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Abstract

The reconstruction of phylogenetic trees is one of the most important and interesting
problems of the evolutionary study.: There are-many methods proposed in the literature for
constructing phylogenetic trees..Each method has-its:own criterion and bases on a selected
evolutionary model. However, the topologies for the trees constructed from different methods
may be quite different. The topology error may due to the unsuitable criterion or evolutionary
model. Since there are many trees built from different methods, we are interested in selecting
a valid tree. In this study, we propose an adjusted k-means approach and a misclassification
error score criterion to solve the problem. This approach evaluates the trees by looking at the
feature of the data from a statistical point view. It can provide an object criterion to select a
valid tree from the statistics perspective. We apply the approach to the real data of phylogeny
of the owlet-nightjars. It shows that the phylogeny tree constructed by Dumbacher et al. (2003)
can reach minimum misclassification error score compared with the other several methods.

Keywords: Phylogeny tree, adjusted k-means, neighbor-joining method, minimum evolution
method, maximum parsimony method, UPGMA method.
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1. Introduction

1.1 Motivation

The reconstruction of phylogenetic trees is one of the most important and interesting
problems of evolutionary study. There are many methods for constructing phylogenetic trees
from molecular data: UPGMA (Sokal and Michener 1958), neighbor-joining (Saitou and Nei,
1987), minimum evolution (Rzhetsky and Nei 1992a, Saitou and Imanishi 1989, Kidd and
Sgaramella-Zonta, 1971), maximum parsimony methods (Wiley 1981, Felsenstein 1982,
Wiley rt al. 1991, Maddison and Maddison 1992, Swofford and Begle 1993) etc. When a
phylogenetic tree is constructed, it is essential to know its accuracy. There are two types of
errors in a phylogenetic tree: topological errors and branch length errors (Tateno et al. 1982).
The former errors are differences in branching pattern between an inferred tree and the true
tree, and the latter are deviations of estimated branch lengths from the true branch lengths.
Topological errors are mare serious-than branch-length_errors, and we mainly focus on
topological errors in the study.

Since there are several .methods 'for~constructing phylogenetic trees, we focus on the
comparison of different trees and propose a statistical approach to examine the accuracy of
the topology of the trees. The computer simulation could be a good approach to explore the
validity of the tree construction. However, for analyzing the multiple alignment DNA or
protein sequences, the topologies for different trees constructed by different methods may be
quite dissimilar. Although the bootstrap methods can be used to test the reliability of the tree,
it still cannot be used to select the tree if the topology for each tree is dissimilar. In this study,
we mainly consider the four kinds of tree constructed by UPGMA, neighbor-joining,
minimum evolution and maximum parsimony methods, and propose a statistical method, the
k-means cluster, to assist the selection of the correct tree. The building of four kinds of tree
can be obtained after aligning the gene sequences by MEGA 4.1 software (Kumar et al. 2008,
Tamura et al. 2007).

1.2 Tree-Building Methods

There are many tree-building methods established in the literature. We focus on several
methods in this study including UPGMA, minimum evolution (ME), neighbor joining (NJ)
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and Maximum parsimony (MP) methods.

First, we introduce UPGMA (the Unweighted pair-group method using arithmetic
averages), which is the simplest method in the category and there is a certain measure of
evolutionary distance computed for all pairs of taxa or sequences in UPGMA, but the
topological errors from UPGMA often occur when the rate of gene substitution is not constant
or when the number of genes or nucleotides used is small.

For the minimum evolution (ME) method, it is computed for all or all plausible topologies,
and the topology that has the smallest sum of all branch length estimates value is chosen as
the best tree, however, a topology with the smallest sum of all branch length estimates value is
not necessarily an “unbiased estimator” of the true topology.

The neighbor joining (NJ) method is based on the minimum evolution principle. This
method doesn’t examine all possible topologies, but at each stage of taxon clustering a
minimum evolution principle is used. The NJ method is regarded as a simplified version of
the ME method. When four or five taxa aresused, the NJ and ME methods give identical
results (Saitou and Nei 1987).

