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Profile Monitoring via Simplicial Data Depth

Student: Chin-Yu Cheng Advisor: Dr. Jyh-Jen Horng Shiau

Institute of Statistics

National Chiao Tung University

Abstract

Profile monitoring is presently a new,and, useful technique in statistical process
control best used in where the process data of an object follow a profile (or curve)
of an independent variable. #This study is aimed.at developing monitoring schemes
for profiles with random effects (or more' precisely; subject effects) by nonparametric
methods. The term “subject effects” here mieans a certaindegree of profile-to-profile
variation is allowable for an.in-controliprocess. We utilize.the technique of principal
components analysis to analyze the reférence profiles and.reduce each profile data to a
principal component score vector'of lower dimension. Data depth is one of the important
notions of nonparametric multivariate analysis. Simplicial depth is one of the popular
data depths. We convert the principal component score vector of each profile to a
simplicial depth value with respect to the reference score vectors. The choice of principal
component scores used in constructing a control chart has effects on the detecting power.
With the center-outward ranking induced by the notion of simplicial depth, we construct
three control charts, including r-chart, (-chart, and DDMA-chart, to perform Phase
IT process monitoring. These control charts are completely nonparametric and have
broader applicability than the usual multivariate control charts. These approaches are

illustrated and studied using the aspartame example presented in Kang and Albin [7].

i



FAERELAC A BNV EY P WL IRG R  (F L E Y Ao
LR Y S VRS TR L N ﬁ_’&ﬁﬂ;{%ﬁg&—w;}]ﬁﬁﬁ  hEEFILE RS R
Fondy Efefler ™ o J gl A T ALY o AR A Bk P 0 Rk
Fystap s Br L ARAharEa e L BFp e Ak o 7 F L AF R

F}-

ﬁm

BRLH AT T A ST R B T O Ao o

BRI S A B TS o A L A h A B S A R
SRR S R S S Sl S G S A L)
“F e b e § AR A X L BB A s ) i BT S
%ﬁwi?ﬁﬁ%é%io&‘ﬁﬁﬁﬁiévm%ﬁﬂ’F%MM-ﬁﬁ7ﬁ$N“*%A’
PEELHY S e SR R ER S G o R GRS 3 SRR KR
W TSR A R L a6 BB AR BT LS S TR A 7 o
S BRBHT R e RS S PR E R RS e e i

RSHHA i Fir o £ 2§ 3T eIrs b 0 BOPFIA i3 PARmEEL AR
T E 2 Y Y AP g o

BFT T AT ER AT R B LA S mg*ffr: PochipE sk B & R R-L K oah AR ehpE %)
u% TR AR FREE PR RH BB RANBEEFIR PP LT NS
PRpi oo R EIE BRI R R 3 i BEAARBOEKREFar e
Bofs o B A P BT NG AE O o aopEk o



Contents
1 Introduction

2 Literature Review

2.1 Profile Monitoring . . . . . . . . ...
2.1.1 Introduction . . . . . . . . ..
2.1.2  Practical Examples . . . . . . . ... Lo
2.1.3 Linear Profiles. . . . . . . . .. .o
2.1.4 Nonlinear Profiles . . . . . . .. .. ... oo
2.2 DataDepth . . . . . . .
2.2.1 Introduction . . . . . ... Lo
2.2.2  Simplicial Depth . . . . . ... oo
2.2.3 rcharts . . . . LB E R e e e
224 Q-charts . . . . . i L0 S
2.2.5 DDMA-charts . S I, W - - - - - -

3 Methodology

3.1 Data Smoothing . . . T . . @ Pt 0
3.2 Principal Component Analysis* .t "m0t oL
3.3 Phase II Monitoring . . 7@ S s R L
3.3.1 Monitoring Statistics . . . . ... ..o
3.3.2 Control Limits . . . . . . . .. ..

4 Simulation and Comparative Studies

4.1 Generating Data . . . . . . ...
4.2  Choice of Principal Components . . . . . . . .. .. .. ... ... ... ...
4.3 ARL Comparison Study . . . . . . . . . ...

5 Concluding Remarks

References

v

© 0o N N ot W w N NN

—_ =
N =

13
13
14
16
16
18

19
19
20
21

28

31



List of Tables

ARLSs (subgroups) and their standard errors (in parenthesis) of detecting lo-
cation shift in / based on PC1 and PC2. . . . . . ... ... ... ... ...
ARLs (subgroups) and their standard errors (in parenthesis) of detecting lo-
cation shift in / based on PC1 and PC3. . . . . . . .. ... ... .. ...
ARLs (subgroups) and their standard errors (in parenthesis) of detecting lo-
cation shift in M based on PC1 and PC2. . . . . ... ... ... .. ... .
ARLs (subgroups) and their standard errors (in parenthesis) of detecting lo-
cation shift in N based on PCl and PC2. . . . . . ... ... ... ... ...
ARLs (subgroups) and their standard errors (in parenthesis) of detecting scale
shift in [ based on PCl and PC2. . . . . . . .. ... ... ... .. ...,
ARLs (subgroups) and their standard errors (in parenthesis) of detecting scale
shift in [ based on PC1 and PC3. oo il o 0 o 00 000 oL
ARLs (subgroups) and their standard.errors:(in parenthesis) of detecting scale
shift in M based on PGl and PC2- 1w sl "l o o o 0 oL 0oL
ARLs (subgroups) and their standard exrors (in parenthesis) of detecting scale

shift in N based on P@1 and PC2 e 0 000 o o oL

34

35

36

37

38

39

40



List of Figures

N O Ot e W N

10

11

12

13

14

15

16

17

Four hypothetical aspartame profiles. . . . . . . . . .. ... ... ... ... 42
24 original VDP profiles. . . . . . . .. ..o 42
First three eigenvectors. . . . . . . . . . . ..o 43
PCl: po£3vy. . . o o 43
PC2: poE3ve. . o 0 44
PC3: po+3vs. . . . . 44

Scatterplots of score data for shifts in I from p; to (a) py (no shift), (b) ur+oy,
() pr+20p, and (d) pyr+307. . o o oo 45
Scatterplots of score data for shifts in I from u; to (a) gy (no shift), (b) pur+oy,
(¢) pr+ 20, and (d) pr+307. . - o oo 45
Scatterplots of score data for shifts in M from pps to (a) par (no shift), (b)
par + onr, (€) s + 200, ando(@) par #3005 s - - - o o 46
Scatterplots of score data for shifts.inV from [y to (a) uy (no shift), (b)

UN +on, (¢) pun + 20Ny and (gt Baneie s . o 46
For detecting location shift in I, ARL#(subgroups) curves of r-chart (using
PC1 and PC2), PC-scores, Combiged, and 72 charts: . . . . . ... ... .. 47
For detecting location shift- in'[; ARE*(subgroups) curves of r-chart (using
PC1 and PC3), PC-scores, Combined, and- 42 eharts. . . . . . ... ... .. 47
For detecting location shift in M, ARL (subgroups) curves of r-chart (using
PC1 and PC2), PC-scores, Combined, and T? charts. . . . . . ... ... .. 48
For detecting location shift in N, ARL (subgroups) curves of r-chart (using
PC1 and PC2), PC-scores, Combined, and T2 charts. . . . ... .. ... .. 48
For detecting location shift in I, ARL (subgroups) curves of r, ¢ and DDMA
charts using PC1 and PC2.. . . . . . . . .. ... 49
For detecting location shift in 7, ARL (subgroups) curves of r, ¢ and DDMA
charts using PCl and PC3.. . . . . . . . . ... . . oo 49
For detecting location shift in M, ARL (subgroups) curves of , @ and DDMA
charts using PCl and PC2.. . . . . . . . .. .. . 50

vi



18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

For detecting location shift in N, ARL (subgroups) curves of r, ) and DDMA
charts using PC1 and PC2.. . . . . . . . .. ...
For detecting location shift in I, ARL (profiles) curves of r and ) charts using
PCland PC2. . . . . . . .
For detecting location shift in I, ARL (profiles) curves of r and ) charts using
PCland PC3. . . . . . . .
For detecting location shift in M, ARL (profiles) curves of r and @ charts
using PC1 and PC2. . . . . . . . ..
For detecting location shift in N, ARL (profiles) curves of rand @) charts using
PCland PC2. . . . . . . . .
For detecting location shift in 7, ARL (profiles) curves of DDMA charts using
PCland PC2. . . . . . . . o
For detecting location shift in 7, ARL,(profiles) curves of DDMA charts using
PCland PC3.. . .. .. 48 " "9 . ... ... ........
For detecting location shift in M ,-ARL (profiles) curves of DDMA charts using
PC1 and PC2. . . | | waflf o it s (s . . . . . . . . L
For detecting location shift in"' N, AR (profiles) curves of DDMA charts using
PCland PC2.. .. R SWfawrrrvre & - - - - - - - - - ..
Scatterplots of score data for shifts in I from o t0 (a) oy (no shift), (b) 3oy,
(c) 6or,and (d) 9oy. . . . VAL LT L
Scatterplots of score data for shifts in I from o; to (a) o7 (no shift), (b) 3oy,
() 6or,and (d) 9oy, . . . oL
Scatterplots of score data for shifts in M from oy to (a) op (no shift), (b)
3oa, (¢) 6op, and (d) 9opr. o o oo
Scatterplots of score data for shifts in N from oy to (a) oy (no shift), (b)
150y, (¢) 20n, and (d) 2.50N. .« .« o v v oo
For detecting scale shift in I, ARL (subgroups) curves of r, @ and DDMA
charts using PC1 and PC2.. . . . . . . . .. .. ... oo
For detecting scale shift in I, ARL (subgroups) curves of r, @ and DDMA
charts using PCl and PC3.. . . . . . . . . ... .

vil

20

o1

51

52

52

23

33

54

o4

95

95

56

26

o7



33

34

35

36

37

38

39

40

41

42

For detecting scale shift in M, ARL (subgroups) curves of r, @ and DDMA
charts using PC1 and PC2.. . . . . . . . .. ...
For detecting scale shift in N, ARL (subgroups) curves of r, @ and DDMA
charts using PC1 and PC2.. . . . . . . . .. .. ... o
For detecting scale shift in I, ARL (profiles) curves of r and @ charts using
PCland PC2. . . . . . . .
For detecting scale shift in I, ARL (profiles) curves of r and ) charts using
PCland PC3. . . . . . . .
For detecting scale shift in M, ARL (profiles) curves of r and @) charts using
PCland PC2. . . . . . . . . .
For detecting scale shift in N, ARL (profiles) curves of r and @ charts using
PCland PC2. . . . . . . . o
For detecting scale shift in I, ARL.(profiles) curves of DDMA charts using
PCland PC2.. . . . .. 48 " "79Ws . .. ... .. .......
For detecting scale shiftsin ;- ARL - (profiles) curves of DDMA charts using
PC1 and PC3. . . | . waflf o iRt s (s . . . . . . . . ..
For detecting scale shift in M, ARL.(profiles) curves of DDMA charts using
PCland PC2.. .. . R Sfawrrrvre & - - - - - - - - ..
For detecting scale shift in &, ARL (profiles).€urves of DDMA charts using
PCland PC2. . . . . . . 980l o

viil

o8

o8

29

29

60

60

61

61

62



1 Introduction

Profile monitoring is a relatively new research area in statistical quality control. Generally
speaking, it is closely related to an area of statistics known as functional data analysis. It
is useful when the product or process quality is well represented by a function (or a curve).
It can be used to understand and to monitor the stability of the functional relationship
over time. This functional relationship is called a profile in the literature. Such profiles
are frequently modeled using linear or nonlinear regression models. Most research works
on profile monitoring have been focusing on situations where the profiles are modeled by a
linear model. However, it is often the case that the profiles are better described by a nonlinear
model rather than by a linear model.

In this study, we focus on Phase II monitoring of nonlinear profiles with subject effects
via nonparametric regression. The term “subject effects” here means a certain degree of
profile-to-profile variation is allowable £0r an in-contrel process. A challenge arises: how to
characterize nonlinear profiles? Inspractice, people have tised some simple descriptive statis-
tics to characterize nonlinear profiles, such as the average value, the maximum magnitude,
etc. In this study, we first smooth the raw data-profiles by smoothing techniques, then em-
ploy the principal components @nalysis (PE'A) to reduce the*de-noised nonlinear profiles to
some important features represented- by 'speeifie- principal'‘component scores (PC-scores).

Most of the research that involves the development:and evaluation of Phase II control
charts assumes some stochastic model for the quality characteristic of interest. For example,
univariate process data are often assumed to follow a normal distribution. For another exam-
ple, Shiau, Huang, Lin, and Tsai [19] modeled nonlinear aspartame profiles as realizations of
a Gaussian stochastic process. But in many applications, the underlying process distribution
is unknown and hard to find a suitable approximation for it. So the statistical properties
of commonly used charts, designed under the normality assumption, would be potentially
affected. In the situation as such, development and application of nonparametric control
charts are highly desirable.

