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摘要 

  此篇論文包含了兩個部分，針對相加模型下藉由單獨的單一核甘酸多形性

(SNP)關係探測其交互作用的趨勢，而我們方法的重點在於檢定力的損失與節省

運算時間的權衡。 

  在 GWAS 探討交互作用關係的運算時間是相當驚人的，我們首先找出單獨 SNP

關係與配對 SNP 關係的關聯，希望透過損失一些檢定力，使得運算時間能大幅降

低。研究中的第二部分是利用條件最大期望值 (ECM)來估計在實際資料中的

AB (基因型 AB 的相對外顯率)、 Af (對偶基因 A 的頻率) 、 Bf (對偶基因 B 的頻

率)，並且可藉由估計值來計算檢定力的損失。 

  型一誤差( )與型二誤差( )之拉扯乃統計假設檢定中著名的問題，然而，

在 GWAS 中做多重檢定， 75 10 或 51 10 這類的型一誤差是相當常見的，如此一來

檢定力(1  )由於型二誤差很大而變得非常差。換句話說，當使用很小的型一誤

差時，會使得假設檢定的結果過於保守。 

  利用此方法來分析 WTCCC 所提供之高血壓的資料，我們偵測到已有文獻提及

與高血壓有關的一些基因或 SNP，諸如 CHRM2 (rs7800093), KCNB2 (rs11782342), 

HTR3B (rs17116117), rs2820037, GAB1 (rs300916, rs300915, rs300913), BCAT1 

(rs7961152, rs11613673, rs12424348), MYBPC1 (rs11110912)。然而也有一些

是至今尚未發現的，如 rs825148, rs1553460, LOC100129858 (rs6840033), 

rs4131463, RPL18P4 (rs1528356), rs17797701, OTOG (rs11024327), 

rs10843660, CHST11 (rs11112069), SIP1 (rs8011855), RHOJ (rs1957779)這

些值得將來繼續深入研究的基因或 SNP。 

 

關鍵字：Loss of power, expectation-conditional maximization, genome-wide 

association study, single nucleotide polymorphism, additive model, 

hypertension 
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Abstract

This thesis consists of two main parts for detecting interaction patterns based on

single nucleotide polymorphism (SNP) association under additive model. Our approach

is focused on the trade-off between loss of power and the reduction in computation time.

The computation time for interaction association in genome-wide association study

(GWAS) is usually tremendous. Our first task is to find the relation between single SNP

association and paired SNPs association such that computation time could be greatly

reduced through some loss of power.

In the second research area, expectation-conditional maximization (ECM) algorithm is

used to estimate λAB (relative penetrance rate for genotype AB), fA (allele frequency A),

fB (allele frequency B) in real genome-wide association study, and consequently provide

reasonable parameters for estimating the loss of power.

The trade-off for α (type I error) and β (type II error) is well-known in statistical

hypothesis testing. However, a small α such as 5× 10−7, 1× 10−5 are used often in case-

control association study since in multiple testing, the power (1−β) will be badly weakened

due to large β. In other words, a small α makes hypothesis testing over-conservative.

Analyzing data with this approach, which imitates WTCCC of hypertension, we

have detected parts of known genes or SNPs, such as CHRM2 (rs7800093), KCNB2

(rs11782342), HTR3B (rs17116117), rs2820037, GAB1 (rs300916, rs300915, rs300913),

BCAT1 (rs7961152, rs11613673, rs12424348), MYBPC1 (rs11110912). Nevertheless, we

have also detected unknowns, such as rs825148, rs1553460, LOC100129858 (rs6840033),

rs4131463, RPL18P4 (rs1528356), rs17797701, OTOG (rs11024327), rs10843660, CHST11

(rs11112069), SIP1 (rs8011855), RHOJ (rs1957779) which are worthy of digging for sta-

tistical replication and biological experiments in the future.

Keywords: Loss of power, expectation-conditional maximization, genome-wide asso-

ciation study, single nucleotide polymorphism, additive model, hypertension.
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Chapter 1

Introduction

The trade-off for α (type I error) and β (type II error) is well-known in statistical

hypothesis testing. However, a small α such as 5× 10−7, 1× 10−5 are used often in case-

control association study because of multiple testing. Thus, the power (1−β) will be badly

weakened. In other words, a small α usually makes hypothesis testing over-conservative.

Multiple comparisons are the primary concern in many previous studies. Our approach

is focused on the loss of power and the reduction in computation time.

First of all, our approach attempts to suggest a reasonable threshold (such as ξ1 =

2.7(α = 0.1) in single gene tests) for reducing the effort in finding interaction association

based on low loss of power. Second, our results provide a quantitative assessment between

the loss of power and the gain of computation time (reduce 99.59% in this study). In

addition, expectation-conditional maximization (ECM) is used to estimate λAB (relative

penetrance rate for genotype AB), fA (frequency A), fB (frequency B) in order to provide

parameters for further calculating power loss.

