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多品質特性製程的製程能力指標 T
pkC 的分布和推論 

研究生：李美諭                  指導教授：洪志真 博士 

                                          彭文理 博士 

 

國立交通大學統計學研究所 

摘要 

    與良率有關的製程能力指標 Cpk 在製造業中已經廣泛的被使用來評量製程之表現。

此方面多數的研究都著重在單一品質特性的製程，然而在實際的應用上，一個製程常常

是具有多個品質特性，而每個特性都有不同的規格。在這一篇論文中，我們研究將 Cpk

推廣為多個獨立的品質特性製程的 Cpk，因此新定義一個指標 T
pkC 。 

    我們證明了 T
pkC  像 Cpk一樣與製程良率的上限跟下限有個一對一對應的關係。我們

也以理論證明的方式找出估計量 
T

pkC  的常態近似分配，透過常態近似分配，統計假設

檢定、信賴區間、信賴下限都可以用來檢驗製程是否是有達到特定的標準。其中信賴下

限在實務上特別重要，因為信賴下限可以用來估計製程的最小能力，與品質保證有很大

的相關性；而精確性 (R) 則是估計量與信賴下限的比值，定義這個值是為了方便工程

師每天量測製程的最小能力。接著透過資料模擬的方式，檢驗常態近似分配逼近估計量

真正分配的準確性。 

    最後，我們用一個實際的製程－雙蕊光纖(a dual-fiber tip process) 作為例子，說明

如何將新提出的指標及本文所提出之統計推論方法應用到實際的製程上。 
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Abstract 

    Process capability index Cpk has been popularly used in the manufacturing industry for 

measuring process performance based on yield (proportion of conformities). Most researches 

on Cpk focus on processes with single quality characteristic; but in many real applications, a 

process often has multiple quality characteristics. In this study, we extend Cpk to a new index 

T
pkC  for processes with multiple characteristics. We prove that the inequalities that link Cpk to 

the yield also hold for the new index. A natural estimator of 
T
pkC  is provided and a normal 

approximation to its distribution is derived. With this normal approximation, standard 

processes for statistical inferences such as hypothesis testing and confidence interval are 

developed for testing whether the process is capable and providing an interval estimate on 

T
pkC , respectively. More importantly, we can obtain a confidence lower bound for T

pkC , 

which measures the minimum process capability and is directly linked to quality assurance of 

products. The accuracy of the normal approximation is studied by simulation. Finally, we 

demonstrate how the new index T
pkC  as well as the inferential procedures developed in this 
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study can be used with a real example of a dual-fiber tip process.  
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1. Introduction 

Process capability indices (PCIs) are often used as a quality measure to evaluate the 

performance of a process. Because PCIs establish the relationship between the actual process 

and the manufacturing specifications, they have been widely used in the manufacturing 

industries in recent years. Basic capability indices, Cp, CPU, CPL, Cpk, Cpm, Cpmk , are developed 

for measuring whether a process has the reproduction capability (Kane (1986), Chan et al. 

(1988), Pearn et al. (1992), Kotz and Lovelace (1998), and Kotz and Johnson (2002)). Boyles 

(1991, 1994) proposed another index called Spk. These indices are defined as: 

 = 
6p

USL LSLC
σ
− ,  = 

3PU
USLC µ

σ
−

,  = 
3PL

LSLC µ
σ

−
,  = min ,

3 3pk
USL LSLC µ µ

σ σ
− − 

 
 

,  

2 2
 
6 ( )

pm
USL LSLC

Tσ µ

−
=

+ −
,

2 2 2 2
 = min ,

3 ( ) 3 ( )
pmk

USL LSLC
T T

µ µ

σ µ σ µ

 − − 
 

+ − + −  
, 

11 1 1 = ( ) ( )
3 2 2pk

USL LSLS µ µ
σ σ

− − − Φ Φ + Φ 
 

, 

where USL and LSL are the upper and the lower specification limits, respectively, µ is the 

process mean, σ is the process standard deviation, and T is the target value. While the indices 

Cp, Cpk, Cpm, Cpmk, and Spk are appropriate for statistically in-control normal processes with 

two-sided specification limits, the indices CPU and CPL are designed specifically for processes 

with one-sided specification limit. 

The first known index Cp measures only the distribution spread, which only reflects 

product quality consistency (in terms of process precision) but does not account for the 

location of process mean µ . The index Cpk not only takes into account the process variation 

and the extent of process centering, but also measures actual process performance based on 

yield (i.e., proportion of conformities). If the value of Cpk is given for a process, Boyles (1991) 

gave an upper bound and a lower bound for the process yield (denoted by %Yield) as  

2Φ(3 pkC )－1≤ % Yield ≤ Φ(3 pkC ),                    (1.1) 

where Φ(  ) is the cumulative distribution function (c.d.f.) of the standard normal distribution. 

For instance, if Cpk = 1.33, then the lower bound guarantees that the yield will be no less than 

99.9934%, or equivalently, the process has no more than 66 parts per million (PPM) of 
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non-conformities. The inequalities in (1.1) link the index Cpk with the process yield. The last 

index Spk provides an exact measure of the process yield, because the index is defined as a 

monotonically increasing function of the yield. For example, if Spk = 1.33, then the exact yield 

is 99.9933927%, or equivalently, 66.073 PPM of non-conformities. 

The capability measuring for processes with single characteristic has been investigated 

extensively, but is comparatively neglected for processes involving multiple characteristics. 

However, it is quite common that industrial processes nowadays have more than one quality 

characteristic. Thus, the performance evaluation of multivariate processes has become more 

and more important. 

Each of the multiple characteristics must meet certain specifications. However, the 

assessed quality of a product depends on the combined effects of the multiple characteristics, 

rather than on their individual values. For instance, a process manufacturing dual-fiber tips, a 

component is used to make fiber optic cables, has six quality characteristics, namely, the 

capillary diameter, length, wedge, core diameter, return loss, and polishing direction. These 

characteristics are related through the composition of the fiber tips. Therefore, it is natural to 

consider a multivariate characterization of this process.  

The purpose of this study is to define a multivariate PCI, called T
pkC , for multivariate 

processes, which is a natural extension of the index Cpk for univariate processes; and most 

importantly, the new index still retain the link to the yield as given in the expression (1.1). A 

natural estimator 

T
pkC  for T

pkC  is provided. Since the distribution of 

T
pkC  is 

mathematically intractable, we derive its asymptotic distribution and obtain a normal 

approximation accordingly. For quality assurance, a lower bound of the yield is a valuable 

quality measure. We use this normal approximation to obtain a confidence lower bound of 
T
pkC  from process data. 

The contents of this thesis is divided into seven sections. In Section 2, we emphasize the 

importance of studying multivariate process capability indices and review recent studies on 

the performance evaluation of multivariate processes. In Section 3, we propose a new yield 

index T
pkC  for the overall process and relate it to the corresponding non-conformities in parts 

per million (NCPPM). In Section 4, we derive the asymptotic distribution of a natural 
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estimator 
T
pkC  of T

pkC  and use this result to provide a confidence interval and a lower 

confidence bound of the new index for processes with multiple independent characteristics. 

To investigate how well the approximation is to the actual distribution, we compare the 

normal approximation with the actual distribution of 
T
pkC  by simulation. Moreover, the 

coverage rate and the confidence interval length are computed and the behavior of the lower 

confidence bound is investigated. In Section 5, we compute the most conservative lower 

confidence bound and the precision of the natural estimator for specified sample sizes, and 

investigate the  accuracy of the normal approximation by simulation. A simulation study is 

conducted to investigate the bias of the natural estimator. In Section 6, as an illustrative 

example, we apply the methodology to a set of real data presented in Pearn and Wu (2005b). 

In Section 7, we conclude the thesis with a brief summary. 

2. Capability Measures for Multiple Characteristics 

In recent years, more and more researchers have been devoted to studying multivariate 

capability indices. For example, Chen (1994), Boyles (1996) and others presented  

multivariate capability indices for assessing capability. Wang and Chen (1998-1999) and 

Wang and Du (2000) proposed multivariate equivalents for Cp, Cpk, Cpm, and Cpmk based on 

the principal component analysis, which transforms the original correlated variables into a set 

of uncorrected variables that are linear combinations of the original variables. Moreover, a 

comparison of three recently proposed multivariate methodologies for assessing capability are 

illustrated and discussed in Wang et al. (2000). On the other hand, some researchers modified 

the univariate index for processes with multiple characteristics. For example, Chen and Pearn 

(2003) modified the process capability index Spk to 

( )1

1

1 2 (3 ) 1 1 / 2
3 i

m
T
pk pk

i
S S−

=

   = Φ Φ − +  
   
∏ , 

where Spki is the Spk of the ith characteristic. Later, Pearn and Wu (2005a) proposed the 
following modified one-sided index, which is a generalization of the one-sided index CPU,  

1

1

1= (3 )
3 i

m
T
PU PU

i
C C−

=

  Φ Φ 
  
∏ , 

where CPUi is the CPU of the ith characteristic.  
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Processes with multiple independent characteristics 

When a processes has m ( >1) independent characteristics, Bothe (1992) considered m 

yield measures P1,…,Pm and suggested the overall process yield P to be measured by P = 

min{P1,…,Pm}. We can see that this approach does not reflect the real situation accurately. 

