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摘要 

 

製程能力指標近年來在業界廣泛的被使用於衡量製程製造產品的能

力。衡量一維製程能力的指標已經被研究得相當完備，然而有關衡量二維

製程能力的指標的研究雖然相當多，但指標和產品良率間的關係卻很少被

強調，有鑑於此 Castagliola 和 Castellanos [4] 提出了兩個指標
pkBC 以及

pBC 。這兩個指標是以超出凸多邊形規格區內不良品所占比例為基礎的指

標。我們在本文章中將此指標推廣至多個產品特性的情形，並且提出估計

這個指標在二維甚至多維製程的演算法，不像 Castagliola 和 Castellanos [4] 

所使用的方法僅能運用在二維製程上。另外，我們利用四種拔靴法分別估

計出
pkBC 的信賴下限。至於

pBC ，由於原來的定義在不同的製程特性上給

予不同的比例縮放時無法保持不變性，所以我們提出了一個預先修正的方

法，解決原本指標沒有不變性的問題，另外，我們也推導出pBC 的近似分佈，

進而推導出信賴區間、信賴下限、以及假設檢定。最後我們用一個實際的

例子來說明我們在文中所提出的估計方法。 

 

 

關鍵詞：製程能力指標、二維常態分佈、良率、拔靴法 
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Abstract

Process capability indices (PCIs) have been widely used in the industries for assessing the

capability of manufacturing processes. The research of PCIs for univariate processes has

been well developed. However, in the bivariate case, the PCI research may be plenty, but

links between the index and the product yield are seldom emphasized. For this, by assum-

ing a bivariate normal distribution and a rectangular specification region, Castagliola and

Castellanos [4] proposed two indices BCpk and BCp. These two indices are defined based

on the proportions of non-conforming products over convex polygons. We extend these

indices to multivariate processes of more than two quality characteristics. We develop an

algorithm for computing estimates of these indices, which is suitable for general multivari-

ate processes, not like the algorithm in Castagliola and Castellanos [4] can only be used

for bivariate processes. In addition, we estimate the lower confidence bound by bootstrap

methods. As for BCp, we find the original definition is not scale invariant, meaning that

the BCp value will vary with different scales on quality characteristics. We propose a

pre-processing step to solve this problem. Moreover, we find an approximate distribution

of B̂Cp, which enables us to develop statistical procedures for making inferences on pro-

cess capability based on data, including hypothesis testing, confidence interval, and lower

confidence bound. The latter is directly linked to the quality assurance. Finally, a real

data set is used as an application example.

keywords: process capability indices, bivariate normal distribution, yield, bootstrap
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1 Introduction

Process Capability Indices (PCIs) are some indices developed for engineering conve-

nience to quentify the performance of a process and are widely used in industries. Facing

stronger competition than ever, nowadays, companies need to work very hard to improve

the quality of their products. The measurement and evaluation of the process perfor-

mance via PCIs becomes more and more important.

PCIs have been applied to manufacturing measurements since 1980s and some indices

such as Cp, Cpk, Cpm, Cpmk are widely used. These indices have good performances for

evaluating processes or product with one single quality characteristic. However, now with

high-technology industries replacing traditional industries and becoming the main stream,

many processes are so complex that many characteristics are affecting the quality simul-

taneously. Since these characteristics are measured on the same product/process items,

they should be considered jointly, that is, the analysis should be based on multivariate

statistical techniques. Therefore, PCIs that can assess a process or product of more than

one quality characteristic are desirable.

Among univariate PCIs, Cpk could be the most popular one, not only because it ac-

counts for both process mean and variance in the process assessment, but perhaps also

because it links directly to the process yield by the following inequality [3]: 2Φ(3Cpk)−1 ≤
% yield ≤ Φ(3Cpk), where %yield stands for the process yield. Therefore, Cpk sometimes

is referred to as a yield assurance index. However, in the bivariate case, the PCI re-

search may be plenty, but links between the index and the product yield are seldom

emphasized. For this, by assuming a bivariate normal distribution and a rectangular

specification region, Castagliola and Castellanos [4] proposed two indices, BCpk and BCp.

These two indices are defined based on the proportions of non-conforming products over

convex polygons. In this paper, we extend the notion of BCpk to the multivariate case

of more than two quality characteristics. The computation method of Castagliola and

Castellanos [4] is only for bivariate processes with rectangular specification regions. We

develop a computation method that can be implemented for more general multivariate

processes with more flexible specification regions in higher dimensions. As for BCp, we

propose a pre-processing step to solve the problem that the original definition in [4] is

1



not scale invariant, meaning that the BCp value will vary with different scales on quality

characteristics. Moreover, we find an approximate distribution of B̂Cp, which enables

us to develop statistical procedures for making inferences on process capability based on

data, including hypothesis testing, confidence interval, and lower confidence bound. The

latter is directly linked to the quality assurance.

This paper is organized as follows. We first review univariate and bivariate PCIs in

the literature briefly in Section 2. In Section 3, we introduce the index BCpk proposed

by Castagliola and Castellanos [4] for bivariate processes. Then we establish connections

between this index and the product yield. We further extend this index to multivariate

processes of more than two characteristics. After that, we give the estimation algorithm

for BCpk and propose obtaining lower confidence bounds by bootstrap methods. We also

study the distribution of a natural estimator of BCpk by simulation. In Section 4, for

BCp, we propose a pre-processing algorithm to avoid the non-scale-invariance problem of

the BCp proposed by Castagliola and Castellanos [4]. We derive an approximate sampling

distribution for a natural estimator of BCp and develop statistical procedures for making

inferences on process capability. In Section 5, we apply our methods to a set of real data.

Finally, we conclude the paper with a brief summary in Section 6.

2



2 Literature Review

2.1 Indices for Univariate Process

In this subsection, consider an univariate process with a quality characteristic with the

specification interval [LSL, USL]. Assume that process data follow a normal distribution

with mean µ and variance σ2.

PCIs for measuring processes with one quality characteristic have been investigated

extensively for decades. Kane [14] proposed

Cp =
USL− LSL

6σ

for measuring the variation of product characteristic relative to the specification. Since

Cp cannot be used to measure yield, he proposed another index linked to the product

yield as

Cpk = min(
USL− µ

3σ
,
µ− LSL

3σ
),

which accounts for not only the spread of the process but also the location of the process

mean relative to the specification limits. As for the endurance of products, which is related

how far a product deviates from the target T , Chan et al. [5] and Hsiang and Taguchi [12]

proposed the following index:

Cpm =
USL− LSL

6
√

σ2 + (µ− T )2
.

The loss function in the denominator is contributed by the deviation of the process mean

µ from the target value T and process variance σ2. Pearn et al. [16] proposed Cpmk by

combining Cp and Cpk as

Cpmk = min

(
USL− µ

3
√

σ2 + (µ− T )2
,

µ− LSL

3
√

σ2 + (µ− T )2

)
,

which is more sensitive to the deviation of process mean from the target value than Cp

and Cpk.

3



2.2 Indices for Multivariate Processes

In this subsection, consider a multivariate process with k quality characteristics. Sup-

pose X1, . . . , Xn are ni i.i.d. k × 1 random vectors of observations. X̄ is a k × 1 vector

representing the sample mean of X1, . . . , Xn.

