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基因表現量晶片資料模擬器－使用公開之晶片資料庫 

 

 

研究生：吳芝賢    指導教授：黃冠華 博士 

國立交通大學統計學研究所 

 

摘要 

 微陣列晶片已經成為一種廣泛被應用的基因技術，許多分析方法也應運而

生。我們嘗試建立經驗模型去模擬每個基因的基因表現量，這些模擬的基因表現

量可用於評估各種分析方法。為了達到基因組織的多樣性，使用 MaRe 蒐集在

GEO 與 Affy 這兩資料庫儲存的基因原始表現資料，我們著重的平臺是艾菲爾

(Affymetrix)公司所製造的 HG-U133A 基因晶片。將這些資料用 justRMA 預處理

後，可得到 22283 個基因表現量的經驗分配模型，其中有 5005 個基因的基因表

現量分佈呈現兩個或多個眾數，此 5005 個基因被認為是在某些組織是未表現

的；17278 個只有一個眾數的基因則被認為在所有組織都呈現有表現或未表現

的。我們運用這 22283 個分配去模擬基因表現量。在此論文中提供了模擬方法的

步驟，並嘗試模擬了多組不同片數的嵌釘(spike-in)資料，觀察基因表現量模擬值

和原始值的差異。 

關鍵字：艾菲爾基因晶片、模擬 
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Gene expression microarray data generator  

using a reference training set from publicly 

available databases 

 

Student: Chih-Hsien Wu   Advisor: Dr. Guan-Hua Huang 

Institute of Statistics 
National Chiao Tung University 

 

ABSTRACT 

 

Microarray expression analysis has become one of the most widely used 

functional genomics tools. Since that, many analytical methods have been proposed. It 

is desirable to develop realistic models that can be applied in simulating expression 

values of each gene, and can then be used to assess the analysis methods and testing 

approaches. We downloaded publicly available raw data of the Affymetrix 

HG-U133A platform for varied tissues, using Microarray Retriever. These raw data 

were first preprocessed using the R function justRMA, and then, for each gene, the 

expression intensity distribution was determined. Among 22283 genes, 5005 genes 

had two or more modes, 17278 genes had one mode. Genes displaying only one mode 

are believed either expressed in all tissues or unexpressed in all tissues. Therefore 

there were 5005 genes can be divided to expressed and unexpressed. In this thesis, we 

provided the process of simulation, and simulated various arrays of spike-in data to 

observe the difference between simulated data and real spike-in data.   

Key words: Affymetrix GeneChip, simulation 
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1  Introduction 

Microarray expression analysis has become one of the most widely used 

functional genomics tools. Since that, many methods have been proposed for 

accomplishing the purposes of classification and discovery. Nevertheless the 

statistical attributes of such methods generally are not well established. It is desirable 

to develop realistic models that can be applied in simulating expression values of each 

gene, and can then be used to assess the analysis methods and testing approaches. 

Because not every gene is normally distributed as we assumed previously, we 

developed an empirical approach that can characterize the true expression values of 

each gene.  

We downloaded publicly available raw data of the Affymetrix HG-U133A 

platform for varied tissues, using Microarray Retriever (Ivliev et al., 2008). These raw 

data were first preprocessed using the R function justRMA, and then, for each gene, 

the expression intensity distribution was determined. This gene-specific empirical 

density can be the foundation for simulating gene expression values. It is believed that 

any given gene will only be expressed in some tissues. As a result, multiple modes of 

the intensity distribution should be observed in some genes, and the lowest intensity 

mode is assumed to appear due to a lack of expression (Zillion and Irizarry, 2007). 

Expression estimates to the left of this lowest intensity mode were then used to 

estimate the standard deviation of unexpressed genes. For a pre-selected constant K, 

the gene is defined to be expressed in the tissue when the log expression value was K 

standard deviations larger than the unexpressed mean. Genes displaying only one 

mode are recognized as either expressed in all tissues or unexpressed in all tissues. We 

can then simulate expressed and unexpressed intensity values from genes showing 

two or more modes, and can thus generate genes with differential expression. 
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To examine the validity of the proposed simulation method, we compared our 

simulated intensities with the expression values from the spike-in dataset of the 

Affymetrix HG-U133A tag platform. Based on either simulated data or spike-in data, 

ROC curves were created for various differential expression detecting methods. 

Characteristics of the plots from two different datasets are compared.       
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2  Literature Review 

2.1  Background of microarray 

Microarray explores an avenue of studying expression level of tens of thousands 

of genes by supplying one or more oligonucleotide probe(s) for each transcript studied. 

It gives an answer to what genes are expressed in a particular cell type of an organism, 

at a particular time, under particular conditions. Microarray can be divided to two 

categories: two-color and one-color detections. Two-color microarrays are typically 

hybridized with cDNA prepared from two samples to be compared (e.g. diseased 

tissue versus healthy tissue). Thus the relative intensities are measured. In one-color 

microarrays, the arrays measure the absolute levels of gene expression. Therefore the 

comparison of two conditions requires two separate arrays. This thesis focuses on 

Affymetrix GeneChip, which is one of the one-color systems. 

 

2.2  Affymetrix GeneChip array 

Affymetrix provides one of the most prominent commercial platforms of DNA 

microarrays. Affymetrix GeneChip arrays are high throughput assays for measuring 

the expression levels of many thousands of gene transcripts simultaneously in a 

particular tissue or cell type. These hybridizations contain short oligonucleotides 

(25mers) probe sets which in turn represent different transcripts or genes. There are 

several file types generated by Affymetrix software. For example, CDF file describes 

the layout for an Affymetrix GeneChip array and DAT file contains the raw image of 

the scanned GeneChip array. In this thesis we used the raw data (CEL file), which 

stores the results of the intensity calculations on the pixel values of the DAT file. The 
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cell intensity file assigns x,y coordinates to each cell which as probe intensity on the 

array and evaluates the representative intensity of each cell. This file can be used to 

re-analyze data with different expression algorithm parameters. There are some public 

repositories such as Gene Expression Omnibus and ArrayExpress created to house for 

these data,  

 

2.3  Dataset 

2.3.1  Microarray retriever 

Microarray retriever is a software tool providing an access to the two major 

public microarray repositories: Gene Expression Omnibus and ArrayExpress. MaRe 

allows the user to search GEO and ArrayExpress for experiments with accession 

numbers, authors, species, dates, platforms or on keywords of unspecified type. There 

are three boxed for input of parameters in the MaRe web interface. 

Accessions(A):accepts accession numbers of GEO experiments, accession numbers of 

ArrayExpress experiments and PubMed IDs of papers. 

Authors/keywords(B):specifies authors and keywords to be searched for in the 

meta-data present in the microarray repositories and/or PubMed. 

Species/date/platform(C):enables searching on or limiting searches on specific species, 

date of submission to the repository and platforms. 

And to retrieve raw data for experiments or to retrieve only the processed data 

can also be selected. 