Assuming the process has five characteristics (m = 5) with equal yield measures P1= P2 = P3 

= P4 = P5 = 99.9934%. Using Bothe’s approach, the overall process yield is evaluated as P = 

min{P1,…,Pm}=99.9934% (or 66 PPM of non-conformities). Supposing that the five 

characteristics are mutually independent, then the overall process yield should be calculated 

as P1 × P2 × P3 × P4 × P5 = 99.967% (or 330 PPM of non-conformities), which is significantly 

less than that suggested by Bothe (1992). (See Pearn and Wu (2005b) ). 

In the manufacturing industry, Cpk has been popularly used for measuring process 

performance because it can link to the process yield. In this paper, we define a new 

yield-related process capability index for processes of multiple independent characteristics. 

We consider a normal approximation to the distribution of the natural estimator to find the 

lower confidence bound, which gives us not only a clue on minimum actual performance 

related to the fraction of non-conforming units, but also is useful in decision making on the 

capability test. 

3. A New Process Yield index for Multiple Independent Characteristics 

3.1. The yield-related index T
pkC  

For a process with m quality characteristics, we assume the m characteristics follow 

mutually independent normal distribution, 2( , ),  1,..., .i iN i mµ σ = Denote the two-sided 

specification limits of the ith characteristic by USLi and LSLi, i=1,…,m.   

Given a value of Cpki, by (1.1), the individual yield of the ith characteristic has the following 

bounds 

2 (3 ) 1 % (3 ),  1,..., .                            (3.1)pki i pkiC Yield C i mΦ − ≤ ≤ Φ =  

If we wish to extend the notion of Cpk to a multivariate yield capability index T
pkC , it is 

natural to require T
pkC  satisfying (3.1), that is,  
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2 (3 ) 1 % (3 ),                                                 (3.2)T T
pk pkC Yield CΦ − ≤ ≤ Φ  

where %Yield is the overall process yield of the multivariate process. Since the characteristics 

are mutually independent, by (3.1), ( )
1

2 (3 ) 1
=

Φ −∏
m

pki
i

C
 
is a lower bound of the overall process 

yield. Thus, if we set  

( )
1

2 (3 ) 1 2 (3 ) 1,                                               (3.3)
=

Φ − = Φ −∏
m

T
pki pk

i
C C

    
                    

 

then the first inequality in (3.2) automatically holds. Therefore, by equation (3.3), it is natural 
to propose a new index as defined by  

( )1

1

1 2 (3 ) 1 1 / 2 .                                 (3.4)
3

−

=

  
= Φ Φ − +  

  
∏ i

m
T
pk pk

i
C C

 

It can be shown that the inequality % (3 )≤ Φ T
pkYield C  holds as well. Derivation is 

given in Appendix A. Therefore, the new index defined as (3.4) satisfies (3.2). The new index 
T
pkC  may be viewed as a generalization of the single characteristic yield index Cpk and it 

provides a lower bound of the overall process yield. Therefore, the corresponding upper 

bound (UB) of non-conformities in parts per million, NCPPM, for a well-controlled process 

with multiple independent normal characteristics can be calculated as  

 NCPPM ≤ 610 2[1 (3 )]× −Φ T
pkC .                          (3.5) 

Table 1 and Figure 1 present the corresponding upper bounds of NCPPM for T
pkC = 1.00, 1.25, 

1.33, 1.45, 1.50, 1.60, 1.67, and 2.00. 

4. Estimation of T
pkC   

4.1. The approximate distribution for a natural estimator of T
pkC  

Let 1X , ,Xn be independent and identically distributional (i.i.d.) as a multivariate 

normal process ( ),mN µ Σ , where 1 1X (X , ,X ) ,  ( , , ) ,  and  is the µ µ µ′ ′= = Σ ×  　j j mj m m m  

diagonal matrix with diagonal elements 2 2
1 ,..., .mσ σ  

Since the individually Cpk can be expressed as 

| | ,  1,..., ,
3

i i i
pki

i

d mC i mµ
σ

− −
= =  

where iµ  is the mean of the ith characteristic,   ( ) / 2i i im USL LSL= + is the mid-point of the 

specification interval, and  = ( ) / 2i i id USL LSL−  is the half width of the specification interval.  
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It is common to estimate Cpki by 



| X | ,
3

− −
= ii i

pki
i

d mC
S                              (4.1) 

2 2

1 1

1 1where X  = X  and  S  = (X X ) ,   = 1,..., .
1= =

−
−∑ ∑

n n
i iij i ij

j j
i m

n n                      (4.2) 

                         
 

To estimate the index T
pkC , we consider the following natural estimator  

 ( )1

1

1 = 2 (3 ) 1 1 / 2 ,
3

mT
pk pki

i
C C−

=

   Φ Φ − +  
   
∏                 (4.3) 

where Cpki is the Cpk of the ith characteristic. 

                            
.                            

Theorem 1. 

The exact distribution of 
T
pkC  is analytically extractable; however, it can be shown that 



T
pkC  has an asymptotic normal distribution as stated in the following theorem. The 

asymptotic distribution of 
T
pkC  is  

                   ( ) 2 2
2

1

10 ,  ( )  as ,  (4.4)
9 (3 )φ =

 
 − → + →∞
    

∑
mdT T

pk pk i iT ipk

n C C N a b n
C

   

where ( )
1,

3 = 2 (3 ) 1 (3 ) and  = ,   = 1,..., .
2

m

i pkj pki i i pki
j j i

a C C b a C i mφ
= ≠

 
Φ − 

 
∏  

We give two different proofs in Appendix B and Appendix C, respectively. 

Note that, by equation (4.4), 
T
pkC  is asymptotically unbiased. To see how well the 

normal approximation is, we conduct a simulation study using the free statistical package R as 

follows. Four scenarios are considered in the simulation study, the combinations of two T
pkC  

values (1 or 1.33) and two cases of process mean (  or ,  1, 2i i i im m iµ µ≠ = = ). For each 

scenario, simulate 1,000,000 random samples of size n = 60, 200, 500, 1000 from
2 2

2 1 2 1 2( , , , ,0)N µ µ σ σ , a normal process with two independent characteristics. For each 

scenario, we compute 1,000,000 

T
pkC  by (4.3). Figures 2-9 compare the simulated 

distribution obtained by 1,000,000 
T
pkC s′  to the normal approximation with their probability 

density functions (p.d.f.) and the cumulative distribution functions (c.d.f.). It is clear that as 
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sample size n reaches 1000, the approximate and simulated distributions are very close. In 

fact, even with n = 60, the approximation is already quite reasonable for practical purposes.  

4.2 Statistical inferences based on the normal approximation  
With the asymptotic distribution given in equation (4.4), we now can make statistical 

inferences on T
pkC  based on a set of random samples, including the hypothesis testing, 

confidence interval, and lower confidence bound. 

    To test whether a given process is capable, we consider the following statistical 

hypothesis testing:  

0

1

H :   (the process is not capable)

H :   (the process is capable) 

≤

>

T
pk

T
pk

C c

C c                   (4.5) 

where c is the minimal standard criterion on T
pkC . 

The test can be executed by considering the testing statistic  

                    

 



2 2

1

3 (3 )
,

φ

=

 − 
 =

 + 
 ∑ 

T T
pk pk

m
i i

i

n C c C
T

a b                             (4.6) 

 ( )   

1,

3where  = 2 (3 ) 1 (3 ) and  = ,   = 1,..., .
2

φ
= ≠

 
Φ − 

 
∏ 

m

i pkj pki i i pki
j j i

a C C b a C i m

 

Because we do not know the values of 1 2 1 2,  ,  , and ,a a b b we estimate them from data. 

The null hypothesis Ho is rejected at α level if T > Zα, where Zα is the upper 100α% percentile 

of the standard normal distribution. 

An approximate 100(1- α)% confidence interval for T
pkC  can be easily obtained as 





 





1/2 1/2
2 2 2 2

2 21 1

1 1( ) , + ( )             (4.7)
9 [ (3 )] 9 [ (3 )]

α α
φ φ= =

        − + +           
∑ ∑ 

m mT T
pk i i pk i iT T

i ipk pk

C Z a b C Z a b
n C n C

 

and an approximate 100(1- α)% lower confidence bound for T
pkC  can be expressed as 
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





1/2
2 2

2 1

1 ( ) ,                  (4.8)
9 [ (3 )]

α
φ =

 
 ≈ − +
  

∑ 

mTT LB
pk i ipk T

ipk

C C Z a b
n C

　　　

where  and  are as before.

i ia b  

To evaluate the proposed confidence interval and lower bound of T
pkC , we conduct a 

simulation study. We use equation (4.7) to obtain confidence interval and confidence interval 

length. Consider the case of =1.33T
pkC  with 90% confidence level under a process of two 

independent characteristics. Note that there are infinite number of the combinations of the 

process distribution and the manufacturing specifications that would correspond to the same 

value of =1.33T
pkC . We consider six scenarios as given in Table 3 in the study.  

For each scenario, generate N=1,000,000 random samples of size n =30, 50, 100, 500, 

1000 from 2 2
2 1 2 1 2( ,  , ,  ,  0 )N u u σ σ . For each case, we compute 1,000,000 

T
pkC , the 

corresponding 1,000,000 confidence intervals and T LB
pkC s′ . Check if the true index T

pkC  is 

contained in the interval and if it is greater than T LB
pkC .   

Tables 2-5 present the coverage rate and the average length of 1,000,000 confidence 

intervals. We can find that the coverage rate approaches 0.9 (under α = 0.1) and the 

confidence interval length is decreasing to zero as the sample size n increases.  

