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Segmentation of PET/CT images by Flexible Mixture Models and
Comparison with K-means and Gaussian Mixture Models

Student: Meng-Ciao Ye Advisors: Dr. Henry Horng-Shing Lu

Institute of Statistics
National Chiao Tung University

ABSTRACT

Positron Emission Temograghy (PEI:) helps' doctors determine the
abnormal regions. The specific-brightened regions in PET images show the
location of abnormal region. Hence ‘the segmentation of the data form PET
images is very important. There are three methods to classify the data from
PET image to obtain the region of interest, K-means with KDE, Gaussian
mixture model (GMM) with KDE and flexible mixture model (FMM) with
KDE. The main difference between GMM and FMM is that, GMM uses
several normal distributions to fit the original PET data, while FMM does
not. FMM considers the property and structure of PET image data. It uses a
right-skewed distribution to fit the background images. The mixture normal
distribution is used to fit other regions. Finally, the result of FMM with
KDE is better than the result of K-means with KDE and GMM with KDE.
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Chapter 1. Introduction

Positron Emission Tomography (PET) is a very important medical tool. It helps doctors
determine the abnormal region in the human body. Multi-functional medical scanning is
developed in recent years such that nuclear medical imagining and other traditional imaging
functions can be combined. It can provide exact dissected locations of nuclear medical
imagining and attenuation correction, such as, PET and CT, PET and MRI, SPECT and CT,
SPECT and MRI, SPECT and CT and X-ray and MRI... etc. For tumor scanning, because
glucose absorption ratios between normal cells and cancer cells are different for nuclear
medicine in PET images, high contrast images can be provide by PET images. The region
which has high absorption ratio shows hitgh ttensity.and this region is most likely the region
of primary tumor or high-activity tumos: Ehe métheds like K-means, Gaussian mixture model
(GMM) and flexible mixttre, model (FMM).&are used to,classify the data for finding the
regions of interest.

The concept of FMM is'very similar to GMM. They both use EM algorithm to estimate
the unknown parameters in their models to classify the data. The main difference between the
two methods is that, GMM uses several normal distributions to fit the original PET data,
while FMM does not. The FMM method considers the property and structure of the data so
that the model can be consistent with the original data. It can be detected by observing the
data of PET images, that the proportion of small pixel value is very large so the distribution is
skewed to the right in this part. Therefore in FMM, the right-skewed distribution will be taken
to estimate such part. The mixture normal distribution is used to estimate other parts. Before
classifying data, we have to consider how to select the number of groups, how to give initial
values for GMM and how to give the initial seeds for K-means. Kernel density estimation
(KDE) is used for solving these issues. It provides the initial values for GMM and FMM and
the initial seeds for K-means. The number of groups can also be provided by KDE. Then we

1



can get the several sets of estimations and number of groups. Finally, the issue of model
selection is then solved by Akaike information criterion (AIC) or Bayesian information
criterion (BIC).

K-means with KDE, GMM with KDE and FMM with KDE, are methods used for
clustering. The PET phantom experiment is designed for comparing these methods. There are
63 slices where size is 256x256. Hence all data size is 63x256x256. The exact locations of
every kind of activity regions is known, so we can compare the accuracy of different methods.
Additionally, a computerized tomography (CT) image is classified by these methods. The CT
image is a sagittal plane of a human body and its data size is 512x373. The result of
classifying the CT image can be compared to the original CT image because of good outlining
effect. The FMM with KDE methad is better than'K-means and GMM in the PET phantom

experiment and the CT scanning.



Chapter 2. Methodologies

2.1 K-means Clustering

K-means is a typical method for clustering. The goal is to decrease the square error for
each observation belonging to the cluster center. Suppose that data size is N, and we want to
partition the data into K clusters. After K-means algorithm, the kth group is expressed as G.

The set Gy whose centroid is x, contains n, data points. Then the square error of set Gk

can be defined as (2.1.1)

ekZZ(Xi_ﬂk)zvk:ll”'!K; (211)
X; €G;
K

== (2.1.2)

In equation (2.1.2), E is the'sum of the square error, or the overall clustering error. K-means

clustering method is designed to minimize.E: The algorithm:will be described in detail.

K-means Clustering Algorithm

Step 1. Inputdata X ={x,X,,---, Xy}

Step 2. Decide the number of groups K, and randomly selected seeds in K to be the
centroids of each group. The centroids are 4, 4, t4

Step 3.  Calculate the distance between each data points and its group centroids according K
centroids from last step. Join the data point to the group with the nearest centroid.

The kth group set is shown as follows
Go={ % | Ix—al<x-m] vi=1- K} k=1 K. (2193

Step 4. Recalculate K centroids as follows



2 %
g =25 k=1..-K. (2.1.4)
r.lk
Step 5.  If the differences of centroids in old and new iterations are smaller than a tolerance

level, then the iteration process stops. Else, the iteration process will go to Step2.

