ]),

which is equivalent to

min
y∈Rk

(m− k)!

m!

∑
1≤i1<···<ik≤m

| det((1,y′)′, (1,X ′
i1
)′, . . . , (1,X ′

ik
)′) |, (2.5.5)

where y is any point and {Xi1 , . . . , Xik} are k different points chosen from {X1, . . . , Xm}.
The Oja depth function was proposed by Zuo and Serfling (2000) as

dOja(y | T ) =
(
1 +

E(4(s[y,Z1, . . . , Zk]))√
det(Σ)

)−1
, (2.5.6)

where Z1, . . . , Zk are k i.i.d. random vectors following a multivariate distribution T , E

represents the expectation over Z1, . . . , Zk, and Σ is the variance-covariance matrix of T .

Accordingly, the sample Oja depth of any point y ∈ Rk, y /∈ {X1, . . . , Xm}, is

dOja(y | X1, . . . , Xm)

=
(
1 +

(m−k)!
m!

∑
1≤i1<···<ik≤m | det((1,y′)′, (1,X ′

i1
)′, . . . , (1,X ′

ik
)′) |√

det(ΣX)

)−1
, (2.5.7)
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where ΣX =
∑m

j=1(Xj −X)(Xj −X)′/m with X =
∑m

j=1 Xj/m. If y ∈ {X1, . . . , Xm},
i.e. y = Xi for some i, then the reference sample becomes {X1, . . . , Xi−1, Xi+1, . . . , Xm}.

This Oja depth function is continuous in x and the maximum occurs at the Oja median

while zero occurs at infinity. Also note that the Oja median may not be unique and the

Oja depth function decreases monotonically on rays from all points in the Oja median

set.

2.6 Relative Rank

For most of control charts, the fundamental judging criterion of in or out of control relies

on a measure of how outlying an observation is. Data depth is such a measure but its

distribution is too complicated to determine the control limit. To overcome this difficulty,

Liu (1995) proposed an r-chart by representing a multivariate observation with its relative

rank (induced from the data depth) as described below.

For any y ∈ Rk, define the relative rank of y with respect to {X1, . . . , Xm} as

rFm(y) ≡ 1

m

m∑
i=1

I(DFm(Xi) < DFm(y)), (2.6.1)

which is the proportion of the sample points in the reference sample that are more outlying

than y. For the population version, define

rF (y) ≡ P{DF (X) < DF (y)|X ∼ F} (2.6.2)

as the relative rank of y with respect to the distribution F .

If the relative rank of y is extremely small, then the position of y is extremely outlying,

indicating that y may not come from the same distribution that generates the reference

sample {X1, . . . , Xm}. This is the main idea behind data-depth control charts.

By reducing the dimension of data from k to 1, one can construct control charts based

on these relative ranks following the same procedures as those for univariate control charts.

Note that this approach is completely nonparametric, meaning that the resulting control

charts are free of parametric distributional assumptions on process data. According to

Liu and Singh (1993), these control charts can detect the location change and the scale

increase in a process simultaneously.

For the Oja depth, we can define the relative rank as above by substituting the depth

function (2.5.1) with (2.5.7). Liu et al. (2004) mentioned that the Oja depth can be used

to construct multivariate control charts as well.
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2.7 r-Chart

Denote the distribution of the k-dimensional in-control process by F . Assuming that an

incoming random multivariate observation Y in Phase II on-line monitoring follows a

k-dimensional distribution G. To monitor this incoming observation with a control chart

is equivalent to test H0 : G = F versus Ha : there exists a location shift and/or a scale

increase from F to G.

If H0 is true, Liu and Singh (1993) showed that the relative rank follows a uniform

distribution on the unit interval [0, 1] as given in the following proposition.

Proposition 2.7.1 (Liu and Singh, 1993). Assume that Y ∼ G and F = G. Let U [0, 1]

denote the uniform distribution on the unit interval [0, 1] and the notation “
L−→” stand

for the convergence in law. If DF (Y ) has a continuous distribution, then

(1) rF (Y ) ∼ U [0, 1], and

(2) as m → ∞, rFm(Y )
L−→ U [0, 1] along almost all {X1, . . . , Xm} sequences, provided

that DFm(·) converges to DF (·) uniformly as m →∞.

The uniform convergence of DFm(·) holds for the simplicial depth if F is absolutely

continuous. We shall assume F is absolutely continuous hereafter.

By Proposition 2.7.1, the r-chart can be constructed with the center line CL = 0.5 and

the lower control limit LCL = a, where a is the desirable false-alarm rate. To monitor

an incoming observation y, the first step is to calculate the relative rank rF (y) of y with

respect to the multivariate distribution F , or the relative rank rFm(y) of y with respect

to {X1, . . . , Xm} when F is unknown and a reference sample {X1, . . . , Xm} is available.

If rF (y) or rFm(y) is smaller than LCL = a, the process is considered to be out of control.

2.8 Q-Chart

The Q-chart proposed by Liu (1995) is the X-chart version of the r-chart. Let Y1,Y2, . . .

be the incoming observations to be monitored in time order. To construct the Q-chart,

first we group Yi’s into subgroups of size q. Then we plot the averages of the subgroups of

rF (Yi)’s when the multivariate distribution F is known, or the averages of the subgroups

of rFm(Yi)’s when only the reference sample {X1, . . . , Xm} is available. For convenience,

we denote the average of the jth subgroup of rF (Yi)’s and rFm(Yi)’s by Q(F, Gj
q) and
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Q(Fm, Gj
q), respectively, where the notation Gj

q denotes the empirical distribution of the

Yi’s in the jth subgroup, j = 1, 2, . . .. That is, when given Gq of a subgroup of q Yi’s,

Q(F, Gq) ≡ 1

q

q∑
i=1

rF (Yi) (2.8.1)

and

Q(Fm, Gq) ≡ 1

q

q∑
i=1

rFm(Yi). (2.8.2)

In other words, the Q-chart plots exactly the statistics {Q(F, G1
q), Q(F,G2

q), · · · }, or

its empirical version. Liu (1995) gave asymptotic results for these statistics and provided

the center line (CL) and lower control limit (LCL) of the Q-chart accordingly. The Q-

chart also has CL = 0.5 and its LCL depends on the subgroup size q. If the subgroup

size q is large, by Central Limit Theorem, LCL is approximately 0.5− za(12q)−1/2 when

plotting {Q(F, Gj
q)}’s, or 0.5 − za

√
(1/m + 1/q)/12 when plotting {Q(Fm, Gj

q)}’s. If the

subgroup size q is small and the false-alarm rate a ≤ 1/q!, then LCL is exactly (q!a)1/q/q.

