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利用單體資料縱深測度建構剖面資料 

之無母數監控方法 

 

學生：鄭欽友                        指導教授：洪志真 博士 

  

國立交通大學統計學研究所碩士班 

 

摘 要       

 

    在目前的統計製程管制中，當製程品質特性可以用剖面資料來作很好的描述時，對剖面資

料的監控是一種新穎且有用的技術。這篇論文目的在於藉著無母數方法發展對於有隨機個體效

應之剖面資料的監控方法。此處“個體效應”指製程在管制狀態下允許某種程度的剖面資料間

之變異。我們利用主成分分析來分析參考剖面資料並且藉由主成分來降低資料的維度。資料縱

深測度是無母數多變量資料分析方法中重要的一環。而單體資料縱深測度則是眾多計算資料縱

深測度的方法之一。我們藉由每一筆剖面資料的主成分分數計算出相對於參考剖面資料的單體

料縱深測度。在建構管制圖的過程中，主成分的選擇對於偵測製程改變的能力是有影響的。藉

著單體資料縱深測度的概念所得出的由中心到外的順序，我們利用三種管制圖，包括了 r-管制

圖，Q-管制圖和 DDMA-管制圖，來執行第二階段的製程管制。這些管制圖對於製程資料不需要

作任何分配上的假設，基於這個無母數的優點，這些管制圖可以有更廣泛的應用。最後我們用

Kang 和 Albin 在西元 2000 年所介紹的阿斯巴甜剖面資料來作方法說明並研究這些方法的有效

性。 
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Abstract

Profile monitoring is presently a new and useful technique in statistical process

control best used in where the process data of an object follow a profile (or curve)

of an independent variable. This study is aimed at developing monitoring schemes

for profiles with random effects (or more precisely, subject effects) by nonparametric

methods. The term “subject effects” here means a certain degree of profile-to-profile

variation is allowable for an in-control process. We utilize the technique of principal

components analysis to analyze the reference profiles and reduce each profile data to a

principal component score vector of lower dimension. Data depth is one of the important

notions of nonparametric multivariate analysis. Simplicial depth is one of the popular

data depths. We convert the principal component score vector of each profile to a

simplicial depth value with respect to the reference score vectors. The choice of principal

component scores used in constructing a control chart has effects on the detecting power.

With the center-outward ranking induced by the notion of simplicial depth, we construct

three control charts, including r-chart, Q-chart, and DDMA-chart, to perform Phase

II process monitoring. These control charts are completely nonparametric and have

broader applicability than the usual multivariate control charts. These approaches are

illustrated and studied using the aspartame example presented in Kang and Albin [7].
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1 Introduction

Profile monitoring is a relatively new research area in statistical quality control. Generally

speaking, it is closely related to an area of statistics known as functional data analysis. It

is useful when the product or process quality is well represented by a function (or a curve).

It can be used to understand and to monitor the stability of the functional relationship

over time. This functional relationship is called a profile in the literature. Such profiles

are frequently modeled using linear or nonlinear regression models. Most research works

on profile monitoring have been focusing on situations where the profiles are modeled by a

linear model. However, it is often the case that the profiles are better described by a nonlinear

model rather than by a linear model.

In this study, we focus on Phase II monitoring of nonlinear profiles with subject effects

via nonparametric regression. The term “subject effects” here means a certain degree of

profile-to-profile variation is allowable for an in-control process. A challenge arises: how to

characterize nonlinear profiles? In practice, people have used some simple descriptive statis-

tics to characterize nonlinear profiles, such as the average value, the maximum magnitude,

etc. In this study, we first smooth the raw data profiles by smoothing techniques, then em-

ploy the principal components analysis (PCA) to reduce the de-noised nonlinear profiles to

some important features represented by specific principal component scores (PC-scores).

Most of the research that involves the development and evaluation of Phase II control

charts assumes some stochastic model for the quality characteristic of interest. For example,

univariate process data are often assumed to follow a normal distribution. For another exam-

ple, Shiau, Huang, Lin, and Tsai [19] modeled nonlinear aspartame profiles as realizations of

a Gaussian stochastic process. But in many applications, the underlying process distribution

is unknown and hard to find a suitable approximation for it. So the statistical properties

of commonly used charts, designed under the normality assumption, would be potentially

affected. In the situation as such, development and application of nonparametric control

charts are highly desirable.

Data depth is a multivariate data analysis method that assigns a numeric value to a

multivariate data point based on its centrality relative to a data set. Simplicial depth [9]

1



is one of the notions of data depth. Liu [9] proposed three nonparametric control charts,

referred to as r-chart [11], Q-chart [11], and DDMA-chart [14], which are derived from the

notion of simplicial depth. The great advantage of these control charts is that they do

not require knowledge of the underlying distribution of process data. As a nonparametric

method, each of the three charts has much broader applicability than the traditional control

charts such as the Hotelling T 2 chart constructed from the multivariate Gaussian processes.

For example, the DDMA-chart is shown in Liu, Singh, and Teng [14] to be quite effective in

detecting changes in Cauchy distributions where the Hotelling T 2 chart fails completely.

In our monitoring schemes, we monitor incoming nonlinear profiles by their specific PC-

scores. After choosing the specific combination of PC-scores by considering particular features

that we are interested in, we take the PC-scores of each profile as the input data to compute

the simplicial depth of the profile. Once we have the simplicial depth values for profiles under

study, we can proceed and construct r-chart, Q-chart, and DDMA-chart as described in the

literature. The performances of our monitoring schemes will be evaluated in terms of the

average run length (ARL).

The rest of the paper is organized as follows. Section 2 reviews literatures on profile

monitoring and researches related to simplicial depth. Section 3 describes the proposed

monitoring schemes in details. Section 4 presents some simulation results of a comparative

study of the proposed schemes based on ARL for Phase II monitoring. Section 5 concludes

the paper with a brief summary and some remarks.

2 Literature Review

2.1 Profile Monitoring

2.1.1 Introduction

Statistical process control (SPC) has been widely applied to a variety of industries. In most

SPC applications, it is assumed that the quality of the product or process could be mea-

sured by the distribution of a single (or multiple) quality characteristic(s). However, in many

practical situations, the quality of the product or process is characterized and summarized

2



much better by a functional relationship between a response variable (Y ) and one or more

explanatory variables (X’s) instead of the distribution of a single (or multiple) quality char-

acteristic(s). Such a relationship that could be linear or nonlinear in nature is referred to as

a profile.

2.1.2 Practical Examples

Kang and Albin [7] presented an example of linear profiles that occurs during the wafer

etching step in the semiconductor manufacturing. The quality of a wafer depends on the

performance of the mass flow controller (MFC). If an MFC is in control, the measured

pressure (the response variable Y ) in the chamber is approximately a linear function of the

set point for flow (the explanatory variable X). Mahmoud and Woodall [15] presented another

example of linear profiles regarding calibration curves in the photometric determination of

Fe3+ with sulfosalicylic acid. Jin and Shi [6] showed a complicated form of a stamping

force profile. Kang and Albin [7] described an example of nonlinear profiles with regard to

aspartame (an artificial sweetener). The important quality characteristic Y is the amount of

aspartame dissolved per liter of water at different temperature X. For illustration, Figure

1 shows the plot of four hypothetical aspartame profiles. Walker and Wright [23] presented

another example of nonlinear profiles named vertical-density profile (VDP) of engineered

wood boards. The density which determines its machinability is measured by a profilometer

that uses a laser device to take measurements at fixed depths across the thickness of the board.

The data set is available at http://bus.utk.edu/stat/walker/VDP/Allstack.txt. Figure 2

shows the plot of the VDP data set containing n = 24 profiles, each was measured at p = 314

points.

2.1.3 Linear Profiles

Studies focusing on simple linear profiles have been particularly popular. For example, the

following works are related to linear profile monitoring with the fixed-effect model as

Y = A0 + A1X + ε, (1)
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where A0 and A1 are unknown constants and ε ∼ N(0, σ2). Kang and Albin [7] proposed

two methods for monitoring linear profiles. The first method is the multivariate T 2 method

and the second is an R-chart in conjunction with an EWMA-chart. Kim, Mahmoud, and

Woodall [8] proposed two two-sided EWMA-charts for monitoring respectively the intercept

and slope where the explanatory values are centered previously, and a one-sided EWMA-chart

for monitoring the process standard deviation. Using simulation, Mahmoud and Woodall [15]

compared the performance of four control charts/methods for monitoring linear profile pro-

cesses in Phase I in terms of the overall probability of a signal. The methods are: (1) the T 2

chart proposed by Stover and Brill [22], (2) the T 2 chart proposed by Kang and Albin [7],

(3) the EWMA-charts proposed by Kim, Mahmound, and Woodall [8], and (4) their method

of using the global F test based on a multiple regression model. Zou, Zhang, and Wang [29]

proposed a control chart based on the change-point model to monitor linear profiles with

estimated parameters. The chart can detect a shift in either the intercept, slope, or standard

deviation. Gupta, Montgomery, and Woodall [5] compared the performances of two Phase

II monitoring schemes for linear profiles, one based on the classical calibration method of

monitoring the deviations from the regression line and the other one based on monitoring

the intercept and slope of the linear profile individually. The works described above all

concerned with the simple linear model. Zou, Tsung, and Wang [27] extended the focus to

general linear profiles (meaning that profiles can be modeled by a general linear model) by

proposing a novel multivariate exponentially weighted moving average monitoring scheme for

such profiles.

Note that each of the above works are based on a fixed-effect model, which means the

reference profile is a fixed function and the only randomness is caused by the noise (e.q.,

measurement errors) added to the fixed function at each of the set point X. However, the

fixed-effect model does not allow profile-to-profile variations. For example, there might be

some time-varying factors, such as the temperature, humidity, and so on, that cause small

profile-to-profile variations. The profile-to-profile variations are all included in the error term

under the fixed-effect model. But it seems not so appropriate since the time-varying factors

may affect the parameter values of a linear profile. On the other hand, a “random-effect” (or

more precisely, “subject-effect”) model allows profile-to-profile variations and considers them
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as common cause of variations. Thus, a random-effect model that can cope with subject

effects (the profile-to-profile variation) may be more suitable for certain applications.

For this, Shiau, Lin, and Chen [20] considered a random-effect linear model to develop

monitoring schemes for linear profiles. Mahmoud and Woodall [15] studied the Phase I

analysis of linear profile data. They proposed a method based on using indicator variables

in a multiple linear regression model.

2.1.4 Nonlinear Profiles

However, there are many situations in practice where profiles cannot be well represented by a

linear model. In other words, the response variable is a nonlinear function of the explanatory

variables. In some cases, the expected parametric form of the underlying nonlinear function

is known or the underlying function can be approximated well by a parametric nonlinear

model. These types of nonlinear regression are known as parametric regression with a finite

number of parameters required to be estimated. For each profile, one could fit a parametric

model of a pre-specified form to the data. To discriminate the out-of-control profiles, one

could monitor each estimated parameter with a separate chart or use a multivariate chart

based on the vectors of estimated parameters.

Next, we review some related works on monitoring nonlinear profiles via parametric regres-

sion. Williams, Birch, Woodall, and Ferry [24] illustrated their nonlinear profile monitoring

methods to monitor the dose-response profiles used in high-throughput screening by fitting

a particular nonlinear regression model to profile data. Williams, Woodall, and Birch [25]

extended the use of the T 2 control chart to monitor the coefficients resulting from fitting a

parametric nonlinear regression model to profile data. They gave three general approaches to

the formulation based on the nonlinear model estimation of the Phase I analysis. Colosimo,

Semeraro, and Pacella [2] proposed a method based on combining a spatial autoregressive

regression (SARX) model with control charting, and applied the approach to monitor real

process data in which the roundness of items was obtained by turning.