2.2 Gaussian Mixture Model (GMM)

The locations of high pixel value in PET image are likely to be the abnormal regions, we
want to find an appropriate model to fit the true data X ={x,X,,---,X\}. We further segment
X by this model. If distribution of data is shown to be a single elliptical curve, we can fit it
with one distribution. If it is shown to be a complex curve, then using a single distribution is
not suitable to describe the probability density function of the data. Therefore, we consider

Gaussian mixture model (GMM) [7]--This madel consists of K different normal distributions
corresponding to K differentweights z,, z,, - -+, #;_« Thesmodel is expressed as
K K
f(x; |®)=Z7rk f (X 16,) with Zrzk =1%0<7, <1,
k1 k=1 (2.2.1)
and ©=(6,,60,, 0.7, 7,, "+, 1),
where f, (X | 6,) represents probability density function of the kth normal distribution, and its

parameters denote 6, = (4, ,0,) . Next, we use maximum likelihood estimator (MLE) to

estimate the parameters of Gaussian mixture model,

log L(®) = Iogﬁ f(x | D) (2.2.2)
_ Iogf[[iﬂk f, (x wk)] (2.2.3)

N K
= Zlog[Zﬂk f (X |9k)]' (2.2.4)
i=1 k=1
In order to find ®=(6,,6,,---,6,,7,,7,,---,m,) such that log likelihood function is

maximized, we perform partial differentiation,



dlog L(®)
oD

Let =0 for obtaining &)MLE = argmax L(D). (2.2.5)

It is very difficult to obtain @ from equation (2.2.5). Therefore the EM algorithm is used to

estimate the parameters. First the indicator function Yj is defined as

1, if x. comes from kth normal distribution;
= (2.2.6)

10, otherwise.

Let Y; tobe(Y; ---,Y). Then, the joint probability density function of xjand y; is

K
f(Xivyi):zyik”kf(Xi 16,). (2.2.7)
k=1
The log likelihood function of joint density probability function is
N
log L(®) =log [ ] f(x.¥,) (2.2.8)
i=1
N
=> log f(x, ;) (2.2.9)
i=1
N K
:Zlog(z Vi, Tdx; |0k)j (2.2.10)
N K
=2 v log (7, (% 16.)) (2.2.11)
i=1 k=1
N K N K
=22 Vi log(m) +- D" Vaclog(hi (x| 6,)) - (22.12)
i=1 k=1 i=1 k=1

Given @®©? and X then the Expectation step in EM algorithm starts.

Q(®; ®“") = E(log L(®) | X, D) (2.2.13)
=E (i iYik log(7, ) +iiYik log(f, (X | &, ))‘X, CD(OId)J (2.2.14)
=ii E(Y, [ x, @) log 7, +ii E(Y, | X, ®°)log(f, (x |6,)). (2.2.15)

Equation (22.15) of E(Y, |x,®“?) is

E(Y, |x,@C)=1-f, (1|x,®")+0-f, 1]x,®“?) (2.2.16)

_ (Y =1 q)(md))
f (41009

(2.2.17)



_ ”IEOId) f (% |Hk(0|d))
< .
Id Id
$ o 1,04 101%)
=

(2.2.18)

So, Q(®;®“") is obtained with combination of equation (2.2.15) and equation (2.2.18) as

follows:

N K (old) (old) N K old) (old)
Qio)=y y A WBIA ) joqz 4y A ML) pogq,x]0,).
i=1 k=1 Zﬂ_J(_old) fj (Xi | ej(old)) i=1 k=1 Zﬂ. old) fj (Xi | ej(old))

=t =t

(2.2.19)

Equation (2.2.19) is divided into two parts for convenience of maximization step in the EM

algorithm. The first part is

N K (old) (old)
>y A W67 g, (2.2.20)
i=1 k=1 Zﬂ_ old) fJ(Xl |9j(0|d))
j=1
The second part is

N K (Old)f X, e(old)

> > - bl aach (1 6,)y- (2:2.21)

i=1 k=1 ﬂ. (old) f (Xi Iggold))

Formula (2.2.20) is only related with the -parameter =, , and formula is only related to the

parameter 6, . In other words, the issue of choosing the parameters that
maximizes Q(®; ®°") is now simplified to choosing the parameter z, that maximizes

formula (2.2.20) and choosing the parameter g, that maximizes formula (2.2.21). The first

formula (2.2.20) is calculated as follows.

letieR, and

N K (old) (old) K
0|33 04167 |Ogﬂk+/1(zﬂk_1j 0, k=1..K (2.2.22)
872'k i=1 k=1z7[1§old)fj(xi|6;j(old)) k=1

i1



N (old) (old)
. Zl 7 ROGTT) Lo k=1 K (2.2.23)

i=1 7Ty Z”J('om) fj(xi |9j(old))
=1
ﬂ_(old)f (X |0(0Id))
K
Zﬂ_ old)f (X |9(old))

j=1

U
MZ

+mA=0, k=1..K (2.2.24)

1]
N

i 7Z'(OId)f (X- |0(0|d))

K
k=1| i=1 7Z'J(OId)f (X |0(0Id))
i=

+m A |=0 (2.2.25)

K N (old) (old) K
= Yy ALIL +A) 7, =0 (2.2.26)
k=1 i=1 Zﬂ_ old)f (X |9(old)) k=1
j=1
K
N Zlﬂlgmd)fk(xi |‘9k(0|d))
= 7 +4=0 (2.2.27)
; c (old) (old)
D a0 (161
i1
N
= 2 1+4=0 (2.2.28)
—~ J1=-N. (2.2.29)

The estimation for parameter z, €an be obtained by substituting the result of equation (2.2.29)

into equation (2.2.24).