The search structure is further outlined in following figure. Microarray retriever 

is a software tool providing an access to the two major public microarray repositories: 

Gene Expression Omnibus and ArrayExpress 
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An email address should be entered before the search since MaRe will send a 

notification with the URL of the data archive to this email address after choosing 

which data to download. (Ivliev et al., 2008) 

2.3.2  Microarray repository 

DNA microarray technology has influencing many aspects of biological research, 

made the expression of many thousands of gene transcripts possible to be monitored 

simultaneously. It was widely figured that a basic repository of this information 

should be created to accommodate these data. (Brazma et al., 2000) This allows 

potentially essential additional information like various contexts to be gleaned by 

re-interpretation by other researchers. Thus, major efforts to store such data were 

made, namely the Gene Expression Omnibus (GEO) and ArrayExpress. These 

repositories contain more than 82,000 and 50,000 microarray samples of data, 

respectively. 
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ArrayExpress (http://www.ebi.ac.uk/arrayexpress) 

ArrayExpress is an international public repository for well-annotated microarray 

data. It contains experiments from Stanford MicroArray Database 

(SMD;http://genome-www5.stanford.edu) and some experiments have also been 

extracted from GEO. 

Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo) 

Gene Expression Omnibus is a public repository that archives and freely 

distributes high throughput gene expression data submitted by the scientific 

community. GEO currently houses approximately a billion individual gene expression 

measurements, derived from over 100 organisms, addressing a wide range of 

biological issues.  

2.3.3  Affymetrix human genome U133A dataset (HGU133A) 

The Human Genome U133 Set exclusively from Affymetrix is consisting of two 

arrays. These set contained enormous unique oligonucleotide features covering more 

than 39,000 transcript variants, which in turn represent greater than 33,000 of the 

well-substantiated human genes. (Affymetrix, 2003) The Human Genome U133A 

array is one of GeneChip of this powerful family. This array is containing 247,965 

probe pair sequences which one after another represent 22283 human genes that can 

be used to explore human biology and disease processes. The platform accession 

number “GPL96” and “A-AFFY-33” can be used to find HG-U133A dataset in Gene 

Expression Omnibus and ArrayExpress respectively. 

2.3.4  Affymetrix HGU-133A spike in dataset  

Due to the transcripts were spiked in at known concentrations for these data sets, 

the Affymetrix HGU-133A spike-in data set has been used for evaluating the 

sensitivity and specificity of various analytical approaches of microarray data. The 
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HG-U133A spike-in experiment is made of 42 specific transcripts that are spiked in at 

14 concentrations ranging from 0 pM to 512 pM, again arranged in a Latin Square 

design. For example, the concentration of the 14 gene groups in the first experimental 

group is 0, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256, and 512pM. Each 

following experimental group alternates the spike-in concentrations by one group; i.e. 

experimental group 2 begins with 0.125pM and ends at 0pM, experimental group 14 

begins with 512pM and ends with 256pM. There are three transcripts spiked-in at 

each concentration and three replicate arrays for each experiment, thus a total of 42 

arrays. Table 2.1 gives a list of the 42 probe sets that were defined as the spiked-in 

transcripts in the experiment and their associated concentrations with each 

hybridization experiment. 

The CDF for the HG-U133A spike-in experiment is named “HG-U133A tag”. 

There are 17 tag probe sets that only exist in the HG-U133A tag but not exist in the 

HG-U133A. These additional probe sets are shown in Table2.2. 

 

2.4  Bar code 

Since the “probe effect” is considerable but consistent across different arrays, it 

implies that relative measures of expression for one gene are more valuable than 

absolute ones. For any given gene it is essential to know what intensity identified with 

no expression. To accomplish that, downloading the raw data for a variety of tissues 

from the public repositories and preprocessing with the same algorithm. Then, for 

each gene the intensity distribution can be achieved. It is believed that any given gene 

will only be expressed in some tissues. As a result, multiple modes should be 

observed in some genes and the lowest intensity mode is assumed appears due to a 

lack of expression. Expression estimates to the left of this lowest intensity mode were 
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then made use of estimating the standard deviation of unexpressed genes. The gene, 

which is in the location where the log expression estimates were K standard 

deviations larger than the unexpressed mean, is defined as expressed. K is a selected 

constant which can be chosen by cross-validation assessment. And genes displaying 

only one mode are recognized as either expressed in all tissues or unexpressed in all 

tissues. (Zillion and Irizarry, 2007) 

 

2.5  Preprocessing methods used 

justRMA 

justRMA is a wrapper for just.rma that permits the user to simplify RMA 

function. RMA (Irizarry et al., 2003a), Robust Multi-array Analysis, is an expression 

measure composing of three particular preprocessing steps: convolution background 

correction, quantile normalization, and summarization. The justRMA() command that 

was contributed by the affy package calls the same C routines used by rma() but it 

differs from the rma() and expresso() commands. If the function is called with no 

arguments justRMA(), then all the CEL files in the working directory are read, 

converted to an expression measure using RMA and put into an ExpressionSet. 

However, this argument can provide a substantial time savings and give the user great 

flexibility.  

 

2.6  Quality Assessment 

Quality assessment is an crucial first phase ensures the successful data analysis. 

Before any comparisons can be conducted it is necessary to make sure that there were 

no problems with array processing and that arrays are of adequate quality to be 
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worked in a experiment. Therefore, Affymetrix provides a collection of QC metrics 

and accompanying guidelines that assist the user to identify the problematic arrays in 

Affymetrix platform.  

These QC functions are within simpleaffy package which can download from 

BioConductor. The simpleaffy function qc generates the most commonly used 

metrics:  

1. Scale factor 

2. Average background  

3. 3’ to 5’ ratios for β-actin and GAPDH  

4. Number of genes called present  

All of these values are parameters computed for/from the MAS 5.0 algorithm. 

The standard recommendations from Affymetrix are as follows: 

2.6.1  Scale Factor 

Due to the assumption that gene expression does not change significantly for the 

vast majority of arrays in the same experiment, the trimmed mean intensity for each 

array should be constant. MAS 5.0 scales the intensity for every sample to make each 

array have the same mean. The level of scaling applied is described by the ‘scale 

factor’. Consequently, scale factor provides an evaluation of the overall expression 

level for an array and a reflection of how much labelled RNA is hybridised to the chip. 

Large variations in scale factors signal implies where the normalisation assumptions 

are likely to fail due to things with sample quality or amount of starting material. 

Alternatively, they might occur if there have been appreciable issues with RNA 

extraction, labeling, scanning or array manufacture. In order to successfully compare 

data produced using various chips, Affymetrix recommend that their scale factors 

should be within 3-fold of one another, which is, the log (base 2) scale factors are 
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recommended in the region between the borders 1.5 up or down from the mean log 

(base 2) scale factors of all arrays. 

