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Abstract

Process capability index C, has been popularly used in the manufacturing industry for
measuring process performance based on yield (propertion-of conformities). Most researches
on Cy focus on processes with single_quality-eharacteristic; but in many real applications, a

process often has multiple quality characteristics. Inthis study, we extend Cy to a new index

C;k for processes with multiple characteristics. We prove that the inequalities that link Cp to

AT
the yield also hold for the new index. A natural estimator of Cpk is provided and a normal

approximation to its distribution is derived. With this normal approximation, standard
processes for statistical inferences such as hypothesis testing and confidence interval are

developed for testing whether the process is capable and providing an interval estimate on

T

C;k, respectively. More importantly, we can obtain a confidence lower bound for C,

which measures the minimum process capability and is directly linked to quality assurance of

products. The accuracy of the normal approximation is studied by simulation. Finally, we

demonstrate how the new index C;k as well as the inferential procedures developed in this



study can be used with a real example of a dual-fiber tip process.
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1. Introduction

Process capability indices (PCls) are often used as a quality measure to evaluate the
performance of a process. Because PCls establish the relationship between the actual process
and the manufacturing specifications, they have been widely used in the manufacturing
industriesin recent years. Basic capability indices, Cp, Cpy, Cpi, Cpk, Com, Cpmic, are developed
for measuring whether a process has the reproduction capability (Kane (1986), Chan et al.
(1988), Pearn et al. (1992), Kotz and Lovelace (1998), and Kotz and Johnson (2002)). Boyles
(1991, 1994) proposed another index called Sy. These indices are defined as:

c :USL—LSL’ Coy :US_—,u, CPL:,u—LS_’ c, :min{USL—y,y—LSL}’
P 60 3o 30 3o 30
USL-LS
Com=  C o= in Us —u poLS
602+ (1 —T)? 8o +(u-T)? 3ol +(u-T)>

S 2 G070, Jap oL,
where USL and LSL are the upper and thelower specification limits, respectively, uis the
process mean, o isthe process standard.deviation,.and T is the target value. While the indices
Co, Cpw Com, Comk, and Sy are appropriate for statistically in-control normal processes with
two-sided specification limits, the indices Cpy @and Cp. are designed specifically for processes

with one-sided specification limit.

The first known index C, measures only the distribution spread, which only reflects
product quality consistency (in terms of process precision) but does not account for the
location of process mean . The index Cy not only takes into account the process variation
and the extent of process centering, but also measures actual process performance based on
yield (i.e., proportion of conformities). If the value of Cy is given for a process, Boyles (1991)

gave an upper bound and alower bound for the process yield (denoted by %Yield) as
20(3C, ) —1<op Yield <®3Cpy), (1.1)

where @(+) is the cumulative distribution function (c.d.f.) of the standard normal distribution.
For instance, if Cp = 1.33, then the lower bound guarantees that the yield will be no less than

99.9934%, or equivaently, the process has no more than 66 parts per million (PPM) of
1



non-conformities. The inequalities in (1.1) link the index Cy with the process yield. The last
index Sy provides an exact measure of the process yield, because the index is defined as a
monotonically increasing function of the yield. For example, if Sy = 1.33, then the exact yield

1$99.9933927%, or equivalently, 66.073 PPM of non-conformities.

The capability measuring for processes with single characteristic has been investigated
extensively, but is comparatively neglected for processes involving multiple characteristics.
However, it is quite common that industrial processes nowadays have more than one quality
characteristic. Thus, the performance evaluation of multivariate processes has become more

and more important.

Each of the multiple characteristics must meet certain specifications. However, the
assessed quality of a product depends on the combined effects of the multiple characteristics,
rather than on their individual values. For instance;,a process manufacturing dual-fiber tips, a
component is used to make fiber optic.cables,-has six quality characteristics, namely, the
capillary diameter, length, wedge, core diameter, return less, and polishing direction. These
characteristics are related through the compesition of-the fiber tips. Therefore, it is natural to

consider a multivariate characterizati on of this process.

The purpose of this study:is to define a multivariate PCI, called C;k, for multivariate
processes, which is a natural extension of the index C for univariate processes, and most
importantly, the new index still retain the link to the yield as given in the expression (1.1). A
natural  estimator (A:Lk for Cgk is provided. Since the distribution of (A:Lk IS
mathematically intractable, we derive its asymptotic distribution and obtain a normal
approximation accordingly. For quality assurance, a lower bound of the yield is a valuable
quality measure. We use this normal approximation to obtain a confidence lower bound of

Cp from process data.

The contents of this thesis is divided into seven sections. In Section 2, we emphasize the
importance of studying multivariate process capability indices and review recent studies on
the performance evaluation of multivariate processes. In Section 3, we propose a new yield
index Cgk for the overall process and relate it to the corresponding non-conformities in parts

per million (NCPPM). In Section 4, we derive the asymptotic distribution of a natural
2



estimator CA:Tpk of C;k and use this result to provide a confidence interval and a lower
confidence bound of the new index for processes with multiple independent characteristics.
To investigate how well the approximation is to the actual distribution, we compare the
normal approximation with the actual distribution of 6-:;k by simulation. Moreover, the
coverage rate and the confidence interval length are computed and the behavior of the lower
confidence bound is investigated. In Section 5, we compute the most conservative lower
confidence bound and the precision of the natural estimator for specified sample sizes, and
investigate the accuracy of the normal approximation by simulation. A simulation study is
conducted to investigate the bias of the natural estimator. In Section 6, as an illustrative
example, we apply the methodology to a set of real data presented in Pearn and Wu (2005b).

In Section 7, we conclude the thesis with a brief summary.

2. Capability Measuresfor Multiple Char acteristics

In recent years, more and mare researchers have been devoted to studying multivariate
capability indices. For example, - Chen (1994), Boyles (1996) and others presented
multivariate capability indices for assessing capability. Wang and Chen (1998-1999) and
Wang and Du (2000) propased multivariate-equivalents for Cp, Cpk, Com, and Cyni based on
the principal component analysis, which transforms theworiginal correlated variables into a set
of uncorrected variables that are linear, combinations of the origina variables. Moreover, a
comparison of three recently proposed multivariate methodologies for assessing capability are
illustrated and discussed in Wang et a. (2000). On the other hand, some researchers modified
the univariate index for processes with multiple characteristics. For example, Chen and Pearn
(2003) modified the process capability index Sy to

U g |
S =30 {E(ZCD(BSM)—l)Jrl}/Z},

where Sy is the Sy of the ith characteristic. Later, Pearn and Wu (2005a) proposed the
following modified one-sided index, which is a generalization of the one-sided index Cpy,

ch, :%@—1{Hq>(3cpui )},

i=1

where Cpy; isthe Cpy of the ith characteristic.



Processes with multiple independent characteristics

When a processes has m ( >1) independent characteristics, Bothe (1992) considered m
yield measures P,...,Pyn and suggested the overall process yield P to be measured by P =
min{ Py,...,Pmn}. We can see that this approach does not reflect the real situation accurately.
Assuming the process has five characteristics (m = 5) with equal yield measures P1= P,= P3
= P,= Ps= 99.9934%. Using Bothe's approach, the overall processyield is evaluated as P =
mMin{ Py,...,Pn}=99.9934% (or 66 PPM of non-conformities). Supposing that the five
characteristics are mutually independent, then the overall process yield should be calculated
as P1x Py x P3x Pyx Ps=99.967% (or 330 PPM of non-conformities), which is significantly
less than that suggested by Bothe (1992). (See Pearn and Wu (2005b) ).

