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Nonparametric Outlier Mean for Gene Expression Analysis

Student: Ya-Fang You Advisor: Dr. Lin-An Chen

Institute of Statistics
National Chiao Tung University

ABSTRACT

The outlier mean has a reasonable power when the distribution is in a
location shift, however, its power is remarkably reduced when he
distribution is shifted on only a small fraction of observations, due to
large asymptotic variances, while this happen frequently in the cancer
study. We consider the study-of the nonparametric outlier mean (outlier
sum) in two aspects. First, the development of asymptotic distribution for
establishing a level « testorcomputing p value is established. Second,
concept of using outliers. for statistical inferences may be treated
differently from the classical statistical inferences that construct rules
based on good data. We study the relation between powers and
asymptotic variances of outliers means aiming at drawing principles for
choosing outliers - based inference techniques.
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Nonparametric Outlier Mean for Gene
Expression Analysis

Ya-Fang You

Abstract

The outlier mean has a reasonable power when the distribution is
in a location shift, however, its power is remarkably reduced when he
distribution is shifted on only a small fraction of observations, due to
large asymptotic variances, while this happen frequently in the can-
cer study. We consider the study .of the nonparametric outlier mean
(outlier sum) in two aspects: First, the development of asymptotic
distribution for establishing a level @ test o computing p value is es-
tablished. Second, coneept of using'outliers-for statistical inferences
may be treated differently from the classical statistical inferences that
construct rules based on good data. We study the relation between
powers and asymptotic vVariances of-outlier§ means aiming at drawing
principles for choosing outliers - based. inference techniques.

1 Introduction

DNA microarray technology, which simultaneously probes thousands of gene
expression profiles, has been successfully used in medical research for dis-
case classification (Agrawal et al. (2002); Alizadeh et al. (2000); Ohki et
al. (2005)); Sorlie et al. (2003)). For example, Sorlie et al., used gene
expression to classify malignant breast tumors into five molecular subtypes
(one basal-like, one ERBB2-overexpressing, two luminal-like, and one normal
breast tissue-like subgroups) (Sorlie et al. (2003)). Alizadeh et al. reported
that patients with germinal center B-like diffuse large B-cell lymphoma had a
significantly better chance of overall survival than those with another molec-
ular pattern-activated B-like diffuse large B-cell lymphoma (Alizadeh et al.
(2000)). Recently, microarray analysis has been advanced to disease classi-
fication by identifying outlier genes that are over-expressed only in a small
number of disease samples (see, for example, Tibshirani and Hastie (2007);
Tomlins et al. (2005)). To achieve this goal, common statistical methods



for two-group comparisons such as t-test, are not appropriate due to a large
number of genes expressions and a limited number of subjects available.

Several statistical approaches have been proposed to identify those genes
where only a subset of the sample genes has high expression. Among them,
Tomlins et al. (2005) introduced a method called cancer outlier profile anal-
ysis that identifies outlier profiles by a statistic based on the median and
the median absolute deviation of a gene expression profile. Tibshirani and
Hastie (2007) suggested use of an outlier sum that sums all the gene expres-
sion values in the disease group that are greater than the total of the 75th
percentile and the interquartile range of the same gene. They also showed
that the statistical test based on this outlier sum is noticeably more power-
ful than cancer outlier profile analysis in simulation. An alternative outlier
sum-like statistic, called outlier robust t-statistic has been proposed by Wu
(2007). Recently Chen, Chen and Chan (2008) has proposed a new version of
outlier sum and its corresponding outlier mean and developed its large sam-
ple theory that allows us to formulate the p value based on the asymptotic
distribution. In specific, they considered the parametric study by specifying
the normal distribution and performed simulation studies and data analysis
for gene expression analysis.

Although the large sample.distribution of an outlier mean has been pro-
vided in Chen, Chen and €han (2008), the nonparametric study of outlier
mean is still very restricted So that its@application in gene expression analysis
is still limited. For specific, an:outlier mean¢can be used to test a relation
between distributions of normal” group subjects and disease group subjects
while this relation may be identity of these two distributions or minor rela-
tion such as only identity of two population outlier means. This is vital since
different assumptions allows us to use it introducing different tests but tests
for different hypotheses involves different scale estimates that may produce
significant difference in their power performances. It is desired to have an
advanced study of nonparametric outlier mean so that a principle for prac-
titioner in choosing an appropriate, in terms of power performance, outlier
mean test statistic is available. This is the aim that we want to achieve in
this paper.

