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Abstract

Microarray data has been studied widely, with thousands or even millions of
test statistics ¢;’s to be considered at the same time. These test statistics ¢;’s are
correlated or not regular distributed on multiple testing procedure. In this pa-
per, we discussed three possible reasons for the distribution of test statistics ¢;’s
differing from t-distribution. The three reasons are correlation between genes,
correlation among microarrays, and various distribution assumptions. Then, we
consider several models and conclude that correlation among microarrays and
various distribution assumptions are most important effects which make the dis-

tribution of test statistics ¢;’s differing from ¢-distribution.

Key words: Multiple testing procedure, t-statistics, ¢t-distribution.
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1 Introduction

The microarray data in biomedical research has been studied extensively in the past
few years. Microarray is a technology to detect mRNA expression level. In general,
detecting mRNA expression level can help identify genes that contribute to disease.
That is, the goal of a microarray experiment is to identify those genes that are differen-
tially expressed within different samples. Besides, the number of samples we observed
is much less than the number of genes in a microarray experiment, thus generating
a large-scale multiple hypothesis testing problem (Gentleman, Carey, Huber, Irizarry,
and Dudoit, 2005; Efron, 2007).

A large-scale multiple hypothesis testing problem in a microarray experiment in-
volves the simultaneous test of thousands, or even millions, of null hypotheses (Gen-
tleman et al., 2005). Usually we use two-samplest-statistics ¢; comparing expression
levels under two different cenditions for m genes. Then, the ¢;’s are transformed to
z;’s such that, under normal assumption; z; has a standard normal distribution (Efron,
2007). Efron (2007) displayed two histograms of z;’s from two microarray experiments
and described the z;’s correlations can cause the fact that the distribution of the z;’s
differs from N(0,1), called théoretical null distribution.

Since the earlier study did not focus on the reason of the histograms of z;’s differing
from N(0,1) on multiple testing procedures. Hence, in this paper, we have two pur-
poses: (a) to discuss the possible reasons for the distribution of the z;’s differing from
N(0,1); (b) to simulate the data from the possible models and recommend the possible
reasons in large-scale multiple hypothesis testing problem. The paper is organized as
follows. Section 2 reviews the multiple hypothesis testing problem in a microarray ex-
periment or two microarray experiments: the breast cancer study and the HIV study.
Moreover, Section 3 discusses the possible reasons for over-diversion of the distribution
of the z;’s in the breast cancer study and over-converge of the distribution of the z;’s in
the HIV study. In Section 4, we study possible models of gene expression data. Section
5 uses the real data in multiple hypothesis testing and makes some comments. Finally,

Section 6 concludes the paper with a brief summary and discusses the future work.



2 Literature Review

2.1 Multiple Hypothesis Testing in a Microarray Experiment

Suppose we have a microarray experiment which produces gene expression data on m
genes (i.e., variables or features) for n mRNA samples (i.e., observations or microarrays
or patients). Then the gene expression levels may be summarized by a m x n matrix
X = (x;;), where z;; denotes the expression measures of gene 7 and sample j. The
rows i = 1,...,m represent the prob sets (genes) and the columns j = 1,...,n rep-
resent the different microarrays (samples). The gene expression levels might be either
absolute (e.g., Affymetrix oligonucleotide arrays (Lockhart et al., 1996; Dudoit, Shaffer
and Boldrick, 2003)) or relative to the expression levels of a suitably defined common
reference sample (e.g. two-color gDNA microarrays (Dudoit et al., 2003)).