Id Id
7 (new) _ 1 M 06 1657)

‘ N 7 . (2.2.30)
i=1 Zlﬂ-J(OId) fj (Xi |0j(0|d))
j=
And because of
2 N K (old) (old)
0 . Zz K”k f (i 16°) log 7, <0. (2.2.31)

ory ‘T Z”(_old) £ (x |9go|d))
] 1 ]

i
j=L



The result of (2.2.31) means

(new) __

N K ﬂémd) .I:k (X- |0(0Id))
7Tk

=argmax 3> %7 Jogz, - (2.2.32)
i=1 k=1 Zﬂ_(_old) fj (Xi | ej(old))
j=1

J

In other words, the estimation z™" maximizes formula (2.2.20). Next, the second formula

(2.2.21) is expanded. The parameter set 6, in formula (2.2.21) contains x, and o,

N K (Old)f X, g(old)
>y A I g i 1,)
i=1 k=1 Zﬂ_ old) fJ (Xi | 0]_(0|d))

j=1

N (old) (old) (old) (old)
=y WA g, gy W OAGT) joq 5 (x10,)) | (22.39)

K
= Id Id
| Zreoctop) ST 510
j=1

=t

(old) (old) L 2
K”l f.(x 16°) [—llog 27[—1|Og 0_12 S (X ,L211) J
Zﬂ_(_old) f (x| 6D 2 20,

i iV Y

j=1

(old) (old) _ 2

i ( 167) ( ~log 27 - ;Iogai ——(X‘Z léK) j
Zﬂ_gold) fj (Xi |0j(old)) O

j=1

(2.2.34)

Il
.MZ
+

Il
LN

K

In order to find 6, such that formula (2.2.21) is maximized, we partially differentiate

with



71,05 16°%) (%~ )’
- Iog 27Z'—E|OgO'12 BT
) Zﬂ_}old) fj (Xi |6j(0ld)) 1
0 -1
Let ! = 2.2.35
o, zl 7O (x |09 (1 1 (X — 11, ) 0! :
ot K KA K —E|0927r—5|ogoﬁ —'2—2K
zﬂjgold) fj(xi |0j(o|d)) Oy
j=1
N old) (old) _
N Z =54 1677) (Xi zukj o (2.2.36)
i= zﬂ_ old) fj(xi |0j(old)) Oy
j=1
N (old) (old) N (old) (old)
o f (X 167) . f (X 16°)
N X —u ~0 (2.2.37)
iZ=1: iﬂ_(old) f (X» |0(0Id)) k; iﬂ(old) f(X |9_(0Id))
= i IASA R = i IASA R

N old) (old)
Sy, 7 f (x |6°%)

i=1 Zﬂ_(old)f (X |0(0Id))

(new) __
= K= i ﬂ_(old)f(xlg(old)) . (2.2.38)

i=1 ZK:ﬂ'(OId)f (X |H(0|d))
j=1

J
In addition, o, must be considered for.obtaining the parameter set ¢, such that formula

(2.2.21) is maximized. We partially differentiate with:ia,*,

old) (old) _ 2
n L 167) ( ~log 27 - Iog o} _ma) ;2[1) J
Zﬂ_(_old) f(x |0_(old)) 2 20,
7 IAA RS

Let ii = =0

oo} (old) (0ld) SR
kK i=l 4ot K7TK f (X |9 ) ( |0927[ EIOgO_K (X'Z—’L;K)j
Zﬂ}old) fj(xi |0j(old)) oy
j=1
— i ﬂIEOId) fk (X| |6k(0|d)) [_ 1 + (X| _#k)zj — O (2.2.39)
K 2 282
i1 Zlﬂ_J(old) fj (x |9j(0|d)) 20y 2(oy)
J:

Z(X B k) old)f e |9(0Id))

Z”J('Old) fj (Xi |0j(old))
2(new)
= o i ﬂ(old f s : (2.2.40)
K

i=1 Zﬂ,(old)f (X |0(0|d))
j=1

]



Partial derivatives of formula (2.2.21) with respect to x4, and o, are less than zero. It
means the result 4" of equation (2.2.38) and &> of equation (2.2.40) maximizes

formula (2.2.21). SoQ(®; ") is maximized by the results of equations (2.2.30), (2.2.38)

and (2.2.40). Next we consider how to use the estimations to segment data. First let
Xy Xy,0+, Xy b€ from K normal distributions with weight =,,7,,---, 7, . The data point x. is

classified to No. z; group. Therefore,

f(z=j|®)=r; ,i=L-- N andj=1--K (2.2.41)

The conditional probability density function ofy z. given data point x, and the estimations

of parameters @ is
f (%, 2, D)

f(2 %, ) =S 2.2.42
( i | i ) f(Xi,q)) ( )
_f(glz, o) f(z.9) (2.2.43)
f(x,®)
_ [ 7,®) f (7 [0) F (D) (2.2.44)
f (%[ @) (D)
_f(x12,0)f (z 1) (2.2.45)
f(x | D)
fz- (XI | HZ- )7Z-Z~
=— i i i ’Zi 6{1,2, e K} (2246)
>t (% 16)
j=1
Thus the probability that the data point x, comes from the kth normal distribution is
f (Zi =k | Xi ) (I)) = ka (Xi | Hk)ﬂ-k . (2247)
Zlﬂ'j fj(xi |01)
=

