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Statistical Inference for Cure Models

By A Mixture Approach

Student : Tzu-Chin He Advisor : Dr. Wei-jing Wang

Institute of Statistics
National Chiao Tung University
Hsinchu, Taiwan

Abstract

Cure models are suitable for analyzing survival data when some people
never experience the event of interest despite of long-term follow-up. The most
popular modeling approach is the so-called mixture model in which the
population is divided into a susceptible group and a group of cure. In the thesis,
we review important literature on the cure mixture model. Both parametric and
semi-parametric inference methods are considered. In particular, the likelihood
approach and methods based on some moment relationship are examined under
different model assumptions. We aim to provide a systematic way of studying
and comparing these methods.
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Chapter 1 Introduction

1.1 Background

Let T be the failure time of interest and S(t) = Pr(7" > t) be the survival function of 7.
Traditional survival models assume that every subject in the study will eventually experience
the event of interest. This assumption implies that lim; ., S(¢) = 0. In practical survival data
are often subject to censoring. Let C' be the censoring time. Under right censoring, one observes
{(Xi,0:), i =1,...,n}, where X; = min(7}, C;) and 0; = I(T; < C;). Assume that T and C are
independent, the Kaplan-Meier estimator of S(t) can be written as
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Figure 1: K-M Survival Function

Figure 1.1 shows two Kaplan-Meier survival functions for two groups of patients. Notice that
the two curves level off at the right tail and exhibit a stable plateau. Such a phenomenon is
commonly seen in clinical trials and cancer studies. Whether there exists a group of subject
who will never experience the event of interest despite long-term follow-up is an important

scientific problem that requires subject-matter knowledge.



1.2 Mixture Model

Survival models in presence of immune or cured subjects have been extensively studied in
statistical literature. The most popular approach is perhaps the mixture model formulation.
Denote a binary variable ¢, where ( = 1 indicates that the subject will experience the event
of interest and ¢ = 0 indicates that the subject will never experience the event no matter how
large C'is. For those susceptible ones with ¢ = 1, T < oo with S(t) = Pr(T > t|¢ = 1). For
those cured individuals with ( = 0, 7' = oo. The survival function of the whole population can

be written as the following mixture form,

S(t) = Pr(T >t|¢ =1)Pr(¢ = 1) + Pr(co > t|¢ = 0)Pr(¢ = 0)

= S@t)-p+(1-p),

where 1 — p = Pr(¢ = 0) is the cure rate. Under this model, the cumulative distribution of T

becomes

F(t) = Pr(T <t) =p(1 = S(t)) = pF(t),
and the hazard function can be written as

e pf(t) 7

1L—p+pS(t)
where f (t) is the density of T'|¢ = 1. Usually S(t) is called as the ”latency” survival function
for the susceptible group.

Cure models with the right censored observations suffer from an inherent identifiability prob-
lem. Specifically the observation period should be long enough to make a judgment on the
existence of cure. The book of Maller and Zhou (1996) contains detailed discussions on this
issue under a non-parametric setting.

In most applications, covariate information is also available which would release the assump-
tion on identifiability. Denote Z as a p x 1 vector of covariates. The data are of the form,
(Xi,0i,Z;), ©=1,...,n, where Z; is the covariate vector for the ith subject. Hence the mixture

model can be written as

S(t|Z) = Pr((=12)Pr(T >t(=1,Z)+ Pr(¢ =0|Z)Pr(oco > t|¢ =0,2)
= 71(2)S(t1Z2) + (1 —n(2)).
The cure rate 1 —m(Z7) is often analyzed under a logistic regression assumption. In the landmark

papers by Farewell (1982,1986), the Weibull distribution is imposed on the latency distribution.

Other parametric models such generalized F' distributions have also been proposed by Peng,
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Dear and Denham (1998). Alternatively semi-paramertric regression models on the latency
variable haven been studied. For example, the Cox proportional hazard (PH) model has been
assumed by Kuk and Chen (1992), Peng and Dear (2000) and Sy and Taylor (2000), just to
name a few. A more general class of semi-parametric transformation cure models has been
considered by Lu and Ying (2004). It is suggested that, besides applying statistical methods
to verify the identifiability condition, applications of cure models should be done with caution.

One should check whether the result is consistent with medical or biological interpretation.

1.3 Outline of the Thesis

In the thesis, we will review some literature on survival models in presence of cure under
the mixture formulation. We hope to provide a systematic way of studying different inference
methods. Parametric analysis will be discussed in Chapter 2. Chapter 3 considers the likelihood
approach for analyzing the Cox proportional hazard model and the linear transformation model.
Methods developed based on some moment properties are discussed in Chapter 4. Concluding

remarks are given in Chapter 5.