In a microarray experiment, the number.masis usual several thousands or even mil-
lions and the number n is usual anywhere between around eight and a few hundreds. In
a typical experiment, the m samples would consist of n; treatment samples and ny con-
trol samples, for example,the treatment-samples are patients with BRCA1 mutations
and the control samples are®patients with BRCA2 miutations in breast cancer study.
The goal of a microarray experiment is to identify those genes that are differentially
expressed in the different mutations of breast cancer. Therefore, suppose the single test
is considered for each gene, the null hypothesis for testing that the gene ¢ has the same
expression distribution under two different conditions. For tests of means, the test
statistic is the usual two-sample t-statistic, where the two-sample t-statistic depends
on the standard t-test (equal variance) or Welch ¢-test (unequal variance). Thus, we
have m null hypotheses to consider simultaneously, each with its own test statistic,

Null hypothesis :  Hy,Hs,...,H;,..., Hpy
Test statistic : 1, to,..., ti, ..., tm.
Then, we transform ¢; to a z; such that, under normal assumption, z; has a standard
normal distribution and derive rejection regions (Gentleman et al., 2005). The adjusted

p-value for null hypotheses is defined as the smallest type I error, « (e.g., FWER or



FDR (Benjamini and Hochberg, 1995; Dudoit et al., 2003; Efron, 2004, 2005, 2006,
2007; Ge, Dudoit, and Speed, 2003)), at which one would reject H; (Gentleman et al.,
2005) in the multiple hypothesis testing problem. Finally, we reject the null hypotheses
if the adjusted p-value is smaller than o (Dudoit et al., 2003; Ge et al., 2003; Gentleman
et al., 2005). That is to say, we reject the H;, means that the gene i is differentially
expressed under two different mutations of breast cancer. The procedure of the several
tests with controlled in type I error is called a multiple testing procedure, abbreviated
MTP (Dudoit et al., 2003; Ge et al., 2003; Gentleman et al., 2005).

It is noteworthy that Benjamini and Hochberg (1995) defined the FDR to be the
expected proportion of true null hypotheses among the rejected hypotheses, FDR =
E(V/R), where V denote the number of rejecting Hy under Hy is true and R denote
the number of rejecting Hy in all hypetheses. Besides, Efron et al. (2001) and Efron
(2004) described that local false discovery rate, fdr(z)=fo(z)/f(z), is closely related to
Benjamini and Hochberg’s EDR eriterion. The density,(z) is null probability density
function (e.g., theoreticalmempirical, or permutation null hypothesis distribution) and
the density f(z) is probability densityfunction derived from the empirical distribution
of the z;’s (Efron, 2004; Efron et aly 2001))" "Moreover, Efron (2004) report that we
can find out the genes which are differentially expressed by the local fdr. The details
about local fdr are described in Efron (2004) and Efron et al. (2001).

The choice of null distribution (e.g., theoretical, empirical, or permutation null
hypothesis distribution) is important to control the local fdr (Efron 2004, 2006, 2007;
Gentleman et al., 2005). Different choices may influence the conclusion on identifying
which genes as differential or the same in the multiple hypothesis testing (Efron 2004,
2006, 2007; Gentleman et al., 2005). Efron (2004) reported that the appropriate choice
of null distribution is the empirical null rather than the theoretical null or permutation
null in some microarray experiments. Also, Efron (2006) suggested that the theoretical
null or permutation null is inappropriate null in HIV study since the theoretical null
or permutation null may make there is no differential genes on MTP (Efron, 2006).

Hence, we need to select a suitable distribution in multiple hypothesis testing under



different microarray experiments.

2.2 Microarray Experiments

For the microarray experiments, we consider the breast cancer study and the HIV

study below.

2.2.1 The Breast Cancer Study

Hedenfalk, Duggen, Chen, et al. (2001) reported on a microarray experiment con-
cerning the mutant genes of hereditary breast cancer. It is known that two different
mutations, BRCA1 and BRCA2, lead to greatly increased breast cancer risk.

The experiment included 15 breast cancer patients, 7 from BRCA1 mutation pa-
tients and 8 from BRCA2. Each patient measured a microarray of expression levels
for the same m = 3226 genes. Then, we have a*m x n matrix X = (z;;) for the
breast cancer study, where.m =3226 rows.denote genes and n = 15 columns denote
microarrays. Each row ofX (ie., gene) yielded a two-sample ¢-statistic ¢; comparing

BRCA1 with BRCA2 patients, which.-was then.transformed to a z;.
Zi = (I)_I(G()(ti)), 1= 1,2, w1,

where @ is the standard normal cumulative distribution function (c.d.f.), and Gy is the
c.d.f. of a standard Student’s t distribution with 13 degrees of freedom. Hence, we get
m = 3226 test statistic z;’s and the distribution of the z;’s are displayed in Figure 1(a)
(Efron, 2004, 2005, 2007; Gottardo, Raftery, Yeung, and Bumgarner, 2006).