2.6.2  Averages background  

The significant difference between average backgrounds of arrays is the result of 

great change in brightness of different arrays. It might just because the overall signal 

from the array is greater, perhaps because different amounts of cRNA were present in 

the hybridization cocktails, or because the hybridization was more efficient in one of 

the reactions. Since these reasons, the average backgrounds should be similar across 

all chips.   

2.6.3  3’ to 5’ ratios 

Most cell types seem to express β-actin and GAPDH everywhere. These are 

relatively long genes, and the majority of Affymetrix chips contain separate probesets 

targeting the 5’, mid and 3’ regions of their transcripts. By comparing the amount of 

signal from the 3’ probesets to either the mid or 5’ probesets, it is possible to obtain a 

measure of the quality of the RNA hybridized to the chip. If the ratios are high then 

this indicates the presence of truncated transcripts. This may occur if the in vitro 

transcription step has not performed well or if there is general degradation of the RNA. 

Hence, the ratio of the 3’ and 5’ signal gives a measure of RNA quality. Affymetrix 

suggests that the beta-actin 3’:5’ ratio should be below 3 and the GAPDH 3’:5’ ratio 

less than 1.25 is acceptable.  

2.6.4  Number of genes called present (% Present) 

Present/Marginal/Absent calls are generated by looking at the difference between 

PM and MM values for each probe pair in a probeset. Probesets are appeared 

Marginal or Absent when the PM values for that probeset are not considered to be 

significantly above the MM probes. The large differences between the numbers of 
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genes called present on different arrays can be found when different amounts of 

labeled RNA have been hybridized well to the chips. The “% Present” call is the 

percentage of probesets called Present on an array. So the significant variations in % 

Present call across the arrays should be treated with care since it may be the result that 

some cells express more genes than other. Since that, the present percent are required 

similar.  

 

2.7  Six differential expression methods used 

2.7.1  Fold change 

The standard definition of the fold-change for gene g is 

 

Where  and  are the raw expression levels of gene g in replicate j in the 

control and treatment, respectively. And gene g was called significantly changed if 

 or  (Tusher et al., 2001).The fold-change method is the most 

commonly used method but has some disadvantages. Since a vast majority of genes 

are expressed at low levels where the signal-to-noise ratio is very low, 2-fold changes 

in gene expression occur at random for a large number of genes. Conversely, for 

higher levels of expression, smaller changes in gene expression may be real, but these 

changes are rejected by fold-change methods.  

2.7.2  Two sample t-test 

The t test is a simple, statistically based method for detecting differentially 

expressed genes. In replicated experiments, the error variance can be estimated for 

each gene from the log (base 2) ratios, and a standard t test can be conducted for each 
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gene. This gene-specific t test is not affected by heterogeneity in variance across 

genes because it only uses information from one gene at a time. In addition, the 

variances estimated from each gene are not stable: for example, if the estimated 

variance for one gene is small, by chance, the t value can be large even when the 

corresponding fold change is small. The two sample t-test method assumes the 

samples are drawn from normal distributions with equal variance and different means. 

Here we described this method briefly. 

Two sample t-test for equal variance: 
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After performing the test and the conclusion leads to reject 0H , we consider that this 

gene is a differentially expressed gene.  

2.7.3  Welch t-test 

Welch t-test makes the same assumption as the two sample t-test that the samples 

are drawn from normal distributions, but allows for different variances between 

classes. For any given gene g, suppose that the number of samples in condition1 and 

in condition2 are M and N respectively. Here we described this method briefly. 

Two sample t-test for unequal variance (Welch’s t-test): 
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After performing the test and the conclusion leads to reject 0H , we consider that this 

gene is a differentially expressed gene.  

 

2.7.4  SAM (Significance Analysis of Microarrays) 

In this version of the t test, a small positive constant is added to the denominator 

of the gene-specific t test. With this modification, genes with small fold changes will 

not be selected as significant; this removes the problem of stability. Our approach was 

based on analysis of random fluctuations in the data. However, even for a given level 

of expression, we found that fluctuations were gene specific. To account for 

gene-specific fluctuations, we defined a statistic based on the ratio of change in gene 

expression to standard deviation in the data for that gene.  

For each gene g, the “relative difference” gd  in gene expression is: 

 

Here gs  is a standard deviation of each gene, and 0s  is an exchangeability factor. 

For genes with scores gd  greater than an adjustable threshold, SAM uses 
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permutations of the repeated measurements to estimate the percentage of genes 

identified by chance. (Tusher et al., 2001)  

2.7.5  EBarrays 

The empirical Bayes approach is equivalent to shrinkage of the estimated sample 

variances towards a pooled estimate, resulting in far more stable inference when the 

number of arrays is small. (Smyth, 2004)  

This model attempts to describe the probability distribution of expression 

measurements  taken on a gene g. Measurements are 

considered as independent random deviations from a gene-specific mean value and, 

more specifically, as arising from an observation distribution . When 

comparing expression samples between two groups, the sample set {1, 2,…,N} is 

partitioned into two subsets, say and  ,  contains the samples in group k. The 

distribution of measured expression may not be affected by this grouping, in which 

case our baseline hypothesis above holds and we say that there is equivalent 

expression, , for gene g. Alternatively, there is differential expression,  

Assume that measurements sharing a common mean expression level  arise 

independently and identically from an observation component , and  

arise from some genomewide distribution . Denote  as the pdf for the 

data indexed by subset .  

 
The pattern specific predictive density for pattern k is given by 
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Let p denote the fraction of genes that are differentially expressed ; then 1 – p 

denotes the fraction of genes equally expressed . The marginal distribution of the 

data becomes 

 

and he posterior probability of differential expression is calculated by Bayes’ rule as 

 

2.7.6  limma 

The limma method approach is to fit a linear model to the expression data for 

each gene (Smyth, 2004). The linear model for gene g is: 

 

Where  contains the expression data for the gene g,  is the design matrix, and 

 is a vector of coefficients. Certain contrasts of the coefficients are assumed to be 

of biological interest and these are defined by  

 

In general, we are interested in testing whether individual contrast values  are 

equal to 0.  

2.8  ROC curve 

Receiver Operating Characteristic (ROC) curve is widely used to evaluate the 

differential expression methods in microarray analysis. In a ROC curve, the true 

positive rate (Sensitivity) is plotted in function of the false positive rate (1-Specificity) 

for different cut-off points. In a two-class prediction problem (binary classification), 

the outcomes are labeled either as positive or negative class. There are four possible 



 

  ‐ 16 ‐

outcomes from a binary classifier. If the outcome from a prediction is positive and the 

actual value is also positive, then it is called a true positive (TP); however if the actual 

value is negative then it is said to be a false positive (FP). We defined sensitivity as 

the probability that the test lead to make positive decision given that the truth is 

actually a positive case. This is also known as the true positive rate. Specificity is 

defined as the probability that a negative decision is made when the truth is negative. 

