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摘要 
 

臨床醫學研究的資料常可見某些患者並不會經歷感興趣的事件。即使有

充裕的觀察時間，但“免疫者”依舊存在的存活分析稱為治癒模式。混和模型

是最常見的建模方法，母體被區分為“可致病”和“免疫”的兩個群體，並分別

對於“免疫比例”與 “可致病者之發病時間”做進一步假設。本論文中回顧此

領域部份重要文獻，探討母數與半母數的架構下之推論方法，包含最大概

似估計法與動差法。我們提供系統化的角度，透析不同方法背後的建構原

則，希望對未來延伸的研究有所助益。 
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Abstract 
 

Cure models are suitable for analyzing survival data when some people 
never experience the event of interest despite of long-term follow-up. The most 
popular modeling approach is the so-called mixture model in which the 
population is divided into a susceptible group and a group of cure. In the thesis, 
we review important literature on the cure mixture model. Both parametric and 
semi-parametric inference methods are considered. In particular, the likelihood 
approach and methods based on some moment relationship are examined under 
different model assumptions. We aim to provide a systematic way of studying 
and comparing these methods.    
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Chapter 1 Introduction

1.1 Background

Let T be the failure time of interest and S(t) = Pr(T > t) be the survival function of T .

Traditional survival models assume that every subject in the study will eventually experience

the event of interest. This assumption implies that limt→∞ S(t) = 0. In practical survival data

are often subject to censoring. Let C be the censoring time. Under right censoring, one observes

{(Xi, δi), i = 1, ..., n}, where Xi = min(Ti, Ci) and δi = I(Ti ≤ Ci). Assume that T and C are

independent, the Kaplan-Meier estimator of S(t) can be written as

Ŝ(t) =
∏
u≤t

{1−
∑n

i=1 I(Xi = u, δi = 1)∑n
i=1 I(Xi ≥ u)

}.
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Figure 1: K-M Survival Function

Figure 1.1 shows two Kaplan-Meier survival functions for two groups of patients. Notice that

the two curves level off at the right tail and exhibit a stable plateau. Such a phenomenon is

commonly seen in clinical trials and cancer studies. Whether there exists a group of subject

who will never experience the event of interest despite long-term follow-up is an important

scientific problem that requires subject-matter knowledge.
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1.2 Mixture Model

Survival models in presence of immune or cured subjects have been extensively studied in

statistical literature. The most popular approach is perhaps the mixture model formulation.

Denote a binary variable ζ, where ζ = 1 indicates that the subject will experience the event

of interest and ζ = 0 indicates that the subject will never experience the event no matter how

large C is. For those susceptible ones with ζ = 1, T < ∞ with S̃(t) = Pr(T > t|ζ = 1). For

those cured individuals with ζ = 0, T = ∞. The survival function of the whole population can

be written as the following mixture form,

S(t) = Pr(T > t|ζ = 1)Pr(ζ = 1) + Pr(∞ > t|ζ = 0)Pr(ζ = 0)

= S̃(t) · p + (1− p),

where 1 − p = Pr(ζ = 0) is the cure rate. Under this model, the cumulative distribution of T

becomes

F (t) = Pr(T ≤ t) = p(1− S̃(t)) = pF̃ (t),

and the hazard function can be written as

λ(t) =
pf̃(t)

1− p + pS̃(t)
,

where f̃(t) is the density of T |ζ = 1. Usually S̃(t) is called as the ”latency” survival function

for the susceptible group.

Cure models with the right censored observations suffer from an inherent identifiability prob-

lem. Specifically the observation period should be long enough to make a judgment on the

existence of cure. The book of Maller and Zhou (1996) contains detailed discussions on this

issue under a non-parametric setting.

In most applications, covariate information is also available which would release the assump-

tion on identifiability. Denote Z as a p × 1 vector of covariates. The data are of the form,

(Xi, δi, Zi), i = 1, ..., n, where Zi is the covariate vector for the ith subject. Hence the mixture

model can be written as

S(t|Z) = Pr(ζ = 1|Z)Pr(T > t|ζ = 1, Z) + Pr(ζ = 0|Z)Pr(∞ > t|ζ = 0, Z)

= π(Z)S̃(t|Z) + (1− π(Z)).

The cure rate 1−π(Z) is often analyzed under a logistic regression assumption. In the landmark

papers by Farewell (1982,1986), the Weibull distribution is imposed on the latency distribution.

Other parametric models such generalized F distributions have also been proposed by Peng,

2



Dear and Denham (1998). Alternatively semi-paramertric regression models on the latency

variable haven been studied. For example, the Cox proportional hazard (PH) model has been

assumed by Kuk and Chen (1992), Peng and Dear (2000) and Sy and Taylor (2000), just to

name a few. A more general class of semi-parametric transformation cure models has been

considered by Lu and Ying (2004). It is suggested that, besides applying statistical methods

to verify the identifiability condition, applications of cure models should be done with caution.

One should check whether the result is consistent with medical or biological interpretation.

1.3 Outline of the Thesis

In the thesis, we will review some literature on survival models in presence of cure under

the mixture formulation. We hope to provide a systematic way of studying different inference

methods. Parametric analysis will be discussed in Chapter 2. Chapter 3 considers the likelihood

approach for analyzing the Cox proportional hazard model and the linear transformation model.

Methods developed based on some moment properties are discussed in Chapter 4. Concluding

remarks are given in Chapter 5.
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Chapter 2 Parametric Analysis

In this chapter, we examine the likelihood approach for estimating unknown parameters

under a parametric setting.