2.2.2 The HIV Study

The human immunodeficiency virus (HIV) study, described by van’t Wout et al. (2003),
contained 8 samples, 4 from HIV-positive patients and 4 from HIV-negative controls.
Each samples measured a microarray of expression levels for the same m = 7680 genes.
Then, we have a m x n matrix X = (x;;) for the HIV study, where m = 7680 rows

denote genes and n = 8 columns denote microarrays. Each row of X (i.e., gene) yielded
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a two-sample t-statistic ¢; comparing HIV-positive patients with HIV-negative controls,

which was then transformed to a z;.
Zi = (I)_l(Go(ti)), 1= 1, 2, e, m,

where ® is the standard normal c.d.f., and Gy is the c.d.f. of a standard Student’s t
distribution with 6 degrees of freedom. Hence, we get m = 7680 test statistic z;’s and
the distribution of the z;’s are displayed in Figure 1(b) (Efron, 2004, 2005, 2006, 2007;
Gottardo et al., 2006).

The data from the breast cancer study and the HIV study were two-color cDNA
microarrays and people make quality assessment and preprocessing (e.g. normaliza-
tion) for the data before using them in multiple hypothesis testing (Dudoit et al., 2003;
Gottardo et al., 2006; Gentleman et al.; 2005).

Efron (2007) described that we usually presuppose most of the genes to be null
in microarray experimentsisthe goal bemg-to identify some significant nonnull genes.
Therefore, we expect z; to have closely a standard normal distribution for null genes
(Efron, 2007). In other words, under null hypothesis, z; should have a standard normal
distribution if gene i has thé same"expression distribution for BRCA1 and BRCAZ2 pa-
tients or for HIV-positive patients and. HIV-négative controls. Efron (2007) reported
that heavy curves indicate N(0,1) theoretical null densities and light curves indicate
empirical null densities fit to central z-values in Figure 1, as done by Efron (2004).
However, the histograms of z-values in Figure 1, where the distribution of the z;’s from
breast cancer is wider than N(0,1) and from HIV study is narrower than N(0,1) (Efron,
2006, 2007). Efron (2007) pointed out that the correlations in multiple hypothesis
testing can make the observed all z;’s behave as N(0, 0?), where o is obviously dif-
ferent than 1. Next section, we will discuss the correlation and other reasons for this

phenomenon.
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Figure 1: Histograms of z-Values From Two Microarray Experiments. (a) Breast cancer
study, 3226 genes. (b) HIV study, 7680 genes. (This figure and descriptions are
quoted from Efron (2007)).



3 The Empirical Distribution of the z;’s

In this section, we discuss the possible reasons which caused the distribution of the z;’s
that obviously differs from the N(0,1) in microarray experiments. First, Efron (2007)
indicated that there were some gene correlations in the breast cancer data and in the
HIV data. Besides, the disease is caused by abnormal genes and there are essential
correlations between genes in biology. Hence we may say that there are gene correlation
structures in the breast cancer data and the HIV data.

Secondly, Hedenfalk et al. (2001) pointed out that these patients with primary
breast cancer and who had a family history of breast or ovarian cancer or both were
asked to provide a blood sample for BRCA1 and BRCA2 mutations in the genetic
breast cancer. If some of the patients are come from the same family, some of their
gene may correlate. Hence thepatients may correlate with the relationship of relatives.

Furthermore, Efron (2004) indicated that the first four and the last four microarrays
in the BRCA2 patients were mutually correlated. Moreover, since the HIV is a rare
disease, the HIV patients usually have:the same features, for example, the patients are
homosexuality, drug addictsiand infeeted with'mother. “According to the above, we may
safely say that there are the correlation structuresramong patients (i.e. microarrays ).