The ROC curve is represented equivalently as a plot of the false positive (FP) rate as 

the x coordinate versus the true positive (TP) rate as the y coordinate. 
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3  Materials and Methods 

Our purpose is to simulate the expressions of gene. To achieve this, the vast 

amount of publicly available data sets was used. In order to have a wide 

representation of tissues, we downloaded all the raw data of the “normal control” 

samples we could find from the public repositories. The raw data were preprocessed 

using the R function justRMA, and then, for each gene, the intensity distribution was 

determined. We can use this empirical density to simulate the intensity values of each 

gene.  

 

3.1  The reference training set 

3.1.1  Microarray Retriever 

We download all the raw data (CEL file) of Human Genome U133A Arrays 

which we could find from Gene Expression Omnibus (GEO) and ArrayExpress (AE) 

by Microarray Retriever (MaRe) (Ivliev et al., 2008). The MaRe web interface 

contains three boxes for input of the query term. To limit search on human species and 

HG-U133A arrays, choose "Homo sapiens" as the specified specie and input “GPL96” 

and “A-AFFY-33”, the platform accession numbers of HG-U133A, to the platform 

accessions field. Since only individual gene expressions were needed, “Retrieve only 

GSE” was chosen for GEO. “Not retrieved from GEO” was chosen for ArrayExpress 

to avoid the overlapping with the experiments that already existed in GEO. “Retrieve 

raw data” checkbox should also be checked. Then we entered an email address in the 

“Start search” box to start the search. The search can return a bunch of raw data that 

meet our searching criteria. There is a total of 701 experiments obtained from the 

MaRe.  
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3.1.2  Obtaining normal controls 

Downloaded raw data contain samples from a variety of different conditions. 

Only normal controls were used for creating the reference training set. For example, 

series GSE10072 from GEO was an experiment with 49 samples of normal lung 

tissue and 58 samples of adenocarcinoma of the lung. In this case, we only retained 49 

samples of normal lung tissue but discarded 58 samples of adenocarcinoma of the 

lung. After removing files that were not from normal controls, 1886 .CEL files from 

GEO and 559 .CEL files from AE were kept. 

3.1.3  Quality assessment metrics 

The data quality for each array was verified by the qc function within the 

simpleaffy package in BioConductor. The qc function can generate the most 

commonly used quality assessment metrics as described in the following. All these 

metrics are parameters that are computed for/from the MAS 5.0 (Microarray Suite 

software, Version 5.0) algorithm. (Wilson et al., 2009)  

Scale Factor 

Due to the assumption that gene expression does not change significantly for the 

vast majority of transcripts in an experiment, the trimmed mean intensity for each 

array should be constant. MAS 5.0 scales the intensity for every sample to make each 

array have the same mean. Since “Scale Factor” represents the amount of scaling 

applied, it provides a measure of the overall expression level for an array. (Wilson et 

al., 2009) 

In our quality assessment process, we propose to perform a “stepwise” scale 

factor refinement. First of all, the scale factors of our samples should be within 6-fold 

of one another. To obtain the 6-fold region, we calculated the mean and the of log 

(base 2) scale factors from all arrays in advance, and the region was the one between 
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the borders of 3 up or down from the mean value. Arrays whose log (base 2) scale 

factors were out of this area were removed. Then, for the remaining samples, their 

scale factors should be within the 4-fold of each other. After removing the arrays that 

were not in the 4-fold range, we then further removed those out of the 3-fold of the 

scale factors of the samples that were still retained. At the end, 1974 arrays were kept. 

Averages background  

The significant difference between average backgrounds of arrays is the result of 

great change in brightness of different arrays. The average backgrounds should be 

similar across all chips. (Wilson et al., 2009) To avoid dramatic variation in arrays’ 

intensity, we removed the array which had extreme average background. According to 

the picture, we recommended that the average background value should be below 300. 

We had 1918 arrays after that. 

3’ to 5’ ratios 

The ratio of the 3’ and 5’ is a value comparing the amount of signal from the 3’ 

probset to either the mid or 5’ probset. So it is possible not only to measure the quality 

of the RNA hybridize to the chip but also measure the RMA quality. Affymetrix 

suggests that the beta-actin 3’:5’ ratio should be below 3 and the GAPDH 3’:5’ ratio 

less than 1.25 is acceptable. (Wilson et al., 2009) After removing the unsatisfactory 

arrays, we had 1501 arrays.   

Number of genes called present (% Present) 

The difference between PM and MM values for each probe pair in a probeset can 

be categorized as Present/Marginal/Absent calls. Marginal or Absent call appears 

when the PM probes’ values are not considered to be significantly above the MM 

probes. The large differences between the numbers of genes called present on 

different arrays can be found when different amounts of labeled RNA have been 

hybridized well to the chips. The “% Present” call is the percentage of probesets 
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called Present on an array. So the significant variations in % Present call across the 

arrays should be treated with care since it may be the result that some samples express 

more genes than other. Since that, the present percent are required to be similar. 

(Wilson et al., 2009) The criterion we set was the value 20%. We removed the arrays 

whose present percent was below 20%. And all we kept were 1501 arrays. 

Among 1501 arrays having passed quality assessment, there existed 222 arrays 

that were not the same type with other 1279 arrays and cannot input into R-2.3.0. We 

got rid of these 222 arrays. The remaining 1279 arrays were the reference training set 

we used. 

The brief summary of the amount of delete data in each step is shown in Table 

3.1. Figure 3.1 shows the deleted data in each step. Figure 3.2 shows the comparison 

between total delete data and 1501 saved data after quality assessment. For those 1279 

arrays in the reference training set, they belonged to 74 different tissue types. The 

frequency distribution among these tissue types can be found in Table 3.2.  

 

3.2  Gene-specific expression distribution 

The raw data for all the 1279 arrays were preprocessed using justRMA 

(MacDonald and Bolstad, 2009) of R-2.3.0.  

Then, for each gene, the preprocessed log (base 2) expression values were used 

to empirically determine its intensity distribution. (Zillion and Irizarry, 2007) The 

density distribution is obtained by fitting a density smoother, using the density(n, 

adjust) function of R. The argument “n” represents the number of equally spaced 

points at which the density is to be estimated and “adjust” represents the bandwidth 

used for smoothing. We plotted histograms of log (base 2) expression values for some 

randomly selected genes. Smoothing curves created by different argument settings 
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were fit to these histograms. One of the plots is shown in Figure 3.3. After examining 

all these plots, we decided to set the smoothness parameters n=512 and adjust=3 for 

the use of creating the density distributions. 

It is believed that any given gene will only be expressed in some tissues; as a 

result, multiple modes should be observed in some genes. The lowest intensity mode 

is assumed to appear due to a lack of expression (Zillion and Irizarry, 2007). The 

modes were computed and the mode with the smallest location was considered the 

expected intensity of an unexpressed gene. The standard deviation of unexpressed 

genes was estimated by the expression estimates to the left of this mode. We then 

selected a constant K and defined genes expressed in tissues where the log (base 2) 

expression estimates were K standard deviations larger than the unexpressed mean. 