Assuming the process data X follows a multivariate normal distribution with mean µ

and variance-covariance matrix Σ, denoted by X ∼ Nk(µ,Σ). Chan et al. [6] proposed

an index for measuring how far the process mean µ is from the target value T as

C̃pm =

(
k

E[(X − T )TΣ−1(X − T )]

)1/2

.

Pearn et al. [16] introduced two multivariate PCIs, which are viewed as more nat-

ural generalizations of Cpm than the one proposed by Chan et al. [6]. They defined a

multivariate Cp index as

kC
2
p =

c2

χ2
k,0.0027

,

where χ2
k,α is the upper α quantile of a chi-square distribution with degrees of freedom

k, and c is a constant satisfying P{(X − T )TΣ−1(X − T ) ≤ c2} = 0.9973. Analogously,

they defined a multivariate Cpm index by

kC
2
pm =

kC
2
p

1 + (µ− T )T Σ−1(µ− T )/k
. (1)

Hubele et al. [13] proposed an index vector (CPM , PV, LI)T for bivariate normal pro-

cesses. The first component

CPM =
area of specification

area of modified process region
=




2∏
i=1

(USLi − LSLi)

2∏
i=1

(UPLi − LPLi)




1
2

.

.

The modified process region is the smallest rectangle that can circumscribe 100(1−α)% of

the process distribution (see Fig 1). The edges of the modified process region are defined

as the lower and upper process limits, LPLi and UPLi, i = 1, 2. These four values can

be obtained by solving the system of equations of first derivatives with respect to each xi

of

(X − µ)TΣ−1(X − µ) = χ2
2, α, where X = (X1, X2)

T and µ = (µ1, µ2)
T .

4



The solutions are

UPL1 = µ1 +

√
χ2

2,αdet(Σ−1
1 )

det(Σ−1)
, LPL1 = µ1 −

√
χ2

2,αdet(Σ−1
1 )

det(Σ−1)
,

UPL2 = µ2 +

√
χ2

2,αdet(Σ−1
2 )

det(Σ−1)
, LPL2 = µ2 −

√
χ2

2,αdet(Σ−1
2 )

det(Σ−1)
,

where Σ−1
i , i = 1, 2, is the matrix obtained from Σ−1 by deleting the ith row and column.

The meaning of this component is analogous to that of Cp, measuring the variation of

product characteristics relative to the specifications.

Figure 1: Explaining diagram of CPM

The second component is the p-value of testing the difference between the center of

specification (target value T ) and the process mean. Let the null hypothesis H0 : µ = T ,

the Hotelling T 2 statistic [11] is

T 2 = n(X̄ − T )T Σ̂−1(X̄ − T ),

where X̄ is the sample mean and Σ̂ is the usual sample variance-covariance matrix of

process data. Since n− 2
2(n− 1)

T 2 follows F2,n−2 distribution under null hypothesis, the

p-value-based component PV is defined as

PV = P
(
T 2 ≥ 2(n− 1)

n− 2 F2,n−2,α

)
,

where F2,n−2,α stands for the 100(1 − α)% percentile of F distribution with degrees of

freedom 2 and n− 2. This component measures the distance of the process mean and the

5



target value. If the process mean is close to the target value, PV will be close to 1.

The third component LI provides the information about the location of the modified

process region relative to the specification, defined as

LI = max
(
1, |UPL1−USL1|

USL1−LSL1
, |LPL1−LSL1|

USL1−LSL1
, |UPL2−USL2|

USL2−LSL2
, |LPL2−LSL2|

USL2−LSL2

)
.

If this component is equal to 1, then the entire modified process region falls within or on

the specification. If the component is greater than 1, then some or all modified process

region falls out of the specification.

This index vector contains three components summarizing the size and location of

process contour related to the specification.

Taam et al. [18] proposed an index as the ratio of two areas

C̃p =
Area(R1)

Area(R2)
=

Area(modified specification)

Area(99.73% process region)
, (2)

Figure 2: Explaining diagram of C̃p

where R1 is a modified specification, which is the largest ellipsoid that is centered at the

target value and completely within the original specification, R2 is an elliptical region

containing 99.73% of the bivariate normal distribution. This index is an extension of

the univariate Cp for bivariate processes. Considering the shift of process mean from the

6



target value T , Taam et al. [18] further modified this index by taking an adjustment factor

D into account and defined a Cpm index for two quality characteristics as follows:

MCpm =
C̃p

D
, where D =

(
1 + (µ− T )TΣ−1(µ− T )

) 1
2

.

0 < D−1 < 1 measures the closeness between the process mean and the target value. A

larger value of 0 < D−1 < 1 implies that the process mean is closer to the target value.

Chen [7] proposed an index using the concept of a specification zone expressed as

V (r0) = {x ∈ Rk : h(x− µ0) ≤ r0}, (3)

where h(·) is a nonnegative homogeneous scalar function satisfying the condition h(tx) =

th(x) for all t > 0 and r0 is a positive number. A process is considered capable if

P (X ∈ V (r0)) ≥ 1− α, where α is the allowable expected proportion of non-conforming

products. Let r = min{c : P (X ∈ V (c)) ≥ 1 − α}. Then a process is considered to be

capable if and only if r ≤ r0. This leads one to express an index for multivariate process

in the form

MCp =
r0

r
.

According to Chen [7], this definition provides the following advantages: (i) allowing

flexible specifications as general as given by V (r0) in (3), (ii) assuming no conditions on

the underlying distribution, and (iii) permiting flexibility in setting a criterion for the

capability of a process. For example, consider a rectangular specification zone

W = {x ∈ Rk : |xi − µi| ≤ ri, i = 1, . . . , k},

where µ is the process mean and ri’s are positive constants. One can derive an alternative

definition of MCp as

MCp =
1

r∗
,

where r∗ is a constant satisfying P
(
max{|Xi − µi|/ri, i = 1, . . . , k} ≤ r∗

)
= 1 − α. If

MCp ≥ 1, the process is capable at 100(1− α)% confidence level.

Pal [15] proposed an index defined as follows:

CPB =
SR

Ap

=
(USL1 − LSL1)(USL2 − LSL2)

πχ2
2,0.0027

√
σ2

1σ
2
2 − σ2

12

,

7



where SR represents the area of the specification rectangle and Ap represents the 99.73%

area of the process region. This index is, in fact, an extension of the index (2) proposed

by Taam et al. [18]. It is an area ratio of a rectangular region over an elliptical region

while Taam et al. [18] used an elliptical region over another elliptical region as the area

ratio.

Bothe [2] proposed a multivariate Cpk index defined as

MCpk =
ZPT

3
,

where ZPT
is the PT th percentile of the standard normal distribution, and PT is defined

as

PT = 1− ((1− PQC1)(1− PQC2) · · · (1− PQCk
))

1
k

with PQCi
, i = 1, . . . , k, being the non-conforming rate of the ith quality characteristic.

However, this index is designed only for independent process characteristics.

Wang and Du [19] proposed a method using principal component (PC) analysis to

describe the performance of a process of multiple characteristics. In that paper, the pro-

cedures of obtaining the indices for normal data as well as non-normal data are described

in the following:

M̂Cp =

(
k∏

i=1

Ĉp;PCi

)1/k

for normal data, where Ĉp;PCi
=

USLPCi
− LSLPCi

6
√

S2
PCi

,

M̂Cpk =

(
k∏

i=1

Ĉpk;PCi

)1/k

for normal data, where

Ĉpk;PCi
=

min(USLPCi
− X̄PCi

, X̄PCi
− LSLPCi

)

3
√

S2
PCi

,

M̂Cpk =

(
k∏

i=1

Ĉpc;PCi

)1/k

for non-normal data, where Ĉpc;PCi
=

USLPCi
− LSLPCi

6

√
π

2d̄

,

and the elements in the above expressions are given in the following.