We define an outlier mean with cutoff point representing a specific form
from a general class and develop its asymptotic representation and distribu-
tion. We also develop an asymptotic distribution for this outlier mean con-
sidering when the distributions of normal group subjects and disease group
subjects are identical. This allows us to consider testing for hypothesis of
equal distributions and hypothesis of equal population outlier means. Eval-
uation of power performances of these two tests are conducted and we have
several interesting results. 1. If there is distributional shift in location only,



then a test for hypothesis of population outlier mean is relatively more pow-
erful than the other one. On the other hand, if there is shift in both location
and scale, the two tests are very competitive. This provides important mes-
sage for user when pattern of distributional shift may be observed from data.
2. The popularly used cutoff point with percentage o = 0.25 is quite un-
satisfactory in nonparametric power study for gene expression analysis while
percentages a = 0.35 or 0.45 for constructing cutoff point are satisfactory
ones.

In Section 2, we first introduce an outlier mean with cutoff point rep-
resenting a specific form from a general class and develop the asymptotic
representation and distribution. We then develop the asymptotic distribu-
tion in Section 3 for this outlier mean restricting on the assumption that
the distribution of disease group subjects and the distribution of the normal
group subjects are identical. This allows us to introduce several hypotheses
defined on parameters involving in the asymptotic distribution and a test for
each hypothesis may be determined through estimation of parameters used
in this hypothesis. In Section 4, wesperform a asymptotic variance compari-
son for this outlier mean with gseveral distributions for normal group variable
and disease group variable. This provides a.guide for user to determine a hy-
pothesis to test when the underlying disttibutions in this two group belongs
to this specific type. In Section 5, we-will make & power comparison for these
tests. Finally, the proofs of theorems arerdisplayed in Section 6.



2 Two Tests Based on Asymptotic Distribu-
tion of the Outlier Mean

Let X and Y be expression variables for group of normal subject and group of
disease subject, respectively, with distribution functions F'x and Fy. Extend-
ing from Tibshirani and Hastie (2007), Wu (2007) and Chen, Chen and Chan
(2008), a general type cutoff point used in gene expression analysis to detect
outliers may be formulated as 25:1 c;iFi'(a;),0<a; <1,j=1,....k. We
now define population type outlier means.

Definition 2.1. If Z?Zl c;Fx'(aj) > Fx'(0.5), we call

1 £
P e 2 el @)

a population outlier mean with positive outliers. On the other hand, if
Z?zl c;Fx' () < Fx'(0.5), we call

/\AI;(—’Y(OQ,O(Q, e ,Oék>

1 k
EYI(Y ¢ Fxt(v;
P SR S 2 )

a population outlier mean with negative outliers.

A?(,Y(’Ylv’y?a cee a’Yk) =

In the literature, the outlier sum of W (2007) and outlier mean of Chen,
Chen and Chan (2008) are of this:type that we list their corresponding coef-
ficients in Table 1.

Table 1. Coefficients for some outlier means
Outlier Mean {a1, ag, a3} {c1, ¢, ¢35}
Wu (2007) {0.25,0.75,0.75}  {—1,1,1}
Chen, Chen and Chan (2008) {0.25,0.5,0.75} {—k, 1, K}

where kK > 0

Invariance property is desired for any statistical function and then not
every population outlier mean introduced above is interesting with this con-
cern. Suppose that a random variable X has a quantile function Fi;*(a). It
is known that its quantile Fi;'(a) has the following properties

{ aFst(a) +b ifa>0

1 -
Faxsle) = aFy'(1—a)+b ifa<0

We may see the condition that a population outlier mean satisfies desired
invariance properties.



Theorem 2.2. Suppose that c;,j = 1, ..., k satisfy ij:l c; = 1. Then, the
population outlier mean with positive outliers has the following properties

» ~faNsy(an, a0 o) + 0 ifa>0
Aaxbay+5(01; A2, - ) = { aNyy(1—a, 1 —an,...,1—ap)+b ifa<0

On the other hand, the population outlier mean with negative outliers has the
following properties

A ( ) = aXx .y (V1,725 ) +0 if a >0
AT HD Tk aAgf,Y(l - 71, 1- V25, 1- ’Yk) +b Zf(l <0

If outlier means Ny y (a1, ag, ..., o) and A% (71,72, - -+, 7%) are formu-
lated with 25:1 ¢; # 1, we may see from the proof (see Section 6) of Theorem
2.2 that they are no longer to be equivalent like the quantile function.

