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National Chiao Tung University

Abstract

Process capability indices (PClIs) have been widely used in the industries for assessing the
capability of manufacturing progésses. The resedarch of PCIs for univariate processes has
been well developed. Howevér, in the hivariate'case, the PCI research may be plenty, but
links between the index and the produet®yield are seldom emphasized. For this, by assum-
ing a bivariate normal distribution and a rectangular specification region, Castagliola and
Castellanos [4] proposed two indiges:BC,; and BC),. These two indices are defined based
on the proportions of non-é¢onforming products over ¢onvex polygons. We extend these
indices to multivariate processes of more thantwe quality characteristics. We develop an
algorithm for computing estimates of these indices, which is suitable for general multivari-
ate processes, not like the algorithm in Castagliola and Castellanos [4] can only be used
for bivariate processes. In addition, we estimate the lower confidence bound by bootstrap
methods. As for BC,, we find the original definition is not scale invariant, meaning that
the BC, value will vary with different scales on quality characteristics. We propose a
pre-processing step to solve this problem. Moreover, we find an approximate distribution
of EZ*p, which enables us to develop statistical procedures for making inferences on pro-
cess capability based on data, including hypothesis testing, confidence interval, and lower
confidence bound. The latter is directly linked to the quality assurance. Finally, a real

data set is used as an application example.

keywords: process capability indices, bivariate normal distribution, yield, bootstrap
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1 Introduction

Process Capability Indices (PCls) are some indices developed for engineering conve-
nience to quentify the performance of a process and are widely used in industries. Facing
stronger competition than ever, nowadays, companies need to work very hard to improve
the quality of their products. The measurement and evaluation of the process perfor-

mance via PCIs becomes more and more important.

PCIs have been applied to manufacturing measurements since 1980s and some indices
such as Cp, Cpi, Cpm, Cpmp are widely used. These indices have good performances for
evaluating processes or product with one single quality characteristic. However, now with
high-technology industries replacing traditional industries and becoming the main stream,
many processes are so complex that many characteristics are affecting the quality simul-
taneously. Since these characterisfics are measiwed on the same product/process items,
they should be considered jeintly, that.iss.thesanalysis should be based on multivariate
statistical techniques. Therefore, PCls that can assess a process or product of more than

one quality characteristic_are desirable.

Among univariate PClsy Gy, ‘could be*the'most popular one, not only because it ac-
counts for both process mean‘andwariance in-the process assessment, but perhaps also
because it links directly to the process yield by the following inequality [3]: 2@ (3C,;)—1 <
% yield < ®(3C,), where %yield stands for the process yield. Therefore, Cp), sometimes
is referred to as a yield assurance index. However, in the bivariate case, the PCI re-
search may be plenty, but links between the index and the product yield are seldom
emphasized. For this, by assuming a bivariate normal distribution and a rectangular
specification region, Castagliola and Castellanos [4] proposed two indices, BCy, and BC,,.
These two indices are defined based on the proportions of non-conforming products over
convex polygons. In this paper, we extend the notion of BC to the multivariate case
of more than two quality characteristics. The computation method of Castagliola and
Castellanos [4] is only for bivariate processes with rectangular specification regions. We
develop a computation method that can be implemented for more general multivariate
processes with more flexible specification regions in higher dimensions. As for BC,, we

propose a pre-processing step to solve the problem that the original definition in [4] is



not scale invariant, meaning that the BC), value will vary with different scales on quality
characteristics. Moreover, we find an approximate distribution of EZ*p, which enables
us to develop statistical procedures for making inferences on process capability based on
data, including hypothesis testing, confidence interval, and lower confidence bound. The

latter is directly linked to the quality assurance.

This paper is organized as follows. We first review univariate and bivariate PCIs in
the literature briefly in Section 2. In Section 3, we introduce the index BC); proposed
by Castagliola and Castellanos [4] for bivariate processes. Then we establish connections
between this index and the product yield. We further extend this index to multivariate
processes of more than two characteristics. After that, we give the estimation algorithm
for BC}, and propose obtaining lower confidence bounds by bootstrap methods. We also
study the distribution of a natural estimator of BC); by simulation. In Section 4, for
BC,, we propose a pre-processing algorithm to avoid the non-scale-invariance problem of
the BC, proposed by Castagliolaand Castellanos [4]. We derive an approximate sampling
distribution for a natural estimator of BC,, and developsstatistical procedures for making
inferences on process capability. ITn Sectiond, we apply our methods to a set of real data.

Finally, we conclude the paper with arbriefisummary in Section 6.



2 Literature Review

2.1 Indices for Univariate Process

In this subsection, consider an univariate process with a quality characteristic with the
specification interval [LSL, USL]. Assume that process data follow a normal distribution

with mean p and variance 2.

PClIs for measuring processes with one quality characteristic have been investigated

extensively for decades. Kane [14] proposed

o USL - LSL

P 60
for measuring the variation of product characteristic relative to the specification. Since
(), cannot be used to measure yield,the proposed another index linked to the product

yield as

0SB 1ELSL
80 et B ’

which accounts for not only the spread of the'process but also the location of the process

Cpk = HllIl(

mean relative to the specifieation limits.<As for the endurance of products, which is related
how far a product deviates from the target-T;CGhan et al. [5] and Hsiang and Taguchi [12]

proposed the following index:

USL - LSL
61/02 + (n —T)%

The loss function in the denominator is contributed by the deviation of the process mean

Cpm =

2

p from the target value T' and process variance o?. Pearn et al. [16] proposed Cpyi by

combining C, and Cp, as

O i USL — p p— LSL
e 3V + (u—T)* 3/o? + (n—T)?

which is more sensitive to the deviation of process mean from the target value than C),

and Cly.



2.2 Indices for Multivariate Processes

In this subsection, consider a multivariate process with k quality characteristics. Sup-
pose X1,..., X, are n; i.i.d. k x 1 random vectors of observations. X is a k x 1 vector

representing the sample mean of X,..., X,,.

