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摘          要 

 

離群平均用於檢定整個分配的偏移時有不錯的檢定力，然而部分

分配偏移時放大了離群平均值的變異數，導致檢定力大幅下降，而這

部分分配偏移的情況在癌症的研究上頻繁可見。傳統的統計方法使用

好的資料來做統計推論，而離群平均是利用離群值做統計推論，二者

在觀念上有很大的不同。我們從兩個觀點來思考無母數離群平均值的

研究，首先推導離群平均之漸進分配，建立α 水準檢定與計算 p 值，

接著針對離群值的判定原則，推論檢定力和漸進變異數之間的關係。 
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ABSTRACT 

 

The outlier mean has a reasonable power when the distribution is in a 

location shift, however, its power is remarkably reduced when he 

distribution is shifted on only a small fraction of observations, due to 

large asymptotic variances, while this happen frequently in the cancer 

study. We consider the study of the nonparametric outlier mean (outlier 

sum) in two aspects. First, the development of asymptotic distribution for 

establishing a level α  test or computing p  value is established. Second, 

concept of using outliers for statistical inferences may be treated 

differently from the classical statistical inferences that construct rules 

based on good data. We study the relation between powers and 

asymptotic variances of outliers means aiming at drawing principles for 

choosing outliers - based inference techniques. 
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Nonparametric Outlier Mean for Gene
Expression Analysis

Ya-Fang You

Abstract

The outlier mean has a reasonable power when the distribution is
in a location shift, however, its power is remarkably reduced when he
distribution is shifted on only a small fraction of observations, due to
large asymptotic variances, while this happen frequently in the can-
cer study. We consider the study of the nonparametric outlier mean
(outlier sum) in two aspects. First, the development of asymptotic
distribution for establishing a level α test or computing p value is es-
tablished. Second, concept of using outliers for statistical inferences
may be treated differently from the classical statistical inferences that
construct rules based on good data. We study the relation between
powers and asymptotic variances of outliers means aiming at drawing
principles for choosing outliers - based inference techniques.

1 Introduction

DNA microarray technology, which simultaneously probes thousands of gene
expression profiles, has been successfully used in medical research for dis-
ease classification (Agrawal et al. (2002); Alizadeh et al. (2000); Ohki et
al. (2005)); Sorlie et al. (2003)). For example, Sorlie et al., used gene
expression to classify malignant breast tumors into five molecular subtypes
(one basal-like, one ERBB2-overexpressing, two luminal-like, and one normal
breast tissue-like subgroups) (Sorlie et al. (2003)). Alizadeh et al. reported
that patients with germinal center B-like diffuse large B-cell lymphoma had a
significantly better chance of overall survival than those with another molec-
ular pattern-activated B-like diffuse large B-cell lymphoma (Alizadeh et al.
(2000)). Recently, microarray analysis has been advanced to disease classi-
fication by identifying outlier genes that are over-expressed only in a small
number of disease samples (see, for example, Tibshirani and Hastie (2007);
Tomlins et al. (2005)). To achieve this goal, common statistical methods
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for two-group comparisons such as t-test, are not appropriate due to a large
number of genes expressions and a limited number of subjects available.

Several statistical approaches have been proposed to identify those genes
where only a subset of the sample genes has high expression. Among them,
Tomlins et al. (2005) introduced a method called cancer outlier profile anal-
ysis that identifies outlier profiles by a statistic based on the median and
the median absolute deviation of a gene expression profile. Tibshirani and
Hastie (2007) suggested use of an outlier sum that sums all the gene expres-
sion values in the disease group that are greater than the total of the 75th
percentile and the interquartile range of the same gene. They also showed
that the statistical test based on this outlier sum is noticeably more power-
ful than cancer outlier profile analysis in simulation. An alternative outlier
sum-like statistic, called outlier robust t-statistic has been proposed by Wu
(2007). Recently Chen, Chen and Chan (2008) has proposed a new version of
outlier sum and its corresponding outlier mean and developed its large sam-
ple theory that allows us to formulate the p value based on the asymptotic
distribution. In specific, they considered the parametric study by specifying
the normal distribution and performed simulation studies and data analysis
for gene expression analysis.

Although the large sample distribution of an outlier mean has been pro-
vided in Chen, Chen and Chan (2008), the nonparametric study of outlier
mean is still very restricted so that its application in gene expression analysis
is still limited. For specific, an outlier mean can be used to test a relation
between distributions of normal group subjects and disease group subjects
while this relation may be identity of these two distributions or minor rela-
tion such as only identity of two population outlier means. This is vital since
different assumptions allows us to use it introducing different tests but tests
for different hypotheses involves different scale estimates that may produce
significant difference in their power performances. It is desired to have an
advanced study of nonparametric outlier mean so that a principle for prac-
titioner in choosing an appropriate, in terms of power performance, outlier
mean test statistic is available. This is the aim that we want to achieve in
this paper.