Suppose S is a non-singular k×k sample variance-covariance matrix. LSL and USL

are k × 1 vectors of lower and upper specification limits, respectively. Using spectral de-

composition, we can obtain a matrix D = UT SU , where D = diag(λ2
1, λ

2
2, . . . , λ

2
k) with λ2

1 ≥

8



λ2
2 ≥ · · · ≥ λ2

k being the eigenvalues of S, and the columns of U , u1,u2, . . . , uk, are the

associated eigenvectors. As a result,

SPCi
= λi, X̄PCi

= uT
i X̄,

USLPCi
= uT

i USL, LSLPCi
= uT

i LSL, i = 1, . . . , k,

d̄ = 1
k

1
n

k∑
i=1

n∑
j=1

∣∣∣ui
T Xj − USLPCi

+ LSLPCi

2

∣∣∣ .

Here we remark that the numerators of M̂Cp and M̂Cpk seem somewhat unreasonable,

since the vectors USL and LSL no longer represent upper or lower bounds of the spec-

ification region in the directions of principal components. As a result, USLPCi
−LSLPCi

sometimes may even become negative.

Wang et al. [20] compared three process capability indices: (CPM , PV, LI)T pro-

posed by Hubele et al. [13], MCpm proposed by Taam et al. [18], and MCp proposed by

Chen [7]. They summarized that, in general, the multivariate indices could be obtained

from (i) the area ratio of a specification region to a process region, (ii) the probability

of a non-conforming product, and (iii) other approaches using loss functions or vector

representation. The purpose of Wang et al. [20] is to illustrate the distinctions among the

various meanings of capability in the multivariate case.

The purpose of this paper is to study yield related PCIs for multivariate processes.

As mentioned in Section 1, BCpk and BCp proposed by Castagliola and Castellanos [4]

are such indices. We shall give a more detailed review on these indices and then present

how we would extend BCpk to higher dimensions and how to modify BCp to become

scale-invariant in the later sections. And the last but not the least, we will provide

methodologies on how to compute these indices.
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3 Multivariate Cpk Index

3.1 Yield Measuring Index for Processes with Multiple Charac-

teristics

In this subsection, we first introduce the bivariate Cpk index, BCpk, proposed by

Castagliola and Castellanos [4]. Then we provide the link between BCpk and yield. More-

over, we extend this index to higher dimensions.

3.1.1 Alternative Definition of Cpk

Assume that the quality characteristic X of a product item is a N(µ, σ2) random vari-

able. Let [LSL, USL] be the corresponding lower and upper specification limits. Equiv-

alent to the definition of Kane [14], an alternative definition for Cpk was proposed by

Castagliola and Castellanos [4]. This definition is based on the lower and upper propor-

tions of non-conforming products pL = P (X ≤ LSL) and pU = P (X ≥ USL). Since X

∼ N(µ, σ2), pL = Φ(LSL−µ
σ

) and pU = Φ(−USL+µ
σ

), where Φ is the cumulative distribution

function (c.d.f.) of the standard normal distribution. Moreover, since the cumulative

distribution function Φ is a strictly increasing function of the random variable, Cpk is

equivalent to
1

3
min{−Φ−1(pU),−Φ−1(pL)}. (4)

Similarly, the Cp in Kane [14] is equivalent to

1

6

(
−Φ−1(pU)− Φ−1(pL)

)
.

3.1.2 Definition of BCpk

Let X1 and X2 be the quality characteristics of interests with the specification limits

[LSL1, USL1] for X1 and [LSL2, USL2] for X2. These limits define a rectangular specifi-

cation area A. Assume that X = (X1, X2)
T follows a bivariate normal distribution with

mean µ = (µ1, µ2)
T and variance-covariance matrix Σ. Applying eigenvalue-eigenvector

decomposition to Σ, we obtain two eigenvalues λ2
1 ≥ λ2

2 > 0 and the associated eigenvec-

tors, v1 and v2. Let R = [v1,v2], then RT R = I and Σ can be expressed as Σ = RV RT ,

10



where V is the diagonal matrix with diagonal elements λ2
1 and λ2

2. In fact, the matrix

R represents the rotation matrix that rotates the original axes to the main axes of the

bivariate normal distribution (see Figure 3), v1 and v2 correspond to the main axes, and

λ2
1 and λ2

2 are the variances on these main axes. More specifically, if we let Si = vT
i X,

then Si ∼ N(vT
i µ, λ2

i ), i = 1, 2, and S1 and S2 are independent. Suppose we move the

origin to the process mean µ and have the two new axes being in the directions of v1

and v2. Then the two main axes divide the plane into four regions, A1, A2, A3, and A4.

Obviously, P (X ∈ Ai) = 1/4, i = 1, . . . , 4. Denoting the specification region by A and

Qi = Ai ∩ A, i = 1, . . . , 4. Let qi = P (X ∈ Qi), i = 1, . . . , 4. Then the probability that

X is in Ai but not in the specification region is pi = 1/4− qi (see Figure 3).

Figure 3: Explaning diagram of BCpk

By analogy to the alternative definition of Cpk given in (4), Castagliola and Castel-

lanos [4] defined a bivariate Cpk as

BCpk =
1

3
min(−Φ−1(2p1), −Φ−1(2p2), −Φ−1(2p3), −Φ−1(2p4)).

This definition is similar to the alternative definition of Cpk, except that 0 ≤ pi ≤ 1/4, i =

1, . . . , 4, in the bivariate case, while 0 ≤ pu (or pL) ≤ 1/2 in the univarite case. We extend

this definition to higher dimensions later.
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3.1.3 Non-conforming Rate Based on BCpk

According to the definition of BCpk in the last subsection, we can establish a connection

between the non-conforming rate (%NC) and BCpk. First note that

BCpk =
1

3
min(−Φ−1(2p1), −Φ−1(2p2), −Φ−1(2p3), −Φ−1(2p4))

= −1

3
max(Φ−1(2p1), Φ−1(2p2), Φ−1(2p3), Φ−1(2p4)).

Since Φ−1(·) is a strictly increasing function,

BCpk = −1

3
Φ−1(2pmax),

where pmax = max(p1, p2, p3, p4). Φ−1(·) is a one-to-one function, so

pmax =
1

2
Φ(−3BCpk). (5)

Note that pmax ≤ %NC ≤ 4pmax. Plugging (5) into this inequality, we obtain

1

2
Φ(−3BCpk) ≤ %NC ≤ 2Φ(−3BCpk). (6)

Although the lower bound of (6) is quite conservative, it is a convenient bound, mean-

ing once the engineer gets a BCpk value, he/she will know the bounds of non-conforming

rate. The upper bound is very useful and is not a loose bound, meaning that it is

reachable. Usually producers can take the upper bound of the non-conforming rate as

an quality assurance to customers. For example, if the process is with BCpk=1.00, one

can guarantee that there will be 2700 non-conformities in 1,000,000 product items at most.