Data depth is a multivariate data analysis method that assigns a numeric value to a

multivariate data point based on its centrality relative to a data set. Simplicial depth [9]



is one of the notions of data depth. Liu [9] proposed three nonparametric control charts,
referred to as r-chart [11], Q-chart [11], and DDMA-chart [14], which are derived from the
notion of simplicial depth. The great advantage of these control charts is that they do
not require knowledge of the underlying distribution of process data. As a nonparametric
method, each of the three charts has much broader applicability than the traditional control
charts such as the Hotelling 72 chart constructed from the multivariate Gaussian processes.
For example, the DDMA-chart is shown in Liu, Singh, and Teng [14] to be quite effective in
detecting changes in Cauchy distributions where the Hotelling T2 chart fails completely.

In our monitoring schemes, we monitor incoming nonlinear profiles by their specific PC-
scores. After choosing the specific combination of PC-scores by considering particular features
that we are interested in, we take the PC-scores of each profile as the input data to compute
the simplicial depth of the profile. Once we have the simplicial depth values for profiles under
study, we can proceed and construct r-chart,. ¢-chart, and DDMA-chart as described in the
literature. The performances of our monitoring schemes will be evaluated in terms of the
average run length (ARL).

The rest of the paper is organized as follows. #Section 2 reviews literatures on profile
monitoring and researches related to simplicial depth. Section 3 describes the proposed
monitoring schemes in details. ‘Section 4 presents-some simulation results of a comparative
study of the proposed schemes based.on ARL for Phase Il monitoring. Section 5 concludes

the paper with a brief summary and some remarks.

2 Literature Review

2.1 Profile Monitoring
2.1.1 Introduction

Statistical process control (SPC) has been widely applied to a variety of industries. In most
SPC applications, it is assumed that the quality of the product or process could be mea-
sured by the distribution of a single (or multiple) quality characteristic(s). However, in many

practical situations, the quality of the product or process is characterized and summarized



much better by a functional relationship between a response variable (Y') and one or more
explanatory variables (X’s) instead of the distribution of a single (or multiple) quality char-
acteristic(s). Such a relationship that could be linear or nonlinear in nature is referred to as

a profile.

2.1.2 Practical Examples

Kang and Albin [7] presented an example of linear profiles that occurs during the wafer
etching step in the semiconductor manufacturing. The quality of a wafer depends on the
performance of the mass flow controller (MFC). If an MFC is in control, the measured
pressure (the response variable Y') in the chamber is approximately a linear function of the
set point for flow (the explanatory variable X'). Mahmoud and Woodall [15] presented another
example of linear profiles regarding calibration curves in the photometric determination of
Fe?" with sulfosalicylic acid. Jin and Shi 6] showed a complicated form of a stamping
force profile. Kang and Albin [7] deseribed an example of nonlinear profiles with regard to
aspartame (an artificial sweetener). The inmiportant quality characteristic Y is the amount of
aspartame dissolved per liter of*water at differenttemperature X. For illustration, Figure
1 shows the plot of four hypothetical aspartame profiles: Walker and Wright [23] presented
another example of nonlinear profiles named [vertical-density profile (VDP) of engineered
wood boards. The density which determines its machinability is measured by a profilometer
that uses a laser device to take measurements at fixed depths across the thickness of the board.
The data set is available at http://bus.utk.edu/stat/walker/VDP /Allstack.txt. Figure 2
shows the plot of the VDP data set containing n = 24 profiles, each was measured at p = 314

points.

2.1.3 Linear Profiles

Studies focusing on simple linear profiles have been particularly popular. For example, the

following works are related to linear profile monitoring with the fixed-effect model as

Y = Ag+ A X +e, (1)



where Ay and A; are unknown constants and € ~ N(0,0%). Kang and Albin [7] proposed
two methods for monitoring linear profiles. The first method is the multivariate 72 method
and the second is an R-chart in conjunction with an EWMA-chart. Kim, Mahmoud, and
Woodall [8] proposed two two-sided EWMA-charts for monitoring respectively the intercept
and slope where the explanatory values are centered previously, and a one-sided FWMA-chart
for monitoring the process standard deviation. Using simulation, Mahmoud and Woodall [15]
compared the performance of four control charts/methods for monitoring linear profile pro-
cesses in Phase I in terms of the overall probability of a signal. The methods are: (1) the T
chart proposed by Stover and Brill [22], (2) the T? chart proposed by Kang and Albin [7],
(3) the EWMA-charts proposed by Kim, Mahmound, and Woodall [8], and (4) their method
of using the global F' test based on a multiple regression model. Zou, Zhang, and Wang [29]
proposed a control chart based on the change-point model to monitor linear profiles with
estimated parameters. The chart can detect, a shift in either the intercept, slope, or standard
deviation. Gupta, Montgomery, and "Woodall [5] compared the performances of two Phase
IT monitoring schemes for linear#profiles, ene based en the classical calibration method of
monitoring the deviations fromethe regression linesand the ether one based on monitoring
the intercept and slope of the.linear profile individually. 'The works described above all
concerned with the simple linear models Zous Psungsrand Wang [27] extended the focus to
general linear profiles (meaning that profiles can be modeled by a general linear model) by
proposing a novel multivariate exponentially weighted moving average monitoring scheme for
such profiles.

Note that each of the above works are based on a fixed-effect model, which means the
reference profile is a fixed function and the only randomness is caused by the noise (e.q.,
measurement errors) added to the fixed function at each of the set point X. However, the
fixed-effect model does not allow profile-to-profile variations. For example, there might be
some time-varying factors, such as the temperature, humidity, and so on, that cause small
profile-to-profile variations. The profile-to-profile variations are all included in the error term
under the fixed-effect model. But it seems not so appropriate since the time-varying factors
may affect the parameter values of a linear profile. On the other hand, a “random-effect” (or

more precisely, “subject-effect”) model allows profile-to-profile variations and considers them



as common cause of variations. Thus, a random-effect model that can cope with subject
effects (the profile-to-profile variation) may be more suitable for certain applications.

For this, Shiau, Lin, and Chen [20] considered a random-effect linear model to develop
monitoring schemes for linear profiles. Mahmoud and Woodall [15] studied the Phase I
analysis of linear profile data. They proposed a method based on using indicator variables

in a multiple linear regression model.

2.1.4 Nonlinear Profiles

However, there are many situations in practice where profiles cannot be well represented by a
linear model. In other words, the response variable is a nonlinear function of the explanatory
variables. In some cases, the expected parametric form of the underlying nonlinear function
is known or the underlying function can be approximated well by a parametric nonlinear
model. These types of nonlinear regressionsare known as parametric regression with a finite
number of parameters required to bé-estimated. For eaeh profile, one could fit a parametric
model of a pre-specified form tq the datal To diseriminatée.the out-of-control profiles, one
could monitor each estimated parameter with a-separate chart or use a multivariate chart
based on the vectors of estimated parameters:

Next, we review some related-works on monitoring nonlinear profiles via parametric regres-
sion. Williams, Birch, Woodall, and Ferry [24] illustratéd their nonlinear profile monitoring
methods to monitor the dose-response profiles used in high-throughput screening by fitting
a particular nonlinear regression model to profile data. Williams, Woodall, and Birch [25]
extended the use of the T? control chart to monitor the coefficients resulting from fitting a
parametric nonlinear regression model to profile data. They gave three general approaches to
the formulation based on the nonlinear model estimation of the Phase I analysis. Colosimo,
Semeraro, and Pacella [2] proposed a method based on combining a spatial autoregressive
regression (SARX) model with control charting, and applied the approach to monitor real
process data in which the roundness of items was obtained by turning.

In cases where the functional form is unknown and can not be parameterized, we could use
smoothing techniques such as smoothing splines to estimate the function. This approach is

known as nonparametric regression. The nonparametric regression model is usually expressed



as

Y =m(X) +¢, (2)

where m(X) is a smooth regression curve and € ~ N(0, o?).

Ding, Zeng, and Zhou [3] considered the Phase I analysis of nonlinear profiles. They
proposed a two-component strategy for identifying the profiles that are from an in-control
process. The first component is data reduction that projects the original data into lower
dimension while preserving the data-clustering structure and the second is data separation
that could detect single and multiple shifts.

The function m(X) is a fixed function for each profile in the fixed-effect model. Shiau and
Weng [21] extended the linear profile monitoring schemes to a scheme suitable for profiles of
more general forms with the fixed-effect model via nonparametric regression. Zou, Tsung,
and Wang [28] stated that the parametric monitoring methods are generally powerful when
matched with the specific out-of-control.médel forswhich they were designed, but they can
have very poor ARL performance with other types of out-ef-control models. They focused on
a study of the Phase II method for monitoring a-general profile that can be well represented
by a nonparametric regression function. The propesed scheme-could solve the aforementioned
problem in parametric monitoring methaods.

The function m(X) is a random function in the random-effect model. With the random-
effect model, the profiles can be modeled as realizations of a stochastic process with a mean
curve and a covariance function. Shiau; Huang, Lin, and Tsai [19] monitored nonlinear
profiles with random effects by nonparametric regression. They utilized the technique of
principal components analysis to analyze the covariance structure of the profiles and proposed
monitoring schemes based on PC-scores. For Phase I analysis on historical data, they adopted
and studied the Hotelling 72 chart to check the stability. For Phase II monitoring, they
proposed and studied individual PC-score control charts, a combined chart that combines all

the PC-score charts, and a T? chart to monitor the nonlinear profiles.



2.2 Data Depth
2.2.1 Introduction

We usually analyze multivariate data or profiles under the normality assumption, for which
the characteristics of the data can be estimated using classical statistical methods. Many
multivariate statistical methods have been developed under normality, an assumption often
not easy to justify or violated in some practical experiments. Hence nonparametric methods
for multivariate analysis are desirable. Data depth is completely nonparametric because it
analyzes data based on the relative position or rank of the data points without parametric
assumptions on the underlying distribution.

A data depth is a measure for measuring the “centrality” or “outlyingness” of a multi-
variate observation with respect to a set of reference data points (or their probability distri-
bution). It provides a natural center-outward ordering of data points in a given sample. So
we can utilize data depth to reduce each-multivariate 6bservation (or quantify some complex
features of the underlying distribution) to itsmmivariate center-outward rank. In general, the
greater the depth of a point is*the more densely it is surrounded by other sample points.
For example, in R, the median-of a given set.of points-on the real line has the maximum
depth. In R2, a point with high 'depth:corresponds to “centrality”; on the other hand, low
depth corresponds to “outlyingnéess™ A point has high depth when it is centrally located in
the sample points.

Over the years, a large number of depth measures have been proposed. Existing data
depths [14] include: Mahalanobis depth, half-space depth, simplicial depth, projection depth,
spherical depth, majority depth, location depth, Oja depth, zonoid depth, L-1 depth, etc.
Different notions of depth are capable of capturing different characteristics and may lead
to different ordering schemes. However, all the depth orderings are based on the notion of
center-outward ranking. All the notions of depth produce their “deepest” points, which have
been considered as multivariate medians. For convenience, the simplicial depth will be used

for the demonstrations throughout the paper.



2.2.2 Simplicial Depth

The simplicial depth of a point X with respect to a probability distribution F' on R? is the
probability that X belongs to a random triangle in R?. The simplicial depth of a point X
with respect to a data set S in R? is defined by Liu [9] as the proportion of the triangles
(constructed by three of the data points) that contain the point X (a point on the boundary
is considered as contained in the triangle). The dimension can be easily extended to R?,p > 2,
but we only consider the bivariate setting here. In this paper, we utilize simplicial depth as
a measure of centrality of a given point relative to a given sample in R%. In general, a point
with larger depth value indicates that the point is contained in many triangles constructed
from the data set, so the point lies deeper within the data set.

It appears to require O(m?) computer operations to calculate the simplicial depth of a
point X relative to a set of m points. Rousseeuw and Ruts [18] proposed a faster algorithm
that computes the simplicial depth in O(mlogm) operations, by combining geometric prop-
erties with certain sorting and updating mechanisms.”They implemented the algorithm and
the “naive” method to verify the'result. For instance, the efficiency of the algorithm is about
90000 times as fast as that of the “naive” method when m = 1000. The algorithm is very
useful because in our simulation study, (wesrequire that the.simplicial depth be computed
at many X's. Masse and Plante in. 2009.compiled.a package named “depth” in statistical
software R based on Fortran code"fromi Rousseeuw and*Ruts [18]. The description of the
package is available at http://cran.r-projéct.org/web/packages/depth/depth.pdf.