According to Liu (1995), this LCL is a reasonable approximation when the false-alarm

rate a is slightly over 1/q!.

2.9 DDMA-Chart

Liu et al. (2004) reported that the Q-chart could be inefficient in detecting small location

shifts. So they proposed a moving-average control chart, called DDMA-chart, to enhance

the efficiency.

If {X1, . . . , Xm} is the reference sample following the multivariate distribution F

and {Y1,Y2, . . .} are new observations. Let q be the length of the moving window for

computing moving averages. Then the moving averages are Ỹ1 = (Y1 + · · ·+ Yq)/q, Ỹ2 =

(Y2 + · · ·+ Yq+1)/q, . . ., Ỹn−q+1 = (Yn−q+1 + · · ·+ Yn)/q, and so on. For constructing the

DDMA-chart to monitor the moving averages Ỹi, i = 1, 2, . . ., the corresponding reference

sample is {X̃1, . . . , X̃m−q+1} where X̃1 = (X1 + · · ·+ Xq)/q, X̃2 = (X2 + · · ·+ Xq+1)/q,

. . ., and X̃m−q+1 = (Xm−q+1 + · · ·+ Xm)/q.

Similar to constructing the r-chart, for each Ỹi, we calculate the corresponding relative

rank, rF̃m−q+1
(Ỹi), with respect to the reference sample {X̃1, . . . , X̃m−q+1}, i.e.,

rF̃m−q+1
(Ỹi) =

1

m− q + 1

m−q+1∑
j=1

I(DF̃m−q+1
(X̃j) < DF̃m−q+1

(Ỹi)), (2.9.1)
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where F̃m−q+1 denotes the empirical distribution of the reference sample {X̃1, . . . , X̃m−q+1}
and DF̃m−q+1

(·) denotes the sample simplicial depth of one point with respect to the ref-

erence sample {X̃1, . . . , X̃m−q+1}.
Accordingly, the DDMA-chart is just the plot of the statistics rF̃m−q+1

(Ỹi)’s, i =

1, 2, . . ., versus their sequence orders i’s. Following the same principle as in constructing

the r-chart, this DDMA-chart has the center line CL = 0.5 and the lower control limit

LCL = a. According to Liu et al. (2004), the advantage of the DDMA-chart compared

with the Q-chart is that the DDMA-chart is more sensitive to small location shifts while

retaining the same performance in detecting scale shifts.
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3 Proposed Monitoring Schemes

In this study, we focus mainly on Phase II monitoring. Same as in most of Phase II studies,

we assume that we have sufficient information about the in-control process, meaning that

we have already obtained a large reference sample whose features are explicit enough to

represent the realistic situation of the in-control process.

3.1 Pre-processing Steps

Before we proceed to the actual Phase II monitoring, we need to convert the sample

profiles in the reference sample to multivariate data for data depth computation with the

following two procedures:

1. Data Smoothing

Although the profiles in the reference sample are from the in-control process, the

existence of the random noise in the profile data may get in the way of the subse-

quent analysis. Therefore, a smoothing step is suggested to de-noise sample profiles.

We use smoothing splines as our smoothing technique for de-noising sample profiles

throughout this paper. Other popular smoothing techniques such as B-spline re-

gression, local polynomial regression smoothing, and wavelets can be used as well.

2. Principal Component Analysis

After data smoothing, we apply principal component analysis to the sample variance-

covariance matrix of the sample profiles in the reference sample. By choosing an

appropriate number k (often much smaller than p) of principal components, we re-

duce the dimension of the profile data from p to a much lower dimension k. For

the illustrative examples shown in this paper, we choose 2 or 3 principal compo-

nents according to the principle of achieving a satisfactory level of total variation

explained.

Below, we summarize the above two pre-processing steps in more details:

1. Suppose that we have m in-control sample profiles {X∗
1 , . . . , X

∗
m}, in which the ith

profile is expressed by a p-dimensional vector X∗
i for i = 1, . . . , m.

13



2. For each raw sample profile X∗
i , we use smoothing splines to purge random noise

from the profile. Denote these smoothed sample profiles by {X∗∗
1 , . . . , X∗∗

m }. Here

each smoothed sample profile X∗∗
i , i = 1, . . . , m, is still a p-dimensional vector.

3. Perform PCA to these m smoothed sample profiles {X∗∗
1 , . . . , X∗∗

m }. That is, com-

pute the eigenvalue-eigenvector decomposition of the p×p sample variance-covariance

matrix of {X∗∗
1 , . . . , X∗∗

m }. The jth principal component is the eigenvector vj cor-

responding to the jth largest eigenvalue λj, j = 1, · · · , p.

4. Compute Sij = X∗∗′
i vj, the score of the jth principal component of the ith smoothed

profile, j = 1, . . . , p, i = 1, . . . ,m.

5. Choose an appropriate number of principal components that can explain the varia-

tion to a satisfactory level. Assume that we select the first k (< p) effective principal

components {v1, . . . , vk}. Consequently, for each smoothed profile X∗∗
i , we can ob-

tain a score vector

Xi ≡ (Si1, . . . , Sik)
′, i = 1, . . . ,m. (3.1.1)

Thus we have reduced the data from p-dimensional smoothed profile vectors to k-

dimensional score vectors. These m score vectors form the reference sample to be used in

the data depth computation.