The constant K can be 6 or selected based on the data of interest. 

 

Among 22283 genes in Affymetrix HG-U133A, 5005 genes had two or more 

modes, 17278 genes had one mode. Genes displaying only one mode are believed 

either expressed in all tissues or unexpressed in all tissues. Therefore there were 5005 

genes can be divided to expressed and unexpressed. 
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3.3  Process of simulation 

In the following, we describe the approach for generating expression intensities 

from two groups of individuals (e.g., cases versus controls) where certain genes are 

differentially expressed, using the empirical intensity distributions derived from the 

reference training set. The idea is to first pick up a subset of the 5005 multiple-mode 

genes, and then, for each gene in the subset, generate controls’ intensities from the 

empirical intensity distribution to the left of the selected cut-off point and cases’ 

intensities from the distribution to the right of the cut-off point, or vice versa. The 

detailed steps are: 

1. Decide constant K. Compute the cut-off points for the 5005 genes that contain 

two or more modes.  

2. Determine the expression statuses (express or unexpressed) of controls in these 

5005 multiple-mode genes. To be more realistic, we first select a tissue type from the 

reference training set. For reference arrays belonging to the selected tissue type, 

calculate their average log (base 2) expression estimates of all genes. For each of the 

5005 multiple-mode genes, compare its average log (base 2) expression estimate with 

the corresponding cut-off point. If the average estimate is larger than the cut-off point, 

this gene is considered as an expressed gene in controls. Conversely, if the average 

value is smaller than the cut-off point, this gene is considered as an unexpressed gene 

in controls. 

3. Determine the expression statuses of cases in the 5005 multiple-mode genes. A 

subset of the 5005 multiple-mode genes is chosen as the differentially expressed 

genes. Cases’ expression statuses in these selected genes are set to be different from 

controls’, and their expression statuses in unselected genes are set to be the same as 



 

  ‐ 23 ‐

controls’. 

4. For one-mode genes, cases’ and controls’ intensities are generated through these 

genes’ empirical intensity distributions derived from the reference training set. 

Simulating intensities for genes with two or more modes need some care. Expression 

intensities of cases and controls for multiple-mode genes are generated based on their 

expression statuses derived in steps 2 and 3. If the gene is an expressed gene, simulate 

intensities from the empirical intensity distribution to the right of this gene’s cut-off 

point. If the gene is unexpressed, simulate intensities from the empirical intensity 

distribution to the left of the cut-off point.   

Above simulation processes can be easily extended to the case where three or 

more groups are compared. 

 

3.4  Comparison with the HG-U133A tag spike-in dataset 

The CDF for the HG-U133A spike-in experiment is named “HG-U133A tag”. 

There are 17 tag probe sets that only exist in the HG-U133A tag but not in the 

HG-U133A (Mcgee and Chen, 2006). These additional probe sets are shown in 

Table2.2.   

After removing these 17 additional probe sets, the spike-in dataset contains 

exactly same probe sets as those in the HG-U133A. We used the RefPlus package of 

R (Chang and Harbron, 2007) to preprocess the spike-in dataset that has removed 17 

additional probe sets. Preprocessing method RMA is first applied to the reference 

training set and some characteristics of RMA are extracted and stored by RefPlus. 

Using these stored characteristics, RefPlus can then preprocess the spike-in dataset as 

if it was RMA-re-preprocessed along with the reference training set. The empirical 

intensity distributions from the training set can be compared with the intensities from 
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preprocessed spike-in data. We plotted both the empirical density and spike-in density 

for 34 spike-in genes in the HG-U133A tag spike-in dataset and for non-spike-in 

genes.  

3.5  Simulation based on the spike-in dataset (exp 4 vs. exp10) 

Here we aim to simulate gene expression intensities of cases and controls, which 

mimic the expression patterns shown in the spike-in dataset experiment no. 4 and no. 

10.   

1. Our controls were generated based on the 4th experimental group of the spike-in 

dataset and cases based on the 10th experimental group. 

2. Determine the K that can best discriminate exp. 4 and exp. 10 in 5005 

multiple-mode genes. In Figure 3.4, the red dots represent the rates of correctly 

identifying the two experiments (conditions) to be differentially expressed among 34 

spike-in genes under various K. The blue dots are the rates of correctly identifying the 

two experiments (conditions) to be not differentially expressed among 4993 genes 

which were not in spike-in genes and had multiple modes. We chose K=6 by this 

picture. Use training set to compute the cut-off of the 5005 genes which have multiple 

modes. 

3. Select the 34 spike-in genes as the differentially expressed genes. Among these 

34 spike-in genes, 22 genes have only one mode in the reference set. The cut-off 

points for these 22 one-mode genes are generated, using the same method as what we 

propose for multiple-genes. 

4. Use the 4th experimental group of the spike-in dataset to determine the 

expression statuses (express or unexpressed) of controls in 5005 multiple-mode genes 

and 22 selected differentially expressed one-mode genes, as done in step 2 of the 

simulation process. 
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5. Determine the expression statuses of cases in the 5005 multiple-mode genes and 

22 selected differentially expressed one-mode genes, as done in step 3 of the 

simulation process. 

6. Generate cases’ and controls’ intensities, as done in step 4 of the simulation 

process. 

We plotted ROC curves for 6 differential expression methods (i.e., fold-change, 

two sample t-test, Welch t-test, SAM, EBarrays and limma), using the 4th 

experimental group from the spike-in dataset as controls and the 10th experimental 

group as cases. The ROC curves for the same differential expression methods using 

the intensities that we simulated were also created. How well our simulation process 

is can be seen by compare these two types of ROC curves. 
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4  Results 

4.1  Gene-specific expression distribution 

After the raw data of all 1279 arrays were preprocessed together using justRMA, 

we fitted density smoother using density(n=512, adjust=3) function for all genes. The 

characteristics of intensity distributions of some randomly selected genes have been 

shown in Figure 4.1. In Figure 4.1(a), the gene displays only one mode and is 

believed to be either expressed or unexpressed in all tissues. From Figure 4.1(b) to 

Figure 4.1(d), multiple modes are observed. By assumption, the lowest intensity mode 

appears due to a lack of expression. We can discover that the second mode is close to 

the first mode in Figure 4.1(b), and the two modes are more distant in Figure 4.1(c). 

More than two modes can be seen in Figure 4.1(d). Among 22283 genes in Affymetrix 

HG-U133A, 5005 genes have multiple modes and have distributions similar to Figure 

4.1(b), Figure 4.1(c) or Figure 4.1(d), and 17278 genes have one mode and have 

distributions just like Figure 4.1(a). 

 

4.2  Comparison with the HG-U133A tag spike-in dataset 

After removing 17 tag probe sets existing only in HG-U133A tag but not in 

HG-U133A, 42 spike-in arrays contained exactly the same 22283 genes as 

HG-U133A arrays. We used the RefPlus package of R to preprocess the spike-in 

dataset after removing 17 additional tag probe sets, and, therefore, the obtained log 

(base 2) expressions were computed by the same scale of RMA which the reference 

set used (Chang et al., 2006).  