Table 1 gives the upper and lower bounds of the non-conforming rate %NC for various

values of BCpk. Figure 4 plots the bounds. We can see the bounds drop sharply as BCpk

increases and soon levels off when BCpk ≥ 1.33.

The second inequality of (6) is equivalent to

2Φ(3BCpk)− 1 ≤ % yield,

providing a same lower bound for the yield as in the univariate case [3]. The lower bound

gives the worst level of the yield for a given BCpk.

12
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Figure 4: Bounds of non-conformity based on BCpk

Table 1: Bounds of non-conformity based on BCpk

BCpk

Non-conformities in ppm

lwb upb

0.60 17965.15956 71860.63823

0.80 4098.76796 16395.07185

1.00 674.94902 2699.79606

1.33 16.51832 66.07330

1.50 1.69884 6.79535

1.60 0.39666 1.58666

1.67 0.13608 0.54430

2.00 0.00049 0.00197

3.1.4 Extending Cpk to Higher Dimensions

Now we generalize the alternative definitions of Cpk and BCpk to multivariate processes

of k > 2 characteristics. By the same notion for the bivariate case, dividing the space

Rk into 2k subregions by the main axes of the k-variate distribution, we can define a

multivariate Cpk index as

MCpk =
1

3
min(−Φ−1(2k−1p1), −Φ−1(2k−1p2), . . . , −Φ−1(2k−1p2k))

= −1

3
max(Φ−1(2k−1p1), Φ−1(2k−1p2), . . . , Φ−1(2k−1p2k))

= −1

3
Φ−1(2k−1pmax),
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where pi is the probability of a randomly selected sample being in the ith subregion, but

not meeting the specification and pmax = max(p1, p2, . . . , p2k). Equivalently,

pmax =
1

2k−1
Φ(−3MCpk).

Since pmax ≤ %NC ≤ 2kpmax, we can also get an inequality of non-conforming rate in

the general multivariate case as

1

2k−1
Φ(−3MCpk) ≤ %NC ≤ 2Φ(−3MCpk),

which is equivalent to

1− 1

2k−1
Φ(−3MCpk) ≤ %yield ≤ 1− 2Φ(−3MCpk), (7)

3.2 Estimation of BCpk

In this subsection, we propose an algorithm to calculate M̂Cpk for k-dimensional

quality characteristic vector. We apply this algorithm to a bivariate case for calculating

B̂Cpk. Then we use bootstrap approaches to make inferences on BCpk.

3.2.1 A Natural Estimator of BCpk

Algorithm for calculating ˆMCpk:

1. Estimate µ and Σ by

µ̂ = 1
n

n∑
i=1

Xi and Σ̂ = 1
n− 1

n∑
i=1

(Xi − µ̂)T (Xi − µ̂).

2. Compute eigenvalues λ̂2
1, λ̂2

2, . . . , λ̂
2
k and eigenvectors v̂2

1, v̂2
2, . . . , v̂

2
k of Σ̂.

3. Compute an estimate q̂i of qi and an estimate p̂i of pi by Monte Carlo integration

as follows. Generate a very large number of data from Nk(µ,Σ), then compute

p̂i =
number of simulated data in Pi

number of simulated data
and q̂i =

number of simulated data in Qi

number of simulated data
. (8)

4. Compute the estimate for MCpk by

M̂Cpk = −1

3
Φ−1(2k−1p̂max),
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where p̂max = max(p̂1, p̂2, . . . , p̂2k).

The method to calculate p̂i and q̂i proposed by Castagliola and Castellanos [4] is an

integration method based on Green’s formula. This method connot be directly extend

to higher dimensions. Our Monte Carlo integration method, although requires intensive

computation for higher dimensions, works for all dimensions.

However, when studying the distribution of B̂Cpk, we need to repeat the estima-

tion procedure for each replication of generating B̂Cpk. Then the algorithm described

above becomes computationally infeasible. More specifically, to generate one B̂Cpk when

X ∼ N(µ,Σ), we simulate n normal data from N(µ,Σ). Normally, we could perform

the algorithm described earlier to obtain a B̂Cpk, which requires generating N=1,000,000

(say) data from N(µ̂, Σ̂). But if we need a large number of replications, say, thousands

or hundreds of thousands, then the procedure becomes infeasible. To overcome this dif-

ficulty, we develop a method that requires generating the large amount of the standard

multivariate normal data only once.

It is well known that the affine transformation of Z = Σ−1/2(X −µ) will transform a

random vector X ∼ N(µ,Σ) to a standard multivariate normal Z ∼ N(O, I). So instead

of generating N data from N(µ̂, Σ̂), which is different for each replication, to perform

Monte Carlo integration, we generate N data from N(O, I), which can be reused for all

replications. To compute pi’s, we need to transform the specification region accordingly.

When the specification region is a rectangle (or cube), we only need to transform the

vertices and then construct the specification region in the transformed space. After that,

we only need to compute qi’s and pi’s by (8).

One of the most important advantages of our method in calculating p̂i’s and q̂i’s is

that it allows the computation of B̂Cpk not only for rectangular specifications but also for

specification regions of any shape as long as we have a way to describe them. However,

for convenience, we still illustrate our method by examples of rectangular specifications,

since this shape is widely used in factories.
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Four different examples are considered in the study. Table 2 lists the distribution

parameters and specifications for each case.

Table 2: Parameters and specifications of BCpk examples

Distribution parameters

µ1 σ2
1 µ2 σ2

2 ρ

Case1 6.0 0.8 7.0 1.0 0.0

Case2 5.0 0.5 6.0 0.45 0.5

Case3 3.0 1.0 6.0 1.0 0.2

Case4 1.0 1.0 1.0 1.0 0.2

X1 spec X2 spec

LSL1 USL1 LSL2 USL2

Case1 2.0 10.0 3.0 10.0

Case2 2.0 9.0 3.0 10.0

Case3 0.5 6.5 1.0 7.0

Case4 3.0 5.0 1.0 3.0

Note that

• Case 1 is supposed to be a capable process.

• Case 2 is supposed to be a satisfactory process.

• Case 3 is supposed to be an inadequate process because of large variability and shift.

• Case 4 is supposed to be a poor process because the variability of the process is large

and the process mean is out of specification.

Figure 5 plots, for each case, a set of sample data, the specification region, and two

orthogonal lines passing through sample mean and having eigenvectors of Σ̂ as their di-

rections. To investigate the distribution of B̂Cpk, we generate 1000 sets of data for each

case. Tables 3-6 present Cases 1-4, respectively, with the true values, sample mean and

sample standard deviation of 1000 values of q̂1, q̂2, q̂3, q̂4, and B̂Cpk. The bias defined

as the difference of the sample mean and the true value is also included. Results indicate

that B̂Cpk is a reasonable estimator.
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Figure 5: Plots of 4 cases under study

Table 3: Estimation results of Case 1

True value Sample mean Sample sd. Bias

q1 0.247914 0.247572 0.000983 0.000342

q2 0.247901 0.247554 0.001018 0.000347

q3 0.249926 0.249791 0.000061 0.000135

q4 0.249921 0.249801 0.000063 0.000012

BCpk 0.878933 0.862306 0.1085323 0.016627

Table 4: Estimation results of Case 2

True value Sample mean Sample sd. Bias

q1 0.249998 0.249992 0.000024 0.000006

q2 0.250000 0.249999 0.000003 0.000001

q3 0.249947 0.249905 0.000130 0.000042

q4 0.249942 0.249098 0.000131 0.000844

BCpk 1.227117 1.238882 0.111481 0.011765
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Table 5: Estimation results of Case 3