3.2 Phase II Monitoring

For Phase II monitoring, we use the reference sample, {X1, . . . , Xm}, described in the

previous subsection to represent the in-control process. Below we describe how to perform

the Phase II monitoring step by step:

1. Let Y ∗ denote an incoming p-dimensional profile vector to be monitored. Smooth

it as described earlier. Denote the smoothed profile vector by Y ∗∗.

2. Project the smoothed profile Y ∗∗ onto the first k effective principal components

{v1, . . . , vk} to obtain the score vector Y ≡ (Y ∗∗′v1, . . . , Y
∗∗′vk)

′.

The above 2 steps focus on pre-processing the incoming profile data into a k-dimensional

score vector suitable for further data depth computation.

The following steps focus on monitoring the score vectors of the incoming profiles, say,

{Y1,Y2, . . . , Yi, . . .}. We first describe the control charting for the r-chart.
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1. Initialization: Compute the Oja depths of the reference sample by equation (2.5.7).

That is, {dOja(X1 | X1, . . . , Xm), . . . , dOja(Xm | X1, . . . , Xm)}.

2. For i = 1, 2, . . .,

(a) Compute the Oja depth of the ith incoming score data Yi with respect to the

reference sample by equation (2.5.7). That is, dOja(Yi | X1, . . . , Xm).

(b) Compute the relative rank of Yi with respect to {X1, . . . , Xm} by

rFm(Yi) =
1

m

m∑
j=1

I(dOja(Xj | X1, . . . , Xm) < dOja(Yi | X1, . . . , Xm)).

(3.2.1)

(c) Plot rFm(Yi) against its sequence order i on the control chart. The center

line and the lower control limit of the r-chart are CL = 0.5 and LCL = a,

respectively. Here a is the desirable false-alarm rate. If rFm(Yi) is below LCL,

then the process is considered out of control.

The Q-chart and DDMA-chart can be constructed with the score vectors as described

in Subsections 2.8 and 2.9, respectively.
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4 Diagnosing Profiles in the Historical Data Set

It is desirable to have a control chart for Phase I analysis. Unfortunately, the relative

ranks of the profiles in the reference sample cannot be used to discriminate out-of-control

profiles from in-control profiles due to the nature of ranks. On the other hand, the Oja

depths contain more information on how outlying a profile is. Although the distributional

properties of the Oja depths for profiles are not available, the depth values might still be

useful in screening out potential out-of-control profiles. In this section, we describe a

heuristic screening procedure via clustering.

4.1 A Simple Diagnostic Procedure

Let {X∗
1 , . . . , X

∗
l } be a set of historical profile data. As described before, we first perform

data smoothing and PCA to the profile data to convert them into k-dimensional score vec-

tors {X1, . . . , Xl}; then compute their Oja depths {dOja(X1 | X1, . . . , Xl), . . . , dOja(Xl |
X1, . . . , Xl)}. We then apply the agglomerative hierarchical clustering procedure with

single linkage to cluster these Oja depths into two groups. The profiles in the group with

smaller Oja depths are considered to be more outlying than those in the other group.

Pursue investigation on these potential out-of-control profiles. Remove doubtful profiles

from the data set. The remaining data set could then be considered as the reference

sample for Phase II profile monitoring.

We demonstrate this diagnostic procedure with two real data sets next.

4.2 Examples

4.2.1 Bioassay Data

• Data Description

This data set is from DuPont Crop Protection (Williams et al., 2007). It consists

of forty-four weeks (l = 44) of in vivo bioassay results run alongside experimental

compounds over a one-year time period. Here, the commercial compound is diluted

to eight doses, 0.003, 0.009, 0.028, 0.084, 0.25, 0.76, 2.27, 6.8 (d = 8) and replicates

four times at each dose (r = 4) in 96-well microtiter plates for each sampling period.

A spectrophotometer measures the optical density (OD) of the plant organism after

the inoculation period. Both treated and untreated wells are measured for growth
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inhibition. The percent control (PC) values are computed using the median OD

(Mi) from 96 replications of untreated wells.

Following Williams et al. (2007), let yijk represent the kth response of the jth dose

at sampling period i, where i = 1, 2, . . . , l, j = 1, 2, . . . , d, and k = 1, 2, . . . , r. In

this data set, l = 44, d = 8, and r = 4. Let Mi represent the median response of the

untreated specimen at sampling period i. Then, the percent control of the chemical

for the kth replication of the jth dose at sampling period i is calculated as

PCijk =
Mi − yijk

Mi

. (4.2.1)

The plots of PCijk values for all l = 44 weeks for one of the commercial crop

protection products from the DuPont are given in Figure 1.

• Diagnostic Results

To proceed our proposed diagnostic scheme, we first note that there are four replica-

tions at each dose for each week in this bioassay data. The replication complicates

the computation of smoothing splines. To simplify computation, we average the

four replications and apply all the analyzing steps described earlier to the averaged

bioassay data, i.e., smoothing splines, principal component analysis, Oja depths, and

the agglomerative hierarchical clustering method. The smoothing spline fittings of

44 averaged profiles are shown in Figure 1.

To understand the effects of the smoothing parameter as well as the number of

principal components, various choices of these parameters are tried. The results are

given in Tables 1-3. To read Tables 1-3,

– “spar” is the smoothing parameter in smoothing splines;

– the first diagnosis is the result that we perform the diagnostic procedure to the

original 44 weeks/profiles;

– the second diagnosis is the result that we repeat the diagnostic procedure to

the data after removing the profiles diagnosed as out-of-control in the first

diagnosis;

– “cumulative” gives the number of principal components used in analysis and

the proportion of the variation explained by the principal components used;
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– “weeks” shows which weeks are diagnosed as out-of-control.