In cases where the functional form is unknown and can not be parameterized, we could use

smoothing techniques such as smoothing splines to estimate the function. This approach is

known as nonparametric regression. The nonparametric regression model is usually expressed
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as

Y = m(X) + ε, (2)

where m(X) is a smooth regression curve and ε ∼ N(0, σ2).

Ding, Zeng, and Zhou [3] considered the Phase I analysis of nonlinear profiles. They

proposed a two-component strategy for identifying the profiles that are from an in-control

process. The first component is data reduction that projects the original data into lower

dimension while preserving the data-clustering structure and the second is data separation

that could detect single and multiple shifts.

The function m(X) is a fixed function for each profile in the fixed-effect model. Shiau and

Weng [21] extended the linear profile monitoring schemes to a scheme suitable for profiles of

more general forms with the fixed-effect model via nonparametric regression. Zou, Tsung,

and Wang [28] stated that the parametric monitoring methods are generally powerful when

matched with the specific out-of-control model for which they were designed, but they can

have very poor ARL performance with other types of out-of-control models. They focused on

a study of the Phase II method for monitoring a general profile that can be well represented

by a nonparametric regression function. The proposed scheme could solve the aforementioned

problem in parametric monitoring methods.

The function m(X) is a random function in the random-effect model. With the random-

effect model, the profiles can be modeled as realizations of a stochastic process with a mean

curve and a covariance function. Shiau, Huang, Lin, and Tsai [19] monitored nonlinear

profiles with random effects by nonparametric regression. They utilized the technique of

principal components analysis to analyze the covariance structure of the profiles and proposed

monitoring schemes based on PC-scores. For Phase I analysis on historical data, they adopted

and studied the Hotelling T 2 chart to check the stability. For Phase II monitoring, they

proposed and studied individual PC-score control charts, a combined chart that combines all

the PC-score charts, and a T 2 chart to monitor the nonlinear profiles.
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2.2 Data Depth

2.2.1 Introduction

We usually analyze multivariate data or profiles under the normality assumption, for which

the characteristics of the data can be estimated using classical statistical methods. Many

multivariate statistical methods have been developed under normality, an assumption often

not easy to justify or violated in some practical experiments. Hence nonparametric methods

for multivariate analysis are desirable. Data depth is completely nonparametric because it

analyzes data based on the relative position or rank of the data points without parametric

assumptions on the underlying distribution.

A data depth is a measure for measuring the “centrality” or “outlyingness” of a multi-

variate observation with respect to a set of reference data points (or their probability distri-

bution). It provides a natural center-outward ordering of data points in a given sample. So

we can utilize data depth to reduce each multivariate observation (or quantify some complex

features of the underlying distribution) to its univariate center-outward rank. In general, the

greater the depth of a point is, the more densely it is surrounded by other sample points.

For example, in R, the median of a given set of points on the real line has the maximum

depth. In R2, a point with high depth corresponds to “centrality”; on the other hand, low

depth corresponds to “outlyingness”. A point has high depth when it is centrally located in

the sample points.

Over the years, a large number of depth measures have been proposed. Existing data

depths [14] include: Mahalanobis depth, half-space depth, simplicial depth, projection depth,

spherical depth, majority depth, location depth, Oja depth, zonoid depth, L-1 depth, etc.

Different notions of depth are capable of capturing different characteristics and may lead

to different ordering schemes. However, all the depth orderings are based on the notion of

center-outward ranking. All the notions of depth produce their “deepest” points, which have

been considered as multivariate medians. For convenience, the simplicial depth will be used

for the demonstrations throughout the paper.
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2.2.2 Simplicial Depth

The simplicial depth of a point X with respect to a probability distribution F on R2 is the

probability that X belongs to a random triangle in R2. The simplicial depth of a point X

with respect to a data set S in R2 is defined by Liu [9] as the proportion of the triangles

(constructed by three of the data points) that contain the point X (a point on the boundary

is considered as contained in the triangle). The dimension can be easily extended to Rp, p > 2,

but we only consider the bivariate setting here. In this paper, we utilize simplicial depth as

a measure of centrality of a given point relative to a given sample in R2. In general, a point

with larger depth value indicates that the point is contained in many triangles constructed

from the data set, so the point lies deeper within the data set.

It appears to require O(m3) computer operations to calculate the simplicial depth of a

point X relative to a set of m points. Rousseeuw and Ruts [18] proposed a faster algorithm

that computes the simplicial depth in O(m log m) operations, by combining geometric prop-

erties with certain sorting and updating mechanisms. They implemented the algorithm and

the “naive” method to verify the result. For instance, the efficiency of the algorithm is about

90000 times as fast as that of the “naive” method when m = 1000. The algorithm is very

useful because in our simulation study, we require that the simplicial depth be computed

at many X ′s. Masse and Plante in 2009 compiled a package named “depth” in statistical

software R based on Fortran code from Rousseeuw and Ruts [18]. The description of the

package is available at http://cran.r-project.org/web/packages/depth/depth.pdf.

The simplicial depth of a point X with respect to a continuous distribution F is defined

as

SDF (X) = PF{X ∈ 4(Xi1 ,Xi2 ,Xi3)}, (3)

where Xi1 ,Xi2 ,Xi3 are three random observations from the distribution F . When the dis-

tribution F is unknown, a sample version of simplicial depth is defined as follows. Let T be

the set of all triangles formed by vertices from a reference sample {X1, . . . , Xm} following

distribution F . Each triangle requires three vertices, so T has
(

m
3

)
triangles assuming all m

points are distinct and any three points are not on a line. For any X ∈ {X1, . . . , Xm}, the
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sample version of simplicial depth SDFm(X) is defined as

SDFm(X) =

(
m

3

)−1 ∑
1≤i1<i2<i3≤m

I(X ∈ 4(Xi1 , Xi2 ,Xi3)). (4)

Here I(·) is the indicator function, that is, I(E) = 1 if the event E occurs and I(E) = 0

otherwise. It is shown in Liu [10] that SDFm(·) converges uniformly and strongly to SDF (·)
under some regularity conditions. So we can approximate SDF (·) by SDFm(·) when F is

unknown. And it is shown in Liu [10] that Liu’s control charts are coordinate free because

SDF (·) is affine invariant.

Let {Y1, . . . , Yn} be the new observations to be monitored. Assume Y1, . . . , Yn are i.i.d.

following a continuous distribution G. The monitoring scheme is aimed at comparing G with

F by testing if there exist differences between F and G. We might attribute the differences

to a location shift and/or a scale shift. Now, in order to test if there is any difference, we

need to calculate the simplicial depth of all X ∈ {X1, . . . , Xm} and Y ∈ {Y1, . . . , Yn}. It is

with probability one that Yi 6∈ {X1, . . . , Xm} for any i ∈ {1, . . . , n}. We remark that when

computing the simplicial depth of a new observation Y with respect to a reference sample,

we should treat Y as one of the sample points. Hence the computation should be based on

the total number of triangles generated from the m + 1 points {Y ,X1, . . . , Xm}, and count

those triangles containing the point Y . Then the simplicial depth of Y can be calculated by

SDF ∗m(Y ) =

(
m + 1

3

)−1
[ ∑

1≤i1<i2<i3≤m

I(Y ∈ 4(Xi1 , Xi2 ,Xi3)) +

(
m

2

)]
. (5)

In the following, we introduce three control charts given in the literature, which are

constructed based on the simplicial depth values of multivariate observations to detect si-

multaneously the location change and/or the scale increase in a process [11] [14].

2.2.3 r-charts

Liu [11] proposed a control chart called the r-chart that monitors the values of the relative

rank (r-value) of new observations with respect to a distribution or a reference sample. The

r-value of an observation Y is defined as

rF (Y ) = P{SDF (X) < SDF (Y )|X ∼ F}, (6)
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or, for the sample version,

rFm(Y ) =
1

m

m∑
i=1

I(SDFm(Xi) < SDF ∗m(Y )). (7)

It indicates the relative position of point Y with respect to the reference sample {X1, . . . , Xm}.
A large r-value indicates that there are many points in the reference sample more outlying

than point Y . Conversely, a small r-value means that Y is located at an outlying position

with respect to the reference sample, which means that Y is unlikely to come from the same

distribution F as that of the reference sample. Thus, a very small r-value of an observation

Y would suggest a possible deviation from the in control state of the process. This is the

main idea behind the r-chart and the other two charts.

Briefly speaking, the r-chart is analogous to the X-chart in the univariate case (also called

the individual control chart), but it monitors the r-values {rFm(Y1), . . . , rFm(Yn)} rather than

the original value of {Y1, . . . , Yn}. Suppose the false-alarm rate is set at a. Now we can

choose the center line CL = 0.5 and the lower control limit LCL = a, based on the following

proposition, which was established in Liu [11].

Proposition 2.2.1 Assume that F = G and Y ∼ G. Let U [0, 1] denote the uniform dis-

tribution on the interval [0, 1], and let the notation
L−→ stand for the convergence in law. If

SDF (Y ) has a continuous distribution, then

(1) rF (Y ) ∼ U [0, 1];

(2) as m → ∞, rFm(Y )
L−→ U [0, 1] along almost all {X1, . . . , Xm} sequences, provided that

SDFm(·) converges to SDF (·) uniformly as m →∞.

The process is considered to be out of control if rFm(Y ) falls below LCL = a. It means there

is quality deterioration such as loss of accuracy and/or loss of precision in quality control.

The r-chart with LCL = a corresponds to an a-level test of the following hypotheses:

H0 : F = G vs. Ha : there is a location shift and/or a scale increase from F to G. (8)

In particular, while many r-values falling below LCL = a would indicate there is quality

deterioration, many rFm(Y )’s close to 1 would suggest a possible reduction in dispersion,

which may indicate a process improvement in reality.

10



If we are sure that there is no location change, the r-chart could be revised to detect the

scale change only. Liu, Singh, and Teng [14] suggested that we could remove any possible

location change by centering all data to the same location, i.e., subtracting the deepest point

(with largest simplicial depth) from all data. Then we use the centered data to construct the

r-chart with CL = 0.5, LCL = a/2, and UCL = 1− a/2.

2.2.4 Q-charts

Liu [11] proposed another control chart called the Q-chart that monitors the Q-values cal-

culated from the r-values. The idea of the Q-chart is analogous to that of the univariate

X̄-chart. It plots the subgroup averages of consecutive r-values. Denote the subgroup size

by q. Now we give the notation of Q-values. Denote the average of the rF (Yi)’s (rFm(Yi)’s)

by Q(F, Gj
q) (Q(Fm, Gj

q)), where Gj
q is the empirical distribution of the Yi’s in the j-th sub-

group, j = 1, 2, . . .. Then we can construct the Q-chart with {Q(F,G1
q), Q(F,G2

q), . . .} (or

{Q(Fm, G1
q), Q(Fm, G2

q), . . .}, if only {X1, . . . , Xm} are available). More specifically,

Q(F,Gq) =
1

q

q∑
i=1

rF (Yi) (9)

and

Q(Fm, Gq) =
1

q

q∑
i=1

rFm(Yi). (10)

The center line is always set at CL = 0.5, but the LCL depends on the choice of q. The

following result regarding LCL was given in Liu [11] and Liu, Singh, and Teng [14]. When q is

large, by the Central Limit Theorem, the LCL is approximately 0.5−za(12q)−1/2 for plotting

Q(F, Gj
q)’s and 0.5 − za[(1/m + 1/q)/12]1/2 for plotting Q(Fm, Gj

q)’s. When q is relatively

small and a ≤ 1/q!, then LCL is exactly (q!a)1/q/q. In particular, this LCL could be a

reasonable approximation when a is slightly over 1/q!. Similar to the r-chart, the Q-chart

could be used to detect only scale changes by using the centered data as described before.