Assuming the process data X follows a multivariate normal distribution with mean p
and variance-covariance matrix X, denoted by X ~ Ni(w,3). Chan et al. [6] proposed

an index for measuring how far the process mean p is from the target value T as

= (o)

Pearn et al. [16] introduced two multivariate PCIs, which are viewed as more nat-
ural generalizations of C,, than the one proposed by Chan et al. [6]. They defined a

multivariate C), index as

02

2 _
ka | — O )
Xk,0.0027

where X%a is the upper o quantile of a chi-square distribution with degrees of freedom
k, and c is a constant satisfying P{(X —T)TE~(X —T) < ¢*} = 0.9973. Analogously,
they defined a multivariate €, index by

o o - (1)
T =) 5" (p—T)/k

Hubele et al. [13] proposed an index vector (Cpyy, PV, LI)T for bivariate normal pro-

cesses. The first component

2 3
[[wsL; - LsL)
area of specification paiey
Cpu = . — =1
area of modified process region
[[(wrL: - LPL;)

i=1

The modified process region is the smallest rectangle that can circumscribe 100(1—a)% of
the process distribution (see Fig 1). The edges of the modified process region are defined
as the lower and upper process limits, LPL; and UPL;, 1 = 1,2. These four values can
be obtained by solving the system of equations of first derivatives with respect to each z;
of

(X —p)"E7HX — p) = X3 o, where X = (X1, X2)" and p = (1, p2)"

4



The solutions are

2 —1 2 —1
X2ad€t(21 ) X2adet(21 )
PL, = —_ LPLy = 3 —\| —~—————
UPLy = + det(=1) 1= det(=1)
2 —1 2 —1
X3 adet(257) X3 adet(257)
PLy, = —_ = LPLy = g — \| ————
UPLy = po + det(z 1) 2 = M2 det(=1)

where X7 i = 1, 2, is the matrix obtained from X! by deleting the ith row and column.
The meaning of this component is analogous to that of C),, measuring the variation of

product characteristics relative to the specifications.

»

X,

USL,
UPL, |-

specification

LPL, |-

| |
modified process region |

LSE, |ees !

>

UPL, USL, %

LSL,  LPL

Figure 1: Explaining diagram of Cp,,

The second component is the p-value of testing the difference between the center of
specification (target value T') and the process mean. Let the null hypothesis Hy : p =T,
the Hotelling T2 statistic [11] is

T?=n(X -T)TSHX - 1T),

where X is the sample mean and 3 is the usual sample variance-covariance matrix of
process data. Since 2(nn—__21)T2 follows Fh,,_o distribution under null hypothesis, the

p-value-based component PV is defined as

pv=p(rx20=lp ),

n—2
where Fy,_5, stands for the 100(1 — «)% percentile of F' distribution with degrees of

freedom 2 and n — 2. This component measures the distance of the process mean and the

5



target value. If the process mean is close to the target value, PV will be close to 1.

The third component LI provides the information about the location of the modified

process region relative to the specification, defined as

LI = max (1. [UPL1=USLi| |LPLi~LSLy| |UPLy~USLy| |LPLy~LSLy|
» USL1—LSLy ° USL1—LSLy > USL2—LSLy > USLa—LSLa ) °

If this component is equal to 1, then the entire modified process region falls within or on
the specification. If the component is greater than 1, then some or all modified process

region falls out of the specification.

This index vector contains three components summarizing the size and location of

process contour related to the specification.

+ L 'E »
i ¥ i

Taam et al. [18] proposed an e as the re;,ﬁié' of two areas
u . I ..n
~ Area(Rl) F:!;A}"ear(rh'édi‘ﬁed specification)

Arda(Ry) ~ Area(99.73% process region)’

| - . -

A
X
LSy [
pecification
__________ 4
LSL, ;
[ modified process region

»
'

LSL, USL, X,

Figure 2: Explaining diagram of évp

where R; is a modified specification, which is the largest ellipsoid that is centered at the
target value and completely within the original specification, R, is an elliptical region
containing 99.73% of the bivariate normal distribution. This index is an extension of

the univariate C), for bivariate processes. Considering the shift of process mean from the

6



target value T', Taam et al. [18] further modified this index by taking an adjustment factor

D into account and defined a C),, index for two quality characteristics as follows:

C 3
MC,,, = fp’ where D = <1 +(p—T)"S (- T)) )

0 < D7! < 1 measures the closeness between the process mean and the target value. A

larger value of 0 < D™! < 1 implies that the process mean is closer to the target value.

Chen [7] proposed an index using the concept of a specification zone expressed as
V(ro) ={x € R" : h(z — po) < o}, (3)

where h(-) is a nonnegative homogeneous scalar function satisfying the condition h(tx) =
th(z) for all ¢ > 0 and 7y is a positive number. A process is considered capable if
P(X € V(rg)) > 1 — e, where « is. the jallowable expected proportion of non-conforming
products. Let r = min{c : P(X € V(c)) > 1 —af.. Then a process is considered to be
capable if and only if » < 5. This leads -one to express.an index for multivariate process

in the form

According to Chen [7], this definition provides thé following advantages: (i) allowing
flexible specifications as general as-given by V{(#g).in (3), (ii) assuming no conditions on
the underlying distribution, and (iil) permiting flexibility in setting a criterion for the

capability of a process. For example, consider a rectangular specification zone
W={xecR:|z,—p| <ry,i=1,... k},

where p is the process mean and r;’s are positive constants. One can derive an alternative

definition of MC, as
1
MC, = —

r*’
where 7* is a constant satisfying P <max{|XZ- — | /rii=1,...k} < r*) =1—a If
MC, > 1, the process is capable at 100(1 — )% confidence level.

Pal [15] proposed an index defined as follows:
Sp (USLy — LSL)(USLs — LSLs)

C1PB:_: 5 )

A

2 2 2
y2 TX2,0.0027V 9192 — 0712
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where Sk represents the area of the specification rectangle and A, represents the 99.73%
area of the process region. This index is, in fact, an extension of the index (2) proposed
by Taam et al. [18]. It is an area ratio of a rectangular region over an elliptical region
while Taam et al. [18] used an elliptical region over another elliptical region as the area

ratio.

Bothe [2] proposed a multivariate C,, index defined as

Zp

T

Mcpk - ?,

where Zp, is the Ppth percentile of the standard normal distribution, and Pr is defined

as

e

Pr=1-((1-Pye,)(1 = Poc,) -+ (1 = Pgcy))

with Pye,, © = 1,...,k, being thenion-conforming rate of the ith quality characteristic.

However, this index is designéd only for independent process characteristics.

Wang and Du [19] preposed a method.tising principal component (PC) analysis to
describe the performance of a process-of multiple characteristics. In that paper, the pro-
cedures of obtaining the indices for,normal data as well as non-normal data are described

in the following:

—

ko 1/k .
MC, = (H Cp PCZ.) for normal data, where C),.pc, =
i=1

USLpc, — LSLpc,
1/k

6\/St,
—— k.
MCy, = (H Dk PCZ.) for normal data, where

C, o IIliIl(USLPCi — chi, chi — LSLPC))
pk; PC; — )
3y/S%e,

USLpCi — LSLPCi
T Y

64/ —

2d

1/k

— ko A

MC,, = (H Che; PCZ.> for non-normal data, where C..pc, =
i=1

and the elements in the above expressions are given in the following.