True value Sample mean Sample sd. Bias

q1 0.121880 0.121354 0.035231 0.000526

q2 0.121316 0.120687 0.034688 0.000629

q3 0.247951 0.247775 0.001437 0.000176

q4 0.249857 0.249806 0.000413 0.000051

BCpk 0.217160 0.221018 0.073617 0.003858

Table 6: Estimation results of Case 4

True value Estimate mean Estimate sd. Bias

q1 0.015005 0.015057 0.006267 0.000221

q2 0.002751 0.246892 0.002791 0.003108

q3 0.000000 0.000000 0.000000 0.000000

q4 0.000000 0.000000 0.000000 0.000000

BCpk 0.000000 0.000000 0.000000 0.000000

3.2.2 Estimating Lower Confidence Bound by Bootstrap Approach

Note that we can only obtain a B̂Cpk with a set of data. To infer anything on BCpk

directly, say, by obtaining a lower confidence bound, usually we would need many B̂Cpk’s.

However, in many applications, repeating experiments to have a number of estimates is

not possible or economical. So Efron [9] introduced a computationally intensive but effec-

tive estimation method called ”bootstrap”, which is a data-driven technique for statistical

inferences. One can repeat the small-data-size resampling procedure many times to infer

parameters in population without model assumptions.

In this subsection, we emphasize the lower confidence bound rather than the confidence

interval. Since BCpk is an index of yield assurance, lower confidence bound represents the

worst yield at a certain confidence level, that is, the true yield will not be worse than the

yield corresponding to the lower confidence bound.

Suppose that we have a sample {X1, X2,. . .,Xn} of size n from a population F with pa-

rameter θ = θ(F ). Resampling a sample of size n with replacement from {X1, X2,. . ., Xn},
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we can get

X1
∗, X2

∗, . . . , Xn
∗ iid∼ Fn(x) =

1

n

n∑
i=1

1(Xj ≤ x).

Repeating this for B times and calculate θ̂∗i = θ(Fn
∗), i = 1, . . . , B, where Fn

∗(x) =

1
B

B∑
i=1

1(Xj
∗ ≤ x). Then we can make some inferences on θ based on the bootstrap esti-

mates θ̂∗1, θ̂∗2,. . ., θ̂∗B.

In this section, we try four types of bootstrap methods to estimate the confidence

lower bound [8] [10] of BCpk, including Basic Bootstrap Method, Percentile Bootstrap

Method, Standard Bootstrap Method, and Bias Corrected accelerated Percentile Boot-

strap (BCPB) Method.

Basic Bootstrap Method

Following [8], we can get a 100(1 − α)% confidence interval by the basic bootstrap

method as [
2θ̂ − θ̂∗([B(1−α

2
)]), 2θ̂ − θ̂∗([B(α

2
)])

]
,

where θ̂∗(i) is the ith ordered estimate from the bootstrap procedure and θ̂ is the estimate

from the original sample. To provide a lower bound on the process yield, we are interested

in getting a 100(1- α)% lower confidence bound. The basic bootstrap method gives such

a lower confidence bound as 2θ̂ − θ̂∗([B(1−α)]).

Standard Bootstrap Method

The average and standard deviation of B bootstrap estimates θ̂∗1, θ̂∗2, . . . , θ̂∗B are,

respectively,

θ̄∗ =
1

B

B∑
i=1

θ̂∗i and Ŝ∗ =

√√√√ 1

B − 1

n∑
i=1

(θ̂∗i − θ̄∗)2.

We can use normal approximation to obtain the 100(1-α)% confidence interval of θ based

on the standard method as

[
θ̄∗ − Zα

2
Ŝ∗, θ̄∗ + Zα

2
Ŝ∗

]
.
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The 100(1- α)% lower confidence bound of the standard method is θ̄∗ − ZαŜ∗.

Percentile Bootstrap Method

We take the α and the 1−α percentage points to construct the 100(1- α)% confidence

interval of the percentile method as

[
θ̂∗([B(α

2
)]), θ̂∗([B(1−α

2
)])

]

and the 100(1- α)% lower confidence bound is θ̂∗([B(α)]).

Bias-Corrected Percentile Bootstrap Method

It is possible that bootstrap distributions obtained using only a sample of the complete

bootstrap distribution may be shifted higher or lower than would be expected, thus Bias-

Corrected Percentile Bootstrap Method (BCPB) was suggested by [10] to correct this bias.

First, using the distribution of θ̂∗, calculate the probability

p0 = P (θ̂∗ ≤ θ̂)

by the proportion of θ̂∗i ’s satisfying θ̂∗i ≤ θ̂.

Second, calculate

z0 = Φ−1(p0),

PL,α/2 = Φ(2z0 − zα/2),

PU,α/2 = Φ(2z0 + zα/2).

Finally, the 100(1- α)% confidence interval obtained from BCPB method is

[
θ̂∗([BPL,α/2]), θ̂∗([BPU,α/2])

]
.

The 100(1- α)% lower confidence bound is θ̂∗([BPL,α]).

As an illustrative example, we use the above four bootstrap methods to estimate

90% lower confidence bound for the case of BCpk = 1.00. Consider various sample size

20



n=30(10)100, 125(25)200, 250, 300. For each sample, we use the algorithm described be-

fore to obtain a B̂Cpk. Here for the Monte Carlo integration, we generate N = 1, 000, 000

data from N(O, I). We then perform the bootstrap resampling B = 3, 000 times to ob-

tain 3,000 bootstrap estimates of BCpk. With these 3,000 estimates, we obtain a lower

confidence bound (LCB) for each of the four bootstrap methods. Repeating the above

steps for 100 times, we then have 1000 LCBs.

The bootstrap results are shown in Table 7. Table 7 lists the estimated LCBs (with

90% confidence level) and their tolerance errors. The estimated LCB is the mean of 100

LCB estimates. The tolerance error is three times the standard error of the estimated

lower confidence bounds, which is obtained by dividing the sample standard deviation

of the 100 LCBs estimates by 10. The true lower bound of BCpk will likely be between

the estimated LCBs ± tolerance error. In general, the LCB will get closer to the true

value 1.00 and the tolerance error becomes smaller as data size n gets larger. Comparing

the performances of four methods from this table, we find that, the basic method has

the closest lower bound to 1.00, while the standard method has the poorest. As for

the tolerance error, BCPB has the smallest while basic method has the largest. We can

conclude that, the basic method has the closest lower bound to 1.00 but with the largest

variance, the percentile and BCPB methods both have high accuracy in estimating the

lower bound but the lower bound is not as close to 1.00 as the basic method, and the

standard method has the poorest lower bound but the tolerance error is acceptable. When

data size is small, the standard method fails, the basic method performs poorly, the

percentile method and the BCPB perform satisfactorily with the latter slightly better.
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Table 7: Bootstrap results of LCB when BCpk = 1