In the manufacturing industry, Cpy has been popularly used for measuring process
performance because it can link ‘to the process yield. In this paper, we define a new
yield-related process capability index-for processes of multiple independent characteristics.
We consider a normal approximation-to the distribution ef the natural estimator to find the
lower confidence bound, which gives usnot only a clue;on minimum actual performance
related to the fraction of non-conferming units;but also is useful in decision making on the

capability test.
3.A New ProcessYield index for Multiple Independent Characteristics
3.1. The yield-related index C[
For a process with m quality characteristics, we assume the m characteristics follow

mutually independent normal distribution, N(u,o?), i =1,...,m Denote the two-sided
specification limits of the ith characteristic by USL; and LS, i=1,...,m.

Given avalue of Cy, by (1.1), theindividual yield of the ith characteristic has the following
bounds

If we wish to extend the notion of Cy to a multivariate yield capability index C;k, itis

natural to require c;k satisfying (3.1), that is,

4



20(3C], ) -1< %Yidd < ®(3C],), (3.2)
where %Yield is the overall processyield of the multivariate process. Since the characteristics

are mutually independent, by (3.1), I_I(ZCD(BCpki ) —1) isalower bound of the overall process
i=1

yield. Thus, if we set

ﬁ(2®(3Cpki )-1)=20(3C}) -1, (3.3

i=1

then the first inequality in (3.2) automatically holds. Therefore, by equation (3.3), it is natural
to propose a new index as defined by

Cl zém-l{{]ij(zq)(acm)—1)+1}/2}. (3.4)
It can be shown that the inequality % Yield s<I)(3CFT)k) holds as well. Derivation is
given in Appendix A. Therefore, the new index defined as (3.4) satisfies (3.2). The new index
Cgk may be viewed as a generaization of the single characteristic yield index Cy and it
provides a lower bound of the overall process yield. Therefore, the corresponding upper
bound (UB) of non-conformities in parts-per-million, NCPPM, for a well-controlled process

with multiple independent normal characteristics can be calculated as
NCPPM_ £10°x2[1-®(3C}, )] (3.5)

T

Table 1 and Figure 1 present the corresponding tpper: bounds of NCPPM for C, = 1.00, 1.25,
1.33, 1.45, 1.50, 1.60, 1.67, and 2.00.

4. Estimation of Cgk

4.1. The approximate distribution for a natural estimator of C;k

Let Xy,...,X, be independent and identically distributional (i.i.d.) as a multivariate
normal process N, (#,Z), where X; =(Xyj,.... X ) 0= (a4, tyy)', andF isthe mxm

diagonal matrix with diagona elementsa?,...,c7>.

Since the individually Cy can be expressed as

d—|u—
Cpo =2 aulll

3% ,i=1...,m,

where 44 isthe mean of theith characteristic, m = (US +LS,)/2isthe mid-point of the

specification interval, and d, = (US, —LS,)/2 isthe half width of the specification interval.
5



It is common to estimate Cp by

A d—|Xi-m|

Cpki =— ,
P 35 (4.1)

where X = lznlx and & = iZn:(X-- ~-Xi)%,i=1..m
N =i n-143" " o (4.2)
To estimate the index Cgk, we consider the following natural estimator
~ m ~
Cr = %qﬁ{l‘[(ch(sc pm)—1)+1}/2}, (4.3)
i=1

where Cy isthe Cy of the ith characteristic.

Theorem 1.

The exact distribution of 61[-)k is analytically extractable; however, it can be shown that
~T

Cw has an asymptotic normal distribution .as stated in the following theorem. The
asymptotic distribution of é-Lk is

3 zzm:(aerhz) asn— o, (4.4)

Jﬁ(éﬁk—c;k)iN 0, W >

m

where a = { I (2cp(3cpkj)—1)}¢(3cpm) andh = %qcpki, i=1..,m

j=1,j=i
We give two different proofs in Appendix B and Appendix C, respectively.

Note that, by equation (4.4), 6-;;k is asymptotically unbiased. To see how well the
normal approximation is, we conduct a simulation study using the free statistical package R as
follows. Four scenarios are considered in the simulation study, the combinations of two C;k
values (1 or 1.33) and two cases of process mean (g4 #m o g =m, i=12). For each
scenario, simulate 1,000,000 random samples of size n = 60, 200, 500, 1000 from
N, (14, 15, 04%,5,%,0), a normal process with two independent characteristics. For each
scenario, we compute 1,000,000 (ELk by (4.3). Figures 2-9 compare the simulated
distribution obtained by 1,000,000 CA:Lkls to the normal approximation with their probability

density functions (p.d.f.) and the cumulative distribution functions (c.d.f.). It is clear that as



sample size n reaches 1000, the approximate and simulated distributions are very close. In

fact, even with n = 60, the approximation is already quite reasonable for practical purposes.
4.2 Statistical inferences based on the normal approximation

With the asymptotic distribution given in equation (4.4), we now can make statistical
inferences on Cgk based on a set of random samples, including the hypothesis testing,

confidence interval, and lower confidence bound.

To test whether a given process is capable, we consider the following statistical
hypothesis testing:

Hy: Cp <c (the processis not capable)
Hy: CJy > C (the processis capable) (4.5)

where c isthe minimal standard criterionon Cgk :

The test can be executed:by. considering the testing statistic
3¢n (élk = c) H3C )
T = 1

i(aﬁ +By ) (4.6)

i=1

where a = { ﬁ (2@(36%])—1)%(36[,“) ad =2 G, i =1..,m

j=1,j=i

N

Because we do not know the values of &, a,, b, and b,, we estimate them from data.
The null hypothesis H, isrejected at o level if T > Z,, where Z,, is the upper 1000% percentile
of the standard normal distribution.

An approximate 100(1- )% confidence interval for Cgk can be easily obtained as

(AZTpk -Z, {%i@uﬁf)} ,(AZLK+ZQ {%i(aﬂﬁf)} 4.7)
IN[$(3Cn)]* = INF(3Cw))? 3

and an approximate 100(1- )% lower confidence bound for C[T)k can be expressed as



1/2
AT 1 M A2 a2
C:;kLB ~ Cpk _Za —ATZZ(a| +bi ) ) (48)
IN[#(3C )]~ =
where a and by are as before,

T

ok» We conduct a

To evauate the proposed confidence interval and lower bound of C
simulation study. We use equation (4.7) to obtain confidence interval and confidence interval
length. Consider the case of C;k:1.33 with 90% confidence level under a process of two
independent characteristics. Note that there are infinite number of the combinations of the
process distribution and the manufacturing specifications that would correspond to the same

value of C;k =1.33. We consider six scenarios as given in Table 3 in the study.

For each scenario, generate N=1,000,000 random samples of size n =30, 50, 100, 500,
1000 from N,(uy, Uy, 072, 0,2, 0). For each case, we compute 1,000,000 Cp , the

corresponding 1,000,000 confidence,intervals'and, C"*'s. Check if the true index Cj, is

T LB
pk

contained in the interval and if itisgreater than C
Tables 2-5 present the coverage rate and the average length of 1,000,000 confidence
intervals. We can find that the coverage rate approaches 0.9 (under « = 0.1) and the

confidence interval length isdecreasing-to.zero-asthe sample size n increases.

For the univariate case, Pearn and Shu (2003). examined the behavior of the lower
confidence bound of Cy against & ”where &= (y—m)/ o. Since for a process with two
characteristics, C.'° involves & and &, . However, there are too many Cpy's
corresponding to one & . Therefore, instead, we explore the relationship between CJ*®and
(Cpa, Cpi). To do this, instead of performing simulation experiments that require extensive

calculations, we calculate and plot

1/2

L S @) 4.9)

el oz |1
P In[¢(3CH)1* =

pk

versus Cyq and Cye to examine the relationship between CJ*® and (Cpia, Cpiz)-

Based on C[, ™ expressed in equation (4.9), given sample size n = 10, 30, 50, 70, 90,
Figure 10 displays the curves of CJ"® versus various combinations of Cp and Cpe With

Ch =10,1.33,15, 1.67. Figure 11 plotscurvesof C[,"® versus Cyq given samplesizen =

8



10, 30, 50, 70, 90 for C;k =1.0,1.33, 15, 1.67.
We examine the results of calculation and find that
e C." reachesitsabsolute maximum when Cpa = Cpic.