Take equation (2.2.47) to be the standard for data segmentation. Then the set G, where the

mth group is as follows

10



fk (Xi | Hk)”k
K

Zﬂ-j fj(Xi |9j)
j=1

X, €G ,where m =arg max (2.2.48)

m

The estimations for the parameters are updated by the EM algorithm. After iterating with
newly updated estimates, it can be ensured that likelihood is increasing. The detailed

algorithm is

GMM Clustering Algorithm

Step 1. Inputall data X ={x,X,,---, Xy}

Step 2. Decide the number of groups K, and give initial value

Step 3. Update the estimations byws' (2.2.30),, (2.2.37) and (2.2.39) to obtain the new
estimations @™,

Step4. If log L(®™")og L(®“) <tolerance § stop iteration with newly updated
estimates, else replace ®“*) by new estimations and repeat step3.

Step 5.  After iterations finishes, use equation-(2.2.48) to classify data points.

2.3 Flexible Mixture Model (FMM)

The data is modeled by several normal distributions in section 2.2. However, it is
observed that the proportion of small pixel value is very large in all PET images. The main
reason for this phenomenon is that luminosity of non-living parts in PET images is very weak
but occupies large area. The region is called the background image. The following is an

example of mouse brain. It shows that the histogram for pixels of a mouse brain.

11



Histogram for pixels of a mouse brain

Frequency
2e+05 3e+05 Je+05
] ] ]

1e+05

Oe+00
1

00 02 04 06 08 1.0

pixels

Figure 2.3.1: It is the histogram for small pixels of a mouse brain in MicroPET image

The distribution of all background pixels-tends to accumulate in the left in figure 2.3.1, and
the peak is found when pixel value is zero: Therefore,, the right-skewed distribution is
considered to be the modelrof small-pixels.in-PET. image. Otherwise, we use mixed normal
distribution to model non-background data. The model called flexible mixture model (FMM)

is defined by

K K
fx @)= 7 f (x16) with > 7, =1, 0<x <1,
a =} (2.3.1)

and ©®=(6,,6,,,6,7,7,,*, 7 ),

where f, (x|6,) means the kth distribution. When k=1, the probability density function
f_,(X|6,_,) is skewed to right and it can be used to model the background image. When
k=2,...,K, f,(x]|6,) is the kth normal distribution where parameters are denoted by

6, =(u,,0,) and these mixture normal distribution can be used to model the

non-background image. First the indicator function Yj is defined as

12



1 ,if x. comes from kth distribution.
= (2.3.2)

10 ,otherwise.

The concept using the EM algorithm in FMM is similar to GMM. The main difference is
f(x|6,) of the two models. The first let Y; = (Y, ---,Y, ), then joint probability density
function of x; and y; is
f(x.,y)= g Yot T(X16,). (2.3.3)
The following derivation is similar to (2.2.8)~(2.2.30) for finding ®=(64,,6,,--,6

Ty, Ty, T, ) SUch that Q(d;®“?) is maximized. And because Q(d; @) can be divided

into two parts (2.2.20) and (2.2:21). First formula (2.2.20) is considered and 7™ maximize

formula (2.2.20) in the result of (2.2.29).
(new) 5 i N 7Z-|50|d) fk (Xi Iek(old))

- . (23.4)
i=1 Zﬂj(old) fj (Xi | 0]_(0Id))
j=1

At another part of formula (2.2.21); f,_ (x|6&Z%). skewing to the right is different from
f_,(X|6,_,) insection2.2. Herelet f,_(x|6,_) to beexponential distribution first.

fia(X164) = %eXp(—ﬂ‘lx) ,X>0,4>0 (2.3.5)

Formula (2.2.21) is simplified for obtaining the estimations of 6,

N K (old) (old)
> A RTET) g1, (% 19,) (2.3.6)
i=1 k=1 Z”}OM) fj (Xi | gj(old))
[

13



ﬂ_l(old) fl(Xi |91(0Id))

K

ld Id
2.7 1017)
j=1

(old) (old) _ 2

701,061 6) [_%logz,,_% og? - X 12) J . @3
Z;ﬂ_}old) fj (Xi |9j(0|d))

J=!

(old) (old) _ 2
+ K”K f (% 16) [_ilogzﬁ_ilogo_i_(xizlzK) j
0 0 O
D 016 ‘
j=

(~log 8- B7'%,)

I
,MZ
+

1
[iN

O,

The three parameters 3, u, and o, contained in the parameter set 6, are considered for

maximizing of formula (2.3.7). First, we partially differentiate with respect to 5,

N (old) (old)
Lt 3| A 6%) (—lw‘zxi] _0 (2.3.8)
i1 Z;ﬂ_](old) fj(Xi |9j(0|d))
=
N (old) (ald) Fe
S Bl (AT D) (ﬂgxi) _0 (23.9)
i—1 Z;ﬂ_}old)fj(xilej(dd)) ﬂ
=

ZN:X- ”lﬁom) f, (% |0I<(0Id))

K
i=1 Zﬂ.}old) fj (Xi Iej(old))
= W= L L1 L] (2.3.10)
A6

i=1 ZKlﬂ_Eold) fj (Xi |9j(0|d))
j=1

In addition, g, must be considered for obtaining the parameter set ¢, such that formula