Finally, if the data (x;;) are independent and identically distributed (i.i.d.) random
variables from normal distribution, we may apply the two-sample t-statistic in multiple
hypothesis testing. In other words, if the data (z;;) are independent and identically
distributed (i.i.d.) random variables from other distributions, the two-sample ¢-statistic
may not have the t-distribution.

Hence, as mentioned above, we may consider the three possible reasons under the
following items : (1) correlation between genes. (2) correlation among microarrays. (3)
various distribution assumptions. In the next section, we discuss further the models of
these possible reasons. Besides, we apply these models for simulating data and then

compare the results of the simulation.



4 The Models and Simulation Study

For generating dependent data, we consider two kinds of time series models: the au-
toregressive model (AR) and the moving average model (MA). We introduce the AR
model and the MA model.

Definition 1 An autoregressive model of order p, abbreviated AR(p), is defined

to be
Xi =01 Xo1 + 02Xy o+ o+ 0 Xy + Z,

where X is stationary, ¢1, ¢o, ..., ¢, (¢, # 0) are constants, and Z, is a Gaussian white

noise series with mean 0 and variance g2 (Chan, 2001; Shumway, and Stoffer, 2005).

Definition 2 A moving, average model of order ¢, abbreviated MA(q), is defined

to be
Xt - Zt + Hth_l + 62Zt—2 + + Qth_q,

where there are ¢ lags in the moying average, 03565,.., 0, (6, # 0) are constants, and Z;
is a Gaussian white noise series with mean 0 and variance ¢ (Chan, 2001; Shumway,

and Stoffer, 2005).

Suppose a microarray experiment includes n (n = nj + ng) patients, ny from
group 1 and ns from group 2. Each patient measures a microarray of expression levels
for the same m genes. We want to identify those genes that are differentially expressed
under the two group. Let X = (z;;) represent gene expression and be a m x n matrix,
where i = 1, ...,m denotes genes and j = 1,...,n (n = ny + ny) denotes microarrays.

In the simulation study, we choose m = 100000 genes and n = 14 (ny = ny = 7)
micrarrays. Then we apply the data on the multiple testing procedures. Therefore, we
get m = 100000 z;’s. In Figure 2~10, we plot the empirical distribution of the z;’s of

the model 1~12 by dash lines and plot the distribution of N(0,1) by solid lines. Specific
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characteristics of the data are described below.

4.1 Models of correlation between genes

In the following models, we consider that there is some correlation between genes, but

there is no dependence between microarrays.

4.1.1 Model 1

For model 1, we consider

.. 2
Lily L2y «ovy Timy ~ 1.3.d. N(O, o ) AR
T1j, X2y ey Ty ™ (p),

Tiny 115 Tiny 125 -, Tin ~ 1.0.d. N(0,02),

where each gene follows a normal distribution with mean 0 and variance o2, and each
microarray follows an AR(p) model. The elements*from different microarrays are in-
dependent and from different genes-have the AR(p) correlation structures. For exam-
ple, take p = 2, the x1;, @95y v, @mj ~ AR(2)51e., v = O104-1j + Poxy_oj + 21, t =
1,...,m. The coefficients, @-value and:@s-value, represent the size of correlation among
Tij, Tio1j, and z4_9j, t = 1,4 m. The larger the ¢,. (0r'¢,) is, the larger the correlation
is.

Figure 2(a) displays the empirical distribution of the z;’s of the model 1 with ¢; =
0.3, 0.5, 0.7, 0.9 as p = 1. Figure 2(b) displays the empirical distribution of the z;’s of
the model 1 with ¢; =-0.3, -0.5, -0.7, -0.9 as p = 1. Figure 2(c) displays the empirical
distribution of the z;’s of the model 1 with ¢; = ... = ¢7 = 0.14, 0.096, -0.40, -0.81,
-0.96 as p =T.