To obtain density smoothers of the spike-in data, density(n, adjust) function of R 
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was used. We plotted histograms of log (base 2) expression values for some randomly 

selected genes. Smoothing curves created by different argument settings were fit to 

these histograms (Figure 4.2). After examining all these plots, we decided to set the 

smoothness parameters n=512 and adjust=3 for the use of creating the density 

distributions.  

Then for each gene, we can compare the empirical distributions using the 

training set with the intensity distributions accomplished by spike-in data. Genes can 

be divided into 4 categories, including spike-in genes with multiple modes (Figure 

4.3), spike-in genes with only one mode (Figure 4.4), non-spike-in genes with 

multiple modes (Figure 4.5), and non-spike-in genes with one mode (Figure 4.6). In 

these figures, the solid lines represent the empirical distribution computed by 1279 

arrays of the reference training set, and the dotted lines represent the intensity 

distribution computed by 42 spike-in arrays. The brilliant ticks act for the observed 

values of spike-in samples with color denoting the experimental group to which the 

observation belongs. For the spike-in genes, although the empirical densities are 

different from the spike-in densities, the patterns of these two resemble each other 

(Figure 4.3 and Figure 4.4) In Figure 4.5 and Figure 4.6, since the densities of the 

training set and spike-in data varied greatly from each other, we plotted the empirical 

distribution and spike-in intensity distribution separately to see their pattern clearly. 

Foe genes that are not included as spike-in genes and have multiple modes, if the first 

mode and the second mode do not distance too far, same essence between the 

empirical density and spike-in intensity distribution can be found (Figure 4.5.1 and 

Figure 4.5.2). On the contrary, in Figure 4.5.3, the genes whose the first mode and 

second mode are in the distance seem not to have identical patters comparing the 

empirical density with the spike-in intensity distribution. For genes in Figure 4.6.1 

and Figure 4.6.2, we can also discovery same character between the two distributions. 
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4.3  Simulation based on the spike-in dataset (exp 4 vs. exp10) 

The Affymetrix HG-U133A spike-in data set is used for determining the 

sensitivity and specificity of various methods for the analysis of microarray data 

(Choe and Boutros, 2005). Since true differentially expressed spike-in genes were 

already known, the performance of five differential expression methods can be 

assessed. The six differential expression methods were fold-change, two sample t-test, 

Welch t-test, SAM, EBarrays and limma. Here we simulate gene expression 

intensities of cases and controls, which mimic the expression patterns shown in the 

spike-in dataset experiment no. 4 and no. 10. We aim to observe whether these 

simulated expression values can assess the performance of six differential expression 

methods as well as obtain similar conclusion as what the spike-in dataset does. 

Three replicate arrays for the 4th experimental group and the 10th experimental 

group were simulated separately. It cost us around two minutes to simulate one group. 

Then we created ROC curves for six differential expression methods and compared 

the simulation data with the real spike-in dataset (Figure 4.7 and Figure 4.8). The 

ROC curves here are created as the graphs of the number of false positives (FPs) as 

the x coordinate versus the number of true positives (TPs) as the y coordinate. Under 

spike-in dataset, the growth in TPs for these six differential expression methods had 

already become flat gradually after FPs>100, therefore, we first focused on the part of 

FPs<100 in both spike-in dataset and simulation dataset. Although the amount of the 

replicate arrays of simulation and real spike-in data were the same, the ability of 

detect differentially expressed genes using simulated data was not as good as the 

ability using real spike-in dataset. Since the growth in TPs under simulated data still 

surged after FPs>100, the ROC curve on the part of FPs<1000 based on simulated 
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data was obtained in order to see the more complete pattern (Figure 4.9). We 

compared it with the pattern of the ROC curve using the real spike-in dataset and 

discovered that there were comparable trend of these two ROC curves. The 

performance of differential expression methods such as EBarrays(LNN), FC, limma is 

outstanding in both real spike-in dataset and simulated dataset. On the contrary, Welch 

t-test performs disappointingly in both dataset. The performance of SAM is 

apparently quite different in in real spike-in dataset and simulated dataset. 

To improve power of detecting differentially expressed genes, we simulated 

more replicate arrays for the same two experimental groups. Simulation of five arrays 

needed about three minutes for each group. Comparing with the real spike-in dataset, 

despite the augmentation of the simulated replicate arrays, the ability of detecting 

differentially expressed genes was still less powerful in the simulated data (Figure 

4.10). In Figure 4.10, the performance of differential expression methods such as 

limma and SAM is excellent in both real spike-in dataset and simulated dataset. But 

the methods like FC and EBarrays(LNN) have different performance in different 

datasets. FC and Ebarrays(LNN) appear admirable ability of detecting differentially 

expressed genes in real spike-in dataset, but show poor quality of detection in the 

simulated dataset. In addition, simulation of ten arrays cost about five minutes. The 

performance of differential expression methods is shown In Figure 4.11. The six 

differential expression methods except FC and EBarrays(LNN) perform great power 

of detecting differentially expressed genes. 
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5  Discussion 

The proposed simulation method for gene expression data is based on an 

empirical distribution obtained from 1279 HG-U133 arrays. Genes displaying only 

one mode are recognized as either expressed in all tissues or unexpressed in all tissues. 

These genes do not provide information for the purpose of differentiating between 

expressed and unexpressed. To distinguish abnormal tissues from normal tissues, we 

can just focus on 5005 genes which have multiple modes. To simulate a set of arrays, 

our simulation method recommends that first identifying each of 5005 genes as 

expressed or unexpressed, and then using this expression status to acquire these 5005 

genes’ simulated expression values. The rest of the 22283-5005 genes will be 

simulated by one-mode empirical distributions.  

The empirical distribution follows similar pattern with intensity distribution 

obtained from the spike-in dataset. It implies that the empirical distribution imitates 

some characteristics of real gene intensity distribution successfully. The derived 

simulated data can be used to evaluate various differential expression methods 

objectively. With three replicate arrays, the performances of compared six differential 

expression methods are all of inferior quality when using simulated data than using 

real spike-in data. This may be explained by the reason that the spike-in dataset 

contains technical replicates only, but our simulated data also contain variations from 

biological replicates. The ability of detecting differentially expressed genes with these 

six approaches except for SAM is of the same rank. Using five and ten replicate 

arrays, there will be some changes of the performance of these six methods. The 

fold-change and EBarrays-based analyses are superior in the low replication situation. 

But when the replicate arrays increased, the performance of the two methods is not as 

excellent as it appears formerly. Besides, the capability of distinguishing differentially 
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expressed genes with SAM becomes better while augmenting the replicate arrays.   