For example, the last row in Table 1 indicates that, under smoothing parameter

spar=0.3, we choose 3 principal components, which explains 94.1% of variation,

and the 34th week is suggested to be out of control in the first diagnosis. After

removing the 34th week, repeat the diagnostic procedure. By choosing 4 principal

components, which explains 97.7% of the variation, the 32th week is then diagnosed

as potentially shifted in the second diagnosis.

From these results, we observe that both smoothing parameters and the number

of effective principal components affect the proportion of variation explained and

possibly further lead to different diagnostic results. It is also observed that, for

those suggested outlying weeks in Tables 1-3, almost all of their original data profiles

exhibit some unusual patterns.

The reason for performing second diagnosis is because the procedure only takes

the last result of clustering into two groups. If the data set exhibits more than

two clusters, say, one in-control and two out-of-control, then the sizes of the gaps

between clusters determine the final clustering result. For example, it is possible

that an extreme outlying profile will form a cluster by itself. A better solution for

this is to look into the dendrogram (clustering tree) as well as the corresponding Oja

depths and determine the cutoff point for separating in or out-of-control profiles.

Also look into the profiles themselves to see if they have unusual patterns. In other

words, the heuristic diagnostic procedure presented here is only providing some

indications of potential outlying profiles in the historical data set. It should not be

used as the sole rule to follow in Phase I analysis.

4.2.2 Vertical Density Profile Data

• Data Description

This vertical density profile data set is from Walker and Wright (2002). In the

manufacture of particleboards, the density properties of the produced boards are

quality characteristics that are monitored through time. The density is measured

using a profilometer which uses a laser device to scan fixed vertical depths across

the thickness of the board and the density at each depth is recorded. A profilometer
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takes multiple measurements on a sample to form the vertical density profile of the

board. This data set contains 24 profiles of vertical density and each profile consists

of 314 measurements. Figure 2 displays the VDP data.

• Diagnostic Results

We apply the diagnostic procedure to these vertical density profiles. And the diag-

nostic results are given in Table 4. Similar to the bioassay data, different choices

of smoothing parameters affect the proportion of variation explained. Although the

diagnostic results are all the same for the four smoothing parameters we used in

analyzing this VDP data, this does not mean that there are no other possibilities.

Figures 3-5 show these potentially outlying profiles. They all exhibit some unusual

patterns.

19



5 Simulation and Comparative Studies

5.1 Aspartame Example

Kang and Albin (2000) raised an interesting issue in process monitoring. In most appli-

cations, a single variable or multiple variables can characterize the state of the process.

However, there exist a number of processes where the state is characterized by a profile or

a function. Aspartame described in Kang and Albin (2000) is one of such examples. An

important characteristic of the aspartame is the amount of aspartame that is dissolved

per liter of water at different temperatures. For illustration, Figure 6 shows the plot of

some hypothetical aspartame profiles.

Following Shiau et al. (2009), we adopt the profile form of Y = I + MeN(x−1)2 + ε to

simulate aspartame profiles. To simulate in-control profiles with random effects, their idea

is to randomly disturb the parameters I, M , and N to generate natural variation among

profiles. Accordingly, the following random-effect model can be considered to generate

aspartame profiles:

Yj = I + MeN(xj−1)2 + εj, j = 1, . . . , p, (5.1.1)

where I ∼ N(µI , σ
2
I ), M ∼ N(µM , σ2

M), N ∼ N(µN , σ2
N), and ε ∼ N(0, σ2

ε ). All of these

random parameters, i.e., {I, M,N, ε}, are independent of each other.

Shiau et al. (2009) mentioned that the distribution of the response profile Y =

(Y1, . . . , Yp)
′ generated by the above model (5.1.1) is fairly complicated. Specifically,

this distribution has mean vector µ = (µ1, . . . , µp)
′ and variance-covariance matrix Σ as

follows. For all i, j = 1, . . . , p,

µj = E(Yj) = µI + µMeµN (xj−1)2+
σ2

N (xj−1)4

2 (5.1.2)

and

Cov(Yi, Yj) = σ2
I + (µ2

M + σ2
M)[eµN [(xi−1)2+(xj−1)2]+

σ2
N [(xi−1)2+(xj−1)2]2

2 ]

− µ2
MeµN (xi−1)2+

σ2
N (xi−1)4

2
+µN (xj−1)2+

σ2
N (xj−1)4

2 + σ2
ε δij, (5.1.3)

where δij = 1 if i = j and δij = 0 if i 6= j. Unfortunately, this variance-covariance matrix

Σ would be affected if the mean of the parameter M or N shifts and this model is too

complicated to analyze the performance of the control charts under their study.

20



We remark that the control charts proposed in Shiau et al. (2009) were developed

under the assumption that the random profile follows a Gaussian process. Thus, instead

of using this original model (5.1.1), they modeled the aspartame profiles according to a

Gaussian stochastic process with the mean function

µ(x) = µI + µMeµN (x−1)2 (5.1.4)

and a covariance function G(s, t), here s and t are covered in the domain of x. In order

to maintain the natural variation among profiles as it would be in the original random-

effect model (5.1.1), they let the in-control aspartame profiles follow the distribution

MV N(µ0, Σ), where µ0 = (µ01, . . . , µ0p)
′ with

µ0j = µI + µMeµN (xj−1)2 , j = 1, . . . , p, (5.1.5)

and Σ is the variance-covariance matrix given by equation (5.1.3).

If the mean function (5.1.4) is shifted, say, µI to µI + ασI , µM to µM + βσM , and µN

to µN + γσN , µ0j is shifted from µI + µMeµN (xj−1)2 to

µ̃j ≡ (µI + ασI) + (µM + βσM)e(µN+γσN )(xj−1)2 , j = 1, . . . , p. (5.1.6)

Let µ̃ = (µ̃1, . . . , µ̃p)
′. Then the shift on the mean of Y is δ ≡ µ̃− µ0.

