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Abstract

Typically control charts should involve phases 1 and H chartings of different
purposes. In consideration of financial-cost-and: analyst’s time, the laboratory
control charting generally do.not follow the process recommended for
manufacturing process control. For‘phase I charting, we propose several
tests using for testing if a computed control chart is appropriate for the
distribution representing the laboratory process. Power comparisons for the

proposed tests are performed and the results are displayed and discussed.
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Validating Laboratory Control Charts

Abstract
Typically control charts should involve phases I and IT chartings of different
purposes. In consideration of financial cost and analyst’s time, the labora-
tory control charting generally do not follow the process recommended for
manufacturing process control. For phase I charting, we propose several
tests using for testing if a computed control chart is appropriate for the
distribution representing the laboratory process. Power comparisons for the

proposed tests are performed and the results are displayed and discussed.

Key words: Hypothesis testing; laboratory control chart; phase I charting.

1. Introduction

The control chart is a graphical method that plots results of control sam-
ples versus time or sequential.afn number and evaluates, based on control
limits of the chart, whethersa measurement-procedure is statistical in-control
or out-control. Primarily introduced for, industrial manufacturing process
control by Walter A. Shewhart, the control chart issmow also popular as
statistical control method in clinical laboratories for elinical quality control.
The system of quality control in clinical Taboratory is designed to decrease
the probability that each result reported by the‘laboratory analyzer is un-
valid and this result may be used with-aspecified confidence by the physician
to make a diagonistic decision. Now, the clinical laboratory routinely uses
control charts. For examples, when monitoring analyzer performance in
the clinical setting, routinely the laboratories are required, based on this
chart, to test concentration of material being monitored. The performance
of dual-energy X-ray absorptiometry can be monitored using control charts
(see Garland, Lees and Stevenson (1997)). The antigen detection enzyme-
linked immunosorbent assays for hog cholera virus, foot and mouth disease
virus (see Blacksell et al. (1996)).

The control rules introduced based on industrial control procedures of

Shewhart by Levey and Jennings (1950) for comparison of control results

Typeset by ApS-TEX



with the control limits have been refined for improvement of analytical pre-
cision by a series of papers (see Westgard and Barry (1986)) that is used in

most laboratories today.

Standard control chart usage in engineering quality control should involve
two phases of different objectives. Basically, the control chart represents the
ideal distribution, so, the initial phase, called the phase I, involves a sequence
of process including planning, administration, design of the experiment,
exploratory work (e.g., graphical) and numerical analysis (e.g., estimation
or hypothesis testing) to ensure the control results are drawn from this
ideal distribution and process is truely in statistical control. In this stage,
it is to see if reliable control limits can be established to monitor future
laboratory data. Control charts are used primarily in phase I to assist
operating personnel in bringing the process into a state of statistical in-
control. In phase II, we use the control chart to quickly detect shifts from
the in-control distribution estimated in Phase I by comparing the sample

statistic for each successive sample.

Typically, in phase I, we assume-that the process is initially out of control,
so we are comparing a cellection of m, typically m =20 or 25, subgroup of
samples and the objective is to bring the process into a state of statistical
in-control. The control limits obtained early in this/phase are viewed as trial
limits. Classically in engineering quality control the:control limits are revised
and refined to ensure that the process-is in-control. The phase I analysis
is hardly executed in quality control for laboratories. The main reason is
the consideration of cost, financial cost of analyses, and more frequently the
analyst’s time. Cost increasing is raised from the fact that the practice of
quality control requires extra analytical effort. As estimated by Analytical
Method Committee (1995) the amount of extra work although varies with
circumstances but is likely to be at least 15%. With this reason, unlike
the online quality control in industry, the frequency with which analysis is
undertaken is usually very low so that taking a very long time to collect
enough historical record of observations for phase I analysis. Without an

appropriate phase I analysis, the resulted control chart is very questionable



to represent the in-control distribution and then the data released from a
laboratory are of in-appropriate quality.