® The minimum of C.'° occurs when one of C,’'s approaches infinity, that is,
when C‘T)k equals one of Cpk's. This minimum is the most conservative lower

confidence bound for a given C;k :

From Figure 10 and Figure 11, we can a so observe the above properties.

5. Accuracy of the Normal Approximation

T

For a given Cp,

by setting one Cy a C, and the other C, atoo, we can use

T LB

equation (4.9) to compute the most conservative C,

, which represents a measure of the
minimum manufacturing capability of the process for the case when the process has two
independent characteristics..For engineer- convenience, if a process with two independent
characteristics has CA:Tpk =1.33and sample size:n-=100; then we have 95% confidence to say

that the true Cgk of this processis no lessthan 1.1392. Similarly, we can compute the largest

T LB
pk

possible C"° by setting Coui = (Coie- The largest possible value of C

ok may not have

much of the practical value, but isof interest mathematically.

Tables 6 and 7 tabulate both the most conservative and largest possible C,,"* value for

C i =1(01)2, n=10(10)200 and confidence level y = 95%.

5.1. Accuracy analysis of C "
Sample size determination is important, as it directly relates to the cost of the data

collection. By equation (4.8), we have

m

) CELD o
n ~(Z,/Cp)? '172 1_cgkLB/cpk) . (4.10)
Ap(3C )]
~ m - - PP
where a; = 20(3Cpi)-1) |¢(3Cwi), bi = —=aiCpi, i =1...m
1 (2001 o b = ac

9



To evaluate the precision of the lower confidence bound C;mfor the index Cym given
earlier, Pearn and Shu (2003) defined a precision measure R=C;m/6pm, where 5pm iIsa

~T
natural estimator of Cprm. Similarly, for C1,"® we can define R=C[, "%/ Cpx. In Table 8, we

T LB

tabulate the value R of the most conservative C,

for processes with two independent
characteristics. These values can be useful for engineers and practitioners, because it would be
convenient to assess the minimum capability of the process for engineers as a everyday work.
For example, if one requires a 95% lower confidence bound for C;k to be of 85%
.. ~T . T LB ~T ~T .
precisonof Cpk (i.e,Cp " /Cpk =0.85) for Cp =1.5, then the most conservative sample

size required for achieving this goal is 66, which can be computed by

2 A2 a2

; Z(ai +bi) ;\2

n z(za/Cpk)z M‘ﬁ 1—C—£kLB/Cpk) .
A4(3C p)]

¥
V2

On the other hand, if one obtains a CA:L( =1.5from a set of data of size 66, then the most

where a; = ¢(361|;k), a = 0, by = ¢(36-Lk)6-:)k, and by =0.

conservative 95% lower baund can be conveniently obtained by multiplying CA:Tpk by the
corresponding R (=0.85), i.e., the most conservative lower bound is 1.5x0.85=1.275. One
then can conclude that the true value of ‘the process capability C;k isno less than 1.275 with

95% confidence.

5.2. Bias of the natural estimator of Cgk

In order to explore the bias of the natural estimator by simulation, we simulate a total of
N=1,000,000 replications for each sample size of n = 30, 50, 100, 500, 1000. Take the average
of N CA:Tpk's to estimate E(E\:I)k) and compare it with the true Cgk. The simulation results
presented in Tables 9-12 indicate that the bias is negative for the cases under study. That is,
we underestimate Cgk when the yields of the two independent characteristics are the same
(i.e, Coa = Cuk). On the other hand, when one %Yield almost reaches 100% (i.e., when
Ci=Cpq 0 Cig=C,,), the problem is basically reduced to the univariate case, a situation
previoudly studied by Kotz et al. (1993). They showed that the natural estimator apk of Cuk

10



is biased and the bias is positive when ¢z = m ( u is the process mean and mis the midpoint of
the specifications). When . =m, the bias is positive for sample size<10, but is negative for

larger values of sample size. See Kotz et al. (1993) for more details.

5.3. Sample size for required margin of error

From (4.8), the margin of sampling error is approximately note that
m A2 A2 2
> (ai +bi)
Z i=1
(o4 AT 5
N[$(3C )]

R m ~ ~ - 34
where a; = { H (2@(3Cpkj)—1):|¢(3(:pki), bi = EaiCpki, i=1.m
J

Table 13 gives the most conservative sample sizes required for the estimator of C;k to be

within a sample error less than 0005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1

j=1,j=i

for various Cgk and significance level o The'most conservative case is used in calculation.

(e, Ch=Cha0 Ct=Cpuo).

For example, for Cgk=1.33 with” @ =0.05, 'a sample size> 193 ensures that the

sampling error of CA:L( is no greater than 0.09.

6. An application example

For illustration, we consider areal example presented in Pearn and Wu (2005b), which is
taken from an optica communication manufacturing factory located in Science-based
Industrial Park in Taiwan. The example involves a process manufacturing dual-fiber tips, a

component used in making fiber optic cables.

Figure 12 depicts a sample of the dual-fiber tips. Sixty dual-fiber tips were taken from a
stable (i.e., in statistical control) process in the factory, and two product quality characteristics
were measured, (i) Capillary length and (ii) Wedge. For a particular model of dual-fiber tips,
the specifications of characteristics are listed in Table 14. According to Pearn and Wu (2005b),
it is reasonable to assume that these 60 data were from a normal distribution with two
independent quality characteristics. The sample mean, standard deviation, and specifications

along with the individual C pk Of each characteristic are summarized in Table 14.
1



If the quality requirement was predefined as Cgk >1.33, then we can make some
statistical inferences on Cgk by using hypothesis testing and interval estimation. For testing
the null hypothesis H, as given in (4.5) with ¢ =1.33, the testing statistic T given in (4.6) is
2.321008 > Zo 05 = 1.645. Thus, H, isregected at o = 0.05. We conclude that the process meets
the capability requirement of C;k >1.33 with 95% confidence.

Moreover, Cp =1.702917 and Ch - =1.438560by (4.3) and (4.8), respectively. Thus,
we have 95% confidence to say Cgk is no less than 1.43856, or equivaently, there are no

more than 16 PPM of non-conformities as givenin (3.5).

7. Conclusions

Process yield is the most common criterion used in the manufacturing industry for
measuring process performance. Thewidely used capability index Cy. is ayield-related index,
in the sense that it can provide a lower bound for the yield of a process with single

characteristic. But in many real applications, the proeess has multiple characteristics.

In this paper, we extend Cy to an index C;k to assess the yield of processes with

multiple characteristics. It is'shownthat —2d(3C )~ 1<% Yield < ®(3C}, ), a property holds

T

for the univariate Cp. Based on the new index Cp,

the practitioners can make reliable
decisions for capability testing and monitoring ‘the overal performance of all process

characteristics.

~T

Unfortunately, the distributional properties of the natural estimator Cp are
mathematically intractable. We derive a normal approximation to the distribution of the é—rer
: . . : . AT
by the first-order Taylor expansion and investigate the accuracy and precision of Cp by
simulation.

