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CHAPTER 5 

 

VLSI IMPLEMENTATION OF THE SRMCNN WITH 

ON-CHIP LEARNING AND STORAGE 

1.  

5.1 INTRODUCTION 

 

Due to the advantageous feature of local connection and simple synaptic operations, 

the cellular nonlinear (neural) network (CNN) introduced by Chua and Yang [55] is very 

suitable for VLSI implementation in many high-speed, real-time applications [56]-[58]. 

So far, some research works on the applications of CNNs as neural associative memories 

for pattern learning, recognition, and association have been explored [59]-[64], [76]-[78], 

[80]-[84], [102],. Among them, many innovative algorithms and software simulations of 

CNN associated memories were reported [76]-[78], [94], [102]. As to the hardware 

implementation, special learning algorithm and digital hardware implementation for 

CNNs were proposed in [161] to solve the sensitivity problems caused by the limited 

precision of analog weights. Moreover, CMOS VLSI design and chip implementation of 

CNN associative memory was also reported in [171], [174], [182].  

In realizing CNN associative memories, the learning circuitry can be integrated 

on-chip with CNNs [171], [174]. The major advantages of on-chip learning [64] are: 1) 

No needed the host computer to perform the learning task for off-line operation. This 

makes the interface of neural system chips simple for many practical applications; 2) The 

spatial-variant template weights can be on-chip learned without being loaded from 
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outside to the CNN chips. Thus long loading time, complex cell global interconnection, 

and analog weight storage elements to perform the loading operation for large numbers of 

spatial-variant template weights can be avoided; 3) The adaptability to the process 

variations of CNN chips can be enhanced. 

In the thesis, the structure of the SRMCNN with B template and the modified 

Hebbian learning algorithm for auto-associative memory are proposed. The function 

blocks have implemented in the VLSI circuits for the TSMC 0.25 µm 1P5M n-well 

CMOS technology. The characteristic of the proposed circuits are correctly verified by 

the HSPICE software. The function of ratio memory for one bit SRMCNN with B 

template was realized in the VLSI chip and their operation was shown. The simulation 

results of the 18x18 SRMCNN behavior and function are demonstrated and analyzed. 

The capability of pattern learning and recognition is improved. The chip layout of the 9x9 

SRMCNN was implemented. The conceptual design for the general architecture of the 

Large-Neighborhood Cellular Nonlinear (Neural) Network Universal Machine 

(LN-CNNUM) is described [157]-[162], [179]-[182]. 

The chapter is organized as follows. In Section 5.2, the model and architecture of the 

SRMCNN with the modified Hebbian learning algorithm for hetero-associative memory 

is presented. The VLSI circuits of function blocks and the characteristic of the proposed 

circuits are shown in Section 5.3. The learning and the embedded ratio memory operation 

for the B templar in the VLSI architecture of the SRMCNN are proposed. In Section 5.4, 

the VLSI chip implementation for one bit SRMCNN with B template in ratio memory is 

described. The simulation results of the 18x18 SRMCNN with B template are 

demonstrated and analyzed. The chip layout of the 9x9 SRMCNN is implemented and 

verified. The conceptual design for the general architecture of the Large-Neighborhood 

Cellular Nonlinear (Neural) Network Universal Machine (LN-CNNUM) is shown in 

Section 5.5. Finally, summaries are drawn. 
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5.2 MODEL AND ARCHITECTURE 

The detailed block diagram of the two neighboring cells and their RM in the 

SRMCNN with B template is shown in Fig. 5.1. The detailed block diagram of the S 

block during the learning period and the recognition period are shown Fig. 5.2 (a) and (b), 

respectively. In Fig. 5.1, the block T1 is a V-I converter with activation function used to 

convert the voltage of the state into the output current of the cell. The block T2D is a V-I 

converter with a one-half absolute-value circuit and a sign-detection circuit to generate 

the absolute value of input current and detect the sign of the cell input uij(t), respectively. 

