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摘   要 

正子電腦斷層掃描影像能協助醫師判定異常部位，在 PET 影像上特異的亮

點或暗點則表示這些異常部位可能發生的位置，因此 PET 影像的分割是非常

重要。我們使用了以下方法去進行影像的分割以圈選出我們所感興趣的區域，

包含了 K-means, Gaussian mixture model (GMM)以及 Flexible mixture model 

(FMM)。FMM 與 GMM 最大的差異在於兩者所使用的混合分配，FMM 此混

合模型多考慮了 PET 影像的結構的特性，使用右偏分配估計背景的部份，另

外以常態分配的混合估計非背影之影像。而 FMM 之分群結果也比 K-means 與

GMM 較佳。 
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ABSTRACT 

Positron Emission Tomography (PET) helps doctors determine the 

abnormal regions. The specific brightened regions in PET images show the 

location of abnormal region. Hence the segmentation of the data form PET 

images is very important. There are three methods to classify the data from 

PET image to obtain the region of interest, K-means with KDE, Gaussian 

mixture model (GMM) with KDE and flexible mixture model (FMM) with 

KDE. The main difference between GMM and FMM is that, GMM uses 

several normal distributions to fit the original PET data, while FMM does 

not. FMM considers the property and structure of PET image data. It uses a 

right-skewed distribution to fit the background images. The mixture normal 

distribution is used to fit other regions. Finally, the result of FMM with 

KDE is better than the result of K-means with KDE and GMM with KDE. 
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Chapter 1.  Introduction 

  

Positron Emission Tomography (PET) is a very important medical tool. It helps doctors 

determine the abnormal region in the human body. Multi-functional medical scanning is 

developed in recent years such that nuclear medical imagining and other traditional imaging 

functions can be combined. It can provide exact dissected locations of nuclear medical 

imagining and attenuation correction, such as, PET and CT, PET and MRI, SPECT and CT, 

SPECT and MRI, SPECT and CT and X-ray and MRI… etc. For tumor scanning, because 

glucose absorption ratios between normal cells and cancer cells are different for nuclear 

medicine in PET images, high contrast images can be provide by PET images. The region 

which has high absorption ratio shows high intensity and this region is most likely the region 

of primary tumor or high-activity tumor. The methods like K-means, Gaussian mixture model 

(GMM) and flexible mixture model (FMM) are used to classify the data for finding the 

regions of interest. 

The concept of FMM is very similar to GMM. They both use EM algorithm to estimate 

the unknown parameters in their models to classify the data. The main difference between the 

two methods is that, GMM uses several normal distributions to fit the original PET data, 

while FMM does not. The FMM method considers the property and structure of the data so 

that the model can be consistent with the original data. It can be detected by observing the 

data of PET images, that the proportion of small pixel value is very large so the distribution is 

skewed to the right in this part. Therefore in FMM, the right-skewed distribution will be taken 

to estimate such part. The mixture normal distribution is used to estimate other parts. Before 

classifying data, we have to consider how to select the number of groups, how to give initial 

values for GMM and how to give the initial seeds for K-means. Kernel density estimation 

(KDE) is used for solving these issues. It provides the initial values for GMM and FMM and 

the initial seeds for K-means. The number of groups can also be provided by KDE. Then we 
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can get the several sets of estimations and number of groups. Finally, the issue of model 

selection is then solved by Akaike information criterion (AIC) or Bayesian information 

criterion (BIC). 

 K-means with KDE, GMM with KDE and FMM with KDE, are methods used for 

clustering. The PET phantom experiment is designed for comparing these methods. There are 

63 slices where size is 256256. Hence all data size is 63256256. The exact locations of 

every kind of activity regions is known, so we can compare the accuracy of different methods. 

Additionally, a computerized tomography (CT) image is classified by these methods. The CT 

image is a sagittal plane of a human body and its data size is 512373. The result of 

classifying the CT image can be compared to the original CT image because of good outlining 

effect. The FMM with KDE method is better than K-means and GMM in the PET phantom 

experiment and the CT scanning. 
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Chapter 2.  Methodologies 

 

2.1 K-means Clustering 

K-means is a typical method for clustering. The goal is to decrease the square error for 

each observation belonging to the cluster center. Suppose that data size is N, and we want to 

partition the data into K clusters. After K-means algorithm, the kth group is expressed as Gk. 

The set Gk whose centroid is k  contains  data points. Then the square error of set Gk 

can be defined as (2.1.1) 

kn

2( ) , 1, ,
i i

k i k
x G

e x k


    K ; (2.1.1) 

1

K

k
k

E e


 . (2.1.2) 

 

In equation (2.1.2), E is the sum of the square error, or the overall clustering error. K-means 

clustering method is designed to minimize E. The algorithm will be described in detail. 

 

 

K-means Clustering Algorithm 

Step 1. Input data 1 2{ , , , }NX x x x   

Step 2. Decide the number of groups K, and randomly selected seeds in K to be the 

centroids of each group. The centroids are 1 2, , , K    

Step 3. Calculate the distance between each data points and its group centroids according K 

centroids from last step. Join the data point to the group with the nearest centroid. 

The kth group set is shown as follows 

       1, ,    , 1, ,k i i k i jG x x x j K k        K . (2.1.3) 

Step 4. Recalculate K centroids as follows 
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, 1, ,i k

i
x G

k
k

x

k
n

  


 K


 .       (2.1.4) .       (2.1.4) 

Step 5. If the differences of centroids in old and new iterations are smaller than a tolerance 

level, then the iteration process stops. Else, the iteration process will go to Step2.     

Step 5. If the differences of centroids in old and new iterations are smaller than a tolerance 

level, then the iteration process stops. Else, the iteration process will go to Step2.     