Chapter 2 Parametric Analysis

In this chapter, we examine the likelihood approach for estimating unknown parameters

under a parametric setting.

2.1 Homogenous Data without Covariates

Suppose that observed data can be written as {(X;, d;), ¢ = 1,...,n}, which are independently
and identically distributed replications of (X, ), where X =T AC and 6 = I(T'AC'). Assume
that S(¢) and f(t) can be indexed by Sp(t) and fy(t), where 6 is the parameter of interest. In
absence of cure, the parametric likelihood of 6 can be written as

[TUfo ()Gl [So(wi)g ()] % oc [T folwi)So(:)' (2.1)
i=1 =1
where G(t) and g(t) is the survival and density functions of C' respectively. The latter expression

in (2.1) can also be represented by the hazard and survival functions as follows

n n

L(9) = [ [P (@) So ()] [So()]'* = [T Ao(wi)* S () (2.2)

=1 =1
In presence of cure, denote the latency density f(f) as fy(t). The likelihood becomes a

function of 6 and p which can be written as

n

L(8,p) = | [Ipfo(x)]" pSo i) +1 —p]' 7" (2.3)

=1

The maximum likelihood estimator of (#, p)T can be obtained by solving the two equations

OlogL(0,p) 0
00 N
and
OlogL(0, p)
—————= =0
Op
given that the functions are differentiable with respect to (6, p). It follows that
alogL 0,p) Z Z ' S@ () — 1
pSa () +1—p’
OlogL(0,p _ _ p(1—9; ~
% S g+ g
= 1f6( ;) — pSp(z;) +1—p

where f)(z;) and Sj(z;) are partial derivatives of fy(z;) and Sy(z;) with respect to 6. Notice
that the score equations are complicated functions of p and 6 since the two types of parameters

need to be estimated jointly.



2.2 Parametric Analysis with Covariates

Suppose that observed data can be written as (X;,6;,7;), i =1,...,n. To model ¢ = 1|7,
the following logistic regression model is often assumed:

7!
pi(y) =Pr(G = 1|Z;) = %7

where 7 : ¢ x 1 is the parameter vector. Suppose a parametric form is imposed on f(t|Z) as
fo(t|Z). The likelihood function can be written as

n

L(0,v) = H[piﬁ)f[zig(il?i)]&i [i(7)S|zig(x:) + 1 — ps(1)] % (2.4)

i=1
We will illustrate the likelihood analysis for two parametric models.Maximization of the likeli-

hood function in (2.4) under the two models sometimes are quite complicated.

Farewell (1982, 1986) assumed that T'|¢ = 1, Z follows a Weibull model such that its density

function and survival function can be written as
Fo(t1Z) = aA(A)* " exp (= (At)%),
where 0 = (a, \)T, X = exp(—Z'3) and
So(t|Z) = Pr(T > t|¢ = 1, Z) = exp(—(At)%).

Alternatively Peng, Dear and Denham (1998) applied the generalized F distribution to model
the latency distribution. This parametric model is a flexible distribution which contains some
useful distributions as special cases such as the Weibull and beta distributions. It is assumed
that for those with ( = 1, Y = log(T) follows the generalized F distribution with the survival
function

52—1(1 _ Q?)Sl_l
B(Sl,Sg)

R 2(s2+51 exp(%)) T
Se(ylZ) =Pr(Y >y|¢(=1,2) = / dx,
0

where co < = 2" < 00, 51 >0, s5 >0, § is a vector of coefficients and B(sy, s3) is the beta
function with parameters s; and so. The resulting density function of YV is

(sreap(H52)/32)" (1 + syerp(H52) fs0) "+
B(Sl, 82) ’

fe(y|Z) =



Farewell(1982) suggested to use Newton-Raphson method to maximize the log-likelihood.
It requires computing inverse matrix of the second partial derivatives evaluated at the max-
imum likelihood estimates. However for the generalized F' distribution, it is impossible to
derive the derivatives as closed-form expressions. This makes it difficult to apply the Newton-
Raphson algorithm for solving the MLE. Peng, Dear and Denham (1998) suggested to combine
a derivative-free maximization approach and the Newton-Raphson algorithm. Specifically they
adopt the simulated annealing algorithm as the derivative-free maximization method to esti-
mate the shape parameters. For fixed values of s; and s,, the Newton-Raphson method is

employed to maximize the likelihood function over o, 3, 7.



Chapter 3 Semi-parametric Regression Analysis

- Likelihood Approach

In this chapter, we consider modeling T'|¢ = 1, Z by semi-parametric regression models that

contain un-specified functions as nuisance parameters.