Applying the asymptotic distribution of CA:Tpk, hypothesis testing, confidence interval,

T LB

" are constructed. We investigate the behavior of CJ,

and a confidence lower bound C ok

versus Cpa and Cy for given Cgk's and find that the most conservative lower bound can
be obtained by setting one of Cpk's at the given Cgk and the other at infinity. We also
provide tables for engineers or practitioners to use in assessing their processes. On the other

hand, it isalso found that C[,® reaches its absolute maximum when Cya = Cpic.
12



As an illustrative example, an application example on dual-fiber tips taken from Pearn
and Wu (2005b) is employed. The practical implementation of the statistical theory for
manufacturing capability assessment bridges the gap between the theoretical development and
the in-plant applications.

For the future research, we could consider the following topics:

® Use the second-order expansion of Taylor series to approximate the distribution of

AT L
Cpk to get amore accurate approximation.

® Generdize C;k for processes with asymmetric tolerances.
® Explorethe similar research to Cgk for Cy, Cpu, CpL, Coks Com, Cpnk-

® Develop appropriate process capability measurement based on Cgk when gauge

measurement errors exist.
Followings are some other potential sresearchitopics:
® develop apowerful test for on-sided or:two-sided-supplier selection problem.
® develop adecision making method for product acceptance.

® develop tool replacement strategres for production with alow fraction of defectives.

13
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Appendix A

Proposition 2d(3C, ) —1<% Yidld <®(3C},) (A1)
Lemma
m m
If 0<R <1, then 2[ [R-1<] (2R -1) (A2)
i=1 i=1

Proof: The proof is by induction. We start withm= 2. To show 2RP, -1<(2R, -1)(2P, -1),
(A3)

it sufficesto show BP,-PB —P,+1>0,which holdssince 0< PR <land 0<P, <1 Thus(A2)

holds for m=2.

Assume (A2) holdsfor m=k;, i.e,,

k

2[R -1< f[(ze—l). (Ad)

i=1 i
For m=k+1, (A2) also holds because

k+1

ﬁ(ZH -1)= [ﬁ(ZR —1)}(2Pk+1—1)2 (Zﬁ P —1}(2Pk+1—1) > Zﬁ R-R.,—-1= ZH P-1

i=1 i=1 j=1 i=1 =
where the first inequality holds by (A4).and.the second inequality holds by (A3).
This completes the induction.
To prove (A1), it is easy to obtain’ 2d(3C],)~ 1< %Yield by the definitionof CJ,.

Since 20(3C,,;)-1<% Yield, s®(3Cpki), i=1..,m, theoveral yield has an upper

pki
bound

m

% Vield = [H% Vield, ] <[ [®(3C,0)-
i=1

i=1
Then it sufficesto show that [ [ ®(3C,;) < ®(3Cy,).
i=1
By equation (3.3) and Lemma, we have

20(3C ) —1=](2®(3C ) -1) 2 2[ [ P(3C ) -1
i=1 i=1

whichimplies ®(3C,) > ] [ ®(3C,). QED.
i=1
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Appendix B
A proof of Theorem 1.

Theorem 1. The asymptotic distribution of ank is

Jn(En-cl)S5No, — 1 S @+p?) | asnoew (4.4)
(6= TRk

m

3 .
where a = { I1 (2@(3cpkj)—1)}¢(3cpki) andb = chm, i=1..,m

j=1, )
a

Proof. By definition, we have

d—lgm-ml| .
Cpki ZT, |=:L..,m,

where g isthe mean of theith characteristic, ms= (U, + LS, )/2isthe mid-point of the
specificationinterval, and d;, = (U — LsSk;)/-2.#is the half width of the specification interval,
fori=1,...,m. By definition,

SR e | L
Cix =3 H(ZCD(3CPK)—1)+1 /2!, (B1)
i=
Since Cy isafunction of #z4-and o7 , by (B1),/Cl, isafunctionof 4,..., 4,07 ,....05,

Denote this function by f. Then Cpy = f(fig, .zt 01,0 om) , Where 2, =Xi and

~ n —_—
ai2=32=2(xik—xi)2/n—1, i =1..m
k=1

Employing the first-order expansion of m-variates Taylor series, we can obtain

~T of - ;62,...,62 ~
Cpk = f(,LJ,l,...,ym;alz,...,O'r%)Jr (4 Hm: 9 m) (s = 1) + ...
oup
O rostiis?) O st rno?) 22

aam ool

.2 2y
+ af('wl'm’ﬂrz’zo-l O (om—0o2).
aGm

Differentiating with respect to 7, and o1, i =1,..,m gives
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2 ~34(3C},) o

1 { 11 (2<D(3Cpkj)—l) }¢(3Cpki)}, if 1 >m
j=

O (4, e Mgy OF 1oy T2 _ Lj=
u 1 alf lm[ (20(3C4)-1) }5(30 YL if
— ) - Dt if <
3¢(3C;k)o-i | j=Lj= . P =
of (14, ,um,alz ..... J,f,) _ -1 3Cpki_ m B(3C... _1} 3C
el s o ML (eoem-auce).
fori=1..m
Denote
W %{ I1 (2<1>(scpm)—1)]¢(3cpki)(% 1)
i | j=L, i
and
3C, [ um
G = 2;2“ []1‘[ _(2@(3cpkj)—1)}¢(3Cpki)(32-aﬁ), fori=1..,m
i =1 j=i
Then

6TF"‘~C 3¢ 34(3CT) Z(l G ).

( pk i=1
Let Z =n(Xi-y) and Yi=\/ﬁ($ -0 ),lz 1,...m. Then Z and Y; are independent.

Because the first two moment§of - X; and S exist; by:the Central Limit Theorem, z, and Y,
converge to N(O,aiz) and N(O,Zcri"'), respectively, i=1,....m

Soweobtain E(Cp)=Cl, and

Var(CA:Lk) ~Var {C-[I)—k +_—1§:(V\/| +G )} z;zi(af +h2),

3¢(3Cp) i1 9n[¢(3cgk)} =
m 3C
WhereaFl: I1 (2®(3Cpkj)_1):|¢(3cpki)andq: \/Bkl a,i=1.,m
j=1,j=i

18



Appendix C

Another proof of Theorem 1.

. ~ ~ ~ A2 ~2 ~ —
Since Cgk=f(y,l,...,ym'0'12,... ol) and CLk:f(,ul, oM 0L,y 0m), Where g =X

and Gl =g = n—Z(X,k—X) i = 1..m Because y; and o 2 are MLE of L
k=1

and o, respectively, Cw isthe MLE of Cox = T (ths oo e OF 10 5 -

Let 6=(ty,.... 4y, OF ... 0). The Fisher information is evaluated as

_0{2 0... 0
0... 00';120... 0
Im><m(‘9): .
0. 0 207°0...0
L= 0 20-;14_mxm
. .. m .
20 3C -1 SC i , |f iZ
O (£ly, e gy OF 1o O Rk _3¢(3C o) O {L:l;[ﬂ( (3C ) ):|¢( pk)} M >m
o B 1 - 15 1 i lml (2(1)(3C .)—1) }¢(SC b if g <m
3¢(3C k) Oj Lj=1,j¢i P pki/ (1 i
O (4o fos OF 12 O) =1 L | 10 20 (3C..,. —1} 3C, .
601 3¢(sc;k){ 202 _jzl;lﬂ( (3Cpq) —1) [#(3Cp)

fori=1...m

By Theorem 5.3.5. in Bickel, and Doksum (2007), we can obtain the desired resullt:

\/ﬁ(ézk—cgk)i [ 22(31 h)},asn—wo,

q¢(3C k)] i=1
u 3Cpki .
Whereai:|: I (2q>(3cpkj)—1)}¢(3cpki) and b = a,i=1..m QED.
=1, j=i \/E
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Figure 2. Comparison of the probability density function (dash line) of é-gk obtained by
simulation and its normal approximation (solid line) for n =60, 200, 500, 1000 (Cgk =10

and g #m and u, #m,).
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Figure 3. Comparison of the distribution function (dash line) of é-gk obtained by simulation
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Figure 12. A sample of the dual-fiber tips. (from Pearn and Wu (2005b)).