We suggest the population cutoff point of the form 2F5 ' (1—a) — Fy'(a).
Let F° +' be the empirical quantile function for estimating population quantile
function Fy 1 The sample outliersniéan’can be expressed as

5 = Zim 2}5%1(1 —d) - f%%a))_ (2.1)
Y ARS2E @ =0) = Fy'())

Implicitly this sample outliet meanstries-toestimate the following population
outlier mean
EYI(Y >2F3(1 —a) — Fx'(a))]

PY = 2F5 (1 —a) - Fy'(a)}

Hx =

For establishing large sample theory based p value, we consider the fol-
lowing location models,

Xi:/“LX+€i7 2.:1,...,77,1,

Y;:MY—i_d’ia izla"'yn% <22)

where ¢;’s and §;’s are finite sequences of independent and identically dis-
tributed random variables having distribution functions F, and Fjs and proba-
bility density functions f. and f5 respectively. In addition, FE(¢;) = E(;) =0
and Var(e;) = 0% and Var(d;) = o%. With this setup, Fx(x) = F.(v — ux)
and Fy(y) = Fs(y — py). In terms of error distributions in (2.2), the popu-

lation outlier mean is -
fn dfs(8)do

B
where 8 = P{§ > n} with n = 2F7'(1 — a) — F-'(a) + px — py-

Hx = by +

b}



Theorem 2.3. Suppose that assumptions (As), (As) and (A4) in the Ap-
pendiz are true.

(a) A Bahadur representation of the outlier mean is

Yz = ) =((1 = )by — aby) —1/221 (6 < F'
bl—|—b2 1/221 <61<F (1-0&))
+ (—aby + (1 — a)by) *WZIQZF (1—a))

#5781 2 ) - / 5£5(8)d6} + 0,(1)
where

by — %nfs(n)ﬁfsl(ﬂl(a)),

m:%fa( WhE- (B (1 — a)).

(b) \/n_g(;\ — wy) converges ini distribution-to N(0,03%) where

Ji 202(61, by, v)
=a(l —a)((1 — a)bi — aby)? +2(1 — 2a)a®(by + by)?
+ a1l — a)(ab; — (1 — a)by)* +v

where

1 * 2 > 2
vzﬁ[/n 5f5(5)d5—(/n 515(5)d6Y?.



3 Outlier Mean Based Hypothesis Testings

The basic idea behind the use of the outlier mean or outlier sum in gene ex-
pression analysis is to see if the disease group subjects and the normal group
subjects are similar in some sense. Asymptotic normality for the outlier
mean allows us to develop tests for hypotheses dealing with all combinations
of asymptotic mean u) and asymptotic standard deviation o). However, it is
not ready in introducing these tests without knowing the asymptotic prop-
erties of this outlier mean when the distributions for two groups of subjects
are assumed to be identical as

Hy: Fy = Fx. (3.1)

Under Hy, model (2.2) may be reformulated as the following model,
Xi=pz+e,i=1,...,n1+ns (3.2)
where X;,7 = 1,...,n; belongs to normal group and X;,7 = ny+1,...,n1+ns

belongs to disease group and ¢;’s are independent and identically distributed
random variables having distribution as defined. Hence, when H is true, the
sample outlier mean of (2.1).may béteformulated as

S XX 2 265 (Y =) - F'(a))

1=n1+1L

5\ - n1+nj r—1 r—1 (33)
zz‘:nlﬂ [(X{Z2F0 (1 —a) — Fy (o))
where quantile estimates Fiy"(a). and Fx'(1= o) are constructed based on
samples X7, ..., X,,. The outlier meaniof'(3.3) tries to estimate the following
parameter

_ E[XI(X > 2F5' (1 a) - Fy\(a))
PIX > 2F, ' (1-a) - Fy'(a))

which, in terms of error distribution, is

f;; efe(€)de
Bx
where Bx = P{e > nx} with nx =2F1(1 — a) — F7'(a).
The following theorem states the asymptotic property for the outlier mean

when the observations are drawn from model (3.2).

Hax

Pax = px +

Theorem 3.1. When Hj is tT’U@,«/TLQ(S\ — pax) converges in distribution to
a normal random variable having distribution N (0,03 ) with
U,Q\X 202(51)(,52)(,1})()
=a(l —a)((1 — a)bix — abax)? + 2(1 — 2a)a?(b1x + bax)?
+a(l —a)(abix — (1 — a)byx)? + vx



where we denote

bix = () fulnx )V (F (@)

Bx
9 L
bax = ﬁ—X(ﬁx)fe(ﬂX)\/ﬁfe HETH (L - ),
1 [e.@] [e.e]
vx = —[/ . (e)de — (/ f.(e)de)).
(6)()2 nx nx
Theorem 3.1 indicates that when Hj is true, \/n_g(%) converges to

the standard normal distribution and the distribution parameters when H,
is true involved in the function are puyx and o,x. Then, joining Theorems
2.3 and 3.1, we have three choices of constructing test functions as follows:

~

V(AT AT and (A, (3.4)

OX\X OX OX\X

the first function considering testing thypothesis involving both asymptotic
mean and standard deviation:and the others.consider only one of these two
parameters. Then when we-have appropriate estimates of the unknown pa-
rameters, test statistics areZprovided.