Maximum parsimony (MP) method-is originally developed for morphological characters
(Henning 1966), and there are many different versions (Wiley 1981; Felsenstein 1982; Wiley
et al. 1991; Maddison and- Maddison 1992; Swofford and Begle 1993). Eck and Dayhoff
(1966) seem to be the first to use an” MP method for constructing trees from amino acid
sequence data. Later, Fitch*(1971)".and Hartigan (1973) developed a more rigorous MP
algorithm for nucleotide sequence data. In the MP'method, the smallest number of nucleotide
(or amino acid) substitutions that explain the entire evolutionary process for the topology is
computed. This computation is done for all potentially correct topologies, and the topology
that requires the smallest number of substitutions is chosen to be the best tree. However, MP
methods tend to give incorrect topologies when there are backward and parallel substitutions
at each nucleotide site and the number of nucleotides examined is rather small or when the
rate of nucleotide substitution varies extensively with evolutionary lineage even if the number
of nucleotides examined is very large (Felsenstein 1978).

1.3 The Models of Nucleotides Substitution

As we mentioned in Section 1.1, the reconstruction of phylogenetic trees also based on the
evolutionary models. In this section, the two common evolutionary models: Jukes and
Cantor one-parameter model and Kimura two-parameter model, are introduced. The
simulation study in Section 5 is based on the Jukes and Cantor one-parameter model.



Jukes and Cantor’s one-parameter model assumes that substitutions occur with equal
probability, say «, among the four nucleotide types. Since the time of divergence between
two sequences is usually unknown, we cannot estimate « directly. Instead, we compute K,
the number of substitutions per site since the time of divergence between the two sequences.
In the one-parameter model case, K :2(3at), where 3at is the expected number of
substitutions per site in a single lineage. Jukes and Cantor (1969) derived the following
formula:

3, (. 4.
K :—Zln(l—gpj 1)

where p=X/L is the observed proportion of different nucleotides between the two
sequences.

In the case of the two-parameter model (Kimura, 1980), the differences between two
sequences are classified into transitions and transversions. Let F3:X1/L and Q:XZ/L be
the observed proportions of transitional :and transversional differences between the two
sequences, respectively, where” X, and X,  are the numbers of transitional and

transversional differences between the two sequences: Then the number of nucleotide
substitutions per site between the two sequences,. K, ;. is estimated by

Kzzzm(%}im[ 1Aj @
2 \1-2P-Q) 47 {1-20

2. Real Data Example

2.1 Avian Family

We use the avian family Aegothelidae discussed in Dumbacher, Pratt and Fleischer (2003)
(commonly known as owlet-nightjars) to illustrate the aim of this study. Owlet-nightjars are
small nocturnal birds related to the nightjars and frogmouths. Most are native to New Guinea,
but some species extend to Australia, the Moluccas, and New Caledonia. There is a single
monotypic family Aegothelidae with the genus Aegotheles. The family Aegothelidae
comprises only 9 extant species, all in a single genus, Aegotheles.

Dumbacher, Pratt and Fleischer (2003) based on mitochondrial DNA sequence to construct
a phylogeny of the owlet-nightjars. They analyzing mtDNA sequences Cytochrome b and
ATPase subunit 8 suggests that 9 living species of owlet-nightjar and plus one that went
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extinct early in the second millennium AD. They performed the maximum likelihood analyses,
using the likelihood heuristic searches with a 2-rate class (transitions and transversions)
model of sequence evolution with gamma correction, which is identical to the HKY85 model
evolution (Hasegawa et al., 1985) with the addition of a gamma rate parameter (Yang, 1994).
The taxon they used listed in Table 1 in Dumbacher et al. (2003) includes albertisi albertisi,
wallacii wallacii, wallacii gigas etc. The Genbank numbers for the sequences are
AY090664-AY 090698 (for cytochrome b) and AY090699-AY090736 (for ATPase 8). A
simple form of the tree based on the phylogeny results in Dumbacher, et al (2003) is referred
to the website http://tolweb.org/tree/ of tree of life web project and is shown in Figure 1.