(2.3.7) is maximized. Next, we partially differentiate with respect to ., ,

N (old) (old) _
Let Z Klrk fk (Xi |9k ) (Xi Zluk ) -0 (2_3.11)
i=1 Z;/[J(old) fj(Xi |9j(0|d)) Oy
J=

Id Id Id Id
— ixi ”IEO )fk(xilgk(o )) iy N 77150 )fk(xi |9k(0 ))

k
i=1 ZK:”J(_Old) fJ (Xi |0j(OId)) i=1 ZK:ﬂ_J(Old) fJ (Xi | HJ-(OId))

= =t

~0 (2.3.12)
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N old) (old)
Sy, f (x |69°Y)

i=1 zﬂ_(old)f (X |9(0Id))

— (new) i= (2313)
Hy i ﬂ_(old)f (% |6,(o|d))
K
i=1 zﬂj(old)f (X |9(0|d))
j=1
Finally, we partially differentiate with respect to 4, ,
N (old) (old) PRY:
Lot 3| A 016 ( L, 52)} o (2:3.14)
i1 Z”J(old) (% |Hj(0|d)) 20, 2(oy)
j=1
N 20§y [ glold)
Z(Xi—ﬂk)z < k k( || k )
i=1 Zﬂ-}o'd) fJ (Xi | Hj(old))
= sz(new) . (2.3.15)

i ﬂ_(old)f (X Ie(old))
i=1 z”(old)f (X |9(0ld))

Partial derivatives of formula (2.3.6) with respect to S, g.and o, are less than zero. It means
the result " of equation’(2.3.10); 2™ of equation (2:3.13) and o™ of equation (2.3.15)

maximizes formula (2.3.6). SoQ(®;®““)is'maximized by the result of equations (2.3.4),
(2.3.10), (2.3.13) and (2.3.15). After getting the estimations, use (2.2.48) as classification rule
to determine how data points should be classified.

fi (% [G)7,

K

Zﬂj fj(Xi |0j)
j=1

X, €G ,where m =arg max (2.3.16)

m

FMM Clustering Algorithm (Exponential distribution and normal distribution mixture)

Step 1. Inputdata X ={x,X,,---, Xy}

Step 2.  Decide the number of groups K, and give initial value @

Step 3.  Update the estimations by equations (2.3.4), (2.3.10), (2.3.13) and (2.3.15) to obtain
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the new estimations ™",
Step4. If logL(®"™)—log L(®“") <tolerance , stop iterating with newly updated
estimates, else replace ®“* by new estimations and repeat step3.

Step 5. After iterations finish, use equation (2.3.16) to classify data points.

Gamma distribution with « =1 is an exponential distribution, f,_ (x|6,_,) is replaced by

Gamma distribution. The derivation is similar to the derivation of using exponential

distribution and normal distributions mixture model above.

fia (X[ 64) =X ‘1% Xx>0,a>0,8>0 (2.3.17)
(04

The estimation 7™ is obtained by result of equation (2.2.29). That is

N (old) (old)
aen — Lo m” OO | (2.2.18)

N & (old) (old)
27[ fj(Xilaj )
=L

J

The estimation 6" is still obtained by (2.2.21) and it is simplified as follows

N K (old)f e(old)
> > Fe O g6, (16,) (23.19)
i=1 k=1 7t (old) f'(xi |9_(0Id))

JZ=1: j j

7Z_l(old) fl(Xi |Hl(old))
K
Id Id
27 167)

i1

(-erlog B-log () +(a-1)logx - B7X,)

I
AMZ
+

||
iN

oId) (old) _ 2
(16 ( Liog2r— %logoz (izgz)] . (2.3.20)
Zﬂ_jold) fj(Xi |9j(old)) 0,

-1
(old) (old) _ 2
e ( 167) ( —log 27— 2Iogo§ ——(X‘Z/éK) j
Zﬂ_](old) fj (Xi |0j(old)) Oy
j=1
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Where 6, contains the parametersa, 8,4, ando,. And the estimations g™, 4" and

o™ are obtained by (2.3.10), (2.3.13), (2.3.15). Those are

7Z'(O|d)f (X |0(0|d))

Zﬂ_fold) f (X | e(old))
ﬂ(new)_ i 10 - i (2221)
i 7[15 Id)fk(xi |‘9k( Id))

K
i=1 Zﬂ.(_old) fj (Xi |8j(0|d))
j=1

X

I MZ
JUN

]

N old) (old)
Sy 7 £ (% |9
i=1 Zﬂ_(old)f (X |0(0|d))

(new) _
Hy i Jﬁ(om)f (% |0(0Id)) (2.2.22)
K
i=1 Zﬂ'fom)f (X |9(0|d))
=1
Old)f (X |0(0|d))
X —
Zl( k) (old) (old)
Z;z 0%, | 9°9)
2(new)
Oy i old)f (x [6°) ' (2.2.23)
K
i= Zﬂ_ old) fj (X] I 9](0|d))
j=1

The estimation ™" is obtained as follows. First we partially differentiate formula (2.3.20)

with respect to « .