The simplicial depth of a point X with respect to a continuous distribution F' is defined
as

SDF(X) = PF{X € A(Xileinlé)}v <3>

where X, , X,,, X, are three random observations from the distribution . When the dis-
tribution F' is unknown, a sample version of simplicial depth is defined as follows. Let T be
the set of all triangles formed by vertices from a reference sample { X1, ..., X,,} following
distribution F'. Each triangle requires three vertices, so T' has (’;) triangles assuming all m

points are distinct and any three points are not on a line. For any X € {Xj,..., X,,}, the



sample version of simplicial depth SDp, (X)) is defined as

e )= () X X € A X X)) (1)

1<y <ip<iz<m
Here I(-) is the indicator function, that is, I(E) = 1 if the event E occurs and I(E) = 0
otherwise. It is shown in Liu [10] that SDp, (-) converges uniformly and strongly to SDpg(-)
under some regularity conditions. So we can approximate SDg(-) by SDpg, () when F is
unknown. And it is shown in Liu [10] that Liu’s control charts are coordinate free because
SDp(-) is affine invariant.

Let {Y1,...,Y,} be the new observations to be monitored. Assume Y7,...,Y, are i.i.d.
following a continuous distribution G. The monitoring scheme is aimed at comparing G with
F by testing if there exist differences between F' and G. We might attribute the differences
to a location shift and/or a scale shift. Now, in order to test if there is any difference, we
need to calculate the simplicial depth ofall X € {Xy,..., X,,} and Y € {Y3,...,Y,}. Itis
with probability one that Y; & {Xiqy..., X,,} for any 72 €¥1,... ,n}. We remark that when
computing the simplicial depth 6f a new observation: ¥ with respect to a reference sample,
we should treat Y as one of the sample points. Hence the computation should be based on
the total number of triangles generated fromi the m + 1 points {Y, X1,..., X,,}, and count
those triangles containing the point Y &.Then the simplicial depth of Y can be calculated by

m+1\ " m
1<ii<iz<izg<m
In the following, we introduce three control charts given in the literature, which are

constructed based on the simplicial depth values of multivariate observations to detect si-

multaneously the location change and/or the scale increase in a process [11] [14].

2.2.3 r-charts

Liu [11] proposed a control chart called the r-chart that monitors the values of the relative
rank (r-value) of new observations with respect to a distribution or a reference sample. The

r-value of an observation Y is defined as

re(Y) = P{SDp(X) < SDp(Y)|X ~ F}, (6)
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or, for the sample version,

m

1
re,(Y) = — ; I(SDp, (X;) < SDp: (Y)). (7)
It indicates the relative position of point Y with respect to the reference sample { X7, ..., X, }.

A large r-value indicates that there are many points in the reference sample more outlying
than point Y. Conversely, a small r~value means that Y is located at an outlying position
with respect to the reference sample, which means that Y is unlikely to come from the same
distribution F' as that of the reference sample. Thus, a very small rvalue of an observation
Y would suggest a possible deviation from the in control state of the process. This is the
main idea behind the r~chart and the other two charts.

Briefly speaking, the r~chart is analogous to the X-chart in the univariate case (also called
the individual control chart), but it monitors the r-values {rg,, (Y1), ..., s, (Y,)} rather than
the original value of {Y;,...,Y,}. Suppese the'false-alarm rate is set at a. Now we can
choose the center line CL = 0.5 and. the lower control'limit LCL = a, based on the following

proposition, which was established in Liu [11}:

Proposition 2.2.1 Assume that F'= G and. ¥~ G. Let U[0,1] denote the uniform dis-
tribution on the interval [0,1], and let'the notation L, stand for the convergence in law. If
SDp(Y) has a continuous distribution, then

(1) rp(Y) ~ U[0,1];

(2) as m — oo, rgp, (Y) L Ul0,1] along almost all {X,..., X} sequences, provided that

SDp, (+) converges to SDp(-) uniformly as m — oo.

The process is considered to be out of control if 75 (Y) falls below LCL = a. It means there
is quality deterioration such as loss of accuracy and/or loss of precision in quality control.

The r-chart with LCL = a corresponds to an a-level test of the following hypotheses:
Hy: F =G vs. H,:thereis a location shift and/or a scale increase from F to G. (8)

In particular, while many 7-values falling below LCL = a would indicate there is quality
deterioration, many rg, (Y )’s close to 1 would suggest a possible reduction in dispersion,

which may indicate a process improvement in reality.
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If we are sure that there is no location change, the r-chart could be revised to detect the
scale change only. Liu, Singh, and Teng [14] suggested that we could remove any possible
location change by centering all data to the same location, i.e., subtracting the deepest point
(with largest simplicial depth) from all data. Then we use the centered data to construct the

r-chart with CL = 0.5, LCL = a/2, and UCL =1 — a/2.

2.2.4 ()-charts

Liu [11] proposed another control chart called the @-chart that monitors the @-values cal-
culated from the r-values. The idea of the (-chart is analogous to that of the univariate
X-chart. It plots the subgroup averages of consecutive r-values. Denote the subgroup size
by g. Now we give the notation of @-values. Denote the average of the rr(Y;)’s (rg,, (Y;)’s)
by Q(F,G}) (Q(Fn,GY)), where G is the empirical distribution of the ¥;’s in the j-th sub-
group, j = 1,2,.... Then we can construct sthe @-chart with {Q(F,G}), Q(F,G?),...} (or
{Q(Fn.G}), Q(Fn, G?2),.. .}, if only{ X5, ..., X, } are available). More specifically,

QRG-S )
and ’
o, )= ézmnm). (10)

The center line is always set at CL = 0.5, but the LICL. depends on the choice of q. The
following result regarding LCL was given in Liu [11] and Liu, Singh, and Teng [14]. When ¢ is
large, by the Central Limit Theorem, the LCL is approximately 0.5 — z,(12¢) /2 for plotting
Q(F,Gi)s and 0.5 — z,[(1/m + 1/q)/12]*/? for plotting Q(F,,, GI)’s. When g is relatively
small and a < 1/q!, then LCL is exactly (¢qla)/?/q. In particular, this LCL could be a
reasonable approximation when a is slightly over 1/¢!. Similar to the r-chart, the Q-chart
could be used to detect only scale changes by using the centered data as described before.
For a given reference sample {X3,..., X,,} ~ F and an incoming new sample Y ~ G,
Liu and Singh [13] proposed a quality index Q(F,G) = P{SDp(X) < SDp(Y)|X ~ F|Y ~
G} (= Eq(rp(Y))), whererp(Y) = P{SDp(X) < SDp(Y)|X ~ F}, and used it to measure
the difference between the distributions /' and G. The previous definitions of Q(F,G,) and
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Q(Fn,G,) are sample approximations of Q(F,G). Based on this index, Liu, Singh, and
Teng [14] showed that the Q-chart could be inefficient in detecting a minor location shift.
They proposed the following data-depth-moving-average chart (DDMA-chart) to overcome
this drawback.

2.2.5 DDMA-charts

The idea of the DDMA-chart is analogous to that of the univariate Moving Average chart.
The DDMA-chart monitors the DDMA-values calculated from the moving averages of the
original reference sample {X;, ..., X,,} and new observations {Y73,...,Y,} as follows. Let ¢
be the number of observations needed in computing moving averages. Let {X Lyones Xm—q+1}
be the reference sample of moving averages with X; = (X, +---+ X,)/q, Xo = (Xo+--- +
Xo+1)/q, - Xm_q+1 = (Xm—g1 + -+ X,n)/q, and {f’l,...,f’n_qﬂ} be the moving
averages of new observations with ¥ = (¥Vptee 4 Y,)/q, Yo = (Yo + -+ Y1) /¢, -,
f’n,qﬂ = (Y,—gt1 + - +Y,)/q. Similar to equations (4) and (5), calculate the simplicial

depth for each X € {X,..., Xy} and YiEeWw W ... by

> m —=q 41 1= 2 -~ -
SDg, (X)) = ( 4 ) o I(X e AN(Xy,, Xy, X3))  (11)
1< L2<i3<m—q+1
and
SDFJ%QH(}}) =

(m ca 2) N [ > 1Y € ANX;,, Xy, X)) + <m _QQ+ 1) , (12)

3
1<i1<ig<iz<m—q+1

where Fm—q—H is the empirical distribution of { X7, ..., Xn—q+1}. With these simplicial depth

values, we can calculate the new r-value for each moving average Y; with respect to the

reference sample {Xl, ooy Xm—gi1} by
](SDFWW(XZ) < SDp. +l(ifi)). (13)

The DDMA-chart detects possible deviations by plotting Tﬁmiq+1(ﬁ), r=1,....,n—q+ 1.
Since the DDMA-chart is the r-chart of moving averages, it has CL = 0.5 and LCL = a. The
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only difference is the data used for calculating simplicial depth values: the r-chart uses 7-
values of individual data points, while the DDMA-chart uses r-values of the moving averages
of ¢ data points.

Liu, Singh, and Teng [14] explained why the DDMA-chart is more sensitive to minor
location shifts than the (-chart, and yet retaining the same ability in detecting scale shifts.
More specifically, let the length of moving window be ¢ > 1 and assume there is only a
location shift between F' and G. Then the DDMA-chart will exhibit a location shift of /g
times in size. In other words, the DDMA-chart will amplify the effect of the location shift
by a factor of /q. If the proportion of the points falling below LCL is larger than the false-
alarm rate a, it may suggest that there is a location shift and/or a scale increase between
the distributions F' and G. Furthermore, if the proportion increases as ¢ increases, then
there is a strong indication of a location shift. On the other hand, if the proportion does
not increase as ¢ increases, then it indicates.a scale shift between the distributions F' and
G. In summary, the DDMA-chart ameliorates the ()~¢hart in terms of the detecting power of
location shifts while retains the same deteeting power of seale shifts as the ()-chart. Hence
both ()-chart and DDMA-chart. are suggested to be used side by side in general practice.
If we observe that there is a same effeet in both the (-chart and DDMA-chart, we could
conclude that there occurs a scale shift'only=Ifiwe-observe that the out-of-control proportion
in the DDMA-chart is larger than that in the ()-chart based on the same moving window (gq),
then we could conclude that there is a lo¢ation change in the process, in addition to potential

scale changes.

3 Methodology

3.1 Data Smoothing

Data smoothing techniques are used to “eliminate” noise and extract real trends and patterns
of profiles. For a given nonlinear profile, it returns a profile that contains less noise than the
original profile and yet retains the basic shape and important features of interest in the
original data. The most popular approach is to utilize the basis function expansion, such as

Fourier, spline, power, exponential, wavelet bases, and so on. In this paper, we adopt the
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spline smoothing by fitting a cubic smoothing spline to the data.

We use the command named “smooth.spline” in statistical software R to perform data
smoothing. More commands are available in R for data smoothing, for examples “splineDesign”
or “bs”, “locpoly’, “ksmooth’ corresponding to other commonly used methods, B-spline re-
gression, local polynomial smoothing, and kernel regression smoother, respectively. We re-
mark based on our experiences that, by filtering out noises, the actual signals could be better
extracted from the data and the subsequent principal component analysis (PCA) could ex-
plore the variation among the profiles more effectively. In particular, smoothing tends to be

more advantageous as the noise level (02) gets larger.

3.2 Principal Component Analysis

Principal component analysis was invented in 1901 by Karl Pearson. We introduce PCA
following Everitt [4]. The aim of PCAyis"to'deScribe the variation in a set of correlated
variables, 1, x9, ..., x,, in terms ofta mew set of uncorrelated variables, y1, s, . .., yp, each of
which is a linear combination of*the z variables. “The new variables are ordered decreasingly
by its importance in the sense that y; is chosen to.account for as much as possible of the total
variation in the original data among all linearcombinations of 1, z2, . . ., z,. More specifically,
Y1 = alx, where ' = (21,29, .7 ) rand @i, = {aij, 0125 .+, a1p) is the eigenvector of the
sample covariance matrix S, which has.the greatest variance among all linear combinations
subject to a@ja; = 1. Then y, is chosen t6 account for as much as possible of the remaining
variation by y» = abx, where a, = (a1, ass, . . ., asp,) is the eigenvector of the matrix S, which

has the greatest variance subject to the following two conditions:
aya; =1, aya; = 0.

The second condition ensures that y; and y, are uncorrelated. Similarly, the subsequent i-th
principal component y; is the linear combination of the x variables, y; = aa, which has the
greatest variance subject to the following conditions:

/

a;

a; =1, aja; =0 (for all j < 1),

with a; being the eigenvector of S associated with the i-th largest eigenvalue. The new

variables defined by this process, yi,¥2,...,¥p, are the principal components. Usually the
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first few components will account for a substantial portion of the total variation in the original
data and they would be used to provide a convenient and useful lower-dimensional summary
of these variables.