The CNN cell C(i,j) is consisted with T1, Rij, and Cij elements [138], [166]-[172]. 

The block M/D [171] in Fig. 5.1, is a combined four-quadrant multiplier and a 

two-quadrant divider circuit, is used to generate the weights of B template for the 

modified Hebbian learning algorithm during the learning period [103], [136]. It is also 

used to multiply bijkl (t) by ukl (t) and the ratio with the summation for five absolute 

neighboring weights in the recognition period. The resultant weight ijklVzi during the 

learning period is stored in the capacitor Czi, transfers the absolute voltage VCzs stored to 

Czs and stores its sign in the latch circuit in the S block of Fig. 5.2(a). Block T3 is also a 

V-I converter to convert the voltage of Czs into current. The output current of T3 is sent 

to the sum block and summed with the weight currents from neighboring cells. The 

summed current is sent to the M/D block to generate ratio-memory [171]. 

The m exemplar patterns are input in order read into the cell C(i, j) and the input 

voltage Vuij
p of the p-th input pattern is sent to T2Dto be converted into current p

ijuI . The 

desired output currents p
ijyI are obtained by the decoder circuit D decoding the input 

p_sel corresponding to the value of m. Then the converted absolute currents p
ijyI  and 
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p
kluI  from the neighboring cells with two the detected sign Vsukl and Vsyij are distinctly 

sent to the four-quadrant multiplier in the M/D block to charges the capacitor Czi for the 

period TP. This operation is repeated for m patterns to accumulate the produced voltages 

in Czi. Finally, the weight voltage Vziijkl (0) stored on Czi at t = 0 when the learning 

period ends, can be written as 
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where p
ijyI  is the current of the p-th desired output of the cell C(i, j), p

kluI is the current 

of the p-th pattern sent to the cell C(k, l) of ),( jiN r  neighboring cells, Ib is a constant 

bias current, )(V 0ziijkl  is the weight Wijkl voltage stored on Czi at t = 0 sec, and TP is the 

learning time of each input pattern. 

The weight Wijkl(0) is directly generated by the current product of p
kl

p
ij uy II  charging 

on the capacitor Czi, )(V 0ziijkl  is also generated for the period Tp. After the learned time, 

the absolute value of )(V 0ziijkl  is transferred and stored on the capacitor Czs, as shown 

in Fig. 5.2(a). 

In the elapsed period, the configuration of the S block is shown in Fig. 5.2(b), where 

Czs is disconnected from the block T2L. The leakage current Ileakage associated with Czs 

gradually decreases )]0(V[ ijklzsabs  of Czs and stored the voltage after elapsed time to 

provide the ratio memory calculation. 

In the recognition period, the voltage t
ijuV  of the test pattern is input to T2D and 

converted into the pixel current t
ijuI and the sign voltage Vsxij. The absolute weight voltage 

abs[Vzsijkl (t)] stored on Czs is converted into the current abs[Izsijkl(t)] through T3 and 
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summed with the currents from the other neighboring cells. The summed current, the 

weight current abs[Izsijkl (t)], and the cell input current Iukl (t) are sent to the M/D block to 

yield the current that corresponds to the term bijkl (t) ukl (t)/ ∑
∈ ),(),(C

)]([
jiNlk

ijkl
r

tbabs  in (5.2). 

The summed currents from other neighboring weights of B template, the input current t
ijuI , 

the cell output current t
ijyI , and the threshold current ijIz  to generate the cell state 

current Ixij(t). The current Ixij(t) is converted into the voltage Vxij(t) through resistor Rij. 

Thus, Vxij(t) can be expressed as 
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where AK is the empirical gain. Ideally AK = 1. 

