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Abstract 

  The reconstruction of phylogenetic trees is one of the most important and interesting 

problems of the evolutionary study. There are many methods proposed in the literature for 

constructing phylogenetic trees. Each method has its own criterion and bases on a selected 

evolutionary model. However, the topologies for the trees constructed from different methods 

may be quite different. The topology error may due to the unsuitable criterion or evolutionary 

model. Since there are many trees built from different methods, we are interested in selecting 

a valid tree. In this study, we propose an adjusted k-means approach and a misclassification 

error score criterion to solve the problem. This approach evaluates the trees by looking at the 

feature of the data from a statistical point view. It can provide an object criterion to select a 

valid tree from the statistics perspective. We apply the approach to the real data of phylogeny 

of the owlet-nightjars. It shows that the phylogeny tree constructed by Dumbacher et al. (2003) 

can reach minimum misclassification error score compared with the other several methods. 

 

 

 

Keywords: Phylogeny tree, adjusted k-means, neighbor-joining method, minimum evolution 

method, maximum parsimony method, UPGMA method. 
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摘要 

  演化樹的建立是演化研究裡重要又有趣的問題之一。在文獻中已經有許多有關演化

樹建的方法而每個方法都有自己的準則以及演化模型。然而，在建立演化樹過程中，這

些準則與演化模型有可能會導致演化樹在拓樸上的誤差。因為已經有許多不同的方法建

立演化樹，所以我們所感興趣的是選取可靠的演化樹。在這篇論文裡，我們提出adjusted 

k-means方法與misclassification error score準則來解決問題。這個方法是利用統計的觀點

看資料的特質來評估演化樹。我們應用這個方法在Owlet-Nightjars的實際資料上，顯示

出Dumbacher et al.(2003)與其他方法所建構的演化樹，可以達到最小的misclassification 

error score。 

 

關鍵字： 演化樹，adjusted k-means，neighbor-joining 方法，minimum evolution 方法，

maximum parsimony 方法，UPGMA 方法。 
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1. 1BIntroduction 

1.1 2BMotivation 

  The reconstruction of phylogenetic trees is one of the most important and interesting 

problems of evolutionary study. There are many methods for constructing phylogenetic trees 

from molecular data: UPGMA (Sokal and Michener 1958), neighbor-joining (Saitou and Nei, 

1987), minimum evolution (Rzhetsky and Nei 1992a, Saitou and Imanishi 1989, Kidd and 

Sgaramella-Zonta, 1971), maximum parsimony methods (Wiley 1981, Felsenstein 1982, 

Wiley rt al. 1991, Maddison and Maddison 1992, Swofford and Begle 1993) etc. When a 

phylogenetic tree is constructed, it is essential to know its accuracy. There are two types of 

errors in a phylogenetic tree: topological errors and branch length errors (Tateno et al. 1982). 

The former errors are differences in branching pattern between an inferred tree and the true 

tree, and the latter are deviations of estimated branch lengths from the true branch lengths.  

Topological errors are more serious than branch-length errors, and we mainly focus on 

topological errors in the study.  

  Since there are several methods for constructing phylogenetic trees, we focus on the 

comparison of different trees and propose a statistical approach to examine the accuracy of 

the topology of the trees. The computer simulation could be a good approach to explore the 

validity of the tree construction. However, for analyzing the multiple alignment DNA or 

protein sequences, the topologies for different trees constructed by different methods may be 

quite dissimilar. Although the bootstrap methods can be used to test the reliability of the tree, 

it still cannot be used to select the tree if the topology for each tree is dissimilar. In this study, 

we mainly consider the four kinds of tree constructed by UPGMA, neighbor-joining, 

minimum evolution and maximum parsimony methods, and propose a statistical method, the 

k-means cluster, to assist the selection of the correct tree. The building of four kinds of tree 

can be obtained after aligning the gene sequences by MEGA 4.1 software (Kumar et al. 2008, 

Tamura et al. 2007).   

1.2 3BTree-Building Methods 

  There are many tree-building methods established in the literature. We focus on several 

methods in this study including UPGMA, minimum evolution (ME), neighbor joining (NJ) 
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and Maximum parsimony (MP) methods.  

First, we introduce UPGMA (the Unweighted pair-group method using arithmetic 

averages), which is the simplest method in the category and there is a certain measure of 

evolutionary distance computed for all pairs of taxa or sequences in UPGMA, but the 

topological errors from UPGMA often occur when the rate of gene substitution is not constant 

or when the number of genes or nucleotides used is small.  