dr
N ﬂ_(old)f (X- |9(old)) (a)
Let z — —log B - +logx ||=0 (2.3.24)
= leﬁﬁmd)fj(xil@j(o'd)) ( )
j=

n

( The n—th derivative of the Gamma function is: ((;j—)nl“(x) = J':tx’le"(lnt)” dt )
X

j t*letInt dt

N ﬂ_(old)f (Xi |9(old))
= Z K : |dl l Id —|Ogﬂ—° F(a) +Iog & - (23:29)
= Zl:ﬂj(o 'f,(x 16°)
J=
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It is difficult to solve the equation (2.3.25) for obtaining the estimation """ . Therefore,

the concept of maximization step in generalized EM (GEM) algorithm and method of moment

estimator (MME) are used to find estimation ™" . First let the estimation by MME denote

by &, ey - The estimation a{™" is found to have the maximum value of incomplete space

log-likelihood for A in arange of value and

(new)

™" = o + A&y ey — 1) - (2.3.26)

In others words, the estimations z™", g™, u™", o™ o™ by (2.3.18), (2.3.21),

(2.3.22), (2.3.23) and (2.3.26) increase the incomplete space log-likelihood as much as

possible. The algorithm is as follows,

FMM Clustering Algorithm (Gamma distribution and normal distribution mixture)
Step 1. Inputdata X ={X,X,, " Xy}

Step 2.  Decide the number.of groups K, and'give initial value ®©* .

Step 3. Updated the estimations by equation-(2.3.18), (2.3.21), (2.3.22), (2.3.23) and

(2.2.26) to obtain the new estimations @™,

Step4. If logL(®"™)—logL(®C”)<tolerance , stop iteration with newly updated

estimates, else replace ®©® by new estimations and repeat step3.

Step 5.  After iterations finish, use equation (2.3.16) to classify data points.

18



2.4 Kernel Density Estimation (KDE)

The issue of selecting initial values in GMM or FMM is solved by kernel density
estimation (KDE) method [7]. The high and low peaks in kernel density curve are used for
giving the initial values in KDE, and its bandwidth is determined by the program code of
“density” in software R. Number of the high peaks is also used to select cluster size K.
Therefore KDE method is considered before classifying the data. The concept of KDE is
when data contains different structure from different distributions, the mixture distributions
are used. First the kernel density curve is made by data and K high peaks are determined by
kernel density. The definition between finding K different structures in data is the same. We

give a basic example as follows

mixture distribution
f(x)

Figure 2.4.1: The mixture distribution is composed of two normal mixture distributions, the
mean is 4, and the standard deviation is o, in one of normal mixture distributions, mean
Isy, and the standard deviation is o, in another. It is observed that data contains two

structures by kernel density. The data is actually generated from two normal distributions.

The model is normal mixture model, the high peaks can be estimated from the means of two

normal distributions. That is /4, =X, £, =X,. And because 99% data of one structure comes
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from normal distribution is contained in 6-standard deviation. In other words, maximum and
minimum of 99% of the data from one structure between 6-standaed deviations are in the
lower peaks. So the estimations of standard deviation are obtained by the above concept. That

isG, = Xl;XO , G, = X4;X3. But this method can not be used in FMM. We give a basic

example as follows

mixture distribution

f(x)

Gamma(e, [7)

Normal(u, o)

|
T T T T T

I
X X, X X, Xs X

Figure 2.4.2: The mixture distribution is composed of Gamma(«, ) and Normal(u, o).

We want to estimate ¢ and g of Gamma distribution in Figure 2.4.2. Since most of the
same structure is among the low peaks, we first find low peaks from kernel density curve such
that data is separated as several structures. Then the low peaks x, and x, can be found in the
structure of Gamma(«, £) . The initial values can be obtained by method of moment estimator
(MME) for o« and g from the low peaks x, and x, can be found in the structure

of Gamma(e, £). Finally, put the initial values into FMM to classify the data.
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2.5 Model Selection
First the number of groups K must be decided before using K-means or GMM or FMM
for further research. The choice of the number of groups is very important. The grouping
results are always very different when we choose different numbers of groups. Model
selection criterion like Akaike information criterion (AIC) or Bayesian information criterion
(BIC) is useful to select the cluster size K [7]. They are defined as follows
AIC =—2log(L)+2p (2.5.1)
BIC =-2log(L)+ plog(N) (2.5.2)
p means the number of free parameters. L is maximum likelihood of the model estimated.
N means the number of all data. The goal is selecting the number of groups K by finding p
such that AIC or BIC minimizes. The value AIC and BIC are the same when the sample size
N is 7.389, and the penalty term in BICis bigger than in AIC when the sample size N is bigger
than 7.389. Therefore the BIC iis preferred because pixel size in PET images are larger than
7.389. In other words, a simpler model-can be selected with smaller numbers of groups by

BIC.
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2.6 Procedure

The procedures of K-means with KDE, GMM with KDE and FMM with KDE are shown
as follows.