In Section 2, we introduce the concept of validating a control chart
through the technique of significance test. In Section 3, we introduce two
techiques of confidence interval of control limits and, in Section 4, we intro-
duce the higest density significance (HDS) test for control chart validation.
In Sections 5 and 6, we display power comparisons for these techniques of
control chart validation. Finally, in Section 7, we present examples of data

analysis.

2. Validation of Laboratory Control Chart

Let X be the measurement with distribution F' from the system represent-
ing a characteristic of a subject of interest and X7, ..., X,, is a random sample
drawn from distribution F' and we choose a statistic T' = (X1, ..., X;;) that
has mean p; and variance o2.  Thé¢ Shewhart, control chart set p; as the
centre line and placed three standard deviations above and below the centre

line as
UL = Mt b 30',5

LCL = Mt = 30',5 (21)

If statistic T' follows a mormal or (Gaussian distribution, the limits of the
chart will cover the values-of Trin the long run with. probability 0.9973. In
practice, it is hard to believe that we know p; and.o;. Therefore, we need to
estimate them. Control charts are.calculated based on a historical record of
observations such as m subgroups of n sample and points outside the control
limits are excluded and the revised control limits are calculated. Let pg and

oo be the corresponding estimates. The estimated control limits are

UCL = pio + 3010

LCL = po — 3040 (22)

We say that the laboratory measurement system is stable when the mea-
surement values of T are fell within the limits. On the other hand, a run is
rejected and the measurement system is said to be out of control when its

measurement 71" value exceeds the control limits.



Suppose that the measurement variable X follows the normal distribution
N(p,0%) and we consider the X-chart with sample mean X = 15" X,
as the test statistic. Since X has normal distribution N (p, %2) The control
limits of the X-chart in form of (2.1) are:

UCL =p+3-%
mreym (2.3)

LCL=p— 35

By letting po and o as, respectively, the sample mean and sample standard
deviation based on the historical record of observations, The estimated con-

trol limits in form of (2.2) are

UCL:/LO—F?)% (2.4)
LCL:,LLO—?)% '

The difficulty in process control in laboratories is that due the finan-
cial cost and analyst’s time there is usually no available historical record of
enough observations to compute the accurate estimates of pg and gy. Sta-
tistical inferences may help'in checking if a‘control ¢hart computed from a
limited data represents for the distribution of an. in-control process.

Suppose that we have a set of observations %i;, ...,xn;, © = 1,...,m and
we compute estimates pgrand og o form a control chart with limits of (2.3).
The interest now is to test if the gneasurement system.is in statistical control.

That is to test the following hypothesis:
Hy : py — 30t = piyo — 3040 and py + 304 = pigo + 3040, (2.5)
which is also equivalent to test the hypothesis:
Ho @ pe = pieo, 0 = 0o (2.6)

The validation problem is that we have a random sample Xj,...., X}

drawn from a distribution F for testing hypothesis (2.5) or (2.6).

3. Confidence Interval Based Tests for Laboratory Control Chart
Validation
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Suppose that, calculated from the historical data, we have estimates of

e and o being uyo and o49. The hypothesis of our concern is;

Hy : (e — 304, puy + 30+) = (e — 3040, fie0 + 3040)- (3.1)

Let Uy = uy(Xy, ..., Xi) and Uy = uq(X1, ..., Xi) be two statistics based on
new sample Xi,..., X;. In the following we define a confidence interval of

the true control chart LC'L = py — 304, UCL = py + 30y.
Definition 3.1. We say that a random interval (Uy, Us) is a 100(1 — )%

confidence interval of the control chart (us — 30y, e + 30¢) if it satisfies
1 —a=Py{U; < py — 304 < pg + 30 < Uy} for 6 € ©. (3.2)
A rule for testing hypothesis (3.1) is
accepting Hy if uy; < o — 3010 < peo + 3040 < Us- (3.3)

This test is with probability,a, of type I error.