For the univariate case, Pearn and Shu (2003) examined the behavior of the lower 

confidence bound of Cpk against ξ , where ( ) = /ξ µ σ−m . Since for a process with two 

characteristics, T LB
pkC  involves 1ξ  and 2ξ . However, there are too many Cpki’s 

corresponding to one iξ . Therefore, instead, we explore the relationship between T LB
pkC and 

(Cpk1, Cpk2). To do this, instead of performing simulation experiments that require extensive 

calculations, we calculate and plot  

              

1/2
2 2

2
1

1 ( )                            (4.9)
9 [ (3 )]α φ =

 
≈ − + 

  
∑
m

T LB T
pk pk i iT

ipk
C C Z a b

n C  

versus Cpk1 and Cpk2 to examine the relationship between T LB
pkC  and (Cpk1, Cpk2 ).  

Based on T LB
pkC  expressed in equation (4.9), given sample size n = 10, 30, 50, 70, 90, 

Figure 10 displays the curves of T LB
pkC  versus various combinations of Cpk1 and Cpk2  with 

T
pkC  = 1.0, 1.33, 1.5, 1.67. Figure 11 plots curves of T LB

pkC  versus Cpk1 given sample size n = 
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10, 30, 50, 70, 90 for T
pkC  = 1.0, 1.33, 1.5, 1.67. 

We examine the results of calculation and find that 

 T LB
pkC  reaches its absolute maximum when Cpk1 = Cpk2.  

 The minimum of T LB
pkC  occurs when one of pkC s′  approaches infinity, that is, 

when T
pkC  equals one of pkC s′ . This minimum is the most conservative lower 

confidence bound for a given T
pkC .  

From Figure 10 and Figure 11, we can also observe the above properties. 

5. Accuracy of the Normal Approximation 

For a given T
pkC , by setting one Cpk at T

pkC  and the other  at pkC ∞ , we can use 

equation (4.9) to compute the most conservative T LB
pkC , which represents a measure of the 

minimum manufacturing capability of the process for the case when the process has two 

independent characteristics. For engineer convenience, if a process with two independent 

characteristics has  1.33
T
pkC = and sample size n =100, then we have 95% confidence to say 

that the true T
pkC  of this process is no less than 1.1392. Similarly, we can compute the largest 

possible T LB
pkC  by setting Cpk1 = Cpk2. The largest possible value of T LB

pkC  may not have 

much of the practical value, but is of interest mathematically. 

Tables 6 and 7 tabulate both the most conservative and largest possible T LB
pkC  value for 

 1(0.1)2
T
pkC = , n=10(10)200 and confidence level γ = 95%.  

5.1. Accuracy analysis of T LB
pkC  

Sample size determination is important, as it directly relates to the cost of the data 

collection. By equation (4.8), we have  









2 2
2

2 1
2

( )
 ( / ) 1 / .                     (4.10)

9[ (3 )]
α

φ

−
=

 
+ 

  ≈ −    
 
 

∑ 

m
i i

T TT LBi
pk pkpkT

pk

a b
n Z C C C

C

 

 ( )   

1,

3where  = 2 (3 ) 1 (3 ),   = ,   = 1,..., .
2

m

i pkj pki i i pki
j j i

a C C b a C i mφ
= ≠

 
Φ − 

 
∏   
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To evaluate the precision of the lower confidence bound L
pmC for the index Cpm given 

earlier, Pearn and Shu (2003) defined a precision measure /= L
pmpmR C C , where  pmC  is a 

natural estimator of Cpm. Similarly, for T LB
pkC  we can define 

 / 
TT LB
pkpkR C C= . In Table 8, we 

tabulate the value R of the most conservative T LB
pkC  for processes with two independent 

characteristics. These values can be useful for engineers and practitioners, because it would be 

convenient to assess the minimum capability of the process for engineers as a everyday work.  

For example, if one requires a 95% lower confidence bound for T
pkC  to be of 85% 

precision of 
T
pkC  (i.e., 

 / 0.85
TT LB
pkpkC C = ) for  1.5

T
pkC = , then the most conservative sample 

size required for achieving this goal is 66, which can be computed by  

  

 









2 2 2
2

2 1
2

( )
 ( / ) 1 / .

9[ (3 )]
α

φ

−
=

 
+ 

  ≈ −    
 
 

∑ i i
T TT LBi
pk pkpkT

pk

a b
n Z C C C

C

 

    

1 2 1 2
3where (3 ),  0,   = (3 ) ,  and  = 0.
2

φ φ= =  

T T T
pk pk pka C a b C C b  

On the other hand, if one obtains a  1.5=
T
pkC from a set of data of size 66, then the most 

conservative 95% lower bound can be conveniently obtained by multiplying 
T
pkC  by the 

corresponding R (=0.85), i.e., the most conservative lower bound is 1.5 0.85 1.275× = . One 

then can conclude that the true value of the process capability T
pkC  is no less than 1.275 with 

95% confidence. 

5.2. Bias of the natural estimator of T
pkC  

In order to explore the bias of the natural estimator by simulation, we simulate a total of 

N=1,000,000 replications for each sample size of n = 30, 50, 100, 500, 1000. Take the average 

of N 
T
pkC s′  to estimate  ( )

T
pkE C  and compare it with the true T

pkC . The simulation results 

presented in Tables 9-12 indicate that the bias is negative for the cases under study. That is, 

we underestimate T
pkC  when the yields of the two independent characteristics are the same 

(i.e., Cpk1 = Cpk2). On the other hand, when one %Yield almost reaches 100% (i.e., when

1 2  = =T T
pk pk pk pkC C o rC C ), the problem is basically reduced to the univariate case, a situation 

previously studied by Kotz et al. (1993). They showed that the natural estimator  pkC  of Cpk 
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is biased and the bias is positive when mµ ≠  (µ is the process mean and m is the midpoint of 

the specifications). When mµ = , the bias is positive for sample size 10≤ , but is negative for 

larger values of sample size. See Kotz et al. (1993) for more details. 

5.3. Sample size for required margin of error 

From (4.8), the margin of sampling error is approximately note that  





1/22 2

1

2

( )
.

9 [ (3 )]

m
i i

i
T
pk

a b
Z

n C
α

φ
=

 +∑ 
 
 
 



 

 ( )   

1,

3where  = 2 (3 ) 1 (3 ),   = ,   = 1,..., .
2

φ
= ≠

 
Φ − 

 
∏ 

m

i pkj pki i i pki
j j i

a C C b a C i m  

Table 13 gives the most conservative sample sizes required for the estimator of T
pkC to be 

within a sample error less than 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1 

for various T
pkC  and significance level α. The most conservative case is used in calculation. 

(i.e., 1 2  = =T T
pk pk pk pkC C o rC C ).  

For example, for 1.33T
pkC =  with α = 0.05 , a sample size ≥ 193 ensures that the 

sampling error of 
T
pkC  is no greater than 0.09. 

6. An application example 

For illustration, we consider a real example presented in Pearn and Wu (2005b), which is 

taken from an optical communication manufacturing factory located in Science-based 

Industrial Park in Taiwan. The example involves a process manufacturing dual-fiber tips, a 

component used in making fiber optic cables.  

Figure 12 depicts a sample of the dual-fiber tips. Sixty dual-fiber tips were taken from a 

stable (i.e., in statistical control) process in the factory, and two product quality characteristics 

were measured, (i) Capillary length and (ii) Wedge. For a particular model of dual-fiber tips, 

the specifications of characteristics are listed in Table 14. According to Pearn and Wu (2005b), 

it is reasonable to assume that these 60 data were from a normal distribution with two 

independent quality characteristics. The sample mean, standard deviation, and specifications 

along with the individual  pkC  of each characteristic are summarized in Table 14.  
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If the quality requirement was predefined as 1.33T
pkC ≥ , then we can make some 

statistical inferences on T
pkC  by using hypothesis testing and interval estimation. For testing 

the null hypothesis Ho as given in (4.5) with c =1.33, the testing statistic T given in (4.6) is 

2.321008 > Z0.05 = 1.645. Thus, Ho is rejected at α = 0.05. We conclude that the process meets 

the capability requirement of 1.33T
pkC >  with 95% confidence. 

Moreover,   = 1.702917
T
pkC  and 1.438560T LB

pkC = by (4.3) and (4.8), respectively. Thus, 

we have 95% confidence to say T
pkC  is no less than 1.43856, or equivalently, there are no 

more than 16 PPM of non-conformities as given in (3.5). 

7. Conclusions 

Process yield is the most common criterion used in the manufacturing industry for 

measuring process performance. The widely used capability index Cpk is a yield-related index, 

in the sense that it can provide a lower bound for the yield of a process with single 

characteristic. But in many real applications, the process has multiple characteristics. 

In this paper, we extend Cpk to an index T
pkC  to assess the yield of processes with 

multiple characteristics. It is shown that 2 (3 ) 1 % (3 )Φ − ≤ ≤ ΦT T
pk pkC Yield C , a property holds 

for the univariate Cpk. Based on the new index T
pkC , the practitioners can make reliable 

decisions for capability testing and monitoring the overall performance of all process 

characteristics. 

Unfortunately, the distributional properties of the natural estimator 

T
pkC  are 

mathematically intractable. We derive a normal approximation to the distribution of the 
T
pkC  

by the first-order Taylor expansion and investigate the accuracy and precision of 
T
pkC  by 

simulation.  