2.1 Homogenous Data without Covariates

Suppose that observed data can be written as {(Xi, δi), i = 1, ..., n}, which are independently

and identically distributed replications of (X, δ), where X = T ∧C and δ = I(T ∧C). Assume

that S(t) and f(t) can be indexed by Sθ(t) and fθ(t), where θ is the parameter of interest. In

absence of cure, the parametric likelihood of θ can be written as

n∏
i=1

[fθ(xi)G(xi)]
δi [Sθ(xi)g(xi)]

1−δi ∝
n∏

i=1

fθ(xi)
δiSθ(xi)

1−δi , (2.1)

where G(t) and g(t) is the survival and density functions of C respectively. The latter expression

in (2.1) can also be represented by the hazard and survival functions as follows

L(θ) =
n∏

i=1

[λθ(xi)Sθ(xi)]
δi [Sθ(xi)]

1−δi =
n∏

i=1

λθ(xi)
δiSθ(xi). (2.2)

In presence of cure, denote the latency density f̃(t) as f̃θ(t). The likelihood becomes a

function of θ and p which can be written as

L(θ, p) =
n∏

i=1

[pf̃θ(xi)]
δi [pS̃θ(xi) + 1− p]1−δi . (2.3)

The maximum likelihood estimator of (θ, p)T can be obtained by solving the two equations

∂logL(θ, p)

∂θ
= 0

and
∂logL(θ, p)

∂p
= 0

given that the functions are differentiable with respect to (θ, p). It follows that

∂logL(θ, p)

∂p
=

n∑
i=1

δi

p
+

n∑
i=1

(1− δi)
S̃θ(xi)− 1

pS̃θ(xi) + 1− p
,

∂logL(θ, p)

∂θ
=

n∑
i=1

δi

f̃θ(xi)
f̃ ′θ(xi) +

n∑
i=1

p(1− δi)

pS̃θ(xi) + 1− p
S̃ ′θ(xi),

where f̃ ′θ(xi) and S̃ ′θ(xi) are partial derivatives of f̃θ(xi) and S̃θ(xi) with respect to θ. Notice

that the score equations are complicated functions of p and θ since the two types of parameters

need to be estimated jointly.
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2.2 Parametric Analysis with Covariates

Suppose that observed data can be written as (Xi, δi, Zi), i = 1, ..., n. To model ζi = 1|Zi,

the following logistic regression model is often assumed:

pi(γ) = Pr(ζi = 1|Zi) =
exp(Z ′

iγ)

1 + exp(Z ′
iγ)

,

where γ : q × 1 is the parameter vector. Suppose a parametric form is imposed on f̃(t|Z) as

f̃θ(t|Z). The likelihood function can be written as

L(θ, γ) =
n∏

i=1

[pi(γ) ˜f |ziθ(xi)]
δi [pi(γ) ˜S|ziθ(xi) + 1− pi(γ)]1−δi . (2.4)

We will illustrate the likelihood analysis for two parametric models.Maximization of the likeli-

hood function in (2.4) under the two models sometimes are quite complicated.

Farewell (1982, 1986) assumed that T |ζ = 1, Z follows a Weibull model such that its density

function and survival function can be written as

f̃θ(t|Z) = αλ(λt)α−1 exp(−(λt)α),

where θ = (α, λ)T , λ = exp(−Z ′β) and

S̃θ(t|Z) = Pr(T > t|ζ = 1, Z) = exp(−(λt)α).

Alternatively Peng, Dear and Denham (1998) applied the generalized F distribution to model

the latency distribution. This parametric model is a flexible distribution which contains some

useful distributions as special cases such as the Weibull and beta distributions. It is assumed

that for those with ζ = 1, Y = log(T ) follows the generalized F distribution with the survival

function

S̃θ(y|Z) = Pr(Y > y|ζ = 1, Z) =

∫ s2(s2+S1 exp(
yi−µ

σ
))−1

0

xs2−1(1− x)s1−1

B(s1, s2)
dx,

where ∞ < µ = Z ′β < ∞, s1 > 0, s2 > 0, β is a vector of coefficients and B(s1, s2) is the beta

function with parameters s1 and s2. The resulting density function of Y is

f̃θ(y|Z) =
(s1exp(yi−µ

σ
)/s2)

s1(1 + s1exp(yi−µ
σ

)/s2)
−(s1+s2)

B(s1, s2)
.
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Farewell(1982) suggested to use Newton-Raphson method to maximize the log-likelihood.

It requires computing inverse matrix of the second partial derivatives evaluated at the max-

imum likelihood estimates. However for the generalized F distribution, it is impossible to

derive the derivatives as closed-form expressions. This makes it difficult to apply the Newton-

Raphson algorithm for solving the MLE. Peng, Dear and Denham (1998) suggested to combine

a derivative-free maximization approach and the Newton-Raphson algorithm. Specifically they

adopt the simulated annealing algorithm as the derivative-free maximization method to esti-

mate the shape parameters. For fixed values of s1 and s2, the Newton-Raphson method is

employed to maximize the likelihood function over σ, β, γ.

6



Chapter 3 Semi-parametric Regression Analysis

- Likelihood Approach

In this chapter, we consider modeling T |ζ = 1, Z by semi-parametric regression models that

contain un-specified functions as nuisance parameters.