Assume the eigenvalues of S are \; > Ay > --- > \,. Then, since ala; = 1, the variance of
the i-th principal component is given by ;. The total variance of the p principal components

will equal to the total variance of the original variance so that
p
Z)\i:sf+s§+--~+sz,
i=1

where s? is the variance of x;. Consequently, the first k (k < p) principal components account

for a proportion p®) of the total variation in the original data, where

p(k) _ 221 iz
=1\

The representation of the principal compeonents given above is in terms of the eigenvalues
and eigenvectors of the sample covariance matrix .S." Because the principal components
derived from the covariance matrix will depend on the choice of units of measurement. Hence
in practice, it is far more useful to éxtract the compenents from the sample correlation matrix
R, which is equivalent to calculate the prineipal components from the original variables after
each being standardized.

We need to decide how many compenents are needed to provide an adequate summary
of a given data set. There exists many useful criteria, such as (i) retaining just enough
components to explain large percentage (70% to 90%) of the total variation of the original
variables, (ii) excluding those principal components whose eigenvalues are less than the av-
erage Y o A;/p, (iii) using cross-validation methods, and so on. Furthermore, Everitt [4]
mentioned that it is not always the first principal component that is of most interest to a
researcher. A taxonomist will often be more concerned with the second and subsequent com-
ponents since these might provide a convenient description of aspects of an animal’s “shape”
when investigating variation in morphological measurements on animals, and the aspects of
an animal’s “size” will be reflected in the first principal component. For another example,
the first principal component derived from, say, clinical psychiatric scores on patients may

only provide an index of the severity of symptoms, and it is the remaining components that
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will give the psychiatrist important information about the “pattern” of symptoms. In sum-
mary, according to different purposes of a researcher or different features that a researcher is
interested in, the order of the importance of the principal components may be different.

After deciding that we need k principal components to adequately represent our data,
we calculate the principal component scores (PC-scores) of the chosen components for each
individual in our sample. Having obtained the components from the sample covariance matrix
S (or the sample correlation matrix R), the k& PC-scores for individual ¢ with p x 1 data vector
x; are then obtained by

yij:a;wi, ]:1,,k’

In practice, we can use the commands “prcomp” or “princomp” in statistical software R to
get the eigenvalues and eigenvectors of the sample covariance/correlation matrix of a given

data matrix as well as the PC-scores.

3.3 Phase II Monitoring
3.3.1 Monitoring Statistics

In this study, we focus on Phase II monitoring. The purpese of Phase II analysis is to
detect shifts in the process parameterssas quickly=as possible. In most Phase II studies,
it is usually assumed that the in-centrol process distribution has been characterized, either
from prior experiences or estimated from the Phase T analysis. In our study, we do not
require any assumptions about the process distribution because of the nonparametric nature
of data depth. Hence we only assume that a set of m in-control profiles is available. We
first apply a smoothing technique to each of the m profiles to filter out noise, and then apply
principal component analysis to the smoothed profiles. Denote the px1 data vector of the ¢-th
smoothed profile by x;, i = 1,...,m, and the sample covariance matrix of {x;, i = 1,...,m}
by S. Calculate the eigenvalues and eigenvectors of S. The eigenvector v, corresponding
to the rth largest eigenvalue A, is the r~th principal component. S; = v.x; is the PC-
scores of the r-th principal component of the i-th profiles, where r = 1,...,p and ¢ =
1,...,m. We could consider selecting the first k& principal components for which the total

variation explained by the chosen principal components, fo:l Ar/ Y P A, reaches a desired
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level. Alternatively, it is also a useful proposal that we consider the ability of each principal
component in capturing a particular feature of the profiles. If a particular mode of process
change could be caught more easily by certain principal components, then we select these
particular principal components. That is, for detecting different modes of process change,
we might choose different principal components. Denote the k& x 1 score vector (S;, ..., Siu)’
by s;, © = 1,...,m. Calculating simplicial data depth for many profiles is fairly time-
consuming, especially when k is large. For simplicity, with these principal components, we
only consider £ = 2 in the paper. We then simplify the m in-control profiles to m scores
vectors s;, ¢ = 1,...,m. The resulting principal components will be used to compute the
PC-scores of incoming profiles in Phase II on-line process monitoring as follows. For each
incoming profile in Phase Il monitoring, we first smooth and then project it onto the k
principal components chosen earlier to obtain the k£ x 1 PC-scores vector s3, j =1,2,....
Denote the set of scores vectors {s;, i = Luwom} by {X1,..., Xpnfand {s}, j =1,2,...}
by {Y1,Ys,...}. Then we compute the simplicial depth values of { X7, ..., X,,} by equation
(4) and {Y1,Y5,...} by equation’h); which-are viewed as afmeasure of centrality relative to
the points { X1, ..., X,,}. We denote the simplicial.depth values by {SD(X;), i =1,...,m}
and {SD(Y;), j = 1,2,...}. .Set the desired in-control false-alarm rate at a. Consider
three monitoring statistics corrésponding torthetthree control charts, r-chart, (-chart, and

DDMA-chart.

e r-chart: According to the definition of rvalie by equation (7), we have the r-values of
{Y1,Y5,...} by comparing the magnitude of {SD(Y;), j = 1,2,...} with respect to
{SD(X;), i = 1,...,m}. For the incoming samples, denote the monitoring statistics

of r-values by {r(Y1),r(Y2),...}.

e ()chart: Additionally, we can monitor the @-values by applying the idea of X-chart
to the r-values {r(Y7),r(Y2),...}. Assume the subgroup size is q. Then the first
monitoring statistic of Q-values is [r(Y7)+---+7(Y;)]/q, the second monitoring statistic
of @Q-values is [r(Y,41) + - - + 7(Y24)]/¢, and so on. For the incoming samples, denote

the monitoring statistics of @-values by {Q1,Qa,...}.
e DDMA-chart: In fact, the DDMA-chart is also a type of r-chart. The difference is
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that we compute the moving averages of {X1,...,X,,} and {Y7,Y5,...} to get new
sets {Xl, e 7Xm—q+1} and {f’l, f’g, ...} with the length of moving window ¢. Then
the following monitoring procedure is exactly the same as that of the r-chart: compute
the simplicial depth values {SD(X;), i = 1,...,m —q+ 1} of {X1,... ,Xm_q+1} by
equation (11) and {SD(ffj), j=1,2...}of {ffl, Ys,.. .} by equation (12), respectively.
Compare the magnitude of {SD(f’j), j = 1,2,...} with respect to {SD(X}), i =
1,...,m—q+1} to get the r-values {r(¥7),7(Y3),...} by equation (13), but referring
to them as the DDMA-values here. For the incoming samples, the monitoring statistics

are {r(Y1),7(Y3),...}.

3.3.2 Control Limits

Assume the false-alarm rate is set at a, the control limits of the three control charts are given

below:
e r~chart: The r-chart monitors the r-values{r(X7),7(¥2), ...} with the LCL = a.

e ()-chart: The @-chart menitors the Q-values {Q;Qa27. ..} with LCL set under two
different conditions: (i) when ¢ is large,thé LCL is set as 0.5 — z,[(1/m + 1/q)/12]"/%
and (ii) when ¢ is relatively smalllandra=17g'ythe LCL is set as (qla)'/7/q.

e DDMA-chart: The DDMA-chartimonitors the DDMA-values {r(Y7),r(Y3),...} with
LCL = a.

We will evaluate the performances of the proposed Phase II monitoring schemes described
above in terms of ARL. Assuming the probability of detecting the shift by a control chart is
p, the value 1/p is the ARL of the chart. In this study, the probability p can not be obtained

analytically, so we estimate the probability p by simulation.
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4 Simulation and Comparative Studies

4.1 Generating Data

The comparative study is conducted with the aspartame example given in Kang and Albin [7]
as an example. Since there are no available data, we use two methods based on the form
Y =1+ MeNE-D? 4 ¢ to generate the in-control aspartame profiles in the following.

The idea is to perturb the parameters I, M, N randomly to create allowable profile-to-
profile variations for the in-control profiles. We first define the setting of the parameters
with up =1, oy = 02, upy = 15, oy = 1, uy = —1.5, oy = 0.3, 0. = 0.3, p = 19,
and x = 0.64,0.80,...,3.52. Both of x and y values are scaled variables, not the actual

temperature levels and the amount of aspartame dissolved in the dissolving process.

1. The first method is to model the in-control aspartame profiles as following M VN (pg, 3),
where o = (fo1, - - -, pop)” With

pof= et VEENE oA p (14)

and X is the covariance matrix as follows. For i,7 = 1,...,p

Flei—1)2+(;-1%2
2

COU(K, Y;) = 0'% —l— (/’L?\/I + 0-]2\4) _|_ [G#N[($1*1)2+($171)2]+o‘

U?V(zi—1>4+ (m,_1)2+a?v(mj71)4 9
2 EN T 2 +055ij7 (15)

_1)2
_Iu%wel‘N(xz )%+

where 0;; = 1if ¢ = 7 and d;; = 0 if ¢ # j. This method was adopted by Shiau, Huang,
Lin, and Tsai [19] because their profile monitoring schemes are developed under the

Gaussian assumption.

For out-of-control profiles, we can generate the “location-shifted” aspartame profiles as

following MVN (p,3), where pp = (puq,. .., ) with
pi = (pr + aoy) + (g + Boa )W 1@ =g p, (16)
Then the shift on the mean of Y is § = p — pp.

2. The second method directly generates the parameters (I, M, N), where I ~ N(uy,c?),
M ~ N(upr,03;), N ~ N(uyn,0%), € ~ N(0,02), and all the random parameters are
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independent of each other. This model is also referred to as the random-coefficients
model. Then use the following random-effect model to generate the in-control aspar-

tame profiles with already generated (I, M, N, e):

Yi=T+MeN@D pe i=1,...p (17)

We can generate the “location-shifted” aspartame profiles with the parameters (I, M, N, €),
where I ~ N(ur + aoy,0%), M ~ N(uy + Boar,03;), and N ~ N(uy + vyon,0%). In
the same way, we can also generate the “scale-shifted” aspartame profiles with the
parameters (I, M, N), where I ~ N(ur, (aor)?), M ~ N(uu, (Boa)?), and N ~
N(un, (yon)?). The advantage of this method is that it is intuitive and interpretable.

However, the profiles generated in this way are no longer Gaussian.

4.2 Choice of Principal Components

Restricted by the statistical package R for simplicial data’depth computation, we can only
choose two principal components to summarize® the original® profile data in evaluating our
monitoring schemes. In general, the first two. principal components explain a fairly large
percentage of the total variation.in the profile data set. Hence we usually calculate the scores
of the first two principal components forreach individual profile. However, as restricted by
only two principal components in our study,.it might be a good idea to consider the ability
of each principal component in capturing the variation of the profiles. To verify this, we
simulate 1008 in-control aspartame profiles by the first simulation method. First, we de-
noise the profiles by spline smoothing and then apply PCA to the sample covariance matrix
of the smoothed profiles. It is found that the first three principal components account for
75.38%, 20.46%, and 2.71% of the total variation, respectively.

Figure 3 illustrates the first three eigenvectors of the sample covariance matrix. To
see the effect of a particular principal component, Ramsay and Silverman [17] presented a
visualizing tool that plots pg &= Lwv,, where L is a suitable multiple. Figures 4 to 6 illustrate
the corresponding features captured by the first three principal components with L = 3. We
observe the following features of the shift in I, M, and N:
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e Shift in /: The shift of parameter I affects the vertical shifting of the profiles for the
entire region. PC1 could explain the vertical shifting of the profiles except for the right
tail. On the other hand, PC3 explains almost all the variation in vertical shifting in

the right tail and slightly the variation at the peak.

e Shift in M: The shift of parameter M mainly affects the scale of the profiles. PC2
captures the variation in the height of the peak. PC1 also explains some variation of
the vertical shifting of the profiles at the peak. PC3 captures slightly the variation at
the peak.

e Shift in N: The shift of parameter N mainly affects the declining steepness of the
curves. PC2 obviously can explain the variation of this sort, while PC3 just picks up a

little of this mode of variation.

Based on the aforementioned features; swepcheose the first two PC-scores following the
usual practice of PCA to detect theshifts of I, M, and*N. In addition, we select the first
and the third PC-scores of each’individual profiles to. detect only the shift of 7. Then we

compare the performances between:the two different. choices 6n detecting the shift in 1.

4.3 ARL Comparison'Study

In this subsection, we compare the AR performances’of our monitoring schemes to those of
the schemes proposed in Shiau, Huang, Lin,"and Tsai [19] for Phase IT monitoring. Denote
the in-control ARL by ARL,. Following Liu, Singh, and Teng [14], all charts are designed to
have the same ARL, = 20, which corresponds to the false-alarm rate of a = 0.05.