Let’s consider the normal % control chart: Suppose that the X-chart
developed from a historical record is LOL = pg— 322, UCL = pip + 3%.
One way to construct confidence interval of the true eontrol chart LC'L =
— 3%, UCL = pu+ 3\% is throtigh-the sample meati X = Zle X; and
sample standard deviation S withy §2 == S FLEX; — X)2. Hence, the

hypothesis of interest is

o (2 oo g0
Hy:(p—3— 3—) = 3= 3
0 (/1’ \/ﬁ?:u+ \/ﬁ) (:U’O \/571104‘ \/ﬁ

We know that \/EL;L?)ﬁ ~ t(k — 1,3\/5) and \/EL;B% ~ t(k —

1, —3\/5), where t(v,n) is the noncentral ¢-distribution with v degrees of

). (3.4)

freedom and noncentrality parameter 7. We also denote t5(v,n) as the dth

quantile of noncentral ¢ distribution ¢(v,n).

Theorem 3.2.

(X —ti—a(k— 1,3\/§)i,X +tia(k— 1,3\/§)i)

S
S



n
k.S
- N,U{X—p,—i-?,in §t1_%(k 1,3\/%)ﬁ}
Y o k.S
PuofX —p— 3% <ta(k— 1’_3\/;)ﬁ}

i M{t%(k_lj_g\/g)%wﬁSX—usm_%(k—m\/?)f \/_}

=Py o{~ti_s(k - 13\/5)\ng)( - 3ﬁ<X u+37§t1__(k—1,3\/§)
_ k k
= u,a{X—tl—%(k—lﬁ\f)f_u 3\/_<u+3T§X+t1__(k—1,3\/;)ﬁ

The rule for testing Hy through the confidenee interval technique is:

k k
accepting Ho if T—1;_ o (b1 3\/7)\/_ < po— 3\/_ < u0+3\/_ < T4t o (k-1 3\/;)
(3.5)

The probability of type Lerror forsthis test is o.

Note that testing hypothesis Ho" (12t — 30%, pe430+) = (peo — 3010, pieo +
3040) if and only if to test the hypothesis Hg't pty = pis0, 0¢ = 040- Then, in
the normal case, testing Hy : (p — 3\}’—,u + 3\%) = (po — 3\‘;—%,u0 + 3%)
is equivalent to test the hypothesis Hy : 4 = pg, 0 = o0o9. The classical
technique of exact level « test for testing hypothesis Hy : p = po, 0 = oy
uses the product of tests, respectively, for single parameter hypothesis HY' :
i = po and another single parameter hypothesis HJ : 0 = op. When H}' is
true,

00 00
(Mo—Zl—\ém\/E,/ﬁo-i-Zl m\/E)

a v/1 — a prediction interval for X and, when Hg is true,

1 2 1 2
(o0 mxl+¢2m,00 mxl_\éﬁ)

%\%
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is a /T — a prediction interval for S with §% = 12 3% | (X; — X)2. From
the fact that X and S are independent and with (3.3) and (3.4), an exact
level « test for hypothesis Hy is

T — po (k —1)s?

jecti Hy if > Zi-yi=a — < 2 — > 27 —.
rejecting Hy i |00/\/E| Z1-yiza OF, = Xity=s OF > Xi-vi=a
(3.6)

This test is generally called the combination test. We would not specify its

acceptance region since our interest is its power performance.

4. Highest Density Test for Laboratory Control Chart Validation

For developing a HDS test for hypothesis (2.6), we consider it in a
general distributional situation. Suppose that we have a random sample
X1, ..., X} drawn from a distribution having a probability density function
(pdf) f(z,04,...,0,,) where parameters 61, ...,0,,, m > 1, including loca-
tion and scale ones, are unknown. It has been an important question in
applications to develop tests for:hypothesis simultaneously dealing with all

parameters such as
HO 4 91 — 910, ,Hm - emo, (41)

where 04y, ..., .m0 are specified constants.