Normally, when compared with a parametric method, a nonparametric method gains

model flexibility but loses some efficiency (but only when the model is right for the

parametric method). Although the “nonparametric” control charts developed in this

paper are not restricted to distributional assumptions, we still use the setup that is suitable

for the schemes of Shiau et al. (2009) in our comparison study. It is surprising to observe

that even under a situation that suits the parametric methods, the new nonparametric

charts perform quite well in terms of the detecting power.

5.2 Settings for Simulation

For the simulation studies, we generate aspartame profiles according to the distribution

MV N(µ0, Σ), where µ0 is the mean vector defined by (5.1.5) and Σ is the variance-

covariance matrix given in (5.1.3). Here the parameters for simulation are µI = 1, σI =

0.2, µM = 15, σM = 1, µN = −1.5, σN = 0.3, σε = 0.3, and x = 0.64, 0.8, . . . , 3.52.

Both of x and y values are scaled variables, not the real temperatures and the amount

21



of aspartame that is dissolved per liter of water. Following Liu et al. (2004), all control

charts that we discuss here are designed to have the same in-control average run length

(ARL), ARL0 = 20, which corresponds to the false-alarm rate a = 0.05.

5.3 Comparative Studies

In order to assess the performance of our proposed Phase II monitoring scheme through

ARL, we compute the ARL values for each control chart scheme under various shift sizes

on parameters I, M, and N as follows.

Here we concentrate on the performances of r-chart, Q-chart (with three subgroup

sizes 2, 4, 6), and DDMA-chart (with three subgroup sizes 2, 4, 6). Denote these control

charts as Oja, Q2, Q4, Q6, D2, D4, and D6, respectively.

Consider shifting one parameter of I, M , and N at a time with shift size ranging from

0.00 to 3.00 in the increment of .25, i.e., {0.00, 0.25, 0.50, . . . , 2.75, 3.00}.
For each scenario, we generate m (m=1008 in this study) in-control aspartame profiles

according to the distribution MV N(µ0, Σ) given in Subsection 5.1. These m in-control

aspartame profiles are used to construct the reference sample as described in Subsection

3.2. We choose k = 2 principal components for this example in creating the reference

sample because the total variation explained by the first two principal components is over

90%.

We then generate n (n=1008 in this study) out-of-control aspartame profiles for each

scenario according to the distribution MV N(µ̃, Σ), where µ̃ is given in equation (5.1.6).

Perform the Phase II monitoring schemes described in section 3 to these out-of-control

profiles. Compute the proportion of the profiles that are considered out-of-control by each

of the charts. The reciprocal of this proportion is an estimate of the ARL. Repeat this

procedure 2000 times. Average the 2000 ARL estimates to obtain the final ARL estimate.

The standard deviation of this ARL estimator can be estimated by dividing the sample

standard deviation of 2000 ARL estimates by
√

2000. Results are given in Tables 5-7 for

I,M, and N shifts, respectively.

In the following, we compare the ARL performance of the proposed monitoring scheme

(r-chart) with those proposed in Shiau et al. (2009). In addition, we will compare the

ARL performances among r-chart, Q-chart, and DDMA-chart.
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5.3.1 ARL Comparisons with Shiau et al. (2009)

Before comparing our proposed scheme with the schemes proposed in Shiau et al. (2009)

through ARL performance, we briefly introduce the Phase II monitoring schemes proposed

in Shiau et al. (2009).

Shiau et al. (2009) characterized the in-control profiles after de-noising according

to the distribution Np(µ0, Σ0), where the in-control variance-covariance matrix Σ0 is in

equation (5.1.3) without the σ2
ε δij term.

Their method goes like this. First, apply PCA to the in-control variance-covariance

matrix Σ0 to get eigenvalues, λ1 ≥ · · · ≥ λp ≥ 0, and the corresponding eigenvectors,

v1, . . . , vp. Choose an appropriate number k of principal components that can explain

high enough percentage of total variation.

Then for each incoming profile in Phase II monitoring, first smooth and then project

this profile onto the k principal components (PCs) to obtain S1, . . . , Sk, the k scores.

Because these k scores are independent and each Sr has distribution N(v′rµ0, λr) when

the process is in control, hence, it is easy to construct a control chart for each of the

k scores. With the false-alarm rate a, v′rµ0 ± Za/2

√
λr are the control limits of the rth

PC-score-chart for monitoring the statistic Sr, r = 1, . . . , k.

The advantage of these PC-score-charts is that if a particular mode of process change

can be caught by one of the k principal components, then one can use that particular

PC-score-chart to monitor this type of process change. Unfortunately, a process change

is often reflected on more than one principal component. Instead of considering only one

particular PC-score-chart, Shiau et al. (2009) also considered a combined chart scheme

by combining all k PC-score-charts as follows.

The combined chart scheme signals out-of-control if any of the k individual PC-score-

charts signals. In other words, their combined chart scheme is equivalent to monitoring

the statistic

max
1≤r≤k

| Sr − v′rµ0√
λr

| . (5.3.1)

This chart signals out-of-control if max1≤r≤k | (Sr − v′rµ0)/
√

λr |> Za′/2, where the

individual false-alarm rate a′ should be chosen at the level of 1 − (1 − a)1/k so that the

overall false-alarm rate is at the desired level a.
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Shiau et al. (2009) also considered a T 2 chart with the monitoring statistic

T 2 =
k∑

r=1

(Sr − v′rµ0)
2

λr

, (5.3.2)

which follows the chi-square distribution with k degrees of freedom (denoted by χ2
k) if the

process is in control. Hence, the upper control limit of this T 2 chart is the 100(1 − a)

percentile of χ2
k.

In the following, we will compare the Oja chart (i.e., r-chart) with the control charts

proposed in Shiau et al. (2009) for Phase II monitoring. For profile monitoring, they

chose k = 3 since the first three principal components account for a high enough level of

variation. Figures 7-9 show the ARL curves of the control charts under comparison for

the shifts in parameters I, M, and N , respectively. We observe the following:

• In Figure 7, we observe that the power of the Oja chart is only better than the PC2

chart and it is between the PC1 chart and PC2 chart. From Shiau et al. (2009), we

know the mode of variation on I-shift is mostly caught by PC3 and some by PC1.