For a given reference sample {X1, . . . , Xm} ∼ F and an incoming new sample Y ∼ G,

Liu and Singh [13] proposed a quality index Q(F,G) = P{SDF (X) ≤ SDF (Y )|X ∼ F, Y ∼
G} (= EG(rF (Y ))), where rF (Y ) = P{SDF (X) < SDF (Y )|X ∼ F}, and used it to measure

the difference between the distributions F and G. The previous definitions of Q(F, Gq) and
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Q(Fm, Gq) are sample approximations of Q(F,G). Based on this index, Liu, Singh, and

Teng [14] showed that the Q-chart could be inefficient in detecting a minor location shift.

They proposed the following data-depth-moving-average chart (DDMA-chart) to overcome

this drawback.

2.2.5 DDMA-charts

The idea of the DDMA-chart is analogous to that of the univariate Moving Average chart.

The DDMA-chart monitors the DDMA-values calculated from the moving averages of the

original reference sample {X1, . . . , Xm} and new observations {Y1, . . . , Yn} as follows. Let q

be the number of observations needed in computing moving averages. Let {X̃1, . . . , X̃m−q+1}
be the reference sample of moving averages with X̃1 = (X1 + · · ·+Xq)/q, X̃2 = (X2 + · · ·+
Xq+1)/q, . . ., X̃m−q+1 = (Xm−q+1 + · · · + Xm)/q, and {Ỹ1, . . . , Ỹn−q+1} be the moving

averages of new observations with Ỹ1 = (Y1 + · · · + Yq)/q, Ỹ2 = (Y2 + · · · + Yq+1)/q, . . .,

Ỹn−q+1 = (Yn−q+1 + · · · + Yn)/q. Similar to equations (4) and (5), calculate the simplicial

depth for each X̃ ∈ {X̃1, . . . , X̃m−q+1} and Ỹ ∈ {Ỹ1, . . . , Ỹn−q+1} by

SDF̃m−q+1
(X̃) =

(
m− q + 1

3

)−1 ∑
1≤i1<i2<i3≤m−q+1

I(X̃ ∈ 4(X̃i1 , X̃i2 , X̃i3)) (11)

and

SDF̃ ∗m−q+1
(Ỹ ) =

(
m− q + 2

3

)−1
[ ∑

1≤i1<i2<i3≤m−q+1

I(Ỹ ∈ 4(X̃i1 , X̃i2 , X̃i3)) +

(
m− q + 1

2

)]
, (12)

where F̃m−q+1 is the empirical distribution of {X̃1, . . . , X̃m−q+1}. With these simplicial depth

values, we can calculate the new r-value for each moving average Ỹi with respect to the

reference sample {X̃1, . . . , X̃m−q+1} by

rF̃m−q+1
(Ỹi) =

1

m− q + 1

m−q+1∑

l=1

I(SDF̃m−q+1
(X̃l) < SDF̃ ∗m−q+1

(Ỹi)). (13)

The DDMA-chart detects possible deviations by plotting rF̃m−q+1
(Ỹi), i = 1, . . . , n − q + 1.

Since the DDMA-chart is the r-chart of moving averages, it has CL = 0.5 and LCL = a. The
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only difference is the data used for calculating simplicial depth values: the r-chart uses r-

values of individual data points, while the DDMA-chart uses r-values of the moving averages

of q data points.

Liu, Singh, and Teng [14] explained why the DDMA-chart is more sensitive to minor

location shifts than the Q-chart, and yet retaining the same ability in detecting scale shifts.

More specifically, let the length of moving window be q > 1 and assume there is only a

location shift between F and G. Then the DDMA-chart will exhibit a location shift of
√

q

times in size. In other words, the DDMA-chart will amplify the effect of the location shift

by a factor of
√

q. If the proportion of the points falling below LCL is larger than the false-

alarm rate a, it may suggest that there is a location shift and/or a scale increase between

the distributions F and G. Furthermore, if the proportion increases as q increases, then

there is a strong indication of a location shift. On the other hand, if the proportion does

not increase as q increases, then it indicates a scale shift between the distributions F and

G. In summary, the DDMA-chart ameliorates the Q-chart in terms of the detecting power of

location shifts while retains the same detecting power of scale shifts as the Q-chart. Hence

both Q-chart and DDMA-chart are suggested to be used side by side in general practice.

If we observe that there is a same effect in both the Q-chart and DDMA-chart, we could

conclude that there occurs a scale shift only. If we observe that the out-of-control proportion

in the DDMA-chart is larger than that in the Q-chart based on the same moving window (q),

then we could conclude that there is a location change in the process, in addition to potential

scale changes.

3 Methodology

3.1 Data Smoothing

Data smoothing techniques are used to “eliminate” noise and extract real trends and patterns

of profiles. For a given nonlinear profile, it returns a profile that contains less noise than the

original profile and yet retains the basic shape and important features of interest in the

original data. The most popular approach is to utilize the basis function expansion, such as

Fourier, spline, power, exponential, wavelet bases, and so on. In this paper, we adopt the
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spline smoothing by fitting a cubic smoothing spline to the data.

We use the command named “smooth.spline” in statistical software R to perform data

smoothing. More commands are available in R for data smoothing, for examples “splineDesign”

or “bs”, “locpoly”, “ksmooth” corresponding to other commonly used methods, B-spline re-

gression, local polynomial smoothing, and kernel regression smoother, respectively. We re-

mark based on our experiences that, by filtering out noises, the actual signals could be better

extracted from the data and the subsequent principal component analysis (PCA) could ex-

plore the variation among the profiles more effectively. In particular, smoothing tends to be

more advantageous as the noise level (σ2
ε ) gets larger.

3.2 Principal Component Analysis

Principal component analysis was invented in 1901 by Karl Pearson. We introduce PCA

following Everitt [4]. The aim of PCA is to describe the variation in a set of correlated

variables, x1, x2, . . . , xp, in terms of a new set of uncorrelated variables, y1, y2, . . . , yp, each of

which is a linear combination of the x variables. The new variables are ordered decreasingly

by its importance in the sense that y1 is chosen to account for as much as possible of the total

variation in the original data among all linear combinations of x1, x2, . . . , xp. More specifically,

y1 = a′1x, where x′ = (x1, x2, . . . , xp) and a′1 = (a11, a12, . . . , a1p) is the eigenvector of the

sample covariance matrix S, which has the greatest variance among all linear combinations

subject to a′1a1 = 1. Then y2 is chosen to account for as much as possible of the remaining

variation by y2 = a′2x, where a′2 = (a21, a22, . . . , a2p) is the eigenvector of the matrix S, which

has the greatest variance subject to the following two conditions:

a′2a2 = 1, a′2a1 = 0.

The second condition ensures that y1 and y2 are uncorrelated. Similarly, the subsequent i-th

principal component yi is the linear combination of the x variables, yi = a′ix, which has the

greatest variance subject to the following conditions:

a′iai = 1, a′iaj = 0 (for all j < i),

with ai being the eigenvector of S associated with the i-th largest eigenvalue. The new

variables defined by this process, y1, y2, . . . , yp, are the principal components. Usually the
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first few components will account for a substantial portion of the total variation in the original

data and they would be used to provide a convenient and useful lower-dimensional summary

of these variables.

Assume the eigenvalues of S are λ1 ≥ λ2 ≥ · · · ≥ λp. Then, since a′iai = 1, the variance of

the i-th principal component is given by λi. The total variance of the p principal components

will equal to the total variance of the original variance so that

p∑
i=1

λi = s2
1 + s2

2 + · · ·+ s2
p,

where s2
i is the variance of xi. Consequently, the first k (k < p) principal components account

for a proportion p(k) of the total variation in the original data, where

p(k) =

∑k
i=1 λi∑p
i=1 λi

.

The representation of the principal components given above is in terms of the eigenvalues

and eigenvectors of the sample covariance matrix S. Because the principal components

derived from the covariance matrix will depend on the choice of units of measurement. Hence

in practice, it is far more useful to extract the components from the sample correlation matrix

R, which is equivalent to calculate the principal components from the original variables after

each being standardized.

We need to decide how many components are needed to provide an adequate summary

of a given data set. There exists many useful criteria, such as (i) retaining just enough

components to explain large percentage (70% to 90%) of the total variation of the original

variables, (ii) excluding those principal components whose eigenvalues are less than the av-

erage
∑p

i=1 λi/p, (iii) using cross-validation methods, and so on. Furthermore, Everitt [4]

mentioned that it is not always the first principal component that is of most interest to a

researcher. A taxonomist will often be more concerned with the second and subsequent com-

ponents since these might provide a convenient description of aspects of an animal’s “shape”

when investigating variation in morphological measurements on animals, and the aspects of

an animal’s “size” will be reflected in the first principal component. For another example,

the first principal component derived from, say, clinical psychiatric scores on patients may

only provide an index of the severity of symptoms, and it is the remaining components that
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will give the psychiatrist important information about the “pattern” of symptoms. In sum-

mary, according to different purposes of a researcher or different features that a researcher is

interested in, the order of the importance of the principal components may be different.

After deciding that we need k principal components to adequately represent our data,

we calculate the principal component scores (PC-scores) of the chosen components for each

individual in our sample. Having obtained the components from the sample covariance matrix

S (or the sample correlation matrix R), the k PC-scores for individual i with p×1 data vector

xi are then obtained by

yij = a′jxi, j = 1, . . . , k.

In practice, we can use the commands “prcomp” or “princomp” in statistical software R to

get the eigenvalues and eigenvectors of the sample covariance/correlation matrix of a given

data matrix as well as the PC-scores.

3.3 Phase II Monitoring

3.3.1 Monitoring Statistics

In this study, we focus on Phase II monitoring. The purpose of Phase II analysis is to

detect shifts in the process parameters as quickly as possible. In most Phase II studies,

it is usually assumed that the in-control process distribution has been characterized, either

from prior experiences or estimated from the Phase I analysis. In our study, we do not

require any assumptions about the process distribution because of the nonparametric nature

of data depth. Hence we only assume that a set of m in-control profiles is available. We

first apply a smoothing technique to each of the m profiles to filter out noise, and then apply

principal component analysis to the smoothed profiles. Denote the p×1 data vector of the i-th

smoothed profile by xi, i = 1, . . . , m, and the sample covariance matrix of {xi, i = 1, . . . , m}
by S. Calculate the eigenvalues and eigenvectors of S. The eigenvector vr corresponding

to the r-th largest eigenvalue λr is the r-th principal component. Sir ≡ v′rxi is the PC-

scores of the r-th principal component of the i-th profiles, where r = 1, . . . , p and i =

1, . . . , m. We could consider selecting the first k principal components for which the total

variation explained by the chosen principal components,
∑k

r=1 λr/
∑p

r=1 λr, reaches a desired
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level. Alternatively, it is also a useful proposal that we consider the ability of each principal

component in capturing a particular feature of the profiles. If a particular mode of process

change could be caught more easily by certain principal components, then we select these

particular principal components. That is, for detecting different modes of process change,

we might choose different principal components. Denote the k× 1 score vector (Si1, . . . , Sik)
′

by si, i = 1, . . . , m. Calculating simplicial data depth for many profiles is fairly time-

consuming, especially when k is large. For simplicity, with these principal components, we

only consider k = 2 in the paper. We then simplify the m in-control profiles to m scores

vectors si, i = 1, . . . , m. The resulting principal components will be used to compute the

PC-scores of incoming profiles in Phase II on-line process monitoring as follows. For each

incoming profile in Phase II monitoring, we first smooth and then project it onto the k

principal components chosen earlier to obtain the k × 1 PC-scores vector s∗j , j = 1, 2, . . ..