3.1 Regression Models Without Cure

For illustration, we first introduce traditional regression models in absence of cure. The most

well-known regression model in survival analysis is perhaps the proportional hazard model

proposed by Cox (1972). Specifically given Z, the model be written as

λ(t|Z) = λ0(t) exp(Z ′β), (3.1a)

where β : p×1 is the unknown regression parameter of interest and λ0(t) is the baseline hazard

function. Another expression of the Cox model is given by

S(t|Z) = S0(t)
exp(Z′β) = exp(−

∫ t

0

λ(s|Z)ds) = exp(−Λ0(t) exp(Z ′β)), (3.1b)

where Λ0(t) is the cumulative hazard function and S0(t) is the survival function for the baseline

group.

In recent years there is a trend to generalize different regression models under a unified

framework. Notice that the Cox model can be written as

log(− log(S(t|Z))) = log(Λ0(t)) + Z ′β. (3.1c)

We see that the right-hand side of (3.1c) shows a linear structure in the parameters log(Λ0(t))

and β. Similarly the proportional odds model can be written as

logit(S(t|Z)) = log
S(t|Z)

1− S(t|Z)
= log[exp(Z ′β)

S0(t|Z)

1− S0(t|Z)
].

It follows that

logit(S(t|Z)) = logit(S0(t)) + Z ′β. (3.2)

The two different models in equations (3.1c) and (3.2) are special cases of the following trans-

formation models:

ϕ(S(t|Z)) = h(t) + Z ′β, (3.3a)

7



where h(·) is an unknown increasing function. Another expression of the model is given by

h(t) = −Z ′β + ε, (3.3b)

where ε is the error term with a known continuous distribution. The relationship between

equations (3.3a) and (3.3b) is specified by

Fε(t) = Pr(ε ≤ t) = 1− ϕ−1(t)

since

Fε(.) = Pr(ε ≤ t) = Pr(ϕ(S(T |Z)) ≤ t)

= Pr(S(T |Z) ≤ ϕ−1(t)) = Pr(1− F (T |Z) ≤ ϕ−1(t))

= Pr[(1− ϕ−1(t)) ≤ F (T |Z)] = 1− ϕ−1(t).

Transformation models form a general class of regression models that have attracted substantial

attention in recent years.

3.2 Regression Models In Presence of Cure

In presence of cure, recall that ζ|Z is modeled by

p(γ) = Pr(ζ = 1|Z) =
exp(Z ′γ)

1 + exp(Z ′γ)
.

Here we consider to model T |ζ = 1, Z by a transformation model such that

ϕ(S̃(t|Z)) = h(t) + Z ′β,

or equivalently

S̃(t|Z) = ϕ−1(h(t) + Z ′β).

Combining the two components, the survival function of T can be written as

S(t|Z) = p(γ)S̃(t|Z) + (1− p(γ))

=
exp(Z ′γ)

1 + exp(Z ′γ)
S̃(t|Z) +

1

1 + exp(Z ′γ)
.

Notice that the cumulative hazard function of T |ζ = 1, Z can be written as

Λ̃(t|Z) = − log[S̃(t|Z)] = −log[ϕ−1(h(t) + Z ′β)] = H(h(t) + Z ′β).

We can write

S(t|Z) =
exp(Z ′γ) exp[−H(h(t) + Z ′β)] + 1

1 + exp(Z ′γ)
=

exp[Z ′γ −H(h(t) + Z ′β)] + 1

1 + exp(Z ′γ)
.

8



Consider the example that T |ζ = 1, Z follows the Cox proportional hazard(ph) model with

the hazard function and survival function

λ̃(t|Z) = λ̃0(t) exp(Z ′β),

S̃(t|Z) = Pr(T > t|ζ = 1, Z) = S̃0(t)
exp(Z′β).

Accordingly the density function and survival function of T given Z can be written as

f(t|Z) = p(γ)λ̃(t|Z)× S̃(t|Z),

= p(γ)[λ̃0(t) exp(Z ′β)]× S̃0(t)
exp(Z′β),

S(t|Z) = S̃(t|Z)p(γ) + 1− p(γ)

= exp[−Λ̃0(t) exp(Z ′β)]p(γ) + 1− p(γ).

The major interest is to estimate β and γ while leaving λ̃0(t) unspecified.

3.3 Likelihood Representations

The general form of likelihood function can be written as

n∏
i=1

[pi(γ)f̃(xi|zi)]
δi [S̃(xi|zi)pi(γ) + 1− pi(γ)]1−δi , (3.4a)

or equivalently
n∏

i=1

[pi(γ)λ̃(xi|zi)S̃(xi|zi)]
δi [S̃(xi|zi)pi(γ) + 1− pi(γ)]1−δi . (3.4b)

The second expression is useful when the model is expressed in terms of the hazard function

such as the Cox model.

The likelihood approach has been applied to the Cox PH model in presence of cure by several

authors. We have seen that the likelihood function is already quite complicated for analyzing

parametric regression models. Now the challenge is to handle the infinite-dimensional nuisance

function λ̃0(t) in estimation. Specifically under the Cox model, we can write

L(γ, β, λ0(.)) =
n∏

i=1

[pi(γ)λ̃0(xi) exp(z′iβ)S̃0(xi)
exp(z′iβ)]δi

[S̃0(xi)
exp(z′iβ)pi(γ) + 1− pi(γ)]1−δi .