Because we only consider PC1 and PC2 in our Oja chart, the Oja chart does not

have as much power as the PC3 chart.

• In Figure 8, we observe that the power of the Oja chart is better than the other 5

control charts except for the small shift size β < 0.50, where these control charts

are not too far from each other except for the PC3 chart. One reason for this could

be that the Oja chart uses the power of PC1 and PC2 simultaneously.

• In Figure 9, we observe that the power of the Oja chart is better than the other 5

control charts when the shift size γ is between 0.75 and 2.00. For other magnitudes

of shift, the T 2 chart has the power better than the other charts. The same situation

in Figure 8 happens here: these control charts are not too far from each other except

for the PC3 chart. The PC3 chart has a strange ARL curve in this figure. Shiau et

al. (2009) explained that this may be caused by the fact that the shift in the mean

vector when projected onto PC3, v′3δ, is not monotone in the shift multiple δ.

In summary, for this example, our proposed r-chart is comparable with the control

charts proposed in Shiau et al. (2009) for Phase II monitoring. We remark that the

example we choose here for comparison is to the advantage of the methods in Shiau et
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al. (2009) in the sense that it satisfies the distributional assumptions under which the

methods in Shiau et al. (2009) are based on. Nevertheless, our nonparametric chart

performs almost equally well and sometimes slightly better.

5.3.2 ARL Comparisons for r-Chart, Q-Chart and DDMA-Chart

Figures 10-12 show the subgroups version of ARL curves of r-chart, Q-chart and DDMA-

chart for shifts in parameters I, M , and N , respectively. According to these figures, we

observe the following:

• From Figures 10-12, we note that the behavior of Q-charts are somewhat peculiar.

When the process is in control, Q-charts with subgroup sizes 2, 4, and 6 have ARL0

20.87, 21.87, 23.75, respectively, all larger than 20. Moreover, for small shift sizes

(α=0.25,. . . ,1.00, β=0.25, γ=0.25), the ARL1 increases when the subgroup size (q)

of the specific chart increases. This seems against our intuition. Fortunately, when

shift size gets larger, the chart starts behaving as what we would expect. We have

no good reasons for this but the asymptotic theory under which the control limit of

the Q-chart was constructed as given in Liu (1995). The asymptotic theory requires

the minimum between the reference sample size (m) and the subgroup size (q) to

be infinite. But in our simulation, this q is only 2, 4, or 6, which is far from infinity.

• For all three types of shifts, the DDMA-charts perform the best among the three

types of charts. Among DDMA-charts, D6 > D4 > D2, as expected. Here “>”

means “performs better than”.

• Despite the peculiar behavior of the Q-charts for small shift sizes, the ARL behaviors

of all charts are pretty similar for all three types of shifts.

• When the shift size is large enough, the performance order of the charts is DDMA-

charts > Q-charts > r-chart in general, with D2 sometimes intervening with Q4 and

Q6.

• The performances of these control charts are very similar for M -shift and N -shift

except that ARL values drop faster for N -shift.

To summarize, the control limit for the Q-chart needs to be modified to achieve an

about-right false-alarm rate. The subgroup size is also an important issue when we adopt
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the Q-chart or the DDMA-chart for Phase II monitoring. Here, their performances among

different subgroup sizes, q = 2, 4, 6, behave as what we would expect for the DDMA-chart.

As for the Q-chart, it starts behaving as what we would expect when shift size gets larger.

Since when using subgroups with different sizes, plotting one point on the control

chart may require different number of profiles, it would be fairer to define run length as

the number of profiles taken when the out-of-control alarm signals.

Figures 13-18 show the individual profiles version of ARL curves of Q-charts and

DDMA-charts for shifts in parameters I, M , and N , respectively. They express the ARL

in terms of the expected number of individual profiles sampled rather than the number of

subgroups taken to detect a shift. Here, Figures 13-15 are for Q-charts and Figures 16-18

are for DDMA-charts. According to these figures, we observe the following:

• For Q-charts, we note that control chart with smaller subgroup size has smaller ARL

values for all shift sizes from 0 to 3. Their performances do not behave as what we

would expect when shift sizes are small.

• For DDMA-charts, we note that charts with different subgroup sizes (q = 2, 4, 6)

perform differently (better or worse) at different shift sizes. Specifically, control

chart with smaller subgroup size performs better (with smaller ARL) when the shift

size becoming larger and larger. This is because the moving average has an overhead

of size q at the beginning of the process monitoring.

• Figure 19 compares the average number of profiles needed to detect a shift for all

the charts for I-, M -, N -shift, respectively. According to their performances, we

recommend the DDMA-chart when shift size is small and the r-chart when shift size

is large.
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6 Conclusions

In this study, we propose and study some nonparametric schemes for Phase II profile

monitoring based on the notion of data depth. We utilize data smoothing techniques to

filter out random noises from raw sample profiles, principal component analysis to convert

smoothed profiles to score-vectors of lower dimension, and then data-depth-based control

charts to monitor incoming profiles.

According to the ARL performance comparison between our monitoring scheme and

those proposed in Shiau et al. (2009) with the simulated aspartame example, we observe

that our proposed monitoring scheme based on r-chart is comparable. Furthermore, the

monitoring scheme based on DDMA-chart performs better than the monitoring scheme

based on Q-chart and the monitoring scheme based on Q-chart performs better than the

one based on r-chart in general.

The most important feature of the control schemes proposed in this paper is that

they are nonparametric in the sense that no distributional assumptions are required for

the profiles under monitoring. This broadens the scopes of applications of the proposed

schemes. And interestingly, when compared with the profile monitoring schemes proposed

in Shiau et al. (2009), the new nonparametric schemes perform equally well or even slightly

better with an example satisfying the distributional assumptions of the existing schemes.