Definition 4.1. Consider the nullhypothesis Hy @ 6y = 019, ..., 0m = Omo.
Suppose that there exists @ constant a, such that

l—a= / L(.’L’l,...,xk,glo,...,gmo)dl'.

{(z1,.-,zk):L(z1,....,2%,010,--,0m0) > a0}

Then we call the test with acceptance region
Apas = {(x1, ., z) € A L(zq, ..., Tk, 010, - Omo) > Ga}

a level « highest density significance (HDS) test. The acceptance region Apgs
is called a level o HDS acceptance region and its corresponding rejection
region Chgs = A — Apgs is called the HDS rejection region.
The method of highest density for significance test is appealing for that
it uses probability ratio to determine acceptance region, for example, if
L(xq,010, s Omo)

>1
L(CL'b, 910, ceey ng)




and zy is in acceptance region, then z, must also be in acceptance region.
This appealing also indicates that the test statistic for hypothesis Hy is
derived through the joint probability (pdf).

If the joint pdf L(zy,...,xk, 010, -..,0mo) of the random sample may be
reformulated as an increasing function of statistic T' = #(X1, ..., X), then a
level o HDS test has acceptance region Apgs = {(x1,..,zx) @ t(x1,..,T) >
to} with 1 — a = Py, (t(X1, ..., Xi) > ta).

Let X4,..., X% be a random sample drawn from a normal distribution
N(p,0?). Consider the null hypothesis Hy : p = g, 0 = 0¢. With the
fact that L(z4, po,00) > L(xp, o, 00) if and only if Zle(l'm — wo)? <

Zle(:r;ib — po)? for z!, = (T14y .-, Tha) and x} = (T1p, ..., Tpp), the level

HDS test searches t, such that

k
ta
@ = Puoe(O_(Xi = p10)* > ta) = POC (k) > a_g)
=1

where x2(k) is the random variable with chi-square distribution of degrees

of freedom k. Hence, the HDS level.a test has aceeptance region

Apgs = {(Er, - mg) 0 Y (s < aoxa(k)} (4.2)

k
F

7

where x2 satisfies a = P(x2(k) > x2(k)).

5. Power Performance Comparisons for Laboratory Control Chart
Validation

With tests developed in Sections 3 and 4, it is then interesting to compare
these tests in terms of power when there is distributional shift. We consider
a process with normal distribution N (u, o) where the in-control distribution
parameters are 4 = o and ¢ = gg. The null hypothesis for the X chart is

of (3.4). We now set the X chart under the alternative situation is

bo
0 0
+a+3—
\/ﬁ’uo “ \/ﬁ

In the following, we develop the power functions for the three corresponding

H,: (LCL,UCL) = (po +a — 3bi ) (5.1)

tests when Hj is true.



5.1. Power Function of Confidence Interval of Control Chart

x_ o0
We know that V& u05+3‘/ﬁ
t(k—1, w

boo

Nﬂk—lfliii) dvﬁX“OSf,V

) when Hj is true.

_ k. S
1 —7(po + a,b00) = Puytapooi X —ti—a (k — I,Sﬁ)ﬁ < pp — 3% <

g0 > k.S
— < X+ti_2(k—-1,3
o +37 < +12( \/;)ﬂ}

— po + 34

- mﬁmw&¢ﬁ < tg (k- 1,3y/2))

— P{t(k -1,

5.2. Power Function of Classical Test

The power function of this classical test is
Tclass (/1'0 + a, bO'()) (52)
(k—1)52

| > Zl—m} U {7 < X21+m or > Xim})
¢_ = —5—

=P
u0+a,bao({| 0_0/ 0_0

X —

0'0/

k—1)S?
= Puo+a, boo (| —F= | > Zkﬂ) + P+, bao(% < X21+\/ﬁ or > X%fm)
\/_ 0—0 2 2
X —pu k—1)52
0| > 21 yi=a) P(% < X21+m or > X217\/ﬁ)
2 2