3.1 Regression Models Without Cure

For illustration, we first introduce traditional regression models in absence of cure. The most
well-known regression model in survival analysis is perhaps the proportional hazard model

proposed by Cox (1972). Specifically given Z, the model be written as
A(t|Z) = Xo(t) exp(Z'B), (3.1a)

where 3 : p x 1 is the unknown regression parameter of interest and Ao(¢) is the baseline hazard
function. Another expression of the Cox model is given by

ot
S(t|Z) = So(t)=P %P = QXp(/ A(s|Z)ds) = exp(—Ao(t) exp(Z'5)), (3.1b)
0
where Ay(%) is the cumulative hazard function and Sy(?) is the survival function for the baseline
group.

In recent years there is a trend to generalize different regression models under a unified

framework. Notice that the Cox model can be written as
log(— log(S(t12))) = log(Ao(t)) + Z/8. (3.1c)

We see that the right-hand side of (3.1¢) shows a linear structure in the parameters log(Ag(t))

and (. Similarly the proportional odds model can be written as

ZWWWWZMf%%Zﬁ@mwﬂf%%%L
It follows that
logit(S(t|Z)) = logit(Se(t)) + Z'. (3.2)

The two different models in equations (3.1c¢) and (3.2) are special cases of the following trans-

formation models:

o(S(112)) = h(t) + Z'8. (3.3a)



where h(-) is an unknown increasing function. Another expression of the model is given by
h(t)=-Z'8+e¢, (3.3b)

where € is the error term with a known continuous distribution. The relationship between

equations (3.3a) and (3.3b) is specified by
F.(t)=Pr(es<t)=1-¢'(t)
F() = Pr( < t) = Pr(p(S(T|2)) < 1
=Pr(S(T|2) < ¢7'(t)) = Pr(1 = F(T|Z) < ¢7'(t))
— Pr{(1— (1) < F(TIZ) =1 — 47 1(2).

Transformation models form a general class of regression models that have attracted substantial

attention in recent years.

3.2 Regression Models In Presence of Cure

In presence of cure, recall that ¢|Z is modeled by

pl) = Pric = 112) = L2221

Here we consider to model T'|¢ = 1, Z by a transformation model such that
p(S(t12)) = h(t) + Z'B,
or equivalently
S(t12) = ¢~ (h(t) + Z'B).
Combining the two components, the survival function of T' can be written as

S(t12) = p(7)S(t12) + (1 = p(7))

B exp(Z'v) 5’(“ ) 1
~ 1+exp(Z2y) 14 exp(Z'y)

Notice that the cumulative hazard function of T/ = 1, Z can be written as
A(t1Z) = —1og[S(t|12)] = —logle™ ' (h(t) + Z'B)] = H(h(t) + Z'B).

We can write

exp(Z'y)exp[—H(h(t) + Z'B)] + 1 _ exp[Z'y — H(h(t) + Z'P)] + 1
1+ exp(Z'y) 1 +exp(Z'7) '

S(t2) =



Consider the example that T|¢ = 1, Z follows the Cox proportional hazard(ph) model with

the hazard function and survival function

At|Z) = Xo(t) exp(Z'5),
S(t|Z) = Pr(T > t|¢ = 1, Z) = Sy(t)=PZ'P).

Accordingly the density function and survival function of T' given Z can be written as

F1Z) = p(AE|Z) x S(t]Z),
= p(7)[No(t) exp(Z'B)] x Sy(t)>PEP),
St Z) = St Z)p(y) + 1 - p(v)

= exp[—Ao(t) exp(Z'B)lp(7) + 1 = p(7).

The major interest is to estimate $ and v while leaving S\O(t) unspecified.

3.3 Likelihood Representations

The general form of likelihood function can be written as

n

[Tip: () F (@il [Sailzpa(r) + 1 = p(), (3.40)

1=1

or equivalently
n

H[pz(’Y):\@z|Zz)g(xz|zz)]o [S(%‘Zz)Pz(W +1- pz‘(’V)]lféﬁ (3.4b)

i=1
The second expression is useful when the model is expressed in terms of the hazard function
such as the Cox model.

The likelihood approach has been applied to the Cox PH model in presence of cure by several
authors. We have seen that the likelihood function is already quite complicated for analyzing
parametric regression models. Now the challenge is to handle the infinite-dimensional nuisance
function Ao (t) in estimation. Specifically under the Cox model, we can write

n

L(v, 8, 20()) = J]Ipi(v)Ao(ws) exp(2)8)So ()P E)

i=1
[go(Ii)eXp(zgﬂ)pz’(V) +1- pz’(V)]l_éi-

Besides the complexity of the likelihood function, the major challenge is to deal with the baseline

hazard function which is an infinite-dimensional nuisance parameter.