Not all test functions are interesting in" gene expression analysis since
Tomlins et al. (2005) has observed thatwhen outliers occurs in disease sam-
ples, they are either only oversexpressed or-down-expressed. Hence, without
considering a location shift the resulted test function is not practical in gene
expression analysis. The following procedures are designed for the first two
test functions:

(I) Hypothesis for equality of distributions: H, , : iy = fiax, 05 = 03y
(a) The rule for testing H,,, is:
- A= fnx
rejecting H,, , if \/no(———=) > 24 (3.5)
OxX

where fixx and d,x are, respectively, estimators for parameters
tax and oyx.

(b) An approximate p value based on observations z;’s and y;’s is

defined as -
P :/ - o(2)dz.
Yz (5K

TAX

(II) Hypothesis for outlier variable’s expectation: H), : p1x = pax

8



(a) The rule for testing H,, is:

~

5
rejecting H,, if \/ng(ﬂ) > Zgr (3.6)

A -

(%D

where &, is estimator of parameter o) when Y ~ Fy has distri-
bution Fy.

(b) An approximate p value based on observations z;’s and y;’s is
defined as -
= / L O
Vz(AAX)

The determination of test selection now relies on (i) power performance
and (ii) choice of parameters estimates that will be studied in subsequent
sections.



4 Comparison of OQutlier Coverages and Asymp-
totic Variances of Outlier Mean

Tests (3.5) and (3.6) use the same critical point z,- and the same estimate
jinx for the outlier variable’s expectation. When we consider to choose one
from hypotheses H,, or H,, the right choice is the one that has smaller
asymptotic variance (oyx or o). We will see that the size of this asymptotic
variance has a relation with the outlier coverage 5. We compute the outlier
coverage probabilities fx and ( and asymptotic variances oyx and o) with
the following distribution setting:

Fy =N(0,1) and Fy = N(6,1). (4.1)

Table 2. Coverage probabilities and asymptotic variances when there is
distributional shift

0 «Q Bx 3 a ,2\X Ui

1 0.45 0.3531 0.7333 3.1485 1.6203
0.35 0.1238] 0:4380 32379  5.4481
0.25 00215 0.1530% 36941 48.11
0.15 00009 " 0.0174 13068.76 877.44
0.05 4.0e-7 1 412¢=577 6.5e+7  6.5e+H

3 045 0.3531..0.9956 . 3:1485 1.0123
0.35 0.1238770.9674""" 32.379 1.2644
0.25 0.0215 0.8356 369.41  3.2525
0.15 0.0009 0.4565 13068.76  18.63
0.05 4.0e-7 0.0265 6.5e+7 1416.67

10 0.45 0.3531 1 3.1485 1
0.35 0.1238 1 32.379 1
0.25 0.0215 1 369.41 1
0.15 0.0009 1 13068.76 1
0.05 4.0e-7 1 6.5e+7 1

We have several comments drawn from Table 2:

1. It is seen that Bx < ( for all cases of # and «. This indicates that
the outlier interval [2Fy'(1 — a) — F'(a), 00) covers space of Y more
probable than space of X. This size of the difference could be huge.
For example, when 6 = 10, 8x’s are all very small but (3 is or nearly
1 indicating that outlier interval contains almost whole probable space
of variable Y.

10



2. The differences in coverage probabilities strongly affect the asymptotic
variances in the way that o3y > o3 for all cases of 6 and a where
the asymptotic variance under hypothesis H, , could be hundred or
thousand times it under hypothesis H,,.

3. When 6 = 10, the asymptotic variances under hypothesis concerning
population outlier mean are vales nearly 1’s. This indicating that the
asymptotic variance under this hypothesis is the variance of the random
variable Y.

We may be more interesting in the comparison for the following contam-
inated alternative one:

Fx =N(0,1) and Fy = (1 —~v)N(0,1) +yN(6,1) (4.2)

where # > 0. This alternative hypothesis assumes that Y has a location
model with positive mean «v# and contaminated error variable. Table 3 pro-
vides 3, Bx, o3y and o3 for this underlying distribution.