  

2.2 Gaussian Mixture Model (GMM) 2.2 Gaussian Mixture Model (GMM) 

The locations of high pixel value in PET image are likely to be the abnormal regions, we 

want to find an appropriate model to fit the true data 

The locations of high pixel value in PET image are likely to be the abnormal regions, we 

want to find an appropriate model to fit the true data 1 2{ , , , }N1 2{ , , , }NX x x x  . We further segment 

X by this model. If distribution of data is shown to be a single elliptical curve, we can fit it 

with one distribution. If it is shown to be a complex curve, then using a single distribution is 

not suitable to describe the probability density function of the data. Therefore, we consider 

Gaussian mixture model (GMM) [7]. This model consists of K different normal distributions 

corresponding to K different weights 1 2, , , K   . The model is expressed as 

1

( | ) ( | )
K

i k k i
k

f x f x k 


   with 
1

1  ,  0 1
K

k k
k

 


   , 
(2.2.1) 

         and 1 2 1 2( , , , , , , , )K K         , 

where (x | )k kf  represents probability density function of the kth normal distribution, and its 

kparameters denote ( , )k k   . Next, we use maximum likelihood estimator (MLE) to 

estimate the parameters of Gaussian mixture model, 

x                      (2.2.2) 

   

1

log ( ) log ( | )
N

i
i

L f


  

11

log ( | )
N K

k k i k
ki

f x 


   




      (2.2.3) 

   


.      (2.2.4) 
1 1

log ( | )
N K

k k i k
i k

f x 
 

   


 

In order to find 1 2 1 2( , , , , , , , )K K          such that log likelihood function is 

maximized, we perform partial differentiation, 
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Let 
log ( )

0
L 

 for obtaining ˆ arg max ( )MLE L


 


   .   (2.2.5) 

It is very difficult to obtain   from equation (2.2.5). Therefore the EM algorithm is used to 

estimate the parameters. First the indicator function Yik is defined 

.6) 

Let  to be )K Then, the joint probab

as 

1,   if   comes from kth normal distribution;

0,  otherwise.                                                ik

x
Y


 


i    (2.2

iY 1,( ,i iY Y . ility density function of xi and yi is 

1k

( , ) ( | )
K

i i ik k i kf x y y f x  .     


  (2.2.7) 

The log likelihood function of jo

x y

)

int density probability function is 

1

log ( , )
N

i i
i
log ( )L f            (2.2.8) 

1

= log ( ,
N

i i
i

f x y

             (2.2.9) 

1 1

log ( | )
N K

ik k k i k
i k

y f x 
 

 
 

  
           (2.2.10) 

 
1 1

log ( | )
N K

ik k k i k
i k

y f x 
 

       

  x

    (2.2.11) 

1 1 1 1

log( ) log( ( | ))
N K N K

ik k ik k i k
i k i k

y y f 
   

   .    (2.2.12) 

Given and X then the Expectation s

     

 

( )old tep in EM algorithm starts. 

( ) ( ); ) (log ( ) | , )old oldE L X   (Q      (2.2.13) 

( )

1 1 1 1

log( ) log( ( | )) ,
N K N K

old
ik k ik k i k

i k i k

E Y Y f x x 
   

   
 
         (2.2.14) 

  ( ) ( )

1 1 1 1

= ( | , ) log ( | , ) log( ( | ))
N K N K

old old
ik k ik k i k

i k i k

E Y x E Y x f x 
   

    .       (2.2.15) 

Equation (22.15) of )  is 

    

 

( )( | , old
ikE Y x 

( ) ( )( | , ) 0 (1| , )
ik

old old
ik yE Y x f x        (2.2.16) ( )1 (1| , )

ik

old
yf x   

( )

( )

( , 1| )

( | )

old
i ik

old
i

f x Y

f x

 



        (2.2.17) 
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( ) ( )

( ) ( )

1

( | )

( | )

old old
k k i k

K
old old

j j i j
j

f x

f x

 

 





.        (2.2.18) 

So,  is obtained with combination of equation (2.2.15) and equation (2.2.18) as 

follows: 

( )( ; )oldQ  

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )1 1 1 1

1 1

( | ) ( | )
( ; )= log log( ( | ))

( | ) ( | )

old old old oldN K N K
old k k i k k k i k

k kK K
old old old oldi k i k

j j i j j j i j
j j

f x f x
Q f

f x f x

   
i kx 

      

 

   
 

. 

(2.2.19)
 

Equation (2.2.19) is divided into two parts for convenience of maximization step in the EM 

algorithm. The first part is  

 
( ) ( )

( ) ( )1 1

1

( | )
log

( | )

old oldN K
k k i k

kK
old oldi k

j j i j
j

f x

f x

  
  






.      (2.2.20)  

The second part is 

( ) ( )

( ) ( )1 1

1

( | )
log( ( | ))

( | )

old oldN K
k k i k

k i kK
old oldi k

j j i j
j

f x
f x

f x

  
  






.    (2.2.21)  

 

Formula (2.2.20) is only related with the parameter k , and formula is only related to the 

parameter k . In other words, the issue of choosing the parameters that 

maximizes  is now simplified to choosing the parameter( )( ; )old Q k  that maximizes 

formula (2.2.20) and choosing the parameter k  that maximizes formula (2.2.21). The first 

formula (2.2.20) is calculated as follows. 