For ARL comparison, we consider the [I-shift from u; to u; + aoyr, a = 0,0.25,...,3,
M-shift from pys to ppr + Boar, B =0,0.25,...,3, and N-shift from puy to puy +yon, v =
0,0.25,...,3. We refer to these types of shifts as the location shift (or mean shift) of the
parameters. Shiau, Huang, Lin, and Tsai [19] applied PCA to the covariance matrix g
in equation (15) without the aféij term to obtain eigenvalues, Ay > --- > A, > 0 and
the corresponding unit eigenvectors vy, ..., v,. Choose an appropriate number £ such that
the proportion of the total variation that the first & principal components account for (i.e.,

Z':zl A/ Y P M) reaches a desired level. For each incoming profile in Phase IT monitoring,
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smooth the profile and project it onto the first & principal components to obtain k& PC-scores,
S1,...,Sk. They constructed a control chart for each of the £ PC-scores. For a desired false-
alarm rate a, they constructed the r-th PC-score chart to monitor the statistic S, with control
limits v/ po £ Za/gx//\_,,«, r=1,...,k, because S, ~ N (v o, \;) and the scores S, ..., S are
independent when the process is in control. If one of the first k principal components is
capable in capturing a particular mode of variation of the profiles, then it would be a good
choice to use the particular PC-score chart to monitor that particular mode of the process
shift. Unfortunately, a process shift is often reflected in more than one principal component.
When this happens, they considered a combined chart by combining all k& PC-score charts.

Therefore, it means to monitor the statistic

Sy — vy Mo
max I—m - (18)

The combined chart signals out of control, whensmaxi<,<, |(S, — v.10)/v/Ar| > Zy /2, where
the individual false-alarm rate o’ =#l'= (1 — a)'/* so that the overall false-alarm rate is at
the desired level a. They also considered ajZ? chart by momitoring the statistic

T2 i (5 =) (19)
Ar

r=1
with the upper control limit 100( = a ):percentile-of-x3 since 72 ~ x? when the process is in
control. Then they evaluated the aférementioned monitering schemes by ARL values.
However, we are unable to derive the ARL values of our Phase II monitoring schemes
theoretically. Hence we estimate the ARL values by simulation. To do this, we use the first
method in Subsection 4.1 to generate the aspartame profiles. For each simulation setting,
we simulate 1008 in-control profiles and another 1008 location-shifted profiles to monitor
in Phase II monitoring. To extract the trend better, we apply smoothing splines to each
of the profiles and then apply PCA to the 1008 in-control profiles to obtain the principal
components. As explained before, we choose two principal components for evaluating the
simplicial depth values of each profile. Based on the simplicial depth values, we construct
r-chart, @Q-chart, and DDMA-chart accordingly. Then we monitor the 1008 location-shifted
profiles with each of the charts, and compute the sample proportion p of the out-of-control

profiles to estimate the out-of-control probability p. The estimated ARL of each chart is the
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reciprocal of p. Then we repeat the above procedure 2000 times to obtain 2000 estimated
ARLs. Compute the sample mean and sample standard deviation of these 2000 estimated
ARLs. Finally, we estimate the theoretical ARL of each chart by the sample mean. The
standard error of this estimate can be obtained by dividing the sample standard deviation
by v/2000. The simulated ARL (in terms of subgroups) values and its standard error (in the
parenthesis) are listed in Tables 1-4, where the ARL is the expected number of “subgroups”
taken in order to detect shifts according to Montgomery [16].

Now, there is a problem about how the mean shifts in profile parameters react on the
scores after PCA. Would a location change in the parameters of profiles be reflected as a
location change on score data? To see this, we conduct a simulation study as follows. We
generate 1008 in-control profiles as the reference sample, 1008 location-shifted profiles with
I-shift from p; to puy + aoy, a = 0,1,2,3, 1008 location-shifted profiles with M-shift from
par Yo par + Bon, B = 0,1,2,3, and 1008 Jocation-shifted profiles with N-shift from uy
to uy +yon, v =0,1,2,3. First we smooth the profiles, then apply PCA to the reference
sample, and finally project the preéfiles to obtain the specifiedtwo PC-scores. The scatterplots
of the two PC-scores are shownein Figures 7 to 10,swhere the reference and Phase II points

are represented by color red and blue, respectively. We observe the following:

e Shift in I: Figures 7(a) to ?(d). plot.the bivariate points (PC-score 1, PC-score 2) cor-
responding to a = 0, 1, 2, 3, respectively. In Figures'7(b) to 7(d), we can see that there
is a location change from the reference points to the Phase II points. As « gets larger,
the location change is more apparent. The trend is accentuated as shown in Figures
8(a) to 8(d), which plot the bivariate points (PC-score 1, PC-score 3) corresponding
to a =0,1,2,3. It means that the deviation from the reference points to the Phase II
points captured by PC1 and PC3 is more obvious than that captured by PC1 and PC2
for the same «. Based on the result, we expect the performance of detecting location

shift in [ using PC1 and PC3 is better than that using PC1 and PC2.

e Shift in M: Figures 9(a) to 9(d) plot the bivariate points (PC-score 1, PC- score 2)
corresponding to § = 0,1,2,3. In Figures 9(b) to 9(d), we can see that there is a

location change from the reference points to the Phase II points. The location change
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becomes more obvious as [ gets larger.

e Shift in N: Figures 10(a) to 10(d) plot the bivariate points (PC-score 1, PC- score 2)
corresponding to v = 0,1,2,3. In Figures 10(b) to 10(d), we can see that there is a
location change from the reference points to the Phase II points. The location change
becomes more obvious as v gets larger. The bivariate points are even separated into

two clusters when v = 3.

In summary, location changes in the different parameters in the aspartame example would
result in location changes in the bivariate PC-scores points.

Figures 11/12, 13, and 14 display the ARL curves for shifts in I, M, and N, respectively.
Each figure consists of six types of control charts, including the r-chart, three PC-score charts,

combined chart, and 72 chart. From these figures, the following are observed:

e In catching the shift in [ as showaiin' Figure L1, the r-chart using PC1 and PC2 is
only more powerful than PC2-chart, which hardly has any power. Because the mode
of variation in vertical shifting of the profiles is mainly explained by PC1 for z < 2.5
and PC3 in the right tails while PC2 only.picks up a little for x < 2.5, we construct
the r-chart using PC1 and PC3 instead of PC1 and PC2 to compare the detecting
performances. As shown it Figure 12; the 7=chart using PC1 and PC3 is almost equally
powerful to the combined chart and 72 chart except for the small shift o < 0.5, and
more powerful than PC1 chart and "PC2'chart. However, it is less powerful than PC3
chart, while the difference in ARL gets smaller as the shift gets larger.

e In catching the shift in M as shown in Figure 13, the r-chart using PC1 and PC2
performs better than the others, with the exception that PC1, PC2, T2, and combined
charts are slightly better for the small shift a < 0.5. For a > 0.5, the order of the
performance is r > PC2 > T2 > Combined > PC1. The PC3 chart does not have much

power because PC3 only captures slightly the variation at the peak.

e In catching the shift in N as shown in Figure 14, the r-chart using PC1 and PC2
performs the best for the shift o > 0.5, but PC1, PC2, T2, and combined charts
perform slightly better for the small shift o < 0.5. PC3 chart has a strange ARL curve;
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Shiau, Huang, Lin, and Tsai [19] explained that it may be caused by the fact that the
shift in the mean vector when projected onto PC3, v34, is not monotone in the shift

multiple 9.

It may sound a little bit odd that the r-chart using PC1 and PC2 is less powerful than
the r-chart using PC1 and PC3 while the former account for higher proportion of the total
variation than the latter. This may be explained by that PC1 and PC3 explain almost all
the variation in vertical shifting for the whole area, but PC1 and PC2 do not explain the
variation in vertical shifting for x > 2.5. This suggests us to choose principal components
according to their ability in capturing the variation of the profiles rather than the percentage
of the total variation they can explain.

In the preceding comparison, we only compare the ARL values between r, PC-scores,
combined, and 72 charts because these charts all monitor one profile at a time, while Q-
chart and DDMA-chart monitor a statistie involvingrq profiles at a time. Next, we compare
the ARL values between r, ), ands DDMA_charts using“the aspartame example. Figures
15/16, 17, and 18 display the ARL (in terms of subgroups) curves for shifts in I, M, and
N, respectively. Each figure consists of r~chart, three @-charts and three DDMA-charts with

subgroup size g = 2,4, 6. We suminarize lour_observations as follows:

e Figures 15, 17, and 18 (16)f the r,"Q and DDMA‘eharts are based on PC1 and PC2
(PC1 and PC3). For I-shift witht @ <1225 (Figure 15), we see that the @-chart is
more powerful with smaller g. This is odd because normally power increases as the
subgroup size gets larger. But for av > 1.25, it gets “normal”, i.e., Qg > Q4 > Qo > 1.
Here (); denotes the (-chart with subgroup size ¢, ¢ = 2,4,6. Figures 16 to 18 show
the same phenomenon, except for the cutoff point for “abnormality” is 0.5 for I-shift
(with PC1 and PC3), and 0.25 for both M-shift and N-shift. And we can see that the
DDMA-chart performs better than the ()-chart for the same subgroups size.

e When detecting the location-shift in 7, the charts based on PC1 and PC3 are more
powerful than those based on PC1 and PC2. For DDMA charts in Figures 15 to 18,
the detecting power increases as the subgroup size ¢ increases. Then there is a strong

indication of a location shift according to Liu, Singh, and Teng [14].
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e Another surprising phenomenon is on the ARL performance when the process is in con-
trol. According to the desired false-alarm rate a = 0.05, we expect that the estimated
ARL is close to ARLy = 20. However, we see that the estimated ARLs of the ()-charts
are larger than ARLy = 20, and the estimated ARLs of the DDMA-charts are slightly
smaller than ARLy = 20 when the process is in control. Liu [11] mentioned that the
the @-values follow a normal distribution as the minimum of the reference sample size
m and subgroup size ¢ goes to co. But given the limited subgroup size ¢, the Q-values
deviate from the normal distribution. For the same reason, the r and DDMA values
both approach a Unif (0, 1) as the reference sample size gets large enough. But given
the limited size (1008), the r and DDMA values both deviate slightly from Unif (0, 1).
Hence the estimated ARLs when the process is in control may deviate slightly from

ARLy = 20.

It may require different number of profiles forsplotting one point on the control chart
when the subgroup size is differents It would be more equitable to define run length as the
expected number of profiles taken when the control chart signals out-of-control.

Figures 19/20 (23/24), 21 (25); ‘and 22 (26) display the ARL (in terms of profiles) curves
for shifts in I, M, and N, respectively. ThissARL is the expected number of profiles taken to
detect shifts. Each figure consists of r=chart and three (-charts (three DDMA-charts) with
subgroup size ¢ = 2,4,6. We find that:

e Figures 19 to 22 show that we need less number of profiles on average to detect location-

shifted profiles with smaller q.

e For [-shift with a > 1.25 (Figure 24), it shows that we need less number of profiles on
average to detect location-shifted profiles with smaller ¢. Figures 25 and 26 show the
same phenomenon, except for the cutoff point, which is 1 for both M-shift and N-shift.

Finally, we consider shifts in the the standard deviation of I, M, and N. Consider the
I-shift from o7 to ao;, o =1,1.5,...,9, M-shift from o,; to Boy, B =1,1.5,...,9, and N-
shift from on to yon, v =1,1.5,...,9. We refer to these types of shifts as scale shifts of the
parameters. We use the second method described in Subsection 4.1 to generate the aspartame

profiles. Following the same simulation procedure as given for the “location shifts” described
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earlier, we obtain simulated ARL (in terms of subgroups) values along with their standard
error and list them in Tables 5-8, where the ARL is the expected number of “subgroups”
taken to detect shifts.

As in the case of the location change, we wonder how a scale change in the parameters
of profiles reacts in the bivariate score data. Would that be a scale change too? Again we
conduct the same simulation procedure as before for the “location change”. Figures 27 to 30
display 1008 score data of the reference sample in red and 1008 Phase II data in blue. We

are led to some observations as follows:

e Shift in /: Figures 27(a) to 27(d) plot the bivariate points (PC-score 1, PC-score 2)
corresponding to o = 1,3,6,9. In Figures 27(b) to 27(d), we can see that there is
a scale change from the reference points to the Phase II points. As « gets larger,
the scale change is more obvious. And the trend is accentuated as shown in Figures
28(a) to 28(d), which plot the bivariate poiits based on PC-score 1 and PC-score 3
corresponding to a = 1, 3,6,9: It means that_the deviation from the reference points
to the Phase II points captured by PCL aid PC3. is'more obvious than that captured
by PC1 and PC2 for the'same a. Based on the result,"we expect the performance of
detecting scale-shift in I using PC1 and-PC3 would be better than that using PC1 and
PC2.

e Shift in M: Figures 29(a) to 29(d) plot-the bivariate points (PC-score 1, PC-score 2)
corresponding to f = 1,3,6,9. From Figures 29(b) to 29(d), we can see that there is a

scale change with a slight location change. The change accentuates as  gets larger.

e Shift in N: Figures 30(a) to 30(d) plot the bivariate points (PC-score 1, PC-score 2)
corresponding to v = 1,1.5,2,2.5. Figures 30(b) to 30(d) show that both location and

scale change and the changes become more obvious as ~ gets larger.