Table 1. Corresponding upper bounds of NCPPM for some specific values of Cgk .

Ch« | Upper bound of NCPPM
1.00 2699.796
1.25 176.835
1.33 66.073
145 13.614
1.50 6.795
1.60 1.587
1.67 0.544
2.00 0.002
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Table 2. Coverage rate and 90% confidence interval length (in parentheses) for various cases
of CL=10 withn=30, 50, 100, 500, 1000.

Cpkl 1.0683 1.0683 1.0683 1.0683 1.0683 1.0683
Cpk2 1.0683 1.0683 1.0683 1.0683 1.0683 1.0683
d
P 3.2050 3.5611 4.0062 2.1366 4.0062 4.0062
d,
P 3.2050 3.5611 4.0062 2.1366 5.3416 3.5611
(M;—ml) 0 0.3561 0.8012 5.3416 0.8012 0.8012
1
@ 0 0.3561 0.8012 5.3416 2.1366 0.3561
2
samplesizen coveragerate (confidenceinterval length)
30 0.9436 0.9152 0.9144 0.9143 0.9143 0.9142
(0.4099); |:(0.4104) | (0.4108) [ (0.4108) | (0.4107) | (0.4106)
50 0.9405 0.9229 0.9126 0.9126 0.9130 0.9127
(0.3107) | (0.3119) | (0.3120) | (0.3119) | (0.3120) | (0.3119)
100 0.9371 0.9095 0.9092 0.9095 0.9092 0.9097
(0.2140) | (0.2150) | (0.2150) | (0.2150) | (0.2150) | (0.2150)
500 0.9302 0.9032 0.9029 0.9028 0.9035 0.9034
(0.0922) | (0.0924) | (0.0924) | (0.0924) | (0.0924) | (0.0924)
1000 0.9296 0.9020 0.9021 0.9018 0.9019 0.9021
(0.0647) | (0.0648) | (0.0648) | (0.0648) | (0.0648) | (0.0648)
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Table 3. Coverage rate and 90% confidence interval length (in parentheses) for various cases
of Cgk=1.33 with n =30, 50, 100, 500, 1000.

Cpkl 1.3838 1.3838 1.3838 1.3838 1.3838 1.3838
Cka 1.3838 1.3838 1.3838 1.3838 1.3838 1.3838
d,
P 4.6452 5.1613 5.8065 6.6360 7.7420 6.6360
d,
> 4.6452 5.1613 5.8065 6.6360 7.7420 7.7420
(M;—ml) 0 0.5161 1.1613 1.9908 3.0968 1.9908
1
@ 0 0.5161 1.1613 1.9908 3.0968 3.0968
2
samplesizen coveragerate (confidenceinterval length)
30 0.9295 0.9135 0.9135 0.9133 0.9131 0.9135
(0.5967)" | (0.5968) | (0.5969) | (0.5968) | (0.5968) | (0.5968)
5 0.9297 0.9137 0.9135 0.9143 0.9144 0.9139
(0.4543) | (0.4551) | (0.4550) | (0.4551) | (0.4550) | (0.4552)
100 0.9283 0.9135 0.9137 0.9130 0.9136 0.9135
(0.3123) | (0.3133) | (0.3132) | (0.3132) | (0.3132) | (0.3132)
500 0.9216 0.9076 0.9081 0.9075 0.9077 0.9074
(0.1300) | (0.1304) | (0.1304) | (0.1304) | (0.1304) | (0.1304)
1000 0.9194 0.9047 0.9048 0.9054 0.9047 0.9055
(0.0898) | (0.0900) | (0.0900) | (0.0900) | (0.0900) | (0.0900)
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Table 4. Coverage rate and 90% confidence interval length (in parentheses) for various cases
of C;k =1.5 with n =30, 50, 100, 500, 1000.

Cpkl 15484 15484 15484 15484 1.5484 15484
Coxz 1.5484 1.5484 1.5484 1.5484 1.5484 1.5484
d,
p 4.1515 4.7445 5.1893 5.5353 6.6423 8.3029
d,
. 4.1515 4.7445 5.1893 5.5353 6.6423 8.3029
@ 0 05931 | 10379 | 13838 | 24909 | 4.1515
1
@ 0 0.5931 1.0379 1.3838 2.4909 4.1515
2
samplesizen coverage rate (confidenceinterval length)
20 0.9340 0.9138 0:9143 0.9141 0.9144 0.9133
(0.5309) | (05313) | (0.5312)7 (0.5313) | (0.5311) | (0.5312)
5 0.9330 0.9138 0.9137 0.9147 0.9139 0.9139
(0.4032) | (0.4041) | (0.4041) | (0.4042) | (0.4042) | (0.4041)
100 0.9305 0.9126 0.9122 0.9122 0.9130 0.9127
(0.2767) | (0.2777) | (0.2777) | (0.2777) | (0.2777) | (0.2777)
500 0.9228 0.9062 0.9057 0.9058 0.9059 0.9058
(0.1161) | (0.1164) | (0.1164) | (0.1164) | (0.1164) | (0.1164)
1000 0.9215 0.9040 0.9037 0.9036 0.9041 0.9035
(0.0807) | (0.0809) | (0.0809) | (0.0809) | (0.0809) | (0.0809)




Table 5. Coverage rate and 90% confidence interval length (in parentheses) for various cases
of C;k =2.0 with n =30, 50, 100, 500, 1000.

Cpkl 2.0372 2.0372 2.0372 2.0372 2.0372 2.0372
Cka 2.0372 2.0372 2.0372 2.0372 2.0372 2.0372
d,
. 6.1116 6.9846 2.0372 3.6669 6.1116 6.1116
d,
P 6.1116 6.9846 2.0372 3.6669 6.9846 12.223
b 0 ] 08731 | siagsr| 97785 | o0 0
1
@ 0 0.8731 8.1488 9.7785 0.8731 6.1116
2
samplesizen coveragerate (confidencednterval length)
100 0.9227 0.9137 0.9135 0.9139 0.9181 0.9185
(0.4237): | (0:4243) | (0.4242)4| (0.4242) | (0.4239) | (0.4240)
300 0.9220 0:9130 0.9130 0.9126 0.9173 0.9178
(0.2333) | (0.2339)"|"(0.2338) | (0.2339) | (0.2336) | (0.2336)
500 0.9204 0.9111 0.9113 0.9112 0.9159 0.9158
(0.1760) | (0.1765) | (0.1765) | (0.1765) | (0.1763) | (0.1763)
200 0.9188 0.9107 0.9107 0.9104 0.9145 0.9143
(0.1462) | (0.1466) | (0.1466) | (0.1466) | (0.1464) | (0.1464)
1000 0.9177 0.9092 0.9084 0.9083 0.9134 0.9141
(0.1202) | (0.1205) | (0.1205) | (0.1205) | (0.1203) | (0.1203)
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Table 6. The most conservative 95% lower confidence bounds CJ,'® of C[ for C=1(0.1)2,
n =10(10)200.
~T
n C
10 11 12 13 14 15 16 17 18 19 20