 

let  , and 

( ) ( )

( ) ( )1 1 1

1

( | )
log 1 0,    1,...,

( | )

old oldN K K
k k i k

k kK
old oldi k kk

j j i j
j

f x
k

f x

    
    



 
           
 
 

 


K    (2.2.22) 
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( ) ( )

( ) ( )1

1

( | )1
    0,    1,...,

( | )

old oldN
k k i k

K
old oldi k

j j i j
j

f x
k

f x

  
  



  


K       (2.2.23) 

( ) ( )

( ) ( )1

1

( | )
    0,    1,...,

( | )

old oldN
k k i k

kK
old oldi

j j i j
j

f x
k K

f x

   
 



  


          (2.2.24) 

( ) ( )

( ) ( )1 1

1

( | )
    0

( | )

old oldK N
k k i k

kK
old oldk i

j j i j
j

f x

f x

   
  



 
 

 
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( ) ( )

( ) ( )1 1 1

1

( | )
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( | )

old oldK N K
k k i k

kK
old oldk i k

j j i j
j

f x

f x

   
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

  


         (2.2.26) 

( ) ( )

1

( ) ( )1

1

( | )

    0
( | )

K
old old

k k i kN
j

K
old oldi

j j i j
j

f x

f x

 


 













 



         (2.2.27) 

1

    1 0
N

i




               (2.2.28)  

    N   .              (2.2.29) 

 

The estimation for parameter k can be obtained by substituting the result of equation (2.2.29) 

into equation (2.2.24). 

  

( ) ( )
( )

( ) ( )1

1

( | )1

( | )

old oldN
new k k i k

k K
old oldi

j j i j
j

f x

N f x
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

 


.       (2.2.30) 

 

 

And because of 

( ) ( )2

2
( ) ( )1 1

1

( | )
log 0

( | )

old oldN K
k k i k

kK
old oldi kk

j j i j
j

f x
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  
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




 
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.     (2.2.31) 
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The result of (2.2.31) means  

( ) ( )
( )

( ) ( )1 1

1

( | )
arg max log

( | )
k

old oldN K
new k k i k

k kK
old oldi k

j j i j
j

f x

f x


  
  



 


.   (2.2.32) 

 

In other words, the estimation  maximizes formula (2.2.20). Next, the second formula 

(2.2.21) is expanded. The parameter set 

( )new
k

k  in formula (2.2.21) contains k  and k  

 

  

( ) ( )

( ) ( )1 1

1

( | )
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( | )

old oldN K
k k i k

k i kK
old oldi k
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  
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
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( | ) ( )1 1
log 2 log

2 2 2( | )

old old
i i

K
old old

j j i jN
j

old old
i K K i K i K

KK
old old K

j j i j
j

f x x

f x

f x x

f x

   
 

   
 







  
    
  

 
  

        
   

 







.        (2.2.34) 

 

 

 

In order to find k  such that formula (2.2.21) is maximized, we partially differentiate 

with k , 
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Let 

( ) ( ) 2
21 1 1 1
1 2

( ) ( ) 1

1

( ) ( ) 2
1 2

2
( ) ( )

1

( | ) ( )1 1
log 2 log

2 2 2( | )

0
( | ) ( )1 1

log 2 log
2 2 2( | )

old old
i i

K
old old

j j i jN
j

old old
ik K K i K i K

KK
old old K

j j i j
j

f x x

f x

f x x

f x

   
 

    
 







  
    
  

 
 

         
   

 







  (2.2.35) 

( ) ( )

2
( ) ( )1

1

( | )
    0

( | )

old oldN
k k i k i k

K
old oldi k

j j i j
j

f x x

f x

  
 



 
      
 
 




           (2.2.36) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )1 1

1 1

( | ) ( | )
    0

( | ) ( | )

old old old oldN N
k k i k k k i k

i kK K
old old old oldi i

j j i j j j i j
j j

f x f x
x

f x f x

   
    

 

  
 

      (2.2.37) 

( ) ( )

( ) ( )1

1( )
( ) ( )

( ) ( )1

1

( | )

( | )

    
( | )

( | )

old oldN
k k i k

i K
old oldi

j j i j
jnew

k old oldN
k k i k

K
old oldi

j j i j
j

f x
x

f x

f x

f x

 

 


 

 









 







.          (2.2.38) 

In addition, k must be considered for obtaining the parameter set k  such that formula 

(2.2.21) is maximized. We partially differentiate with k , 

Let 

( ) ( ) 2
21 1 1 1
1 2

( ) ( ) 1

1

2 ( ) ( ) 2
1 2

2
( ) ( )

1

( | ) ( )1 1
log 2 log

2 2 2( | )

( | ) ( )1 1
log 2 log

2 2 2( | )

old old
i i

K
old old

j j i jN
j

old old
ik K K i K i K

KK
old old K

j j i j
j

f x x

f x

f x x

f x

   
 

    
 







  
    
  

 
 

         
   

 







0  

( ) ( ) 2

2 2 2
( ) ( )1

1

( | ) ( )1
    0

2 2( )( | )

old oldN
k k i k i k

K
old oldi k k

j j i j
j

f x x

f x

  
  



 
      
 
 




        (2.2.39) 

( ) ( )
2

( ) ( )1

12( )
( ) ( )

( ) ( )1

1

( | )
( )

( | )

    
( | )

( | )

old oldN
k k i k

i k K
old oldi

j j i j
jnew

k old oldN
k k i k

K
old oldi

j j i j
j

f x
x

f x

f x

f x

 
 


 

 











 







.        (2.2.40) 
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Partial derivatives of formula (2.2.21) with respect to k  and k  are less than zero. It 

means the result of equation (2.2.38) and of equation (2.2.40) maximizes 

formula (2.2.21). So is maximized by the results of equations (2.2.30), (2.2.38) 

and (2.2.40). Next we consider how to use the estimations to segment data. First let 

( )new
k

( ;Q

2(
k

)new

( ) )old   

1 2, , , Nx x x  be from K normal distributions with weight 1 2, , , N   . The data point ix  is 

classified to No.  group. Therefore, iz

( | )      ,  1, ,   and  1, ,i jf z j i N j K           (2.2.41) 