Suppose S is a non-singular k x k sample variance-covariance matrix. LSL and USL
are k x 1 vectors of lower and upper specification limits, respectively. Using spectral de-

composition, we can obtain a matrix D = UTSU, where D = diag(\}, A3, ..., \2) with \3 >



A3 > .-+ > )\ being the eigenvalues of S, and the columns of U, uy,us, ..., uy, are the

associated eigenvectors. As a result,

Spc, = iy Xpe, = ul X,
USLPCZ. = ’U%TUSL, LSLPCi = 'U;ZTLSL, 7 = 1’ L 7k7

k n
7 USLpc, + LSLpc,
d:%%z ulX; — PCZ‘; PC; |

Here we remark that the numerators of mp and ]\//_/\C’pk seem somewhat unreasonable,
since the vectors USL and LSL no longer represent upper or lower bounds of the spec-
ification region in the directions of principal components. As a result, USLpc, — LS Lpc;

sometimes may even become negative.

Wang et al. [20] compared three process capability indices: (Cpyr, PV, LI)T pro-
posed by Hubele et al. [13], M C,,proposed by Taam et al. [18], and M C,, proposed by
Chen [7]. They summarized that, in general, the multivariate indices could be obtained
from (i) the area ratio of a specification region to a process region, (ii) the probability
of a non-conforming product; and (iii) other approaches using loss functions or vector
representation. The purpose 'of Wang et al. [20] is to illustrate the distinctions among the

various meanings of capability in;the multivariate case.

The purpose of this paper is to*study 'yield related PCIs for multivariate processes.
As mentioned in Section 1, BC,, and BC, proposed by Castagliola and Castellanos [4]
are such indices. We shall give a more detailed review on these indices and then present
how we would extend BC) to higher dimensions and how to modify BC), to become
scale-invariant in the later sections. And the last but not the least, we will provide

methodologies on how to compute these indices.



3 Multivariate Cp; Index

3.1 Yield Measuring Index for Processes with Multiple Charac-

teristics

In this subsection, we first introduce the bivariate Cp; index, BCy, proposed by
Castagliola and Castellanos [4]. Then we provide the link between BC), and yield. More-

over, we extend this index to higher dimensions.

3.1.1 Alternative Definition of ()

Assume that the quality characteristic X of a product item is a N(u,0?) random vari-
able. Let [LSL, USL] be the corresponding lower and upper specification limits. Equiv-
alent to the definition of Kane [14], an alternative definition for Cp; was proposed by
Castagliola and Castellanos [4]. This definition is based on the lower and upper propor-
tions of non-conforming products p;, =.F(X < LSL) and py = P(X > USL). Since X
~ N(p,0?), pr = @(LS%H) and py= @(%’f), where @ is the cumulative distribution
function (c.d.f.) of the standard normal distribution. “Moreover, since the cumulative
distribution function ® is“a; strictly.inereasing.function of the random variable, Cp is

equivalent to

%min{—@l(p[]), 261}, (4)

Similarly, the C, in Kane [14] is equivalent to

é <—<I>‘1(pu) - <I>‘1(pL)) :

3.1.2 Definition of BC)

Let X; and X5 be the quality characteristics of interests with the specification limits
[LSLy,USLy] for Xy and [LSLy, USLs] for X,. These limits define a rectangular specifi-
cation area A. Assume that X = (X, X5)T follows a bivariate normal distribution with
mean g = (1, j2)? and variance-covariance matrix 3. Applying eigenvalue-eigenvector
decomposition to X, we obtain two eigenvalues A? > A2 > 0 and the associated eigenvec-

tors, v; and vy. Let R = [vy, v3], then RT R = I and X can be expressed as ¥ = RV RT,

10



where V' is the diagonal matrix with diagonal elements A\? and A3. In fact, the matrix
R represents the rotation matrix that rotates the original axes to the main axes of the
bivariate normal distribution (see Figure 3), v; and vy correspond to the main axes, and
A? and A} are the variances on these main axes. More specifically, if we let S; = v] X,
then S; ~ N(vlIp,A\?), i =1, 2, and S; and S, are independent. Suppose we move the
origin to the process mean g and have the two new axes being in the directions of v,
and v,. Then the two main axes divide the plane into four regions, Ay, Ay, A3z, and Ay.
Obviously, P(X € A;) = 1/4, i = 1,...,4. Denoting the specification region by A and
Qi=ANAi=1,...,4 Let ¢ = P(X € Q;), i =1,...,4. Then the probability that
X isin A; but not in the specification region is p; = 1/4 — ¢; (see Figure 3).

USL,

ST,

»
P

x,

By analogy to the alternative definition of C given in (4), Castagliola and Castel-

lanos [4] defined a bivariate Cpy as
1 _ _ _ _
BCpy = gmin(—® '(2p1), =@ (2p2), =0 (2p3), —P " (2p4)).

This definition is similar to the alternative definition of Cpy, except that 0 < p; < 1/4,i =
1,...,4, in the bivariate case, while 0 < p, (orpr) < 1/2 in the univarite case. We extend

this definition to higher dimensions later.

11



3.1.3 Non-conforming Rate Based on BC);

According to the definition of BC)y, in the last subsection, we can establish a connection

between the non-conforming rate (% NC') and BCpy. First note that

1 . _ _ _ _
Bcpk = gmm(—@ 1(2]71), —(I) 1(2])2), —q) 1(2])3), —(I) 1(2])4))
1
= —gmax(q)_l(Zpl), O 1(2py), D (2p3), H(2p4)).
Since ®~1(-) is a strictly increasing function,
|-

Bcpk = _gq) (2pm(m)7

where prae = maz(py, p2, p3, pa). () is a one-to-one function, so
1

Prmaz = 5@(—3BCpk). (5)

Note that ppe: < BNC < 4pqaPlugging (5) into this inequality, we obtain

%@(—33%) <|%NC & 28(-3BC,,). (6)

Although the lower bound of (6) is quite conservative; it is a convenient bound, mean-
ing once the engineer gets.a BC, g value, he/she will knew the bounds of non-conforming
rate. The upper bound is.wvery useful and is not a loose bound, meaning that it is
reachable. Usually producers can take the -upper bound of the non-conforming rate as
an quality assurance to customers. For example, if the process is with BCp;,=1.00, one

can guarantee that there will be 2700 non-conformities in 1,000,000 product items at most.

Table 1 gives the upper and lower bounds of the non-conforming rate %NC' for various
values of BCy;,. Figure 4 plots the bounds. We can see the bounds drop sharply as BC)
increases and soon levels off when BC),, > 1.33.