3.4 Principle of the EM Algorithm

To apply the EM algorithm, we first need to construct the likelihood function based on
”complete data” {(x;,d;,2:,(i), i = 1,...,n} assuming that (; can be observed. Specifically the

likelihood function can be written as

n

Le = H [ () f (2] 20) ) 1S (i 2 )ps ()] 29041 — pi ()]

i=1
It follows that

(aci’Zi)éicig(wi’Zi)(lféi)ci)

h
Q
I
)
=
)
N~—
o
—
|
=
2
—
A
<X

= Ly Lo, (3.5)

where the likelihood function is divided into two parts. Notice that the first part L; is a
function of v which is the parameter for the cure rate model and the second part involves on
the parameters for the latency distribution. This implies that the two types of parameters can
be dealt with separately.

Since the value of (; may be missing due to censoring, in the E-step, we calculate its expected

value given the observed data. It follows that
ElGilzi, 0, 21) = 0; + (1 = 0:)Pr(¢; = 1]z, 6; = 0, 24). (3.6)
Furthermore

Pr(¢G =1z;,0; =0,2;) = Pr(¢; = 1|T; > x4, ;)

_ pz(7)5<%|zz)
pi(7)S(wilzi) + 1 = pi(7)
Detailed calculations of the above equation is given in Appendix 1. We see that equation (3.7)

(3.7)

is a function of 4 and S(z|z) contains the nuisance function. In the M-step, we can maximize
logLy with respect to v and logL, with respect to the parameters in Sy(.) by replacing ¢; by an
estimate of E((;|z;,9; = 1, z;) which is treated as a fixed constant by plugging in the parameter
estimates obtained previously. Numerical algorithms such as the Newton-Raphson method may

be used in the maximization.

3.5 The EM Approach under the Cox Model

Now assume that T'|¢ = 1, Z follows Cox PH model. The likelihood function is the product

of the following two components:

n

Li(y) = [ [0 (1 = pi(y) ¢ (3.8)

=1
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and
n

L2(5.30()) = [Jhates) exp(cg)*eapl— [ Sa(t)explz{p)al (3.9

i=1 0
Recall that (; will be replaced by the estimated value of its conditional expectation. The

maximization step of [, is straightforward. To handle the nuisance function \(.) in Ly, we
introduce two approaches proposed by Sy and Taylor(2000) and Peng and Dear(2000).

3.5.1 Baseline estimation by Sy and Taylor

Actually two methods are proposed in the paper of Sy and Taylor (2000). The logarithm of

equation (3.9) can be written as
18, Mo(.) Za Gillog Xo(:) + 2] + ch [—Ao(z) exp(2B)].
Assume that Ag(t) only jumps at observed failure points. Hence we can write

— i I(t; < t)Ao(ALy),

where ¢; is the jth observed failure point. Differentiating the log-likelihood with respect to

AO(Atj) for j =1,...,k and setting the function as zero gives the following equation:
A d;
Ao(At) = ’ :
. ZiGR(tj) G exp(Z; )

where d; is the number of failure at ¢; and R(t) is the risk set at time ¢. Accordingly

d.
= I(t; < t)( J
; ( 7= ZleR Cl exp(Z/ﬁ)

) (3.10)

which can be viewed as a modified version of the Breslow estimator if the value of 3 is known.

Substituting Ag(At;) into Ly(3, A(.)) leads to the following partial likelihood of £:

L exp(z;3)
Ls(8) = H(ZZGR(m) Gezp(f)

We can find the estimators of Ag(t) and [ are similar to the estimators obtained without cure

)%, (3.11)

except that the weight (; or its estimated conditional expectation is added to. The function
L3(3) does not contain any other nuisance function so that 3 can be estimated easily using the
traditional approach.

The above Breslow-type estimation separates the estimation of 5 and Ag(At;). Sy and Taylor
(2000) proposed a different alternative based on joint estimation. Assume that baseline survival

function takes jumps on observed failure points. Recall that
H (2] 2) JC@ |z)(1 3i)Gi

11



An important technique is to express Lo based on ordered observed times t; < ... < t.
Consider the interval [t;,t;41). If 2, € [t;,t;41) and §; = 1, the observation contributes the
probability f (@1]z) to the likelihood for the latency distribution. If x; € [t;,¢;41) and §; = 0,
the observation contributes the probability S(x;|2) to the likelihood. Using the property that
f(x) = Mz)S(z), we have

Ly, = H{H (a|2)H T T (S z0)

j=1 leD; leC;
= H{H (l2)H T T (S (] 20)
j=1 leD, IeE;

where D; is the set of subjects experiencing a failure event at time ¢; and C; is the set of
subjects censored in [t;,¢;41) and E; is the union of the two sets.