4.1.2 Model 2

For model 2, we consider

Ilj,l’gj, ...,J,’mj ~ MA(Q),

P 2
{ Tity T2y oeey Ting ~i.1.d. N(0,0°)

. . 2
Ting 11, Ting 42 ey Tin ~ 1.0.d. N(0,07),
where each gene follows a normal distribution with mean 0 and variance o2, and each

microarray follows a M A(q) model. The elements from different microarrays are inde-

9
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z-value z-value

(©) p=7

Density

z-value

Figure 2: The distribution”of the z;'s between genes plot.

pendent and from different genes have the M A(qg) correlation structures. For exam-
ple, take ¢ = 2, the z1;, xgj, ..., Ty ~"MA(2), ie., xyj = 2 + 01215 + bozy9j, t =
1,...,m. The coefficients, ¢, and 0, represent the size of correlation among 2, 21,
and 295, t = 1,...,m. The larger the 6; (or 6,) is, the larger the correlation is.

Figure 3(a) displays the empirical distribution of the z;’s of the model 2 with 6,
= 0.1, 0.3, 0.5, 0.9 as ¢ = 1. Figure 3(b) displays the empirical distribution of the
z;’s of the model 2 with 6; = -0.1, -0.3, -0.5, -0.9 as ¢ = 1. Figure 3(c) displays the
empirical distribution of the z;’s of the model 2 with #; = ... = 6; = 0.1, 0.3, 0.5, 0.9
as ¢ = 7. Figure 3(d) displays the empirical distribution of the z;’s of the model 2 with
0 =..=0;=-01,-0.3,-0.5,-09 as ¢ = 7.
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4.1.3 Model 3

Qiu, Brooks, Klebanov,

exchangeable correlation structure between genes. For model 3, we consider

Ti1, Li2,y --
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and Yakovlev (2005a) suggested the model 3 which has an

~i.i.d. N(0,0%)

cor(zgj,x;) =c¢, k=1,...m, j=1,...m, k#1,

where each gene follows a normal distribution with mean 0 and variance o

2

The

elements from different microarrays are independent and the correlation coefficient

between any two elements x;; of the same microarray is equal to ¢, where c is between

0 and 1 (Qiu et al., 2005a).

Figure 4 displays the empirical distribution of the z;’s of the model 3 with ¢ = 0.3,

0.5, 0.7, 0.9.
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Density

z-value

Figure 4: The distribution of the z;'s between genes plot.

4.2 Models of correlation among microarrays

In the following models, we consider that there is some correlation between microarrays,

but there is no dependence between genes.

4.2.1 Model 4

For model 4, we consider

T1jy Tojy ey Trnj ~ 1.0.d-2N(O, 0%), { g i ~ ARp)

Tingdts Tiny 425 - Tin ~ AR(p),
where each microarray follows a normal distribution with mean 0 and variance o2, and
each gene follows an AR(p) model. The elements from different genes are independent
and from different microarrays have the AR(p) correlation structures. For example,
take p = 2, the x;1, %2, ..., Tin, ~ AR(2) and the Ty, 41, Tiny 12, -, Tin ~ AR(2), i.e.,
Tit = P1Tij—1 + Gois—o + 2, t =1,...,n. The coefficients, ¢ and ¢,, represent the size
of correlation among x;, 41, and x;_o, t = 1,...,n. The larger the ¢; (or ¢s) is, the
larger the correlation is.

Figure 5(a) displays the empirical distribution of the z;’s of the model 4 with ¢; =
0.3, 0.5, 0.7, 0.9 as p = 1. Figure 5(b) displays the empirical distribution of the z;’s of
the model 4 with ¢; =-0.3, -0.5, -0.7, -0.9 as p = 1. Figure 5(c) displays the empirical
distribution of the z;’s of the model 4 with ¢; = ... = ¢; = 0.14, 0.096, -0.40, -0.81,
096 asp=T.

12
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Figure 5: The'distribution”of the z;'s among microarrays plot.