The ratioed weight ∑
∈ ),(),(C

)](I[)(I
jiNlk

ijklijkl
r

tzsabstzs  in (5.2) is generated by the 

two-quadrant divider in the M/D block with its sign equal to the sign of Izsijkl (t) latched 

in T2L, whereas the Iuij (t) is multiplied by the ratioed weight by the four-quadrant 

multiplier of M/D using the latched sign of Izsijkl (t) and the sign of ukl (t) in T2D. The 

current of input patterns is summed with the five weighted outputs from neighboring cells 

during the recognition period and converted into a voltage through the resistor Rij and the 

parasitic capacitor Cij to form the cell state Xij(t). The generated Vxij (t) is sent to T1 to 

generate the output current IYij (t). 
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5.3 CMOS CIRCUIT REALIZATION 
 

5.3.1 V-I Converters and Sign Detectors 

 

The CMOS circuits of T2 is shown in Fig. 5.3 [171], where Fig. 5.3(a) show the 

circuits of V-I converter with the absolute-value circuit. The V-I converter which is also 

used in the blocks T1 and T3 is a CMOS differential amplifier M1~M7 with the source 

resistance to increase the linear range. The two source resisters are realized by M5 and 

M6 devices operated in the linear region with the gate bias voltage Vbvic1. The output 

current Iovic is sent to the absolute-value circuit formed by M8~M13 to generate the 

absolute-value current Ioabs with the unified flow direction. The bias Vbvic1, Vbvic, 

Vbabsn, Vbabsp are constant voltages. 

The generated Vxij (t) is sent to T1 to generate the current Iyij(t) and )](I[ tysign ij  as 
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where the Gm2d is the transconductance of T1, VU is the upper saturation voltage, and VL 

is the lower saturation voltage. It can be seen from (5.3) and (5.4) that the block T1 

realizes ))(V( txf ij  by separating its magnitude and sign. The sign )](I[ tysign ij  is 

detected in the block T1 and its voltage is VSYij, as shown in Fig. 5.4. 

The sign of Vziijkl is detected and latched by the CMOS dynamic latch circuits of Fig. 

5.5 in the block of T2L whereas the sign of the input voltage Vxij (Vyij) is detected by the 

four cascaded CMOS inverters in the block of T2D and its output voltage is denoted as 



 113

VSXij (VSYij) in Fig. 5.4. When the input signal Vziijkl or Vxij (Vyij) is larger than the inverter 

threshold voltage (1.25V), the output of the latch circuit in Fig. 5.5 or the detect circuit in 

Fig. 5.4 is high (2.5V). Otherwise, the circuit output becomes low (0V) when the input 

signal Vziijkl or Vxij (Vyij) is smaller than the threshold voltage (0V). To avoid the effect of 

the inverter threshold-voltage variations, the input signal levels are kept well separated 

from the threshold voltage. 

In the learning period, the signs of the input voltages p
klu  and the desired output 

voltage p
ijy are detected by the circuit of Fig. 5.4 in T2D and used to determine the sign 

of ijklWb  in (4.4) whereas the sign of the voltage Vziijkl is detected too. In the recognition 

period, the sign of node ijklsi  or equivalently the sign of ijklw  denoted as Vswijkl in Fig. 

5.5 is further latched by setting φ 1 low (-1.25V) and φ 2 high (1.25V). The latched sign is 

used in generating the first term in (5.4). 

Fig. 5.3(b) is presented the HSPICE simulation result of the V-I converter with the 

absolute-value circuit, which is designed by using 0.25 µm (1P5M) n-well CMOS 

technology. It can be seen from Fig. 5.3(a) that the voltage Vin is converted into positive 

current Ioabs. The maximum linearity error of Ioabs is 15% at Vin – Vref = ± 0.8 V. It is 

found that this error is acceptable in the SRMCNN. 