  For the minimum evolution (ME) method, it is computed for all or all plausible topologies, 

and the topology that has the smallest sum of all branch length estimates value is chosen as 

the best tree, however, a topology with the smallest sum of all branch length estimates value is 

not necessarily an “unbiased estimator” of the true topology.  

  The neighbor joining (NJ) method is based on the minimum evolution principle. This 

method doesn’t examine all possible topologies, but at each stage of taxon clustering a 

minimum evolution principle is used. The NJ method is regarded as a simplified version of 

the ME method. When four or five taxa are used, the NJ and ME methods give identical 

results (Saitou and Nei 1987). 

  Maximum parsimony (MP) method is originally developed for morphological characters 

(Henning 1966), and there are many different versions (Wiley 1981; Felsenstein 1982; Wiley 

et al. 1991; Maddison and Maddison 1992; Swofford and Begle 1993). Eck and Dayhoff 

(1966) seem to be the first to use an MP method for constructing trees from amino acid 

sequence data. Later, Fitch (1971) and Hartigan (1973) developed a more rigorous MP 

algorithm for nucleotide sequence data. In the MP method, the smallest number of nucleotide 

(or amino acid) substitutions that explain the entire evolutionary process for the topology is 

computed. This computation is done for all potentially correct topologies, and the topology 

that requires the smallest number of substitutions is chosen to be the best tree. However, MP 

methods tend to give incorrect topologies when there are backward and parallel substitutions 

at each nucleotide site and the number of nucleotides examined is rather small or when the 

rate of nucleotide substitution varies extensively with evolutionary lineage even if the number 

of nucleotides examined is very large (Felsenstein 1978). 

1.3 4BThe Models of Nucleotides Substitution 

  As we mentioned in Section 1.1, the reconstruction of phylogenetic trees also based on the 

evolutionary models.  In this section, the two common evolutionary models: Jukes and 

Cantor one-parameter model and Kimura two-parameter model, are introduced. The 

simulation study in Section 5 is based on the Jukes and Cantor one-parameter model. 
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  Jukes and Cantor’s one-parameter model assumes that substitutions occur with equal 

probability, say  , among the four nucleotide types. Since the time of divergence between 

two sequences is usually unknown, we cannot estimate   directly. Instead, we compute K , 

the number of substitutions per site since the time of divergence between the two sequences. 

In the one-parameter model case,  2 3K t , where 3 t  is the expected number of 

substitutions per site in a single lineage. Jukes and Cantor (1969) derived the following 

formula:  

3 4
ˆln 1

4 3
K p

    
 

                                                         (1) 

where p̂ X L  is the observed proportion of different nucleotides between the two 

sequences. 

  In the case of the two-parameter model (Kimura, 1980), the differences between two 

sequences are classified into transitions and transversions. Let 1P̂ X L  and 2Q̂ X L  be 

the observed proportions of transitional and transversional differences between the two 

sequences, respectively, where 1X  and 2X  are the numbers of transitional and 

transversional differences between the two sequences. Then the number of nucleotide 

substitutions per site between the two sequences, 2K , is estimated by 

2

1 1 1 1
ln ln

ˆ ˆˆ2 41 2 1 2
K

P Q Q

   
    

     
                                          (2) 

 

2. 5BReal Data Example  

2.1 6BAvian Family 

  We use the avian family Aegothelidae discussed in Dumbacher, Pratt and Fleischer (2003) 

(commonly known as owlet-nightjars) to illustrate the aim of this study. Owlet-nightjars are 

small nocturnal birds related to the nightjars and frogmouths. Most are native to New Guinea, 

but some species extend to Australia, the Moluccas, and New Caledonia. There is a single 

monotypic family Aegothelidae with the genus Aegotheles. The family Aegothelidae 

comprises only 9 extant species, all in a single genus, Aegotheles.  

  Dumbacher, Pratt and Fleischer (2003) based on mitochondrial DNA sequence to construct 

a phylogeny of the owlet-nightjars. They analyzing mtDNA sequences Cytochrome b and 

ATPase subunit 8 suggests that 9 living species of owlet-nightjar and plus one that went 
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extinct early in the second millennium AD. They performed the maximum likelihood analyses, 

using the likelihood heuristic searches with a 2-rate class (transitions and transversions) 

model of sequence evolution with gamma correction, which is identical to the HKY85 model 

evolution (Hasegawa et al., 1985) with the addition of a gamma rate parameter (Yang, 1994).  