4.2.2 Model 5

For model 5, we consider

T1jy Ty ey Trnj ~ i.0.d. N(0,0%), ity iy ooy Limy ~ MAQ)
Tiny+1s Ting 42 - Tin ~ MA(q),

where each microarray follows a normal distribution with mean 0 and variance o2, and

each gene follows a M A(q) model. The elements from different genes are independent

and from different microarrays have the M A(q) correlation structures. For example,

take ¢ = 2, the x;1,Ti9, ..., Tin, ~ MA(2) and the X, 11, Ting 12, -y Tin ~ MA(2), ie.,

Tip = 2 + 01251 + 02252, t = 1,...,n. The coeflicients, 8; and 6, represent the size

of correlation among 2, z;—1, and z;_o, t = 1,....,n. The larger the 6, (or 65) is, the

larger the correlation is.
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Figure 6: The distribution”of the 2;'s among microarrays plot.

Figure 6(a) displays the émpirical distribution of the z;’s of the model 5 with 6,
= 0.1, 0.3, 0.5, 0.9 as ¢ = 1. Figure 6(b) displays the empirical distribution of the
z;’s of the model 5 with 6; = -0.1, -0.3, -0.5, -0.9 as ¢ = 1. Figure 6(c) displays the
empirical distribution of the z;’s of the model 5 with ¢; = ... = 6; = 0.1, 0.3, 0.5, 0.9
as ¢ = 7. Figure 6(d) displays the empirical distribution of the z;’s of the model 5 with
01 = ...=6;=-0.03, -0.05, -0.07, -0.1 as ¢ = 7.

4.2.3 Model 6

The model 6 has an exchangeable correlation structure among microarrays. For model

6, we consider

.. 2
L1y L2455 ey Tmj 1.0.d. N(0,0’ ),

cor(zig,xy) =¢, k=1,...n1, j=1,..,n1, k#I
cor(xg,xy) =c¢, k=n1+1,...n, j=n1+1,...n, k#I,

14
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Figure 7: The distribution of the z;'s among microarrays plot.

where each microarray follows a normal distribution with mean 0 and variance 0. The
elements from different genes are independent and the correlation coefficient between
any two elements z;; of the same,gene is equalite c, where c is between 0 and 1 .

Figure 7 displays the empirical disteibutionsof the:z;’s of the model 6 with ¢ = 0.3,
0.5, 0.7, 0.9.

4.3 Various Distribution Alssumptions

In this section, we consider the models with independent genes and independent pa-

tients. But, the empirical distribution of genes ‘are not normal.

4.3.1 Model 7

For model 7, we consider
Tity T2y oeey Ting ~i.i.d. Gamma(a = shape, A = rate),
Tiny+1s Ting 42 - Tin ~ 1.0.d. Gamma(a = shape, A = rate),

where the independent and identically distributed random variables x;; are generated
from a gamma distribution with mean o/ and variance a/\2.

Figure 8(a) displays the empirical distribution of the z;’s of the model 7 with o =
0.05, 0.15, 0.3, 0.5, 1 as A = 1.
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Figure 8: The distribution of the z;'s under various distribution assumption plot.

4.3.2 Model 8

For model 8, we consider

Tity Tigy ey Ting ~ad.d. Cauchy(a = location, N = scale)
{ Ting 11, Ting 42, - T 1 g-d-Cauchy(a = location, \ = scale),
where the independent and identically distributed randem variables x;; are generated
from a cauchy distributionswith lo¢ation‘ac and scale A.
Figure 8(b) displays therempirical distribution of the z;’s of the model 8 with A =

1, a=0.

4.3.3 Model 9

For model 9, we consider
L1y Ti2y vy Ling ~i.i.d. Weibull(\ = shape, « = scale, 3 = location)

{ Ting 11, Ting 425 oy Tin ~ 1.0.d. Weibull(A = shape, « = scale, 3 = location),
where the independent and identically distributed random variables x;; are generated
from a weibull distribution with mean 3+ oI'(1 + 1/)) and variance o*(T'(1 + 2/)) —
(1L + 1/3))%).