 

5.3.2 Analog Multiplier and Divider Circuit 

 

The combined the four-quadrant analog multiplier and two-quadrant divider (M/D) 

in Fig. 5.1 can be realized in the current mode by the CMOS circuit shown in Fig. 5.6 

[171]. In Fig. 5.6, the currents I1 and I3 for multiplication are input through the PMOS 

current sources M14i/M14 and M15i/M15/M16, respectively, whereas the current I 2 as 
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the divider is input through M24i/M24. The parasitic vertical PNP bipolar junction 

transistors (BJTs) [178] Q1, Q2, Q3, and Q4 are adopted to perform the functions of 

multiplication and division by using the relation between emitter current IE and 

base-emitter voltage VBE as 

( ) ( )SETBETBESE II ln V Vor      VVexpII ==  (5.5) 

where IS is the emitter saturation current and VT is the thermal voltage. The OP AMP Ao 

has a closed-loop feedback via the NMOS device M21. Thus, the emitter voltage VE3 and 

VE4 are virtually the same. With the buffered direct injection circuit [171], the output 

current I4 can be readout through the PMOS current mirrors M19, M25, and M26, and the 

NMOS current mirror M29 and M30 to form the output current Iomd. Since VE3 = VE4, 

than the loop voltage as 

BE4BE2BE3BE1 VVVV +=+  (5.6) 

Using the equation in (5.5), the relation among IE1, IE2, IE3, and IE4 can be obtained from 

(5.6) as  

E2

E3E1
E4 I

I  I
I =  (5.7) 

Neglecting the base currents, the output current I4 can be expressed in terms of I1, I2, and 

I3 as  

2

31
4 I

I II ≅  (5.8) 

In above equation, only the magnitudes of the input current signals are used to form 

the magnitude of the output current signal. The sign of I 4 should be determined to realize 

the complete function of four-quadrant multiplier and two-quadrant divider. In Fig. 5.6, 

the signal “selpn” is used to determine the sign of the output current Iomd. The signal 

“selpn” is obtained from the XNOR gate with the three different input signs. In the 

learning period, φ 1 is high and φ 2 is low. The output “selpn” is determined by the sign 

voltages VSXkl and VSyij from the block T2D to realize the sign of p
kl

p
ij uy II as in (5.1). In 
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the recognition period, φ 1 is low and φ 2 is high. “selpn” is determined by the voltage 

VSukl and Vswijkl from the block T2D and T2L, respectively, to determine the sign of Iukl 

Izsijkl in (5.2). If the signal “selpn” is high (low), the sign is negative (positive) and the 

MOS device M28 (M27) is turned on to make Iomd = -I4 (+I4).  

The BJT devices used in Fig. 5.6 are the parasitical vertical BJT in the 0.25 µm 

n-well CMOS process. The current gain β of the parasitic BJTs is about 6~17. It is not 

large enough to neglect the effect of the base currents of the BJTs Q3 and Q4 to the 

emitter currents of the BJTs Q1 and Q2, respectively. Thus, extra circuits are needed to 

further bypass the base currents from entering the emitters of Q1 and Q2. In Fig. 5.6, the 

BJTs Q13 and Q24 have the same emitter currents I3 and I4 as Q3 and Q4, respectively. 

Thus, Q13 (Q24) has the same base current as Q3 (Q4). The current mirror circuits 

M17/M18 (M22/M23) are used to mirror the base current of Q13 (Q24) to Q3 (Q4). Thus 

the base current of Q3 (Q4) is bypassed from Q1 (Q2) and the relation IE1 = I1 and IE2 = I2 

can be more accurately maintained to realize (5.8). 

In the learning period, the M/D block functions as a multiplier to implement the 

multiplication function IyijIukl. The HSPICE simulation results of the multiplier function 

of the M/D circuit in Fig. 5.6 are shown in Fig. 5.7(a), where the device parameters of 

0.25 µm 1P5M n-well CMOS technology are used. It is found that in the actual operation 

range of I1 from 0.5 µA to 6 µA and I3 from 1.2 µA to 6 µA with I2 kept at 20 µA, the 

multiplication error can be kept fewer than 5.5%. In the recognition period, most of the 

ukl(t) from the neighboring cell input is kept at the maximum absolute value as in (5.3). 