Denote the set of scores vectors {si, i = 1, . . . ,m} by {X1, . . . , Xm} and {s∗j , j = 1, 2, . . .}
by {Y1,Y2, . . .}. Then we compute the simplicial depth values of {X1, . . . , Xm} by equation

(4) and {Y1, Y2, . . .} by equation (5), which are viewed as a measure of centrality relative to

the points {X1, . . . , Xm}. We denote the simplicial depth values by {SD(Xi), i = 1, . . . , m}
and {SD(Yj), j = 1, 2, . . .}. Set the desired in-control false-alarm rate at a. Consider

three monitoring statistics corresponding to the three control charts, r-chart, Q-chart, and

DDMA-chart.

• r-chart: According to the definition of r-value by equation (7), we have the r-values of

{Y1,Y2, . . .} by comparing the magnitude of {SD(Yj), j = 1, 2, . . .} with respect to

{SD(Xi), i = 1, . . . , m}. For the incoming samples, denote the monitoring statistics

of r-values by {r(Y1), r(Y2), . . .}.

• Q-chart: Additionally, we can monitor the Q-values by applying the idea of X̄-chart

to the r-values {r(Y1), r(Y2), . . .}. Assume the subgroup size is q. Then the first

monitoring statistic of Q-values is [r(Y1)+· · ·+r(Yq)]/q, the second monitoring statistic

of Q-values is [r(Yq+1) + · · ·+ r(Y2q)]/q, and so on. For the incoming samples, denote

the monitoring statistics of Q-values by {Q1, Q2, . . .}.

• DDMA-chart: In fact, the DDMA-chart is also a type of r-chart. The difference is
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that we compute the moving averages of {X1, . . . , Xm} and {Y1,Y2, . . .} to get new

sets {X̃1, . . . , X̃m−q+1} and {Ỹ1, Ỹ2, . . .} with the length of moving window q. Then

the following monitoring procedure is exactly the same as that of the r-chart: compute

the simplicial depth values {SD(X̃i), i = 1, . . . , m − q + 1} of {X̃1, . . . , X̃m−q+1} by

equation (11) and {SD(Ỹj), j = 1, 2, . . .} of {Ỹ1, Ỹ2, . . .} by equation (12), respectively.

Compare the magnitude of {SD(Ỹj), j = 1, 2, . . .} with respect to {SD(X̃i), i =

1, . . . , m− q + 1} to get the r-values {r(Ỹ1), r(Ỹ2), . . .} by equation (13), but referring

to them as the DDMA-values here. For the incoming samples, the monitoring statistics

are {r(Ỹ1), r(Ỹ2), . . .}.

3.3.2 Control Limits

Assume the false-alarm rate is set at a, the control limits of the three control charts are given

below:

• r-chart: The r-chart monitors the r-values {r(Y1), r(Y2), . . .} with the LCL = a.

• Q-chart: The Q-chart monitors the Q-values {Q1, Q2, . . .} with LCL set under two

different conditions: (i) when q is large, the LCL is set as 0.5− za[(1/m + 1/q)/12]1/2;

and (ii) when q is relatively small and a ≤ 1/q!, the LCL is set as (q!a)1/q/q.

• DDMA-chart: The DDMA-chart monitors the DDMA-values {r(Ỹ1), r(Ỹ2), . . .} with

LCL = a.

We will evaluate the performances of the proposed Phase II monitoring schemes described

above in terms of ARL. Assuming the probability of detecting the shift by a control chart is

p, the value 1/p is the ARL of the chart. In this study, the probability p can not be obtained

analytically, so we estimate the probability p by simulation.
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4 Simulation and Comparative Studies

4.1 Generating Data

The comparative study is conducted with the aspartame example given in Kang and Albin [7]

as an example. Since there are no available data, we use two methods based on the form

Y = I + MeN(x−1)2 + ε to generate the in-control aspartame profiles in the following.

The idea is to perturb the parameters I, M , N randomly to create allowable profile-to-

profile variations for the in-control profiles. We first define the setting of the parameters

with µI = 1, σI = 0.2, µM = 15, σM = 1, µN = −1.5, σN = 0.3, σε = 0.3, p = 19,

and x = 0.64, 0.80, . . . , 3.52. Both of x and y values are scaled variables, not the actual

temperature levels and the amount of aspartame dissolved in the dissolving process.

1. The first method is to model the in-control aspartame profiles as following MVN (µ0,Σ),

where µ0 = (µ01, . . . , µ0p)
′ with

µ0i = µI + µMeµN (xi−1)2 , i = 1, . . . , p (14)

and Σ is the covariance matrix as follows. For i, j = 1, . . . , p

Cov(Yi, Yj) = σ2
I + (µ2

M + σ2
M) + [eµN [(xi−1)2+(xj−1)2]+

σ2
N [(xi−1)2+(xj−1)2]2

2

−µ2
MeµN (xi−1)2+

σ2
N (xi−1)4

2
+µN (xj−1)2+

σ2
N (xj−1)4

2 + σ2
ε δij, (15)

where δij = 1 if i = j and δij = 0 if i 6= j. This method was adopted by Shiau, Huang,

Lin, and Tsai [19] because their profile monitoring schemes are developed under the

Gaussian assumption.

For out-of-control profiles, we can generate the “location-shifted” aspartame profiles as

following MVN (µ,Σ), where µ = (µ1, . . . , µp)
′ with

µi = (µI + ασI) + (µM + βσM)e(µN+γσN )(xi−1)2 , i = 1, . . . , p. (16)

Then the shift on the mean of Y is δ ≡ µ− µ0.

2. The second method directly generates the parameters (I, M,N), where I ∼ N(µI , σ
2
I ),

M ∼ N(µM , σ2
M), N ∼ N(µN , σ2

N), ε ∼ N(0, σ2
ε ), and all the random parameters are
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independent of each other. This model is also referred to as the random-coefficients

model. Then use the following random-effect model to generate the in-control aspar-

tame profiles with already generated (I, M,N, ε):

Yi = I + MeN(xi−1)2 + εi, i = 1, . . . , p. (17)

We can generate the “location-shifted” aspartame profiles with the parameters (I, M, N, ε),

where I ∼ N(µI + ασI , σ
2
I ), M ∼ N(µM + βσM , σ2

M), and N ∼ N(µN + γσN , σ2
N). In

the same way, we can also generate the “scale-shifted” aspartame profiles with the

parameters (I, M, N), where I ∼ N(µI , (ασI)
2), M ∼ N(µM , (βσM)2), and N ∼

N(µN , (γσN)2). The advantage of this method is that it is intuitive and interpretable.

However, the profiles generated in this way are no longer Gaussian.

4.2 Choice of Principal Components

Restricted by the statistical package R for simplicial data depth computation, we can only

choose two principal components to summarize the original profile data in evaluating our

monitoring schemes. In general, the first two principal components explain a fairly large

percentage of the total variation in the profile data set. Hence we usually calculate the scores

of the first two principal components for each individual profile. However, as restricted by

only two principal components in our study, it might be a good idea to consider the ability

of each principal component in capturing the variation of the profiles. To verify this, we

simulate 1008 in-control aspartame profiles by the first simulation method. First, we de-

noise the profiles by spline smoothing and then apply PCA to the sample covariance matrix

of the smoothed profiles. It is found that the first three principal components account for

75.38%, 20.46%, and 2.71% of the total variation, respectively.

Figure 3 illustrates the first three eigenvectors of the sample covariance matrix. To

see the effect of a particular principal component, Ramsay and Silverman [17] presented a

visualizing tool that plots µ0 ± Lvr, where L is a suitable multiple. Figures 4 to 6 illustrate

the corresponding features captured by the first three principal components with L = 3. We

observe the following features of the shift in I, M , and N :
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• Shift in I: The shift of parameter I affects the vertical shifting of the profiles for the

entire region. PC1 could explain the vertical shifting of the profiles except for the right

tail. On the other hand, PC3 explains almost all the variation in vertical shifting in

the right tail and slightly the variation at the peak.

• Shift in M : The shift of parameter M mainly affects the scale of the profiles. PC2

captures the variation in the height of the peak. PC1 also explains some variation of

the vertical shifting of the profiles at the peak. PC3 captures slightly the variation at

the peak.

• Shift in N : The shift of parameter N mainly affects the declining steepness of the

curves. PC2 obviously can explain the variation of this sort, while PC3 just picks up a

little of this mode of variation.

Based on the aforementioned features, we choose the first two PC-scores following the

usual practice of PCA to detect the shifts of I, M , and N . In addition, we select the first

and the third PC-scores of each individual profiles to detect only the shift of I. Then we

compare the performances between the two different choices on detecting the shift in I.

4.3 ARL Comparison Study

In this subsection, we compare the ARL performances of our monitoring schemes to those of

the schemes proposed in Shiau, Huang, Lin, and Tsai [19] for Phase II monitoring. Denote

the in-control ARL by ARL0 . Following Liu, Singh, and Teng [14], all charts are designed to

have the same ARL0 = 20, which corresponds to the false-alarm rate of a = 0.05.

For ARL comparison, we consider the I-shift from µI to µI + ασI , α = 0, 0.25, . . . , 3,

M -shift from µM to µM + βσM , β = 0, 0.25, . . . , 3, and N -shift from µN to µN + γσN , γ =

0, 0.25, . . . , 3. We refer to these types of shifts as the location shift (or mean shift) of the

parameters. Shiau, Huang, Lin, and Tsai [19] applied PCA to the covariance matrix Σ0

in equation (15) without the σ2
ε δij term to obtain eigenvalues, λ1 ≥ · · · ≥ λp ≥ 0 and

the corresponding unit eigenvectors v1, . . . , vp. Choose an appropriate number k such that

the proportion of the total variation that the first k principal components account for (i.e.,
∑k

r=1 λr/
∑p

r=1 λr) reaches a desired level. For each incoming profile in Phase II monitoring,
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smooth the profile and project it onto the first k principal components to obtain k PC-scores,

S1, . . . , Sk. They constructed a control chart for each of the k PC-scores. For a desired false-

alarm rate a, they constructed the r-th PC-score chart to monitor the statistic Sr with control

limits v′rµ0±Za/2

√
λr, r = 1, . . . , k, because Sr ∼ N(v′rµ0, λr) and the scores S1, . . . , Sk are

independent when the process is in control. If one of the first k principal components is

capable in capturing a particular mode of variation of the profiles, then it would be a good

choice to use the particular PC-score chart to monitor that particular mode of the process

shift. Unfortunately, a process shift is often reflected in more than one principal component.

When this happens, they considered a combined chart by combining all k PC-score charts.

Therefore, it means to monitor the statistic

max
1≤r≤k

|Sr − v′rµ0√
λr

|. (18)

The combined chart signals out of control when max1≤r≤k |(Sr − v′rµ0)/
√

λr| > Za′/2, where

the individual false-alarm rate a′ = 1 − (1 − a)1/k so that the overall false-alarm rate is at

the desired level a. They also considered a T 2 chart by monitoring the statistic

T 2 =
k∑

r=1

(Sr − v′rµ0)
2

λr

(19)

with the upper control limit 100(1− a) percentile of χ2
k since T 2 ∼ χ2

k when the process is in

control. Then they evaluated the aforementioned monitoring schemes by ARL values.