 

The conditional probability density function of given data point iz  ix  and the estimations 

of parameters  is 

  
( , , )

( | , )
( , )
i i

i i
i

f x z
f z x

f x


 


         (2.2.42) 

 
( | , ) ( , )

( , )
i i i

i

f x z f z

f x







        (2.2.43) 

 
( | , ) ( | ) ( )

( | ) ( )
i i i

i

f x z f z f

f x f

 


 


       (2.2.44) 

 
( | , ) ( | )

( | )
i i i

i

f x z f z

f x







        (2.2.45) 

 

1

( | )
  , {1,2, ,

( | )

i i iz i z z
iK

j j i j
j

f x
z K

f x
}

 

 


 


 .     (2.2.46) 

Thus the probability that the data point ix  comes from the kth normal distribution is 

    

1

( | )
( = | , )  

( | )

k i k k
i i K

j j i j
j

f x
f z k x

f x

 

 


 


.          (2.2.47) 

Take equation (2.2.47) to be the standard for data segmentation. Then the set G  where the 

mth group is as follows 

m
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1

( | )
     ,   arg max  

( | )

k i k k
i m Kk

j j i j
j

f x
x G where m

f x

 

 


 
 
 
 
 
 


 .    (2.2.48) 

The estimations for the parameters are updated by the EM algorithm. After iterating with 

newly updated estimates, it can be ensured that likelihood is increasing. The detailed 

algorithm is 

 

GMM Clustering Algorithm 

Step 1. Input all data 1 2{ , , , }NX x x x   

Step 2. Decide the number of groups K, and give initial value ( )old . 

Step 3. Update the estimations by s (2.2.30), (2.2.37) and (2.2.39) to obtain the new 

estimations . ( )new

Step 4. If , stop iteration with newly updated 

estimates, else replace by new estimations and repeat step3. 

( ) ( )log ( ) log ( )new oldL L tolerance   

( )old

Step 5. After iterations finishes, use equation (2.2.48) to classify data points. 

 

 

2.3 Flexible Mixture Model (FMM) 

The data is modeled by several normal distributions in section 2.2. However, it is 

observed that the proportion of small pixel value is very large in all PET images. The main 

reason for this phenomenon is that luminosity of non-living parts in PET images is very weak 

but occupies large area.  The region is called the background image. The following is an 

example of mouse brain. It shows that the histogram for pixels of a mouse brain. 
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Figure 2.3.1: It is the histogram for small pixels of a mouse brain in MicroPET image 

 

The distribution of all background pixels tends to accumulate in the left in figure 2.3.1, and 

the peak is found when pixel value is zero. Therefore, the right-skewed distribution is 

considered to be the model of small pixels in PET image. Otherwise, we use mixed normal 

distribution to model non-background data. The model called flexible mixture model (FMM) 

is defined by 

1

( | ) ( | )
K

i k k i
k

f x f x k 


   with 
1

1  ,  0 1
K

k k
k

 


   , 
(2.3.1) 

           and 1 2 1 2( , , , , , , , )K K         , 

where (x | )k kf   means the kth distribution. When k=1, the probability density function 

1 1(xf | )k k   

K, kf

is skewed to right and it can be used to model the background image. When 

k=2,…, (x | )k  is the kth normal distribution where parameters are denoted by 

( , )k k k    and these mixture normal distribution can be used to model the 

non-background image. First the indicator function Yik is defined as 
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The concept  is similar to G

1 ,if  comes from kth distribution.x
0 ,otherwise.                                  

i
ikY  


    (2.3.2) 

using the EM algorithm in FMM MM. The main difference is 

1 1(x | )k kf    of the two models. The first let )1,( ,i i iKY Y Y  , then joint probability density 

i is function of xi and y

    
1

( , ) ( | )i i ik k i k
k

f x y y f x
K

 


 .       

1 2( , , ,

(2.3.3) 

The following derivation is similar to (2.2.8)~(2.2.30) for finding K     

1 2, , , , )



K   such that is maximized. And because ( ;Q  

into two parts (2.2.20) and (2.2.21). First f

( )( ; )oldQ    ( ) )d can be divided 

( )new
k  maximize

ol

ormula (2.2.20) is considered and  

e result of (2.2.29). 

    

formula (2.2.20) in th

( ) ( )
( )

( ) ( )1

1

)oldi
j

j

 




part of formula (2.2.21)

( | )1

( |

old oldN
new k k i k

k K
old

j i j

f x

N f x

     .     (2.3.4) 

At another , 1 1(x | )k kf    skewing to the right is different from 

1 1(x | )k kf    in section 2.2. Here let 1 1(x | )k kf    to be exponential distribution first. 

1
1 1

1 ( | ) exp( )          , 0, 0k kf x x x  
         (2.3.5) 

Formula (2.2.21) is simplified for obtaining the estimations of k  

 

( ) ( )

( ) ( )1 1

1

( | )
log( ( | ))

( | )

old oldN K
k k i k

k i kK
old oldi k

j j i j
j

f x
f x

f x

  
  






    (2.3.6) 
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 
( ) ( )

11 1 1

( ) ( )

1

( ) ( ) 2
22 2 2 2
2 2

( ) ( ) 2

1

( ) ( )

( ) ( )

1

( | )
log

( | )

( | ) ( )1 1
log 2 log

2 2 2( | )

( | ) 1
log 2

2( | )

old old
i

iK
old old

j j i j
j

old old
i i

K
old old

j j i j
j

old old
K K i K

K
old old

j j i j
j

f x
x

f x

f x x

f x

f x

f x

   
 

   
 

 

 









 

 
     

 

  








1

2
2

2

( )1
log

2 2

N

i

i K
K

K

x  




 
 
 
 
 
 
 
 