Thus most of the corresponding input current I1 of the M/D block becomes a constant 

current and the M/D block is functioned as a divider. The HSPICE simulation results of 

the divider function of the M/D circuit in Fig. 5.6 are shown in Fig. 5.7(b). In the actual 

operation range of I3 from the 1.2 µA to 6 µA and I2 from 0.3 µA to 6 µA with I1 is kept at 

6 µA, the output current can be as high as 60 µA. Under the condition I3 < I2 which is the 
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actual operation condition, the division error can be kept under 10%. 

The above errors of the M/D circuit are also dependent on the variations of device 

parameters. However, it is found from simulation results that these errors have 

insignificant effects on the operation of RMCNN because of on-chip learning and RM 

operation. This is because that the RM is sensitive to the variation of the 

multiplier-divider. However, the multiplier-divider is not sensitive to the variation of the 

processing due to that the β of BJT will not affect the precision of the multiplier-divider. 

 

5.3.3. The CMOS Readout Circuit 

 

A layer of the boundary cells is designed to surround the 18x18 regular cell arrays. In 

the boundary cells, both state  )(txij and input )( tuij  are zero. Thus the output  )(tyij of 

the boundary cell is also zero. Since the boundary cells have to send a zero signal voltage 

to the neighboring regular cells or other boundary cells, it can be realized by setting the 

weights from boundary cell to other cells to be zero. Thus the associated RM blocks can 

be removed. 

To readout the neuron states signal xij, suitable readout circuit shown in Fig. 5.8 is 

designed in the 18x18 CMOS SRMCNN. In the readout circuit, the inputs of 

NMOS-input CMOS single-stage OP AMPs used as unity-gain buffers are connected to 

the node x ij in Fig. 5.8. The buffer output is connected to the input of the source-follower 

driver through the switch controlled by the column select control signal CSj. In the 

readout operation, CSj is raised to high column by column so that x ij is sent to the input 

of NMOS source follower M31 and M32 with M32 biased by VBUF as the current source. 

Through the source follower, the neuron state signal can be readout column by column to 

the output pad and the large off-chip load. 
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5.4 SIMULATION RESULTS 
 

The CMOS circuit as function blocks in Section 5.4, the architecture of the 

SRMCNN in Fig. 5.1 is implemented with the 18x18 array. In the implemented 18x18 

CMOS SRMCNN with B template, the capacitors Czi and Czs for absolute weight voltage 

storage are realized by the NMOS gate capacitors. Because the current-mode output 

signals used in the SRMCNN, the summing and distribution block is realized by directly 

connecting the output nodes of the related blocks. The collected current send to the input 

of the master stage in a CMOS current mirror to perform the summing function and the 

mirrored output current is distributed out through the multiple slave stages. 

The recognition behavior of the SRMCNN with B template for associative memory 

application has been simulated by the Matlab software. The exemplar patterns in sequence 

input to the system produce the weights for the hetero-associative memory learning. The 

learned weights can be used to processing the noisy patterns with white-black noise for 

the ratio memory operation. The SRMCNN can successfully recognize the test pattern and 

output the desired correct pattern. The simulated results have been verified the capability 

of the image processing and its VLSI circuits can successful implemented. 

Due to the simulation results, the architecture of the proposed SRMCNN with B 

template and r=1 in Fig. 5.1 is designed and fabricated by the 0.25µm 1P5M n-well 

technology. The CMOS circuits of the block in the SRMCNN are presented in the Fig. 5.3, 

5.4, 5.5, and 5.6, respectively. The functions of those circuits are correctly verified by the 

HSPICE software. 