Basic

Data
LCB Tolerance error

size

300 0.9196162 0.0156318

250 0.9150506 0.0177561

200 0.9094465 0.0184926

175 0.8972231 0.0205290

150 0.8872071 0.0218907

125 0.8810805 0.0240291

100 0.8734203 0.0252222

90 0.8636612 0.0277125

80 0.8557330 0.0286449

70 0.8584181 0.0340782

60 0.8400805 0.0357033

50 0.8309082 0.0415170

40 0.8095727 0.0490749

30 0.5616968 0.5741250

Percentile

Data
LCB Tolerance error

size

300 0.9079113 0.0122382

250 0.9040253 0.0142644

200 0.8980887 0.0150957

175 0.8901748 0.0253932

150 0.8796073 0.0185502

125 0.8717951 0.0205026

100 0.8663372 0.0223302

90 0.8613130 0.0238812

80 0.8547115 0.0242241

70 0.8511570 0.0281736

60 0.8412904 0.0201740

50 0.8408328 0.0327690

40 0.8249969 0.0376905

30 0.7966476 0.0402990

Standard

Data
LCB Tolerance error

size

300 0.8811285 0.0139002

250 0.8740663 0.0159999

200 0.8640700 0.0167988

175 0.8513862 0.0185649

150 0.8384348 0.0200160

125 0.8272374 0.0219966

100 0.8150309 0.0235320

90 0.8046600 0.0257322

80 0.7932829 0.0262065

70 0.7782295 0.0316164

60 0.5724551 0.0306450

50 0.6579983 0.0424130

40 0.4642365 0.1272390

30 0.0183462 0.5531538

Bias-Corrected Percentile

Data
LCB Tolerance error

size

300 0.9078527 0.0120291

250 0.9045532 0.0140316

200 0.8984700 0.0148947

175 0.8916538 0.0159915

150 0.8818719 0.0184107

125 0.8745090 0.0205578

100 0.8707972 0.0222366

90 0.8657128 0.0233943

80 0.8615557 0.0244539

70 0.8570728 0.0280749

60 0.8485384 0.0298275

50 0.8569380 0.0375157

40 0.8365426 0.0371589

30 0.8455312 0.0541467
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3.2.3 Empirical Cumulative Distribution Function of BCpk

In this subsection, we describe how to simulate empirical cumulative distribution func-

tion (ECDF) of B̂Cpk. First, we generate 100,000 B̂Cpk by the algorithm given in sub-

section 3.2.1 with sample data of size 500 and 10,000,000 simulated N2(O, I) data for

Monte Carlo integration. Then we calculate the ECDF and compare it with a normal

distribution.

We perform the simulation with the procedures mentioned above for two special cases:

BCpk=1.00 and BCpk=1.33, each has 100,000 replications to find the sampling distribu-

tion of B̂Cpk. To see if B̂Cpk behaves like a normal distribution. Figures 6-8 plot ECDF,

Q-Q plots, and the histograms of the 100,000 simulated B̂Cpk. From these plots, we can

conclude that the sampling distribution of B̂Cpk is fairly close to a normal distribution.

We also find that the sampling distribution for BCpk=1.00 is closer to normal than that

for BCpk=1.33. We note that the ECDF curve of BCpk=1.33 in Figure 6(b) moves off a

little from the normal curve, but we have no explanation for it.

Figure 6: Comparing empirical cumulative distribution function and a

normal distribution, when (a) BCpk = 1.00 (b) BCpk = 1.33
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Figure 7: Q-Q plot of B̂Cpk, when (a) BCpk = 1.00 (b) BCpk = 1.33
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Figure 8: Histogram of 100,000 B̂Cpk, when (a) BCpk = 1.00 (b) BCpk = 1.33
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4 Bivariate Cp Index: BCp

4.1 Variation Measuring Index for Processes with Multiple Char-

acteristics

4.1.1 Definition of BCp

By analogy to the univariate case, Castagliola and Castellanos [4] defined a new bi-

variate Cp index, called BCp, as the maximum value of BCpk, i.e.,

BCp ≡ max
µ,θ

BCpk.

Because of BCpk itself is defined as the minimum of the four values, −Φ−1(2p1),

−Φ−1(2p2),−Φ−1(2p3), and−Φ−1(2p4), the maximum value of BCpk is necessarily reached

when −Φ−1(2p1) = −Φ−1(2p2) = −Φ−1(2p3) = −Φ−1(2p4), i.e., when p1 = p2 = p3 =

p4 = p/4 and p = p1 + p2 + p3 + p4 is minimum, or when q1 = q2 = q3 = q4 = q/4 and

q = q1 + q2 + q3 + q4 is maximum. Therefore

BCp = −1

3
Φ−1(2× p

4
) = −1

3
Φ−1(

p

2
) = −1

3
Φ−1

(
2
(

1
4 − q1

))
.

Now the question is how to get p1 = p2 = p3 = p4 = p/4 (or q1 = q2 = q3 = q4 = q/4).

In the univariate case, the answer is that, when µ = (LSL + USL)/2 (i.e., the process

mean is on the center of specification), Cp = Cpk. In the bivariate case, Castagliola and

Castellanos [4] let µ1 = (LSL1+USL1)/2, µ2 = (LSL2+USL2)/2, and found the optimal

p by varying the rotation angle θ of the rotation matrix R. However, we find that BCp

defined above is not scale-invariant, in the sense that BCp will change its value if we scale

the process with different scales in X1 and X2 coordinates. Luckily we find that BCpk is

scale-invariant. Take the four examples in Subsection 3.2.1 as examples to demonstrate

this scaling problem. We scale each case by X ′
1 = 2X1 and X ′

2 = 3X2. The parameters

and specifications of each case after scaling are listed in Table 8.

Table 9 presents the values of BCp and BCpk for all cases. We note that, θ, p, and

BCp may change their values after scaling. In practice, using different units for quality

characteristics is fairly common and should not affect process assessment. Thus a well-

defined capability index should be invariant of scaling. In the next subsection, we propose

a simple solution to fix this problem.
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Table 8: Parameters and specifications of 4 examples before and after scaling

Distribution parameters

µ1 σ2
1 µ2 σ2

2 ρ

Case1’ 12.0 3.2 21.0 9.0 0.0

Case2’ 10.0 2.0 18.0 4.05 0.5

Case3’ 6.0 4.0 18.0 9.0 0.2

Case4’ 2.0 4.0 3.0 9.0 0.2

X1 spec X2 spec

LSL1 USL1 LSL2 USL2

Case1’ 4.0 20.0 9.0 30.0

Case2’ 4.0 18.0 9.0 30.0

Case3’ 1.0 13.0 3.0 21.0

Case4’ 6.0 10.0 3.0 9.0

Table 9: BCp and BCpk values of 4 examples before and after scaling

BCpk BCp

Case1 0.878933 1.169641 θ = 0.0000, p = 0.000473

Case1’ 0.878933 1.203389 θ = 22.3199, p = 0.000306

Case2 1.227117 1.163055 θ = 45.0000, p = 0.000001

Case2’ 1.227117 1.421630 θ = 90.0000, p = 0.000020

Case3 0.217160 0.873872 θ = 45.0000, p = 0.008814

Case3’ 0.217160 0.936945 θ = 90.0000, p = 0.004999

Case4 0.000000 0.209254 θ = 45.0000, p = 0.0530151

Case4’ 0.000000 0.210699 θ = 90.0000, p = 0.527320

4.1.2 Pre-processing Data

Our solution for BCp to be invariant is fairly simple: standardize the data and spec-

ifications such that the specification rectangle becomes a square centered at origin (0,0).