11



Table 3. Coverage probabilities and asymptotic variances when there small
proportion (7 = 0.1) of distributional shift

0 « Bx 6] o2y o2

1 0.45 0.3531 0.3911  3.1485 3.0160
0.35 0.1238 0.1552  32.379  25.0101
0.25 0.0215 0.0346  369.41  239.5184
0.15 0.0009 0.0025 13068.76 5095.878
0.05 4.0e-7 4.5e-6 6.5e+7  5.9e+6

3 045 03531 04173  3.1485 5.9860
0.35 0.1238 0.2082  32.379 27.118
0.25 0.0215 0.1029  369.41  97.7885
0.15 0.0009 0.0465 13068.76 359.8992
0.05 4.0e-7 0.0003 6.5e+7  12821.53

10 0.45 0.3531 0.4178  3.1485  50.6809
0.35 0.1238 0.2115 32.379  201.8219
0.25 0.0215,+0.1194 #,369.41  640.0708
0.15 0.0009  0.1008 13068.76 895.2527
0.05 4.0e-7 | 0.1000 “:6.5¢+7  909.9943

We have several comments for interpreting the results in Table 3:

1. Setting Fy as a contaminated normal distribution of (4.2) indicating
that response variable for disease gene has large proportion of obser-
vations from the distribution Fx but with a small part of observations
shifted to the right. The variance of the contaminated distribution is
1+~(1—7~)6?. Both the contamination and variance enlargement affect
the coverage probability 3, smaller than those in Table 2. This results
in the outlier mean asymptotic variance o3, larger than those in Table
2.

2. For mild shifts (§ =1 or 3), the test for hypothesis H, has asymptotic
variances 0%’s almost smaller (except (f,a) = (3,0.45)) than those for
hypothesis H,,. When there is significant shift § = 10, o3y’s are
smaller than ¢3’s for a € {0.25,0.35,0.45}.

We now consider the case that random variable Y has a mixed distribution
with shift not only the mean but also the variance as follows:

Fx = N(0,1) and Fy = 0.9N(0,1) + 0.1N (0, 0?)

12



where 6 > 0. For cutting percentage o and true values 6 and o, we compute
the asymptotic variance and display the comparison in table 4.

Table 4. Asymptotic variances comparison when there small proportion
(v = 0.1) of distributional shift

o 0 02 < 03y o2 > 03y
1 1 045 0.35,0.25, 0.15, 0.05 none
3 0.35, 0.25, 0.15, 0.05 0.45
10 0.15, 0.05 0.45, 0.35, 0.25
3 1 0.25, 0.15, 0.05 0.45, 0.35
3 0.25, 0.15, 0.05 0.45, 0.35
10 0.15, 0.05 0.45, 0.35, 0.25
5 1 0.15, 0.05 0.45, 0.35, 0.25
3 0.15, 0.05 0.45, 0.35, 0.25
10 0.15, 0.05 0.45, 0.35, 0.25
10 1 0.15, .0.05 0.45, 0.35, 0.25
3 0:15, 0.05 0.45, 0.35, 0.25
10 0.15, 0.05 0.45, 0.35, 0.25

In this case that both contaminated mean and variance are shifted, it
shows 0% < 0% for most of smaller.a.e{0.05,0.15} and o3 > o3y for most
larger a € {0.25,0.35,0.45}. This provides a guide to choose hypothesis for
testing when percentage « is already decided.

13



5 Power Studies with Tests Based on Outlier
Mean

Consider the power function for testing equal distributions hypothesis H,, ,
By letting uyy and o,y, respectively, as parameters of ) and o) when Y ~
Fy is true, an approximate power with significant level a* based on test (3.5)
may be derived as bellows

b = Pr ’“‘AX) > 200}
— PFy{\/—( HAY) > ZarOax + /N2 (firx — u/\y)}

O\Yy
a* + 1 -
~P(Z> ZarOrx \/;”ZE/LAX ,UAY)}' (5.1)

This is the power function when we test for hypothesis of equal distributions.
On the other hand, the power:function for testing equal outlier means
hypothesis H,, with significant level o may be derived as bellows

lr, = Py () ‘“X) i
_ PFY{\/_( HAY) = Zoi Oy \/n_z(ﬂ)\X — NAY)}

O\Y

Za*Ony + Va(fax — tay)
O\Yy

~ P{Z > 1. (5.2)
From (5.1) and (5.2), the performance of these two tests rely on several
elements describing in the following:

no : the larger the sample size for the disease gene, the larger the powers.
Due to the fact that fixx < pny when there are outliers in Y.

0%y : the larger the asymptotic variance, the smaller the power for testing
hypothesis H,, ,

03y : the larger the asymptotic variance, the smaller the power for testing
hypothesis H,

We also note that when cutoff point percentage « decreases, the outlier
mean asymptotic variances o3 and o3, are both increase.