Figurel. A simple form of the tree for the avian family Aegothelidae constructed by Dumbacher, Pratt and

Fleischer (2003).

Aegotheles wallaciii (Wallace's Owlet-Nightjar)

— Aegotheles archboldi (Archbold's Owlet-Nightjar)
L "Aegotheles albertisi_ albertisiMountain Owlet-Nightjar,

Aegothelesyalbertisi salvadorii

Aegotheles | bennettii(Barred .Owlet-Nightjar)

Aegotheles | cristatus(Australian Owlet-Nightjar)
Aegotheles crinifrons(Moluccafi Owlet-Nightjar)

Aegotheles tatei (Spangled Owlet-Nightjar)
Aegothetes insignis-(Feline' Owlet-Nightjar)
77777777 E Aegotheles ' novaezealandiae. *

Aegotheles savesi (Enigmatic Owlet-Nightjar)

In Figure 1, branches that are represented by a hatched line rather than one solid bar
indicate that the monophyly of the group may be uncertain. Aegotheles novaezealandiae in
Figure 1 is the extinct one.

2.2 Four Trees for Avian Family
The four phylogenetic trees based on UPGMA, neighbor-joining, minimum evolution and

maximum parsimony methods for cytochrome b plotted by MEGA software are shown in
Figure 2, Figure 3, and Figure 4.



Figure 2. Trees by the four methods excluding Aegotheles savesi.
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Figure 3. Trees by the four methods excluding Aegotheles novaezealandiae.
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Figure 4. Trees by the four methods excluding the both.
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Form Figure 2, Figure 3, and Figure 4, the topologies built from the other four approaches
are different from the tree proposed by Dumbacher et al. (2003). Without using a convincing
criterion, it is not easy to compare their performances because each approach has its own
merit. Thus, the aim of this study is to establish a reliable criterion from the statistics
perspective to evaluate the different trees. A proposed method, the adjusted k-means approach,
is introduced in the next section.

3. Adjusted K-means Approach for Categorical Data

3.1 Clustering Method

A useful approach to classify the data isithe.clustering method (Anderberg, 1973; Jain and
Dubes, 1988; Kaufman and Rousseeuw, 1990). The k-means clustering method proposed by
MacQueen (1967) and Anderberg (1973)-is a popular.approach in the clustering methods to
partition a set of objects into clusters such that objects in the same cluster are more similar to
each other than objects in different clusters-according to some defined criteria. However, the
conventional k-means algorithm jonly ‘works on numerical data, i.e., the variables are
measured on a ratio scale (Jain and*Dubes,1988).. 'This prohibits it from being used in
applications where categorical data are involved..The nucleotide bases of a DNA sequence are
A, T, C, G, which are categorical data“as"well as a protein sequence. The conventional
k-means approach cannot be directly used to cluster the sequences.

Huang (1998) proposed an extension k-means algorithm, the k-modes algorithm, to
categorical domains. We cannot directly apply conventional k-means approach to cluster the
sequences, but we can adopt Huang’s approach to cluster the multiple nucleotide or protein
sequences. However, the k-modes algorithm may not converge. Ng, Li, Huang and He (2007)
provide a modified k-modes algorithm to overcome the converge problem of the original
k-modes algorithm. Although the modified algorithm may be more stable than the original
k-modes algorithm, according our computing results, it still cannot converge when it be
applied to clustering the multiple nucleotide or protein sequences. Therefore, in this paper, we
propose an adjusted k-means algorithm to cluster the multiple sequences. The algorithm is
introduced in Procedure 1.

Before giving the approach, we first introduce some notations.