 
 
 

     
   

 

 .  (2.3.7) 

The three parameters  , k and k contained in the parameter set k  are considered for 

maximizing of formula (2.3.7). First, we partially differentiate with respect to , 

Let 
( ) ( )

21 1 1

( ) ( )1

1

( | ) 1
 0

( | )

old oldN
i

iK
old oldi

j j i j
j

f x
x

f x

  
 







 
       
 
 




      (2.3.8) 

( ) ( )
1 1 1

2
( ) ( )1

1

( | )
    0

( | )

old oldN
i

K
old oldi

j j i j
j

f x x

f x

  
 



 
        
 
 




i         (2.3.9) 

( ) ( )

( ) ( )1

1( )
( ) ( )

( ) ( )1

1

( | )

( | )

    =
( | )

( | )

old oldN
k k i k

i K
old oldi

j j i j
jnew

old oldN
k k i k

K
old oldi

j j i j
j

f x
x

f x

f x

f x

 

 


 

 

















.       (2.3.10) 

 

In addition, k must be considered for obtaining the parameter set k  such that formula 

(2.3.7) is maximized. Next, we partially differentiate with respect to k , 

Let 
( ) ( )

2
( ) ( )1

1

( | )
0

( | )

old oldN
k k i k i k

K
old oldi k

j j i j
j

f x x

f x

  
 



 
       
 
 




      (2.3.11) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )1 1

1 1

( | ) ( | )
    0

( | ) ( | )

old old old oldN N
k k i k k k i k

i kK K
old old old oldi i

j j i j j j i j
j j

f x f x
x

f x f x

   
    

 

  
 

   (2.3.12) 
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( ) ( )

( ) ( )1

1( )
( ) ( )

( ) ( )1

1

( | )

( | )

    
( | )

( | )

old oldN
k k i k

i K
old oldi

j j i j
jnew

k old oldN
k k i k

K
old oldi

j j i j
j

f x
x

f x

f x

f x

 

 


 

 









 







.       (2.3.13) 

Finally, we partially differentiate with respect to k , 

Let 
( ) ( ) 2

2 2 2
( ) ( )1

1

( | ) ( )1
0

2 2( )( | )

old oldN
k k i k i k

K
old oldi k k

j j i j
j

f x x

f x

  
  



 
      
 
 




     (2.3.14) 

( ) ( )
2

( ) ( )1

12( )
( ) ( )

( ) ( )1

1

( | )
( )

( | )

    
( | )

( | )

old oldN
k k i k

i k K
old oldi

j j i j
jnew

k old oldN
k k i k

K
old oldi

j j i j
j

f x
x

f x

f x

f x

 
 


 

 











 







.     (2.3.15) 

 

Partial derivatives of formula (2.3.6) with respect to , k and k are less than zero. It means 

the result of equation (2.3.10), of equation (2.3.13) and of equation (2.3.15) 

maximizes formula (2.3.6). SoQ is maximized by the result of equations (2.3.4), 

(2.3.10), (2.3.13) and (2.3.15). After getting the estimations, use (2.2.48) as classification rule 

to determine how data points should be classified. 

( )new ( )new
k

( )old 

2( )new
k

( ; )

   

1

( | )
     ,   arg max  

( | )

k i k k
i m Kk

j j i j
j

f x
x G where m

f x

 

 


 
 
 
 
 
 


 .    (2.3.16) 

 

FMM Clustering Algorithm (Exponential distribution and normal distribution mixture) 

Step 1. Input data 1 2{ , , , }NX x x x   

Step 2. Decide the number of groups K, and give initial value ( )old . 

Step 3. Update the estimations by equations (2.3.4), (2.3.10), (2.3.13) and (2.3.15) to obtain 
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the new estimations . ( )new

Step 4. If , stop iterating with newly updated 

estimates, else replace by new estimations and repeat step3. 

( ) ( )log ( ) log ( )new oldL L tolerance   

( )old

Step 5. After iterations finish, use equation (2.3.16) to classify data points. 

 

Gamma distribution with 1   is an exponential distribution, 1 1(x | )k kf    is replaced by 

Gamma distribution. The derivation is similar to the derivation of using exponential 

distribution and normal distributions mixture model above. 

 

1
1

1 1

exp( )
( | )           , 0, 0, 0

( )k k

x
f x x x



 
 




 


 


    (2.3.17) 

 

The estimation is obtained by result of equation (2.2.29). That is ( )new
k  

   
( ) ( )

( )

( ) ( )1

1

( | )1

( | )

old oldN
new k k i k
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The estimation is still obtained by (2.2.21) and it is simplified as follows   ( )new
k

( ) ( )
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Where k  contains the parameters ,  , k and k . And the estimations , and 

 are obtained by (2.3.10), (2.3.13), (2.3.15). Those are 

( )new ( )new
k
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k

( ) ( )

( ) ( )1
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The estimation  is obtained as follows. First we partially differentiate formula (2.3.20) 

with respect to

( )new

 . 

Let 
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It is difficult to solve the equation (2.3.25) for obtaining the estimation . Therefore, 

the concept of maximization step in generalized EM (GEM) algorithm and method of moment 

estimator (MME) are used to find estimation . First let the estimation by MME denote 

by

( )new
k

( )new
k

(
ˆ

k MME ) . The estimation  is found to have the maximum value of incomplete space 

log-likelihood for 

(new
k

)

  in a range of value and 

    .      (2.3.26) ( ) ( ) ( )
( )ˆ(new old old

k k k MME k       )

In others words, the estimations , , , ,  by (2.3.18), (2.3.21), 

(2.3.22), (2.3.23) and (2.3.26) increase the incomplete space log-likelihood as much as 

possible. The algorithm is as follows. 