Applying the asymptotic distribution of 
T
pkC , hypothesis testing, confidence interval, 

and a confidence lower bound T LB
pkC  are constructed. We investigate the behavior of T LB

pkC  
versus Cpk1 and Cpk2  for given ′T

pkC s  and find that the most conservative lower bound can 

be obtained by setting one of pkC s′  at the given T
pkC  and the other at infinity. We also 

provide tables for engineers or practitioners to use in assessing their processes. On the other 

hand, it is also found that T LB
pkC  reaches its absolute maximum when Cpk1 = Cpk2. 
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As an illustrative example, an application example on dual-fiber tips taken from Pearn 

and Wu (2005b) is employed. The practical implementation of the statistical theory for 

manufacturing capability assessment bridges the gap between the theoretical development and 

the in-plant applications. 

For the future research, we could consider the following topics: 

 Use the second-order expansion of Taylor series to approximate the distribution of 


T
pkC  to get a more accurate approximation. 

 Generalize T
pkC  for processes with asymmetric tolerances. 

 Explore the similar research to T
pkC  for Cp, CPU, CPL, Cpk, Cpm, Cpmk. 

 Develop appropriate process capability measurement based on T
pkC  when gauge 

measurement errors exist. 

Followings are some other potential research topics: 

 develop a powerful test for on-sided or two-sided supplier selection problem. 

 develop a decision making method for product acceptance. 

 develop tool replacement strategies for production with a low fraction of defectives. 
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Appendix A 

Proposition 2 (3 ) 1 % (3 )Φ − ≤ ≤ ΦT T
pk pkC Yield C                                  (A1)  

Lemma 

( )
1 1

If 0 1,  then 2 1 2 1  
m m

i i i
i i

P P P
= =

≤ ≤ − ≤ −∏ ∏                              (A2) 

Proof: The proof is by induction. We start with m = 2. To show ( )( )1 2 1 22 1 2 1 2 1P P P P− ≤ − − ,                                    
(A3) 

it suffices to show 1 2 1 2 1 0,P P P P− − + ≥ which holds since 1 20 1 and 0 1≤ ≤ ≤ ≤P P  Thus (A2) 

holds for m=2.  

Assume (A2) holds for m = k, i.e.,    

( )
1 1

2 1 2 1 .
k k

i i
i i

P P
= =

− ≤ −∏ ∏
                              

 (A4) 

For m = k+1, (A2) also holds because  

( ) ( ) ( ) ( )
1 1

1 1 1
1 1 1 1 1

2 1 2 1 2 1 2 1 2 1 2 1 2 1,
+ +

+ + +
= = = = =

   
− = − − ≥ − − ≥ ⋅ − = −   

   
∏ ∏ ∏ ∏ ∏
k k k k k

i i k i k i k i
i i i i i

P P P P P P P P

 

where the first inequality holds by (A4) and the second inequality holds by (A3).  

This completes the induction. 

To prove (A1), it is easy to obtain 2 (3 ) 1 %T
pkC YieldΦ − ≤  by the definition of T

pkC .  

Since 2 (3 ) 1 % (3 ),  1,..., ,pki i pkiC Yield C i mΦ − ≤ ≤ Φ =  the overall yield has an upper 

bound  

1 1
% % (3 ).

m m

i pki
i i

Yield Yield C
= =

 
= ≤ Φ 
 
∏ ∏  

Then it suffices to show that 
1

(3 ) (3 ).
=

Φ ≤ Φ∏
m

T
pki pk

i
C C  

By equation (3.3) and Lemma, we have  

( )
1 1

2 (3 ) 1 2 (3 ) 1 2 (3 ) 1,
= =

Φ − = Φ − ≥ Φ −∏ ∏
m m

T
pk pki pki

i i
C C C  

which implies 
1

(3 ) (3 ).
=

Φ ≥ Φ∏
m

T
pk pki

i
C C QED. 
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Appendix B 

A proof of Theorem 1. 

Theorem 1. The asymptotic distribution of 
T
pkC  is  

               ( ) 2 2
2

1

10 ,  ( )  as             (4.4)
9 (3 )φ =

 
 − → + →∞
    

∑
mdT T

pk pk i iT ipk

n C C N a b n
C

   

where ( )
1,

3 = 2 (3 ) 1 (3 ) and  = ,   = 1,..., .
2

φ
= ≠

 
Φ − 

 
∏

m

i pkj pki i i pki
j j i

a C C b a C i m  

Proof. By definition, we have 

 

| | ,  1,.., ,
3
µ
σ

− −
= =i i i

pki
i

d mC i m  

where iµ  is the mean of the ith characteristic,   ( ) / 2i i im USL LSL= + is the mid-point of the 

specification interval, and  = ( ) / 2i i id USL LSL−  is the half width of the specification interval,  
for i=1,…,m. By definition, 

         ( )1

1

1 2 (3 ) 1 1 / 2 .                                (B1)
3

−

=

   = Φ Φ − +  
   
∏ i

m
T
pk pk

i
C C  

Since Cpki is a function of 2 and i iµ σ , by (B1), T
pkC is a function of 2 2

1 1,..., , ,..., .m mµ µ σ σ  

Denote this function by f. Then     

2 2
11( ,..., ; ,..., )

T
pk mmC f µ µ σ σ= , where  Xiiµ =  and 



2 2 2

1
(X X ) / 1 ,    1,..., .σ

=
= = − − =∑

n
ii i ik

k
S n i m  

Employing the first-order expansion of m-variates Taylor series, we can obtain 



















2 2
2 2 1 1

1 1 11
1

2 2 2 2 2 21 1 1 1
1 12

1
2 2 2 21 1

2

( ,..., ; ,..., ) ( ,..., ; ,..., ) ( ) ...

( ,..., ; ,..., ) ( ,..., ; ,..., )( ) ( ) ...

( ,..., ; ,..., ) ( ).

µ µ σ σµ µ σ σ µ µ

µ µ σ σ µ µ σ σµ µ σ σ
σ

µ µ σ σ σ σ
σ

∂
≈ + − +

∂

∂ ∂
+ − + − +

∂ ∂

∂
+ −

∂

T m m
pk m m

m m m m
mm

m

m m
m m

m

fC f
u

f f
u

f

　　　　

　　　　

 

Differentiating with respect to  

2
 and ,  1,...,ii i mµ σ =  gives 
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

( )

( )

2 2 1,1 1

1,

2
1 1

1 1 2 (3 ) 1  (3 ) ,  if 
3 (3 )( ,..., , ,..., )   

1 1  2 (3 ) 1  (3 ) ,  if 
3 (3 )

( ,..., , ,

φ µ
σφµ µ σ σ

φ µ
σφ

µ µ σ

= ≠

= ≠

     Φ − ≥  
−    ∂   = 

∂     Φ − <  
     

∂

∏

∏

m

pkj pki i iT
i j j ipkm m

mi

pkj pki i iT
i j j ipk

m

C C m
Cf

u
C C m

C

f


( )
2

2 2
1,

3..., ) 1  2 (3 ) 1 (3 ) ,  
3 (3 ) 2

for 1,.., .

σ φ
φ σσ = ≠

  −  = Φ −  
  ∂   

=

∏
m

pkim
pkj pkiT

j j ipk ii

C
C C

C

i m
 

Denote   

 ( ) ( )
1,

1 2 (3 ) 1 (3 ) Xφ µ
σ = ≠

 
= Φ − − 

  
∏

m
ii pki pki i

i j j i
W C C

 
and  

( ) ( )2 2
2

1,

3
2 (3 ) 1 (3 ) - ,  for 1,..., .

2
φ σ

σ = ≠

 
= Φ − = 

  
∏

m
pki

i pkj pki i i
j j ii

C
G C C S i m

Then 
 ( )

1

1  .
3 (3 )

mT T
pk pk i iT

ipk
C C W G

Cφ =

−
≈ + +∑         

Let ( )Xii iZ n µ= −  and ( )2 2
i i iY n S σ= − , i = 1,…,m. Then Zi and Yi are independent. 

Because the first two moments of Xi  and 2
iS exist, by the Central Limit Theorem,  and i iZ Y

converge to ( )20 , iN σ  and ( )40 , 2 ,iN σ  respectively, 1,..., .i m=   

So we obtain ( ) =
T T
pk pkE C C  and 

 
 ( ) ( )2 2

2
1 1

1 1( )  ,
3 (3 ) 9 (3 )φ φ= =

 − ≈ + + ≈ + 
     

∑ ∑
m mT T

pk pk i i i iT Ti ipk pk

Var C Var C W G a b
C n C

( )
1,

3
where = 2 (3 ) 1 (3 ) and = ,  1,..., .  

2
φ

= ≠

 
Φ − = 

  
∏

m
pki

i pkj pki i i
j j i

C
a C C b a i m
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Appendix C 

Another proof of Theorem 1. 

Since 2 2
1 1( ,..., ; ,..., )T

pk m mC f µ µ σ σ=  and     

2 2
11( ,..., ; ,..., ),

T
pk mmC f µ µ σ σ=  where  Xiiµ =  

and 
2 2 2

1
 (X X ) ,    1,..., .

1
σ

=
= = − =

− ∑
n

ii i ik
k

S i m
n
１

 
Because  iµ  and 

2
iσ are MLE of iµ  

and 2 ,iσ  respectively, 
T
pkC  is the MLE of 2 2

1 1( ,..., ; ,..., )µ µ σ σ=T
pk m mC f .  