We define an outlier mean with cutoff point representing a specific form
from a general class and develop its asymptotic representation and distribu-
tion. We also develop an asymptotic distribution for this outlier mean con-
sidering when the distributions of normal group subjects and disease group
subjects are identical. This allows us to consider testing for hypothesis of
equal distributions and hypothesis of equal population outlier means. Eval-
uation of power performances of these two tests are conducted and we have
several interesting results. 1. If there is distributional shift in location only,
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then a test for hypothesis of population outlier mean is relatively more pow-
erful than the other one. On the other hand, if there is shift in both location
and scale, the two tests are very competitive. This provides important mes-
sage for user when pattern of distributional shift may be observed from data.
2. The popularly used cutoff point with percentage α = 0.25 is quite un-
satisfactory in nonparametric power study for gene expression analysis while
percentages α = 0.35 or 0.45 for constructing cutoff point are satisfactory
ones.

In Section 2, we first introduce an outlier mean with cutoff point rep-
resenting a specific form from a general class and develop the asymptotic
representation and distribution. We then develop the asymptotic distribu-
tion in Section 3 for this outlier mean restricting on the assumption that
the distribution of disease group subjects and the distribution of the normal
group subjects are identical. This allows us to introduce several hypotheses
defined on parameters involving in the asymptotic distribution and a test for
each hypothesis may be determined through estimation of parameters used
in this hypothesis. In Section 4, we perform a asymptotic variance compari-
son for this outlier mean with several distributions for normal group variable
and disease group variable. This provides a guide for user to determine a hy-
pothesis to test when the underlying distributions in this two group belongs
to this specific type. In Section 5, we will make a power comparison for these
tests. Finally, the proofs of theorems are displayed in Section 6.
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2 Two Tests Based on Asymptotic Distribu-

tion of the Outlier Mean

Let X and Y be expression variables for group of normal subject and group of
disease subject, respectively, with distribution functions FX and FY . Extend-
ing from Tibshirani and Hastie (2007), Wu (2007) and Chen, Chen and Chan
(2008), a general type cutoff point used in gene expression analysis to detect
outliers may be formulated as

∑k
j=1 cjF

−1
X (αj), 0 < αj < 1, j = 1, . . . , k. We

now define population type outlier means.

Definition 2.1. If
∑k

j=1 cjF
−1
X (αj) > F−1

X (0.5), we call

λpX,Y (α1, α2, . . . , αk) =
1

P{Y ≥
∑k

j=1 cjF
−1
X (αj)}

E[Y I(Y ≥
k∑
j=1

cjF
−1
X (αj))]

a population outlier mean with positive outliers. On the other hand, if∑k
j=1 cjF

−1
X (γj) < F−1

X (0.5), we call

λnX,Y (γ1, γ2, . . . , γk) =
1

P{Y ≤
∑k

j=1 cjF
−1
X (γj)}

E[Y I(Y ≤
k∑
j=1

cjF
−1
X (γj))]

a population outlier mean with negative outliers.

In the literature, the outlier sum of Wu (2007) and outlier mean of Chen,
Chen and Chan (2008) are of this type that we list their corresponding coef-
ficients in Table 1.

Table 1. Coefficients for some outlier means

Outlier Mean {α1, α2, α3} {c1, c2, c3}
Wu (2007) {0.25, 0.75, 0.75} {−1, 1, 1}

Chen, Chen and Chan (2008) {0.25, 0.5, 0.75} {−κ, 1, κ}
where κ > 0

Invariance property is desired for any statistical function and then not
every population outlier mean introduced above is interesting with this con-
cern. Suppose that a random variable X has a quantile function F−1

X (α). It
is known that its quantile F−1

X (α) has the following properties

F−1
aX+b(α) =

{
aF−1

X (α) + b if a > 0
aF−1

X (1− α) + b if a < 0

We may see the condition that a population outlier mean satisfies desired
invariance properties.
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Theorem 2.2. Suppose that cj, j = 1, ..., k satisfy
∑k

j=1 cj = 1. Then, the
population outlier mean with positive outliers has the following properties

λpaX+b,aY+b(α1, α2, . . . , αk) =

{
aλpX,Y (α1, α2, . . . , αk) + b if a > 0
aλnX,Y (1− α1, 1− α2, . . . , 1− αk) + b if a < 0

On the other hand, the population outlier mean with negative outliers has the
following properties

λnaX+b,aY+b(γ1, γ2, . . . , γk) =

{
aλnX,Y (γ1, γ2, . . . , γk) + b if a > 0
aλpX,Y (1− γ1, 1− γ2, . . . , 1− γk) + b if a < 0

If outlier means λpX,Y (α1, α2, . . . , αk) and λnX,Y (γ1, γ2, . . . , γk) are formu-

lated with
∑k

j=1 cj 6= 1, we may see from the proof (see Section 6) of Theorem
2.2 that they are no longer to be equivalent like the quantile function.

We suggest the population cutoff point of the form 2F−1
X (1−α)−F−1

X (α).

Let F̂−1
X be the empirical quantile function for estimating population quantile

function F−1
X . The sample outlier mean can be expressed as

λ̂ =

∑n2

i=1 YiI(Yi ≥ 2F̂−1
X (1− α)− F̂−1

X (α))∑n2

i=1 I(Yi ≥ 2F̂−1
X (1− α)− F̂−1

X (α))
. (2.1)

Implicitly this sample outlier means tries to estimate the following population
outlier mean

µλ =
E[Y I(Y ≥ 2F−1

X (1− α)− F−1
X (α))]

P{Y ≥ 2F−1
X (1− α)− F−1

X (α)}
.