( )new
k

( )new ( )new
k

( )new
k

( )new
k

 

FMM Clustering Algorithm (Gamma distribution and normal distribution mixture) 

Step 1. Input data 1 2{ , , , }NX x x x   

Step 2. Decide the number of groups K, and give initial value ( )old . 

Step 3. Updated the estimations by equation (2.3.18), (2.3.21), (2.3.22), (2.3.23) and 

(2.2.26) to obtain the new estimations ( )new . 

Step 4. If , stop iteration with newly updated 

estimates, else replace by new estimations and repeat step3. 

( ) ( )log ( ) log ( )new oldL L tolerance   

( )old

Step 5. After iterations finish, use equation (2.3.16) to classify data points. 
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2.4 Kernel Density Estimation (KDE) 

 The issue of selecting initial values in GMM or FMM is solved by kernel density 

estimation (KDE) method [7]. The high and low peaks in kernel density curve are used for 

giving the initial values in KDE, and its bandwidth is determined by the program code of 

“density” in software R. Number of the high peaks is also used to select cluster size K. 

Therefore KDE method is considered before classifying the data. The concept of KDE is 

when data contains different structure from different distributions, the mixture distributions 

are used. First the kernel density curve is made by data and K high peaks are determined by 

kernel density. The definition between finding K different structures in data is the same. We 

give a basic example as follows 

 

 

f(x) 

x 

Figure 2.4.1: The mixture distribution is composed of two normal mixture distributions, the 

mean is 1  and the standard deviation is 1  in one of normal mixture distributions, mean 

is 2  and the standard deviation is 2  in another. It is observed that data contains two 

structures by kernel density. The data is actually generated from two normal distributions.  

 

The model is normal mixture model, the high peaks can be estimated from the means of two 

normal distributions. That is 1 1ˆ x  , 2ˆ 3x  . And because 99% data of one structure comes 
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from normal distribution is contained in 6-standard deviation. In other words, maximum and 

minimum of 99% of the data from one structure between 6-standaed deviations are in the 

lower peaks. So the estimations of standard deviation are obtained by the above concept. That 

is 1 0
1ˆ 3

x x 
 , 4

2ˆ
3

3x x 
 . But this method can not be used in FMM. We give a basic 

example as follows 

 

 

f(x) 

x 

Figure 2.4.2: The mixture distribution is composed of ( , )Gamma    and ( , )Normal   .  

 

We want to estimate   and   of Gamma distribution in Figure 2.4.2. Since most of the 

same structure is among the low peaks, we first find low peaks from kernel density curve such 

that data is separated as several structures. Then the low peaks 1x and 3x can be found in the 

structure of  ( )Gamma ,  . The initial values can be obtained by method of moment estimator 

(MME) for   and   from the low peaks 1x  and 3x  can be found in the structure 

of  (Gamma , )  . Finally, put the initial values into FMM to classify the data. 
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2.5 Model Selection 

First the number of groups K must be decided before using K-means or GMM or FMM 

for further research. The choice of the number of groups is very important. The grouping 

results are always very different when we choose different numbers of groups. Model 

selection criterion like Akaike information criterion (AIC) or Bayesian information criterion 

(BIC) is useful to select the cluster size K [7]. They are defined as follows 

2 log( ) 2AIC L p       (2.5.1) 

2 log( ) log( )BIC L p N      (2.5.2) 

p means the number of free parameters. L is maximum likelihood of the model estimated. 

N means the number of all data. The goal is selecting the number of groups K by finding p 

such that AIC or BIC minimizes. The value AIC and BIC are the same when the sample size 

N is 7.389, and the penalty term in BIC is bigger than in AIC when the sample size N is bigger 

than 7.389. Therefore the BIC is preferred because pixel size in PET images are larger than 

7.389. In other words, a simpler model can be selected with smaller numbers of groups by 

BIC. 
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2.6 Procedure 

The procedures of K-means with KDE, GMM with KDE and FMM with KDE are shown 

as follows.  

 

 

 
Input the data 

 

 

Draw the kernel density by 

these data 
 

 

 

 
Provide initial values and 

number of groups  

of GMM or FMM by KDE 

Provide seeds and  

number of groups  

of K-means by KDE 
 

 

 

 
Classify the data by 

GMM or FMM 

Find the model that minimizes 

BIC 

Classify the data by 

K-means 
 

 

 

 

 

 

 

 

Obtain segmented images  

 

 

Figure 2.6.1: The procedure for segmentation of data by K-means with KDE, GMM with 

KDE and FMM with KDE 
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Chapter 3.  Application 

 

3.1 The PET Scanner 

Positron emission tomography (PET) is a non-invasive nuclear medical scanning method. 

The effect of mutual destruction between positron and electron is used. The gamma ray which 

is generated by the above effect is measured. The image is composed by computers from the 

distributions of positron isotope in human organs. Then the metabolic rate per unit is 

calculated. The medicine 18FDG (18F-labelled deoxyglucose) is used before PET scanning 

because 18FDG is similar to the glucose which is absorbed by malignant tumor. If there is 

specific light region in PET scanning, it means abnormal situation may occur at this region. 

Therefore, the PET scanning helps doctors to determine the abnormal regions in the human 

body. It can also help doctors assess the effects of tumor treatment. This is one of the medical 

tools for finding tumor in the human body in recent years. 

Furthermore, MicroPET is used to research on small animals like mouse. The main 

reason is that human disease behavior can often be modeled using small animals. Therapies of 

human diseases are based on analyzing physiological change. The slice of mouse brain in 

MicroPET images is shown as follows. 