For Phase I analysis, we provide a heuristic diagnostic procedure with the objective of

spotting unusual profiles in the Phase I data so that we can obtain a more reliable data

set to create the reference sample for the subsequent construction of data depth control

charts. The procedure is not a control chart because we cannot set a control limit that

can control, say, the false-alarm rate.

Clustering depth values through different clustering methods in Phase I analysis and

adopting other depth functions for Phase II profile monitoring could be interesting future

studies. Another potential direction is to modify the lower control limit for the Q-chart

to achieve an about-right false-alarm rate.
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Table 1: Diagnostic results of Bioassay Data (smoothing parameter is 0.3).

diagnosis

first second(removing first)

cumulative weeks cumulative weeks

spar PC1 PC2 PC3 PC1 PC2 PC3 PC4

0.3 0.550 0.849 20,22,24 0.616 0.811 32

34,45,46

0.3 0.550 0.849 20,22,24 0.616 0.811 0.910 26

34,45,46

0.3 0.550 0.849 20,22,24 0.616 0.811 0.910 0.980 26,32

34,45,46

0.3 0.550 0.849 0.941 34 0.598 0.868 20,22,24,45

46

0.3 0.550 0.849 0.941 34 0.598 0.868 0.942 20,22,24,26

32,45,46,48

0.3 0.550 0.849 0.941 34 0.598 0.868 0.942 0.977 32
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Table 2: Diagnostic results of Bioassay Data (smoothing parameter is 0.4).

diagnosis

first second(removing first)

cumulative weeks cumulative weeks

spar PC1 PC2 PC3 PC1 PC2 PC3 PC4

0.4 0.628 0.925 20,22,24 0.701 0.884 5,13,26,32

34,45,46 44

0.4 0.628 0.925 20,22,24 0.701 0.884 0.970 26

34,45,46

0.4 0.628 0.925 20,22,24 0.701 0.884 0.970 0.992 26,32

34,45,46

0.4 0.628 0.925 0.976 24 0.663 0.920 20,22,34,45

46

0.4 0.628 0.925 0.976 24 0.663 0.920 0.974 20,22,26,34

45,46,48

0.4 0.628 0.925 0.976 24 0.663 0.920 0.974 0.989 20,22,34,45
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Table 3: Diagnostic results of Bioassay Data (smoothing parameter is 0.5).

diagnosis

first second(removing first)

cumulative weeks cumulative weeks

spar PC1 PC2 PC3 PC1 PC2 PC3 PC4

0.5 0.690 0.969 20,22,24 0.763 0.941 26

34,45,46

0.5 0.690 0.969 20,22,24 0.763 0.941 0.995 26,48

34,45,46

0.5 0.690 0.969 20,22,24 0.763 0.941 0.995 0.999 16,26,32,48

34,45,46

0.5 0.690 0.969 0.995 24 0.721 0.966 20,22,34,45

46

0.5 0.690 0.969 0.995 24 0.721 0.966 0.995 20,22,26,34

45,46,48

0.5 0.690 0.969 0.995 24 0.721 0.966 0.995 0.999 20,22,45

Table 4: Diagnostic results of VDP Data with different smoothing parameters.

diagnosis

first second(removing first)

cumulative profiles cumulative profiles

spar PC1 PC2 PC1 PC2

0.01 0.845 0.952 6,10 0.824 0.938 2,3,16,17,20

0.1 0.845 0.953 6,10 0.825 0.938 2,3,16,17,20

0.5 0.853 0.961 6,10 0.835 0.949 2,3,16,17,20

1 0.887 0.989 6,10 0.878 0.985 2,3,16,17,20
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Table 5: ARL values and their standard errors (in parentheses) of r-chart, Q-charts, and

DDMA-charts for various shift sizes of I-shift.

α r-chart Q2 Q4 Q6 D2 D4 D6

0.00 20.42 20.87 21.87 23.75 20.34 20.28 20.12

(0.093) (0.116) (0.198) (0.324) (0.105) (0.137) (0.166)

0.25 20.15 20.76 21.88 23.59 20.01 19.66 19.40

(0.091) (0.119) (0.185) (0.304) (0.101) (0.128) (0.159)

0.50 19.89 20.50 21.46 22.73 19.39 18.55 17.76

(0.090) (0.116) (0.229) (0.280) (0.099) (0.120) (0.136)

0.75 19.41 19.85 20.34 21.39 18.41 16.75 15.35

(0.089) (0.110) (0.157) (0.241) (0.091) (0.108) (0.118)

1.00 18.56 18.82 19.08 19.90 17.16 14.77 12.89

(0.081) (0.100) (0.153) (0.257) (0.084) (0.094) (0.095)

1.25 17.77 17.95 17.80 18.06 15.69 12.79 10.63

(0.076) (0.091) (0.136) (0.178) (0.076) (0.076) (0.073)

1.50 16.93 16.86 16.38 16.53 14.32 10.89 8.690

(0.072) (0.083) (0.119) (0.170) (0.065) (0.060) (0.055)

1.75 15.86 15.68 15.01 14.63 12.78 9.160 7.050

(0.064) (0.076) (0.110) (0.132) (0.056) (0.049) (0.042)

2.00 14.82 14.50 13.41 12.83 11.48 7.820 5.820

(0.060) (0.069) (0.085) (0.102) (0.050) (0.039) (0.033)

2.25 13.76 13.16 11.95 11.27 10.12 6.530 4.750

(0.055) (0.057) (0.071) (0.087) (0.040) (0.029) (0.023)

2.50 12.86 12.22 10.81 9.850 9.150 5.630 4.010

(0.051) (0.052) (0.059) (0.051) (0.037) (0.025) (0.019)

2.75 11.75 11.02 9.580 8.510 8.070 4.820 3.380

(0.042) (0.045) (0.051) (0.054) (0.031) (0.021) (0.015)

3.00 10.87 10.04 8.500 7.410 7.190 4.160 2.880

(0.039) (0.040) (0.044) (0.043) (0.026) (0.016) (0.011)
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Table 6: ARL values and their standard errors (in parentheses) of r-chart, Q-charts, and

DDMA-charts for various shift sizes of M-shift.