Besides the complexity of the likelihood function, the major challenge is to deal with the baseline

hazard function which is an infinite-dimensional nuisance parameter.
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3.4 Principle of the EM Algorithm

To apply the EM algorithm, we first need to construct the likelihood function based on

”complete data” {(xi, δi, zi, ζi), i = 1, . . . , n} assuming that ζi can be observed. Specifically the

likelihood function can be written as

LC =
n∏

i=1

[pi(γ)f̃(xi|zi)]
δiζi [S̃(xi|zi)pi(γ)](1−δi)ζi [1− pi(γ)]1−ζi .

It follows that

LC =
n∏

i=1

(pi(γ)ζi(1− pi(γ))1−ζi

n∏
i=1

(f̃(xi|zi)
δiζiS̃(xi|zi)

(1−δi)ζi)

= L1L2, (3.5)

where the likelihood function is divided into two parts. Notice that the first part L1 is a

function of γ which is the parameter for the cure rate model and the second part involves on

the parameters for the latency distribution. This implies that the two types of parameters can

be dealt with separately.

Since the value of ζi may be missing due to censoring, in the E-step, we calculate its expected

value given the observed data. It follows that

E[ζi|xi, δi, zi] = δi + (1− δi)Pr(ζi = 1|xi, δi = 0, zi). (3.6)

Furthermore

Pr(ζi = 1|xi, δi = 0, zi) = Pr(ζi = 1|Ti > xi, zi)

=
pi(γ)S̃(xi|zi)

pi(γ)S̃(xi|zi) + 1− pi(γ)
. (3.7)

Detailed calculations of the above equation is given in Appendix 1. We see that equation (3.7)

is a function of γ and S̃(x|z) contains the nuisance function. In the M-step, we can maximize

logL1 with respect to γ and logL2 with respect to the parameters in S̃0(.) by replacing ζi by an

estimate of E(ζi|xi, δi = 1, zi) which is treated as a fixed constant by plugging in the parameter

estimates obtained previously. Numerical algorithms such as the Newton-Raphson method may

be used in the maximization.

3.5 The EM Approach under the Cox Model

Now assume that T |ζ = 1, Z follows Cox PH model. The likelihood function is the product

of the following two components:

L1(γ) =
n∏

i=1

(pi(γ)ζi(1− pi(γ))1−ζi (3.8)
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and

L2(β, λ̃0(.)) =
n∏

i=1

[λ̃0(xi) exp(z′iβ)]δiζiexp[−
∫ xi

0

λ̃0(t) exp(z′iβ)dt]ζi . (3.9)

Recall that ζi will be replaced by the estimated value of its conditional expectation. The

maximization step of l1 is straightforward. To handle the nuisance function λ̃0(.) in L2, we

introduce two approaches proposed by Sy and Taylor(2000) and Peng and Dear(2000).

3.5.1 Baseline estimation by Sy and Taylor

Actually two methods are proposed in the paper of Sy and Taylor (2000). The logarithm of

equation (3.9) can be written as

l(β, λ̃0(.)) =
n∑

i=1

δiζi[log λ̃0(xi) + z′iβ] +
n∑

i=1

ζi[−Λ̃0(xi) exp(z′iβ)].

Assume that Λ̃0(t) only jumps at observed failure points. Hence we can write

Λ̃0(t) =
n∑

i=1

I(tj ≤ t)Λ̃0(∆tj),

where tj is the jth observed failure point. Differentiating the log-likelihood with respect to

Λ̃0(∆tj) for j = 1, . . . , k and setting the function as zero gives the following equation:

Λ̂0(∆tj) =
dj∑

i∈R(tj)
ζi exp(Z ′

iβ)
,

where dj is the number of failure at tj and R(t) is the risk set at time t. Accordingly

Λ̂0(t) =
n∑

j=1

I(tj ≤ t)(
dj∑

l∈R(tj)
ζl exp(Z ′

lβ)
) (3.10)

which can be viewed as a modified version of the Breslow estimator if the value of β is known.

Substituting Λ̂0(∆tj) into L2(β, Λ̃0(.)) leads to the following partial likelihood of β:

L3(β) =
n∏

i=1

(
exp(z′iβ)∑

l∈R(xi)
ζlexp(z′lβ)

)δi . (3.11)

We can find the estimators of Λ0(t) and β are similar to the estimators obtained without cure

except that the weight ζl or its estimated conditional expectation is added to. The function

L3(β) does not contain any other nuisance function so that β can be estimated easily using the

traditional approach.

The above Breslow-type estimation separates the estimation of β and Λ0(∆tj). Sy and Taylor

(2000) proposed a different alternative based on joint estimation. Assume that baseline survival

function takes jumps on observed failure points. Recall that

L2 =
n∏

i=1

f̃(xi|zi)
δiζiS̃(xi|zi)

(1−δi)ζi .
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An important technique is to express L2 based on ordered observed times t1 < . . . < tk.

Consider the interval [tj, tj+1). If xl ∈ [tj, tj+1) and δl = 1, the observation contributes the

probability f̃(xl|zl) to the likelihood for the latency distribution. If xl ∈ [tj, tj+1) and δl = 0,

the observation contributes the probability S̃(xl|zl) to the likelihood. Using the property that

f̃(x) = λ̃(x)S̃(x), we have

L2 =
k∏

j=1

{
∏

l∈Dj

(f̃(xl|zl)
ζl}{

∏

l∈Cj

(S̃(xl|zl)
ζl}

=
k∏

j=1

{
∏

l∈Dj

(λ̃(xl|zl)
ζl}{

∏

l∈Ej

(S̃(xl|zl)
ζl},

where Dj is the set of subjects experiencing a failure event at time tj and Cj is the set of

subjects censored in [tj, tj+1) and Ej is the union of the two sets.