However, we are unable to derive the ARL values of our Phase II monitoring schemes

theoretically. Hence we estimate the ARL values by simulation. To do this, we use the first

method in Subsection 4.1 to generate the aspartame profiles. For each simulation setting,

we simulate 1008 in-control profiles and another 1008 location-shifted profiles to monitor

in Phase II monitoring. To extract the trend better, we apply smoothing splines to each

of the profiles and then apply PCA to the 1008 in-control profiles to obtain the principal

components. As explained before, we choose two principal components for evaluating the

simplicial depth values of each profile. Based on the simplicial depth values, we construct

r-chart, Q-chart, and DDMA-chart accordingly. Then we monitor the 1008 location-shifted

profiles with each of the charts, and compute the sample proportion p̂ of the out-of-control

profiles to estimate the out-of-control probability p. The estimated ARL of each chart is the
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reciprocal of p̂. Then we repeat the above procedure 2000 times to obtain 2000 estimated

ARLs. Compute the sample mean and sample standard deviation of these 2000 estimated

ARLs. Finally, we estimate the theoretical ARL of each chart by the sample mean. The

standard error of this estimate can be obtained by dividing the sample standard deviation

by
√

2000. The simulated ARL (in terms of subgroups) values and its standard error (in the

parenthesis) are listed in Tables 1-4, where the ARL is the expected number of “subgroups”

taken in order to detect shifts according to Montgomery [16].

Now, there is a problem about how the mean shifts in profile parameters react on the

scores after PCA. Would a location change in the parameters of profiles be reflected as a

location change on score data? To see this, we conduct a simulation study as follows. We

generate 1008 in-control profiles as the reference sample, 1008 location-shifted profiles with

I-shift from µI to µI + ασI , α = 0, 1, 2, 3, 1008 location-shifted profiles with M -shift from

µM to µM + βσM , β = 0, 1, 2, 3, and 1008 location-shifted profiles with N -shift from µN

to µN + γσN , γ = 0, 1, 2, 3. First we smooth the profiles, then apply PCA to the reference

sample, and finally project the profiles to obtain the specified two PC-scores. The scatterplots

of the two PC-scores are shown in Figures 7 to 10, where the reference and Phase II points

are represented by color red and blue, respectively. We observe the following:

• Shift in I: Figures 7(a) to 7(d) plot the bivariate points (PC-score 1, PC-score 2) cor-

responding to α = 0, 1, 2, 3, respectively. In Figures 7(b) to 7(d), we can see that there

is a location change from the reference points to the Phase II points. As α gets larger,

the location change is more apparent. The trend is accentuated as shown in Figures

8(a) to 8(d), which plot the bivariate points (PC-score 1, PC-score 3) corresponding

to α = 0, 1, 2, 3. It means that the deviation from the reference points to the Phase II

points captured by PC1 and PC3 is more obvious than that captured by PC1 and PC2

for the same α. Based on the result, we expect the performance of detecting location

shift in I using PC1 and PC3 is better than that using PC1 and PC2.

• Shift in M : Figures 9(a) to 9(d) plot the bivariate points (PC-score 1, PC- score 2)

corresponding to β = 0, 1, 2, 3. In Figures 9(b) to 9(d), we can see that there is a

location change from the reference points to the Phase II points. The location change
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becomes more obvious as β gets larger.

• Shift in N : Figures 10(a) to 10(d) plot the bivariate points (PC-score 1, PC- score 2)

corresponding to γ = 0, 1, 2, 3. In Figures 10(b) to 10(d), we can see that there is a

location change from the reference points to the Phase II points. The location change

becomes more obvious as γ gets larger. The bivariate points are even separated into

two clusters when γ = 3.

In summary, location changes in the different parameters in the aspartame example would

result in location changes in the bivariate PC-scores points.

Figures 11/12, 13, and 14 display the ARL curves for shifts in I, M , and N , respectively.

Each figure consists of six types of control charts, including the r-chart, three PC-score charts,

combined chart, and T 2 chart. From these figures, the following are observed:

• In catching the shift in I as shown in Figure 11, the r-chart using PC1 and PC2 is

only more powerful than PC2 chart, which hardly has any power. Because the mode

of variation in vertical shifting of the profiles is mainly explained by PC1 for x < 2.5

and PC3 in the right tail, while PC2 only picks up a little for x < 2.5, we construct

the r-chart using PC1 and PC3 instead of PC1 and PC2 to compare the detecting

performances. As shown in Figure 12, the r-chart using PC1 and PC3 is almost equally

powerful to the combined chart and T 2 chart except for the small shift α ≤ 0.5, and

more powerful than PC1 chart and PC2 chart. However, it is less powerful than PC3

chart, while the difference in ARL gets smaller as the shift gets larger.

• In catching the shift in M as shown in Figure 13, the r-chart using PC1 and PC2

performs better than the others, with the exception that PC1, PC2, T 2, and combined

charts are slightly better for the small shift α ≤ 0.5. For α > 0.5, the order of the

performance is r > PC2 > T 2 > Combined > PC1. The PC3 chart does not have much

power because PC3 only captures slightly the variation at the peak.

• In catching the shift in N as shown in Figure 14, the r-chart using PC1 and PC2

performs the best for the shift α ≥ 0.5, but PC1, PC2, T 2, and combined charts

perform slightly better for the small shift α ≤ 0.5. PC3 chart has a strange ARL curve;
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Shiau, Huang, Lin, and Tsai [19] explained that it may be caused by the fact that the

shift in the mean vector when projected onto PC3, v′3δ, is not monotone in the shift

multiple δ.

It may sound a little bit odd that the r-chart using PC1 and PC2 is less powerful than

the r-chart using PC1 and PC3 while the former account for higher proportion of the total

variation than the latter. This may be explained by that PC1 and PC3 explain almost all

the variation in vertical shifting for the whole area, but PC1 and PC2 do not explain the

variation in vertical shifting for x > 2.5. This suggests us to choose principal components

according to their ability in capturing the variation of the profiles rather than the percentage

of the total variation they can explain.

In the preceding comparison, we only compare the ARL values between r, PC-scores,

combined, and T 2 charts because these charts all monitor one profile at a time, while Q-

chart and DDMA-chart monitor a statistic involving q profiles at a time. Next, we compare

the ARL values between r, Q, and DDMA charts using the aspartame example. Figures

15/16, 17, and 18 display the ARL (in terms of subgroups) curves for shifts in I, M , and

N , respectively. Each figure consists of r-chart, three Q-charts and three DDMA-charts with

subgroup size q = 2, 4, 6. We summarize our observations as follows:

• Figures 15, 17, and 18 (16), the r, Q and DDMA charts are based on PC1 and PC2

(PC1 and PC3). For I-shift with α < 1.25 (Figure 15), we see that the Q-chart is

more powerful with smaller q. This is odd because normally power increases as the

subgroup size gets larger. But for α ≥ 1.25, it gets “normal”, i.e., Q6 > Q4 > Q2 > r.

Here Qi denotes the Q-chart with subgroup size i, i = 2, 4, 6. Figures 16 to 18 show

the same phenomenon, except for the cutoff point for “abnormality” is 0.5 for I-shift

(with PC1 and PC3), and 0.25 for both M -shift and N -shift. And we can see that the

DDMA-chart performs better than the Q-chart for the same subgroups size.

• When detecting the location-shift in I, the charts based on PC1 and PC3 are more

powerful than those based on PC1 and PC2. For DDMA charts in Figures 15 to 18,

the detecting power increases as the subgroup size q increases. Then there is a strong

indication of a location shift according to Liu, Singh, and Teng [14].
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• Another surprising phenomenon is on the ARL performance when the process is in con-

trol. According to the desired false-alarm rate a = 0.05, we expect that the estimated

ARL is close to ARL0 = 20. However, we see that the estimated ARLs of the Q-charts

are larger than ARL0 = 20, and the estimated ARLs of the DDMA-charts are slightly

smaller than ARL0 = 20 when the process is in control. Liu [11] mentioned that the

the Q-values follow a normal distribution as the minimum of the reference sample size

m and subgroup size q goes to ∞. But given the limited subgroup size q, the Q-values

deviate from the normal distribution. For the same reason, the r and DDMA values

both approach a Unif (0, 1) as the reference sample size gets large enough. But given

the limited size (1008), the r and DDMA values both deviate slightly from Unif (0, 1).

Hence the estimated ARLs when the process is in control may deviate slightly from

ARL0 = 20.

It may require different number of profiles for plotting one point on the control chart

when the subgroup size is different. It would be more equitable to define run length as the

expected number of profiles taken when the control chart signals out-of-control.

Figures 19/20 (23/24), 21 (25), and 22 (26) display the ARL (in terms of profiles) curves

for shifts in I, M , and N , respectively. This ARL is the expected number of profiles taken to

detect shifts. Each figure consists of r-chart and three Q-charts (three DDMA-charts) with

subgroup size q = 2, 4, 6. We find that:

• Figures 19 to 22 show that we need less number of profiles on average to detect location-

shifted profiles with smaller q.

• For I-shift with α > 1.25 (Figure 24), it shows that we need less number of profiles on

average to detect location-shifted profiles with smaller q. Figures 25 and 26 show the

same phenomenon, except for the cutoff point, which is 1 for both M -shift and N -shift.

Finally, we consider shifts in the the standard deviation of I, M , and N . Consider the

I-shift from σI to ασI , α = 1, 1.5, . . . , 9, M -shift from σM to βσM , β = 1, 1.5, . . . , 9, and N -

shift from σN to γσN , γ = 1, 1.5, . . . , 9. We refer to these types of shifts as scale shifts of the

parameters. We use the second method described in Subsection 4.1 to generate the aspartame

profiles. Following the same simulation procedure as given for the “location shifts” described
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earlier, we obtain simulated ARL (in terms of subgroups) values along with their standard

error and list them in Tables 5-8, where the ARL is the expected number of “subgroups”

taken to detect shifts.

As in the case of the location change, we wonder how a scale change in the parameters

of profiles reacts in the bivariate score data. Would that be a scale change too? Again we

conduct the same simulation procedure as before for the “location change”. Figures 27 to 30

display 1008 score data of the reference sample in red and 1008 Phase II data in blue. We

are led to some observations as follows:

• Shift in I: Figures 27(a) to 27(d) plot the bivariate points (PC-score 1, PC-score 2)

corresponding to α = 1, 3, 6, 9. In Figures 27(b) to 27(d), we can see that there is

a scale change from the reference points to the Phase II points. As α gets larger,

the scale change is more obvious. And the trend is accentuated as shown in Figures

28(a) to 28(d), which plot the bivariate points based on PC-score 1 and PC-score 3

corresponding to α = 1, 3, 6, 9. It means that the deviation from the reference points

to the Phase II points captured by PC1 and PC3 is more obvious than that captured

by PC1 and PC2 for the same α. Based on the result, we expect the performance of

detecting scale-shift in I using PC1 and PC3 would be better than that using PC1 and

PC2.

• Shift in M : Figures 29(a) to 29(d) plot the bivariate points (PC-score 1, PC-score 2)

corresponding to β = 1, 3, 6, 9. From Figures 29(b) to 29(d), we can see that there is a

scale change with a slight location change. The change accentuates as β gets larger.

• Shift in N : Figures 30(a) to 30(d) plot the bivariate points (PC-score 1, PC-score 2)

corresponding to γ = 1, 1.5, 2, 2.5. Figures 30(b) to 30(d) show that both location and

scale change and the changes become more obvious as γ gets larger.

We compare the ARL values between r, Q, and DDMA charts using the aspartame ex-

ample. Figures 31/32, 33, and 34 display the ARL (in terms of subgroups) curves for shifts

in I, M , and N , respectively. Each figure consists of r-chart, three Q-charts and three

DDMA-charts with subgroup size q = 2, 4, 6. We summarize our observations as follows:
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• In Figures 31, 33, and 34 (32), the r, Q, and DDMA charts are based on PC1 and

PC2 (PC1 and PC3). For I-shift with α < 2 (Figure 31), the order of the performance

is about r > Q2 > Q4 > Q6. This is abnormal because the power decreases as

the subgroup size gets larger. But for α ≥ 2, it gets “normal”, i.e., Q6 > Q4 >

Q2 ≈ r. Figures 32 to 34 show the same phenomenon, except for the cutoff point for

“abnormality”, which is 1.25 for I-shift (with PC1 and PC3), M -shift, and N -shift.