We now consider the design of distributional shift of (4.1) and compute
the approximate powers for testing hypotheses H,, , and H,,. The results are
displayed in Tables 5.

14



Table 5. Approximate powers ({g, ,¢q,) of outlier mean when there is
distributional shift

ny o =1 0 =3 =5 0 =10
30 0.45 (0.2775, 0.5230) (1, 1) (1, 1) (1, 1)
0.35 (3.0e-4, 0.1441) (0.0826,1)  (1,1) (1, 1)
0.25  (4.5e-6, 0.0634) (0, 0.8634) (0, 1) (1, 1)
0.15 (1.2e-10,0.0517) (0, 0.1513)  (0,1) (0, 1)
0.05 (0, 0.0500) (0, 0.0530) (0, 0.1544) (0, 1)
50 045 (0.4622, 0.7099) (1, 1) 1,1 (1,1
0.35 (5.6e-4, 0.1861) (0.7358, 1) (1, 1) (1, 1)
0.25  (5.3e-6, 0.0679) (0, 0.9708) (0, 1) (1, 1)
0.15 (1.3e-10, 0.0521) (0, 0.1971) (0, 1) (0, 1)
0.05 (0, 0.0500) (0, 0.0538) (0, 0.2018) (0, 1)

We have comments drawn from results showing in Tables 5:

1. Testing hypotheses H,,, and H, have small powers for mild shifts 6 =
1,3 unless we choose large proportions o/ (oo = 0.35 and 0.45). If there
is significant shifting in lo¢ation(#-= 10); most of these two tests are
satisfactory. The percentage' o = 0.251s the recommended popularly
in literature (see Hoaglin ‘et al. (1983)).

2. A comparison of approximate powers between these two tests shows
that the test for hypothesis H, seems to be the right choice. To test
hypothesis H, , gives unsatisfactory powers besides cases of strong dis-
tributional shift such as § = 5 or 10 with choosing percentage « as
large as 0.35 or 0.45.

3. The effects of these two tests exist in sample size. Basically the larger
the sample size generates larger power for either one test.

Next, we consider that the assumption for distributions of X and Y is
that Y has a case of contaminated normal in (4.2) as

Fx = N(0,1) and Fy = 0.9N(0,1) + 0.1N(0, 1)

where ¢ > 0. The computed approximate powers for testing hypotheses H,, ,
and H, are displayed in Table 6.

15



Table 6. Approximate powers ({g, ,¢q,) of outlier mean when there is
small fraction distributional shift

ne « 0=1 0=23 =5 =10

30 0.45 (0.0740, 0.0791) (0.4420, 0.2750) (0.7307, 0.4072) (0.8921, 0.5011)
0.35 (0.0363, 0.0584) (0.1353, 0.1713) (0.4635, 0.3136) (0.8060, 0.4512)
0.25 (0.0217, 0.0525) (0.0026, 0.1077) (0.0669, 0.2326) (0.5517, 0.3951)
0.15 (0.0043, 0.0505) (0.0000, 0.0658) (0.0000, 0.1444)  (1.9e-7, 0.3285)
0.05 (2.1e-8, 0.0500) (0.0000, 0.0510) (0.0000, 0.0638) (0.0000, 0.2238)

50 0.45 (0.0840, 0.0897) (0.5631, 0.3847) (0.8474, 0.5698) (0.9570, 0.6852)
0.35 (0.0382, 0.0611) (0.1843, 0.2277) (0.5970, 0.4411) (0.9043, 0.6256)
0.25 (0.0221, 0.0532) (0.0038, 0.1311) (0.1087, 0.3213) (0.7023, 0.5537)
0.15  (0.0043, 0.0506) (0.0000, 0.0711) (0.0000, 0.1866) (1.1e-6, 0.4623)
0.05 (2.1e-8, 0.0500) (0.0000, 0.0512) (0.0000, 0.0684) (0.0000, 0.3079)

We have comments drawn from results showing in Tables 6:

1. Basically the contaminated distribution Fy- reduces the powers of two

tests due to enlarging the asymptotic outlier mean asymptotic vari-
ances o3 and o3 due to contamination‘and increasing the variance of
distribution Fy-.