10 | 05934 | 06598 | 0.7258 | 0.7914 | 08567 | 0.9217 | 09865 | 10511 | 1.1156 | 11800 | 1.2442
20 | 07125 | 07888 | 08647 | 09404 | 10158 | 1.0911 | 11662 | 1.2412 | 1.3161 | 1.3909 | 1.4656
30 | 07652 | 08459 | 09262 | 1.0064 | 10863 | 11661 | 12458 | 1.3254 | 14049 | 14843 | 15637
40 | 07967 | 08799 | 09629 | 1.0457 | 11283 | 12108 | 1.2933 | 13756 | 14578 | 15400 | 1.6221
50 | 08182 | 09032 | 09879 | 10725 | 43570 | M2414 | 13256 | 14098 | 14939 | 15780 | 1.6620
60 | 08340 | 0.9203 | 1.0064 | 200924 | 11782 | 12639 | %3495 | 14351 | 15206 | 1.6061 | 16915
70 | 08463 | 09336 | 1.0208 1111078 | 11946 | 12814+ 13681 | 14548 | 15413 | 16279 | 1.7144
80 | 08s62 | 09444 | 10323°| 11202 | 12079 | 1.2085 | 13831 | 14706 | 15580 | 16454 | 1.7328
90 | 08645 | 09533 | 1.04197| 1.1305 | 12189 | 1.8072 | 1.3955 | 14837 | 15719 | 1.6600 | 1.7481
100 | 08714 | 09608 | 1.0500 [¥11392"|,2.2282 | 18171 | 14060 | 1.4948 | 15836 | 1.6723 | 17610
110 | 08774 | 09673 | 10570 | 11466 |-12362 | 13256 | 14150 | 15044 | 15037 | 16829 | 17721
120 | 08826 | 09729 | 10631 | 11532 | 1.2432 | 1.3331 | 14229 | 15127 | 16024 | 1.6922 | 17818
130 | 08872 | 09779 | 1.0685 | 11589 | 1.2493 | 13396 | 14298 | 15200 | 16102 | 17003 | 1.7904
140 | 08913 | 09824 | 10733 | 11641 | 1.2548 | 1.3454 | 14360 | 15266 | 16171 | 1.7076 | 1.7980
150 | 08950 | 09863 | 1.0776 | 11687 | 12597 | 1.3507 | 14416 | 15325 | 16233 | 17141 | 18049
160 | 08983 | 09900 | 1.0815 | 1.1728 | 1.2642 | 1.3554 | 14466 | 15378 | 16289 | 17200 | 18111
170 | 09014 | 09932 | 1.0850 | 11766 | 1.2682 | 1.3507 | 14512 | 15426 | 16340 | 1.7254 | 18167
180 | 09042 | 09963 | 1.0882 | 11801 | 1.2719 | 1.3637 | 14554 | 15471 | 16387 | 1.7303 | 18219
190 | 09067 | 09990 | 1.0912 | 11833 | 12754 | 1.3673 | 14593 | 15511 | 16430 | 1.7348 | 1.8266
200 | 09091 | 1.0016 | 1.0940 | 1.1863 | 1.2785 | 1.3707 | 14628 | 15549 | 16470 | 1.7390 | 18310
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Table 7. The largest possible 95% lower confidence bounds Cp,"® of CJ for Cw=1(0.1)2,

pk
n =10(10)200.
~T
C pk
n
1.0 11 12 13 14 15 16 17 18 19 20

10 0.6788 | 0.7573 | 0.8353 | 09127 | 0.9898 | 1.0666 | 1.1430 | 1.2192 | 1.2952 | 1.3709 | 1.4466

20 0.7729 | 08577 | 09421 | 1.0262 | 1.1100 | 1.1935 | 1.2768 | 1.3600 | 1.4430 | 1.5259 | 1.6087

30 0.8146 | 09021 | 0.9894 | 1.0764 | 1.1632 1.250 13361 | 14224 | 1.5085 | 1.5945 | 1.6805

40 0.8394 | 09287 | 1.0176 | 1.1064 | 1.1949 | 1.2833 | 1.3715 | 14596 | 1.5476 | 1.6355 | 1.7233

50 0.8564 | 0.9467 | 1.0369 | 1.1268 | 1.2166 | 1.3062/{.1.3956 | 1.4850 | 1.5742 | 1.6634 | 1.7525

60 0.8689 | 0.9601 | 1.0511 |#1.1419 | 1:2325 | 1.3230 | '1.4134 | 15037 | 15939 | 1.6840 | 1.7741

70 0.8786 | 09705 | 1.0621sf 1.1536 | 1.2450 | 1.3362 | 1:4273 | 15183 | 1.6092 | 1.7000 | 1.7908

80 0.8865 | 0.9788 | 1.0710s| 11631 | 1.2550 . 1.3468 | 14384 | 15300 | 1.6215 | 1.7129 | 1.8043

90 0.8929 | 0.9858 | 1.0784 | 11709 | 42633 | 1.3555 | 14477 | 15398 | 1.6317 | 1.7236 | 1.8155

100 0.8984 | 09916 | 1.0847 | 11775 | 1.2703 | 1.3629+| 1:4555 | 1.5480 | 1.6404 | 1.7327 | 1.8250

110 0.9032 | 09967 | 1.0900 | 1.1832 112763 | 1.3693 | 1.4622 | 15550 | 1.6478 | 1.7405 | 1.8331

120 09073 | 1.0011 | 1.0947 | 1.1882 | 12816 | 1.3749 | 14681 | 15612 | 1.6543 | 1.7473 | 1.8402

130 0.9109 | 1.0050 | 1.0988 | 1.1926 | 1.2862 | 1.3798 | 1.4732 | 1.5666 | 1.6600 | 1.7533 | 1.8465

140 09142 | 10084 | 11025 | 1.1965 | 1.2904 | 1.3842 | 14779 | 15715 | 16651 | 1.7586 | 1.8521

150 09171 | 1.0115 | 1.1058 | 1.2000 | 1.2941 | 1.3881 | 1.4820 | 1.5759 | 1.6696 | 1.7634 | 1.8571

160 09197 | 1.0143 | 11088 | 1.2032 | 1.2975 | 1.3916 | 1.4857 | 15798 | 1.6738 | 1.7677 | 1.8616

170 09221 | 10169 | 11115 | 1.2061 | 1.3005 | 1.3949 | 1.4892 | 15834 | 16776 | 1.7717 | 1.8658

180 09243 | 1.0192 | 11140 | 1.2087 | 13033 | 1.3978 | 14923 | 15867 | 1.6810 | 1.7753 | 1.8696

190 09263 | 10214 | 11163 | 1.2112 | 1.3059 | 14006 | 1.4951 | 1.5897 | 1.6842 | 1.7786 | 1.8730

200 09282 | 1.0234 | 11184 | 1.2134 | 13083 | 1.4031 | 14978 | 15925 | 1.6871 | 1.7817 | 1.8762

37



Table 8. The precision R for the most conservative 95% lower confidence bounds CJ-° of
Cl, for Cpc=1(0.1)2, n=10(10)200.
R
n
10 11 12 13 14 15 16 17 18 19 20