The taxon they used listed in Table 1 in Dumbacher et al. (2003) includes albertisi albertisi, 

wallacii wallacii, wallacii gigas etc. The Genbank numbers for the sequences are 

AY090664-AY090698 (for cytochrome b) and AY090699-AY090736 (for ATPase 8). A 

simple form of the tree based on the phylogeny results in Dumbacher, et al (2003) is referred 

to the website http://tolweb.org/tree/ of tree of life web project and is shown in Figure 1. 

 

Figure1. A simple form of the tree for the avian family Aegothelidae constructed by Dumbacher, Pratt and 

Fleischer (2003). 

Aegotheles archboldi (Archbold's Owlet-Nightjar)

Aegotheles albertisi albertisi(Mountain Owlet-Nightjar)

Aegotheles bennettii(Barred Owlet-Nightjar)

Aegotheles cristatus(Austral ian Owlet-Nightjar)

Aegotheles tatei (Spangled Owlet-Nightjar)

Aegotheles insignis (Feline Owlet-Nightjar)

Aegotheles novaezealandiae *

Aegotheles savesi (En igmatic Owlet-Nightjar)

Aegotheles wallacii i (Wallace's Owlet-Nightjar)

Aegotheles albertisi salvadorii

Aegotheles crin ifrons(Moluccan Owlet-Nightjar)

 

 

  In Figure 1, branches that are represented by a hatched line rather than one solid bar 

indicate that the monophyly of the group may be uncertain. Aegotheles novaezealandiae in 

Figure 1 is the extinct one. 

2.2 7BFour Trees for Avian Family 

  The four phylogenetic trees based on UPGMA, neighbor-joining, minimum evolution and 

maximum parsimony methods for cytochrome b plotted by MEGA software are shown in 

Figure 2, Figure 3, and Figure 4.  
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Figure 2. Trees by the four methods excluding Aegotheles savesi. 
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Figure 3. Trees by the four methods excluding Aegotheles novaezealandiae. 
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Figure 4. Trees by the four methods excluding the both. 
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  Form Figure 2, Figure 3, and Figure 4, the topologies built from the other four approaches 

are different from the tree proposed by Dumbacher et al. (2003). Without using a convincing 

criterion, it is not easy to compare their performances because each approach has its own 

merit. Thus, the aim of this study is to establish a reliable criterion from the statistics 

perspective to evaluate the different trees. A proposed method, the adjusted k-means approach, 

is introduced in the next section. 

 

3. 8BAdjusted K-means Approach for Categorical Data  

3.1 9BClustering Method 

  A useful approach to classify the data is the clustering method (Anderberg, 1973; Jain and 

Dubes, 1988; Kaufman and Rousseeuw, 1990). The k-means clustering method proposed by 

MacQueen (1967) and Anderberg (1973) is a popular approach in the clustering methods to 

partition a set of objects into clusters such that objects in the same cluster are more similar to 

each other than objects in different clusters according to some defined criteria. However, the 

conventional k-means algorithm only works on numerical data, i.e., the variables are 

measured on a ratio scale (Jain and Dubes, 1988). This prohibits it from being used in 

applications where categorical data are involved. The nucleotide bases of a DNA sequence are 

A, T, C, G, which are categorical data as well as a protein sequence. The conventional 

k-means approach cannot be directly used to cluster the sequences. 

  Huang (1998) proposed an extension k-means algorithm, the k-modes algorithm, to 

categorical domains. We cannot directly apply conventional k-means approach to cluster the 

sequences, but we can adopt Huang’s approach to cluster the multiple nucleotide or protein 

sequences. However, the k-modes algorithm may not converge. Ng, Li, Huang and He (2007) 

provide a modified k-modes algorithm to overcome the converge problem of the original 

k-modes algorithm. Although the modified algorithm may be more stable than the original 

k-modes algorithm, according our computing results, it still cannot converge when it be 

applied to clustering the multiple nucleotide or protein sequences. Therefore, in this paper, we 

propose an adjusted k-means algorithm to cluster the multiple sequences. The algorithm is 

introduced in Procedure 1. 