Let 2 2
1 1( ,..., , ,..., ).θ µ µ σ σ= m m  The Fisher information is evaluated as  

 

2
1

2

4
1

4

 0...                    0
     ...      

0...     0 0 ...       0  
( ) .

0 ...        0  2 0... 0
         ...                   

0  ...                   0  2

σ

σ
θ

σ

σ

−

−

× −

−
×

 
 
 
 
 =
 
 
 
 
  

m
m m

m m m

I  



( )

( )

2 2 1,1 1

1,

2
1 1

1 1 2 (3 ) 1  (3 ) ,  if 
3 (3 )( ,..., , ,..., )   

1 1  2 (3 ) 1  (3 ) ,  if 
3 (3 )

( ,..., , ,

φ µ
σφµ µ σ σ

φ µ
σφ

µ µ σ

= ≠

= ≠

     Φ − ≥  
−    ∂   = 

∂     Φ − <  
     

∂

∏

∏

m

pkj pki i iT
i j j ipkm m

mi

pkj pki i iT
i j j ipk

m

C C m
Cf

u
C C m

C

f


( )
2

2 2
1,

3..., ) 1  2 (3 ) 1 (3 ) ,  
3 (3 ) 2

for 1,.., .

σ φ
φ σσ = ≠

  −  = Φ −  
  ∂   

=

∏
m

pkim
pkj pkiT

j j ipk ii

C
C C

C

i m

 

By Theorem 5.3.5. in Bickel, and Doksum (2007), we can obtain the desired result:  

  ( )2 2
2

1

10, ,  as 
9[ (3 )]

mdT T
pk pk i iT

ipk
n C C N a b n

Cφ =

    − → + →∞      
∑ ,  

( )
1,

3
where = 2 (3 ) 1 (3 ) and = ,  1,..., .

2

m
pki

i pkj pki i i
j j i

C
a C C b a i mφ

= ≠

 
Φ − = 

  
∏  Q.E.D. 
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T
pkC  

Figure 1. Upper bounds on NCPPM values of T
pkC . 
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Figure 2. Comparison of the probability density function (dash line) of 
T
pkC  obtained by 

simulation and its normal approximation (solid line) for n =60, 200, 500, 1000 ( 1.0=T
pkC   

and 1 1 2 2 and m mµ µ≠ ≠ ).  
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Figure 3. Comparison of the distribution function (dash line) of 
T
pkC  obtained by simulation 

and its normal approximation (solid line) for n =50, 200, 500, 1000 ( 1.0=T
pkC  and 

1 1 2 2 and m mµ µ≠ ≠ ). 
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Figure 4. Comparison of the probability density function (dash line) of 
T
pkC  obtained by 

simulation and its normal approximation (solid line) for n =60, 200, 500, 1000 ( 1.0=T
pkC  and 

1 1 2 2 =  and = µ µm m ). 
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Figure 5. Comparison of the distribution function (dash line) of 
T
pkC  obtained by simulation 

and its normal approximation (solid line) for n =50, 200, 500, 1000 ( 1.0=T
pkC  and 

1 1 2 2=  and = µ µm m ). 
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Figure 6. Comparison of the probability density function (dash line) of 
T
pkC  obtained by 

simulation and its normal approximation (solid line) for n =60, 200, 500, 1000 (  = 1.33T
pkC  

and 1 1 2 2 and µ µ≠ ≠m m ). 
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Figure 7. Comparison of the distribution function (dash line) of 
T
pkC  obtained by simulation 

and its normal approximation (solid line) for n =50, 200, 500, 1000 ( 1.33=T
pkC  and 

1 1 2 2 and µ µ≠ ≠m m ). 
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Figure 8. Comparison of the probability density function (dash line) of 
T
pkC  obtained by 

simulation and its normal approximation (solid line) for n =60, 200, 500, 1000 ( 1.33=T
pkC  

and 1 1 2 2 and µ µ= =m m ). 
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Figure 9. Comparison of the distribution function (dash line) of 
T
pkC  obtained by simulation 

and its normal approximation (solid line) for n =50, 200, 500, 1000 (  = 1.33T
pkC  and 

1 1 2 2 and µ µ= =m m ). 
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(a) 11.0 2.0pkC≤ ≤ , 21.0 2.0pkC≤ ≤ and 1=T
pkC  (b) 11.33 2.0pkC≤ ≤ , 21.33 2.0pkC≤ ≤ and 1.33=T

pkC  

 

 

 

 

(c) 11.5 2.0pkC≤ ≤ , 21.5 2.0pkC≤ ≤ and 1.5T
pkC =  (d) 11.67 2.0pkC≤ ≤ , 21.67 2.0pkC≤ ≤ and =1.67T

pkC  

Figure 10. Curves of T LB
pkC  versus ( Cpk1, Cpk2) with α = 0.05 and n =10(20)90 (from bottom 

to top in plot). 
  

(a) (b) 

(c) (d) 

T LB
pkC

 

T LB
pkC

 

T LB
pkC

 

T LB
pkC

 

2pkC  2pkC  

2pkC  
2pkC  
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(a)  

 

(b) 

 

(a) 11.0 2.0pkC≤ ≤ , 21.0 2.0pkC≤ ≤ and 

1T
pkC =  

(b) 11.33 2.0pkC≤ ≤ , 21.33 2.0pkC≤ ≤ and

1.33=T
pkC  

(c) 

 

(d) 

 

(c) 11.5 2.0pkC≤ ≤ , 21.5 2.0pkC≤ ≤ and 

1.5T
pkC =  

(d) 11.67 2.0pkC≤ ≤ , 21.67 2.0pkC≤ ≤ and

1.67=T
pkC . 

Figure 11. Curves of T LB
pkC  versus Cpk1 for various T

pkC , α = 0.05, and n=10(20)90 (from 
bottom to top in plot). 
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T LB
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T LB
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T LB
pkC  
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Figure 12. A sample of the dual-fiber tips. (from Pearn and Wu (2005b)). 

 

 

 

 

 
Table 1. Corresponding upper bounds of NCPPM for some specific values of T

pkC .  

T
pkC  Upper bound of NCPPM 

1.00 2699.796 
1.25  176.835 
1.33   66.073 
1.45   13.614 
1.50    6.795 
1.60    1.587 
1.67    0.544 
2.00    0.002 
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Table 2. Coverage rate and 90% confidence interval length (in parentheses) for various cases 
of  =1.0T

pkC  with n =30, 50, 100, 500, 1000. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1pkC
 

1.0683 1.0683 1.0683 1.0683 1.0683 1.0683 

2pkC
 

1.0683 1.0683 1.0683 1.0683 1.0683 1.0683 

1

1

d
σ

 3.2050 3.5611 4.0062 2.1366 4.0062 4.0062 

2

2

d
σ

 3.2050 3.5611 4.0062 2.1366 5.3416 3.5611 

1 1

1

( )mµ
σ
−  0 0.3561 0.8012 5.3416 0.8012 0.8012 

2 2

2

( )mµ
σ
−  0 0.3561 0.8012 5.3416 2.1366 0.3561 

sample size n coverage rate (confidence interval length) 

30 
0.9436 

(0.4099) 

0.9152 

(0.4104) 

0.9144 

(0.4108) 

0.9143 

(0.4108) 

0.9143 

(0.4107) 

0.9142 

(0.4106) 

50 
0.9405 

(0.3107) 

0.9129 

(0.3119) 

0.9126 

(0.3120) 

0.9126 

(0.3119) 

0.9130 

(0.3120) 

0.9127 

(0.3119) 

100 
0.9371 

(0.2140) 

0.9095 

(0.2150) 

0.9092 

(0.2150) 

0.9095 

(0.2150) 

0.9092 

(0.2150) 

0.9097 

(0.2150) 

500 
0.9302 

(0.0922) 

0.9032 

(0.0924) 

0.9029 

(0.0924) 

0.9028 

(0.0924) 

0.9035 

(0.0924) 

0.9034 

(0.0924) 

1000 
0.9296 

(0.0647) 

0.9020 

(0.0648) 

0.9021 

(0.0648) 

0.9018 

(0.0648) 

0.9019 

(0.0648) 

0.9021 

(0.0648) 
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Table 3. Coverage rate and 90% confidence interval length (in parentheses) for various cases 
of =1.33T

pkC  with n =30, 50, 100, 500, 1000. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1pkC
 

1.3838 1.3838 1.3838 1.3838 1.3838 1.3838 

2pkC
 

1.3838 1.3838 1.3838 1.3838 1.3838 1.3838 

1

1

d
σ

 4.6452 5.1613 5.8065 6.6360 7.7420 6.6360 

2

2

d
σ

 4.6452 5.1613 5.8065 6.6360 7.7420 7.7420 

1 1

1

( )mµ
σ
−  0 0.5161 1.1613 1.9908 3.0968 1.9908 

2 2

2

( )mµ
σ
−  0 0.5161 1.1613 1.9908 3.0968 3.0968 

sample size n coverage rate (confidence interval length) 

30 
0.9295 

(0.5967) 

0.9135 

(0.5968) 

0.9135 

(0.5969) 

0.9133 

(0.5968) 

0.9131 

(0.5968) 

0.9135 

(0.5968) 

50 
0.9297 

(0.4543) 

0.9137 

(0.4551) 

0.9135 

(0.4550) 

0.9143 

(0.4551) 

0.9144 

(0.4550) 

0.9139 

(0.4552) 

100 
0.9283 

(0.3123) 

0.9135 

(0.3133) 

0.9137 

(0.3132) 

0.9130 

(0.3132) 

0.9136 

(0.3132) 

0.9135 

(0.3132) 

500 
0.9216 

(0.1300) 

0.9076 

(0.1304) 

0.9081 

(0.1304) 

0.9075 

(0.1304) 

0.9077 

(0.1304) 

0.9074 

(0.1304) 

1000 
0.9194 

(0.0898) 

0.9047 

(0.0900) 

0.9048 

(0.0900) 

0.9054 

(0.0900) 

0.9047 

(0.0900) 

0.9055 

(0.0900) 
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Table 4. Coverage rate and 90% confidence interval length (in parentheses) for various cases 
of =1.5T

pkC  with n =30, 50, 100, 500, 1000. 