And we can see that the Q-chart performs slightly better than the DDMA-chart for the

same subgroups size.

• For DDMA charts in Figures 31 to 33, the detecting ability does not improve as the

subgroup size increases. According to Liu, Singh, and Teng [14], there is only a scale

change between the bivariate points of the reference and the Phase II points; on the

other hand, in Figure 34, the detecting power increases as the subgroup size q increases,

indicating there is a location change between the bivariate points of the reference and

the Phase II points according to Liu, Singh, and Teng [14].

• When detecting the scale-shift in I, the charts based on PC1 and PC3 are more powerful

than those based on PC1 and PC2. And the estimated ARLs of the Q-charts and

DDMA-charts deviate from ARL0 = 20 because of the same reasons that the reference

samples size is not large enough.

Figures 35/36 (39/40), 37 (41), and 38 (42) display the ARL (in terms of profiles) curves

for shifts in I, M , and N , respectively. Each figure consists of r-chart and three Q-charts

(three DDMA-charts) with subgroup size q = 2, 4, 6. We find the following:

• It shows that we need less number of profiles on average to detect scale-shifted profiles

with smaller q when using either Q-chart or DDMA-chart.

5 Concluding Remarks

In this study, we propose and discuss nonparametric Phase II monitoring schemes for nonlin-

ear profiles with random effects. We first smooth all the profiles. Next, we utilize principal

component analysis to analyze the variability of the smoothed reference profiles and then
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project each smoothed profile onto the pricipal components to obtain two PC-scores. We

calculate the simplicial depth values, then construct three control charts for monitoring r, Q,

and DDMA values.

By the ARL comparative study, we see that the r-chart is comparable with the control

charts proposed in Shiau, Huang, Lin, and Tsai [19], which were designed under the Gaussian

assumption. And the r, Q and DDMA charts based on simplicial depth are completely

nonparametric and hence have broader applicability.

When the shift corresponds to a mode of variation that two principal components rep-

resent, it would be ideal to use the r, Q, and DDMA-charts based on the two particular

PC-scores for process monitoring. From the aspartame study, we could see that the detect-

ing power of the nonparametric charts is much better when we choose the suitable principal

components with higher ability of capturing the variation. In this study, we just choose two

principal components due to the restriction in computing. However, a mode of variation may

be captured by three or more principal components. If we just construct control charts with

only two PC-scores, there might be a risk of not being able to detect other types of process

changes not captured by the two principal components. However, the time of computing

simplicial depth values increases very fast as the number of PC-scores used increases. Hence

we need a fast algorithm for computing simplicial depth when the dimension of the data is

larger than two.

In practice, before constructing the control charts, we first project the reference and

incoming profiles onto the chosen principal components to obtain the corresponding PC-

scores. Then we could use the scatter plot of the PC-scores to see if there is a location

change and/or a scale change between the reference profiles and the incoming profiles. If

there is only a location change, we suggest monitoring the incoming profiles by the DDMA-

chart.

This paper is only focused on the Phase II of profile monitoring based on simplicial

depth. The analysis in Phase I is to analyze a historical set of a fixed number of process

samples collected over time to understand the process variation, determine the stability of

the process, and remove samples associated with any assignable causes. After removing those

samples, we could have a good reference sample to establish the control charts for a future
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process. Therefore, an effective Phase I monitoring scheme is desired and can be a topic for

future research. Finally, we could use other notions of data depth to perform the proposed

monitoring scheme in this study. Because different notions of depth are capable of capturing

different characteristics, the monitoring schemes based on different notions of depth will have

different detecting powers and performances.
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Table 1: ARLs (subgroups) and their standard errors (in parenthesis) of detecting location

shift in I based on PC1 and PC2.

α r Q(2) Q(4) Q(6) DDMA(2) DDMA(4) DDMA(6)

0
20.48693 20.79692 21.61884 23.13499 20.29305 19.62467 18.92461

(0.09526) (0.11716) (0.18213) (0.30739) (0.10787) (0.13130) (0.15019)

0.25
20.43422 20.69100 21.47280 22.92248 20.07868 19.36598 18.69262

(0.09208) (0.11576) (0.16741) (0.30024) (0.10224) (0.12989) (0.15032)

0.5
20.02203 20.35917 21.19641 22.54363 19.41685 18.00813 16.92356

(0.09040) (0.11086) (0.19422) (0.28075) (0.09679) (0.11531) (0.13814)

0.75
19.71790 19.71013 20.02253 21.37707 18.45892 16.36789 14.65411

(0.09410) (0.10518) (0.16191) (0.26818) (0.09684) (0.10961) (0.11595)

1
18.95950 18.96939 19.09156 20.17451 17.37425 14.72594 12.79233

(0.08320) (0.09742) (0.14599) (0.24112) (0.08793) (0.09123) (0.09446)

1.25
17.97385 17.78855 17.70917 17.81937 15.99159 12.77382 10.51019

(0.08221) (0.09013) (0.13607) (0.17656) (0.08097) (0.08052) (0.07561)

1.5
17.13448 16.89799 16.25883 16.04143 14.53464 10.91150 8.61732

(0.07733) (0.08714) (0.11242) (0.14917) (0.07123) (0.06578) (0.05965)

1.75
16.10079 15.60902 14.84505 14.57104 13.13461 9.372002 7.15734

(0.06944) (0.07838) (0.09857) (0.13062) (0.06541) (0.05452) (0.04717)

2
15.19611 14.54783 13.56091 13.04229 11.87879 7.99688 5.92947

(0.06879) (0.06686) (0.08588) (0.10986) (0.05638) (0.04462) (0.03652)

2.25
14.09497 13.33807 12.12550 11.28710 10.51769 6.75348 4.87103

(0.06138) (0.06407) (0.07462) (0.09056) (0.05141) (0.03716) (0.02967)

2.5
13.25920 12.19119 10.79697 9.78882 9.43616 5.81554 4.12551

(0.05813) (0.05445) (0.06438) (0.06908) (0.04382) (0.03193) (0.02345)

2.75
12.25319 11.09979 9.63597 8.51367 8.38743 5.00680 3.49414

(0.05475) (0.04696) (0.05374) (0.05371) (0.03878) (0.02594) (0.01883)

3
11.24104 10.08449 8.44479 7.41167 7.45780 4.31190 2.98960

(0.04639) (0.04109) (0.04428) (0.04622) (0.03280) (0.02080) (0.01447)
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Table 2: ARLs (subgroups) and their standard errors (in parenthesis) of detecting location

shift in I based on PC1 and PC3.

α r Q(2) Q(4) Q(6) DDMA(2) DDMA(4) DDMA(6)

0
20.75929 20.95933 21.7614 23.63813 20.39847 19.69034 19.06825

(0.09695) (0.11813) (0.18242) (0.32498) (0.10657) (0.12828) (0.14695)

0.25
19.59859 19.65221 20.15500 21.05829 18.38348 16.25833 14.49522

(0.09028) (0.10614) (0.16626) (0.24253) (0.09379) (0.09998) (0.10810)

0.5
16.87240 16.46674 15.87757 15.62586 13.96633 10.31626 8.11181

(0.07863) (0.08388) (0.11789) (0.14189) (0.07223) (0.06451) (0.05810)

0.75
13.52107 12.59823 11.31553 10.31735 9.84344 6.20249 4.42151

(0.06129) (0.05752) (0.06772) (0.07623) (0.04750) (0.03287) (0.02569)

1
10.57949 9.33601 7.69949 6.56932 6.80735 3.84274 2.65904

(0.04479) (0.03847) (0.03847) (0.03751) (0.02934) (0.01814) (0.01220)

1.25
8.10983 6.78468 5.20689 4.20812 4.79046 2.56285 1.80423

(0.03211) (0.02361) (0.02132) (0.01825) (0.01907) (0.00946) (0.00601)

1.5
6.25277 4.97746 3.59859 2.82835 3.51667 1.89008 1.39921

(0.02272) (0.01482) (0.01166) (0.00965) (0.01219) (0.00553) (0.00336)

1.75
4.88287 3.74022 2.59987 2.02394 2.64901 1.49627 1.18416

(0.01653) (0.00956) (0.00662) (0.00506) (0.00778) (0.00340) (0.00183)

2
3.87600 2.87772 1.97926 1.56180 2.09109 1.26564 1.07638

(0.01224) (0.00622) (0.00402) (0.00285) (0.00533) (0.00201) (0.00091)

2.25
3.15175 2.29311 1.58987 1.29644 1.72287 1.13733 1.02869

(0.00909) (0.00421) (0.00248) (0.00165) (0.00367) (0.00122) (0.00047)

2.5
2.60752 1.89682 1.35061 1.14846 1.47632 1.06557 1.00916

(0.00657) (0.00290) (0.00155) (0.00096) (0.00250) (0.00066) (0.00019)

2.75
2.20407 1.61513 1.20130 1.06849 1.30736 1.02925 1.00250

(0.00526) (0.00200) (0.00102) (0.00058) (0.00172) (0.00036) (7.03e−5)

3
1.90100 1.42234 1.11013 1.02860 1.19411 1.01176 1.00062

(0.00402) (0.00146) (0.00066) (0.00033) (0.00128) (0.00019) (3.01e−5)
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Table 3: ARLs (subgroups) and their standard errors (in parenthesis) of detecting location

shift in M based on PC1 and PC2.

β r Q(2) Q(4) Q(6) DDMA(2) DDMA(4) DDMA(6)

0
20.48693 20.79692 21.61884 23.13500 20.29305 19.62467 18.92461

(0.09526) (0.11716) (0.18213) (0.30739) (0.10787) (0.13130) (0.15019)

0.25
18.87965 18.91148 19.00673 19.33581 17.29010 14.61480 12.62978

(0.08803) (0.10521) (0.16114) (0.20640) (0.08728) (0.09315) (0.09689)

0.5
15.21955 14.51221 13.42582 12.88743 11.85575 8.04523 5.91859

(0.06831) (0.06987) (0.08906) (0.11012) (0.05901) (0.04794) (0.03745)

0.75
11.28638 10.12339 8.53366 7.42808 7.47017 4.34565 3.01016

(0.04967) (0.04352) (0.04474) (0.04747) (0.03373) (0.02160) (0.01553)

1
8.19256 6.83784 5.23509 4.27117 4.84071 2.62702 1.84132

(0.03348) (0.02309) (0.02033) (0.01818) (0.01920) (0.01021) (0.00633)

1.25
5.92778 4.66008 3.32941 2.60648 3.27705 1.78277 1.33408

(0.02198) (0.01347) (0.01013) (0.00802) (0.01112) (0.00503) (0.00285)

1.5
4.39134 3.30095 2.27488 1.78019 2.36739 1.37104 1.12044

(0.01433) (0.00796) (0.00540) (0.00396) (0.00660) (0.00260) (0.00123)

1.75
3.31432 2.43971 1.68562 1.35860 1.81397 1.16772 1.03883

(0.00935) (0.00469) (0.00299) (0.00199) (0.00398) (0.00141) (0.00055)

2
2.61301 1.90203 1.35437 1.15105 1.48183 1.06721 1.00956

(0.00673) (0.00290) (0.00161) (0.00099) (0.00259) (0.00068) (0.00018)

2.25
2.13063 1.56817 1.17773 1.05767 1.27942 1.02402 1.00190

(0.00482) (0.00191) (0.00093) (0.00051) (0.00162) (0.00031) (6.14e−5)

2.5
1.78889 1.35101 1.08206 1.01840 1.15697 1.00740 1.00031

(0.00345) (0.00121) (0.00051) (0.00026) (0.00104) (0.00013) (1.94e−5)

2.75
1.54943 1.21430 1.03480 1.00482 1.08376 1.00198 1.00004

(0.00254) (0.00080) (0.00031) (0.00012) (0.00064) (5.7e−5) (5.53e−6)

3
1.37495 1.12559 1.01308 1.00120 1.04148 1.00046 1.000002

(0.00179) (0.00054) (0.00018) (6.02e−5) (0.00038) (2.09e−5) (9.97e−7)
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Table 4: ARLs (subgroups) and their standard errors (in parenthesis) of detecting location

shift in N based on PC1 and PC2.