Define αi = Pr(T > ti|T ≥ ti, Z = 0, ζ = 1) which is the conditional survival probability at

time ti for the baseline susceptible subject. Then the baseline survival function S̃0(t) can be

written as a product form of αi. Specifically

S̃0(t) =
∏

j:tj≤t

αj.

Hence under the proportional hazard model S̃(xl|zl) = S̃0(xl)
exp(z′lβ). Also

1− Λ̃(∆tj|z) = Pr(T > tj|T ≥ tj, z, ζ = 1) = (αj)
exp(z′lβ).

The function L2(β, Λ̃0(.)) can be written as

L3(β, α) =
k∏

j=1

[
∏

l∈Dj

(1− α
exp(z′lβ)
j )ζl

∏

l∈Ej

α
ζl exp(z′lβ)
j ]. (3.12)

Treating β as a constant and assuming that data have no ties, the MLE of αj can be written

as

α̂j = (1− exp(z′jβ)∑
l∈R(tj)

ζj exp(z′lβ)
)exp(−z′jβ). (3.13)

Substituting α̂i into the equation (3.12), a nonparametric profile likelihood of β can be obtained

and them maximized to get the MLE of β.

3.5.2 Baseline Estimation by Peng and Dear

Peng and Dear (2000) also suggested to use L3(β) for estimating β without dealing with the

baseline hazard rate. For estimating the baseline survival function, Peng and Dear also adopted
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the idea of Kalbfleisch and Prentice (1973) such that the survival function is expressed as the

product of discrete hazard rates. The MLE of αj given β has the form,

α̂j ≈ 1− dj∑
l∈R(tj)

ζl exp(zlβ)
.

3.6 Likelihood for Transformation Models

The likelihood function for linear transformation models with cure can be written as

L(γ, β, h(.)) =
n∏

i=1

[pi(γ)
∂ϕ−1[h(x) + z′iβ]

∂x
|x=xi

]δi

×[pi(γ)ϕ−1[h(xi) + z′iβ] + (1− pi(γ))]1−δi .

Note that for the Cox model, h(·) is related to the baseline hazard function which has clear

properties that can be utilized to simplify the likelihood function. However for other trans-

formation models, the role of h(·) is less clear. Therefore we will discuss methods constructed

based on moment properties for transformation models.
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Chapter 4 Semi-parametric Regression Analysis

- Moment-based Approach

As discussed in Chapter 3, a linear transformation regression model without cure has two

equivalent expressions

h(T ) = −Z ′β + ε

ϕ(S(t|Z)) = h(t) + Z ′β,

where h(.) is an unknown increasing function and ϕ(.) is a known decreasing function related

to the distribution of ε such that

Fε(t) = Pr(ε ≤ t) = 1− ϕ−1(t).

When cure exists, we will assume that ζ = 1|Z follows a logistic regression model and

T |ζ = 1, Z follows a transformation model. We have

S(t|Z) =
exp(Z ′γ)

1 + exp(Z ′γ)
ϕ−1(h(t) + Z ′β) +

1

1 + exp(Z ′γ)
.

In this chapter, we discuss existing inference methods which utilize the moment principles.

4.1 Moment-based Inference: An Overview

The method of moment is attractive because it does not require strong distributional assump-

tion and hence usually provides more robust results. Although the nonparametric likelihood

approach is also robust, it is often very complicated for flexible models. Transformation models

contain an un-specified function h(·) which complicates statistical inference.

Here we review some inference methods that are constructed using the idea of the method

of moment. For example, denote Oi as a chosen response variable and Ei(θ) = E(Oi|Zi) as its

expected value, where θ is the parameter of interest. A moment-based estimating function has

the form,

U(θ) =
n∑

i=1

Wi(Oi − Ei(θ)) = 0, (4.1)

where Wi is a weight function for ith subject. How to choose a suitable response Oi is the

key. If the response is well chosen, its expected value will be a nice function of the unknown

parameters. For transformation models, we shall first pay attention to the form of Ei which

may or may not involve the nuisance function h(·).
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4.2 Response and its Expectation in Absence of Cure

For illustration, we first review exiting choices in absence of cure. There are three response

variables. Specifically I(Ti ≥ Tj), i 6= j was proposed by Cheng et al.(1995), I(T ≥ t) by Cai et

al.(2000) and N(t) = I(T ≤ t) by Chen et al.(2002). We first examine their moment properties.

4.2.1 Pairwise Order Indicator

Temporarily assume there is no censoring and the data can be denoted as (Ti, Zi), i = 1...n.

Since h(.) is an unknown increasing function, it follows that

I(Ti ≥ Tj) = I[h(Ti) ≥ h(Tj)] = I(−Z ′
iβ + εi ≥ −Z ′

jβ + εj) = I(εi − εj ≥ Z ′
iβ − Z ′

jβ).

Then

E[I(Ti ≥ Tj)|Zi, Zj] = E[I(εi − εj ≥ Z ′
iβ − Z ′

jβ)] = Pr(εi − εj ≥ Z ′
ijβ) = Φ(Z ′

ijβ),

where Zij = Zi − Zj, Φ(s) =
∫∞
−∞[1 − Fε(t + s)]dFε(t) and Fε(.) is cumulative distribution

function for ε. More detailed derivations are given in Appendix 2. We have seen that h(·)
disappear in the moment expression.