The second inequality of (6) is equivalent to

20(3BC,y,) — 1 < % yield,

providing a same lower bound for the yield as in the univariate case [3]. The lower bound

gives the worst level of the yield for a given BCy.
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Figure 4: Bounds of non-conformity based on BC)yy

Table 1: Bounds of non-conformity based on BCp

Non-confermities in ppm
B, Iwb upb
0:60 _| 17965.15956+| 71860.63823
0.80 4098.76796 | 16395:07185
1.00 674.94902 | 2699:79606
1.33 16.51832 66.07330
1.50 1769884 6.79535
1.60 0.39666 1.58666
1.67 0.13608 0.54430
2.00 0.00049 0.00197

3.1.4 Extending C,; to Higher Dimensions

Now we generalize the alternative definitions of Cy; and BC), to multivariate processes
of k > 2 characteristics. By the same notion for the bivariate case, dividing the space

RF into 2% subregions by the main axes of the k-variate distribution, we can define a

multivariate Cp, index as

1

MC,, = —mm(—(I)_l(Qk_lpl), —(ID_l(Zk_lpg), e —q)_l(Qk_pok))

3

1
= —gmax(q)*l@k*lpl), @71(2]“*1])2), . ®_1(2k_1p2k))

1.
= —=d 1(2k 1pma:c)7

3
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where p; is the probability of a randomly selected sample being in the ¢th subregion, but

not meeting the specification and ppq, = max(py, pe, ..., per). Equivalently,
1
Pmaxr = F@(—?)Mcpk)

Since Prmaz < WNC < 28p,n0s, We can also get an inequality of non-conforming rate in

the general multivariate case as

1
F@(—BMC’M) <HNC < 20(—3MCy),
which is equivalent to
1

3.2 Estimation of BC);

In this subsection, we propose an algorithm to calculate J\/prk for k-dimensional
quality characteristic vector: We apply this algorithmito a bivariate case for calculating

Ebpk. Then we use bootstrap approaches to make inferences on BCy.

3.2.1 A Natural Estimator of BC,,

Algorithm for calculating M C’pk:

1. Estimate g and X by

ﬂ=%zlxi and £ = 1 (X = )T (X — ).
2. Compute eigenvalues A2, A2, ..., A2 and eigenvectors 92, ©2,...,92 of 3

3. Compute an estimate ¢; of ¢; and an estimate p; of p; by Monte Carlo integration

as follows. Generate a very large number of data from Ny (p, X), then compute

R number of simulated data in P; R number of simulated data in Q);
pi = . and ¢; =
number of simulated data

(8)

number of simulated data

4. Compute the estimate for MC,;, by
Y | N
Mcpk’ = —g@ (2 max)a

14



A

where Do = maz(py, pa, ..., Dok).

The method to calculate p; and §; proposed by Castagliola and Castellanos [4] is an
integration method based on Green’s formula. This method connot be directly extend
to higher dimensions. Our Monte Carlo integration method, although requires intensive

computation for higher dimensions, works for all dimensions.

However, when studying the distribution of Ebpk, we need to repeat the estima-
tion procedure for each replication of generating Ea,,k. Then the algorithm described
above becomes computationally infeasible. More specifically, to generate one E(\ka when
X ~ N(p,X), we simulate n normal data from N(u,X). Normally, we could perform
the algorithm described earlier to obtain a @pk, which requires generating N=1,000,000
(say) data from N(ji,3). But if we need a Jarge number of replications, say, thousands
or hundreds of thousands, then the procedure becemes infeasible. To overcome this dif-

ficulty, we develop a method that requires generating*the large amount of the standard

multivariate normal data enly. once.

It is well known that the affine transformation of Z = X~/2(X — p) will transform a
random vector X ~ N(u, XY 40 a standard multivariate normal Z ~ N(O, I). So instead
of generating N data from N(pu; 2), which is different for each replication, to perform
Monte Carlo integration, we generate N data from N (O, I), which can be reused for all
replications. To compute p;’s, we need to transform the specification region accordingly.
When the specification region is a rectangle (or cube), we only need to transform the

vertices and then construct the specification region in the transformed space. After that,

we only need to compute ¢;’s and p;’s by (8).

One of the most important advantages of our method in calculating p;’s and ¢;’s is
that it allows the computation of é?rpk not only for rectangular specifications but also for
specification regions of any shape as long as we have a way to describe them. However,
for convenience, we still illustrate our method by examples of rectangular specifications,

since this shape is widely used in factories.
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Four different examples are considered in the study. Table 2 lists the distribution

parameters and specifications for each case.

Table 2: Parameters and specifications of BC),, examples

Distribution parameters X1 spec X5 spec
py | 02 | g | o3 P LSL, | USL, | LSLy | USL,
Casel | 6.0 (08 [7.0| 1.0 | 0.0 || Casel | 2.0 10.0 3.0 10.0
Case2 | 5.0 [ 0.5 6.0 | 0.45 | 0.5 || Case2 | 2.0 9.0 3.0 10.0
Case3 | 3.0 1.0[6.0| 1.0 | 0.2 || Case3 | 0.5 6.5 1.0 7.0
Cased4 | 1.0 [ 1.0 [ 1.0 | 1.0 | 0.2 || Cased | 3.0 5.0 1.0 3.0

Note that

e Case 1 is supposed to be a capable process.

e Case 2 is supposed to be a satisfactory process.

e Case 3 is supposed to be aninadequate process bécause of large variability and shift.
e Case 4 is supposed to b¢ a poor process.hecause the variability of the process is large

and the process mean is out of specification:

Figure 5 plots, for eachscase, a set of sample data; the specification region, and two
orthogonal lines passing through sample mean.and having eigenvectors of 3 as their di-
rections. To investigate the distribution of Eapk, we generate 1000 sets of data for each
case. Tables 3-6 present Cases 1-4, respectively, with the true values, sample mean and
sample standard deviation of 1000 values of ¢1, ¢2, ¢3, ¢1, and Ebpk. The bias defined
as the difference of the sample mean and the true value is also included. Results indicate

that EE’M is a reasonable estimator.
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Figure 5: Plotsof 4 cases under study

Table 3: Estimation results of Case 1

True value | Sample mean | Sample sd. Bias
a1 0.247914 0.247572 0.000983 0.000342
Qo 0.247901 0.247554 0.001018 0.000347
g3 0.249926 0.249791 0.000061 0.000135
4 0.249921 0.249801 0.000063 0.000012
BCp, | 0.878933 0.862306 0.1085323 | 0.016627