 

 

 

 

 

 

 

 

 

 

 

 
  

1pkC
 

1.5484 1.5484 1.5484 1.5484 1.5484 1.5484 

2pkC
 

1.5484 1.5484 1.5484 1.5484 1.5484 1.5484 

1

1

d
σ

 4.1515 4.7445 5.1893 5.5353 6.6423 8.3029 

2

2

d
σ

 4.1515 4.7445 5.1893 5.5353 6.6423 8.3029 

1 1

1

( )mµ
σ
−  0 0.5931 1.0379 1.3838 2.4909 4.1515 

2 2

2

( )mµ
σ
−  0 0.5931 1.0379 1.3838 2.4909 4.1515 

sample size n coverage rate (confidence interval length) 

30 
0.9340 

(0.5309) 

0.9138 

(0.5313) 

0.9143 

(0.5312) 

0.9141 

(0.5313) 

0.9144 

(0.5311) 

0.9133 

(0.5312) 

50 
0.9330 

(0.4032) 

0.9138 

(0.4041) 

0.9137 

(0.4041) 

0.9147 

(0.4042) 

0.9139 

(0.4042) 

0.9139 

(0.4041) 

100 
0.9305 

(0.2767) 

0.9126 

(0.2777) 

0.9122 

(0.2777) 

0.9122 

(0.2777) 

0.9130 

(0.2777) 

0.9127 

(0.2777) 

500 
0.9228 

(0.1161) 

0.9062 

(0.1164) 

0.9057 

(0.1164) 

0.9058 

(0.1164) 

0.9059 

(0.1164) 

0.9058 

(0.1164) 

1000 
0.9215 

(0.0807) 

0.9040 

(0.0809) 

0.9037 

(0.0809) 

0.9036 

(0.0809) 

0.9041 

(0.0809) 

0.9035 

(0.0809) 
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Table 5. Coverage rate and 90% confidence interval length (in parentheses) for various cases 
of =2.0T

pkC  with n =30, 50, 100, 500, 1000. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1pkC
 

2.0372 2.0372 2.0372 2.0372 2.0372 2.0372 

2pkC
 

2.0372 2.0372 2.0372 2.0372 2.0372 2.0372 

1

1

d
σ

 6.1116 6.9846 2.0372 3.6669 6.1116 6.1116 

2

2

d
σ

 6.1116 6.9846 2.0372 3.6669 6.9846 12.223 

1 1

1

( )mµ
σ
−  0 0.8731 8.1488 9.7785 0 0 

2 2

2

( )mµ
σ
−  0 0.8731 8.1488 9.7785 0.8731 6.1116 

sample size n coverage rate (confidence interval length) 

100 
0.9227 

(0.4237) 

0.9137 

(0.4243) 

0.9135 

(0.4242) 

0.9139 

(0.4242) 

0.9181 

(0.4239) 

0.9185 

(0.4240) 

300 
0.9220 

(0.2333) 

0.9130 

(0.2339) 

0.9130 

(0.2338) 

0.9126 

(0.2339) 

0.9173 

(0.2336) 

0.9178 

(0.2336) 

500 
0.9204 

(0.1760) 

0.9111 

(0.1765) 

0.9113 

(0.1765) 

0.9112 

(0.1765) 

0.9159 

(0.1763) 

0.9158 

(0.1763) 

700 
0.9188 

(0.1462) 

0.9107 

(0.1466) 

0.9107 

(0.1466) 

0.9104 

(0.1466) 

0.9145 

(0.1464) 

0.9143 

(0.1464) 

1000 
0.9177 

(0.1202) 

0.9092 

(0.1205) 

0.9084 

(0.1205) 

0.9083 

(0.1205) 

0.9134 

(0.1203) 

0.9141 

(0.1203) 
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Table 6. The most conservative 95% lower confidence bounds  T LB

pkC  of T
pkC  for 

T
pkC =1(0.1)2, 

n =10(10)200. 

  

n 
    

T
pkC        

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

10 0.5934 0.6598 0.7258 0.7914 0.8567 0.9217 0.9865 1.0511 1.1156 1.1800 1.2442 

20 0.7125 0.7888 0.8647 0.9404 1.0158 1.0911 1.1662 1.2412 1.3161 1.3909 1.4656 

30 0.7652 0.8459 0.9262 1.0064 1.0863 1.1661 1.2458 1.3254 1.4049 1.4843 1.5637 

40 0.7967 0.8799 0.9629 1.0457 1.1283 1.2108 1.2933 1.3756 1.4578 1.5400 1.6221 

50 0.8182 0.9032 0.9879 1.0725 1.1570 1.2414 1.3256 1.4098 1.4939 1.5780 1.6620 

60 0.8340 0.9203 1.0064 1.0924 1.1782 1.2639 1.3495 1.4351 1.5206 1.6061 1.6915 

70 0.8463 0.9336 1.0208 1.1078 1.1946 1.2814 1.3681 1.4548 1.5413 1.6279 1.7144 

80 0.8562 0.9444 1.0323 1.1202 1.2079 1.2955 1.3831 1.4706 1.5580 1.6454 1.7328 

90 0.8645 0.9533 1.0419 1.1305 1.2189 1.3072 1.3955 1.4837 1.5719 1.6600 1.7481 

100 0.8714 0.9608 1.0500 1.1392 1.2282 1.3171 1.4060 1.4948 1.5836 1.6723 1.7610 

110 0.8774 0.9673 1.0570 1.1466 1.2362 1.3256 1.4150 1.5044 1.5937 1.6829 1.7721 

120 0.8826 0.9729 1.0631 1.1532 1.2432 1.3331 1.4229 1.5127 1.6024 1.6922 1.7818 

130 0.8872 0.9779 1.0685 1.1589 1.2493 1.3396 1.4298 1.5200 1.6102 1.7003 1.7904 

140 0.8913 0.9824 1.0733 1.1641 1.2548 1.3454 1.4360 1.5266 1.6171 1.7076 1.7980 

150 0.8950 0.9863 1.0776 1.1687 1.2597 1.3507 1.4416 1.5325 1.6233 1.7141 1.8049 

160 0.8983 0.9900 1.0815 1.1728 1.2642 1.3554 1.4466 1.5378 1.6289 1.7200 1.8111 

170 0.9014 0.9932 1.0850 1.1766 1.2682 1.3597 1.4512 1.5426 1.6340 1.7254 1.8167 

180 0.9042 0.9963 1.0882 1.1801 1.2719 1.3637 1.4554 1.5471 1.6387 1.7303 1.8219 

190 0.9067 0.9990 1.0912 1.1833 1.2754 1.3673 1.4593 1.5511 1.6430 1.7348 1.8266 

200 0.9091 1.0016 1.0940 1.1863 1.2785 1.3707 1.4628 1.5549 1.6470 1.7390 1.8310 
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Table 7. The largest possible 95% lower confidence bounds  T LB

pkC  of T
pkC  for 

T
pkC = 1(0.1)2,  

n =10(10)200.  

 

 

n 
    

T
pkC        

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

10 0.6788 0.7573 0.8353 0.9127 0.9898 1.0666 1.1430 1.2192 1.2952 1.3709 1.4466 

20 0.7729 0.8577 0.9421 1.0262 1.1100 1.1935 1.2768 1.3600 1.4430 1.5259 1.6087 

30 0.8146 0.9021 0.9894 1.0764 1.1632 1.250 1.3361 1.4224 1.5085 1.5945 1.6805 

40 0.8394 0.9287 1.0176 1.1064 1.1949 1.2833 1.3715 1.4596 1.5476 1.6355 1.7233 

50 0.8564 0.9467 1.0369 1.1268 1.2166 1.3062 1.3956 1.4850 1.5742 1.6634 1.7525 

60 0.8689 0.9601 1.0511 1.1419 1.2325 1.3230 1.4134 1.5037 1.5939 1.6840 1.7741 

70 0.8786 0.9705 1.0621 1.1536 1.2450 1.3362 1.4273 1.5183 1.6092 1.7000 1.7908 

80 0.8865 0.9788 1.0710 1.1631 1.2550 1.3468 1.4384 1.5300 1.6215 1.7129 1.8043 

90 0.8929 0.9858 1.0784 1.1709 1.2633 1.3555 1.4477 1.5398 1.6317 1.7236 1.8155 

100 0.8984 0.9916 1.0847 1.1775 1.2703 1.3629 1.4555 1.5480 1.6404 1.7327 1.8250 

110 0.9032 0.9967 1.0900 1.1832 1.2763 1.3693 1.4622 1.5550 1.6478 1.7405 1.8331 

120 0.9073 1.0011 1.0947 1.1882 1.2816 1.3749 1.4681 1.5612 1.6543 1.7473 1.8402 

130 0.9109 1.0050 1.0988 1.1926 1.2862 1.3798 1.4732 1.5666 1.6600 1.7533 1.8465 

140 0.9142 1.0084 1.1025 1.1965 1.2904 1.3842 1.4779 1.5715 1.6651 1.7586 1.8521 

150 0.9171 1.0115 1.1058 1.2000 1.2941 1.3881 1.4820 1.5759 1.6696 1.7634 1.8571 

160 0.9197 1.0143 1.1088 1.2032 1.2975 1.3916 1.4857 1.5798 1.6738 1.7677 1.8616 

170 0.9221 1.0169 1.1115 1.2061 1.3005 1.3949 1.4892 1.5834 1.6776 1.7717 1.8658 

180 0.9243 1.0192 1.1140 1.2087 1.3033 1.3978 1.4923 1.5867 1.6810 1.7753 1.8696 

190 0.9263 1.0214 1.1163 1.2112 1.3059 1.4006 1.4951 1.5897 1.6842 1.7786 1.8730 

200 0.9282 1.0234 1.1184 1.2134 1.3083 1.4031 1.4978 1.5925 1.6871 1.7817 1.8762 
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Table 8. The precision R for the most conservative 95% lower confidence bounds  T LB