  Before giving the approach, we first introduce some notations. 
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3.2 10BThe Measure of Dissimilarity 

  First we define the dissimilarity measure between the nucleotide or protein sequence X  

and a cluster n sequences nG , where  1 2  mX x x x  is a nucleotide or protein sequence 

with length m , and 1 2{ , , , } n n n n
nG G G G  be a set of n nucleotide or protein sequences 

with  1 2
n
i i i imG g g ...g . Note that 

jx  represents the nucleotide in the j-th site of the sequence X  and 

ijg  represents the nucleotide in the j-th site of the i-th gene sequence, iG , 1 ,1i n j m    , 

Then the dissimilarity measure between gene sequence X  and cluster nG  is defined as the 

following 

 
1 1

,

( , )

m n

j i j
j in

x g

d X G
n m


 


   ,                                             (3) 

where 

   ,j i j ij jx g I g x    

and 

 I  denotes the indicator function. 

  Assuming that 1 2, , , knn nG G G are k sets and each set has ln  sequences, 1, ,l k  , 

then we define the within group measure (WGM) and the between group measure (BGM) for   

 1 2, , , knn nG G G as follows: 

 
1

WGM for  , \           for 1


  
l

l l l l

n
n n n n

i i
i

G d G G G l k                   (4), 

 1 2

1 2

1 2 2 1
1 2 1 2

1 1

BGM for ,

( , ) ( , ) ,  and 1 ,
 

     

l l

l l

l l l l

n n

n n
n n n n

i i
i i

G G

d G G d G G l l l l k
                    (5), 

where A\B denotes the set A excludes the element B. 

  Note that in the calculating of (3) after the alignment of the sequences, there may exist 

some missing sites for some sequences. For a specified site, it can be classified into three 

cases. The first one is that X is missing at this site. The second case is that all sequences in 
nG  are missing at this site. And the third one is that some of the sequences in nG  are 

missing at this site, but not all sequences. In the first or second case, the function    in (3) 
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is defined as 0. For the third case, we exclude the sequences with missing value at this site. 

Assume the number of the left sequences is r. Then we view the group nG  as a new set rG  

with r sequences and calculate the dissimilarity measure under the assumption. 

3.3 11BAlgorithm 

  Since our goal is to partition a set of objects into clusters such that objects in the same 

cluster are more similar to each other than objects in different clusters according to some 

defined criteria. Consequently, we prefer the between group measure is large and the within 

group measure is small. In this case, we set up a criterion to select the clusters such that 

 * *M BGM WGM   

is maximum, where *BGM  denotes all between group measures of each two clusters and   
*WGM denotes all within group measures described as equation (6) and equation (7), that is,  

   1 2*

1 1

WGM  for , , ,  , \
l

k l l l

nk
n n n nn n

i i
l i

G G G d G G G
 

 (6), 

 
1

1 2 1 2

1 2 1

*

1 1

BGM  for , , , ( , )
l

l lk

nk k
n nnn n
i

l l l i

G G G d G G
  

                             (7). 

Procedure 1. 

Step1. Align the n sequences, },.....,,{ 21 nXXXX  , with MEGA. 

Step2. Allocate every sequence to k clusters randomly. 

Step3. Allocate a sequence to the cluster with the smallest dissimilarity measure according 

to equation (3). 

Step4. Repeat 3 until no sequence has changed cluster after a full cycle test of the whole 

data set. 

Step5. Repeat steps 2-4 m  times and find the result in the m  times with the largest M

 value, which are the required clusters. 

 

  Note that the result of Steps 2-4 may depend on the initial clusters we selected in Step 2. 
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The algorithm may not converge to the true clusters with maximum M  value. Thus, Step 5 

is provided to select the more accurate cluster. 

 

4. 12BMisclassification Error Score  

4.1 13BMisclassification Error Score 

  We use the avian family Aegothelidae to illustrate the adjusted k-means approach. In the 

approach, first the number of clusters, say 0k , needs to be determined. Since the goal of the 

approach is to evaluate the performance of different tree methods, the selection of 0k  is not 

determined. We can evaluate the trees under the different cluster number and then conclude 

the best tree in which its performance is better in most situations. After applying the adjusted 

k-means approach in clustering the n  sequences to 0k  clusters, we define a 

misclassification error score to evaluate a tree. 