As the function of ratio memory, the experimental chip of one bit SRMCNN with B 

template used to observe the feature enhancement effect. The five neighboring pixels are 

input in serial for six data is shown in Fig. 5.9(a), to the SRMCNN with the period 0.5µs 
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per each charge time. The learned weights through out the six times learn are described in 

Fig. 5.9(b). The desired output of the cell is 1. The operation of learning and ratio state for 

the SRMCNN is presented, as the Fig. 5.9(c). In the Fig. 5.9(d), the zoom-out variations 

of the five weights versus the elapsed period from 8µs to 22µs are shown. The absolute 

coefficients of the learned weights of the B template are gradually decreased with the 

constant leakage current for the elapsed period. And take the weights with leakage to 

operate in the ratio of the absolute summation for its neighboring weights of B template. 

As the simulation results from the Fig. 5.9(d), the larger value of the weight is enhanced 

the ratioed weight to 1 and the smaller values of the weights are suppressed to zero during 

the elapsed period. The layout graph of the one bit SRMCNN chip operated in the learning 

and ratio memory for the TSMC 0.25µm 1P5M n-well technology is shown in Fig. 5.10. It 

includes one regular cell, five RMs, and five current mirrors. The characteristics of 

fabricated one bit SRMCNN with B template chip is summarized in the Table 5.1.  

The 18x18 SRMCNN with B template is proposed, their capability of the recognition 

has been verified, and the function blocks in the architecture are also integrated with the 

CMOS circuits. The integrated circuits are simulated by the HSPICE software. The five 

exemplar patterns for the English capital letter H are sequent applied to update the voltage 

on the capacitor Czi of the associative memory in the SRMCNN. The learning period is 

0.5µs for each input exemplar patterns. The learned weights of the B template are 

gradually decreased with constant leakage current for an elapse time. After 350 sec, the 

resultant weights are stored in the capacitor Czs, as the associative memory. 

The voltages with leakage stored on Czs for the associative memory are divided by 

its absolute summation of the neighboring weights to generate the ratioed weights. The 

ratioed weights multiplied by the value of the test input are performed from the M/D 

circuit in the RMs during the recognition period. The simulation results of the learning 

and recognition using the HSPICE software for 18x18 SRMCNN with B template are 
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shown in Fig. 5.11(a). In the Fig. 5.11(b) presents the five exemplar input patterns with 

zoom-out for the English capital letter H. The SRMCNN can correctly recognize the 

output pattern for any one exemplar input test pattern. The recognized pattern is 

sequentially shift-out from the column neurons in time series, as shown in the Fig. 5.11(c). 

Due to the simulation results, the SRMCNN with B template and modified Hebbain 

algorithm can successful recognized the noisy patterns with white and black noise for 

auto-associative memory applications. 

The layout graph of the 9x9 SRMCNN chip operated in the learning and recognition 

operations for the TSMC 0.25µm 1P5M n-well technology is shown in Fig. 5.12. It 

includes 81 regular cells, 405 RMs and 81 current summations. The brief characteristics of 

fabricated 9x9 SRMCNN with B template chip are summarized. 

 

5.5 LARGE NEIGHBORING STRUCTURE 

 
The general architecture of the Large-Neighborhood Cellular Nonlinear (Neural) 

Network Universal Machine (LN-CNNUM) is presented in Fig. 5.13 [157]-[162], 

[179]-[182]. As shown in Fig. 5.13, the universal machine includes a 64x64 regular array 

of cells, a Global Analogic Programming Unit (GAPU), analog and digital input/output 

circuits, and global address decoders. The core-computing unit of the LN-CNNUM is the 

large-neighborhood cell with a new large-neighborhood interconnection. The powerful 

LN-CNNUM can also perform complex tasks with large-neighborhood templates, such as 

Muller-Lyer arrowhead illusion, etc. 

Fig. 5.14(a) depicts the structure of LN-CNNUM. The programmable templates A 

and B are realized by the path stages PAR, PAL, PAIR, PAIL, PAU, PAD, PAIU, PAID, 

PA1, PA2, PA3, PADR, PADL, PAUR, PAUL, and PBR, PBL, PBIR, PBIL, PBU, PBD, 
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PBIU, PBID, PB0, PB1, PB2, PB3, PBDR, PBDL, PBUR, PBUL, respectively, which are 

basically current amplifiers. The connected neuron array is described in Fig. 5.14 (b). 