This simulation method has some limitation. First of all, we preprocessed all the 

row data of 1279 arrays from normal tissues using justRMA. Consequently, the 

empirical intensity distributions are generated through RMA-preprocessed data, and 

there is no way to evaluate varied preprocessing methods. Besides, simulation of 5005 

genes has some problems. This simulation method considered the empirical 

distribution which had multiple modes as a complete distribution and ignored the fact 

that the expressed part and unexpressed part might come from the different 

distributions. That is, when simulating gene expressions from these multiple-mode 

genes, the expressed expression will always larger than the unexpressed expression. 

Therefore, as the replicate arrays increase to a vast amount, the ability of differential 

expression methods will be too sensitive to evaluate.   

With this simulation method, three replicate arrays for each group can be 

obtained within two minutes, and it is convenient to simulate an enormous amount of 

imitative data. Arising from the expensive price of Affymetrix chips, microarray 

experiment size was restricted and it would limit the power of microarray analysis 

methods. It is believed that the proposed simulation method of gene expression data 

can benefit the development of the microarray analysis tools. 
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Table 2.1. Affymetrix human genome U133 dataset contains 14 spike-in gene groups in each of 14 experimental groups. This table shows the 
spiked-in concentrations (pM). 

Spike-in Gene Groups 
203508_at

204563_at

204513_s_at

204205_at 

204959_at 

207655_s_at 

204836_at 

205291_at 

209795_at 

207777_s_at

204912_at

205569_at

207160_at

205692_s_at

212827_at

209606_at

205267_at

204417_at

205398_s_at

209734_at

209354_at

206060_s_at

205790_at

200665_s_at

207641_at 

207540_s_at

204430_s_at

203471_s_at

204951_at

207968_s_at

AFFX-r2-TagA_at

AFFX-r2-TagB_at

AFFX-r2-TagC_at

AFFX-r2-TagD_at

AFFX-r2-TagE_at

AFFX-r2-TagF_at

AFFX-r2-TagG_at

AFFX-r2-TagH_at

AFFX-DapX-3_at

AFFX-LysX-3_at 

AFFX-PheX-3_at 

AFFX-ThrX-3_at 

 
HGU133 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 0 0.125 0.25 0.5 1 2 4 8 16 32 64 128 256 512 
2 0.125 0.25 0.5 1 2 4 8 16 32 64 128 256 512 0 
3 0.25 0.5 1 2 4 8 16 32 64 128 256 512 0 0.125 
4 0.5 1 2 4 8 16 32 64 128 256 512 0 0.125 0.25 
5 1 2 4 8 16 32 64 128 256 512 0 0.125 0.25 0.5 
6 2 4 8 16 32 64 128 256 512 0 0.125 0.25 0.5 1 
7 4 8 16 32 64 128 256 512 0 0.125 0.25 0.5 1 2 
8 8 16 32 64 128 256 512 0 0.125 0.25 0.5 1 2 4 
9 16 32 64 128 256 512 0 0.125 0.25 0.5 1 2 4 8 

10 32 64 128 256 512 0 0.125 0.25 0.5 1 2 4 8 16 
11 64 128 256 512 0 0.125 0.25 0.5 1 2 4 8 16 32 
12 128 256 512 0 0.125 0.25 0.5 1 2 4 8 16 32 64 
13 256 512 0 0.125 0.25 0.5 1 2 4 8 16 32 64 128 

E
xp

er
im

en
ta

l G
ro

up
s 

14 512 0 0.125 0.25 0.5 1 2 4 8 16 32 64 128 256 



 

  35

Table 2.2. Probe IDs for the seventeen additional probe sets annotated in the 
HG-U133Atag CDF. 

Spike Ins  Non Spike Ins 
AFFX-r2-TagA_at AFFX-r2-TagO-3_at 
AFFX-r2-TagB_at AFFX-r2-TagO-5_at 
AFFX-r2-TagC_at AFFX-r2-TagIN-3_at
AFFX-r2-TagD_at AFFX-r2-TagIN-5_at
AFFX-r2-TagE_at AFFX-r2-TagQ-3_at 
AFFX-r2-TagF_at AFFX-r2-TagQ-5_at 
AFFX-r2-TagG_at AFFX-r2-TagJ-3_at 
AFFX-r2-TagH_at AFFX-r2-TagJ-5_at 
  AFFX-r2-TagIN-M_at

Table 3.1. Summary of the amount of delete data in QC step. 

  GEO  AE  Total  
Before QC  1886 559 2445 
Scale factor  -359 -112 -471 
Averages background  -56 0 -56 
3’/5’ ratios  -302 -98 -400 
Percent present calls  -4 -13 -17 
After QC  1165 336 1501 
Remove different type  943 336 1279 
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Table 3.2. The frequency distribution among tissue types of the reference training set. 

beta cell islets 1 Normal cervix 8 T cells resting 23 

medulla oblongata 1 prostate 8 cerebellum 24 

Normal Breast 1 TERV (cell line) 8 Normal Kidney 25 

Normal Colon 1 smooth muscle 9 uterus 25 

Normal Corpus 1 
primary fibroblast cell 

line 
9 

esophageal 

epithelium 
26 

Normal Stomach 1 
PBSC CD34 selected 

cells 
10 Frontal Cortex 26 

Normal Thalamus 1 Baseline macrophages 11 

blood (cell type : 

mononuclear cells 

from venous 

blood) 

26 

normal tissue 

adjacent to Renal 

Cell Carcinoma 

1 Normal Bladder 11 blood (monocyte) 27 

Normal Adrenal 

Gland 
2 testis 11 

placental basal 

plate 
27 

Fetal Cartilage from 

Distal Femur 
2 tonsil 11 blood CD4 T cells 27 

Normal Heart 2 synovial membrane 11 brain 29 

pancreas 2 B-cells 12 
unknow tissue 

type 
29 

spinal cord 2 
SH-SY5Y 

neuroblastoma cells
12 skeletal muscle 33 

salivary gland 2 

Stratagene Universal 

Human Reference 

RNA 

12 
Normal Caudate 

Nucleus 
33 

pituitary 2 
peripheral blood CD8 

T cells 
12 prefrontal cortex 33 
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Normal Amygdala 3 umbilical cord blood 13 duodenal tissue 40 

intestinal xenograft 

tissue 
3 thymus 14 

human 

post-mortem brain 

tissue 

43 

trachea 3 
Post-mortem medial 

substantia nigra 
15 

peripheral blood 

(human PBMC) 
47 

Pulp tissue 4 skin 16 white blood cells 48 

occipital lobe 4 
Undifferentiated 

human ES cells 
16 lateralis muscle 48 

Theca cell 4 
lymphoblastoid cell 

lines 
17 

Human umbilical 

vein endothelial 

cells 

53 

Normal_Ovary 5 
Human optic nerve 

head astrocytes 
18 bone marrow 56 

thyroid gland 

(thyrocytes) 
7 hypothalamus 22 lung 63 

Normal Spleen 7 liver 22 whole blood 67 

adipose tissue 8 Bronchial Epithelium 23   

 
 



 

  38

0 500 1000 1500 2000 2500

0
5

10
15

20
25

Scale Factor

2445 arrays

sf
s

0 500 1000 1500 2000

0
10

0
20

0
30

0
40

0
50

0

Average Background

1974 arrays

av
bg

 

0 500 1000 1500

-4
-2

0
2

4
6

8

Ratios(actin3/actin5)

1918 arrays

ac
tin

3.
ac

tin
5

0 500 1000 1500

-1
0

1
2

3
4

5
6

Ratios(gapdh3/gapdh5)

1918 arrays

ga
pd

h3
.g

ap
dh

5

 

0 500 1000 1500

10
20

30
40

50
60

Percent Precent

1518 arrays

pp

 
Figure 3.1. The deleted data in each quality assessment step. The red dots represent 
data deleted in this step. The block dots are the data still kept after this step. 
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Figure 3.2. The total deleted data in each quality assessment step. The red dots 
represent all deleted data. The block dots are the data still kept after all the quality 
assessment steps.  