Table 4: Estimation results of Case 2

True value | Sample mean | Sample sd. Bias
q 0.249998 0.249992 0.000024 0.000006
Q2 0.250000 0.249999 0.000003 0.000001
q3 0.249947 0.249905 0.000130 0.000042
4 0.249942 0.249098 0.000131 0.000844
BCp, | 1.227117 1.238882 0.111481 0.011765
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Table 5: Estimation results of Case 3

True value | Sample mean | Sample sd. Bias
7 0.121880 0.121354 0.035231 0.000526
o 0.121316 0.120687 0.034688 0.000629
qs 0.247951 0.247775 0.001437 0.000176
4 0.249857 0.249806 0.000413 0.000051
BCp | 0.217160 0.221018 0.073617 | 0.003858

Table 6: Estimation results of Case 4

True value | Estimate mean | Estimate sd. Bias
1 0.015005 0.015057 0.006267 0.000221
Q2 0.002751 0.246892 0.002791 0.003108
q3 0.000000 0:000000 0.000000 0.000000
4 0.000000 0.000000 0.000000 0.000000
BCp | 0.000000 0.000000 0.000000 0.000000

3.2.2 Estimating Lower Confidence Bound by Bootstrap Approach

Note that we can only obtain a EE’pk with a set of data. To infer anything on BCy
directly, say, by obtaining a lower, confidence bound, usually we would need many Eapk’s.
However, in many applications, repeating experiments to have a number of estimates is
not possible or economical. So Efron [9] introduced a computationally intensive but effec-
tive estimation method called ”"bootstrap”, which is a data-driven technique for statistical
inferences. One can repeat the small-data-size resampling procedure many times to infer

parameters in population without model assumptions.

In this subsection, we emphasize the lower confidence bound rather than the confidence
interval. Since BCyy, is an index of yield assurance, lower confidence bound represents the
worst yield at a certain confidence level, that is, the true yield will not be worse than the

yield corresponding to the lower confidence bound.

Suppose that we have a sample { X7, Xs,...,X,,} of size n from a population F' with pa-

rameter § = O(F'). Resampling a sample of size n with replacement from {X;, Xs,..., X, },

18



we can get

ii 1 ¢
X1, Xo' o, Xy N F(e) = = ) 1(X; < a).
i=1

3

Repeating this for B times and calculate 67 = 0(F,*), i = 1,...,B, where F,"(z) =
B
+ > 1(X;* < x). Then we can make some inferences on 6 based on the bootstrap esti-

mates 07, 0;,. .., 0%.

In this section, we try four types of bootstrap methods to estimate the confidence
lower bound [8] [10] of BC)y, including Basic Bootstrap Method, Percentile Bootstrap
Method, Standard Bootstrap Method, and Bias Corrected accelerated Percentile Boot-
strap (BCPB) Method.

Basic Bootstrap Method

Following [8], we can get a 100(1 —=¢)% ‘confidence interval by the basic bootstrap

method as

126  Wteg20 — Oy |
where éa) is the ith ordered estimate from thebootstrap procedure and 0 is the estimate
from the original sample. To pravidea lower beund on the process yield, we are interested

in getting a 100(1- )% lower confidence bound. The basic bootstrap method gives such

a lower confidence bound as 26 — 92‘[3(17(1)]).
Standard Bootstrap Method

The average and standard deviation of B bootstrap estimates é}‘, é;,..., é*B are,

respectively,

B n

P= S and § = |t S0 6

i=1 =1
We can use normal approximation to obtain the 100(1-a))% confidence interval of # based

on the standard method as
[é* — Zgg*, 0" + Z%S* .
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The 100(1- @)% lower confidence bound of the standard method is §* — Z,5%.
Percentile Bootstrap Method

We take the o and the 1 — « percentage points to construct the 100(1- )% confidence

interval of the percentile method as

[9?[B<%m7 Oisa-a))

and the 100(1- )% lower confidence bound is éa Bo)):
Bias-Corrected Percentile Bootstrap Method

It is possible that bootstrap distributiens.obtained using only a sample of the complete
bootstrap distribution may be“shifted higher orlower than would be expected, thus Bias-
Corrected Percentile Bootstrap Methad (BCPB) was stiggested by [10] to correct this bias.

First, using the distribution of é*, calculate the probability
me = P(0=<0)

by the proportion of éf’s satisfying éz* <6

Second, calculate

20 = q)71<p0)7
Prop = @220 — 24/2),
PU,a/Q = CI)(QZO + Za/g).

Finally, the 100(1- «)% confidence interval obtained from BCPB method is

o o ] .

(IBPL,a/2])? “([BPy,a/2])

The 100(1- )% lower confidence bound is é?[BPL,a])'

As an illustrative example, we use the above four bootstrap methods to estimate

90% lower confidence bound for the case of BC,; = 1.00. Consider various sample size
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n=30(10)100, 125(25)200, 250, 300. For each sample, we use the algorithm described be-
fore to obtain a Ebpk. Here for the Monte Carlo integration, we generate N = 1,000, 000
data from N (O, I). We then perform the bootstrap resampling B = 3,000 times to ob-
tain 3,000 bootstrap estimates of BCp,. With these 3,000 estimates, we obtain a lower
confidence bound (LCB) for each of the four bootstrap methods. Repeating the above
steps for 100 times, we then have 1000 LCBs.

The bootstrap results are shown in Table 7. Table 7 lists the estimated LCBs (with
90% confidence level) and their tolerance errors. The estimated LCB is the mean of 100
LCB estimates. The tolerance error is three times the standard error of the estimated
lower confidence bounds, which is obtained by dividing the sample standard deviation
of the 100 LCBs estimates by 10. The true lower bound of BC,;, will likely be between
the estimated LCBs =+ tolerance error.. In general, the LCB will get closer to the true
value 1.00 and the tolerance error becomes smaller.as data size n gets larger. Comparing
the performances of four miethods frem this table, we find that, the basic method has
the closest lower bound te 1.00, while the standard method has the poorest. As for
the tolerance error, BCPB has the smallest while basic.method has the largest. We can
conclude that, the basic method has.theclosestrlower bound to 1.00 but with the largest
variance, the percentile and*“BCPB methods both have high accuracy in estimating the
lower bound but the lower bound/'is not as close to 1.00 as the basic method, and the
standard method has the poorest lower bound but the tolerance error is acceptable. When
data size is small, the standard method fails, the basic method performs poorly, the

percentile method and the BCPB perform satisfactorily with the latter slightly better.
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Table 7: Bootstrap results of LCB when BCp, =1