Figure 9(a) displays the empirical distribution of the z;’s of the model 9 with A\ =
0.15,0.3,0.5, lasa=1,8=0.
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Figure 9: The distribution of the z;'s under various distribution assumption plot.

4.3.4 Model 10

For model 10, we consider

Ti1, Ti2y ey Tiny ~ad.d. Exp(\ = rate)
Lini+1s Ling+25 -+ LTin O 1.0-d- Efl?p()\ = rate),

where the independent and identically distributed randem variables x;; are generated
from an exponential distribution with-mean 1/)\ and variance 1/\%.

Figure 9(b) displays thesempirical distribution of the z;’s of the model 10 with A =

4.3.5 Model 11

For model 11, we consider
Tity Tigy oeey Ting ~i.i.d. t(n = degrees of freedom)
Ting 11, Ting 42y s Tin ~ 1.0.d. t(n = degrees of freedom),

where the independent and identically distributed random variables x;; are generated
from a t distribution with mean 0 (n > 1) and variance n/(n —2) (n > 2).

Figure 10(a) displays the empirical distribution of the z;’s of the model 11 with n
=1, 2, 4, 10, 50.
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Figure 10: The distribution of the z;'s under various distribution assumption plot.

4.3.6 Model 12

For model 12, we consider

Ti1, Ti2y ey Tiny dad.d. F(vy,ve) (V1,05 = degrees of freedom)
{ Ting 11, Ting 425 - Tifpew 1i-d—F (01, 09) (01, v2 ='degrees of freedom),
where the independent and identically distributed randem variables x;; are generated
from a F distribution withamean vy /(2=2) (vs > 2) and variance 202 (v;+v2-2) /(v1 (v9—
2)? (v9-4)) (vg > 4).
Figure 10(b) displays the empirical distribution of the z;’s of the model 12 with

(v1,v9) = (1,1),(4,4), (10, 10), (50, 50).

18



4.4 Results of Simulation

The above nine figures may be divided into three types. First, in Figure 2(a-c), Figure
3(a-d) and Figure 4, there are no difference between N(0,1) and dash lines, so we can
see that the correlation between genes seems not affect the empirical distribution of
the z;’s.

Secondly, in Figure 5(a), the empirical distribution of the z;’s is more wide than the
N(0,1) as the positive ¢ getting larger. In Figure 5(b), the empirical distribution of the
2;’s is more narrow than the N(0,1) as the negative ¢ getting smaller. In Figure 5(c),
the empirical distribution of the z;’s is more wide than the N(0,1) as the positive ¢
getting larger and the empirical distribution of the z;’s is more narrow than the N(0,1)
as the negative ¢ getting smaller. In Figure 7, the empirical distribution of the z;’s is
more wide than the N(0,1) as thé correlation coéfficient ¢ getting larger.

Also, in Figure 6(a), the empirical distribution of,the z;’s is more wide than the
N(0,1) as the positive 0 getting larger.  In Figure 6(b)s the empirical distribution of
the z;’s is more narrow than the N(0,1)as the negative 6 getting smaller. In Figure
6(c), the empirical distribusion of the 2’575 more wide than the N(0,1) as the positive
0 getting larger. In Figure 6(d),the empirical distzibution of the z;’s is more narrow
than the N(0,1) as the negative 6 getting smaller.

Hence, there is a significant difference between N(0,1) and dash lines in Figure 5(a-
c), Figure 6(a-d), and Figure 7, so we can see that the correlation among microarrays
actually affects the empirical distribution of the z;’s.

Thirdly, since there is an apparent difference between N(0,1) and dash lines in
Figure 8(a)(b), Figure 9(a)(b), and Figure 10(a)(b), we can see that the various distri-
bution assumptions actually affects the empirical distribution of the z;’s.