Input the data

\ 4

Draw the kernel density by

these data
Provide initial values and Provide seeds and
number of groups number of groups
of GMM or FMM by KDE of K-means by KDE
A A
Classify the data by Classify the data by
GMM or FMM K-means

Find the model that minimizes
BIC

\ 4

Obtain segmented images

Figure 2.6.1: The procedure for segmentation of data by K-means with KDE, GMM with
KDE and FMM with KDE
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Chapter 3. Application

3.1 The PET Scanner

Positron emission tomography (PET) is a non-invasive nuclear medical scanning method.
The effect of mutual destruction between positron and electron is used. The gamma ray which
is generated by the above effect is measured. The image is composed by computers from the
distributions of positron isotope in human organs. Then the metabolic rate per unit is
calculated. The medicine ®*FDG (**F-labelled deoxyglucose) is used before PET scanning
because *FDG is similar to the glucose which is absorbed by malignant tumor. If there is
specific light region in PET scanning, it means abnormal situation may occur at this region.
Therefore, the PET scanning helps docters to determine the abnormal regions in the human
body. It can also help doctors:assess the effects of tumor treatment. This is one of the medical
tools for finding tumor in the human body in recent years.

Furthermore, MicroPET  is used to.research on small animals like mouse. The main
reason is that human disease hehavior.can often be modeled using small animals. Therapies of
human diseases are based on analyzing physiological change. The slice of mouse brain in

MicroPET images is shown as follows.

Figure 3.1.1: The 47th slice of the mouse brain MicroPET scanning
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3.2 Phantom Study

PET images can be used to find the abnormal regions in organisms as described in
section 3.1. However, the region we discovered by clustering methods in PET images can not
determine the abnormal structure of organisms. Hence the phantom experiment is designed
for comparing the accuracies of these clustering methods. We use the cylindrical container
with radius 40mm and height 110mm for the phantom experiment. The width of the clapboard

which divided the container into four blocks evenly is 5mm.

80 mm

A
\

mm

\Y o

Figure 3.2.1: The geometric information of the cylindrical container

Cylindrical container is subdivided into four compartments, each containing substance of
different concentration. The four regions show different brightness in the PET image of the
phantom experiment. There are 63 slices where pixel size is 256 x256. Therefore the data

size is 63x256x 256 .

24



Figure 3.2.2: (A) The 13thslice image of originalMicroPET data in the phantom experiment.
It is divided into four regions by the clapboard. Individual region shows different brightness.
(B) The exact location of four different activities is known by the geometric information of
the cylindrical container. The background imageregion.is called Group5.

The highest activity region is defined as Groupl, and the second-highest activity region
is defined as Group2, and third highest activity region is defined as Group3, and fourth
highest activity region is defined as Group4. Final the lowest activity region called
background image is defined as Group5. We will use K-means with KDE, GMM with KDE
and FMM with KDE to classify the original PET image data. The following figure is made by

PET image data from the phantom experiment.
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(A)

Kernel Density for the pixels of phantom
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(B) Kernel Density for the pixels of phantom (C) Kernel Density for the pixels of phantom
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Figure 3.2.3: (A) The kernel density is made by the PET image data from the phantom
experiment. (B) It is made by adjusting appropriate scope in x-axis and y-axis. The goal is to
conveniently observe the peaks in kernel density and estimating the model parameters.

(C) Take log of data and then graph kernel density for more obvious peaks. These peaks are
used because they are more obvious.

After selecting the initial values by KDE, the data is classified by the clustering methods in
chapter 2. Since the grouping results are always very different because of differences about

the number of groups, BIC is used to decide the numbers of groups.
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Figure 3.2.4: The BIC values are calculated from different models, k is the number of the
groups. (A) K-means + KDE, when k=7 BIC is the minimum. (B)GMM + KDE, when k=5
BIC is the minimum (C) FMM (exponential and normal mixture) + KDE, when k=5 BIC is
the minimum. (D) FMM (Gamma and normal mixture)+KDE, when k=5 BIC is the
minimum.

It can be decided how to select the number of the groups by the result of Figure 3.2.4.
Therefore, the following results are decided in the phantom experiment to classify the PET
image data. Select k =7 when K-means with KDE is used, k=5 when GMM with KDE is

used, k=5 when FMM (exponential and normal mixture) with KDE is used and k=5
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when FMM (Gamma and normal mixture) with KDE is used. The images after different

clustering methods show as follows.

Figure 3.2.5: (A) k =7, the 13th slice image by K-means with KDE (B) k =5, the 13th
slice image by GMM with KDE (C) k =5, the 13th slice image by FMM (exponential
and normal mixture) with KDE (D) k =5, the 13th slice image by FMM (Gamma and
normal mixture) with KDE

Figure 3.2.5 shows the 13th slice images with different clustering methods. It is observed that
the clustering regions of Groupl and Group2 are a little different in (B), (C) and (D).
However, since we are using different distributions for estimating the dark regions in PET

image, the regions in Group5 are very different in (B), (C) and (D). The following table shows
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three kinds of accuracy in Groupl, Group2 and Groupb.

Table 3.2.1: Compare the accuracy with four different methods from the result of Figure 3.2.5.
Those methods are individual K-means with KDE, GMM with KDE, FMM(1) with KDE and
FMM(2) with KDE. True positive rate shows in (A), negative rate shows in (B) and overall
accuracy shows in (C).

Note: FMM(1) means exponential distribution and normal distribution mixture. FMM(2)

means Gamma distribution and normal distribution mixture.