pkC  of 
T
pkC  for 

T
pkC =1(0.1)2, n =10(10)200. 

 

 

 

 

 

n     R        

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

10 0.5934 0.5998 0.6048 0.6088 0.6119 0.6145 0.6166 0.6183 0.6198 0.6211 0.6221 

20 0.7125 0.7171 0.7206 0.7234 0.7256 0.7274 0.7289 0.7301 0.7312 0.7321 0.7328 

30 0.7652 0.7690 0.7718 0.7742 0.7759 0.7774 0.7786 0.7796 0.7805 0.7812 0.7819 

40 0.7967 0.7999 0.8024 0.8044 0.8059 0.8072 0.8083 0.8092 0.8099 0.8105 0.8111 

50 0.8182 0.8211 0.8233 0.8250 0.8264 0.8276 0.8285 0.8293 0.8299 0.8305 0.8310 

60 0.8340 0.8366 0.8387 0.8403 0.8416 0.8426 0.8434 0.8442 0.8448 0.8453 0.8458 

70 0.8463 0.8487 0.8507 0.8522 0.8533 0.8543 0.8551 0.8558 0.8563 0.8568 0.8572 

80 0.8562 0.8585 0.8603 0.8617 0.8628 0.8637 0.8644 0.8651 0.8656 0.8660 0.8664 

90 0.8645 0.8666 0.8683 0.8696 0.8706 0.8715 0.8722 0.8728 0.8733 0.8737 0.8741 

100 0.8714 0.8735 0.8750 0.8763 0.8773 0.8781 0.8788 0.8793 0.8798 0.8802 0.8805 

110 0.8774 0.8794 0.8808 0.8820 0.8830 0.8837 0.8844 0.8849 0.8854 0.8857 0.8861 

120 0.8826 0.8845 0.8859 0.8871 0.8880 0.8887 0.8893 0.8898 0.8902 0.8906 0.8909 

130 0.8872 0.8890 0.8904 0.8915 0.8924 0.8931 0.8936 0.8941 0.8946 0.8949 0.8952 

140 0.8913 0.8931 0.8944 0.8955 0.8963 0.8969 0.8975 0.8980 0.8984 0.8987 0.8990 

150 0.8950 0.8966 0.8980 0.8990 0.8998 0.9005 0.9010 0.9015 0.9018 0.9022 0.9025 

160 0.8983 0.9000 0.9013 0.9022 0.9030 0.9036 0.9041 0.9046 0.9049 0.9053 0.9056 

170 0.9014 0.9029 0.9042 0.9051 0.9059 0.9065 0.9070 0.9074 0.9078 0.9081 0.9084 

180 0.9042 0.9057 0.9068 0.9078 0.9085 0.9091 0.9096 0.9101 0.9104 0.9107 0.9110 

190 0.9067 0.9082 0.9093 0.9102 0.9110 0.9115 0.9121 0.9124 0.9128 0.9131 0.9133 

200 0.9091 0.9105 0.9117 0.9125 0.9132 0.9138 0.9143 0.9146 0.9150 0.9153 0.9155 
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 Table 9. Estimates of E( )
T
pkC and their standard errors (in parentheses) for some cases of 

1.0=T
pkC and various n.

 

  

1pkC
 1.0683 1.0683 1.0683 1.0683 1.0683 1.0683 1.0683 1.0683 1.0683 1.0683 

2pkC
 1.0683 1.0683 1.0683 1.0683 1.0683 1.0683 1.0683 1.0683 1.0683 1.0683 

1

1

d
σ

 3.2050 4.0062
 

3.5611
 

5.3416
 

3.5611
 

3.5611
 

3.2050 3.2050
 

5.3416
 

3.2050 

2

2

d
σ

 3.2050 4.0062
 

3.5611
 

5.3416
 

5.3416
 

4.0062
 

3.5611 5.3416
 

4.0062 4.0062 

1 1

1

( )mµ
σ
−  0 0.8012

 
0.3561

 
2.1366

 
0.3561

 
0.3561

 
0 0 2.1366 0 

2 2

2

( )mµ
σ
−  0 0.8012

 
0.3561

 
2.1366

 
2.1366

 
0.8012

 
0.3561 2.1366

 
0.8012 0.8012 

n Estimate of E( )
T
pkC and its standard error (in parentheses) 

30 
0.9881

4(1.1 10 )−×

 

0.9826 
4(1.2 10 )−×

 

0.9815 
4(1.1 10 )−×

 

0.9824 
4(1.1 10 )−×

 

0.9819 
4(1.1 10 )−×

 

0.9819 
4(1.1 10 )−×

 

0.9848 
4(1.1 10 )−×

 

0.9853 
4(1.1 10 )−×

 

0.9823 
4(1.1 10 )−×

 

0.9853 
4(1.1 10 )−×

 
50 

0.9925 
5(7.3 10 )−×

 

0.9889 
5(8.1 10 )−×

 

0.9890 
5(8.1 10 )−×

 

0.9888 
5(8.1 10 )−×

 

0.9872 
5(8.9 10 )−×

 

0.9872 
5(8.9 10 )−×

 

0.9893 
5(8.5 10 )−×

 

0.9893 
5(8.5 10 )−×

 

0.9874 
5(8.9 10 )−×

 

0.9893 
5(8.5 10 )−×

 
100 

0.9948 
5(5.7 10 )−×

 

0.9926 
5(6.3 10 )−×

 

0.9926 
5(6.2 10 )−×

 

0.9926 
5(6.2 10 )−×

 

0.9926 
5(6.2 10 )−×

 

0.9927 
5(6.2 10 )−×

 

0.9938 
5(6.0 10 )−×

 

0.9938 
5(6.0 10 )−×

 

0.9927 
5(6.2 10 )−×

 

0.9937 
5(6.0 10 )−×

 
500 

0.9988 
5(2.5 10 )−×

 

0.9983 
5(2.8 10 )−×

 

0.9983 
5(2.8 10 )−×

 

0.9983 
5(2.8 10 )−×

 

0.9983 
5(2.8 10 )−×

 

0.9983 
5(2.8 10 )−×

 

0.9986 
5(2.7 10 )−×

 

0.9985 
5(2.7 10 )−×

 

0.9983 
5(2.8 10 )−×

 

0.9986 
5(2.7 10 )−×
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Table 10. Estimates of E( )
T
pkC and their standard errors (in parentheses) for some cases of 

=1.33T
pkC and various n. 

 

 

  

1pkC
 

1.3838 1.3838 1.3838 1.3838 1.3838 1.3838 1.3838 1.3838 1.3838 1.3838 

2pkC
 

1.3838 1.3838 1.3838 1.3838 1.3838 1.3838 1.3838 1.3838 1.3838 1.3838 

1

1

d
σ

 4.1515 4.7445 5.1893 5.5353 6.6423 8.3029 4.7445 4.7445 4.7445 4.7445 

2

2

d
σ

 4.1515 4.7445 5.1893 5.5353 6.6423 8.3029 5.1893 5.5353 6.6423 8.3029 

1 1

1

( )mµ
σ
−  0 0.5931 1.0379 1.3838 2.4909 4.1515 0.5931 0.5931 0.5931 0.5931 

2 2

2

( )mµ
σ
−  0 0.5931 1.0379 1.3838 2.4909 4.1515 1.0379 1.3838 2.4909 4.1515 

n Estimate of E( )
T
pkC and its standard error (in parentheses) 

30 
1.2989 

4(1.4 10 )−×

 

1.2945 
4(1.4 10 )−×

 

1.2944 
4(1.4 10 )−×

 

1.2943 
4(1.4 10 )−×

 

1.2945 
4(1.4 10 )−×

 

1.2944 
4(1.4 10 )−×

 

1.2944 
4(1.4 10 )−×

 

1.2945 
4(1.4 10 )−×

 

1.2943 
4(1.4 10 )−×

 

1.2945 
4(1.4 10 )−×

 
50 

1.3069 
4(1.1 10 )−×

 

1.3034 
4(1.1 10 )−×

 

1.3033 
4(1.1 10 )−×

 