For establishing large sample theory based p value, we consider the fol-
lowing location models,

Xi = µX + εi, i = 1, . . . , n1,
Yi = µY + δi, i = 1, . . . , n2,

(2.2)

where εi’s and δi’s are finite sequences of independent and identically dis-
tributed random variables having distribution functions Fε and Fδ and proba-
bility density functions fε and fδ respectively. In addition, E(εi) = E(δi) = 0
and V ar(εi) = σ2

X and V ar(δi) = σ2
Y . With this setup, FX(x) = Fε(x− µX)

and FY (y) = Fδ(y − µY ). In terms of error distributions in (2.2), the popu-
lation outlier mean is

µλ = µY +

∫∞
η
δfδ(δ)dδ

β

where β = P{δ ≥ η} with η = 2F−1
ε (1− α)− F−1

ε (α) + µX − µY .

5



Theorem 2.3. Suppose that assumptions (A2), (A3) and (A4) in the Ap-
pendix are true.

(a) A Bahadur representation of the outlier mean is

√
n2(λ̂− µλ) =((1− α)b1 − αb2)n−1/2

1

n1∑
i=1

I(εi ≤ F−1
ε (α))

− α(b1 + b2)n
−1/2
1

n1∑
i=1

I(F−1
ε (α) ≤ εi ≤ F−1

ε (1− α))

+ (−αb1 + (1− α)b2)n
−1/2
1

n1∑
i=1

I(εi ≥ F−1
ε (1− α))

+
1

β
n
−1/2
2

n2∑
i=1

{δiI(δi ≥ η)−
∫ ∞
η

δfδ(δ)dδ}+ op(1)

where

b1 =
−1

β
ηfδ(η)

√
hf−1

ε (F−1
ε (α)),

b2 =
−2

β
ηfδ(η)

√
hf−1

ε (F−1
ε (1− α)).

(b)
√
n2(λ̂− µλ) converges in distribution to N(0, σ2

λ) where

σ2
λ =σ2(b1, b2, v)

=α(1− α)((1− α)b1 − αb2)2 + 2(1− 2α)α3(b1 + b2)
2

+ α(1− α)(αb1 − (1− α)b2)
2 + v

where

v =
1

β2
[

∫ ∞
η

δ2fδ(δ)dδ − (

∫ ∞
η

δfδ(δ)dδ)
2].
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3 Outlier Mean Based Hypothesis Testings

The basic idea behind the use of the outlier mean or outlier sum in gene ex-
pression analysis is to see if the disease group subjects and the normal group
subjects are similar in some sense. Asymptotic normality for the outlier
mean allows us to develop tests for hypotheses dealing with all combinations
of asymptotic mean µλ and asymptotic standard deviation σλ. However, it is
not ready in introducing these tests without knowing the asymptotic prop-
erties of this outlier mean when the distributions for two groups of subjects
are assumed to be identical as

H0 : FY = FX . (3.1)

Under H0, model (2.2) may be reformulated as the following model,

Xi = µx + εi, i = 1, . . . , n1 + n2 (3.2)

where Xi, i = 1, . . . , n1 belongs to normal group and Xi, i = n1+1, . . . , n1+n2

belongs to disease group and εi’s are independent and identically distributed
random variables having distribution as defined. Hence, when H0 is true, the
sample outlier mean of (2.1) may be reformulated as

λ̂ =

∑n1+n2

i=n1+1XiI(Xi ≥ 2F̂−1
X (1− α)− F̂−1

X (α))∑n1+n2

i=n1+1 I(Xi ≥ 2F̂−1
X (1− α)− F̂−1

X (α))
(3.3)

where quantile estimates F̂−1
X (α) and F̂−1

X (1 − α) are constructed based on
samples X1, . . . , Xn1 . The outlier mean of (3.3) tries to estimate the following
parameter

µλX =
E[XI(X ≥ 2F−1

X (1− α)− F−1
X (α))]

P{X ≥ 2F−1
X (1− α)− F−1

X (α)}
which, in terms of error distribution, is

µλX = µX +

∫∞
ηX
εfε(ε)dε

βX

where βX = P{ε ≥ ηX} with ηX = 2F−1
ε (1− α)− F−1

ε (α).
The following theorem states the asymptotic property for the outlier mean

when the observations are drawn from model (3.2).

Theorem 3.1. When H0 is true,
√
n2(λ̂− µλX) converges in distribution to

a normal random variable having distribution N(0, σ2
λX) with

σ2
λX =σ2(b1X , b2X , vX)

=α(1− α)((1− α)b1X − αb2X)2 + 2(1− 2α)α3(b1X + b2X)2

+ α(1− α)(αb1X − (1− α)b2X)2 + vX
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where we denote

b1X =
−1

βX
(ηX)fε(ηX)

√
hf−1

ε (F−1
ε (α))

b2X =
−2

βX
(ηX)fε(ηX)

√
hf−1

ε (F−1
ε (1− α)),

vX =
1

(βX)2
[

∫ ∞
ηX

ε2fε(ε)dε− (

∫ ∞
ηX

εfε(ε)dε)
2].