Let the quality characteristic vector X = (X1, X2)
T and the specification region be

[LSL1, USL1]× [LSL2, USL2]. We transform X = (X1, X2)
T into X ′ = (X ′

1, X
′
2)

T by

X ′
1 = 1

USL1−LSL1

(
X1 − LSL1 + USL1

2

)
,

X ′
2 = 1

USL2−LSL2

(
X2 − LSL2 + USL2

2

)
,

which transforms the specification region into an unit square [−1
2
, 1

2
] × [−1

2
, 1

2
]. In fact,

the unit length is not necessary, a square centered at the origin is sufficient.
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Suppose X = (X1, X2)
T is a bivariate normal random vector following N(µ1, σ

2
1, µ2, σ

2
2, ρ).

Then X ′ = (X ′
1, X

′
2)

T follows N(µ′1, σ2
1
′
, µ′2, σ2

2
′
, ρ′ = ρ), where

µ′1 =
1

USL1 − LSL1

(
µ1 − LSL1+USL1

2

)
,

σ2
1
′

=
σ2

1

(USL1 − LSL1)2
,

µ′2 =
1

USL2 − LSL2

(
µ2 − LSL2+USL2

2

)
,

σ2
2
′

=
σ2

2

(USL2 − LSL2)2
,

ρ′ =
E(X ′

1X
′
2)− µ′1µ

′
2

σ′1σ
′
2

=
E(X1X2)− LSL2+USL2

2
E(X1)− LSL1+USL1

2
E(X2) + LSL1+USL1

2
LSL2+USL2

2

σ1σ2

−(µ1 − LSL1+USL1

2
)(µ2 − LSL2+USL2

2
)

σ1σ2

= ρ.

Table 10 presents the BCp values obtained with the pre-processing step for 4 examples

before and after scaling. In fact, since the distribution of X and the specification region

will be the same after the transformation for processes with different scales, BCp will be

the same.

Table 10: The results of BCp after pre-processing

Case BCp p

1 0.944225 0.0046920

1’ 0.944225 0.0046920

2 1.243213 0.0001918

2’ 1.243213 0.0001918

3 0.873872 0.0088140

3’ 0.873872 0.0088140

4 0.209254 0.0530151

4’ 0.209254 0.0530151
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4.2 Estimation of BCp

In this subsection, we first develop an algorithm to calculate B̂Cp, and then we derive

an approximate normal distribution for B̂Cp by Taylor expansion. Based on this normal

approximation, we will develop procedures for making statistical inferences on BCp, in-

cluding testing whether process is capable or not by hypothesis testing and constructing

a confidence interval of BCp to obtain the precision of the estimate, and providing a lower

confidence bound.

4.2.1 Estimation of BCp

Algorithm for calculating B̂Cp:

1. Transform data and specification by

X ′
1 = 1

USL1−LSL1

(
X1 − LSL1 + USL1

2

)
,

X ′
2 = 1

USL2−LSL2

(
X2 − LSL2 + USL2

2

)
,

[LSL′1, USL′1] = [−1
2
, 1

2
], and [LSL′2, USL′2] = [−1

2
, 1

2
]

2. Set µ̂1 = 0, and µ̂2 = 0. Compute the sample covariance matrix Σ̂ from the trans-

formed data.

3. Calculate the eigenvalues λ̂2
1 and λ̂2

2 of Σ̂.

4. Looping θ over 0 ≤ θ ≤ 360◦ to rotate the square [−1
2
, 1

2
] × [−1

2
, 1

2
] by an angle θ

and compute q̂(θ), the probability of a bivariate normal vector X falls in the rotated

square by Monte Carlo integration (see Figure 9).

5. Find q̂ = max
0≤θ≤360◦

q̂(θ) and q1 = q2 = q3 = q4.

6. Compute B̂Cp = −1
3
Φ−1(

1− q̂
2

).

We apply this estimating algorithm to various bivariate normal processes and find that
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we always get θ = 45◦ for the optimal q̂, which is intuitively reasonable. Therefore, we

can simplify the algorithm by setting θ = 45◦ in Step 4 instead of looping over various θ

to calculate the optimal q̂, then compute B̂Cp. This would save computing time tremen-

dously. We conjecture that θ = 45◦ will give the BCp value, but we do not have a formal

proof yet.

4.2.2 Normal Approximation

The exact distribution of B̂Cp is mathematically intractable. However, we can obtain

a normal approximation to the distribution of B̂Cp by taking its first-order Taylor expan-

sion.

Since BCp is a function of q, we first show the formula of calculating q. According to

the algorithm in the last section, if we just consider the relative position of the process

and specification region, we can consider the process as following N(0, λ2
1, 0, λ

2
2, 0) and

the square with vertices (
√

2/2, 0), (0,
√

2/2), (−√2/2, 0), (0,−√2/2) as the specification

region. Because of specification is symmetric about X1 and X2 axes (see Figure 9), we

can focus on the yield in the light gray area. Then

q = 4

∫ √
2/2

0

∫ −x1+
√

2/2

0

1

2πλ1λ2

e
− x2

1
2λ2

1
− x2

2
2λ2

2 dx2dx1

= 4

∫ √
2/2

0

1√
2πλ1

e
− x2

1
2λ2

1

∫ −x1+
√

2/2

0

1√
2πλ2

e
− x2

2
2λ2

2 dx2dx1

= 4

∫ √
2/2

0

1√
2πλ1

e
− x2

1
2λ2

1

(
Φ

(
−x1 +

√
2/2

λ2

)
− 1/2

)
dx1

= 4

∫ √
2/2

0

φ
(

x1
λ1

)
Φ

(
−x1 +

√
2/2

λ2

)
dx1 − 2Φ

(√
2

2λ1

)
+ 1.

29



Figure 9: The relative position of the specification square w.r.t. the bivariate

distribution corresponding to BCp

Let q(λ1, λ2) = q = 4

∫ √
2/2

0

φ
(

x1
λ1

)
Φ

(
−x1 +

√
2/2

λ2

)
dx1 − 2Φ

(√
2

2λ1

)
+ 1. The partial

derivatives of q(λ1, λ2) with respective to λ1 and λ2 are, respectively,

∂q(λ1, λ2)

∂λ1

= 4

∫ √
2/2

0

φ

(
x1

λ1

)(
x2

1

λ2
1

− 1

λ1

)
Φ

(
−x1 +

√
2/2

λ2

)
dx1 + φ

(√
2

2λ1

) (√
2

λ2
1

)
,

∂q(λ1, λ2)

∂λ2

= 4

∫ √
2/2

0

φ

(
x1

λ1

)
φ

(
−x1 +

√
2/2

λ2

)(
x1 −

√
2/2

λ2
2

)
dx1,

which can be evaluated numerically when given λ1 and λ2.

Denote Q1(λ1, λ2) ≡ ∂q(λ1, λ2)
∂λ1

and Q2(λ1, λ2) ≡ ∂q(λ1, λ2)
∂λ2

. Then an approximate

distribution of B̂Cp can be obtained as

B̂Cp ≈ N

(
BCp ,

Q2
1(λ1, λ2)λ

2
1 + Q2

2(λ1, λ2)λ
2
2

2× 36n[φ(3BCp)]
2

)

Detail of using Taylor expansion to derive the normal approximation is given below.