According to the LN-CNNUM cell structure of Fig. 5.14(a), the corresponding 

realized LN template weights are shown in Fig. 5.15 where the neighborhood layers are 

defined in a different way. The numbers of neurons in the r-th layer is equal to 4r that is 

different from 8r in the conventional CNN. The LN-CNNUM structure can realize 

asymmetrical large-neighborhood templates with different weight values in the first and 

second neighboring cell layers. The cell structure is shown in Fig. 5.16. The 

LN-CNNUM is composed of the LN-CNN Kernel unit, a Local Logic Unit (LLU), the 

Local Analog Memory (LAM), the Local Logic Memory (LLM), the Local Analog 

Output unit (LAOU), and the Local Communication and Control Unit (LCCU). The 

LN-CNN kernel unit of the cell in the LN-CNNUM consist the large-neighborhood 

interconnection. Fig. 5.14 shows the kernel unit’s functional blocks. 

A general-purposed parallel analogic processor, called the LN-CNNUM, is designed 

and analyzed. Similar to a digital computer, the LN-CNNUM is controlled by sets of 

instructions. Not only is an elementary LN-CNN structure, the processor also a platform 

for integrating the flow of LN-CNN operations. Furthermore, the LN-CNNUM is an 

important tool for organizing various kinds of CNN structures to perform complicated 

tasks that a SN-CNN cannot finish. Consequently, some local memories, some 

logic-computing units, and complex configurations of several switches are added to the 

LN-CNNUM, which thus becomes an analogic computer. With a powerful computing 

unit, the LN-CNNUM can deal with highly complicated functions. 

Future research on efficient physical structures for implementing νBJT will concern 

nano-scale devices and integration. Additionally, research into LN-CNNUMs will also 

concern the nanoelectronic regime, and lead to the development of a feasible and 

powerful nano-scale CNNUM (Nano-CNNUM). 
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5.6 SUMMARY 

 

In this chapter, the structure of the self-feedback ratio memory cellular nonlinear 

network with modified Hebbain algorithm is proposed and analyzed for 

hetero-associative memory applications. In the SRMCNN, the weights of the B template 

are generated from a set of the exemplar patterns and the desired output pattern, and then 

transform the learned weights into ratio weights stored on the ratio memory. The 

proposed network can be used the pattern learning, recognition, and recovery in 

hetero-associative memory for the various image processing applications. The function 

blocks have implemented by the TSMC 0.25 µm 1P5M n-well CMOS technology. The 

correctly characteristic of the proposed circuits are also verified by the HSPICE software. 

As the feature of ratio memory, the experimental chip of one bit SRMCNN with B 

template is implemented to observe the feature enhancement effect. The chip area 

including one neuron cell and five RMs is 350µm x 400µm. The five neighboring pixels 

are input in serial for six data to the SRMCNN with the period 0.5µs per each charge time. 

The desired output of the cell is 1. The absolute coefficients of the learned weights of the 

B template are gradually decreased with the constant leakage current for the elapsed 

period. The weights with leakage used in the ratio of the absolute summation for its 

neighboring weights of B template. The operation of ratio state in the SRMCNN is 

presented the zoom-out variations of the five weights versus the elapsed period from 8µs 

to 22µs after learning time. As the simulation results, the larger value of the weight is 

enhanced the ratioed weight to 1 and the smaller values of the weights are suppressed to 

zero during the elapsed period.  

The simulation results have successful verified the correct function of the 18x18 

SRMCNN for patterns recognition. The chip layout of 9x9 SRMCNN is implemented 

and verified. The chip included 81 neurons and 405 RMs in the 4000x4200 µm2 area 

sizes for the TSMC 0.25 µm 1P5M n-well CMOS technology. The combination of the 
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four chips is used in an 18x18 SRMCNN form for auto-associative memory applications. 