γ r Q(2) Q(4) Q(6) DDMA(2) DDMA(4) DDMA(6)

0
20.48693 20.79692 21.61884 23.13500 20.29305 19.62467 18.92461

(0.095264) (0.11716) (0.18213) (0.30739) (0.10787) (0.13130) (0.15019)

0.25
19.12716 19.21911 19.76773 20.43308 17.83736 15.39501 13.37401

(0.08499) (0.10142) (0.20115) (0.23856) (0.09093) (0.09802) (0.10140)

0.5
15.45812 14.91607 14.00620 13.50220 12.21336 8.30657 6.18432

(0.07078) (0.07181) (0.08893) (0.12442) (0.06127) (0.04792) (0.03846)

0.75
11.17898 10.07076 8.45085 7.35282 7.40810 4.28609 2.97485

(0.04769) (0.04090) (0.04194) (0.04325) (0.03277) (0.02058) (0.01419)

1
7.59754 6.28081 4.73387 3.80523 4.41827 2.37783 1.68492

(0.02970) (0.02082) (0.01805) (0.01573) (0.01655) (0.00852) (0.00556)

1.25
4.98346 3.81008 2.65503 2.06489 2.69378 1.51446 1.19437

(0.01798) (0.01001) (0.00695) (0.00535) (0.00812) (0.00349) (0.00185)

1.5
3.29250 2.42420 1.67204 1.34976 1.80250 1.16089 1.03638

(0.00946) (0.00456) (0.00277) (0.00189) (0.00406) (0.00132) (0.00050)

1.75
2.29045 1.67063 1.22857 1.08171 1.34088 1.03529 1.00341

(0.00548) (0.00216) (0.00113) (0.00065) (0.00189) (0.00043) (9.07e−5)

2
1.66157 1.27829 1.05504 1.01008 1.11601 1.00396 1.00012

(0.00297) (0.00101) (0.00042) (0.00019) (0.00084) (9.51e−5) (1.25e−5)

2.25
1.30876 1.09522 1.00762 1.00047 1.02882 1.00019 1.000001

(0.00158) (0.00043) (0.00013) (3.71e−5) (0.00029) (1.2e−5) (7.06e−7)

2.5
1.11990 1.02409 1.00046 1.000009 1.00417 1.000004 1.00000

(0.00075) (0.00018) (3.14e−5) (5.18e−6) (7.34e−5) (1.72e−6) (0)

2.75
1.03454 1.00368 1.00001 1.00000 1.00026 1.00000 1.00000

(0.00031) (6.18e−5) (4.45e−6) (0) (1.3e−5) (0) (0)

3
1.00614 1.00035 1.00000 1.00000 1.000006 1.00000 1.00000

(9.26e−5) (1.88e−5) (0) (0) (2.16e−6) (0) (0)
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Table 5: ARLs (subgroups) and their standard errors (in parenthesis) of detecting scale shift

in I based on PC1 and PC2.

α r Q(2) Q(4) Q(6) DDMA(2) DDMA(4) DDMA(6)

1
20.67012 21.22365 22.25286 24.21759 20.50273 19.80162 19.12371

(0.09445) (0.13200) (0.19959) (0.33513) (0.10848) (0.13065) (0.15481)

1.5
17.78086 18.07949 18.25303 18.67111 17.98263 17.66549 17.01383

(0.07696) (0.09163) (0.13982) (0.19843) (0.08690) (0.11178) (0.12360)

2
14.77782 15.12427 14.60299 14.21077 15.27372 15.23563 14.84329

(0.05585) (0.06836) (0.10244) (0.12106) (0.07009) (0.08899) (0.10175)

2.5
12.19828 12.55379 11.54353 10.74333 12.84455 12.90306 12.61256

(0.04358) (0.05214) (0.06606) (0.07792) (0.05347) (0.07113) (0.08130)

3
10.10984 10.38580 9.10033 8.14947 10.66699 10.82871 10.64217

(0.03131) (0.03822) (0.04386) (0.04722) (0.03914) (0.05265) (0.06244)

3.5
8.50344 8.62680 7.30787 6.32948 9.02083 9.13611 9.07220

(0.02461) (0.02849) (0.03066) (0.03056) (0.03043) (0.03961) (0.04545)

4
7.22936 7.37626 6.02618 5.09959 7.68215 7.84344 7.75702

(0.01857) (0.02266) (0.02243) (0.02178) (0.02378) (0.03163) (0.03627)

4.5
6.20292 6.26444 5.01360 4.13030 6.55082 6.66550 6.60755

(0.01509) (0.01736) (0.01652) (0.01477) (0.01905) (0.02451) (0.02923)

5
5.39589 5.44304 4.25406 3.46858 5.67596 5.81802 5.75899

(0.01182) (0.01397) (0.01329) (0.01179) (0.01507) (0.02057) (0.02331)

5.5
4.79231 4.82238 3.68759 2.96646 5.02666 5.12217 5.09553

(0.00987) (0.0114) (0.01018) (0.00867) (0.01237) (0.01631) (0.01926)

6
4.28842 4.27425 3.21367 2.5728 4.47452 4.55686 4.52688

(0.00829) (0.00926) (0.00779) (0.00654) (0.01050) (0.01323) (0.01575)

6.5
3.88108 3.86120 2.88172 2.30384 4.03348 4.10018 4.09693

(0.00698) (0.00784) (0.00649) (0.00532) (0.00827) (0.01125) (0.01318)

7
3.54627 3.53252 2.60924 2.08803 3.69341 3.75776 3.73745

(0.00580) (0.00665) (0.00547) (0.00450) (0.00740) (0.00979) (0.01149)

7.5
3.27622 3.25382 2.39350 1.91306 3.39060 3.44618 3.43938

(0.00522) (0.00590) (0.00481) (0.00381) (0.00645) (0.00848) (0.01009)

8
3.04613 3.02176 2.21345 1.77610 3.13665 3.17701 3.17415

(0.00457) (0.00513) (0.00395) (0.00309) (0.00543) (0.00704) (0.00838)

8.5
2.85808 2.82693 2.06549 1.66629 2.94722 2.98968 2.97484

(0.00407) (0.00444) (0.00335) (0.00261) (0.00499) (0.00632) (0.00750)

9
2.70077 2.67435 1.95283 1.58155 2.77276 2.79593 2.78879

(0.00372) (0.00403) (0.00302) (0.00232) (0.0043) (0.00551) (0.00633)
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Table 6: ARLs (subgroups) and their standard errors (in parenthesis) of detecting scale shift

in I based on PC1 and PC3.

α r Q(2) Q(4) Q(6) DDMA(2) DDMA(4) DDMA(6)

1
20.46122 20.72533 21.61736 22.79789 20.24262 19.67375 18.97339

(0.09483) (0.11428) (0.18182) (0.30295) (0.10191) (0.12926) (0.15231)

1.5
8.21920 7.19486 5.73495 4.73287 8.27118 8.10817 7.89364

(0.02665) (0.02258) (0.02186) (0.02045) (0.03097) (0.03802) (0.04280)

2
4.62989 3.99933 2.96645 2.34368 4.71076 4.61118 4.50273

(0.01291) (0.0093) (0.00787) (0.00633) (0.01592) (0.01845) (0.02032)

2.5
3.27610 2.86104 2.09422 1.67571 3.32606 3.28117 3.22177

(0.00857) (0.00589) (0.00444) (0.00374) (0.01044) (0.01178) (0.01272)

3
2.60494 2.31582 1.70138 1.39319 2.64366 2.62125 2.56902

(0.00548) (0.00329) (0.00245) (0.00181) (0.00683) (0.00796) (0.00818)

3.5
2.23632 2.00764 1.49333 1.2546 2.26837 2.24666 2.20517

(0.00428) (0.00248) (0.00179) (0.00124) (0.00554) (0.00630) (0.00650)

4
1.98918 1.80713 1.36568 1.17401 2.02204 1.99687 1.96667

(0.00364) (0.00197) (0.0014) (0.00098) (0.00471) (0.00523) (0.00535)

4.5
1.83093 1.67677 1.28512 1.12722 1.85800 1.83717 1.81212

(0.00302) (0.00165) (0.00114) (0.00077) (0.00397) (0.00446) (0.00452)

5
1.70683 1.57550 1.22694 1.09357 1.73162 1.71338 1.69439

(0.00259) (0.00141) (0.00094) (0.00063) (0.00338) (0.00379) (0.00375)

5.5
1.61495 1.50541 1.18627 1.07253 1.64121 1.62722 1.60571

(0.00227) (0.00124) (0.00081) (0.00053) (0.00312) (0.00351) (0.00344)

6
1.54299 1.44635 1.15496 1.05680 1.56526 1.55259 1.53458

(0.00194) (0.00109) (0.00071) (0.00048) (0.00278) (0.00307) (0.00313)

6.5
1.49058 1.40231 1.13143 1.04513 1.50859 1.49617 1.48127

(0.00189) (0.00100) (0.00062) (0.00040) (0.00249) (0.00268) (0.00265)

7
1.44287 1.36705 1.11397 1.03780 1.45906 1.44821 1.43494

(0.00174) (0.00103) (0.00068) (0.00042) (0.00250) (0.00263) (0.00259)

7.5
1.40159 1.33497 1.09830 1.03069 1.41935 1.40724 1.39563

(0.00153) (0.00085) (0.00051) (0.00031) (0.00212) (0.00217) (0.00215)

8
1.37418 1.30867 1.08706 1.02622 1.38637 1.37481 1.36543

(0.00150) (0.00078) (0.00049) (0.00029) (0.00193) (0.00199) (0.00194)

8.5
1.34228 1.28587 1.07696 1.02235 1.35392 1.34641 1.33571

(0.00124) (0.00076) (0.00046) (0.00028) (0.00174) (0.00183) (0.00181)

9
1.31694 1.26379 1.06695 1.01837 1.33236 1.32386 1.31257

(0.00119) (0.00070) (0.00041) (0.00025) (0.00172) (0.00177) (0.00167)
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Table 7: ARLs (subgroups) and their standard errors (in parenthesis) of detecting scale shift

in M based on PC1 and PC2.