Basic Percentile
Data Data
) LCB Tolerance error ) LCB Tolerance error
size size
300 | 0.9196162 0.0156318 300 | 0.9079113 0.0122382
250 | 0.9150506 0.0177561 250 | 0.9040253 0.0142644
200 | 0.9094465 0.0184926 200 | 0.8980887 0.0150957
175 | 0.8972231 0.0205290 175 | 0.8901748 0.0253932
150 | 0.8872071 0.0218907 150 | 0.8796073 0.0185502
125 | 0.8810805 0.0240291 125 | 0.8717951 0.0205026
100 | 0.8734203 0.0252222 100 | 0.8663372 0.0223302
90 | 0.8636612 0.0277125 90 | 0.8613130 0.0238812
80 | 0.8557330 0.0286449 80 | 0.8547115 0.0242241
70 | 0.8584181 0.0340782 70 | 0.8511570 0.0281736
60 | 0.8400805 0.0357033 60 | 0.8412904 0.0201740
50 | 0.8309082 040415170 50 -~ | 0.8408328 0.0327690
40 | 0.8095727 0.0490749 40 170.8249969 0.0376905
30 | 0.5616968 0.5741250 30, 110:7966476 0.0402990
Standard Bias-Corrected Percentile
Data Data
) LCB Tolerance ‘error . LCB Tolerance error
size Size
300 | 0.8811285 0.0139002 3001 £°0.9078527 0.0120291
250 | 0.8740663 0.0159999 250" | 0.9045532 0.0140316
200 | 0.8640700 0.0167988 200 | 0.8984700 0.0148947
175 | 0.8513862 0.0185649 175 | 0.8916538 0.0159915
150 | 0.8384348 0.0200160 150 | 0.8818719 0.0184107
125 | 0.8272374 0.0219966 125 | 0.8745090 0.0205578
100 | 0.8150309 0.0235320 100 | 0.8707972 0.0222366
90 | 0.8046600 0.0257322 90 | 0.8657128 0.0233943
80 | 0.7932829 0.0262065 80 | 0.8615557 0.0244539
70 | 0.7782295 0.0316164 70 | 0.8570728 0.0280749
60 | 0.5724551 0.0306450 60 | 0.8485384 0.0298275
50 | 0.6579983 0.0424130 50 | 0.8569380 0.0375157
40 | 0.4642365 0.1272390 40 | 0.8365426 0.0371589
30 | 0.0183462 0.5531538 30 | 0.8455312 0.0541467
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3.2.3 Empirical Cumulative Distribution Function of BCy,

In this subsection, we describe how to simulate empirical cumulative distribution func-
tion (ECDF) of Ebpk. First, we generate 100,000 E?ka by the algorithm given in sub-
section 3.2.1 with sample data of size 500 and 10,000,000 simulated N2(O, I) data for
Monte Carlo integration. Then we calculate the ECDF and compare it with a normal

distribution.

We perform the simulation with the procedures mentioned above for two special cases:
BC,;=1.00 and BC);=1.33, each has 100,000 replications to find the sampling distribu-
tion of Ebpk. To see if BE’pk behaves like a normal distribution. Figures 6-8 plot ECDF,
Q-Q plots, and the histograms of the 100,000 simulated Ebpk. From these plots, we can
conclude that the sampling distribution of EEM is fairly close to a normal distribution.
We also find that the sampling distribution for,. BC,,=1.00 is closer to normal than that
for BCp,=1.33. We note thatsthe ECDF curve of BC,,=1.33 in Figure 6(b) moves off a

little from the normal curve, but we have no explanation for it.
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Figure 6: Comparing empirical cumulative distribution function and a

normal distribution, when (a) BCp, = 1.00 (b) BC,, = 1.33
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4 Bivariate C, Index: BC,

4.1 Variation Measuring Index for Processes with Multiple Char-

acteristics
4.1.1 Definition of BC,

By analogy to the univariate case, Castagliola and Castellanos [4] defined a new bi-

variate C), index, called BC,, as the maximum value of BCy, i.e.,
BC, = max BC.
.0

Because of BC,, itself is defined as the minimum of the four values, —®~!(2p,),
— &1 (2py), —P 1 (2p3), and —P~!(2p,), the maximum value of BC)y, is necessarily reached
when —®~1(2p;) = —®71(2py) = —P 1 (2p3) = —D1(2py), ie., when p; = py = p3 =
ps = p/4 and p = py + pa + p3 4 pa IS mMinimum,gor when ¢ = ¢ = g3 = q4 = ¢/4 and
q=q1+ @ + g3 + q4 is maximum. Theérefore

s, Sty Tl o o (1-1))

Now the question is how to gét pi.= pa.=p3 = ps=p/4 (or ¢1 = @2 = q3 = q1 = q/4).
In the univariate case, the answer is that, when g = (LSL + USL)/2 (i.e., the process
mean is on the center of specification), C,-=Cpp. In the bivariate case, Castagliola and
Castellanos [4] let py = (LSLi+USLy)/2, o = (LSLy+USLy) /2, and found the optimal
p by varying the rotation angle 6 of the rotation matrix R. However, we find that BC,
defined above is not scale-invariant, in the sense that BC), will change its value if we scale
the process with different scales in X; and X5 coordinates. Luckily we find that BCp, is
scale-invariant. Take the four examples in Subsection 3.2.1 as examples to demonstrate
this scaling problem. We scale each case by X| = 2X; and X} = 3X,. The parameters

and specifications of each case after scaling are listed in Table 8.

Table 9 presents the values of BC, and BCy, for all cases. We note that, 6, p, and
BC,, may change their values after scaling. In practice, using different units for quality
characteristics is fairly common and should not affect process assessment. Thus a well-
defined capability index should be invariant of scaling. In the next subsection, we propose

a simple solution to fix this problem.
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Table 8: Parameters and specifications of 4 examples before and after scaling

Distribution parameters X1 spec X5 spec
py | ot | pe | o2 | p LSL, | USL, | LSLy | USL,
Casel’ | 12.0 | 3.2 | 21.0 | 9.0 | 0.0 || Casel’ | 4.0 20.0 9.0 30.0
Case2’ | 10.0 | 2.0 | 18.0 | 4.05 | 0.5 || Case2’ | 4.0 18.0 9.0 30.0
Cased’ | 6.0 | 4.0 18.0| 9.0 | 0.2 | Cased’ | 1.0 13.0 3.0 21.0
Cased” | 2.0 | 4.0] 3.0 | 9.0 | 0.2 | Cased’ | 6.0 10.0 3.0 9.0

Table 9: BC, and BC, values of 4 examples before and after scaling
BCp BC,
Casel | 0.878933 | 1.169641 | 8 = 0.0000, p = 0.000473