Theorem 3.1 indicates that when H0 is true,
√
n2(

λ̂−µλX
σλX

) converges to
the standard normal distribution and the distribution parameters when H0

is true involved in the function are µλX and σλX . Then, joining Theorems
2.3 and 3.1, we have three choices of constructing test functions as follows:

√
n2(

λ̂− µλX
σλX

),
√
n2(

λ̂− µλX
σλ

), and
√
n2(

λ̂− µλ
σλX

). (3.4)

the first function considering testing hypothesis involving both asymptotic
mean and standard deviation and the others consider only one of these two
parameters. Then when we have appropriate estimates of the unknown pa-
rameters, test statistics are provided.

Not all test functions are interesting in gene expression analysis since
Tomlins et al. (2005) has observed that when outliers occurs in disease sam-
ples, they are either only over-expressed or down-expressed. Hence, without
considering a location shift the resulted test function is not practical in gene
expression analysis. The following procedures are designed for the first two
test functions:

(I) Hypothesis for equality of distributions: Hµ,σ : µλ = µλX , σ
2
λ = σ2

λX

(a) The rule for testing Hµ,σ is:

rejecting Hµ,σ if
√
n2(

λ̂− µ̂λX
σ̂λX

) ≥ zα∗ (3.5)

where µ̂λX and σ̂λX are, respectively, estimators for parameters
µλX and σλX .

(b) An approximate p value based on observations xi’s and yi’s is
defined as

p =

∫ ∞
√
n2(

λ̂−µ̂λX
σ̂λX

)

φ(z)dz.

(II) Hypothesis for outlier variable’s expectation: Hµ : µλ = µλX

8



(a) The rule for testing Hµ is:

rejecting Hµ if
√
n2(

λ̂− µ̂λX
σ̂λ

) ≥ zα∗ (3.6)

where σ̂λ is estimator of parameter σλ when Y ∼ FY has distri-
bution FY .

(b) An approximate p value based on observations xi’s and yi’s is
defined as

p =

∫ ∞
√
n2(

λ̂−µ̂λX
σ̂λ

)

φ(z)dz.

The determination of test selection now relies on (i) power performance
and (ii) choice of parameters estimates that will be studied in subsequent
sections.
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4 Comparison of Outlier Coverages and Asymp-

totic Variances of Outlier Mean

Tests (3.5) and (3.6) use the same critical point zα∗ and the same estimate
µ̂λX for the outlier variable’s expectation. When we consider to choose one
from hypotheses Hµ,σ or Hµ, the right choice is the one that has smaller
asymptotic variance (σλX or σλ). We will see that the size of this asymptotic
variance has a relation with the outlier coverage β. We compute the outlier
coverage probabilities βX and β and asymptotic variances σλX and σλ with
the following distribution setting:

FX = N(0, 1) and FY = N(θ, 1). (4.1)

Table 2. Coverage probabilities and asymptotic variances when there is
distributional shift

θ α βX β σ2
λX σ2

λ

1 0.45 0.3531 0.7333 3.1485 1.6203
0.35 0.1238 0.4380 32.379 5.4481
0.25 0.0215 0.1530 369.41 48.11
0.15 0.0009 0.0174 13068.76 877.44
0.05 4.0e-7 4.2e-5 6.5e+7 6.5e+5

3 0.45 0.3531 0.9956 3.1485 1.0123
0.35 0.1238 0.9674 32.379 1.2644
0.25 0.0215 0.8356 369.41 3.2525
0.15 0.0009 0.4565 13068.76 18.63
0.05 4.0e-7 0.0265 6.5e+7 1416.67

10 0.45 0.3531 1 3.1485 1
0.35 0.1238 1 32.379 1
0.25 0.0215 1 369.41 1
0.15 0.0009 1 13068.76 1
0.05 4.0e-7 1 6.5e+7 1

We have several comments drawn from Table 2:

1. It is seen that βX < β for all cases of θ and α. This indicates that
the outlier interval [2F−1

X (1− α)− F−1
X (α),∞) covers space of Y more

probable than space of X. This size of the difference could be huge.
For example, when θ = 10, βX ’s are all very small but β is or nearly
1 indicating that outlier interval contains almost whole probable space
of variable Y .
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2. The differences in coverage probabilities strongly affect the asymptotic
variances in the way that σ2

λX > σ2
λ for all cases of θ and α where

the asymptotic variance under hypothesis Hµ,σ could be hundred or
thousand times it under hypothesis Hµ.

3. When θ = 10, the asymptotic variances under hypothesis concerning
population outlier mean are vales nearly 1’s. This indicating that the
asymptotic variance under this hypothesis is the variance of the random
variable Y .