β r Q(2) Q(4) Q(6) DDMA(2) DDMA(4) DDMA(6)

1
20.67012 21.22365 22.25286 24.21759 20.50273 19.80162 19.12371

(0.09445) (0.13200) (0.19959) (0.33513) (0.10848) (0.13065) (0.15481)

1.5
6.67091 6.36028 5.06191 4.16846 6.64752 6.55274 6.40520

(0.01771) (0.01784) (0.01705) (0.01572) (0.02070) (0.02536) (0.02853)

2
3.73607 3.58072 2.65274 2.11182 3.72963 3.70388 3.65904

(0.00694) (0.00677) (0.00566) (0.00443) (0.00774) (0.00934) (0.01096)

2.5
2.71314 2.62041 1.92161 1.55722 2.70064 2.68055 2.65067

(0.00382) (0.00379) (0.00289) (0.00219) (0.00425) (0.0053) (0.00616)

3
2.20816 2.15461 1.58922 1.3243 2.19775 2.18738 2.17193

(0.00253) (0.00267) (0.00194) (0.00148) (0.00279) (0.00347) (0.00394)

3.5
1.92638 1.88967 1.41190 1.20697 1.92464 1.91554 1.90160

(0.00183) (0.00200) (0.00140) (0.00102) (0.00208) (0.00258) (0.00295)

4
1.74983 1.72331 1.30991 1.14313 1.74710 1.74008 1.72976

(0.00148) (0.00161) (0.00110) (0.00076) (0.00159) (0.00191) (0.00222)

4.5
1.62784 1.60693 1.23880 1.10151 1.62450 1.61728 1.60948

(0.00122) (0.00137) (0.00092) (0.00066) (0.00137) (0.00159) (0.0018)

5
1.53910 1.52134 1.19249 1.07655 1.53445 1.52805 1.52402

(0.00106) (0.00122) (0.00079) (0.00054) (0.00113) (0.00136) (0.00156)

5.5
1.47280 1.45790 1.15789 1.05963 1.46830 1.46241 1.45636

(0.00092) (0.00108) (0.00069) (0.00048) (0.00096) (0.00114) (0.00133)

6
1.41906 1.40778 1.13147 1.04630 1.41463 1.41135 1.40503

(0.00082) (0.00100) (0.00061) (0.00040) (0.00086) (0.00101) (0.00114)

6.5
1.37730 1.36742 1.11208 1.03738 1.37263 1.36632 1.36157

(0.00073) (0.00087) (0.00054) (0.00036) (0.00078) (0.00092) (0.00103)

7
1.34246 1.33333 1.09607 1.03049 1.33805 1.33374 1.32923

(0.00066) (0.00081) (0.00049) (0.00032) (0.00073) (0.00082) (0.00092)

7.5
1.31339 1.30639 1.08347 1.02496 1.30776 1.30191 1.29921

(0.00061) (0.00076) (0.00046) (0.00029) (0.00065) (0.00075) (0.00083)

8
1.28870 1.28267 1.07391 1.02177 1.28400 1.27845 1.27538

(0.00058) (0.00073) (0.00042) (0.00027) (0.00061) (0.00068) (0.00078)

8.5
1.26741 1.26185 1.06491 1.01750 1.26220 1.25854 1.25412

(0.00055) (0.00067) (0.00039) (0.00024) (0.00056) (0.00065) (0.00072)

9
1.24892 1.24392 1.05729 1.01513 1.24408 1.23935 1.23681

(0.00053) (0.00067) (0.00038) (0.00022) (0.00054) (0.00060) (0.00067)
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Table 8: ARLs (subgroups) and their standard errors (in parenthesis) of detecting scale shift

in N based on PC1 and PC2.

γ r Q(2) Q(4) Q(6) DDMA(2) DDMA(4) DDMA(6)

1
20.67012 21.22365 22.25286 24.21759 20.50273 19.80162 19.12371

(0.09445) (0.13200) (0.19959) (0.33513) (0.10848) (0.13065) (0.15481)

1.5
6.99425 6.57388 5.21213 4.28962 6.49779 5.89276 5.46264

(0.01918) (0.01857) (0.01767) (0.01566) (0.02047) (0.02192) (0.02408)

2
3.91145 3.68223 2.73143 2.17304 3.55242 3.10464 2.80598

(0.00779) (0.00715) (0.00597) (0.00476) (0.00775) (0.00779) (0.00779)

2.5
2.80449 2.67102 1.95531 1.57892 2.51716 2.18003 1.95550

(0.00426) (0.00417) (0.00320) (0.00248) (0.00420) (0.00401) (0.00382)

3
2.28353 2.19862 1.61861 1.34022 2.04287 1.76205 1.58418

(0.00282) (0.00275) (0.00201) (0.00151) (0.00252) (0.00236) (0.00212)

3.5
1.98362 1.91953 1.43281 1.21982 1.77759 1.53762 1.38920

(0.00209) (0.00212) (0.00153) (0.00108) (0.00189) (0.00160) (0.00139)

4
1.78882 1.74350 1.32055 1.14942 1.60983 1.39743 1.27426

(0.00160) (0.00168) (0.00114) (0.00080) (0.00142) (0.00118) (0.00103)

4.5
1.65965 1.62316 1.24877 1.10894 1.49419 1.30566 1.20011

(0.00133) (0.00139) (0.00091) (0.00066) (0.00113) (0.00096) (0.00080)

5
1.56675 1.53785 1.20156 1.08191 1.41651 1.24372 1.15054

(0.00113) (0.00121) (0.00080) (0.00055) (0.00099) (0.00077) (0.00061)

5.5
1.49582 1.46943 1.16366 1.06164 1.35442 1.19610 1.11463

(0.00099) (0.00111) (0.00069) (0.00047) (0.00084) (0.00066) (0.00053)

6
1.43918 1.41736 1.13672 1.04866 1.30650 1.16225 1.08937

(0.00087) (0.00096) (0.00061) (0.00041) (0.00072) (0.00054) (0.00042)

6.5
1.39505 1.37754 1.11672 1.03920 1.26899 1.13514 1.07081

(0.00082) (0.00092) (0.00055) (0.00036) (0.00066) (0.00048) (0.00037)

7
1.35673 1.34159 1.10034 1.03172 1.23758 1.11239 1.05574

(0.00073) (0.00083) (0.00050) (0.00032) (0.00059) (0.00043) (0.00031)

7.5
1.32674 1.31338 1.08777 1.02655 1.2132 1.09639 1.04528

(0.00066) (0.00078) (0.00048) (0.00029) (0.00054) (0.00039) (0.00028)

8
1.30108 1.28989 1.07644 1.02226 1.19212 1.08243 1.03678

(0.00062) (0.00073) (0.00043) (0.00027) (0.00050) (0.00034) (0.00024)

8.5
1.28021 1.26968 1.06831 1.01888 1.17440 1.07098 1.03013

(0.00058) (0.00070) (0.00040) (0.00026) (0.00047) (0.00031) (0.00021)

9
1.26002 1.25018 1.05954 1.01589 1.15833 1.06110 1.02462

(0.00055) (0.00066) (0.00037) (0.00022) (0.00043) (0.00028) (0.00019)
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Figure 1: Four hypothetical aspartame profiles.
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Figure 2: 24 original VDP profiles.
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Figure 3: First three eigenvectors.
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Figure 4: PC1: µ0 ± 3v1.
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Figure 5: PC2: µ0 ± 3v2.
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Figure 6: PC3: µ0 ± 3v3.
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Figure 7: Scatterplots of score data for shifts in I from µI to (a) µI (no shift), (b) µI + σI ,

(c) µI + 2σI , and (d) µI + 3σI .
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Figure 8: Scatterplots of score data for shifts in I from µI to (a) µI (no shift), (b) µI + σI ,

(c) µI + 2σI , and (d) µI + 3σI .
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Figure 9: Scatterplots of score data for shifts in M from µM to (a) µM (no shift), (b) µM +σM ,

(c) µM + 2σM , and (d) µM + 3σM .
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Figure 10: Scatterplots of score data for shifts in N from µN to (a) µN (no shift), (b) µN +σN ,

(c) µN + 2σN , and (d) µN + 3σN .
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Figure 11: For detecting location shift in I, ARL (subgroups) curves of r-chart (using PC1

and PC2), PC-scores, Combined, and T 2 charts.
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Figure 12: For detecting location shift in I, ARL (subgroups) curves of r-chart (using PC1

and PC3), PC-scores, Combined, and T 2 charts.
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Figure 13: For detecting location shift in M , ARL (subgroups) curves of r-chart (using PC1

and PC2), PC-scores, Combined, and T 2 charts.
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Figure 14: For detecting location shift in N , ARL (subgroups) curves of r-chart (using PC1

and PC2), PC-scores, Combined, and T 2 charts.
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Figure 15: For detecting location shift in I, ARL (subgroups) curves of r, Q and DDMA

charts using PC1 and PC2.
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Figure 16: For detecting location shift in I, ARL (subgroups) curves of r, Q and DDMA

charts using PC1 and PC3.
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Figure 17: For detecting location shift in M , ARL (subgroups) curves of r, Q and DDMA

charts using PC1 and PC2.
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Figure 18: For detecting location shift in N , ARL (subgroups) curves of r, Q and DDMA

charts using PC1 and PC2.
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Figure 19: For detecting location shift in I, ARL (profiles) curves of r and Q charts using

PC1 and PC2.
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Figure 20: For detecting location shift in I, ARL (profiles) curves of r and Q charts using

PC1 and PC3.
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Figure 21: For detecting location shift in M , ARL (profiles) curves of r and Q charts using

PC1 and PC2.
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Figure 22: For detecting location shift in N , ARL (profiles) curves of r and Q charts using

PC1 and PC2.
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Figure 23: For detecting location shift in I, ARL (profiles) curves of DDMA charts using

PC1 and PC2.
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Figure 24: For detecting location shift in I, ARL (profiles) curves of DDMA charts using

PC1 and PC3.
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Figure 25: For detecting location shift in M , ARL (profiles) curves of DDMA charts using

PC1 and PC2.
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Figure 26: For detecting location shift in N , ARL (profiles) curves of DDMA charts using

PC1 and PC2.
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Figure 27: Scatterplots of score data for shifts in I from σI to (a) σI (no shift), (b) 3σI , (c)

6σI , and (d) 9σI .
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Figure 28: Scatterplots of score data for shifts in I from σI to (a) σI (no shift), (b) 3σI , (c)

6σI , and (d) 9σI .
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Figure 29: Scatterplots of score data for shifts in M from σM to (a) σM (no shift), (b) 3σM ,

(c) 6σM , and (d) 9σM .
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Figure 30: Scatterplots of score data for shifts in N from σN to (a) σN (no shift), (b) 1.5σN ,

(c) 2σN , and (d) 2.5σN .
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Figure 31: For detecting scale shift in I, ARL (subgroups) curves of r, Q and DDMA charts

using PC1 and PC2.
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Figure 32: For detecting scale shift in I, ARL (subgroups) curves of r, Q and DDMA charts

using PC1 and PC3.
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Figure 33: For detecting scale shift in M , ARL (subgroups) curves of r, Q and DDMA charts

using PC1 and PC2.
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Figure 34: For detecting scale shift in N , ARL (subgroups) curves of r, Q and DDMA charts

using PC1 and PC2.
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Figure 35: For detecting scale shift in I, ARL (profiles) curves of r and Q charts using PC1

and PC2.
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Figure 36: For detecting scale shift in I, ARL (profiles) curves of r and Q charts using PC1

and PC3.
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Figure 37: For detecting scale shift in M , ARL (profiles) curves of r and Q charts using PC1

and PC2.
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Figure 38: For detecting scale shift in N , ARL (profiles) curves of r and Q charts using PC1

and PC2.
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Figure 39: For detecting scale shift in I, ARL (profiles) curves of DDMA charts using PC1

and PC2.
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Figure 40: For detecting scale shift in I, ARL (profiles) curves of DDMA charts using PC1

and PC3.

61



2 4 6 8

0
5

10
15

20
25

ARL comparison of M−shift

β

A
R

L

ddma(2)
ddma(4)
ddma(6)

Figure 41: For detecting scale shift in M , ARL (profiles) curves of DDMA charts using PC1

and PC2.
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Figure 42: For detecting scale shift in N , ARL (profiles) curves of DDMA charts using PC1

and PC2.
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