We compare the ARL values between r, (), and DDMA charts using the aspartame ex-
ample. Figures 31/32, 33, and 34 display the ARL (in terms of subgroups) curves for shifts
in I, M, and N, respectively. Each figure consists of r-chart, three ()-charts and three

DDMA-charts with subgroup size ¢ = 2,4,6. We summarize our observations as follows:
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e In Figures 31, 33, and 34 (32), the r, @), and DDMA charts are based on PC1 and
PC2 (PC1 and PC3). For I-shift with a@ < 2 (Figure 31), the order of the performance
is about r > @)y > @4 > @Qs. This is abnormal because the power decreases as
the subgroup size gets larger. But for a > 2, it gets “normal”, ie., Qg > Q4 >
Q2 ~ r. Figures 32 to 34 show the same phenomenon, except for the cutoff point for
“abnormality”, which is 1.25 for [-shift (with PC1 and PC3), M-shift, and N-shift.
And we can see that the @)-chart performs slightly better than the DDMA-chart for the

same subgroups size.

e For DDMA charts in Figures 31 to 33, the detecting ability does not improve as the
subgroup size increases. According to Liu, Singh, and Teng [14], there is only a scale
change between the bivariate points of the reference and the Phase II points; on the
other hand, in Figure 34, the detecting power increases as the subgroup size ¢ increases,
indicating there is a location changé between'the bivariate points of the reference and

the Phase II points according’to Liu, Singh, and Teng [14].

e When detecting the scale-ghift in [, the charts based on PC1 and PC3 are more powerful
than those based on PCT and PC2. And the estimated ARLs of the ()-charts and
DDMA-charts deviate from AR Ly= 20-because-of the Same reasons that the reference

samples size is not large enoiigh.

Figures 35/36 (39/40), 37 (41), and 38 (42) display the ARL (in terms of profiles) curves
for shifts in I, M, and N, respectively. Each figure consists of r-chart and three ()-charts
(three DDMA-charts) with subgroup size ¢ = 2,4,6. We find the following:

e [t shows that we need less number of profiles on average to detect scale-shifted profiles

with smaller ¢ when using either ()-chart or DDMA-chart.

5 Concluding Remarks

In this study, we propose and discuss nonparametric Phase I monitoring schemes for nonlin-
ear profiles with random effects. We first smooth all the profiles. Next, we utilize principal

component analysis to analyze the variability of the smoothed reference profiles and then
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project each smoothed profile onto the pricipal components to obtain two PC-scores. We
calculate the simplicial depth values, then construct three control charts for monitoring r, @,
and DDMA values.

By the ARL comparative study, we see that the r-chart is comparable with the control
charts proposed in Shiau, Huang, Lin, and Tsai [19], which were designed under the Gaussian
assumption. And the r, ) and DDMA charts based on simplicial depth are completely
nonparametric and hence have broader applicability.

When the shift corresponds to a mode of variation that two principal components rep-
resent, it would be ideal to use the r, @), and DDMA-charts based on the two particular
PC-scores for process monitoring. From the aspartame study, we could see that the detect-
ing power of the nonparametric charts is much better when we choose the suitable principal
components with higher ability of capturing the variation. In this study, we just choose two
principal components due to the restriction in computing. However, a mode of variation may
be captured by three or more principal ecomponents. Tf we just construct control charts with
only two PC-scores, there might be a risk-of not being able'to detect other types of process
changes not captured by the two principal components.. However, the time of computing
simplicial depth values increases very fast as the number of PC-scores used increases. Hence
we need a fast algorithm for computing Simptlicialdepth when the dimension of the data is
larger than two.

In practice, before constructing the' control charts, we first project the reference and
incoming profiles onto the chosen principal components to obtain the corresponding PC-
scores. Then we could use the scatter plot of the PC-scores to see if there is a location
change and/or a scale change between the reference profiles and the incoming profiles. If
there is only a location change, we suggest monitoring the incoming profiles by the DDMA-
chart.

This paper is only focused on the Phase II of profile monitoring based on simplicial
depth. The analysis in Phase I is to analyze a historical set of a fixed number of process
samples collected over time to understand the process variation, determine the stability of
the process, and remove samples associated with any assignable causes. After removing those

samples, we could have a good reference sample to establish the control charts for a future
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process. Therefore, an effective Phase I monitoring scheme is desired and can be a topic for
future research. Finally, we could use other notions of data depth to perform the proposed
monitoring scheme in this study. Because different notions of depth are capable of capturing
different characteristics, the monitoring schemes based on different notions of depth will have

different detecting powers and performances.
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Table 1: ARLs (subgroups) and their standard errors (in parenthesis) of detecting location
shift in I based on PC1 and PC2.

a r Q(2) Q(4) Q(6) | DDMA(2) | DDMA(4) | DDMA(6)
20.48693 | 20.79692 | 21.61884 | 23.13499 | 20.29305 | 19.62467 | 18.92461
0 (0.09526) | (0.11716) | (0.18213) | (0.30739) | (0.10787) | (0.13130) | (0.15019)
20.43422 | 20.69100 | 21.47280 | 22.92248 | 20.07868 | 19.36598 | 18.69262
025 (0.09208) | (0.11576) | (0.16741) | (0.30024) | (0.10224) | (0.12989) | (0.15032)
20.02203 | 20.35917 | 21.19641 | 22.54363 | 19.41685 | 18.00813 | 16.92356
0o (0.09040) | (0.11086) | (0.19422) | (0.28075) | (0.09679) | (0.11531) | (0.13814)
19.71790 | 19.71013 | 20.02253 | 21.37707 | 18.45892 | 16.36789 | 14.65411

0.1 (0.09410) | (0.10518) | (0.16191) | (0.26818) | (0.09684) | (0.10961) | (0.11595)
|| 18:95950 | 18.06939 | 19.09156 4 A0ATAEL | 17.37425 | 1472504 | 1279233
(0.08320) | (0.09742) | (0:14599) | (0.24112) | (0:08793) | (0.09123) | (0.09446)

Lo || 1797385 | 1778855 WIET091TATSIORE Y, 1590150 | 12.77382 | 1051019
(0.08221) | (0.09013)" (0.13607) | (0.17656) | (0.08097) | (0.08052) | (0.07561)

17.13448 | 16.89799.| 16.25883 | 16.04143 | 14.53464 | 10.91150 | 8.61732

b (0.07733) | (0.08714)= (0.11242) |(0:14917) | (0.07123) | (0.06578) | (0.05965)

| 7s || 16:10079 | 15.60002 £ 84505 | 4 BTIOA 1318461 | 0372002 | 715734
(0.06944) | (0.07838) | (0.09857) | (0.13062) | {0,06541) | (0.05452) | (0.04717)

, | 1519611 | 1454783 | 13.56091 [ IB0439 | TL8TSTO | 7.09688 | 592047
(0.06879) | (0.06686) | (0.08588) | (0.10986) | (0.05638) | (0.04462) | (0.03652)

yos || 1409497 | 1333507 | 12.12550 | 1128710 | 10.51769 | G.75343 | 4.87103
(0.06138) | (0.06407) | (0.07462) | (0.09056) | (0.05141) | (0.03716) | (0.02967)

yo || 1329920 | 1219119 | 10.79697 | 078882 | 943616 | 581554 | 4.12551
(0.05813) | (0.05445) | (0.06438) | (0.06908) | (0.04382) | (0.03193) | (0.02345)

yos || 1225319 | 1109979 | 963597 | 851367 | 838743 | 5.00680 | 3.49414
(0.05475) | (0.04696) | (0.05374) | (0.05371) | (0.03878) | (0.02594) | (0.01883)

, || 1124104 | 1008449 | 84479 | TALGT | TASTSO | 431190 | 2.95960
(0.04639) | (0.04109) | (0.04428) | (0.04622) | (0.03280) | (0.02080) | (0.01447)
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Table 2: ARLs (subgroups) and their standard errors (in parenthesis) of detecting location
shift in I based on PC1 and PC3.

a r Q(2) Q(4) Q(6) | DDMA(2) | DDMA(4) | DDMA(6)
o || 2075920 | 20.95083 | 217614 | 2363813 | 2039847 | 10.69034 | 10.06825
(0.09695) | (0.11813) | (0.18242) | (0.32498) | (0.10657) | (0.12828) | (0.14695)
(s || 1939859 | 1965221 | 20.15500 | 2105820 | 18.38348 | 1625833 | 14.49522
(0.09028) | (0.10614) | (0.16626) | (0.24253) | (0.09379) | (0.09998) | (0.10810)
o | 1687240 | 1646674 | 15.87757 | 1562586 | 13.96633 | 1031626 | S.1L181
(0.07863) | (0.08388) | (0.11789) | (0.14189) | (0.07223) | (0.06451) | (0.05810)
(e || 1392107 | 1259823 | 1131553 | 1031735 | 984344 | 6.20209 | 442151
(0.06129) | (0.05752) | (0.06772) | (0.07623) | (0.04750) | (0.03287) | (0.02569)
|| 1057919 | 933601 | 7.69919 656982 4 6.80735 | 384274 | 2.65904
(0.04479) | (0.03847) | (0:03847) | (0.03751) 1~ (0:02934) | (0.01814) | (0.01220)
8.10983 | 6.78468 |%5.20680 — 4.20812 |- 4.79046 | 2.56285 | 1.80423
12 (0.03211) | (0.02361)" (0.02132) | (0.01825) | (0.01907) | (0.00946) | (0.00601)
6.25277 | 4.97746..| 359859 | 2.82835 | 3.51667, | 1.89008 | 1.39921
b (0.02272) | (0.01482)= (0.01166) |(0:00965) | (0.01219) | (0.00553) | (0.00336)
s 4.88287 | 3.74022 1. 2.59987 | 2.02394.°| 2.64901 | 1.49627 | 1.18416
(0.01653) | (0.00956) | (0.00662) | (0.00506) | (0,00778) | (0.00340) | (0.00183)
3.87600 | 2.87772 | 1.97926 | 156180 | 2.09109 | 1.26564 | 1.07638
? (0.01224) | (0.00622) | (0.00402) | (0.00285) | (0.00533) | (0.00201) | (0.00091)
3.15175 | 2.20311 | 1.58987 | 1.29644 | 1.72287 | 1.13733 | 1.02869
2% (0.00909) | (0.00421) | (0.00248) | (0.00165) | (0.00367) | (0.00122) | (0.00047)
Lo | 260752 | 189682 | 135061 | 114846 | 147632 | LOGSST | 100916
(0.00657) | (0.00290) | (0.00155) | (0.00096) | (0.00250) | (0.00066) | (0.00019)
220407 | 1.61513 | 1.20130 | 1.06849 | 1.30736 | 1.02925 | 1.00250
21 (0.00526) | (0.00200) | (0.00102) | (0.00058) | (0.00172) | (0.00036) | (7.03e~?)
1.90100 | 1.42234 | 1.11013 | 1.02860 | 1.19411 | 1.01176 | 1.00062
i (0.00402) | (0.00146) | (0.00066) | (0.00033) | (0.00128) | (0.00019) | (3.01e~?)
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Table 3: ARLs (subgroups) and their standard errors (in parenthesis) of detecting location
shift in M based on PC1 and PC2.