— P —
(|00/\/E —% 7
1 1 1
= P(|N(a,1)| > EZ@) +P(x*(k—1) < b—2X21+\/2m) +P(x*(k—1) > ﬁX%ﬂ/Qﬁ)

1 1 1
= PN, 1)] > 321=0) (POC(E = 1) < 5x3ugma) + PO = 1) > 5503 s)):

b

5.3. Power Function of HDS Test
We consider a power comparison for this example of distribution where

we let the sample be drawn from normal distribution with mean p = po +a
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and standard deviation o = bogy, b > 0. The power function of the HDS test

of (3.1) may be seen as

2

2 2
b%og

ka
Thas (o + a,bag) = P(x*(k, o) > b~*x2(k))

(5.3)

where x2(k, ¢) is a random variable with noncentral chi-square distribution

with degrees of freedom &k and noncentrality parameter c.

With sample size £ = 30 and significance level @ = 0.05, we list the results

of powers computed from (5.2) and (5.3) for the two tests and display them

in Table 1.

Table 1. Power comparison for HDS test, classical combination test and

confidence interval based test

Tei Tei Tei
(av b) Thds Tclass (n — 2) (n — 3) (n — 5)
(0,1) 0.05 0.05 0:05 0.05 0.05
(0,1.5) 0.9299 0.8472 1.39 x 1074 2.35 x 10~* 4.87 x 10~*
(0,2) 0.9994 0.9978 1558 %1076 4.58 x 107¢ 1.87 x 107°
(0,5) 1 1 0 0 0
(1,1) 0.8950 0.1307 0.668 0.785 0.892
(1,1.5) 0.9970 0.8871 0.019 0.044 0.108
(1,2) 0.9999 0.9986 3:22 x 10~* 0.001 0.005
(1,5) 1 1 0 0 0
(2,1) 1 0.4216 0.996 0.999 1
(2,1.5) 1 019499 0.331 0.555 0.813
(2,2) 1 0.9995 0.017 0.057 0.190
(2,5) 1 1 1.98 x 10~8 3.37 x 1077 9.02 x 1076
(5,1) 1 0.9972 1 1 1
(5,1.5) 1 1 1 1 1
(5,2) 1 1 0.923 0.992 0.999
(5,5) 1 1 7.80 x 107° 9.87 x 10~* 0.013

The powers when (a,b) = (0,1) represent, respectively, the significance

levels of these two test and they are, as designed, equal to 0.05. However,

when value a moves away from zero and b > 1, the alternative distribution

indicates wilder than the null one. Surprisingly the powers of the HDS test is

uniformly better than or equal to the classical combination test. This fully

supports the use of HDS test for hypothesis test of multiple parameters.
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We also observe that the validation technique of confidence interval od true

control chart performs poorly when there is scale shift.

6. Power Simulation Study for Laboratory Control Chart Valida-
tion

It is also interesting to see the power performance of three tests through
a Monte Carlo study. We first consider the normal Z control chart. Sup-
pose that the X-chart developed from a historical record is LCL = g —

3, UCL = po + 3%. Hence, the hypothesis of interest is

HO:(u—3%,u+3%):(u0—3%,u0+3%). 6.1)