We may be more interesting in the comparison for the following contam-
inated alternative one:

FX = N(0, 1) and FY = (1− γ)N(0, 1) + γN(θ, 1) (4.2)

where θ > 0. This alternative hypothesis assumes that Y has a location
model with positive mean γθ and contaminated error variable. Table 3 pro-
vides β, βX , σ2

λX and σ2
λ for this underlying distribution.
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Table 3. Coverage probabilities and asymptotic variances when there small
proportion (γ = 0.1) of distributional shift

θ α βX β σ2
λX σ2

λ

1 0.45 0.3531 0.3911 3.1485 3.0160
0.35 0.1238 0.1552 32.379 25.0101
0.25 0.0215 0.0346 369.41 239.5184
0.15 0.0009 0.0025 13068.76 5095.878
0.05 4.0e-7 4.5e-6 6.5e+7 5.9e+6

3 0.45 0.3531 0.4173 3.1485 5.9860
0.35 0.1238 0.2082 32.379 27.118
0.25 0.0215 0.1029 369.41 97.7885
0.15 0.0009 0.0465 13068.76 359.8992
0.05 4.0e-7 0.0003 6.5e+7 12821.53

10 0.45 0.3531 0.4178 3.1485 50.6809
0.35 0.1238 0.2115 32.379 201.8219
0.25 0.0215 0.1194 369.41 640.0708
0.15 0.0009 0.1008 13068.76 895.2527
0.05 4.0e-7 0.1000 6.5e+7 909.9943

We have several comments for interpreting the results in Table 3:

1. Setting FY as a contaminated normal distribution of (4.2) indicating
that response variable for disease gene has large proportion of obser-
vations from the distribution FX but with a small part of observations
shifted to the right. The variance of the contaminated distribution is
1+γ(1−γ)θ2. Both the contamination and variance enlargement affect
the coverage probability β, smaller than those in Table 2. This results
in the outlier mean asymptotic variance σ2

λ, larger than those in Table
2.

2. For mild shifts (θ = 1 or 3), the test for hypothesis Hµ has asymptotic
variances σ2

λ’s almost smaller (except (θ, α) = (3, 0.45)) than those for
hypothesis Hµ,σ. When there is significant shift θ = 10, σ2

λX ’s are
smaller than σ2

λ’s for α ∈ {0.25, 0.35, 0.45}.

We now consider the case that random variable Y has a mixed distribution
with shift not only the mean but also the variance as follows:

FX = N(0, 1) and FY = 0.9N(0, 1) + 0.1N(θ, σ2)
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where θ > 0. For cutting percentage α and true values θ and σ, we compute
the asymptotic variance and display the comparison in table 4.

Table 4. Asymptotic variances comparison when there small proportion
(γ = 0.1) of distributional shift

σ θ σ2
λ < σ2

λX σ2
λ > σ2

λX

1 1 0.45, 0.35, 0.25, 0.15, 0.05 none
3 0.35, 0.25, 0.15, 0.05 0.45

10 0.15, 0.05 0.45, 0.35, 0.25
3 1 0.25, 0.15, 0.05 0.45, 0.35

3 0.25, 0.15, 0.05 0.45, 0.35
10 0.15, 0.05 0.45, 0.35, 0.25

5 1 0.15, 0.05 0.45, 0.35, 0.25
3 0.15, 0.05 0.45, 0.35, 0.25

10 0.15, 0.05 0.45, 0.35, 0.25
10 1 0.15, 0.05 0.45, 0.35, 0.25

3 0.15, 0.05 0.45, 0.35, 0.25
10 0.15, 0.05 0.45, 0.35, 0.25

In this case that both contaminated mean and variance are shifted, it
shows σ2

λ < σ2
λX for most of smaller α ∈ {0.05, 0.15} and σ2

λ > σ2
λX for most

larger α ∈ {0.25, 0.35, 0.45}. This provides a guide to choose hypothesis for
testing when percentage α is already decided.

13



5 Power Studies with Tests Based on Outlier

Mean

Consider the power function for testing equal distributions hypothesis Hµ,σ.
By letting µλY and σλY , respectively, as parameters of µλ and σλ when Y ∼
FY is true, an approximate power with significant level α∗ based on test (3.5)
may be derived as bellows

`Hµ,σ = PFY {
√
n2(

λ̂− µ̂λX
σ̂λX

) ≥ zα∗}

= PFY {
√
n2(

λ̂− µλY
σλY

) ≥
zα∗σ̂λX +

√
n2(µ̂λX − µλY )

σλY
}

≈ P{Z ≥
zα∗σ̂λX +

√
n2(µ̂λX − µλY )

σλY
}. (5.1)

This is the power function when we test for hypothesis of equal distributions.
On the other hand, the power function for testing equal outlier means

hypothesis Hµ with significant level α∗ may be derived as bellows

`Hµ = PFY {
√
n2(

λ̂− µ̂λX
σ̂λY

) ≥ zα∗}

= PFY {
√
n2(

λ̂− µλY
σλY

) ≥
zα∗σ̂λY +

√
n2(µ̂λX − µλY )

σλY
}

≈ P{Z ≥
zα∗σ̂λY +

√
n2(µ̂λX − µλY )

σλY
}. (5.2)

From (5.1) and (5.2), the performance of these two tests rely on several
elements describing in the following:

n2 : the larger the sample size for the disease gene, the larger the powers.
Due to the fact that µ̂λX < µλY when there are outliers in Y.