3 r Q(2) Q(4) Q(6) | DDMA(2) | DDMA(4) | DDMA(6)
) || 2048693 | 2079692 | 2161881 | 2313500 | 20.20305 | 1962467 | 18.92461
(0.09526) | (0.11716) | (0.18213) | (0.30739) | (0.10787) | (0.13130) | (0.15019)
(s || 1857965 | 1801148 | 10.00673 | 1933381 | 17.20010 | 1461480 | 12.62078
(0.08803) | (0.10521) | (0.16114) | (0.20640) | (0.08728) | (0.09315) | (0.09689)
o || 1921955 | 1451221 | 1342582 | 12.88743 | 1185575 | 804523 | 5.91859
(0.06831) | (0.06987) | (0.08906) | (0.11012) | (0.05901) | (0.04794) | (0.03745)
(7s || 1129038 | 1012330 | 853366 | 742808 | 7TAT017 | 431565 | 3.01016
(0.04967) | (0.04352) | (0.04474) | (0.04747) | (0.03373) | (0.02160) | (0.01553)
|| 819256 | 683784 | 5.23509 YRARTUT | 48071 | 262702 | 184152
(0.03348) | (0.02309) | (0:02033) | (0.01818) | (0:01920) | (0.01021) | (0.00633)
5.92778 | 4.66008 |3.32941 - 2.60648 | 327705 | 1.78277 | 1.33408
12 (0.02198) | (0.01347) (0.01013) | (0.00802) |' (0.01112) | (0.00503) | (0.00285)
439134 | 3.30095.| 227488 | 178019 | 2.36739, | 1.37104 | 1.12044
b (0.01433) | (0.00796)= (0.00540) |(0:00396) | (0.00660) | (0.00260) | (0.00123)
3.31432 | 243971 1. 168562+ 1.35860.-| 1.81397 | 1.16772 | 1.03883
b7 (0.00935) | (0.00469) | (0:00299) | (0.00199) | (0,00398) | (0.00141) | (0.00055)
2.61301 | 1.90203 | 1.35437 | 115105 | 148183 | 1.06721 | 1.00956
? (0.00673) | (0.00290) | (0.00161) | (0.00099) | (0.00259) | (0.00068) | (0.00018)
yos || 213063 | L568L7 117773 | 1.05767 | 1.27942 | 1.02402 | 1.00190
(0.00482) | (0.00191) | (0.00093) | (0.00051) | (0.00162) | (0.00031) | (6.14e~%)
L | 178889 | 135101 | 108206 | L0I840 | 115697 | 100740 | 1.00031
(0.00345) | (0.00121) | (0.00051) | (0.00026) | (0.00104) | (0.00013) | (1.94e~%)
1.54943 | 1.21430 | 1.03480 | 1.00482 | 1.08376 | 1.00198 | 1.00004
21 (0.00254) | (0.00080) | (0.00031) | (0.00012) | (0.00064) | (5.7¢%) | (5.53¢~°)
, || 187495 | L1255 | LOL30S | 100120 | 104148 | L0006 | 1000002
(0.00179) | (0.00054) | (0.00018) | (6.02¢%) | (0.00038) | (2.09¢5) | (9.97¢~7)
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Table 4: ARLs (subgroups) and their standard errors (in parenthesis) of detecting location

shift in NV based on PC1 and PC2.

v r Q(2) Q(4) Q(6) DDMA(2) | DDMA(4) | DDMA(6)
. 20.48693 | 20.79692 | 21.61884 | 23.13500 | 20.29305 | 19.62467 | 18.92461
(0.095264) | (0.11716) | (0.18213) | (0.30739) | (0.10787) | (0.13130) | (0.15019)
025 19.12716 | 19.21911 | 19.76773 | 20.43308 | 17.83736 | 15.39501 | 13.37401
(0.08499) | (0.10142) | (0.20115) | (0.23856) | (0.09093) | (0.09802) | (0.10140)
0 15.45812 | 14.91607 | 14.00620 | 13.50220 | 12.21336 | 8.30657 6.18432
(0.07078) | (0.07181) | (0.08893) | (0.12442) | (0.06127) | (0.04792) | (0.03846)
o 11.17898 | 10.07076 | 8.45085 | 7.35282 | 7.40810 4.28609 2.97485
(0.04769) | (0.04090) | (0.04194) | (0.04325) | (0.03277) | (0.02058) | (0.01419)
7.59754 6.28081 | 4.73387+ [0 13.80523 .| 4.41827 2.37783 1.68492
! (0.02970) | (0.02082) | (0B1805) | (0.01573) | (0:01655) | (0.00852) | (0.00556)
4.98346 3.81008 {+ 2.65503-4 2.06489 | 2.69378 1.51446 1.19437
12 (0.01798) | (0.01001)"| (0.00695) | (0.00535) { (0.00812) | (0.00349) | (0.00185)
3.29250 2.42420. | 1.67204 | 1.34976 1.80250 1.16089 1.03638
o (0.00946) | (0.00456)+|(0.00277) 4"(0:00189).| (0.00406) | (0.00132) | (0.00050)
2.29045 1.67063 ¥ 1.22857,{ L.0817L 1.34088 1.03529 1.00341
b7 (0.00548) | (0.00216) | (0,00113) | (0.00065) | 40.00189) | (0.00043) | (9.07¢~%)
1.66157 1.27829 | 1.05504 | 1.01008 1.11601 1.00396 1.00012
? (0.00297) | (0.00101) | (0.00042) | (0.00019) | (0.00084) | (9.51e=%) | (1.25¢7%)
095 1.30876 1.09522 | 1.00762 | 1.00047 | 1.02882 1.00019 | 1.000001
(0.00158) | (0.00043) | (0.00013) | (3.71e=5) | (0.00029) | (1.2e=%) | (7.06e~7)
- 1.11990 1.02409 | 1.00046 | 1.000009 | 1.00417 | 1.000004 | 1.00000
(0.00075) | (0.00018) | (3.14e75) | (5.18¢79) | (7.34e%) | (1.72e9) (0)
1.03454 1.00368 | 1.00001 | 1.00000 1.00026 1.00000 1.00000
21 (0.00031) | (6.18¢7°) | (4.45¢~ %) (0) (1.3e79) (0) (0)
\ 1.00614 1.00035 | 1.00000 | 1.00000 | 1.000006 | 1.00000 1.00000
(9.26e7°) | (1.88¢7°) (0) (0) (2.16e79) (0) (0)
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Table 5: ARLs (subgroups) and their standard errors (in parenthesis) of detecting scale shift
in I based on PC1 and PC2.

o] +» | e» | ew | e | ppma@ | ppmaw | pomag) |
[ zos70n2 | 2122365 | 2225286 | 2021750 | 205027 | 10s0162 | 1912371
(0.09445) | (0.13200) | (0.19959) | (0.33513) | (0.10848) | (0.13065) | (0.15481)
L5 || 17sose | 180700 [ 1s2ss0s | 1se7inn | 179s6s | 1766519 | 1701383
(0.07696) | (0.09163) | (0.13982) | (0.19843) | (0.08690) | (0.11178) | (0.12360)
, || 1a7mmse [ sa2er | 1asozs0 | 1421077 | 152772 | 1523563 | 1484320
(0.05585) | (0.06836) | (0.10244) | (0.12106) | (0.07009) | (0.08899) | (0.10175)
L5 || 1210828 | 1255570 | 1150358 | 1074333 | 1280455 | 1290306 | 1261256
(0.04358) | (0.05214) | (0.06606) | (0.07792) | (0.05347) | (0.07113) | (0.08130)
1010984 | 1038580 | 9.10033 | 8.14947 | 10.66699 | 10.82871 | 10.64217
| (003131) | (0.03822) | (0.04386) | (0.0a722) | (0.03914) | (0.05265) | (0.06244)
8.50344 | 8.62680 | 7.30787 | 6.32048 | 9.02083 | 9.13611 | 9.07220
5| (0.02461) | (0.02849) | (0.03066)8| B(O.05858)a - (0.03043) | (0.03961) | (0.0455)
L |l 722030 | 7t | adeeist | sooos0 [ ghsens | 7sssa | 77702
(0.01857) | (0.02266) {(0.02243) | (0:02178) 4% (0.02378) | (0.03163) | (0.03627)
15 || 620292 | e2suaanfisofseo | rios0 Tf Teasisde] s6ss0 | 6607
(0.01509) | (0.01736) | (0.01652) | (0:01477).4 (0.00905) + (0.02451) | (0.02923)
530580 | 544301 | 4.25406 | 3.468587| 567596/ | 581802 | 5.75899
* || (0.01182) | (0.0139%) | (0.01329) I @0ti79) | (0.0150m) P (0.02057) | (0.02331)
479231 | 482238 | 3.68759" | 2:96646(=5.02666 | 5.12217 | 5.09553
2| (0.00987) | (0.0114) 9, (6:010185 ] (0-00867F 1 (001357 | (0.01631) | (0.01926)
6 4.28842 4.27425 3.21367 2.5728 4.47452 4.55686 4.52688
(0.00829) | (0.00926) | (0.00779) | (0:00654) | (0:01050) | (0.01323) | (0.01575)
388108 | 3.86120 | 2.88172 | 230384 | 403348 | 410018 | 4.09693
5| (0.00698) | (0.00781) | (0.00649) | (0.00532) | (0.00827) | (0.01125) | (0.01318)
| ssaear [ assasz | 2co0024 | 20ss0s | seosn | srrre | os7sras
(0.00580) | (0.00665) | (0.00547) | (0.00450) | (0.00740) | (0.00979) | (0.01149)
.|| w22 | sasss2 | 2sesso [ vowses | ssooso | sasers | sasoss
(0.00522) | (0.00590) | (0.00481) | (0.00381) | (0.00645) | (0.00848) | (0.01009)
304613 | 3.02176 | 221345 | 177610 | 3.13665 | 3.17701 | 3.17415
® 1| (0.00457) | (0.00513) | (0.00395) | (0.00309) | (0.00543) | (0.00704) | (0.00838)
oo || zossos | 22603 | 206510 [ vece20 | 200722 | 208068 | 29748
(0.00407) | (0.00444) | (0.00335) | (0.00261) | (0.00499) | (0.00632) | (0.00750)
o || 27007 [ 2emass [ vosass | wssiss | arrare | aroses | 27ssto
(0.00372) | (0.00403) | (0.00302) | (0.00232) | (0.0043) | (0.00551) | (0.00633)
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Table 6: ARLs (subgroups) and their standard errors (in parenthesis) of detecting scale shift
in I based on PC1 and PC3.

o] +» | e» | ew | e | ppma@ | ppmaw | pomag) |
[ 2040122 | 2072588 | 2161756 | 227070 | 2024262 | 1067375 | 1897330
(0.09483) | (0.11428) | (0.18182) | (0.30295) | (0.10191) | (0.12926) | (0.15231)
821920 | 7.19486 | 573495 | 473287 | 827118 | 810817 | 7.80364
M1 (0.02005) | (0.02258) | (0.02186) | (0.02045) | (0.03097) | (0.03802) | (0.04280)
462989 | 3.99933 | 2.96645 | 2.34368 | 471076 | 461118 | 4.50273
2| (001201) | (0.0093) | (0.00787) | (0.00633) | (0.01592) | (0.01845) | (0.02082)
327610 | 286104 | 2.09422 | 167571 | 3.32606 | 3.28117 | 3.22177
221 (0.00857) | (0.00589) | (0.00444) | (0.00374) | (0.01044) | (0.01178) | (0.01272)
260494 | 231582 | 170138 | 139319 | 2064366 | 262125 | 2.56002
? 1| (0.00548) | (0.00329) | (0.00245) | (0.00181) | (0.00683) | (0.00796) | (0.00818)
223632 | 200764 | 149333 | 12546 | 226837 | 224666 | 2.20517
5| (0.00428) | (0.00248) | (0.00179)8| B(O.G0E2Y A - (0.00554) | (0.00630) | (0.00650)
198018 | 1.80713 | 136568 | 1.17401 | 202204 | 199687 | 1.96667
| (0.00364) | (0.00197) f(0:0014) | (0:00098)4% (0:00473) | (0.00523) | (0.00535)
183093 | 1.676774| 128512 | (12722 | . 18580008 183717 | 181212
1 (0.00302) | (0.00168) | (0.00114) | (0:00077).4 (000397 4 (0.00446) | (0.00452)
170683 | 157550 | 122604 | 1.09357°| 173162 | 171338 | 1.69439
® || (0.00259) | (0.00148) | (0.00094) | @00063) | (0.00338) T (0.00379) | (0.00375)
1.61495 1.50541 1.18627 1.07253 1.64121 1.62722 1.60571
2| (0.00227) | (0.00124) %], (6:0008153 ] (0-000587 1~ (0.00812) | (0.00351) | (0.00344)
154299 | 144635 | 7115496 | 1.05680 | 4056526 | 155259 | 1.53458
1| (0.00194) | (0.00109) | (00007} Icomm0oasy | (0027s) | (0.00307) | (0.00313)
1.49058 1.40231 1.13143 1.04513 1.50859 1.49617 1.48127
5| (0.00189) | (0.00100) | (0.00062) | (0.00040) | (0.00249) | (0.00268) | (0.00265)
1.44287 1.36705 1.11397 1.03780 1.45906 1.44821 1.43494
"1 000172 | (0.00103) | (0.00068) | (0.00042) | (0.00250) | (0.00263) | (0.00259)
140159 | 1.33497 | 1.09830 | 1.03060 | 141935 | 140724 | 1.39563
"1 (0.00153) | (0.00085) | (0.00051) | (0.00031) | (0.00212) | (0.00217) | (0.00215)
137418 | 130867 | 1.08706 | 1.02622 | 138637 | 137481 | 1.36543
® 1| (0.00150) | (0.00078) | (0.00049) | (0.00029) | (0.00193) | (0.00199) | (0.00192)
134228 | 128587 | 107696 | 1.02235 | 135392 | 134641 | 133571
| (0.00120) | (0.00076) | (0.00046) | (0.00028) | (0.00174) | (0.00183) | (0.00181)
131694 | 126379 | 1.06695 | 101837 | 133236 | 132386 | 131257
| 0.00119) | (0.00070) | (0.00041) | (0.00025) | (0.00172) | (0.00177) | (0.00167)
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Table 7: ARLs (subgroups) and their standard errors (in parenthesis) of detecting scale shift
in M based on PC1 and PC2.