10 | 05934 | 05098 | 06048 | 0.6083 | 06119 | 06145 | 06166 | 06183 | 06198 | 0.6211 | 0.6221
20 | 07125 | 07171 | 07206 | 07234 | 07256 | 0.7274 | 0.7289 | 0.7301 | 0.7312 | 0.7321 | 0.7328
30 | 07652 | 07690 | 07718 | 07742 | 07759 | 0.7774 | 0.7786 | 0.7796 | 0.7805 | 0.7812 | 0.7819
40 | 07967 | 07999 | 08024 | 0.8044 | 0.8059 | 0.8072 | 0.8083 | 0.8092 | 0.8099 | 08105 | 0.8111
50 | 08182 | 08211 | 08233 | 08250 | 0.8264 | 0.8276 | 0.8285 | 0.8293 | 0.8299 | 0.8305 | 0.8310
60 | 08340 | 08366 | 08387 | 08403 | 0.8416 | 0.8426 | 0.8434 | 0.8442 | 0.8448 | 0.8453 | 0.8458
70 | 08463 | 08487 | 08507 | 08522 |, 08583 | 0:8543 | 0.8551 | 0.8558 | 0.8563 | 0.8568 | 0.8572
80 | 08562 | 0.8585 | 08603 | 08617 | 0.8628 | 0.8637 |*0.8644 | 0.8651 | 0.8656 | 0.8660 | 0.8664
90 | 08645 | 08666 | 08683 |+0.8696 | 08708 | 08715 | 0.8722 | 0.8728 | 0.8733 | 0.8737 | 08741
100 | 08714 | 08735 | 0.8750 | 0.8763 | 08773 | 0.8781 | 08783 | 0.8793 | 08798 | 08802 | 0.8805
110 | 08774 | 08794 | 0.8808-| 0.8820 | 0.8830. 0:8837 | 0.8844 | 0.8849 | 0.8854 | 0.8857 | 0.8861
120 | 08826 | 0.8845 | 0.8859+| 0.8871 | 0.8880 | 0.8887 | 0.8893 | 0.8898 | 0.8902 | 0.8906 | 0.8909
130 | 08872 | 0.88%0 | 0.8904 | 0:8915 | 08924 | 08931 | 08986 | 0.8941 | 0.8946 | 08949 | 0.8952
140 | 08913 | 08931 | 0.8944 | 08955 | 0.8963 | 0.8969| 0:8975 | 0.8980 | 0.8984 | 0.8987 | 0.8990
150 | 08950 | 0.8966 | 0.8980 | 0.8990 | 0:8998~| 09005 | 0.9010 | 0.9015 | 0.9018 | 09022 | 0.9025
160 | 08983 | 09000 | 0.9013 | 0.9022 | 0.9030 | 0.9036 | 0.9041 | 0.9046 | 0.9049 | 09053 | 0.9056
170 | 09014 | 09020 | 0.9042 | 0.9051 | 0.9059 | 0.9065 | 0.9070 | 0.9074 | 0.9078 | 0.9081 | 09084
180 | 09042 | 09057 | 0.9068 | 0.9078 | 0.9085 | 0.9091 | 0.9096 | 0.9101 | 09104 | 09107 | 0.9110
190 | 09067 | 0.9082 | 0.9093 | 0.9102 | 09110 | 09115 | 09121 | 09124 | 09128 | 09131 | 09133
200 | 09091 | 09105 | 09117 | 09125 | 09132 | 09138 | 09143 | 09146 | 09150 | 09153 | 09155
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Table 9. Estimates of E(CA:LK) and their standard errors (in parentheses) for some cases of

Cly =1.0and variousn.

Cpkl 1.0683 | 1.0683 | 1.0683 | 1.0683 | 1.0683 | 1.0683 | 1.0683 | 1.0683 | 1.0683 | 1.0683
Cpk2 1.0683 | 1.0683 | 1.0683 | 1.0683 | 1.0683 | 1.0683 | 1.0683 | 1.0683 | 1.0683 | 1.0683
d,
— 3.2050 | 4.0062 | 35611 | 5.3416 | 3.5611 | 3.5611 | 3.2050 | 3.2050 | 5.3416 | 3.2050
1
d,
- 3.2050 | 4.0062 | 35611 | 5.3416 | 53416 | 4.0062 | 3.5611 | 5.3416 | 4.0062 | 4.0062
(4 —my)
—01 0 0.8012 | 0.3561 | 2.1366.|.,0.3561. [ 0.3561 0 0 2.1366 0
(1 —my)
—02 0 0.8012 | 0.3561 | 21366 | 21366 | 0.8012 ., 0.3561 | 2.1366 | 0.8012 | 0.8012
. ~T . .
n Estimate’of "E(Csic)/and its standard error (in parentheses)
0.9881 | 0.9826 | 0.9815 .| 0.9824 | 0.9819 -0.9819 | 0.9848 | 0.9853 | 0.9823 | 0.9853
30
L1x107%) | 1.2x107%) | (L1x107%) | @ix107%) | @110} 1.1x10™) | (L1x107%) | (11x107%) | (L1x10%) | (1.1x107%)
0.9925 | 0.9889 | 0.9890 | 0.9888 | 0.9872 | 0.9872 | 0.9893 | 0.9893 | 0.9874 | 0.9893
50 (7.3x107°%) | (8.1x107°%) | (81x107°) | (81x107°) | (89x10°) | (89x107°) | (85x107°) | (85x107°) | (8.9x10°) | (85x107°)
0.9948 | 0.9926 | 0.9926 | 0.9926 | 0.9926 | 0.9927 | 0.9938 | 0.9938 | 0.9927 | 0.9937
100
(57x107°) | (63x107°) | (62x10°) | (6.2x107°) | (6.2x107°) | (62x107°) | (6.0x107°) | (6.0x10°) | (6.2x107°) | (6.0x10°°)
0.9988 | 0.9983 | 0.9983 | 0.9983 | 0.9983 | 0.9983 | 0.9986 | 0.9985 | 0.9983 | 0.9986
500 (25x107°%) | (2.8x107°) | (28x107°) | (2.8x107°) | (28x107°) | (28x10°%) | (27x107°%) | (27x10°) | (28x107°) | (27x107%)
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Table 10. Estimates of

Ch=1.33and various .

E((E;k) and their standard errors (in parentheses) for some cases of

C pkl 13838 | 1.3838 | 1.3838 | 1.3838 | 1.3838 | 1.3838 | 1.3838 | 1.3838 | 1.3838 | 1.3838
C pk2 1.3838 | 1.3838 | 1.3838 | 1.3838 | 1.3838 | 1.3838 | 1.3838 | 1.3838 | 1.3838 | 1.3838
d
;l 41515 | 4.7445 | 51893 | 55353 | 6.6423 | 8.3029 | 4.7445 | 4.7445 | 4.7445 | 4.7445
1
d,
O_— 41515 | 4.7445 | 5.1893 | 55353 | :6:6423 | 8.3029 | 5.1893 | 55353 | 6.6423 | 8.3029
2
(tn—my)
—01 0 0.5931 | 1.0379 | 1.38387|124909 || 4.1515 | 0.5931 | 05931 | 0.5931 | 0.5931
(p—my)
—O_z 0 0.5931 | 10379 | 1.3838 | 24909 | 4.1515 | 1.0379 | 1.3838 | 2.4909 | 4.1515
; ~T [ .
n Estimate of . E(C s )and its standard error (in parentheses)
1.2989 | 1.2945 | 1.2944%( 12943 | 1.2945+| 12944 | 1.2944 | 1.2945 | 1.2943 | 1.2945
30 (14x107%) | 14x107%) | @4x107%) | L4x10%) 1| [(14x107%) | (1.4x10%) | (14x10™%) | (14x10%) | 14x107%) | (@4x107%)
1.3069 | 1.3034 | 1.3033 | 1.3035 | 1.3032 | 1.3034 | 1.3034 | 1.3032 | 1.3034 | 1.3034
50 L1x10%) | @L1x107%) | (L1x107%) | @1x107%) | (L1x107%) | (L1x10™%) | @1x107%) | (L1x10™%) | @1x10%) | (1.1x107%)
13159 | 13134 | 1.3134 | 1.3134 | 1.3135 | 1.3133 | 1.3134 | 1.3134 | 1.3135 | 1.3133
1
00 (7.3x107°%) | (7.8x107°) | (7.8x107°) | (7.8x10°°) | (7.8x107°%) | (7.8x107°) | (7.8x107°%) | (7.8x107°) | (7.8x107°) | (7.8x107)
1.3263 | 1.3256 | 1.3257 | 1.3257 | 1.3257 | 1.3257 | 1.3257 | 1.3256 | 1.3257 | 1.3256
500 (33x10°) | (34x107°) | (34x107%) | (34x107°%) | (B4x10°) | (34x107°) | (34x10°) | (34x107°) | (34x107°) | (3.4x10%)




. AT . :
Table 11. Estimates of E(C x«) and their standard errors (in parentheses) for some cases of
C; =1.5and variousn.