. If we specify cutoff point percentage a to be 0.35 or more, the test

for hypothesis H,, seems to be the right choice. On the other hand,
if we specify cutoff point percentage o to be smaller than 0.25, the
test for hypothesis H, seems to be the right choice. For o = 0.25,
the test for hypothesis H,, is better unless the location parameter 6 in
contaminated distribution is as large 10.
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Table 7. Approximate powers ({g, ,,¢q,) of outlier mean when there is

small fraction distributional shift (ny = 50)

7y @ 0=5 0 =10 0 =20
0.05 0.45 (0.5902, 0.3196) (0.8241, 0.4207)  (0.9008, 0.4606)
0.35 (0.3782, 0.2445)  (0.7326, 0.3746) (0.8706, 0.4383)
0.25 (0.1323, 0.1961)  (0.5828, 0.3339) (0.8200, 0.4130)
0.15 (2.4e-15,0.1301) (0.0005, 0.2816) (0.1986, 0.3824)
0.05 (0.0000, 0.0632)  (0.0000, 0.1955) (0.0000, 0.3301)
0.20 0.45 (0.9818, 0.8759)  (0.9977, 0.9385)  (0.9992, 0.9550)
0.35 (0.8295, 0.7529)  (0.9881, 0.9064) (0.9981, 0.9455)
0.25 (0.0614, 0.5591)  (0.8336, 0.8492) (0.9879, 0.9289)
0.15  (0.0000, 0.3026) (8.6e-13, 0.7516) (0.0376, 0.9011)
0.05 (0.0000, 0.0758)  (0.0000, 0.5274) (0.0000, 0.8367)
0.30 0.45 (0.9985, 0.9785)  (1.0000, 0.9939) (1.0000, 0.9965)
0.35 (0.9338, 0.9227)111(0.9990, 0.9871) (0.9999, 0.9952)
0.25 (0.0302, 0.7601) _(0.9101,0.9687) (0.9986, 0.9924)
0.15  (0.0000, 0:4305)  {0.0000, 0:9187) (0.0102, 0.9859)
0.05 (0.0000, 0.0825) (0.0000,70.7246) (0.0000, 0.9635)
0.50 0.45 (1.0000, 0:9968)~(1.0000, 1.6000) (1.0000, 1.0000)
0.35 (0.9952, 0.911 1)+ (1:0000,1:0000) (1.0000, 1.0000)
0.25 (0.0038, 0.4660)+..(0.9836; 0.9999) (1.0000, 1.0000)
0.15  (0.0000, 0.1104) ~ (0.0000, 0.9986) (0.0002, 1.0000)
0.05 (0.0000, 0.0525)  (0.0000, 0.9616) (0.0000, 0.9998)

We have several comments on the results in Table 7:

1. Although the more the contamination (y) makes the variance of the
response variable Y, however, it is easier in detection of existence of
outliers so that the powers of two tests increase. The powers for v = 0.5
are very close to the performance of location shift in Table 5.

2. Even the large contamination (v = 0.5), the test for hypothesis H, ,
with low a’s (e = 0.05 and 0.05) is still very poor in power performance.

3. Combining the discussions for the results in Tables 5-7, the test for
hypothesis H,, is relatively more robust.
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Besides the cases of normal or mixed normal distributions, we may con-
sider the cases that X and Y draw from the following two cases:

Case 1: Fx = Laplace(0,1) and Fy = Laplace(0,1)
Case 2: Fx =t(5) and Fy = t(5) + 0.

Table 8. Approximate powers (¢, ,,q,) for hypothesis H,, and H, , when
X and Y are with Laplace or ¢ distribution (ny = 30)

8.(a) Y ~ Laplace(6,1)

o 0=1 6 =3 0=5 6 =10
0.45 (0.0193,0.2899) (1.0000, 1.0000) (1, 1) (1, 1)
0.35 (5.2¢-7, 0.0500) (0.0134, 0.9997) (1, 1) (1, 1)
0.25 (7.1e-7,0.0500) (0, 0.4908) (0, 1) (1, 1)
0.15 (6.7e-4, 0.0500)  (0,0.0500)  (0,0.8694) (0, 1)
8.(b) Y ~t(5) + 0

a f=1 6=3 0=5 6 =10
0.45 (0.0465, 0.4128) (1,1) (1, 1) (1, 1)
0.35 (8.2¢-8, 0.0777) = (0.0002;0:9999) - (1, 1) (1, 1)

(

( )
0.25 (4.0e-6, 0.0433) (0, 0.5184) 0,1)  (0.9838, 1)
0.15 (0.0001, 0.0460) (0;0:0167)" (0, 0.8794) (0, 1)

From the displayed results, it seems that two tests are quite satisfactory
when there are significant location shifts. However, the test for hypothesis
H,, is uniformly better than it for hypothesis H,,. The test for hypothesis
H,, is very satisfactory for small percentage o when there is location shift is
as large as 5 or more.