β r-chart Q2 Q4 Q6 D2 D4 D6

0.00 20.42 20.87 21.87 23.75 20.34 20.28 20.12

(0.093) (0.116) (0.198) (0.324) (0.105) (0.137) (0.166)

0.25 18.75 18.98 19.37 20.18 17.10 14.54 12.73

(0.083) (0.099) (0.166) (0.266) (0.084) (0.088) (0.094)

0.50 14.72 14.51 13.49 12.95 11.50 7.780 5.800

(0.059) (0.068) (0.093) (0.108) (0.049) (0.038) (0.030)

0.75 10.92 10.07 8.510 7.420 7.190 4.170 2.910

(0.039) (0.039) (0.042) (0.043) (0.026) (0.016) (0.011)

1.00 7.840 6.790 5.240 4.250 4.620 2.500 1.770

(0.025) (0.022) (0.021) (0.018) (0.015) (0.007) (0.004)

1.25 5.680 4.640 3.330 2.610 3.140 1.720 1.300

(0.016) (0.012) (0.010) (0.008) (0.008) (0.003) (0.002)

1.50 4.180 3.260 2.250 1.770 2.260 1.330 1.100

(0.010) (0.007) (0.005) (0.004) (0.004) (0.002) (0.001)

1.75 3.190 2.430 1.680 1.360 1.750 1.140 1.030

(0.007) (0.004) (0.003) (0.002) (0.003) (0.001) (0.000)

2.00 2.510 1.890 1.350 1.150 1.430 1.050 1.010

(0.004) (0.003) (0.002) (0.001) (0.002) (0.000) (0.000)

2.25 2.050 1.560 1.180 1.060 1.250 1.020 1.000

(0.003) (0.002) (0.001) (0.000) (0.001) (0.000) (0.000)

2.50 1.720 1.350 1.080 1.020 1.130 1.000 1.000

(0.002) (0.001) (0.000) (0.000) (0.001) (0.000) (0.000)

2.75 1.490 1.210 1.030 1.000 1.070 1.000 1.000

(0.002) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000)

3.00 1.330 1.120 1.010 1.000 1.030 1.000 1.000

(0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
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Table 7: ARL values and their standard errors (in parentheses) of r-chart, Q-charts, and

DDMA-charts for various shift sizes of N-shift.

γ r-chart Q2 Q4 Q6 D2 D4 D6

0.00 20.42 20.87 21.87 23.75 20.34 20.28 20.12

(0.093) (0.116) (0.198) (0.324) (0.105) (0.137) (0.166)

0.25 18.88 19.19 19.35 20.19 17.65 15.25 13.41

(0.086) (0.108) (0.156) (0.243) (0.091) (0.096) (0.097)

0.50 15.15 14.80 13.97 13.41 12.00 8.230 6.180

(0.063) (0.067) (0.091) (0.110) (0.053) (0.042) (0.034)

0.75 10.81 10.01 8.390 7.350 7.150 4.110 2.870

(0.039) (0.039) (0.042) (0.041) (0.026) (0.016) (0.011)

1.00 7.240 6.140 4.660 3.750 4.200 2.260 1.610

(0.023) (0.019) (0.017) (0.015) (0.012) (0.006) (0.004)

1.25 4.790 3.800 2.660 2.080 2.600 1.470 1.170

(0.013) (0.009) (0.007) (0.005) (0.006) (0.003) (0.001)

1.50 3.170 2.400 1.660 1.340 1.730 1.140 1.030

(0.006) (0.004) (0.003) (0.002) (0.003) (0.001) (0.000)

1.75 2.180 1.660 1.220 1.080 1.300 1.030 1.000

(0.004) (0.002) (0.001) (0.001) (0.001) (0.000) (0.000)

2.00 1.600 1.280 1.050 1.010 1.100 1.000 1.000

(0.002) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000)

2.25 1.270 1.090 1.010 1.000 1.020 1.000 1.000

(0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

2.50 1.100 1.020 1.000 1.000 1.000 1.000 1.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

2.75 1.030 1.000 1.000 1.000 1.000 1.000 1.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

3.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
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Figure 1: DuPont Dose-Response Data for 44 weeks with their smoothing spline fittings

(smoothing parameter=0.5).
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Figure 2: 24 VDP profiles.
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Figure 3: 7 potentially out-of-control profiles.
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Figure 4: 2 potentially out-of-control profiles from the first diagnosis.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

35
40

45
50

55
60

65

second diagnosis VDP profiles

depth

de
ns

ity

2
3
16
17
20

Figure 5: 5 potentially out-of-control profiles from the second diagnosis.
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Figure 6: 4 hypothetical aspartame profiles.
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Figure 7: ARL comparisons for the I-shift.
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Figure 8: ARL comparisons for the M-shift.
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Figure 9: ARL comparisons for the N-shift.
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Figure 10: ARL comparisons of r, Q, and DDMA charts for the I-shift.
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Figure 11: ARL comparisons of r, Q, and DDMA charts for the M-shift.
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Figure 12: ARL comparisons of r, Q, and DDMA charts for the N-shift.
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Figure 13: ARL (individual profiles version) comparisons of Q charts for the I-shift.
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Figure 14: ARL (individual profiles version) comparisons of Q charts for the M-shift.
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Figure 15: ARL (individual profiles version) comparisons of Q charts for the N-shift.
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Figure 16: ARL (individual profiles version) comparisons of DDMA charts for the I-shift.
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Figure 17: ARL (individual profiles version) comparisons of DDMA charts for the M-shift.
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Figure 18: ARL (individual profiles version) comparisons of DDMA charts for the N-shift.
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Figure 19: ARL (individual profiles version) comparisons of all charts for all three types

of shifts.
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