  

Figure 3.1.1: The 47th slice of the mouse brain MicroPET scanning 
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3.2 Phantom Study 

PET images can be used to find the abnormal regions in organisms as described in 

section 3.1. However, the region we discovered by clustering methods in PET images can not 

determine the abnormal structure of organisms. Hence the phantom experiment is designed 

for comparing the accuracies of these clustering methods. We use the cylindrical container 

with radius 40mm and height 110mm for the phantom experiment. The width of the clapboard 

which divided the container into four blocks evenly is 5mm. 

 

80 mm 

100 

  mm
110 

  mm 

 

Figure 3.2.1: The geometric information of the cylindrical container 

 

Cylindrical container is subdivided into four compartments, each containing substance of 

different concentration. The four regions show different brightness in the PET image of the 

phantom experiment. There are 63 slices where pixel size is 256 256 . Therefore the data 

size is . 63 256 256 
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Group1 Group2 

Group3 Group4 

Group5 

A B 

Figure 3.2.2: (A) The 13th slice image of original MicroPET data in the phantom experiment. 

It is divided into four regions by the clapboard. Individual region shows different brightness. 

(B) The exact location of four different activities is known by the geometric information of 

the cylindrical container. The background image region is called Group5. 

 

 

 

The highest activity region is defined as Group1, and the second-highest activity region 

is defined as Group2, and third highest activity region is defined as Group3, and fourth 

highest activity region is defined as Group4. Final the lowest activity region called 

background image is defined as Group5. We will use K-means with KDE, GMM with KDE 

and FMM with KDE to classify the original PET image data. The following figure is made by 

PET image data from the phantom experiment. 
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(A) 

  

(B) (C) 

0.008 

1.73 

4.03 
1.69 

9.78 
3.43 

20.1 
6.94 

14.3 25.4 

Figure 3.2.3: (A) The kernel density is made by the PET image data from the phantom 

experiment. (B) It is made by adjusting appropriate scope in x-axis and y-axis. The goal is to 

conveniently observe the peaks in kernel density and estimating the model parameters. 

(C) Take log of data and then graph kernel density for more obvious peaks. These peaks are 

used because they are more obvious. 

 

 

After selecting the initial values by KDE, the data is classified by the clustering methods in 

chapter 2. Since the grouping results are always very different because of differences about 

the number of groups, BIC is used to decide the numbers of groups. 
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(A) (B) 

   

(C) (D)

Figure 3.2.4: The BIC values are calculated from different models, k is the number of the 

groups. (A) K-means + KDE, when k=7 BIC is the minimum. (B)GMM + KDE, when k=5 

BIC is the minimum (C) FMM (exponential and normal mixture) + KDE, when k=5 BIC is 

the minimum. (D) FMM (Gamma and normal mixture)+KDE, when k=5 BIC is the 

minimum. 

 

It can be decided how to select the number of the groups by the result of Figure 3.2.4. 

Therefore, the following results are decided in the phantom experiment to classify the PET 

image data. Select  when K-means with KDE is used, 7k  5k   when GMM with KDE is 

used,  when FMM (exponential and normal mixture) with KDE is used and 5k  5k   
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when FMM (Gamma and normal mixture) with KDE is used. The images after different 

clustering methods show as follows. 

 

    

A B 

    

C D 

Figure 3.2.5: (A) , the 13th slice image by K-means with KDE (B) , the 13th 

slice image by GMM with KDE (C) 

7k  5k 
5k  , the 13th slice image by FMM (exponential 

and normal mixture) with KDE (D) 5k  , the 13th slice image by FMM (Gamma and 

normal mixture) with KDE 

 

Figure 3.2.5 shows the 13th slice images with different clustering methods. It is observed that 

the clustering regions of Group1 and Group2 are a little different in (B), (C) and (D). 

However, since we are using different distributions for estimating the dark regions in PET 

image, the regions in Group5 are very different in (B), (C) and (D). The following table shows 
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three kinds of accuracy in Group1, Group2 and Group5. 

 

Table 3.2.1: Compare the accuracy with four different methods from the result of Figure 3.2.5. 

Those methods are individual K-means with KDE, GMM with KDE, FMM(1) with KDE and 

FMM(2) with KDE. True positive rate shows in (A), negative rate shows in (B) and overall 

accuracy shows in (C). 

Note: FMM(1) means exponential distribution and normal distribution mixture. FMM(2) 

means Gamma distribution and normal distribution mixture. 

 

True positive rate  

K-means+KDE GMM+KDE FMM(1)+KDE FMM(2)+KDE 

Group1 0.580477 0.906258 0.945634 0.946009 

Group2 0.791660 0.922194 0.942516 0.930748 

Group5 0.830094 0.786272 0.902402 0.882827 

(A) 

 (B) 

True negative rate  

K-means+KDE GMM+KDE FMM(1)+KDE FMM(2)+KDE 

Group1 0.999992 0.999549 0.998441 0.998408 

Group2 0.990613 0.985185 0.985267 0.986665 

Group5 0.985533 0.995245 0.910743 0.948743 

 (C) 

Overall accuracy  

K-means+KDE GMM+KDE FMM(1)+KDE FMM(2)+KDE 

Group1 0.971257 0.993159 0.994824 0.994819 

Group2 0.976985 0.979835 0.982338 0.982835 

Group5 0.874153 0.845675 0.904766 0.901510 
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The accuracy of K-means with KDE is low in Group1, Group2 and Group5. The accuracy of 

GMM with KDE in Group1 and Group2 is a little better but it is still low in Group5. FMM(1) 

and FMM(2) are common in using the right-skewed distribution to be the model of 

background images. Hence the accuracy of FMM(1) or FMM(2) in Group1, Group2 and 

Group5 is significantly better than K-means or GMM. For Group3, FMM(1) is better than 

FMM(2). It is because the profile in FMM(1) can be observed clearly from Figure 3.2.5, but 

that in FMM(2) can not. 