3.2 The Measure of Dissimilarity

First we define the dissimilarity measure between the nucleotide or protein sequence X
and a cluster nsequencesG", where X =(xX,---X,) is a nucleotide or protein sequence
with length m, and G" ={G],G;,---,G,} be a set of n nucleotide or protein sequences
withG =(9,9;,.-9;, ) - Note that
X; represents the nucleotide in the j-th site of the sequence X and
g; represents the nucleotide in the j-th site of the i-th gene sequence,G,, 1<i<n,1<j<m,
Then the dissimilarity measure between gene sequence X and cluster G" is defined as the

following

ZZ¢(X1 ,gi,-)
d(X,G" =122 — : 3)

where
¢(Xj ) gij): I (gij ¢Xj)

and
I (+) denotes the indicator function.
Assuming that G":,G"? #.,G"*are k sets“and each’set has n, sequences, |1=1,---,k,

then we define the within group*measure (WGM)-and the between group measure (BGM) for

{G“l,G”Z,---,G”k}as follows:

WGM for G" znz'd (G".G"\G") for 1<l <k (4),

i=1

BGM for {GG}

N Niy (5)7
=Y d(G'", G ")+ > d(G"?,G"), I =l ,and 1<1 | <k
i=1 i=1

where A\B denotes the set A excludes the element B.

Note that in the calculating of (3) after the alignment of the sequences, there may exist
some missing sites for some sequences. For a specified site, it can be classified into three
cases. The first one is that X is missing at this site. The second case is that all sequences in

G" are missing at this site. And the third one is that some of the sequences in G" are
missing at this site, but not all sequences. In the first or second case, the function ¢() in (3)
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is defined as 0. For the third case, we exclude the sequences with missing value at this site.
Assume the number of the left sequences is r. Then we view the group G" asanewset G'
with r sequences and calculate the dissimilarity measure under the assumption.

3.3 Algorithm

Since our goal is to partition a set of objects into clusters such that objects in the same
cluster are more similar to each other than objects in different clusters according to some
defined criteria. Consequently, we prefer the between group measure is large and the within
group measure is small. In this case, we set up a criterion to select the clusters such that

M =BGM" -WGM"~
is maximum, where BGM™ denotes all between group measures of each two clusters and
WGM ™ denotes all within group measures described as equation (6) and equation (7), that is,

WGM" for {G™,G",---,G™ | zzk:id(c;i“' G'1\G") (6).
1=11=1
BGM" for {G",G"* ,-.-,GM }szkj Ek: nid(Gi”'l /G™) ().

| = el =t

Procedure 1.

Stepl.  Align the n sequences, X ={X,, X,,....., X ¥ with MEGA.

Step2.  Allocate every sequence to k clusters randomly.

Step3.  Allocate a sequence to the cluster with the smallest dissimilarity measure according

to equation (3).

Step4.  Repeat 3 until no sequence has changed cluster after a full cycle test of the whole

data set.
Step5.  Repeat steps 2-4 m times and find the result in the m times with the largest M

value, which are the required clusters.

Note that the result of Steps 2-4 may depend on the initial clusters we selected in Step 2.
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The algorithm may not converge to the true clusters with maximum M value. Thus, Step 5
Is provided to select the more accurate cluster.

4. Misclassification Error Score

4.1 Misclassification Error Score

We use the avian family Aegothelidae to illustrate the adjusted k-means approach. In the
approach, first the number of clusters, say k,, needs to be determined. Since the goal of the
approach is to evaluate the performance of different tree methods, the selection of k, is not
determined. We can evaluate the trees under the different cluster number and then conclude
the best tree in which its performance_is; better.in most situations. After applying the adjusted
k-means approach in clustering the n sequences to k, clusters, we define a
misclassification error score to evaluate.a tree.