Define a; = Pr(T > t;|T > t;,Z = 0,{ = 1) which is the conditional survival probability at
time t; for the baseline susceptible subject. Then the baseline survival function Sy(t) can be
written as a product form of «;. Specifically

N

7t <t

Hence under the proportional hazard model S(z|z) = So(x;)*P@. Also
_ A(Atﬂz) = Pr(T Fmdl$s, C = 1) = (aj)exp(zfﬁ)‘

The function Ly (3, Ag(.)) can be written as

k

Ls(8,0) = [JIT] (1 = oS5 )a I o = 7). (3.12)

j=1 lEDj lEEj
Treating [ as a constant and assuming that data have no ties, the MLE of «; can be written

as

/
ZleR(tj) G exp(z0)

Substituting &; into the equation (3.12), a nonparametric profile likelihood of 3 can be obtained

a; = (1— (3.13)

and them maximized to get the MLE of .

3.5.2 Baseline Estimation by Peng and Dear

Peng and Dear (2000) also suggested to use L3(3) for estimating # without dealing with the

baseline hazard rate. For estimating the baseline survival function, Peng and Dear also adopted

12



the idea of Kalbfleisch and Prentice (1973) such that the survival function is expressed as the
product of discrete hazard rates. The MLE of «; given 3 has the form,

d; '
ZlER(tj) Grexp(29)

Oéj%l—

3.6 Likelihood for Transformation Models

The likelihood function for linear transformation models with cure can be written as

L) = L) 22

i=1

*[pi(7)¢ ™ h(zi) + 28] + (1 = pi(7))] 7

Note that for the Cox model, h(-) is related to the baseline hazard function which has clear
properties that can be utilized to simplify the likelihood function. However for other trans-
formation models, the role of h(-) is less clear. Therefore we will discuss methods constructed

based on moment properties for transformation models.

13



Chapter 4 Semi-parametric Regression Analysis
- Moment-based Approach

As discussed in Chapter 3, a linear transformation regression model without cure has two

equivalent expressions

hT) = —Z'8+c¢
p(S(t12)) = h(t)+Z'B,

where h(.) is an unknown increasing function and ¢(.) is a known decreasing function related

to the distribution of € such that
F.(t)=Pr(e <t)=1— ().

When cure exists, we will assume that ( = 1|Z follows a logistic regression model and

T|¢ =1, Z follows a transformation model. We have

. exp(Z'7) =1 17

1
1+ exp(Z'y)

In this chapter, we discuss existing inference methods which utilize the moment principles.

4.1 Moment-based Inference: An Overview

The method of moment is attractive because it does not require strong distributional assump-
tion and hence usually provides more robust results. Although the nonparametric likelihood
approach is also robust, it is often very complicated for flexible models. Transformation models
contain an un-specified function h(-) which complicates statistical inference.

Here we review some inference methods that are constructed using the idea of the method
of moment. For example, denote O; as a chosen response variable and F;(0) = E(O;|Z;) as its
expected value, where 6 is the parameter of interest. A moment-based estimating function has

the form,
U®) => Wi(0; — Ei(0)) =0, (4.1)

where W; is a weight function for ith subject. How to choose a suitable response O; is the
key. If the response is well chosen, its expected value will be a nice function of the unknown
parameters. For transformation models, we shall first pay attention to the form of E; which

may or may not involve the nuisance function A(-).

14



4.2 Response and its Expectation in Absence of Cure

For illustration, we first review exiting choices in absence of cure. There are three response
variables. Specifically I(7; > T;),i # j was proposed by Cheng et al.(1995), I(T" > t) by Cai et
al.(2000) and N(t) = I(T < t) by Chen et al.(2002). We first examine their moment properties.

4.2.1 Pairwise Order Indicator

Temporarily assume there is no censoring and the data can be denoted as (73, Z;),i = 1...n.

Since h(.) is an unknown increasing function, it follows that
I(T; 2 Ty) = I[MT) 2 W(Ty)) = (= Zif + & > ~Zi + ;) = I(ei — £; 2 Z3 — Z;).
Then
E[I(T; > 1)\, %)) = Ell(si — &; > 2,3 — Z)B)] = Prle; — &; > Z,6) = D(Z};5),

where Z;; = Z; — Z;, ®(s) = [*._[1 — F.(t + s)]dF.(t) and F.(.) is cumulative distribution
function for e. More detailed derivations are given in Appendix 2. We have seen that h(-)
disappear in the moment expression.