σ2
λX : the larger the asymptotic variance, the smaller the power for testing

hypothesis Hµ,σ

σ2
λY : the larger the asymptotic variance, the smaller the power for testing

hypothesis Hµ

We also note that when cutoff point percentage α decreases, the outlier
mean asymptotic variances σ2

λX and σ2
λY are both increase.

We now consider the design of distributional shift of (4.1) and compute
the approximate powers for testing hypotheses Hµ,σ and Hµ. The results are
displayed in Tables 5.
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Table 5. Approximate powers (`Hµ,σ , `Hµ) of outlier mean when there is
distributional shift

n2 α θ = 1 θ = 3 θ = 5 θ = 10

30 0.45 (0.2775, 0.5230) (1, 1) (1, 1) (1, 1)
0.35 (3.0e-4, 0.1441) (0.0826, 1) (1, 1) (1, 1)
0.25 (4.5e-6, 0.0634) (0, 0.8634) (0, 1) (1, 1)
0.15 (1.2e-10, 0.0517) (0, 0.1513) (0, 1) (0, 1)
0.05 (0, 0.0500) (0, 0.0530) (0, 0.1544) (0, 1)

50 0.45 (0.4622, 0.7099) (1, 1) (1, 1) (1, 1)
0.35 (5.6e-4, 0.1861) (0.7358, 1) (1, 1) (1, 1)
0.25 (5.3e-6, 0.0679) (0, 0.9708) (0, 1) (1, 1)
0.15 (1.3e-10, 0.0521) (0, 0.1971) (0, 1) (0, 1)
0.05 (0, 0.0500) (0, 0.0538) (0, 0.2018) (0, 1)

We have comments drawn from results showing in Tables 5:

1. Testing hypotheses Hµ,σ and Hµ have small powers for mild shifts θ =
1, 3 unless we choose large proportions α (α = 0.35 and 0.45). If there
is significant shifting in location (θ = 10), most of these two tests are
satisfactory. The percentage α = 0.25 is the recommended popularly
in literature (see Hoaglin et al. (1983)).

2. A comparison of approximate powers between these two tests shows
that the test for hypothesis Hµ seems to be the right choice. To test
hypothesis Hµ,σ gives unsatisfactory powers besides cases of strong dis-
tributional shift such as θ = 5 or 10 with choosing percentage α as
large as 0.35 or 0.45.

3. The effects of these two tests exist in sample size. Basically the larger
the sample size generates larger power for either one test.

Next, we consider that the assumption for distributions of X and Y is
that Y has a case of contaminated normal in (4.2) as

FX = N(0, 1) and FY = 0.9N(0, 1) + 0.1N(θ, 1)

where θ > 0. The computed approximate powers for testing hypotheses Hµ,σ

and Hµ are displayed in Table 6.
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Table 6. Approximate powers (`Hµ,σ , `Hµ) of outlier mean when there is
small fraction distributional shift

n2 α θ = 1 θ = 3 θ = 5 θ = 10

30 0.45 (0.0740, 0.0791) (0.4420, 0.2750) (0.7307, 0.4072) (0.8921, 0.5011)
0.35 (0.0363, 0.0584) (0.1353, 0.1713) (0.4635, 0.3136) (0.8060, 0.4512)
0.25 (0.0217, 0.0525) (0.0026, 0.1077) (0.0669, 0.2326) (0.5517, 0.3951)
0.15 (0.0043, 0.0505) (0.0000, 0.0658) (0.0000, 0.1444) (1.9e-7, 0.3285)
0.05 (2.1e-8, 0.0500) (0.0000, 0.0510) (0.0000, 0.0638) (0.0000, 0.2238)

50 0.45 (0.0840, 0.0897) (0.5631, 0.3847) (0.8474, 0.5698) (0.9570, 0.6852)
0.35 (0.0382, 0.0611) (0.1843, 0.2277) (0.5970, 0.4411) (0.9043, 0.6256)
0.25 (0.0221, 0.0532) (0.0038, 0.1311) (0.1087, 0.3213) (0.7023, 0.5537)
0.15 (0.0043, 0.0506) (0.0000, 0.0711) (0.0000, 0.1866) (1.1e-6, 0.4623)
0.05 (2.1e-8, 0.0500) (0.0000, 0.0512) (0.0000, 0.0684) (0.0000, 0.3079)

We have comments drawn from results showing in Tables 6:

1. Basically the contaminated distribution FY reduces the powers of two
tests due to enlarging the asymptotic outlier mean asymptotic vari-
ances σ2

λX and σ2
λ due to contamination and increasing the variance of

distribution FY .