1.3035 
4(1.1 10 )−×

 

1.3032 
4(1.1 10 )−×

 

1.3034 
4(1.1 10 )−×

 

1.3034 
4(1.1 10 )−×

 

1.3032 
4(1.1 10 )−×

 

1.3034 
4(1.1 10 )−×

 

1.3034 
4(1.1 10 )−×

 
100 

1.3159 
5(7.3 10 )−×

 

1.3134 
5(7.8 10 )−×

 

1.3134 
5(7.8 10 )−×

 

1.3134 
5(7.8 10 )−×

 

1.3135 
5(7.8 10 )−×

 

1.3133 
5(7.8 10 )−×

 

1.3134 
5(7.8 10 )−×

 

1.3134 
5(7.8 10 )−×

 

1.3135 
5(7.8 10 )−×

 

1.3133 
5(7.8 10 )−×

 
500 

1.3263 
5(3.3 10 )−×

 

1.3256 
5(3.4 10 )−×

 

1.3257 
5(3.4 10 )−×

 

1.3257 
5(3.4 10 )−×

 

1.3257 
5(3.4 10 )−×

 

1.3257 
5(3.4 10 )−×

 

1.3257 
5(3.4 10 )−×

 

1.3256 
5(3.4 10 )−×

 

1.3257 
5(3.4 10 )−×

 

1.3256 
5(3.4 10 )−×
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Table 11. Estimates of E( )
T
pkC and their standard errors (in parentheses) for some cases of 

1.5T
pkC = and various n.

 

 

 

 

 

1pkC
 1.5484 1.5484 1.5484 1.5484 1.5484 1.5484 1.5484 1.5484 1.5484 1.5484 

2pkC
 1.5484 1.5484 1.5484 1.5484 1.5484 1.5484 1.5484 1.5484 1.5484 1.5484 

1

1

d
σ

 4.6452 5.1613 5.8065 6.6360 7.7420 5.1613 5.8065 6.6360 7.7420 4.6452 

2

2

d
σ

 4.6452 5.1613 5.8065 6.6360 7.7420 5.8065 6.6360 7.7420 5.1613 7.7420 

1 1

1

( )mµ
σ
−  0 0.5161 1.1613 1.9908 7.7420 0.5161 1.1613 1.9908 3.0968 0 

2 2

2

( )mµ
σ
−  0 0.5161 1.1613 1.9908 7.7420 1.1613 1.9908 3.0968 0.5161 3.0968 

n Estimate of E( )
T
pkC and its standard error (in parentheses) 

30 
1.4103 

4(1.5 10 )−×

 

1.4545 
4(1.6 10 )−×

 

1.4542 
4(1.6 10 )−×

 

1.4547 
4(1.6 10 )−×

 

1.4547 
4(1.6 10 )−×

 

1.4545 
4(1.6 10 )−×

 

1.4543 
4(1.6 10 )−×

 

1.4543 
4(1.6 10 )−×

 

1.4543 
4(1.6 10 )−×

 

1.4566 
4(1.6 10 )−×

 
50 

1.4305 
4(1.2 10 )−×

 

1.4652 
4(1.2 10 )−×

 

1.4654 
4(1.2 10 )−×

 

1.4655 
4(1.2 10 )−×

 

1.4652 
4(1.2 10 )−×

 

1.4653 
4(1.2 10 )−×

 

1.4654 
4(1.2 10 )−×

 

1.4653 
4(1.2 10 )−×

 

1.4655 
4(1.2 10 )−×

 

1.4671 
4(1.2 10 )−×

 
100 

1.4526 
5(8.3 10 )−×

 

1.4776 
5(8.7 10 )−×

 

1.4776 
5(8.7 10 )−×

 

1.4778 
5(8.7 10 )−×

 

1.4778 
5(8.7 10 )−×

 

1.4777 
5(8.7 10 )−×

 

1.4778 
5(8.7 10 )−×

 

1.4778 
5(8.7 10 )−×

 

1.4776 
5(8.7 10 )−×

 

1.4789 
5(8.7 10 )−×

 
500 

1.4822 
5(3.7 10 )−×

 

1.4938 
5(3.8 10 )−×

 

1.4938 
5(3.8 10 )−×

 

1.4939 
5(3.8 10 )−×

 

1.4939 
5(3.8 10 )−×

 

1.4939 
5(3.8 10 )−×

 

1.4939 
5(3.8 10 )−×

 

1.4938 
5(3.8 10 )−×

 

1.4939 
5(3.8 10 )−×

 

1.4942 
5(3.7 10 )−×
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Table 12. Estimates of E( )
T
pkC and their standard errors (in parentheses) for some cases of 

2.0T
pkC = and various n. 

 

 

   

1pkC
 2.0372 2.0372 2.0372 2.0372 2.0372 2.0372 2.0372 2.0372 2.0372 2.0372 

2pkC
 2.0372 2.0372 2.0372 2.0372 2.0372 2.0372 2.0372 2.0372 2.0372 2.0372 

1

1

d
σ

 6.9846 6.1116
 

6.1116 9.7785 12.223 9.7785 6.9846 9.7785 6.9846 6.1116 

2

2

d
σ

 6.9846 6.1116
 

6.9846 9.7785 12.223 8.1488 9.7785 12.223 12.223 9.7785 

1 1

1

( )mµ
σ
−  0.8731 0 0 3.6669 6.1116 3.6669 0.8731 3.6669 0.8731 0 

2 2

2

( )mµ
σ
−  0.8731 0 0.8731 3.6669 6.1116 2.0372 3.6669 6.1116 6.1116 3.6669 

n Estimate of E( )
T
pkC and its standard error (in parentheses) 

30 
1.9243 

4(2.1 10 )−×

 

1.9281
4(2.0 10 )−×

 

1.9260 
4(2.0 10 )−×

 

1.9243 
4(2.1 10 )−×

 

1.9242 
4(2.1 10 )−×

 

1.9243 
4(2.1 10 )−×

 

1.9243 
4(2.1 10 )−×

 

1.9249 
4(2.1 10 )−×

 

1.9243 
4(2.1 10 )−×

 

1.9263 
4(2.0 10 )−×

 
50 

1.9407 
4(1.6 10 )−×

 

1.9434 
4(1.6 10 )−×

 

1.9417 
4(1.6 10 )−×

 

1.9406 
4(1.6 10 )−×

 

1.9405 
4(1.6 10 )−×

 

1.9407 
4(1.6 10 )−×

 

1.9402 
4(1.6 10 )−×

 

1.9405 
4(1.6 10 )−×

 

1.9402 
4(1.6 10 )−×

 

1.9419 

4(1.6 10 )−×

 
100 

1.9594 
4(1.1 10 )−×

 

1.9613 
4(1.1 10 )−×

 

1.9603 
4(1.1 10 )−×

 

1.9595 
4(1.1 10 )−×

 

1.9595 
4(1.1 10 )−×

 

1.9592 
4(1.1 10 )−×

 

1.9595 
4(1.1 10 )−×

 

1.9595 
4(1.1 10 )−×

 

1.9594 
4(1.1 10 )−×

 

1.9606 
4(1.1 10 )−×

 
200 

1.9740 
5(8.0 10 )−×

 

1.9755 
5(7.8 10 )−×

 

1.9747 
5(7.9 10 )−×

 

1.9741 
5(8.0 10 )−×

 

1.9741 
5(8.0 10 )−×

 

1.9740 
5(8.0 10 )−×

 

1.9741 
5(8.0 10 )−×

 

1.9741 
5(8.0 10 )−×

 

1.9741 
5(8.0 10 )−×

 

1.9747 
5(7.9 10 )−×

 
500 

1.9869 
5(5.0 10 )−×

 

1.9876 
5(4.8 10 )−×

 

1.9873 
5(5.0 10 )−×

 

1.9869 
5(5.0 10 )−×

 

1.9869 
5(5.0 10 )−×

 

1.9869 
5(5.0 10 )−×

 

1.9869 
5(5.0 10 )−×

 

1.9869 
5(5.0 10 )−×

 

1.9869 
5(5.0 10 )−×

 

1.9873 
5(5.0 10 )−×
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Table 13. Sample sizes required for a specified margin of sampling error. 

 

  
T
pkC

 

\ errorα
 

0.05 0.06 0.07 0.08 0.09 0.1 

1.00 

0.05 413 287 211 162 128 104 

0.025 587 408 300 230 181 147 

0.01 826 574 422 323 255 207 

1.33 

0.05 624 434 319 244 193 156 

0.025 886 616 452 346 274 222 

0.01 1248 867 637 488 386 312 

1.50 

0.05 750 521 383 293 232 188 

0.025 1065 740 544 416 329 267 

0.01 1501 1042 766 587 464 376 

1.67 

0.05 903 627 461 353 279 226 

0.025 1282 891 654 501 396 321 

0.01 1806 1254 922 706 558 452 

2.00 

0.05 1224 850 625 478 378 306 

0.025 1738 1207 887 679 537 435 

0.01 2448 1700 1249 957 756 612 
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Table 14. Sample mean, sample standard deviation, specifications of individual 
characteristics for the dual-fiber tips, and the estimated capability indices. 

 

 

 

 

 

 

 

 

 

Characteristic X  S LSL USL  pkC  

Capillary length (mm) 6.255 0.04035 6.00 6.50 2.024 

Wedge (o) 7.99 0.0959 7.5 8.5 1.703 
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