When censoring is present, observed data can be denoted as (X;, d;, Z;),i = 1...n. Cheng et
al. (1995) suggested to use I(X; > X;,0; = 1) as a proxy of I(1; > Tj). Note that as long
as the smaller observation corresponds to a failure point, the order relationship of the pair is

known. However the proxy is biased since
E[I(X; > X;,0; = 1) = E[E[T; > T}, C; > T;,C; > Ty|T;, Tj]) = E[I(T; > T;)G*(T})),

where G(.) is the survival function of the censoring time. Weighting by the inverse-probability-

of-censoring is often used to correct the bias and hence

[6jI(Xi > Xj)
G*(X;)

6;1(X; > Xj)
G*(X;)

|2, 2] = E[(T: 2 T))| Zi, Z;] = ®(Z;;8).

In summary is an unbiased proxy for I(7; > T;).Detailed derivations are given

in Appendix 3.
4.2.2 The At-risk Indicator

Consider Y (t) = I(T" > t) which indicates whether a subject is at risk. In absence of

censoring, its expectation under the transformation model is given by
E(I(T > )|2) =Pr(T > t|2) = S(t|Z) = ¢~ '[h(t) + Z'3].
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Notice that A(-) still exists. When censoring is present, the corresponding response variable is

I(X > t). It follows that
E(I(X >1)|Z) = Pr(X > t|Z) = ¢ '[h(t) + Z'B]G(1).
To utilize this variable for further inference, how to construct high-dimensional estimating
functions is crucial since the expected involves both § and h(-).
4.2.3 The Counting Process

Define the counting process N(t) = I(T < t) and dN(t) = N(t) — N(t—) = I(T = t). The
expected value of dN(t) conditional on the filtration F}_ is

E[dN )| F_]I(T > t)\(t)dt =Y ()A(t)dt = Y (t)dA(t).
Under the transformation model, we can write
A(t|Z) = —log S(t|Z2) = —log{e ' [n(t) + Z'5]},

B(V@IF) = [ Y()dl=logg ™ (1(s) + Z9))
0
In presence of censoring, the counting process is modified as N(t) = I(X < ¢,0 = 1) and the

at-risk process as Y (t) = I[(X >t). The conditional expectation of dN(t) given F;_ is similar
E(dN@®)|F,-) = I(X > t)A(t)dt = Y (t)dA(t).
Under the transformation model, we have
EVOIF) = [ Y (@)= log 7 () + 29)

which involves h(-) but does not contains G(-)

4.3 Estimating Functions in Absence of Cure

Now we illustrate how to construct estimating functions based on the moment properties.

Recall that there are two types parameters, namely 3 and h(.). The former is of major interest.

4.3.1 Pairwise Order Indicator

Since the mean of I(7; > T}) for i # j does not depend on the nuisance parameter, we have

the uncensored version

UB) =YY WI(Z,8)Ziy x {I(T; > Tj) — ®(Z};8)} = 0, (4.2)

i=1 j=1

16



and the censored version

n n

UB) =YY WI(Z,8)Z; x{

i=1 j=1

G I(Xs 2 Xj) i o
GHX) (Z;;8)} =0, (4.3)

where G(.) is the Kaplan-Meier estimator of G(.). The solution of U(3) = 0 yields an estimator
of (.

Although this approach is appealing since the nuisance parameter disappears, it has a crucial
drawback when censoring is present. Notice that (4.3) has to be valid if Pr(G(T) = 0) = 0.
This requirement however depends on the censoring mechanism. Define the following support

points:

7« = supt:G(t)=Pr(C >1t) >0,
¢

v = supt:Pr(T >t) >0,
¢

Tx = supt:Pr(X >1t)>0.
t

It follows that 7x = min(7r, 7¢). Problem occurs when 7+ < 7p which implies the study period
is too short to observe large failure time. In this case the mean condition does not hold and

hence the estimating functions is no longer unbiased.