2. If we specify cutoff point percentage α to be 0.35 or more, the test
for hypothesis Hµ,σ seems to be the right choice. On the other hand,
if we specify cutoff point percentage α to be smaller than 0.25, the
test for hypothesis Hµ seems to be the right choice. For α = 0.25,
the test for hypothesis Hµ is better unless the location parameter θ in
contaminated distribution is as large 10.
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Table 7. Approximate powers (`Hµ,σ , `Hµ) of outlier mean when there is
small fraction distributional shift (n2 = 50)

γ α θ = 5 θ = 10 θ = 20

0.05 0.45 (0.5902, 0.3196) (0.8241, 0.4207) (0.9008, 0.4606)
0.35 (0.3782, 0.2445) (0.7326, 0.3746) (0.8706, 0.4383)
0.25 (0.1323, 0.1961) (0.5828, 0.3339) (0.8200, 0.4130)
0.15 (2.4e-15, 0.1301) (0.0005, 0.2816) (0.1986, 0.3824)
0.05 (0.0000, 0.0632) (0.0000, 0.1955) (0.0000, 0.3301)

0.20 0.45 (0.9818, 0.8759) (0.9977, 0.9385) (0.9992, 0.9550)
0.35 (0.8295, 0.7529) (0.9881, 0.9064) (0.9981, 0.9455)
0.25 (0.0614, 0.5591) (0.8336, 0.8492) (0.9879, 0.9289)
0.15 (0.0000, 0.3026) (8.6e-13, 0.7516) (0.0376, 0.9011)
0.05 (0.0000, 0.0758) (0.0000, 0.5274) (0.0000, 0.8367)

0.30 0.45 (0.9985, 0.9785) (1.0000, 0.9939) (1.0000, 0.9965)
0.35 (0.9338, 0.9227) (0.9990, 0.9871) (0.9999, 0.9952)
0.25 (0.0302, 0.7601) (0.9101, 0.9687) (0.9986, 0.9924)
0.15 (0.0000, 0.4305) (0.0000, 0.9187) (0.0102, 0.9859)
0.05 (0.0000, 0.0825) (0.0000, 0.7246) (0.0000, 0.9635)

0.50 0.45 (1.0000, 0.9968) (1.0000, 1.0000) (1.0000, 1.0000)
0.35 (0.9952, 0.9111) (1.0000, 1.0000) (1.0000, 1.0000)
0.25 (0.0038, 0.4660) (0.9836, 0.9999) (1.0000, 1.0000)
0.15 (0.0000, 0.1104) (0.0000, 0.9986) (0.0002, 1.0000)
0.05 (0.0000, 0.0525) (0.0000, 0.9616) (0.0000, 0.9998)

We have several comments on the results in Table 7:

1. Although the more the contamination (γ) makes the variance of the
response variable Y , however, it is easier in detection of existence of
outliers so that the powers of two tests increase. The powers for γ = 0.5
are very close to the performance of location shift in Table 5.

2. Even the large contamination (γ = 0.5), the test for hypothesis Hµ,σ

with low α’s (α = 0.05 and 0.05) is still very poor in power performance.

3. Combining the discussions for the results in Tables 5-7, the test for
hypothesis Hµ is relatively more robust.
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Besides the cases of normal or mixed normal distributions, we may con-
sider the cases that X and Y draw from the following two cases:

Case 1: FX = Laplace(0, 1) and FY = Laplace(θ, 1)

Case 2: FX = t(5) and FY = t(5) + θ.

Table 8. Approximate powers (`Hµ,σ , `Hµ) for hypothesis Hµ and Hµ,σ when
X and Y are with Laplace or t distribution (n2 = 30)

8.(a) Y ∼ Laplace(θ, 1)

α θ = 1 θ = 3 θ = 5 θ = 10

0.45 (0.0193, 0.2899) (1.0000, 1.0000) (1, 1) (1, 1)
0.35 (5.2e-7, 0.0500) (0.0134, 0.9997) (1, 1) (1, 1)
0.25 (7.1e-7, 0.0500) (0, 0.4908) (0, 1) (1, 1)
0.15 (6.7e-4, 0.0500) (0, 0.0500) (0, 0.8694) (0, 1)

8.(b) Y ∼ t(5) + θ

α θ = 1 θ = 3 θ = 5 θ = 10

0.45 (0.0465, 0.4128) (1, 1) (1, 1) (1, 1)
0.35 (8.2e-8, 0.0777) (0.0002, 0.9999) (1, 1) (1, 1)
0.25 (4.0e-6, 0.0433) (0, 0.5184) (0, 1) (0.9838, 1)
0.15 (0.0001, 0.0460) (0, 0.0167) (0, 0.8794) (0, 1)

From the displayed results, it seems that two tests are quite satisfactory
when there are significant location shifts. However, the test for hypothesis
Hµ is uniformly better than it for hypothesis Hµ,σ. The test for hypothesis
Hµ is very satisfactory for small percentage α when there is location shift is
as large as 5 or more.

We now consider the case that random variable Y has a mixed distribution
with shift not only the mean but also the variance as follows:

FX = N(0, 1) and FY = 0.9N(0, 1) + 0.1N(θ, σ2)

where θ > 0. For sample size n2 = 30, cutting percentage α and true
values θ and σ, we compute the approximate powers, `Hµ,σ and `Hµ . With,
α = 0.05, 0.15, 0.25, 0.35, 0.45, θ = 1, 3, 10, we display a comparison of two
approximate powers in the following table.
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Table 9. Comparison of approximate powers

σ θ `Hµ > `Hµ,σ `Hµ < `Hµ,σ

1 1 0.45, 0.35, 0.25, 0.15, 0.05 none
3 0.35, 0.25, 0.15, 0.05 0.45
10 0.15, 0.05 0.45, 0.35, 0.25