Cpkl 15484 | 1.5484 | 15484 | 15484 | 15484 | 15484 | 15484 | 15484 | 15484 | 1.5484
Cpkz 15484 | 1.5484 | 15484 | 15484 | 15484 | 1.5484 | 15484 | 15484 | 1.5484 | 1.5484

d,
; 46452 | 51613 | 58065 | 6.6360 | 7.7420 | 5.1613 | 5.8065 | 6.6360 | 7.7420 | 4.6452

1

d,
0— 46452 | 51613 | 5.8065 | 6.6360 i 17:7420 | 5.8065 | 6.6360 | 7.7420 | 5.1613 | 7.7420

2

(1 —my)
o 0 0.5161 | 1.1613 | 1.9908 | 7.7420 | 0.5161 | 1.1613 | 1.9908 | 3.0968 0
(4 —mp)
—02 0 05161 | 11613 | 1.9908 | 7.7420 | 1.1613 | 1.9908 | 3.0968 | 0.5161 | 3.0968
1 ~T . .
n Estimate of . E(Cpk)and itsstandard error (in parentheses)

14103 | 1.4545 | 145427 | 14547 | 1.45477| 14545 | 14543 | 1.4543 | 1.4543 | 1.4566

30
(15x107%) | (1.6x107%) | @.6x107%) | (L6x10™)"| f(16x107%) | (1.6x10%) | (1.6x10™%) | @.6x107%) | (1.6x107%) | (1.6x10™%)
14305 | 1.4652 | 1.4654 | 1.4655 | 14652 | 1.4653 | 1.4654 | 1.4653 | 1.4655 | 1.4671

50
(1.2x107%) | (1.2x107%) | @.2x107%) | @2x107%) | (L2x107%) | (1.2x10%) | (1.2x10%) | @.2x107%) | @2x107%) | (@.2x10™%)
14526 | 1.4776 | 1.4776 | 14778 | 14778 | 14777 | 14778 | 14778 | 1.4776 | 1.4789

100
(83x10%) | (8.7x107°) | (87x107°%) | (87x107°%) | (87x10°) | (87x10°) | (8.7x10°) | (8.7x107°) | (87x107°) | (8.7x10%)
14822 | 1.4938 | 1.4938 | 1.4939 | 1.4939 | 1.4939 | 1.4939 | 1.4938 | 1.4939 | 1.4942

500
(37x107°) | (38x107°) | (38x107°) | (3.8x107°) | (38x107°) | (3.8x10°) | (38x107°) | (38x10°) | (38x107°) | (3.7x107°)
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~T
Table 12. Estimates of E(C pk) and their standard errors (in parentheses) for some cases of
C, =2.0and variousn.

C Pkl 2.0372 | 20372 | 20372 | 2.0372 | 2.0372 | 20372 | 2.0372 | 2.0372 | 2.0372 | 2.0372
C pk2 2.0372 | 2.0372 | 20372 | 20372 | 2.0372 | 2.0372 | 2.0372 | 20372 | 2.0372 | 2.0372
d,
; 6.9846 | 6.1116 | 6.1116 | 9.7785 | 12.223 | 9.7785 | 6.9846 | 9.7785 | 6.9846 | 6.1116
1
d,
U— 6.9846 | 6.1116 | 6.9846 | 9.7785 | 12.223 | 8.1488 | 9.7785 | 12.223 | 12.223 | 9.7785
2
M 0.8731 0 0 3.6669 | 6.1116 | 3.6669 | 0.8731 | 3.6669 | 0.8731 0
o . : . ! . . .
@ 0.8731 0 0:8731.|. 3.6669 | '6.1116 | 2.0372= 3.6669 | 6.1116 | 6.1116 | 3.6669
2
. AT . .
n Estimate of . .E(Cpi)-and its standard error (in parentheses)
19243 | 1.9281 | 1.926Q0 |[+1.9243 | 1.9242 |:1.9243 | 1.9243 | 1.9249 | 1.9243 | 1.9263
30
(21x107%) | (20x107%) | (20x107%) [* (211074211074 [1(2.1x10%) | (21x107%) | (21x107%) | (21x107%) | (2.0x107%)
1.9407 | 1.9434 | 1.9417 | 19406 | 1.9405 | 1.9407 | 1.9402 | 1.9405 | 1.9402 | 1.9419
50 (16x107%) | (1.6x107%) | (@1.6x10™%) | (1.6x107%) | (L6x107%) | (L6x107*) | (1.6x107%) | (1.6x107%) | (1.6x107%) | (1.6x107%)
19594 | 1.9613 | 1.9603 | 1.9595 | 1.9595 | 1.9592 | 1.9595 | 1.9595 | 1.9594 | 1.9606
100 (L1x10%) | @1x107%) | (L1x10%) | @1x10%) | (L1x107%) | (L1x10™%) | @L1x107%) | (L1x10%) | @.1x10%) | (1.1x107%)
1.9740 | 1.9755 | 1.9747 | 19741 | 1.9741 | 19740 | 1.9741 | 1.9741 | 1.9741 | 1.9747
2
00 (8.0x107°%) | (7.8x107°%) | (7.9x107°%) | (80x10®) | (80x10®) | (80x107°) | (8.0x107°%) | (8.0x107° | (8.0x10°) | (7.9x107%)
1.9869 | 1.9876 | 1.9873 | 1.9869 | 1.9869 | 1.9869 | 1.9869 | 1.9869 | 1.9869 | 1.9873
500 (5.0x107°%) | (4.8x107°) | (5.0x107%) | (5.0x107°%) | (5.0x107°%) | (5.0x107°) | (5.0x10°) | (5.0x107°) | (5.0x107°) | (5.0x10%)
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Table 13. Sample sizes required for a specified margin of sampling error.

cT
p [ @emor 605 | 006 | 007 | 008 | 009 0.1
0.05 413 | 287 | 221 | 162 | 128 | 104
100 | 0025 | 587 | 408 | 300 | 230 | 181 | 147
0.01 826 | 574 | 422 | 323 | 255 | 207
0.05 624 | 434 | 319 | 244 | 193 | 156
133 | 0025 | 886 | 616 | 452 | 346 | 274 | 222
001 | 1248 47867 1|1 .637 | 488 | 38 | 312
0.05 750" | 521 | 383 [#203 | 232 | 188
150 | 0.025%| 1065 | 740 *{ 544, | 416 | 329 | 267
001 | 1501 | 1042 | .766 | 587 | 464 | 376
0.05 903 | |.627 | 461 | (388 | 279 | 226
167 | 0.025%| 1282 |+ 891 | “"e54 | Bo1 | 396 | 321
0.01 1806|1254 922 *| 706 | 558 | 452
0.05 1224 | 850 | 625 | 478 | 378 | 306
200 | 0025 | 1738 | 1207 | 887 | 679 | 537 | 435
0.01 2448 | 1700 | 1249 | 957 | 756 | 612




Table 14. Sample mean, sample standard deviation, specifications of individual
characteristics for the dual-fiber tips, and the estimated capability indices.

Characteristic X S LSL usL C ok
Capillary length (mm) | 6255 | 0.04035 6.00 6.50 2.024
Wedge (°) 7.99 0.0959 7.5 85 1.703




	封面.pdf
	目錄2
	內文628