With replication m = 10,000, we select a random sample z;1, ...,z of size
k = 30 from a distribution GG and we conduct the tests stated above of higest
density test, classical test and the test based on confidence interval. The
first case, we consider G is the normal'distribution N(ug + a,b*03) where
we choose pp = 0 and o¢ =, 1.in this simulation.*Let z; = %Zle x;; and
55 = T Zle(:r;ji — z;)**be the sample mean and sample variance for the
sample of jth replication. With this simulation, the, simulated powers of
tests defined in (3.5), (3:6) and (4.2) are

| 10000 &
_ - 5 2-2
Thds = 10,000 ; I[;(xgz 10)” > agxa (k)]
10,000 2
1 Tj— (o (k—1)s7 2 2
Telass = TA Ann >l Or y ———5— < Xi4yizca O > Xi_yizals
52 10,000 ; Ly 1 pe Xisyr=s Xi-yi=s]
and
T 1%)01[ tr_a (k 13\/Z) < g — 378 <+ 322
Tei =1 — ——— Tj—ti—g(k—1,3/=)—F < po — 3—= —
10,000 &~ T3 n kST e ST A
k. s
< T t1_a(k —1,34/— L
_ZE]-}- 1 2( ) \/;)\/E]

The simulated results are displayed in Table 2.

Table 2. Simulated powers for three tests when there are location and scale
shifts
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Teq Teq Teq
(av b) Thds Telass (n — ) (TL — ) (TL — )
(0,1) 0.0501 0.0512 0.0337 0.0342 0.0370
(0,1.5) 0.9355 0.8837 0 2x 1074 3x1074
(0,2) 0.9994 0.9990 0 0 1x1074
(0,5) 1 1 0 0 0
(1,1) 0.9015 0.9999 0.6323 0.7447 0.8702
(1,1.5) 0.9966 0.9973 0.0142 0.0381 0.0926
(1,2) 1 0.9999 3x1074 6x 104 0.0041
(1,5) 1 1 0 0 0
(2,1) 1 1 0.994 0.9994 1
(2,1.5) 1 1 0.2964 0.5129 0.7742
(2,2) 1 1 0.0136 0.0486 0.167
(2,5) 1 1 0 0 0
(5,1) 1 1 1 1 1
(5,1.5) 1 1 0.9999 1 1
(5,2) 1 1 0.9033 0.9891 0.9998
(5,5) 1 1 0 7x 1074 0.0107

We have several comments drawn from the results displaying in Table 2:

1. The powers for all tests forpease (a,b) = (0, 1) are expected to be 0.05
since it indicates Hy is true. It shows that the HDS test is the most accurate
in sense of preserving the significance level. The confidence interval based

tests are all too conservative inithis sense.

2. For cases other than (0,1), the HDS and classical tests are all very
powerful and the confidence interval based tests are almost very poor unless

distribution shifting occured only in location.

Next we consider to perform a simulation study assuming that the obser-
vations are drawn from non-normal G' as G = t(a)+0b where ¢ is ¢ distribution
and we let a = 1,3,10 and b = 0, 3, 10. We apply the same tests stated above

and compute the simulated powers.

Table 3. Power Simulation when distributional shifted to ¢ distribution
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(G,, b) Thds Tclass Mei Mei Mei
(n=2) (n=3) (n=5)
(1,0) 0.9991 0.9986 0 0 0
(1,3) 1 1 0.0155 0.0284 0.0552
(1,10) 1 1 0.2895 0.3620 0.4496
(3,0) 0.8078 0.7546 0.0010 0.0012 0.0022
(3,3) 1 1 0.6928 0.8008 0.8933
(3,10) 1 1 0.9923 0.9960 0.9970
(10,0) 0.2547 0.1975 0.0149 0.0166 0.0169
(10, 3) 1 1 0.9955 0.9995 0.9997
(10,10) 1 1 1 1 1

The HDS and classical tests are still very efficient and the confidence interval
based tests are relatively poor but shifting to more wild case such as this ¢

distribution is better than shifting to other normals.