3 1 0.25, 0.15, 0.05 0.45, 0.35
3 0.25, 0.15, 0.05 0.45, 0.35
10 0.15, 0.05 0.45, 0.35, 0.25

5 1 0.15, 0.05 0.45, 0.35, 0.25
3 0.15, 0.05 0.45, 0.35, 0.25
10 0.15, 0.05 0.45, 0.35, 0.25

10 1 0.15, 0.05 0.45, 0.35, 0.25
3 0.15, 0.05 0.45, 0.35, 0.25
10 0.15, 0.05 0.45, 0.35, 0.25

In general, we test hypothesis Hµ,σ is more powerful than to test hy-
pothesis Hµ,σ when we choose percentage α as large as 0.35 or 0.45 and test
hypothesis Hµ when we choose percentage α as small as 0.15 or 0.25.
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6 Appendix

To investigate Theorem 3.2, let’s establish a more general theory for outlier
mean Π. The following assumptions are needed.

(A1) The limit h = limn1,n2→∞
n2

n1
exists.

(A2) Suppose that there is constant C such that
√
n1(Ĉ−C) = Op(1) where

C depends generally on distribution of X.

(A3) Probability density function fδ of distribution Fδ is bounded away from
zero in a neighborhood of quantity C − µY .

(A4) Probability density function fε is bounded away from zero in the neigh-
borhood of F−1

ε (α) for α ∈ (0, 1).

Proof of Theorem 2.2

Proof. If a > 0,

λpaX+b,aY+b(α1, α2, . . . , αk)

=
E[(aY + b)I(aY + b ≥

∑k
j=1 cjF

−1
aX+b(αj))]

P{aY + b ≥
∑k

j=1 cjF
−1
aX+b(αj)}

=
E[(aY + b)I(aY + b ≥

∑k
j=1 cj(aF

−1
X (αj) + b))]

P{aY + b ≥
∑k

j=1 cj(aF
−1
X (αj) + b)}

=
E[(aY + b)I(Y ≥

∑k
j=1 cjF

−1
X (αj))]

P{Y ≥
∑k

j=1 cjF
−1
X (αj)}

=a
E[Y I(Y ≥

∑k
j=1 cjF

−1
X (αj))]

P{Y ≥
∑k

j=1 cjF
−1
X (αj)}

+ b

=aλpX,Y (α1, α2, . . . , αk) + b.

On the other hand, if a < 0,

20



λpaX+b,aY+b(α1, α2, . . . , αk)

=
E[(aY + b)I(aY + b ≥

∑k
j=1 cj(aF

−1
X (1− αj) + b))]

P{aY + b ≥
∑k

j=1 cj(aF
−1
X (1− αj) + b)}

=
E[(aY + b)I(Y ≤

∑k
j=1 cjF

−1
X (1− αj))]

P{Y ≤
∑k

j=1 cjF
−1
X (1− αj)}

=a
E[Y I(Y ≤

∑k
j=1 cjF

−1
X (1− αj))]

P{Y ≤
∑k

j=1 cjF
−1
X (1− αj)}

+ b

=aλnX,Y (1− α1, 1− α2, . . . , 1− αk) + b.

The proof of transformation on outlier mean with negative outliers may be
similarly proved and it is skipped.

Proof of Theorem 2.3

Proof. Let C = 2F−1
X (1−α)−F−1

X (α) and Ĉ = 2F̂−1
X (1−α)− F̂−1

X (α). From

model (2.2) and the expression of λ̂X in (2.1), we have

λ̂ = µY +

∑n2

i=1 δiI(δi > C − µy + n
−1/2
1 T )∑n2

i=1 I(Yi > Ĉ)

where T =
√
n1(Ĉ − C).

This implies that

√
n2(λ̂− µY ) =

n
−1/2
2

∑n2

i=1 δiI(δi > C − µy + n
−1/2
1 T )

n−1
2

∑n2

i=1 I(Yi > Ĉ)
. (6.1)

With assumption (A4), the key in this proof is that

n
−1/2
2

n2∑
i=1

δi[I(δi > C − µX + n
−1/2
1 T )− I(δi > C − µY )]

=− n−1/2
2

n2∑
i=1

δi[I(δi ≤ C − µY + n
−1/2
1 T )− I(δi ≤ C − µY )]

=− (C − µX)gy(C − µY )
√
hT + op(1) (6.2)

which may seen in Ruppert and Carroll (1980) and Chen and Chiang (1996).
The Bahadur representation of the outlier mean λ̂ may be formulated from
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Assumption (A1), equation (6.1), (6.2) and the following representation of
empirical quantile

√
n1(F̂

−1
ε (α)− F−1

ε (α))

=f−1
ε (F−1

ε (α))n
−1/2
1

n1∑
i=1

[α− I(εi ≤ F−1
ε (α))] + op(1) (6.3)

see, for example, Ruppert and Carroll (1980). The asymptotic distribution
in (b) of Theorem 2.3 is induced from the Central Limit Theorem.

The proof of Theorem 3.1 is exactly identical to it of Theorem 2.3 with
replacing µY by µX , δi by εi and Yi by Xi. Hence, it is skipped.
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