  We take the tree constructed by Dumbacher et al. (2003) as an example to describe the 

misclassification error score calculation. Table 1 lists the cluster (excluding Aegotheles 

novaezealandiae) results by the approach for 0 2,...,9k  . For example, the third column in 

Tables 1 is the cluster result of 0 4k  . The sequences (Aegotheles wallacii, Aegotheles 

archboldi, Aegotheles albertisi, Aegotheles albertisi salvadori, and Aegotheles crinifrons) with 

respect to 1 are clustered to the first group; the sequences (Aegotheles tatei, and Aegotheles 

insignis) with respect to 2 are clustered to the second group and etc.  
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Table 1. The cluster results of the 10 sequences under different 0k . 

0k  2 3 4 5 6 7 8 9 

Aegotheles wallacii 1 3 1 1 1 6 8 6 

Aegotheles archboldi 1 3 1 1 1 3 1 5 

Aegotheles albertisi 1 3 1 1 1 3 1 5 

Aegotheles albertisi salvadori 1 3 1 1 5 2 3 3 

Aegotheles bennettii 1 1 4 4 6 4 7 4 

Aegotheles cristatus 1 1 4 4 6 4 7 7 

Aegotheles crinifrons 1 3 1 5 2 5 2 2 

Aegotheles tatei 2 2 2 3 3 1 6 9 

Aegotheles insignis 2 2 2 3 3 1 5 1 

Aegotheles savesi 2 2 3 2 4 7 4 8 

 

  We use Figure 5 and Figure 6 to illustrate the misclassification error score calculation. The 

left panel of Figure 5 shows the score calculation for 50k . First, the sequence names in 

Figure 1 are replaced by the corresponding group indexes for 50k  in Table 1. 

 

Figure 5. The tree of Dumbacher et al. (2003), excluding the Aegotheles novaezealandiae, with taxa replaced 

by the index number for  50k  and 0k 7. 
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  Define the misclassification error score as the sum of the score at each node. The score at 

each node is the difference of the group index numbers of its branches. For example, in the 

right panel of Figure 5, there are 6 nodes, A, B, C, D, E, F that we need to count the score.  

Note that we do not count the score at the node G because all branches are spread out from 

this node. Thus, it is not necessary to require the small score at this node. The score value at 

each node is the absolute value of the difference of the branches spread from this node.  

Thus the misclassification error score is the sum of the five scores at these 5 nodes, which is 

calculated by 0+0+0+8+1=9. 

  Note that for a node with only two branches, the score at this node is the absolute value of 

the difference of the two assigned group indexes, like the node B which has the score value 0 

with two branches whose assigned group indexes are 4 and 4. When a node has more than two 

branches and includes a node, such as the node D with four branches and including one node 

A, we need to calculate the score value at the node A first, then view the two branches spread 

from node A as one single branch with assigned number 1 because the two branches both have 

assigned number 1. If the two branches do not have the same index, then we take average of 

the indexes to be the assigned number. Thus, after viewing the two branches spread from node 

A as a single branch, the node D has three branches, say branches 1-3. And we need to 

calculate the sum of the absolute values of the difference of the indexes number of any two of 

three branches indexes as the score at this node (see Figure 6). 

 

 Figure 6. Decomposition of score at node D. 

1     taxon 2

1     taxon 3

1     taxon 1

1     taxon 4

D

 

(a) 

1 (taxon 1)

1 (taxon 4)
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1 (taxon 3)

1 (taxon 1)
D2

(c) 

1 (taxon 2)

1 (taxon 3)

1 (taxon 4)

D3

1D =  1 - 1 =0  
2

 1 + 1 
D =  1 -  =0

2
 3

 1 + 1 
D =  1 -  =0

2
 

1 2 3D = D  + D  + D  = 0 + 0 + 0 = 0  
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  Finally, when a node has included more than one node and a single branch without 

connecting a node such as node E, the score calculation is first calculating the average number 

of the branches of node D and node B, then take the absolute difference of the average 

number (1+1+4+4)/4 and the index 5 of the signal branch as the score at node E.  

  Here the average number (1+1+4+4)/4 is viewing the two branches at node B as a single 

branch and the two branches (taxon 1 and taxon 4) as a single branch. Here we do not need to 

consider the taxon 2 and taxon 3 here because its score has been considered at node A. 