When censoring is present, observed data can be denoted as (Xi, δi, Zi), i = 1...n. Cheng et

al. (1995) suggested to use I(Xi ≥ Xj, δj = 1) as a proxy of I(Ti ≥ Tj). Note that as long

as the smaller observation corresponds to a failure point, the order relationship of the pair is

known. However the proxy is biased since

E[I(Xi ≥ Xj, δj = 1)] = E[E[Ti ≥ Tj, Ci ≥ Tj, Cj ≥ Tj|Ti, Tj]] = E[I(Ti ≥ Tj)G
2(Tj)],

where G(.) is the survival function of the censoring time. Weighting by the inverse-probability-

of-censoring is often used to correct the bias and hence

E[
δjI(Xi ≥ Xj)

G2(Xj)
|Zi, Zj] = E[I(Ti ≥ Tj)|Zi, Zj] = Φ(Z ′

ijβ).

In summary
δjI(Xi ≥ Xj)

G2(Xj)
is an unbiased proxy for I(Ti ≥ Tj).Detailed derivations are given

in Appendix 3.

4.2.2 The At-risk Indicator

Consider Y (t) = I(T ≥ t) which indicates whether a subject is at risk. In absence of

censoring, its expectation under the transformation model is given by

E(I(T ≥ t)|Z) = Pr(T ≥ t|Z) = S(t|Z) = ϕ−1[h(t) + Z ′β].
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Notice that h(·) still exists. When censoring is present, the corresponding response variable is

I(X ≥ t). It follows that

E(I(X ≥ t)|Z) = Pr(X ≥ t|Z) = ϕ−1[h(t) + Z ′β]G(t).

To utilize this variable for further inference, how to construct high-dimensional estimating

functions is crucial since the expected involves both β and h(·).

4.2.3 The Counting Process

Define the counting process N(t) = I(T ≤ t) and dN(t) = N(t) − N(t−) = I(T = t). The

expected value of dN(t) conditional on the filtration Ft− is

E[dN(t)|Ft−]I(T ≥ t)λ(t)dt = Y (t)λ(t)dt = Y (t)dΛ(t).

Under the transformation model, we can write

Λ(t|Z) = − log S(t|Z) = − log{ϕ−1[h(t) + Z ′β]},

E(N(t)|Ft−) =

∫ ∞

0

Y (s)d[− log ϕ−1(h(s) + Z ′β)].

In presence of censoring, the counting process is modified as N(t) = I(X ≤ t, δ = 1) and the

at-risk process as Y (t) = I(X ≥ t). The conditional expectation of dN(t) given Ft− is similar

E(dN(t)|Ft−) = I(X ≥ t)λ(t)dt = Y (t)dΛ(t).

Under the transformation model, we have

E(N(t)|Ft−) =

∫ ∞

0

Y (s)d[− log ϕ−1(h(s) + Z ′β)].

which involves h(·) but does not contains G(·)

4.3 Estimating Functions in Absence of Cure

Now we illustrate how to construct estimating functions based on the moment properties.

Recall that there are two types parameters, namely β and h(.). The former is of major interest.

4.3.1 Pairwise Order Indicator

Since the mean of I(Ti ≥ Tj) for i 6= j does not depend on the nuisance parameter, we have

the uncensored version

U(β) =
n∑

i=1

n∑
j=1

W (Z ′
ijβ)Zij × {I(Ti ≥ Tj)− Φ(Z ′

ijβ)} = 0, (4.2)
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and the censored version

U(β) =
n∑

i=1

n∑
j=1

W (Z ′
ijβ)Zij × {δjI(Xi ≥ Xj)

Ĝ2(Xj)
− Φ(Z ′

ijβ)} = 0, (4.3)

where Ĝ(.) is the Kaplan-Meier estimator of G(.). The solution of U(β) = 0 yields an estimator

of β.

Although this approach is appealing since the nuisance parameter disappears, it has a crucial

drawback when censoring is present. Notice that (4.3) has to be valid if Pr(G(T ) = 0) = 0.

This requirement however depends on the censoring mechanism. Define the following support

points:

τC = sup
t

t : G(t) = Pr(C > t) > 0,

τT = sup
t

t : Pr(T > t) > 0,

τX = sup
t

t : Pr(X > t) > 0.

It follows that τX = min(τT , τC). Problem occurs when τC < τT which implies the study period

is too short to observe large failure time. In this case the mean condition does not hold and

hence the estimating functions is no longer unbiased.

4.3.2 The At-risk Event

Without censoring and from the previous moment derivation, a natural estimating equation

is given by
n∑

i=1

(I(Ti ≥ t)− ϕ−1[h(t) + Z ′
iβ]) = 0, (4.4)

for t ∈ [τa, τb], where τa, τb are pre-specified constants such that Pr(T < τa) > 0 and Pr(T <

τb) > 0. A set of equations for t being the observed values of Ti (i = 1, . . . , n) can be con-

structed which however are not enough since there are n + p unknown parameters since β is

p−dimensional. Cai et al.(2000) suggested the following additional estimating equations

n∑
i=1

{(I(Ti ≥ t)− E[I(Ti ≥ t|Zi)])} = 0,

n∑
i=1

∫ τb

τa

Zi(I(Ti ≥ t)− ϕ−1[h(t) + Z ′
iβ])dw(t) = 0, (4.5)

where w(.) is a known increasing weight function which may be time-dependent. By choosing

an initial value of β, h(Ti) (i = 1, . . . , n) are estimated first and then plugged into equation

(4.5) to estimate β. The two types of equations are performed iteratively until the convergence

criteria reached.
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For right censoring data, we can construct two types of estimating equations:

n∑
1=1

(I(Xi ≥ t)− ϕ−1[h(t) + Z ′
iβ]Ĝ(t)) = 0, (4.6)

and
n∑

i=1

∫ τb

τa

Zi{I(Xi ≥ t)− ϕ−1[h(t) + Z ′
iβ]Ĝ(t)}dw(t) = 0. (4.7)

Numerical operation is same as mentioned above.