Casel’ | 0.878933 | 1.203389 | ¢ = 22.3199, p = 0.000306

Case2 | 1.227117 |+171163055 | 6:= 45.0000, p = 0.000001
Case2’ | 1.227117 [-1.421630 | ¢ =90.0000, p = 0.000020

Case3 | 0.217160 [-0.873872 | € = 45.0000, p = 0.008814
Case3’ | 0217160 | 0.936945 |6 = 90.0000, p = 0.004999
Case4 | 0:000000}.0.209254 | 6 = 45.0000, p = 0.0530151
Case4’ | 0.000000p 0:210699 | "= 90.0000, p = 0.527320

4.1.2 Pre-processing Data

Our solution for BC), to be invariant is fairly simple: standardize the data and spec-
ifications such that the specification rectangle becomes a square centered at origin (0,0).
Let the quality characteristic vector X = (Xi, X3)T and the specification region be
[LSLy,USLy] X [LSLy, USLy). We transform X = (X, X3)T into X’ = (X7, X3)” by

_ 1 LSLy+USL
X1 = gsrrsr; (X1 — ! _'2_ L)

— 1 LSL L
Xy = vst-1sL; (Xz - L5L, —5 us 2) v

which transforms the specification region into an unit square [—%, %] X [—%, %] In fact,

the unit length is not necessary, a square centered at the origin is sufficient.
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Suppose X = (X, X5)T is a bivariate normal random vector following N (pu1, 03, yia, 03, p).

Then X’ = (X}, X)) follows N(u!, o7, 1, 03, p' = p), where

1
P _ LSLi4USL
H USL, — LSL, (“1 2 >
2! U%
0-1 = 5
(USL1 LSL, )
e = Gor. LSL; (“2 LSL2+USL2>’

2! ‘72

(USLy — LSL,)?’
) E(X{X5) — ph s
0107y

E(X1Xp) — L8LetUSLy py( X)) — LSIntUSLy py( x ) - LSLitUSLy LSLotUSLy

0102

LSLo4+USL>
H2 — T)

0102

(p — ERFESEL)(

Table 10 presents the BC,, values obtained with the pre-processing step for 4 examples
before and after scaling. In faet; since the distribution of X and the specification region
will be the same after the®transformation for processes with different scales, BC), will be

the same.

Table 10: The results of BC,, after pre-processing

Case BC, P
1 0.944225 | 0.0046920
1’ | 0.944225 | 0.0046920

2 1.243213 | 0.0001918
2’ 1.243213 | 0.0001918
3 0.873872 | 0.0088140
3> | 0.873872 | 0.0088140
4 0.209254 | 0.0530151
4’ | 0.209254 | 0.0530151
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4.2 Estimation of BC),

In this subsection, we first develop an algorithm to calculate EEP, and then we derive
an approximate normal distribution for BE’I, by Taylor expansion. Based on this normal
approximation, we will develop procedures for making statistical inferences on BC), in-
cluding testing whether process is capable or not by hypothesis testing and constructing
a confidence interval of BC), to obtain the precision of the estimate, and providing a lower

confidence bound.

4.2.1 Estimation of BC,

Algorithm for calculating Ea'p:

1. Transform data and specification by

_ 1 LS USL
X1 = ger—tst; \ X1 — 1_5 Ll
_ 1 ST L
X3 = vsn—tsm; \ X2 — gL —5 USLy y
[LSL;, USLY] = [-4, Y and [LSLS, USE = [-1, 3]

2. Set 13 = 0, and i, = 0 Compute the'sample ¢ovariance matrix 3 from the trans-

formed data.
3. Calculate the eigenvalues A2 and A2 of 3.

4. Looping 6 over 0 < 6 < 360° to rotate the square [—%, %] X [—%, %] by an angle 6

and compute ¢(f), the probability of a bivariate normal vector X falls in the rotated

square by Monte Carlo integration (see Figure 9).

5. Find ¢ = ogreng%}éoo ¢(9) and q1 = q2 = q3 = qu.

6. Compute BC, = —%@‘1(1 -9,

We apply this estimating algorithm to various bivariate normal processes and find that
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we always get 6 = 45° for the optimal ¢, which is intuitively reasonable. Therefore, we
can simplify the algorithm by setting # = 45° in Step 4 instead of looping over various 6
to calculate the optimal ¢, then compute EE’T,. This would save computing time tremen-
dously. We conjecture that 0 = 45° will give the BC), value, but we do not have a formal

proof yet.

4.2.2 Normal Approximation

The exact distribution of EEP is mathematically intractable. However, we can obtain
a normal approximation to the distribution of Eap by taking its first-order Taylor expan-

sion.

Since BC), is a function of g, we first show the formula of calculating g. According to
the algorithm in the last sgetion, if we just consider the relative position of the process
and specification region, We can consider the"process as following N(0,A?,0,A3,0) and
the square with vertices (¥/2/2,0), (0,4/2/2), (—v/2/2,0), (0, —/2/2) as the specification
region. Because of specification is symmetric about/Xy and X, axes (see Figure 9), we

can focus on the yield in the light gray area. Then

V2/2  p—z14V2/2 1 C 2 a3
q = 4/ / e 2 23 drydry
0 0

27T>\1)\2
V2/2 1 717%2 —21+v2/2 1 717%2
- 4 e M / e *2dxydr
0 V 27'(')\1 0 V 277')\2 ? !

[

v2/2 _=t
= 4 ! ¢ B <<I> (M) — 1/2) dxy
0 V2T A2

_ 4/0ﬁ/2¢<%>¢ (%@) dzy — 20 (Q_VEJ +1.
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process

Figure 9: The relative position of the specification square w.r.t. the bivariate

distribution corresponding to BC,

V2/2
Let g\, ho) = g = 4/ & (%) o (%@) dz, — 20 <2\/A_1> + 1. The partial
0

derivatives of ¢(A1, A2) with respective to A\; and Ay are, respectively,

25 = o[ () (e () e () ()

8(](3\;\,2)\2) B 4/0ﬂ/2¢(2>¢( x1+f/2> <L—A2@) dzn,

which can be evaluated numerically when givgn Arand ).

. Then an approximate

Denote Q1(A1, \2) = %é\;\#&) and Qrg(e\‘lj o) =

distribution of EEP can be obtaine‘d‘ as

BC, ~ N <Bcp7 QRO M)\ +Q§(>\1,)\2))\§)

86](/\17 )‘2)
Is

2 x 36n[p(3BC,)]?

Detail of using Taylor expansion to derive the normal approximation is given below.