 

3.3 CT Study 

 In addition to PET images, we would like to apply these clustering methods to the other 

kind of data. Here we consider computerized tomography (CT) images. CT scanning is also 

one of the medical diagnosis tools using X-ray. It shows clearly the organization of organisms 

through a slice of image by X-ray absorption. The region of higher pixel value is lighter at the 

parts of high absorption, and the region of lower pixel value is darker at the parts of lower 

absorption. Comparing CT images and PET images, it is observed that it is easier to find the 

location of abnormal regions in the human body by PET images, and it is easier to outline by 

CT images. They are shown as the following figures. 

 

   

 A B 

Figure 3.3.1: The 2D CT image is shown and there are 390 slices. 

(A) The 161 th slice PET image  (B) The 161 th slice CT image 
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The profile and organ inside the body is very clearly from the CT image by Figure 3.3.1. 

Hence the result of segmentation for CT image is compared to original data by this feature. 

The other CT image whose size is 512 373  is used. Then the kernel density is made by this 

data for finding initial values. 

 

 

   

  

 A 

(B) 

Figure 3.3.2: (A) The sagittal plane in the CT image contains teeth, spine, trachea, 

etc. The data size is512 373 . (B) The kernel density is made by the pixel data in 

(A). 
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Next the BIC is used to select the numbers of groups k. It is shown the relationship 

between BIC and the numbers of groups k is as follows 

 

  

(A) (B)

 

(C) (D)

Figure 3.3.3: The BIC values are calculated from different models; k is the number of groups. 

(A) K-means + KDE, when k=9 BIC is the minimum. (B)GMM + KDE, when k= 7 BIC is 

the minimum (C) FMM (exponential and normal mixture) + KDE, when k=9 BIC is the 

minimum. (D) FMM (Gamma and normal mixture) + KDE, when k=7 BIC is the minimum. 

 

It can be decided how to select the number of the groups by using the result of Figure 
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3.3.3. Therefore, select  when K-means with KDE is used,  when GMM with 

KDE is used,  when FMM (exponential and normal mixture) with KDE is used and 

 when FMM (Gamma and normal mixture) with KDE is used. The images after 

different clustering methods are, 

9k  7k 

9k 

7k 

 

   

A B 

   

C D 

Figure 3.3.4: (A) 9k  , the image after using K-means with KDE (B) , the image after 

using GMM with KDE (C) , the image after using FMM (exponential and normal 

mixture) with KDE (D) , the image after using FMM (Gamma and normal mixture) 

with KDE 

7k 
9k 

7k 

 

The trachea in the segmentation of the CT image is clear in Figure 3.3.4 (C) and Figure (D). 

They both are results of using right-skewed distribution and normal distribution mixture 

model. That is the FMM method. The K-means result in Figure 3.3.4 (A) is poor in the region 

of trachea. There are two groups in trachea. GMM also has two groups in trachea, as shown in 

Figure 3.3.4 (B). 
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Chapter 4.  Conclusion 

  

The methods of K-means with KDE, GMM with KDE and FMM with KDE are used to 

classify the data of PET images and CT images. It is observed that the FMM method has high 

accuracy in the high-activity region in PET images from Chapter 3. The accuracy of 

low-activity region from FMM is higher than that from K-means or GMM in PET images. 

The CT image is also clustered by these methods. The result of FMM is better than that of 

K-means or GMM in the lower pixels of data. After comparing these methods, the data of the 

PET images or CT images can be classified by FMM because the high accuracy of 

segmentation obtained by FMM in high and lower activity regions. 

The FMM method considers the property and structure of data. It constructs a model to 

fit the original data more closely. Therefore, the result we obtained from FMM is better than 

GMM. We used exponential distribution with normal distribution mixture model and Gamma 

distribution with normal distribution mixture model. For further work, one can test and 

attempt to find more suitable distributions to increase the accuracy of data classification. 

Otherwise, the block of pixel values can be used to make pixel data to have more information, 

like the pixel location. So we can take multivariate normal distribution to model the original 

data, and compare the results by block method with one pixel point. 

 

 

 

 

 

 

 

 

 34



 35

References 

[1] Akaike H. Anew look at the statistical model identification. IEEE Trans. Automat. Ontr., 

1974, AC-19, 716-723 

[2] David W. Townsend, Jonathan P.J. Carney, Jerry T. Yap, Nathan C. Hall. PET/CT Today 

and Tomorrow. The Journal of Nuclear Medicine, Vol. 45, pp. 4S-14S, 2004. 

[3] Hsiao IT, Rangarajan A, Gindi G. Joint-Map Reconstruction/Segmentation for 

transmission Tomography Using Mixture-Model as Priors. Proc. IEEE Nuclear Science 

Symposium and Medical Image Conference, 1998, 3, 1689-1693. 

[4] Hung-Yuan Chiang. Segmentation of Dynamic MicroPET Images by K-mean and 

Mixture Methods. Master’s thesis, institute of Statistics National Chiao Tung University, 

2004. 

[5] McLachlan GJ, Bean RW, Peal D. A mixture model -based approach to the clustering of 

microarray expression data. Bioinformatics, 2000, 18, 3:413-22. 

[6] Olinger JM, Fessler JA. Positron-emission tomography. EEE Signal Processing 

Magazine, 1997, 41, 1, 43-55. 

[7] Tai Been Chen. Statistical Applications of Maximized Likelihood Estimates with the 

Expectation-Maximization Algorithm for Reconstruction and Segmentation of MicroPET 

and Spotted Microarray Images. PhD’s thesis, institute of Statistics National Chiao Tung 

University, 2007. 

[8] Vardi Y, Shepp La, Kaufman L. A statistical model for positron emission tomography. 

Journal of the American Statistics Association; 1985, 80, 8-20. 