4.3.3 The Counting Process

Let (β0, h0(.)) be the true values of (β, h(.)). It is easy to see that

M(t) = N(t)−
∫ ∞

0

Y (s)d[− log ϕ−1(h0(s) + Z ′β0)

is a mean-zero martingale. This property can be used to construct estimating functions. The

following is the proposal of Chen, Jin and Ying (2002):

n∑
i=1

dNi(t)− Yi(t)d[− log ϕ−1(h(t) + Z ′
iβ)] = 0, (4.8)

n∑
i=1

∫ ∞

0

Zi[dNi(t)− Yi(t)d[− log ϕ−1(h(t) + Z ′
iβ)]] = 0. (4.9)

The first equation is for estimating h(.) at observed failure points and the second equation is for

estimating β. The expressions of the estimating equations are similar when censoring is present.

4.4 Semi-parametric Transformation Cure Model

4.4.1 Estimating Functions

Semi-parametric inference for transformation models in presence of cure has been considered

by Lu and Ying (2004) who constructed the estimating equations based on the counting process

N(t) mentioned above. In presence of cure, we have to modify

E(dN(t)|Ft−) = I(X ≥ t, δ = 1) Pr(T = t|T ≥ t) = I(X ≥ t, δ = 1)dΛ(t|Z)

, where Λ(t|Z) is the cumulative hazard function of T. Now we first derive the general form

of Λ(t|Z) based on the model definitions and then discuss how to transform it into a more
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tractable form. Recall that Λ(t|Z) = − log Pr(T > t|Z) and

Pr(T > t) = Pr(ζ = 0|Z) + Pr(ζ = 1|Z) Pr(T ≥ t|ζ = 1, Z)

=
1

1 + exp(Z ′γ)
+

exp(Z ′γ)

1 + exp(Z ′γ)
S̃(t|Z).

To create a linear pattern in unknown parameters, additional variable transformation is sug-

gested. It follows that

S̃(t|Z) = exp[−Λ̃(t|Z)] = ϕ−1(h(t) + Z ′β),

where Fε(t) = Pr(ε ≤ t) = 1 − ϕ−1(t) and Λ̃(t|Z) is the cumulative hazard function for

susceptible ones. Hence we let

Λ̃(t|Z)] = − log{ϕ−1(h(t) + Z ′β)} = H(h(t) + Z ′β).

Thus we can write

Pr(T > t) =
1

1 + exp(Z ′γ)
+

exp(Z ′γ)

1 + exp(Z ′γ)
S̃(t|Z)

=
1 + exp(Z ′γ −H(h(t) + Z ′β))

1 + exp(Z ′γ)

=
1

1 + exp(Z ′γ)

1 + exp(Z ′γ −H(h(t) + Z ′β))

1

= ψ̄(Z ′γ)
1

ψ̄{Z ′γ −H[h(t) + Z ′β]} ,

where ψ(x) = exp(x)/{1 + exp(x)} is the logistic function and ψ̄ = 1− ψ. Using the fact that

ψ(−x) = ψ̄(x). We have

Λ(t|Z) = − log Pr(T > t|Z) = − log{ψ̄(Z ′γ)}+ log(ψ{−Z ′γ + H[h(t) + Z ′β]}). (4.10)

It follows that M(t) = dN(t) − Y (t)d log ψ{−Z ′γ + H[h(t) + Z ′β]} is a martingale when the

parameters are evaluated at their true values. The suggested estimating functions have the

forms

n∑
i=1

dNi(t)− Yi(t)dlog[ψ(−Z ′
iγ + H(h(t) + Z ′

iβ))] = 0, (4.11)

and
n∑

i=1

∫ ∞

0

Zi {dNi(t)− Yi(t)dlog(ψ(−Z ′
iγ + H(h(t) + Z ′

iβ)))} . (4.12)
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Note that equation (4.11) is used to estimate transformation function h(.) given β and γ

eveluated at observed failure points of h(.) while equation (4.12) is for estimating β given h(.)

and γ.

It should be noted that in presence of cure, we have additional unknown parameters γ but the

above estimating functions are not sufficient to estimate the parameters in the logistic model.

In Section 3.5, we have presented the log-likelihood function of γ given ζ is known.It follows

that

∂l(γ)

∂γ
=

n∑
i=1

Zi[ζi − exp(Z ′
iγ)

1 + exp(Z ′
iγ)

] = 0. (4.13)

The imputation method is suggested to handle possible missingness of ζ. Specifically we impute

ζ by an estimator of E(ζ|X, δ, Z). The conditional probability that a subject belongs to the

susceptible group given that the subject with covariate Z is censored at X is ψ̄{−Z ′γ+H[h(t)+

Z ′β]}. So we get

E(ζ|X, δ, Z) = δ + (1− δ)ψ̄{−Z ′γ + H[h(t) + Z ′β]}. (4.14)

The equation (4.13) can be modified as

n∑
i=1

Zi{δ + (1− δ)ψ̄{−Z ′γ + H[h(t) + Z ′β]}]− ψ(Z ′
iγ)} = 0. (4.15)

4.4.2 Estimation Algorithm

Solving (4.11), (4.12) and (4.15) jointly is not an easy task. Lu et al.(2004) proposed an

iterative approach to obtain the solution. Recall that t1 < ... < tk be ordered failure points

and t0 = 0, tk+1 = ∞. Let di be the number of failure events at time ti. Denote the initial

value of β and γ as β̂(0) and γ̂(0) respectively which may be chosen as γ̂(0) = 0 and β̂(0) being

the maximum partial likelihood estimator under the ordinary Cox model as suggested by Lu

et al.(2004). Denote β̂(m), γ̂(m) and ĥ(m)(t) are the mth estimated values. Let ĥ(·) be a step

function taking jump at ti.