4.3.2 The At-risk Event

Without censoring and from the previous moment derivation, a natural estimating equation

is given by

n

D (T =) = ¢ ' [h(t) + Zi)) = 0, (4.4)

i=1

for t € [r,, ™), where 7,, 7, are pre-specified constants such that Pr(7" < 7,) > 0 and Pr(T <
) > 0. A set of equations for ¢ being the observed values of 7; (i = 1,...,n) can be con-
structed which however are not enough since there are n + p unknown parameters since 3 is

p—dimensional. Cai et al.(2000) suggested the following additional estimating equations

Z{(I(’ﬂ- > t) — E[I(T; > t|Z,)])} =0,

Z [ a1 0 - o te) + Zipydte = (4.5)

where w(.) is a known increasing weight function which may be time-dependent. By choosing
an initial value of 3, h(T;) (i = 1,...,n) are estimated first and then plugged into equation
(4.5) to estimate 3. The two types of equations are performed iteratively until the convergence

criteria reached.
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For right censoring data, we can construct two types of estimating equations:

n

D (X > t) — o [h(t) + ZIB)G(t) = 0, (4.6)
and .
> / ZAI(X: > £) — o Y h(t) + ZLA1C(E) Yuw(t) = 0. (@7)

Numerical operation is same as mentioned above.
4.3.3 The Counting Process
Let (0o, ho(.)) be the true values of (3, h(.)). It is easy to see that
MO = N - [ Y (s)dl-loge (ho(s) + 2'3)
0

is a mean-zero martingale. This property can be used to construct estimating functions. The

following is the proposal of Chen, Jin and Ying (2002):

S N0 - Yit)dl=log o (hie) + Z3)] = o (4.5)
> / " ZAN(t) ~ Yilt)d[~ log ¢\ (h(t) + Z18)]) = 0. (4.9)

The first equation is for estimating /(.) at observed failure points and the second equation is for

estimating (3. The expressions of the estimating equations are similar when censoring is present.

4.4 Semi-parametric Transformation Cure Model
4.4.1 Estimating Functions

Semi-parametric inference for transformation models in presence of cure has been considered
by Lu and Ying (2004) who constructed the estimating equations based on the counting process

N(t) mentioned above. In presence of cure, we have to modify

EdANW|F ) =1(X>t,6=1)Pr(T=tT >t)=1(X >t,0 = 1)dA(t|Z)
, where A(t|Z) is the cumulative hazard function of 7. Now we first derive the general form

of A(t|Z) based on the model definitions and then discuss how to transform it into a more
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tractable form. Recall that A(t|Z) = —log Pr(T > t|Z) and

Pr(T>t)=Pr((=0[2)+Pr((=12)Pr(T > t|(=1,2)
| xp(Z7)

_ S(t|2).
1+ exp(Z'v) 1+ exp(Z'y) (t2)

To create a linear pattern in unknown parameters, additional variable transformation is sug-

gested. It follows that

S(t]2) = exp[-A(t]2)) = o~ (h(t) + Z'B),

where F.(t) = Pr(e < t) = 1 — ¢ }(t) and A(t|Z) is the cumulative hazard function for

susceptible ones. Hence we let

A(t|2)] = —log{e™ ! (h(t) + Z'8)} = H(h(t) + Z'3).

Thus we can write

_ 1 exp(Z'y) &
Pr(T >t) = 1+ exp(Z'7) I3 L+ exp(Z') S(112)
1+ exp(Z'y — H(h(t) + Z'8))

T+ eap(Z7)

B 1 1+ exp(Z'vy— H(h(t)+ Z'3))
14 exp(Zly) 1
= (Z') :

V{Z'y — H[h(t) + Z'8]}

where ¥(x xp(z)/{1 + exp(x)} is the logistic function and ¢ = 1 — ). Using the fact that

) =
(=) = @/7( ). We have

A(t|Z) = —1log Pr(T > t|Z) = —log{)(Z'v)} + log(yp{—Z'y + H[h(t) + Z'3]}). (4.10)

It follows that M(t) = dN(t) — Y (t)dlogy{—2"y + H[h(t) + Z'(]} is a martingale when the
parameters are evaluated at their true values. The suggested estimating functions have the

forms

Z dN;(t (t)dlog[(—Zl~y + H(h(t) + Z!5))] = 0, (4.11)

and

Z/ Zi {dN;(t) = Yi(t)dlog () (= Ziy + H(h(t) + Z;3)))} - (4.12)
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Note that equation (4.11) is used to estimate transformation function h(.) given [ and =
eveluated at observed failure points of A(.) while equation (4.12) is for estimating 3 given h(.)

and 7.