Let f(q) = BC, = —1d~1 (Tq) Then

—

Bcp = f(‘j)
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By [1], we have

A A
vn Al - ' 2N o, as n — 00.
A2 A2 0

One can infer that as n — oo,

Vi, o) = a0, 2e)) =5 N (0, 3 (@20 )X + Q30 A)N) ) -
Now let Z, = /n(G(A1, X2) — ¢(A1, A2)), then

BC, ~ BC, + Z,

1
6v/né(35C,)
As a result, E(\jp has an approximate normal distribution with mean and variance:

== = Q%()\l, )\2))\% + Q%(Al, )\2))\3
E(BC,) ~ BC,, Var(BC,) ~ .
(BCy) p Var(BCy) 2 x 36n[p(3BC,))?

We can establish a 100(1-e) % approximate confidénce interval and lower confidence

bound from the approximate distribution of EEP as follows:

(20, o)X + Q300, A)AY) o)
VT72n6(3BC,) ’

(@I, M) AT + Q3(\i, )\2)>\§)1/2
VT2n¢(3BC,) '

Lower confidence bound: 1’3@ —Zoy

Confidence Interval: é@, =14, J. (10)

4.2.3 Hypothesis Testing

Hypothesis testing with significance level o used for examining whether the process

capability meets customers’ demands can be stated as follows:

Hy, : BC, < C (process is not capable)

H, : BC, > C (process is capable)
for some C' > 0. The testing statistics is
BC,—C
(@30, M2)XE + Q3(0, X)) /VT2n6(3BC)

*
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The decision making rule is

reject Hy, if Z* > Z,;

do not reject Hy, if Z7* < Z,,

where Z, is the ath upper quantile of the standard normal distribution.

4.2.4 TIllustrative Examples

We apply our pre-processing and estimating methods to four examples in Table 2. We
generate 1000 sets of 100 bivariate normal data for each case. Table 11 presents for Cases
1-4, the true values, sample mean and sample standard deviation of 1000 Ez’p’ s. For
cach data set, we can obtain a lower confidence bound (LCB) and a confidence interval
(CI) by (9) and (10), respectively. able 12 8hows a LCB and a CI using one data set for
each of Cases 1-4.

Table 11: Estiiation results'of BC,

Case

True

value

Sample
mean

Sample
sd.

Bias

0.944225

0.941910

0.003219

0.002315

1.243213

1.238305

0.005577

0.004908

0.872872

0.877583

0.030057

0.004711

=l w N =

0.209254

0.214192

0.017330

0.004938

Table 12: Approximate 90% lower confidence bounds and confidence interval

of BC),

Case | LCB CI
1 0.920824 | [0.915502, 0.963738]
2 1.249896 | [1.246603, 1.259673]
3 0.877702 | [0.871465, 0.927997]
4 0.211038 | [0.206967, 0.243863]
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5 An Application Example

In this section we employ our estimating methods given in the last two sections to an
industrial example described by Chen [7]. Chen [7] discussed a real example presented
by Sultan [17] regarding an industrial process in which the brinell hardness (H) and the
tensile strength (S) are the quality characteristics. The Chen-Sultan’s data consists of
twenty five samples taken from a process with the specifications for H and S being [112.7,
241.3] and [32.7, 73.3], respectively. Figure 10 depicts the data and the specification
region. Table 13 gives the estimate EC\jpk along with the 90% bootstrap lower confidence
bounds and their tolerance errors with B = 3000. Table 14 gives the estimate C, and
the 90% confidence interval and 90% lower confidence bound obtained by (9) and (10),

respectively.

o _|
6]
8 ] 8 o)
08 P
o
[¢9)
o ®
0,10 C%o
n 2
o
o _|
N
o_
T T T T
100 150 200 250
H

Figure 10: Data and specification region of Chen-Sultan’s example
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Table 13: BCp, estimation results of Chen-Sultan’s data
BC,;=0.503846

P1 P2 D3 Pa
0.013065 | 0.032663 | 0.019598 0.012852
bootstrap lower confidence bounds
Basic Percentile | Standard | Bias-corrected percentile
0.443303 | 0.419805 | 0.391496 0.402532
Tolerance error of Bootstrap lower confidence bounds
Basic Percentile | Standard | Bias-corrected percentile
0.0002362 | 0.0006795 | 0.0004225 0.0010551

Table 14: BC), estimation results of the Chen-Sultan example

D BC, 90%aconfidence interyal | 90% lower confidence bound
0.0047052 | 0.943900 [0.897111, 0.990689] 0.907436

With EE‘M = 0.503846, we have a corresponding upper bound of non-conforming rate
130651 ppm. Take the lowest LCB ameong-thefour bootstrap method, 0.391496, one may
say that, with 90% confidenee, the*yield of the product is at least 82%. These indicate
that this process is inadequate that eitherprocess variation needs to be reduced or process

mean needs to be adjusted to get closer to the target value.
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6 Conclusions

In this paper, we study the bivariate PCIs, BC,, and BC,, proposed by Castagliola

and Castellanos [4]. We summarize our work below. For BC,, we

e cstablish a link between BC);, and the process yield by showing that 20 (3BCy) —
1 < %yield, an inequality links the index Cpj and the yield in the univariate case.

This lower bound provides a measure for quality assurance.

e extend BCp;, to M (), an index for processes of more than two characteristics, with

the same notion. The lower bound inequality 2@(3M Cp) — 1 < %yield also holds.

e provide a new algorithm for computing the estimate BAC’pk of BCp,. The new al-
gorithm can be used for processes with more general specification regions and/or

higher dimensions.

e utilize bootstrap methdds to obtain lower eonfidence bounds of BC),. Among
the four bootstrap miethods, we recommend Bias-Corrected Percentile Bootstrap

(BCPB) method sinee it has the smallest tolerance error.
For BC,, we

e find that the original définition is not scalesinvariant. We propose a pre-processing

step to fix the problem.

e develop an efficient algorithm for computing the natural estimate of BC),, which is

a lot faster than the method given in Castagliola and Castellanos [4].

e derive an approximate normal distribution for EZ’p by taking its first-order Taylor
expansion. This enables us to develop statistical procedures for making inferences on
process capability based on data, including hypothesis testing, confidence interval,

and lower confidence bound.

Lastly, we illustrate the estimation methods with a set of real data.

As for the future research, first we need to prove the BC), indeed can be obtained by
rotating the coordinates by an angle of # = 45°. Second, our simulation indicates that

the sampling distribution of E(?pk is fairly close to normal distribution. If we could find a
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normal approximation to it, it would be very helpful in developing procedures for making

inferences on BC)y.
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