We now consider the case that random variable Y has a mixed distribution
with shift not only the mean but also the variance as follows:

Fy = N(0,1) and Fy = 0.9N(0,1) + 0.1N (8, 0?)

where # > 0. For sample size ny = 30, cutting percentage a and true
values 6 and o, we compute the approximate powers, (g, , and {g,. With,
a = 0.05,0.15,0.25,0.35,0.45, 6 = 1, 3,10, we display a comparison of two
approximate powers in the following table.

18



Table 9. Comparison of approximate powers

o 0 KHH > EHH,U éHu < KHWU
1 1 045,0.35,0.25, 0.15, 0.05 none
3 0.35, 0.25, 0.15, 0.05 0.45
10 0.15, 0.05 0.45, 0.35, 0.25
3 1 0.25, 0.15, 0.05 0.45, 0.35
3 0.25, 0.15, 0.05 0.45, 0.35
10 0.15, 0.05 0.45, 0.35, 0.25
5 1 0.15, 0.05 0.45, 0.35, 0.25
0.15, 0.05 0.45, 0.35, 0.25
10 0.15, 0.05 0.45, 0.35, 0.25
10 1 0.15, 0.05 0.45, 0.35, 0.25
0.15, 0.05 0.45, 0.35, 0.25
10 0.15, 0.05 0.45, 0.35, 0.25

In general, we test hypothesis H,,, is:more powerful than to test hy-
pothesis H,, , when we choose'percentage « as large as 0.35 or 0.45 and test
hypothesis H,, when we choose percentage o as-small as 0.15 or 0.25.
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6 Appendix

To investigate Theorem 3.2, let’s establish a more general theory for outlier
mean II. The following assumptions are needed.

(A1) The limit A = limnl,ngﬂm% exists.

(A;) Suppose that there is constant C' such that v/n,(C' —C) = O,(1) where
C depends generally on distribution of X.

(A3) Probability density function fs of distribution Fj is bounded away from
zero in a neighborhood of quantity C' — py-.

(A4) Probability density function f. is bounded away from zero in the neigh-
borhood of F. () for a € (0,1).

Proof of Theorem 2.2
Proof. If a > 0,

Aoxtbay+o(00; @y s Ol
El(aY +b)IHaY £b> 3" Bl (o))
PlaY +0 2 25:1 ciFaa(@)}
El(@Y +b)I(aY +6Z 3 ¢j(aFx (o)) +b))]
P{aY +b 2 Y7 ¢j(aFy (ay) +b)}
El(aY +b0)I(Y > 30, ¢;F (ay))]
P{Y > 35 ¢ F (o))}
:aE[Yf(Y >3 Fy (@) b
P{Y > 3% ¢;F ()}

=aNyy(a,ag, ... o) + b

On the other hand, if a < 0,
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/\Zx+b,ay+b(0417 g, ..., Q)
B[ +b)I(aY +b> 30 ¢i(aFy (1 - a;) +0))]
P{aY +b> Z;?:l cj(aFx' (1 —aj) +b)}
El(aY +b)I(Y <30 ¢;F (1 - )]
T PV <Y R (1)
EYI(Y <30 ¢Fy'(1- )]
Ry =y aR (—a)t

=aNyy(l — a1, 1 —ag, ..., 1 —ag) +0.

The proof of transformation on outlier mean with negative outliers may be
similarly proved and it is skipped. O]

Proof of Theorem 2.3
Proof. Let C' = 2F5'(1—a)= Fi'(a) and € =2F;'(1—a) — Fx'(). From
model (2.2) and the expression of Ax in‘(2.1), we have
= oy + S NHOEETO i + 1 °T)
2 i ¥> C)

where T' = \/n_l(éY - C).
This implies that

—1/2 o ~1/2

\/n—2()\ . :U’Y> — 2 Zz_l_l (n2 :U’yA 1 ) (61)

ny Yoz (Y > C)

With assumption (Ay4), the key in this proof is that

ny 'Y G0 > O = px 4y BT = 105> C = piy)]
i=1
==y 2N G0 < € = py +0y T — 15 < C = pry)
i=1

== (C = 1x)g,(C =y )VRT + 0,(1) (6.2)

which may seen in Ruppert and Carroll (1980) and Chen and Chiang (1996).
The Bahadur representation of the outlier mean A may be formulated from
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Assumption (A;), equation (6.1), (6.2) and the following representation of
empirical quantile

ni

=[N E (@) 2D o= I(e; < F7'(a))] + 0,(1) (6.3)

i=1

see, for example, Ruppert and Carroll (1980). The asymptotic distribution
in (b) of Theorem 2.3 is induced from the Central Limit Theorem. O

The proof of Theorem 3.1 is exactly identical to it of Theorem 2.3 with
replacing py by px, d; by €¢; and Y; by X;. Hence, it is skipped.
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