Step 1: This step involves solving of ĥ(tj) for j = 1, ..., k based on equation (4.11). With

β̂(m−1) and γ̂(m−1), we obtain ĥ(m)(tk) by solving

n∑
i=1

dNi(tk)− Yi(tk)dlog[ψ(H(ĥ(m)(tk) + Z ′
iβ̂

(m−1))− Z ′
iγ̂

(m−1)] = 0.
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Step 2: Then based on equation (4.12), we update β̂(m) by plugging ĥ(m)(t) and γ̂(m−1) into

the equation:

n∑
i=1

∫ ∞

0

ZidNi(tk)− Yi(tk)dlog[ψ(H(ĥ(m)(tk) + Z ′
iβ)− Z ′

iγ̂
(m−1))] = 0.

Step 3: Update γ̂(m) based on the equation (4.15) such that

n∑
i=1

Zi{δi + (1− δi)ψ̄{−Z ′
iγ̂

(m−1) + H[ĥ(m)(tk) + Z ′
iβ̂

(m)]} − ψ(Z ′
iγ)} = 0.

The procedure is implemented iteratively between the step 1 to step 3 until the convergence

criteria is reached.
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Chapter 5 Concluding Remarks

In this thesis, we review literature on cure mixture models. The likelihood can be simpli-

fied by assuming complete data, which contains the indicator of susceptibility, are available.

Then the EM algorithm can be applied. When the model assumption on the latency distribu-

tion becomes more flexible, unknown parameters often involve infinite-dimensional functions.

Likelihood-based inference is usually constructed by expressing these functions as step-functions

and hence the jump size at different points becomes the target in estimation. If the Cox model

is assumed, existing partial likelihood method can be modified to account for the cure. How-

ever for transformation models, the idea of method-of-moment is more attractive since the

estimation procedure is more simple. Three forms of estimating functions are examined. The

one based on the counting process has been extended to cure mixture models by Lu and Ying

(2004). Despite its simplicity, efficiency of moment-type methods requires further investigation.
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Appendix

A1. Derivation of E(ζi|(xi, δi = 0, zi))

E(ζi|(xi, δi = 0, zi)) = Pr(ζi = 1|Ti > xi, zi)

=
Pr(ζi = 1, Ti > xi|zi)

Pr(Ti > xi|zi)

=
Pr(ζi = 1|zi)Pr(Ti > xi|ζi = 1, zi)

Pr(ζi = 1|zi)Pr(Ti > xi|ζi = 1, zi) + Pr(ζi = 0|zi)Pr(∞ = Ti > xi|ζi = 1, zi)

=
Pr(ζi = 1|zi)Pr(Ti > xi|ζi = 1, zi)

Pr(ζi = 1|zi)Pr(Ti > xi|ζi = 1, zi) + Pr(ζi = 0|zi)

=
π(zi)S̃(xi|zi)

π(zi)S̃(xi|zi) + 1− π(zi)
.

A2. Derivation of Φ(s) = Pr(εi − εj ≥ s)

Let V = εi − εj, ε
i.i.d∼ fε,

Φ(s) = Pr(εi − εj ≥ s) =

∫ ∞

s

∫ ∞

−∞
fεi,εj

(v + εj, εj)dεjdv =

∫ ∞

s

∫ ∞

−∞
fε(v + εj)fε(εj)dεjdv

=

∫ ∞

s

∫ ∞

−∞
fε(v + εj)dFε(εj)dv =

∫ ∞

−∞

∫ ∞

s

fε(v + εj)dvdFε(εj)

=

∫ ∞

−∞
(1−

∫ s

−∞
fε(v + εj)dv)dFε(εj)

=

∫ ∞

−∞
(1− Fε(s + εj))dFε(εj)

=

∫ ∞

−∞
(1− Fε(s + t))dFε(t).
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A3. Derivation of E[
δiI(Xi≥Xj)

G2(Xj)
|Zi, Zj]

E[
δiI(Xi ≥ Xj)

G2(Xj)
|Zi, Zj] = E[

I(Cj ≥ Tj)I(Xi ≥ Xj)

G2(Xj)
|Zi, Zj]

= EE[
I(min(Cj, Xi) ≥ Tj)

G2(Tj)
|Zi, Zj, Tj]

= EE[
I(min(Cj, Ci) ≥ Tj)I(Ti ≥ Tj)

G2(Tj)
|Zi, Zj, Tj]

= EE[
I(min(Cj, Ci) ≥ Tj)

G2(Tj)
E[I(Ti ≥ Tj)]|Zi, Zj, Tj]

= E[E[I(Ti ≥ Tj)]|Zi, Zj, Tj]

= E[I(Ti ≥ Tj)|Zi, Zj] = Φ(Z ′
ijβ).
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