From the above results, we conclude that the correlation among microarrays and
the various distribution assumptions can cause the empirical distribution of the z;’s

differing from N(0,1) in microarray experiments.
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5 Real Data

The data is a microarray experiment about breast cancer, which provided by Depart-
ment of Interdisciplinary Oncology Moffitt Cancer Center and Research Institute, Uni-
versity of South Florida. The experiment included 185 samples, 143 from the normal
group and 42 from the patients. Each samples measured a microarray of expression
levels for the same m = 54675 genes. Then we apply the data on the multiple testing
procedures and therefore we get m = 54675 z;’s. The histogram of the observed z;’s
plot is in the Figure 11. In Figure 11, heavy blue line indicates the theoretical null
distribution. We can see that the empirical distribution of the z;’s is more wide than
the N(0,1). Hence, we guess that the data may have correlation among microarrays.
Also, if the genes are null, these z;’s should have a standard normal distribution under
normal assumption. In order to.solve the problem, we may try some improved method.
For example, permutation methods can. be used. to avoid the assumption of z;|H; ~
N(0,1) and possibly make.thepermutation-improved theoretical null will more closely
match the empirical null (Efron et als 2001; Dudoit et al. 2003; Efron 2004; Efron
2007). Moreover, Efron (2007). referred to-the random permutation of the microarrays
can eliminate the group differenges-and preserve the correlation structure of the genes.
Hence we apply permutation methods to the breast cancer data.

Let X represent the 54675 x 185 matrix X = (z;;) of the breast cancer data.
Each row of X (i.e., each gene) yields a two-sample t-statistic ¢; comparing 143 from
the normal group and 42 from the patients, which is then transformed to a z; by
2z = ®HGo(t;)) and we get 54675 z;’s. Then, we recalculate the 54675 z;’s by ran-
domly permuting the columns of X. Namely, we recalculate the 54675 z;’s by randomly
dividing the 185 samples into groups of 143 and 42. This process is independently re-
peated 100 times, generating a total of 100 x 54675 permutation z;’s. This testing is
called permutation testing. Since permutation test is model-free, we can say that per-
mutation test is more robust than ¢-test. The empirical distribution of the 100 x 54675

z;’s (i.e., permutation null) plot is in the Figure 11. In Figure 11, heavy red line indi-
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Figure 11: The distribution of the z;'s plot in real data.

cates the distribution of the 100 x 54675 z;’s (i.e., permutation null). We can see that
the empirical distribution of the z;’s is more wide than the permutation null distribu-
tion, but the permutation null is more' elosely taatch the histogram of the observed z;’s
than the N(0,1).

However, permutation=methods-are" a way of.avoiding the normal assumption (
Dudoit et al., 2003; Efrom, 2001, 2004, 2006), but they do not solve the problem of
selecting a suitable null hypothesis (Efrons2004)- The choice of a suitable null hypoth-
esis can see Efron (2004, 2006, 2007).

21



6 Conclusions and Future Research

In this study, we focused on the reasons of empirical distribution of the z;’s differed
from N(0,1) in large-scale multiple hypothesis testing. We proposed the three possi-
ble reasons. The first reason was the correlation between genes. The secondly reason
was the correlation among microarrays. The third reason was the various distribution
assumptions. Moreover, we provided twelve models from three different reasons and
simulated the data by the models.

By observing the simulated data from models of correlation among microarrays,
we could see that the empirical distribution of the z;’s may differs from N(0,1) as the
correlation getting larger. Also, we see that there is a significant difference between
the empirical distribution of the z;’s and, the N(0,1) by observing the simulated data
from models of various distribution assumptions. Hence, by the simulation results we
conclude that the correlation between|genes could not affect the empirical distribu-
tion of the z;’s and that the correlation among microarrays and various distribution
assumption are the main reasons.

This study only proposed three possible-reasons inrlarge-scale multiple hypothesis
testing. It might be worth to diseuss further possible reasons that may make the dis-
tribution of the z;’s differing from N(0,1) and provide appropriate models for the other
possible reasons.

Also, this study used the AR and MA model with different coefficients and order
to generate the correlation data between genes and among microarrays. Another di-
rection for future research is to use an autoregressive moving average (ARMA) model
or other correlation model for the proposed reasons. In addition, this study provided
six different distribution models for the various distribution assumptions. It might be

assume other distribution models to investigate further in future research.
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