Thus, the SRMCNN can correctly recognize the output pattern for any one exemplar 

input test pattern. Due to the simulation results, the SRMCNN with B template and 

modified Hebbain algorithm can successful recognized the noisy patterns with white and 

black noise for auto-associative memory applications. The conceptual design for the 

general architecture of the Large-Neighborhood Cellular Nonlinear (Neural) Network 

Universal Machine (LN-CNNUM) is introduced. 
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Table 5.1 The summary on the characteristics of the fabricated one bit SRMCNN chip 

 

Technology 0.25 µm, 1P5M, n-well CMOS 

Resolution one Cells 

No. of RM blocks 5 RMs 

one Pixels 1 cell + 5 RMs 

one bit SRMCNN area 350 µm x 400 µm 

one bit SRMCNN area with I/O pad 1085 µm x 1085 µm 

Transistor/gate count 821 

Power supply 2.5V 

Total power dissipation 0.6 mW 

Minimum learning time of a pixel 0.5 µs 

Elapse time 350 sec 
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Fig. 5.1 The detailed architecture of two neighboring cells and their ratio memory (RM) 
in the SRMCNN 
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Fig. 5.2 The S block in the SRMCNN during (a) learning period and (b) recognition 
period 
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(a) 
 
 
 
 
 
 
 
 
 
 

(b) 
Fig. 5.3  (a) The circuit of V-I converter of the blocks T2, and the absolute-value circuit; 

(b) The HSPICE simulation results 
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Fig. 5.4 Sign latch 

Fig. 5.5 Sign detector 
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Fig. 5.6 The CMOS circuit of the block M/D 
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Multiplication Function I2=20µA 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
Division Function I1=6µA 

(b) 
Fig. 5.7  HSPICE simulation results for (a)Multiplication function with I2=20µA 

(b) Division function with I1=6µA 
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Fig. 5.8 The CMOS readout circuit for the cell output 
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(a) 

 

(b) 
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( c) 

 

(d) 
Fig. 5.9 SRMCNN (a) learn data with the five neighboring cells for six data input; (b) 

the learned weights; (c) learning and ratio state; (d) the ratioed weights during 
each elapse time 
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Fig. 5.10 The layout graph of one bit SRMCNN for learning and ratio  
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(a) 

 

(b) 
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( c) 

Fig. 5.11 The HSPICE simulation (a) learn five exemplar patterns with white-black noise 
and the recognized output pattern; (b) zoom-out the data of exemplar patterns; 
(c) zoom-out the recognized pattern  
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Technology TSMC 0.25 µm, 1P5M, n-well CMOS 
Resolution 9x9 Cells 
one Pixels 1 cell + 5 RMs 
SRMCNN 81 cell + 405 RMs 
Chip area 4000 µm x 4200 µm 

 

Fig. 5.12 The layout graph and characteristics for 9x9 SRMCNN system  
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Fig. 5.13 Global architecture of LN-CNNUM. 
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(a)                               (b) 

Fig. 5.14 (a) Structure of LN-CNN kernel unit. (b) Connections between neighboring 
cells and 
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(a)                                 (b) 

Fig. 5.15 Weights of the LN-CNNUM in (a) template A and (b) template B. 

 
 

LAM0 LAMn-1.  .  .

Internal
analog and logic

cell bus

LLM0 LLMn-1.  .  .

Column-
wise

analog
and logic

bus
(coming

from
external

pins

LLU: Local Logic Unit
(NAND,NOR, NOT...)

OUTOP2OP1

SL1 SL2 SLO

Analog CNN kernel

IN INIT OUT

To neighboring cells

SK1 SK2 SKO

SML0 SMLn-1 SMA0 SMAn-1

SR SW SR SW SR SW SR SW

 buf

     buf
SW

SRSrow Srow

 

Fig. 5.16 Architecture of one cell in the LN-CNNUM. 

 