We take the tree constructed by Dumbacher et al. (2003) as an example to describe the
misclassification error score calculation. -Table 1 lists the cluster (excluding Aegotheles
novaezealandiae) results by the approach for k, = 2,...,9. For example, the third column in

Tables 1 is the cluster result of k*;=4.“The“sequences (Aegotheles wallacii, Aegotheles
archboldi, Aegotheles albertisi, Aegotheles albertisi salvadori, and Aegotheles crinifrons) with
respect to 1 are clustered to the first group; the sequences (Aegotheles tatei, and Aegotheles
insignis) with respect to 2 are clustered to the second group and etc.
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Table 1. The cluster results of the 10 sequences under different K, .

k

0

2

3

4

5

Aegotheles wallacii

Aegotheles archboldi

Aegotheles albertisi

Aegotheles albertisi salvadori

Aegotheles bennettii

Aegotheles cristatus

Aegotheles crinifrons

Aegotheles tatei

Aegotheles insignis

Aegotheles savesi
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We use Figure 5 and Figure 6 to ilustrate the misclassification error score calculation. The
left panel of Figure 5 shows the score calculation. for k.,=5. First, the sequence names in

Figure 1 are replaced by the-corresponding group indexes for k,=5 in Table 1.

Figure 5. The tree of Dumbacher et al. (2003);-excluding-the: Aegotheles novaezealandiae, with taxa replaced

by the index number for K ,=5vand K, =7.

k, =5 score=0+0+0+0+2.5+2=4.5
1
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— ]
1
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G —
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6
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Define the misclassification error score as the sum of the score at each node. The score at
each node is the difference of the group index numbers of its branches. For example, in the
right panel of Figure 5, there are 6 nodes, A, B, C, D, E, F that we need to count the score.
Note that we do not count the score at the node G because all branches are spread out from
this node. Thus, it is not necessary to require the small score at this node. The score value at
each node is the absolute value of the difference of the branches spread from this node.
Thus the misclassification error score is the sum of the five scores at these 5 nodes, which is
calculated by 0+0+0+8+1=9.

Note that for a node with only two branches, the score at this node is the absolute value of
the difference of the two assigned group indexes, like the node B which has the score value 0
with two branches whose assigned group indexes are 4 and 4. When a node has more than two
branches and includes a node, such as the node D with four branches and including one node
A, we need to calculate the score value at the node A first, then view the two branches spread
from node A as one single branch with.assigned number 1 because the two branches both have
assigned number 1. If the two branches do not have the same index, then we take average of
the indexes to be the assigned.number.-Thus, after viewing the two branches spread from node
A as a single branch, the .node D has three branches, say branches 1-3. And we need to
calculate the sum of the absolute values of the difference of'the indexes number of any two of
three branches indexes as the scorejat this'node (see Figure.6).

Figure 6. Decomposition of score at.node D.

1 taxonl

D = 1  taxon 2

—— 1  taxon 3

1 taxon4

(a) (b) (c)
D. = 1 (taxon 1) e 1 (taxon 1) — 1 (taxon 2)
— D,
— ] (taxon 4) 1] (taxon 2) Dy — ] (taxon 3)
1 (taxon 3) 1 (taxon 4)
D,=1-1]=0 1+1 1+1
=[1-1] D,=|1- Fo D,=|1- =0

D=D,+D,+D,=0+0+0=0
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Finally, when a node has included more than one node and a single branch without
connecting a node such as node E, the score calculation is first calculating the average number
of the branches of node D and node B, then take the absolute difference of the average
number (1+1+4+4)/4 and the index 5 of the signal branch as the score at node E.

Here the average number (1+1+4+4)/4 is viewing the two branches at node B as a single
branch and the two branches (taxon 1 and taxon 4) as a single branch. Here we do not need to
consider the taxon 2 and taxon 3 here because its score has been considered at node A.

4.2 Comparison of Misclassification Error Scores

With the definition of the misclassification error score, we can calculate the scores for the
five trees constructed in Section 2 (Figure 3 and Figure 7) under different k,. When k,= 2,
the five trees have the same misclassification error score. It cannot distinguish the
performance of the five trees by the approach under the case. It due to that the rough
classification with smaller cluster. number which.does not sufficiently use the information
from the sequences cannot provide a useful-aid in evaluating the performance of the tree
construction methods. When we increase ky, the results presented in Table 2 show that the
tree constructed by Dumbacher et al. (2003) has smallest misclassification error score among
the trees for k,=3, 4,5, 6, 7;/8.