7. Real Data Analyses

Let us consider two real data analses. First, a data set of control materials
with size 100 (20 observed monthly) in five months is available in Westgard,
Barry and Hunt (1981). They performed.in constructing the in-control chart
of one control material (single observiition control chart) and discussed the
rules applying the controlchart in clinical chemistry. Asdata set of size 100 to
perform a Phase I analysis, as recommended in statistical quality control,
is not enough. The validation technique provides a scientific method for
constructing an in-control “chart for use in laboratory quality control. We
now choose 60 observations observed frem the first three months to construct

the 3-sigma control chart that is

UCL =99.67+ 3 x 4.77822 = 114.0
LCL =99.67 — 3 x 4.77822 = 85.33

and is sketched in Figure 1 where the 60 observations are also displayed.
Figure 1 is here

Since there is no observation lying outside the control limits, we then con-

scern if this control chart is appropriate for use for quality control in clinical
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chemistry. We then perform the three available tests stated above and their
corresponding results are listed below:

40 o 2
1. HDS test: Z=ti9980 — 94 30847 < X2 15(40) = 55.75848, we do

not reject the hypothesis of in-control process.

2. Classical test: ‘ﬁ% = 0.56916 < 2, _ /5g5)/2 = 2-236477. On the

other hand, Y=L — 946 and 2, oz (39) = 21.959 and X3 gz (39) =

(k—1)s>

61.353 indicating 21.959 < ;—=2=5os

esis of in-control process.

3. 95% confidence interval: (Z — \/%—Oto_975(39, 3 x40), T+ \/%—Otg,g75(39, 3 x
v/40)), we do not reject the hypothesis of in-control process since (LCL,UCL) =
(85.33,114.0)) C (85.2059, 114.9941).

In the second example, we consider a laboratory measurement data set

< 61.353. We do not reject the hypoth-

displayed in Mullins (1999). The data set is composed with m = 29 runs
and, for each run, three observations are measured by one analyte. So, to-
tally there are number 87 obsefvations. The interest in Mullins (1999) is the
analytical precision and the phase I range chart, considering the difference
between the larget and the smallest values intone run since they are mea-
sured with the same analyte, was developed. The quality control of central
tendency is is also important and then we consider using this data set to
perform the phase I X chart validation.

Following Mullins (1999);.we.let n = 3 for-¢omsideration the quality of
measurements observed by the same analyte.” We may observe that obser-
vations on run 28 is {198.92,479.95,492.15} where observation 198.92 is an
extreme outlier that should be an typing error like observation. Hence we
drop this run of data and we use the rest of data set of runs 28 for analysis.
We use the first 20 runs to construct 3¢ X chart. The control limits of the

chart and observed 20 sample means Z are plotted showing in Figure 2.
Figure 2 is here

From the figure, we see that the observed Z’s of numbers 5,11,15 and 20

lied outsider the control limits and then we removed these observations and
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re-compute the X chart from the data in the rest of 16 runs of data. The

resulted control limits and the z’s are displaed in Figure 3.
Figure 3 is here

There are no observed z that lies outside the control limits and we consider

if the resulted control limits as

7.79323
UCL = 494.1035 + 3 x = 507.6
V3
7932
LCL = 494.1035 — 3 X 779325 = 480.61

V3

can be used for phase II control chart. Then we consider to use observations
of size 24 in 8 runs to test if the above control limits are valid for phase II
control chart. We then perform the three available tests stated above and
their corresponding results are listed below:

1. HDS test: Zim @90 1039 0 196 7093252 (24) = 36.415, we do not
reject the hypothesis of inzcontrol process.

2. Classical test: % = 1.5536 <z (1L /o om) . = 2-236477. On the

other hand, $=1e — 25373 and X2, s s (28) = 10549 and X3 (23) =

40.746 indicating 10.549 < 7(’;9312);32 <.40.746.-we do not reject the hypoth-
esis of in-control process.
3. 95% confidence interval: (I‘—\/S—tzg,(o 975734/ 3), T+ \/—t23(0 975, 3

24
3

(480.61,507.6)) C (470.507, 512.757).
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Figure 1: Phase I individual control chart
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Figure 2 : Phase | X control chart for quality data
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Figure 3 : Revised X control chart for quality data
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