Let f(q) = BCp = −1
3
Φ−1

(
1−q
2

)
. Then

B̂Cp = f(q̂)

≈ f(q) +
df(q)

dq
(q̂ − q)

= −1

3
Φ−1

(
1− q

2

)
+

1

6φ

(
Φ−1

(
1− q

2

))(q̂ − q)

= BCp +
1

6φ(3BCp)
(q̂ − q).
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By [1], we have

√
n





 λ̂1

λ̂2


−


 λ1

λ2





 d−→ N


0,




1
2
λ2

1 0

0 1
2
λ2

2





 as n →∞.

One can infer that as n →∞,

√
n(q̂(λ̂1, λ̂2)− q(λ1, λ2))

d−→ N
(
0, 1

2

(
Q2

1(λ1, λ2)λ
2
1 + Q2

2(λ1, λ2)λ
2
2

))
.

Now let Zq =
√

n(q̂(λ̂1, λ̂2)− q(λ1, λ2)), then

B̂Cp ≈ BCp +
1

6
√

nφ(3BCp)
Zq.

As a result, B̂Cp has an approximate normal distribution with mean and variance:

E(B̂Cp) ≈ BCp, V ar(B̂Cp) ≈ Q2
1(λ1, λ2)λ

2
1 + Q2

2(λ1, λ2)λ
2
2

2× 36n[φ(3BCp)]
2 .

We can establish a 100(1-α)% approximate confidence interval and lower confidence

bound from the approximate distribution of B̂Cp as follows:

Lower confidence bound: B̂Cp − Zα

(
Q2

1(λ1, λ2)λ
2
1 + Q2

2(λ1, λ2)λ
2
2

)1/2

√
72nφ(3B̂Cp)

, (9)

Confidence Interval: B̂Cp ± Zα/2

(
Q2

1(λ1, λ2)λ
2
1 + Q2

2(λ1, λ2)λ
2
2

)1/2

√
72nφ(3B̂Cp)

. (10)

4.2.3 Hypothesis Testing

Hypothesis testing with significance level α used for examining whether the process

capability meets customers’ demands can be stated as follows:

H0 : BCp ≤ C (process is not capable)

H1 : BCp > C (process is capable)

for some C > 0. The testing statistics is

Z∗ =
B̂Cp − C

(Q2
1(λ1, λ2)λ2

1 + Q2
2(λ1, λ2)λ2

2)
1/2

/
√

72nφ(3B̂Cp)
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The decision making rule is

reject H0, if Z∗ > Zα;

do not reject H0, if Z∗ ≤ Zα,

where Zα is the αth upper quantile of the standard normal distribution.

4.2.4 Illustrative Examples

We apply our pre-processing and estimating methods to four examples in Table 2. We

generate 1000 sets of 100 bivariate normal data for each case. Table 11 presents for Cases

1-4, the true values, sample mean and sample standard deviation of 1000 B̂Cp
′s. For

each data set, we can obtain a lower confidence bound (LCB) and a confidence interval

(CI) by (9) and (10), respectively. Table 12 shows a LCB and a CI using one data set for

each of Cases 1-4.

Table 11: Estimation results of BCp

Case
True Sample Sample

Bias
value mean sd.

1 0.944225 0.941910 0.003219 0.002315

2 1.243213 1.238305 0.005577 0.004908

3 0.872872 0.877583 0.030057 0.004711

4 0.209254 0.214192 0.017330 0.004938

Table 12: Approximate 90% lower confidence bounds and confidence interval

of BCp

Case LCB CI

1 0.920824 [0.915502, 0.963738]

2 1.249896 [1.246603, 1.259673]

3 0.877702 [0.871465, 0.927997]

4 0.211038 [0.206967, 0.243863]
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5 An Application Example

In this section we employ our estimating methods given in the last two sections to an

industrial example described by Chen [7]. Chen [7] discussed a real example presented

by Sultan [17] regarding an industrial process in which the brinell hardness (H) and the

tensile strength (S) are the quality characteristics. The Chen-Sultan’s data consists of

twenty five samples taken from a process with the specifications for H and S being [112.7,

241.3] and [32.7, 73.3], respectively. Figure 10 depicts the data and the specification

region. Table 13 gives the estimate B̂Cpk along with the 90% bootstrap lower confidence

bounds and their tolerance errors with B = 3000. Table 14 gives the estimate Ĉp and

the 90% confidence interval and 90% lower confidence bound obtained by (9) and (10),

respectively.

100 150 200 250

0
20

40
60

80

H

S

Figure 10: Data and specification region of Chen-Sultan’s example
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Table 13: BCpk estimation results of Chen-Sultan’s data

B̂Cpk=0.503846

p̂1 p̂2 p̂3 p̂4

0.013065 0.032663 0.019598 0.012852

bootstrap lower confidence bounds

Basic Percentile Standard Bias-corrected percentile

0.443303 0.419805 0.391496 0.402532

Tolerance error of Bootstrap lower confidence bounds

Basic Percentile Standard Bias-corrected percentile

0.0002362 0.0006795 0.0004225 0.0010551

Table 14: BCp estimation results of the Chen-Sultan example

p̂ B̂Cp 90% confidence interval 90% lower confidence bound

0.0047052 0.943900 [0.897111, 0.990689] 0.907436

With B̂Cpk = 0.503846, we have a corresponding upper bound of non-conforming rate

130651 ppm. Take the lowest LCB among the four bootstrap method, 0.391496, one may

say that, with 90% confidence, the yield of the product is at least 82%. These indicate

that this process is inadequate that either process variation needs to be reduced or process

mean needs to be adjusted to get closer to the target value.
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6 Conclusions

In this paper, we study the bivariate PCIs, BCpk and BCp, proposed by Castagliola

and Castellanos [4]. We summarize our work below. For BCpk, we

• establish a link between BCpk and the process yield by showing that 2Φ(3BCpk)−
1 ≤ %yield, an inequality links the index Cpk and the yield in the univariate case.

This lower bound provides a measure for quality assurance.

• extend BCpk to MCpk, an index for processes of more than two characteristics, with

the same notion. The lower bound inequality 2Φ(3MCpk)− 1 ≤ %yield also holds.

• provide a new algorithm for computing the estimate B̂Cpk of BCpk. The new al-

gorithm can be used for processes with more general specification regions and/or

higher dimensions.

• utilize bootstrap methods to obtain lower confidence bounds of BCpk. Among

the four bootstrap methods, we recommend Bias-Corrected Percentile Bootstrap

(BCPB) method since it has the smallest tolerance error.

For BCp, we

• find that the original definition is not scale-invariant. We propose a pre-processing

step to fix the problem.

• develop an efficient algorithm for computing the natural estimate of BCp, which is

a lot faster than the method given in Castagliola and Castellanos [4].

• derive an approximate normal distribution for B̂Cp by taking its first-order Taylor

expansion. This enables us to develop statistical procedures for making inferences on

process capability based on data, including hypothesis testing, confidence interval,

and lower confidence bound.

Lastly, we illustrate the estimation methods with a set of real data.

As for the future research, first we need to prove the BCp indeed can be obtained by

rotating the coordinates by an angle of θ = 45◦. Second, our simulation indicates that

the sampling distribution of B̂Cpk is fairly close to normal distribution. If we could find a
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normal approximation to it, it would be very helpful in developing procedures for making

inferences on BCpk.
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