It should be noted that in presence of cure, we have additional unknown parameters v but the
above estimating functions are not sufficient to estimate the parameters in the logistic model.
In Section 3.5, we have presented the log-likelihood function of v given ¢ is known.It follows

that

M) ~~, . eapZyy) o
o A Ty 1)

The imputation method is suggested to handle possible missingness of (. Specifically we impute
¢ by an estimator of F((|X,d,7). The conditional probability that a subject belongs to the
susceptible group given that the subject with covariate Z is censored at X is ¢{—Z'v+ H[h(t)+
Z'6]}. So we get

E(C|X,5,Z) =6+ (1= 8)d{—Z'y + H[h(t) + Z'8]}. (4.14)

The equation (4.13) can be modified as

S Z{5+ (L= 804~ 2"y + HIW(t) + Z 8]} — w(Zi7)} = 0. (4.15)

=1

4.4.2 Estimation Algorithm

Solving (4.11), (4.12) and (4.15) jointly is not an easy task. Lu et al.(2004) proposed an

iterative approach to obtain the solution. Recall that t; < ... < t; be ordered failure points
and tg = 0, tpy1 = oo. Let d; be the number of failure events at time ¢;. Denote the initial
value of § and v as B(O) and 4 respectively which may be chosen as 4®) = 0 and B(O) being
the maximum partial likelihood estimator under the ordinary Cox model as suggested by Lu
et al.(2004). Denote 3™, 4(™ and (™ (t) are the mth estimated values. Let h() be a step
function taking jump at t;.

Step 1: This step involves solving of fz(tj) for 7 = 1,..., k based on equation (4.11). With
=1 and 4™ we obtain h(™ (t;) by solving

> " dNi(ty) — Yi(ty)dlog[w(H(R™ (t,) + Z/3" ) — Zj3™D] = 0.
=1
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Step 2: Then based on equation (4.12), we update Bm) by plugging h(m) (t) and 4™V into

the equation:
i /OOO Z;dN;(te) — Yi(ty)dlog[p(H(R™ () + Z!8) — Z!4™= V)] = 0.
i=1
Step 3: Update 4™ based on the equation (4.15) such that
S Zuo+ (1= )25 + I (1) + ZI]} — 6(Z)} =
i=1

The procedure is implemented iteratively between the step 1 to step 3 until the convergence

criteria is reached.
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Chapter 5 Concluding Remarks

In this thesis, we review literature on cure mixture models. The likelihood can be simpli-
fied by assuming complete data, which contains the indicator of susceptibility, are available.
Then the EM algorithm can be applied. When the model assumption on the latency distribu-
tion becomes more flexible, unknown parameters often involve infinite-dimensional functions.
Likelihood-based inference is usually constructed by expressing these functions as step-functions
and hence the jump size at different points becomes the target in estimation. If the Cox model
is assumed, existing partial likelihood method can be modified to account for the cure. How-
ever for transformation models, the idea of method-of-moment is more attractive since the
estimation procedure is more simple. Three forms of estimating functions are examined. The
one based on the counting process has been extended to cure mixture models by Lu and Ying

(2004). Despite its simplicity, efficiency of moment-type methods requires further investigation.
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Appendix

A1l. Derivation of E((;|(x;,0; = 0,2;))

E(G|(z:,0: = 0,2)) = Pr(¢ = 1T; > x4, 2;)
~ Pr(G=1,T; > xi|%)
N Pr(T; > z;|z)

_ Pr(¢ = 1)z;) Pr(T; > x4|G; = 1, %)

Pr(G = 1]2)Pr(Ti > xi|G; = 1,2z;) + Pr(¢; = 0]z;) Pr(cc = T; > x{¢; = 1, z;)
_ Pr(G = 1|z)Pr(T; > x|¢; = 1, z)
Pr(¢ = 1|z)Pr(T; > x;|¢; = 1, z;) + Pr( = 0]z)
W(Zi)g(l’i\zi)
Com(z)S(wilz) + 1 —7(z)

A2. Derivation of ®(s) = Pr(¢;, —¢; > s)

i.5.d
Let V=¢—¢5,e ~ [,

() = Pr(e 2, > 5) = /:O /_Z Fore (0 + €5, 25)desdv = /:O /: fe(v + &5) fo(ej)desdv
_ / o/ Z v+ e)dRe)do = [ Z / " (o 42 )dudFL ()
:/_Z(l—/_;fa(v+€j)dv)dFa(5j)

_ /_2(1 — F.(s +¢;))dF.(g;)

= /Oo (1—F.(s+1t))dF.(t).
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A3. Derivation of E[éTZ;;j)\Zi, Zj]

5I(X; > X;)
G*(X;)

(G5 =2 THI(Xi = X;)
G*(Xj))
I(min(Cj, X;) > Tj)
GQ(TJ) ‘Z%Zj?Tj]
I(min(C;,C;) > T7)I(T; > Tj)
G*(T3)
I(min(C;j, C) = Tj)
G*(T))

= E[E[I(T; > T))|Z;, Z;, T}

E[ |Zi, Z;] = E| \Z;, Z;]

= EE|

= EE|

‘Z"ZWTJ']

= EE|

BT, = T))||Zi, Z;, Tj]

= E[I(T; = T))|1Zi, Z;] = ®(Z;3).
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