Note that for the case of k,=9, the ME _and . UPGMA are shown to have smaller
misclassification error score than Dumbachers” tree. Although the analysis for the case of
ko= 9 is different from the cases of k,=3, 4, 5, 6, 7, 8, we still can conclude that
Dumbachers’ tree has better performance compared with other threes for the avian family.

Although the fact that we have different results for the cluster indexes at different time
which may lead to different scores, it has little influence on the order of score for the trees.
The scores in Table 2 are corresponding to different cluster number.

15



Figure 7. The tree constructed by Dumbacher et al. (2003) excluding A. novaezealandiae.
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Table 2. The misclassification error scores for the five trees for k = 2, 3, 4, 5, 6, 7, 8 and 9 when the case

exclude Aegotheles novaezealandiae

Score o
2 3 4 5 6 7 8 9
Dumbacher 1 2 2.5 35 | 1275 | 65 125 | 21.25
Neighbor-Joining 1 3 4 S, 155 9.5 125 | 235
Minimum Evolution B > 4 55 15.5 9.5 13 21
Maximum Parsimony 1 £ 4 5.5 155 9.5 125 | 235
UPGMA ] 3 4 55 15.5 9.5 13 21
Score o
2 3 4 5 6 7 8 9
Dumbacher 1 2 2.5 4.5 11.5 13 | 2275 | 23
Neighbor-Joining 1 3 4 5 145 | 125 21 25.5
Minimum Evolution 1 3 4 5 145 | 125 | 215 | 245
Maximum Parsimony 1 3 4 5 145 | 125 21 25.5
UPGMA 1 3 4 5 14.5 12.5 21.5 24.5
Score o
2 3 4 5 6 7 8 9
Dumbacher 1 2 2.5 3 11.25 | 13.75 | 16,5 | 245
Neighbor-Joining 1 3 4 4.5 125 | 195 17 26
Minimum Evolution 1 3 4 4.5 125 | 195 | 185 | 275
Maximum Parsimony 1 3 4 4.5 125 | 195 17 26
UPGMA 1 3 4 4.5 12.5 19.5 18.5 27.5
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4.3 The Case of Excluding Aegotheles Savesi and Excluding the Both

Figure 8. The tree constructed by Dumbacher et al. (2003) considered two conditions that

excluding A. savesi (a) and excluding the both (b).
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Since there is no common site found for computing distances, we consider three conditions,

and we only consider a condition of excluding Aegotheles-novaezealandiae in the section 4.1.

Hence, in this section, we provide additionalresult of the conditions for excluding Aegotheles

savesi and excluding the both. Tables 3 to 5 are.corresponding to the condition of excluding

Aegotheles savesi and Tables 6 to 8 are corresponding to the condition of excluding the both.

No matter what the case is, we prefer the tree constructed by Dumbacher, et al (2003)

according to Tables 3 to 8.
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Table 3.

Score Ko
(excluding A. savesi); 2 3 4 5 6 7 8 9
Dumbacher 1 2 2 4.5 9.25 115 | 17.25 | 27.75
Neighbor-Joining 1 5 7 3 10 13 225 | 255
Minimum Evolution 1 5 7 3 10 12,5 22 30
Maximum Parsimony 1 3 3 8.667 | 10.67 | 8.333 13 30.17
UPGMA 1 5 7 8 10 13 225 | 215
Table 4.

Score Ko
(excluding A. savesi); 2 3 4 ) 6 7 8 9
Dumbacher i 2.5 24 1 7 14 18.25 25
Neighbor-Joining 1 3 3 5 11 10 215 | 245
Minimum Evolution k 3 3 5 11 12 23 29
Maximum Parsimony I 2 4 7.33 8.5 13 17.17 | 24.33
UPGMA 1 3 4 9 11 17 23.5 28
Table 5.