s r | e» | ew | e | ppmae | ppmaw | pomae) |
||| 2o6mor2 | 2122365 | 2225286 | 2020750 | 2050273 | 1080162 | 191287
(0.09445) | (0.13200) | (0.19959) | (0.33513) | (0.10848) | (0.13065) | (0.15481)
6.67001 | 636028 | 5.06191 | 4.16846 | 6.64752 | 6.55274 | 6.40520
M ot | 0.017s4) | 0.01705) | (0.01572) | (0.02070) | (0.02536) | (0.02853)
3.73607 | 3.58072 | 265274 | 2.11182 | 3.72963 | 3.70388 | 3.65904
21| (0.00691) | (0.00677) | (0.00566) | (0.00443) | (0.00774) | (0.00934) | (0.01096)
271314 | 2062041 | 1.92161 | 1.55722 | 270064 | 2.68055 | 2.65067
2% | (0.00382) | (0.00379) | (0.00289) | (0.00219) | (0.00425) | (0.0053) | (0.00616)
220816 | 215461 | 1.58022 | 1.3243 | 219775 | 2.18738 | 2.17103
1| (0.00253) | (0.00267) | (0.00194) | (0.00148) | (0.00279) | (0.00347) | (0.00394)
192638 | 1.88067 | 141190 | 1.20697 | 1.92464 | 1.91554 | 1.90160
> 11 (0.00183) | (0.00200) | (0.00140)/B(@.00808)5 - (0.00208) | (0.00258) | (0.00295)
174983 | 1.72331 | 130991 | 1.14313 | 1074710 | 1.74008 | 1.72976
1| (0.00148) | (0.00161) jl8:00110) | (0:00076)48(0:00159) | (0.00191) | (0.00222)
162784 | 1.60693%| 123880 | [1+10151 || . 1.62450%| 1.61728 | 1.60948
51 0.00122) | (0.001300 ) (0.00092) | (0:00066).4 (0001395 (0.00159) | (0.0018)
153910 | 152134 | 119249 | 1.076557| 153445 | 1.52805 | 1.52402
* || (0.00106) | (0.00198) |' (0.00079) | (@00054) | (0.00113) ' (0.00136) | (0.00156)
147280 | 1.45790° | 1.15789 |=1:05963=r{=1.46830 | 146241 | 1.45636
% || (0.00092) | (0.00108)%! (0:00660)4]"(0-00048Y 1" (0.00096F | (0.00114) | (0.00133)
1.41906 1.40778 1.13147 1.04630 1.41463 1.41135 1.40503
% 1| (0.00082) | (0.00100) | (0.00061)} feo00m0y | (0'000s6) | (0.00101) | (0.00114)
137730 | 1.36742 | 1.11208 | 1.03738 | 1.37263 | 136632 | 1.36157
511 (0.00073) | (0.00087) | (0.00054) | (0.00036) | (0.00078) | (0.00092) | (0.00103)
134246 | 133333 | 1.00607 | 1.03049 | 1.33805 | 1.33374 | 1.32023
" || (0.00066) | (0.00081) | (0.00049) | (0.00032) | (0.00073) | (0.00082) | (0.00092)
131339 | 1.30639 | 1.08347 | 1.02496 | 1.30776 | 1.30191 | 1.20921
"% | (0.00061) | (0.00076) | (0.00046) | (0.00029) | (0.00065) | (0.00075) | (0.00083)
128870 | 1.28267 | 1.07391 | 1.02177 | 1.28400 | 1.27845 | 1.27538
® || (0.00058) | (0.00073) | (0.00042) | (0.00027) | (0.00061) | (0.00068) | (0.00078)
1.26741 1.26185 1.06491 1.01750 1.26220 1.25854 1.25412
5| (0.00055) | (0.00067) | (0.00039) | (0.00024) | (0.00056) | (0.00065) | (0.00072)
1.24892 1.24392 1.05729 1.01513 1.24408 1.23935 1.23681
? || (0.00053) | (0.00067) | (0.00038) | (0.00022) | (0.00054) | (0.00060) | (0.00067)
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Table 8: ARLs (subgroups) and their standard errors (in parenthesis) of detecting scale shift
in N based on PC1 and PC2.

LAl r ] e» | ew | e | ppmae | ppmaw | pomae) |
||| 2o6mor2 | 2122365 | 2225286 | 2020750 | 2050273 | 1080162 | 191287
(0.09445) | (0.13200) | (0.19959) | (0.33513) | (0.10848) | (0.13065) | (0.15481)
6.09425 | 6.57388 | 521213 | 4.28962 | 6.49779 | 5.80276 | 5.46264
M1 0.01918) | (0.01857) | (0.01767) | (0.01566) | (0.02047) | (0.02192) | (0.02408)
391145 | 3.68223 | 273143 | 2.17304 | 355242 | 3.10464 | 2.80598
2| (0.00779) | (0.00715) | (0.00597) | (0.00476) | (0.00775) | (0.00779) | (0.00779)
280449 | 2.67102 | 195531 | 157802 | 2.51716 | 2.18003 | 1.95550
221 (0.00426) | (0.00417) | (0.00320) | (0.00248) | (0.00420) | (0.00401) | (0.00352)
228353 | 2.19862 | 161861 | 1.34022 | 2.04287 | 176205 | 1.58418
? 1| (0.00282) | (0.00275) | (0.00201) | (0:00151) | (0.00252) | (0.00236) | (0.00212)
198362 | 191953 | 143281 | 121982 | 177759 | 153762 | 1.38920
| (0.00209) | (0.00212) | (0.00153)8| A(O.00T08)a - (0.00189) | (0.00160) | (0.00139)
178882 | 174350 | 132085 | 1.14942 | 1060983 | 1.39743 | 1.27426
1| (0.00160) | (0.00168) [(0.00114) | (0:00080).4% (0:00142) | (0.00118) | (0.00103)
165965 | 1.62316%| 124877 | 110894 | . 149419-%| 1.30566 | 1.20011
1 (0.00133) | (0.00139) | (0.00091) | (0:00086).4 (0.00113) 4 (0.00096) | (0.00080)
156675 | 153785 | 120156 | 1081914 | 141651 | 124372 | 1.15054
® || (0.00113) | (0.00138) |  (0.00080) | @00055) | (0.00099) ¥ (0.00077) | (0.00061)
1.49582 1.46943 1.16366 1.06164 1.35442 1.19610 1.11463
2| (0.00099) | (0.00111) %], (6:000695% | (0-00047F 1= (0.00084) | (0.00066) | (0.00053)
143918 | 141736 | 7118672 | 1.04866 | 130650 | 1.16225 | 1.08937
%1l (0.00087) | (0.00096) | (000068} Icomm0oa | (B00072) | (0.00054) | (0.00042)
139505 | 137754 | 111672 | 1.03920 | 1.26899 | 113514 | 1.07081
5| (0.00082) | (0.00002) | (0.00055) | (0.00036) | (0.00066) | (0.00048) | (0.00037)
135673 | 134159 | 1.10034 | 1.03172 | 123758 | 1.11239 | 1.05574
"1 0.00073) | (0.00083) | (0.00050) | (0.00032) | (0.00059) | (0.00043) | (0.00031)
132674 | 131338 | 108777 | 1.02655 | 12132 | 1.09639 | 1.04528
"1 (0.00066) | (0.00078) | (0.00048) | (0.00029) | (0.00050) | (0.00039) | (0.00028)
1.30108 1.28989 1.07644 1.02226 1.19212 1.08243 1.03678
® 1| (0.00062) | (0.00073) | (0.00043) | (0.00027) | (0.00050) | (0.00034) | (0.00024)
128021 | 126968 | 1.06831 | 1.01888 | 117440 | 1.07098 | 1.03013
| (0.00058) | (0.00070) | (0.00040) | (0.00026) | (0.00047) | (0.00031) | (0.00021)
1.26002 1.25018 1.05954 1.01589 1.15833 1.06110 1.02462
1 (0.00055) | (0.00066) | (0.00037) | (0.00022) | (0.00043) | (0.00028) | (0.00019)
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Figure 2: 24 original VDP profiles.
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value of eigenvectors
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Figure 4: PC1: po £ 3v;.
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y (scaled amount of aspartame dissolved)
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PC 2 (20.46% of variation)
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X (scaled temparature)

Figure 6: PC3: po £ 3vs.
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(a) W vs. py (no shift) (b) Wy vs. Yy +0;
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Figure 7: Scatterplots of score datafor shifts in 1 from pr to (a) pr (no shift), (b) us + oy,
(¢) pr + 207, and (d) pr + 3o7;.
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Figure 8: Scatterplots of score data for shifts in I from p; to (a) py (no shift), (b) pur + oy,
(¢) ur + 207, and (d) pr + 3o7.
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(a) Hm vSs. My (no shift) (b) Uy VS. Py +Ou
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Figure 9: Scatterplots of score data fer'shifts in M from Lias to (a) pas (no shift), (b) ua+op,
(¢) piar + 20, and (d) pas + 30 —
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Figure 10: Scatterplots of score data for shifts in NV from uy to (a) py (no shift), (b) uy+ow,
(¢) un + 20N, and (d) py + 3on.
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ARL comparison of I-shift
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Figure 12: For detecting location shift in I, ARL (subgroups) curves of r-chart (using PC1
and PC3), PC-scores, Combined, and T? charts.
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ARL comparison of M—shift
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Figure 13: For detecting location shift in abgroups) curves of r-chart (using PC1

and PC2), PC-scores, Combined
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Figure 14: For detecting location shift in N, ARL (subgroups) curves of r-chart (using PC1
and PC2), PC-scores, Combined, and T? charts.
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ARL comparison of I-shift
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Figure 15: For detecting location

charts using PC1 and PC2.
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Figure 16: For detecting location shift in I, ARL (subgroups) curves of r, @ and DDMA
charts using PC1 and PC3.
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ARL comparison of M-shift
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Figure 17: For detecting location s beroups) curves of r, @) and DDMA
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Figure 18: For detecting location shift in N, ARL (subgroups) curves of r, @ and DDMA
charts using PC1 and PC2.

20



ARL comparison of I-shift
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Figure 20: For detecting location shift in I, ARL (profiles) curves of r and @ charts using
PC1 and PC3.
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ARL comparison of M-shift
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Figure 22: For detecting location shift in N, ARL (profiles) curves of r and @ charts using
PC1 and PC2.
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Figure 24: For detecting location shift in I, ARL (profiles) curves of DDMA charts using

PC1 and PC3.
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ARL comparison of M-shift
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Figure 25: For detecting location ofiles) curves of DDMA charts using
PC1 and PC2.
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Figure 26: For detecting location shift in N, ARL (profiles) curves of DDMA charts using
PC1 and PC2.
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Figure 27: Scatterplots of score datafor shifts in I ffom.o; to (a) o7 (no shift), (b) 307, (¢)
6oy, and (d) 9o;.
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Figure 28: Scatterplots of score data for shifts in I from o to (a) o; (no shift), (b) 307, (c)
60’[, and (d) 90’[.
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Figure 29: Scatterplots of score data for shifts in M frdtn oy to (a) oy (no shift), (b) 3oy,

(c) 6o, and (d) 9o .
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Figure 30: Scatterplots of score data for shifts in N from oy to (a) oy (no shift), (b) 1.50y,

(¢c) 20y, and (d) 2.50y.
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Figure 31: For detecting scale shift i

using PC1 and PC2.

ARL

ARL

25

20

15

10

25

20

15

10

ARL comparison of I-shift

—a—
—m-
- e-
_A-
o
-0
A

r
a@)
a4
a(6)
ddma(2)
ddma(4)
ddma(6)

Figure 32: For detecting scale shift in 7, ARL (subgroups) curves of r, @ and DDMA charts

using PC1 and PC3.
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ARL comparison of M-shift
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Figure 33: For detecting scale shift in" M { ips) curves of r, @ and DDMA charts
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Figure 34: For detecting scale shift in N, ARL (subgroups) curves of r, @) and DDMA charts
using PC1 and PC2.
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and PC2.

Figure 36: For detecting scale shift in I, ARL (profiles) curves of r and @ charts using PC1

and PC3.
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and PC2.

Figure 38: For detecting scale shift in N, ARL (profiles) curves of rand @ charts using PC1

and PC2.
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ARL comparison of I-shift
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Figure 40: For detecting scale shift in I, ARL (profiles) curves of DDMA charts using PC1
and PC3.
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ARL comparison of M-shift
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Figure 42: For detecting scale shift in NV, ARL (profiles) curves of DDMA charts using PC1
and PC2.
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