(A)
True positive rate
K-means+KDE | GMM+KDE FMM(1)+KDE | FMM(2)+KDE
Groupl 0.580477 0.906258 0.945634 0.946009
Group2 0.791660 0.922194 0.942516 0.930748
Group5 0.830094 0.786272 0:902402 0.882827
(B)
True negative rate
K-means+KDE .| GMM+KDE FMM(1)+KDE | FMM(2)+KDE
Groupl 0.999992 0.999549 0.998441 0.998408
Group2 0.990613 0.985185 0.985267 0.986665
Group5 0.985533 0.995245 0.910743 0.948743
©
Overall accuracy
K-means+KDE | GMM+KDE FMM(1)+KDE | FMM(2)+KDE
Groupl 0.971257 0.993159 0.994824 0.994819
Group2 0.976985 0.979835 0.982338 0.982835
Group5 0.874153 0.845675 0.904766 0.901510
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The accuracy of K-means with KDE is low in Groupl, Group2 and Group5. The accuracy of
GMM with KDE in Groupl and Group2 is a little better but it is still low in Group5. FMM(1)
and FMM(2) are common in using the right-skewed distribution to be the model of
background images. Hence the accuracy of FMM(1) or FMM(2) in Groupl, Group2 and
Group5 is significantly better than K-means or GMM. For Group3, FMM(1) is better than
FMM(2). It is because the profile in FMM(1) can be observed clearly from Figure 3.2.5, but

that in FMM(2) can not.

3.3 CT Study

In addition to PET images, we would like to apply these clustering methods to the other
kind of data. Here we consider cemputerized tomography (CT) images. CT scanning is also
one of the medical diagnosistools using X-ray. It shows clearly the organization of organisms
through a slice of image by X-ray absorption. The region of higher pixel value is lighter at the
parts of high absorption, and the region”of lower. pixel value is darker at the parts of lower
absorption. Comparing CT images and PET images, -it Is observed that it is easier to find the
location of abnormal regions in the human-body by PET images, and it is easier to outline by

CT images. They are shown as the following figures.

Figure 3.3.1: The 2D CT image is shown and there are 390 slices.
(A) The 161 th slice PET image (B) The 161 th slice CT image
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The profile and organ inside the body is very clearly from the CT image by Figure 3.3.1.
Hence the result of segmentation for CT image is compared to original data by this feature.
The other CT image whose size is 512x373 is used. Then the kernel density is made by this

data for finding initial values.

(B) Kernel density for the CT image(A)

0002 0003 0004

Density

0,000 0.001

I I I T I I
0 S00 1000 1500 2000 2500

Intensity

Figure 3.3.2: (A) The sagittal plane in the CT image contains teeth, spine, trachea,
etc. The data size is512x373. (B) The kernel density is made by the pixel data in
(A).
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Next the BIC is used to select the numbers of groups k. It is shown the relationship

between BIC and the numbers of groups k is as follows

(A) K-means (B) GMM
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Figure 3.3.3: The BIC values are calculated from different models; k is the number of groups.
(A) K-means + KDE, when k=9 BIC is the minimum. (B)GMM + KDE, when k= 7 BIC is
the minimum (C) FMM (exponential and normal mixture) + KDE, when k=9 BIC is the
minimum. (D) FMM (Gamma and normal mixture) + KDE, when k=7 BIC is the minimum.

It can be decided how to select the number of the groups by using the result of Figure
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3.3.3. Therefore, select k =9 when K-means with KDE is used, k=7 when GMM with
KDE is used, k=9 when FMM (exponential and normal mixture) with KDE is used and

k=7 when FMM (Gamma and normal mixture) with KDE is used. The images after

different clustering methods are,

Figure 3.3.4: (A) k=9, the image after using K-means with KDE (B) k =7, the image after
using GMM with KDE (C) k=9, the image after using FMM (exponential and normal
mixture) with KDE (D) k =7, the image after using FMM (Gamma and normal mixture)
with KDE

The trachea in the segmentation of the CT image is clear in Figure 3.3.4 (C) and Figure (D).
They both are results of using right-skewed distribution and normal distribution mixture
model. That is the FMM method. The K-means result in Figure 3.3.4 (A) is poor in the region
of trachea. There are two groups in trachea. GMM also has two groups in trachea, as shown in

Figure 3.3.4 (B).
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Chapter 4. Conclusion

The methods of K-means with KDE, GMM with KDE and FMM with KDE are used to
classify the data of PET images and CT images. It is observed that the FMM method has high
accuracy in the high-activity region in PET images from Chapter 3. The accuracy of
low-activity region from FMM is higher than that from K-means or GMM in PET images.
The CT image is also clustered by these methods. The result of FMM is better than that of
K-means or GMM in the lower pixels of data. After comparing these methods, the data of the
PET images or CT images can be classified by FMM because the high accuracy of
segmentation obtained by FMM in high and lower activity regions.

The FMM method considers;the property and’structure of data. It constructs a model to
fit the original data more closely. Therefore, the result we obtained from FMM is better than
GMM. We used exponential distribution with -normal distribution mixture model and Gamma
distribution with normal distribution mixture model. For further work, one can test and
attempt to find more suitable distributions to increase.the accuracy of data classification.
Otherwise, the block of pixel values can be used to make pixel data to have more information,
like the pixel location. So we can take multivariate normal distribution to model the original

data, and compare the results by block method with one pixel point.
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