Score Ko
(excluding A. savesi)s 2 3 4 5 6 7 8 9
Dumbacher 1 2 2.5 3.5 7.75 | 145 | 20.25 | 205
Neighbor-Joining 1 5 5 6 10 17 26 24
Minimum Evolution 1 5 5 6 10 16 24 26.5
Maximum Parsimony 1 3 2 7.5 6 15.17 | 16.33 22
UPGMA 1 5 5 6 10 17 26 22.5
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Table 6.

Score Ko
(excluding the both); 2 3 4 5 6 7 8
Dumbacher 0 1 1.5 9 6.25 8.25 19.75
Neighbor-Joining 0 2 3 6 7 10 21
Minimum Evolution 0 2 3 6 7 10 21
Maximum Parsimony 1 3 4.5 10.5 9.5 9 19.5
UPGMA 0 2 3 6 8.5 115 25.5

Table 7.

Score ko
(excluding the both), 2 3 4 5 6 7 8
Dumbacher 0 1 1.5 5 8.25 13.25 10
Neighbor-Joining 0 2 3 2 11 12 135
Minimum Evolution 0 2 3 B 11 12 135
Maximum Parsimony 1 3 5 9:5 12 13 10.5
UPGMA 0 2 3 5 10 18 15

Table 8.

Score Ko
(excluding the both)s 2 3 4 5 6 7 8
Dumbacher 0 0.5 2.5 4.25 4.75 10.5 10
Neighbor-Joining 0 1 5 6 6 12 10.5
Minimum Evolution 0 1 5 6 6 12 10.5
Maximum Parsimony 1 2 5.5 7 8.5 7 11
UPGMA 0 1 5 6 6 12.5 10
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5. Simulation Result

5.1 Simulation Based on Juke and Cantor Model

Besides the owlet-nightjar example, we conduct a simulation study to investigate the
feasibility of the k-mean approach.

The trees were formed under the assumption of constant rate (rate = 0.01, 0.02, 0.03, 0.04,
0.05, 0.1, 0.2) of nucleotide substitution, and the expected number of nucleotide substitutions
per site from the ancestral sequence to an extant sequence. The ancestral sequence of a given
number (100) of nucleotides was generated by using pseudorandom numbers, with equal
frequencies for the four nucleotides (A, T, C, G) being assuming. We first generate four
sequences, and then generate three sequences from each sequence using the pattern in Figure
9.

Figure 9. The generation pattern for 12:descendent sequences generated from an

ancestor sequence with-Juke and Cantor’s model:

13
12_ / Lineage 1
11
23
22  Lineage 2
21
33
32 Lineage 3
31
43
42 Lineage 4
41

Ancestor e

RGIED:

5.2 Simulation Result

The misclassification error scores for the four trees under k, =4 for different substitution

rate derived by the adjusted k-means approach are shown in Table 9.
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Table 9. The misclassification error scores for four kinds of tree for different rates for 12 sequences

generated from the model in Figure 9.

Rate
Score
0.01 0.02 0.03 0.04 0.05 1 0.20
Neighbor-Joining 4 3.5 6 4 3.5 4 2
Minimum Evolution 4 35 6 4 35 4 4
Maximum Parsimony | 6.67 5.67 6.5 4.33 4 6 4.5
UPGMA 6.5 7 5.17 35 35 4 4

We show the phylogeny trees for the rate 0.01 and 0.1 in Figures 10 and 11. Table 9
shows that in the case of rate being 0.01, the maximum parsimony and UPGMA trees has
higher misclassification error score than the other two trees. From Figure 10, we can see
that maximum parsimony and UPGMA trees have more dissimilar topologies from the

topology of tree in Figure 9 than the 'other twa. trees. For the case of rate being 0.1,

maximum parsimony tree has significantly higher misclassification error score than the
other three trees. From Figure 11, the maximum parsimony tree has the most dissimilar

topology from the tree in Figure.9.among the four trees.

From the simulation results, it shows that misclassification error score derived from the
adjusted k-means approachcan provide.a.convincing method to guide the selection of the

valid tree.
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Figure 10. The four trees for the 12 descendent sequences for rate 0.01
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Figure 11. The four trees for the 12 descendent sequences for rate 0.1
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