4.2 14BComparison of Misclassification Error Scores 

  With the definition of the misclassification error score, we can calculate the scores for the 

five trees constructed in Section 2 (Figure 3 and Figure 7) under different 0k . When 0k = 2, 

the five trees have the same misclassification error score. It cannot distinguish the 

performance of the five trees by the approach under the case. It due to that the rough 

classification with smaller cluster number which does not sufficiently use the information 

from the sequences cannot provide a useful aid in evaluating the performance of the tree 

construction methods. When we increase 0k , the results presented in Table 2 show that the 

tree constructed by Dumbacher et al. (2003) has smallest misclassification error score among 

the trees for 0k =3, 4, 5, 6, 7, 8. 

  Note that for the case of 0k =9, the ME and UPGMA are shown to have smaller 

misclassification error score than Dumbachers’ tree. Although the analysis for the case of 

0k = 9 is different from the cases of 0k =3, 4, 5, 6, 7, 8, we still can conclude that 

Dumbachers’ tree has better performance compared with other threes for the avian family.  

  Although the fact that we have different results for the cluster indexes at different time 

which may lead to different scores, it has little influence on the order of score for the trees. 

The scores in Table 2 are corresponding to different cluster number. 
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Figure 7. The tree constructed by Dumbacher et al. (2003) excluding A. novaezealandiae. 
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A. crinifrons
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Table 2. The misclassification error scores for the five trees for k = 2, 3, 4, 5, 6, 7, 8 and 9 when the case 

exclude Aegotheles novaezealandiae  

k 0 
Score 

2 3 4 5 6 7 8 9 

Dumbacher 1 2 2.5 3.5 12.75 6.5 12.5 21.25

Neighbor-Joining 1 3 4 5.5 15.5 9.5 12.5 23.5 

Minimum Evolution 1 3 4 5.5 15.5 9.5 13 21 

Maximum Parsimony 1 3 4 5.5 15.5 9.5 12.5 23.5 

UPGMA 1 3 4 5.5 15.5 9.5 13 21 

k 0 
Score 

2 3 4 5 6 7 8 9 

Dumbacher 1 2 2.5 4.5 11.5 13 22.75 23 

Neighbor-Joining 1 3 4 5 14.5 12.5 21 25.5 

Minimum Evolution 1 3 4 5 14.5 12.5 21.5 24.5 

Maximum Parsimony 1 3 4 5 14.5 12.5 21 25.5 

UPGMA 1 3 4 5 14.5 12.5 21.5 24.5 

k 0 
Score 

2 3 4 5 6 7 8 9 

Dumbacher 1 2 2.5 3 11.25 13.75 16.5 24.5 

Neighbor-Joining 1 3 4 4.5 12.5 19.5 17 26 

Minimum Evolution 1 3 4 4.5 12.5 19.5 18.5 27.5 

Maximum Parsimony 1 3 4 4.5 12.5 19.5 17 26 

UPGMA 1 3 4 4.5 12.5 19.5 18.5 27.5 
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4.3 15BThe Case of Excluding Aegotheles Savesi and Excluding the Both 

 

 Figure 8. The tree constructed by Dumbacher et al. (2003) considered two conditions that 

excluding A. savesi (a) and excluding the both (b). 
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(b) 
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  Since there is no common site found for computing distances, we consider three conditions, 

and we only consider a condition of excluding Aegotheles novaezealandiae in the section 4.1. 

Hence, in this section, we provide additional result of the conditions for excluding Aegotheles 

savesi and excluding the both. Tables 3 to 5 are corresponding to the condition of excluding 

Aegotheles savesi and Tables 6 to 8 are corresponding to the condition of excluding the both. 

No matter what the case is, we prefer the tree constructed by Dumbacher, et al (2003) 

according to Tables 3 to 8. 
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Table 3. 

k 0 Score 

(excluding A. savesi)1 2 3 4 5 6 7 8 9 

Dumbacher 1 2 2 4.5 9.25 11.5 17.25 27.75

Neighbor-Joining 1 5 7 3 10 13 22.5 25.5 

Minimum Evolution 1 5 7 3 10 12.5 22 30 

Maximum Parsimony 1 3 3 8.667 10.67 8.333 13 30.17

UPGMA 1 5 7 8 10 13 22.5 21.5 

 

Table 4. 

k 0 Score 

(excluding A. savesi)2 2 3 4 5 6 7 8 9 

Dumbacher 1 2.5 2.5 1 7 14 18.25 25 

Neighbor-Joining 1 3 3 5 11 10 21.5 24.5 

Minimum Evolution 1 3 3 5 11 12 23 29 

Maximum Parsimony 1 2 4 7.33 8.5 13 17.17 24.33

UPGMA 1 3 4 9 11 17 23.5 28 

 