 

  40

 

Figure 3.3. These histograms are the log (base 2) expression distribution for gene 
“200886_s_at”. The color lines are the smoothed densities, using various “n” and 
“adjust” in function density(n, adjust) of R.  
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Figure 3.4. The red dots represent the rates of correctly identifying the two 
experiments (conditions) to be differentially expressed among 34 spike-in genes under 
various K. The blue dots are the rates of correctly identifying the two experiments 
(conditions) to be not differentially expressed among 4993 genes which were not in 
spike-in genes and had multiple modes.  
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Figure 4.1(a) Log (base 2) intensity distribution of one-mode gene.   

 
Figure 4.1(b) Log (base 2) intensity distribution of two-mode gene which the second 
mode is close to the first mode.   
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Figure 4.1(c) Log (base 2) intensity distribution of two-mode gene which the second 
mode is more distant to the first mode.   

 
Figure 4.1(d) Log (base 2) intensity distribution of gene which has more than two 
modes and the second mode is far away from the first mode.   



 

  44

 

Figure 4.2. Different combinations of arguments to fit the density smoother. 
Combinations using the same adjust are assigned to the same color as shown in the 
legend. 



 

  45

 

Figure 4.3. The empirical intensity distributions and spike-in intensity distributions 
for two genes that are included as the spike-in genes and have multiple modes. The 
solid lines are the empirical distributions obtained through 1279 arrays of the 
reference training set, and the dotted lines are the intensity distributions using 42 
spike-in arrays. The brilliant ticks act for the observed values of spike-in samples with 
color denoting the experimental group to which the observation belongs. 

 

Figure 4.4. The empirical intensity distributions and spike-in intensity distributions 
for two genes that are included as spike-in genes and have only one mode. The solid 
lines are the empirical distributions obtained through 1279 arrays of the reference 
training set, and the dotted lines are the intensity distributions using 42 spike-in arrays. 
The brilliant ticks act for the observed values of spike-in samples with color denoting 
the experimental group to which the observation belongs. 
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(a) 

 

(b)                               (c) 

Figure 4.5.1. The empirical intensity distribution and spike-in intensity distribution 
for a gene that is not included as the spike-in gene and has multiple modes, where the 
second mode is distant from the first mode. In (a), the empirical intensity distribution 
and spike-in intensity distribution are put together. (b) is for the empirical intensity 
distribution only, and (c) is for the spike-in intensity distribution only. The brilliant 
ticks act for the observed values of spike-in samples with color denoting the 
experimental group to which the observation belongs. 
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(a) 

 

 

(b)                               (c) 

Figure 4.5.2. The empirical intensity distribution and spike-in intensity distribution 
for a gene that is not included as the spike-in gene and has multiple modes, where the 
second mode is close to the first mode. In (a), the empirical intensity distribution and 
spike-in intensity distribution are put together. (b) is for the empirical intensity 
distribution only, and (c) is for the spike-in intensity distribution only. The brilliant 
ticks act for the observed values of spike-in samples with color denoting the 
experimental group to which the observation belongs. 
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(a) 

 

(b)                               (c) 

Figure 4.5.3. The empirical intensity distribution and spike-in intensity distribution 
for a gene that is not included as the spike-in gene and has multiple modes, where the 
second mode is far away from the first mode. In (a), the empirical intensity 
distribution and spike-in intensity distribution are put together. (b) is for the empirical 
intensity distribution only, and (c) is for the spike-in intensity distribution only. The 
brilliant ticks act for the observed values of spike-in samples with color denoting the 
experimental group to which the observation belongs. 
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(a) 

 

(b)                               (c) 

Figure 4.6.1. The empirical intensity distribution and spike-in intensity distribution 
for a gene that is not included as the in spike-in gene and has only one mode. In (a), 
the empirical intensity distribution and spike-in intensity distribution are put together. 
(b) is for the empirical intensity distribution only, and (c) is for the spike-in intensity 
distribution only. The brilliant ticks act for the observed values of spike-in samples 
with color denoting the experimental group to which the observation belongs. 
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(a) 

 

(b)                               (c) 

Figure 4.6.2. The empirical intensity distribution and spike-in intensity distribution 
for a gene that is not included as the spike-in gene and has only one mode. In (a), the 
empirical intensity distribution and spike-in intensity distribution are put together. (b) 
is for the empirical intensity distribution only, and (c) is for the spike-in intensity 
distribution only. The brilliant ticks act for the observed values of spike-in samples 
with color denoting the experimental group to which the observation belongs. 
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Figure 4.7. ROC curves for six differential-expression methods, comparing the three 
replicate arrays from the 4th experimental group of the spike-in dataset with the three 
replicate arrays from the 10th experimental group. Various colors represent different 
differential-expression methods as shown in the legend. 
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Figure 4.8. ROC curves with FPs<100 for six differential-expression methods, 
comparing the three replicate arrays simulated based on the 4th experimental group of 
the spike-in dataset with the three replicate arrays simulated based on the 10th 
experimental group. Various colors represent different differential-expression methods 
as shown in the legend. 
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Figure 4.9. ROC curves with FPs<1000 for six differential-expression methods, 
comparing the three replicate arrays simulated based on the 4th experimental group of 
the spike-in dataset with the three replicate arrays simulated based on the 10th 
experimental group. Various colors represent different differential-expression methods 
as shown in the legend. 
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Figure 4.10. ROC curves with FPs<100 for six differential-expression methods, 
comparing the five replicate arrays simulated based on the 4th experimental group of 
the spike-in dataset with the five replicate arrays simulated based on the 10th 
experimental group. Various colors represent different differential-expression methods 
as shown in the legend.  
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Figure 4.11. ROC curves with FPs<100 for six differential-expression methods, 
comparing the ten replicate arrays simulated based on the 4th experimental group of 
the spike-in dataset with the ten replicate arrays simulated based on the 10th 
experimental group. Various colors represent different differential-expression methods 
as shown in the legend.  

 