Table 5. 

k 0 Score 

(excluding A. savesi)3 2 3 4 5 6 7 8 9 

Dumbacher 1 2 2.5 3.5 7.75 14.5 20.25 20.5 

Neighbor-Joining 1 5 5 6 10 17 26 24 

Minimum Evolution 1 5 5 6 10 16 24 26.5 

Maximum Parsimony 1 3 2 7.5 6 15.17 16.33 22 

UPGMA 1 5 5 6 10 17 26 22.5 
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Table 6. 

k 0 Score 

(excluding the both)1 2 3 4 5 6 7 8 

Dumbacher 0 1 1.5 9 6.25 8.25 19.75 

Neighbor-Joining 0 2 3 6 7 10 21 

Minimum Evolution 0 2 3 6 7 10 21 

Maximum Parsimony 1 3 4.5 10.5 9.5 9 19.5 

UPGMA 0 2 3 6 8.5 11.5 25.5 

 

Table 7. 

k 0 Score 

(excluding the both)2 2 3 4 5 6 7 8 

Dumbacher 0 1 1.5 5 8.25 13.25 10 

Neighbor-Joining 0 2 3 5 11 12 13.5 

Minimum Evolution 0 2 3 5 11 12 13.5 

Maximum Parsimony 1 3 5 9.5 12 13 10.5 

UPGMA 0 2 3 5 10 18 15 

 

Table 8. 

k 0 Score 

(excluding the both)3 2 3 4 5 6 7 8 

Dumbacher 0 0.5 2.5 4.25 4.75 10.5 10 

Neighbor-Joining 0 1 5 6 6 12 10.5 

Minimum Evolution 0 1 5 6 6 12 10.5 

Maximum Parsimony 1 2 5.5 7 8.5 7 11 

UPGMA 0 1 5 6 6 12.5 10 
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5. 16BSimulation Result 

5.1 17BSimulation Based on Juke and Cantor Model 

  Besides the owlet-nightjar example, we conduct a simulation study to investigate the 

feasibility of the k-mean approach. 

  The trees were formed under the assumption of constant rate (rate = 0.01, 0.02, 0.03, 0.04, 

0.05, 0.1, 0.2) of nucleotide substitution, and the expected number of nucleotide substitutions 

per site from the ancestral sequence to an extant sequence. The ancestral sequence of a given 

number (100) of nucleotides was generated by using pseudorandom numbers, with equal 

frequencies for the four nucleotides (A, T, C, G) being assuming. We first generate four 

sequences, and then generate three sequences from each sequence using the pattern in Figure 

9. 

 

Figure 9. The generation pattern for 12 descendent sequences generated from an 

ancestor sequence with Juke and Cantor’s model. 
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5.2 18BSimulation Result 

The misclassification error scores for the four trees under 40 k  for different substitution 

rate derived by the adjusted k-means approach are shown in Table 9. 
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Table 9. The misclassification error scores for four kinds of tree for different rates for 12 sequences 

generated from the model in Figure 9. 

Rate 
Score 

0.01 0.02 0.03 0.04 0.05 0.10 0.20 

Neighbor-Joining 4 3.5 6 4 3.5 4 2 

Minimum Evolution 4 3.5 6 4 3.5 4 4 

Maximum Parsimony 6.67 5.67 6.5 4.33 4 6 4.5 

UPGMA 6.5 7 5.17 3.5 3.5 4 4 

 

  We show the phylogeny trees for the rate 0.01 and 0.1 in Figures 10 and 11. Table 9 

shows that in the case of rate being 0.01, the maximum parsimony and UPGMA trees has 

higher misclassification error score than the other two trees. From Figure 10, we can see 

that maximum parsimony and UPGMA trees have more dissimilar topologies from the 

topology of tree in Figure 9 than the other two trees. For the case of rate being 0.1, 

maximum parsimony tree has significantly higher misclassification error score than the 

other three trees. From Figure 11, the maximum parsimony tree has the most dissimilar 

topology from the tree in Figure 9 among the four trees.  

  From the simulation results, it shows that misclassification error score derived from the 

adjusted k-means approach can provide a convincing method to guide the selection of the 

valid tree. 
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Figure 10. The four trees for the 12 descendent sequences for rate 0.01 
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Figure 11. The four trees for the 12 descendent sequences for rate 0.1 
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