Replication of the Wellcome Trust genome-wide association study of hypertension

by this approach, we detected some SNPs or genes are significantly associated with

hypertension risk. Some of them are known, such as CHRM2 (rs7800093), KCNB2

(rs11782342), HTR3B (rs17116117), rs2820037, GAB1 (rs300916, rs300915, rs300913),

BCAT1 (rs7961152, rs11613673, rs12424348), MYBPC1 (rs11110912), LOC100132798

(rs2398162), MAGI1 (rs2091244, rs2177686, rs17073046). However, those other unknowns,

such as rs825148, rs1553460, LOC100129858 (rs6840033), rs4131463, RPL18P4 (rs1528356),

rs17797701, OTOG (rs11024327), rs10843660, CHST11 (rs11112069), SIP1 (rs8011855),

RHOJ (rs1957779) are worthy of digging for statistical replication and biological expla-

nation in the future. We know that statistical significance is not equivalent to biological

significance. Hence, We hope that the results in this study can provide information in

multiple SNPs association.
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Chapter 2

Literature Review

2.1 Association study

Association study between genetic marker and phenotype has been used widely to

identify regions of the genome and genes that affect phenotype in genetics. Restriction

fragment length polymorphism (RFLP), minisatellite, microsatellite, and single nucleotide

polymorphism (SNP) can be biomarkers. Phenotypes can be hair color, drug response,

disease status, etc. We may know the association between biomarkers and disease through

case-control association study. If the association is significant, either there is a linkage

between the biomarkers and real gene which controls the phenotype or the biomarkers is

exactly situated on real gene.

The detection of genetic factors is often used in complex disease study, such as hy-

pertension, schizophrenia, cancer, and diabetes, which are affected by multiple genetic

and environmental factors. In many situation, genomic association study has more power

than linkage analysis to identify the putative genes since numerous multiple effects are

too complex for linkage study [Risch and Merikangas, 1996].

2.2 Single nucleotide polymorphism (SNP)

A single nucleotide polymorphism (SNP) is a kind of widespread DNA sequence vari-

ation that occur when a single nucleotide (A, T, C, or G) in the genome sequence is

changed, namely, there are two or more alleles on specific locus. In the past, we called

”mutation” when the minor allele frequency is less than or equal to 1%, otherwise re-

garded it as ”SNP”, but the definition is no longer necessary (SNPs with minor allele

frequency are less than or equal to 1% included in dbSNP).

SNP is often regarded as genetic marker in studies, owing to the high frequency of

about 0.1% in humans, however, not all of SNPs have real clinical meaning. The following

are four types of SNP:

• non-coding SNP:

2



The locus of SNP is on untranslated region, such as promoter.

• coding SNP (cSNP):

The antonym of non-coding SNP, it may alter the structure or function of protein.

• synonymous SNP:

The SNP belongs to cSNP, but does not alter the translated protein product.

• non-synonymous SNP:

The antonym of synonymous SNP, it will result different amino acids which may

alter the function.

Researchers can find out disease susceptibility locus of SNP, and design personalized

medicine by SNP related to drug metabolism. Previous studies had interesting discoveries,

for instance, APOE with Alzheimer’s disease, TCF7L2 with type 2 diabetes, and HTR2A

with schizophrenia.

2.3 Multiple comparisons

The densely spaced biomarkers are the source of multiple comparisons in genome-wide

association study (GWAS). In GWAS, testing a great amount of hypothesis simultaneously

is a prerequisite. As the first paragraph mentioned in introduction, the trade-off for

α and β will be a topic in this case. Numerous researchers and approaches, such as

Bonferroni procedure [Bonferroni, 1936], Sidak procedure, Holm procedure [Holm, 1979],

Hochberg procedure [Hochberg, 1988], and Benjamini & Hochberg procedure [Benjamini

and Hochberg, 1995], contribute on this issue before bio-technology has been rapidly

elevated recent years. The traditional Bonferroni procedure is frequently used, but it is

well-known that this procedure is over-conservative. To increase the power by Bonferroni

procedure, we consider the generalized family-wise error rate (gFWER) and the false

discovery rate (FDR).

2.4 Data quality control

By quality control, reliability for further study can be promoted such that the result

is more meaningful. Genetic markers and samples are two targets to be filtered out in

GWAS. The Genotyping Facility at the Wellcome Trust Sanger Institute (WTSI) high-

throughput genotyping quality control includes SNP call rate, minor allele frequency

(MAF), and Hardy-Weinberg equilibrium (HWE) for each genetic marker, sample call

rate, heterozygosity, and cryptic relatedness for each sample.

3



2.4.1 SNP call rate

Low SNP call rate occurs when there are too many missing data (probe intensity value

doesn’t pass the detection filter score) on automated SNP calling algorithm. Its definition

is the proportion of non-missing data over whole sample. Exclusion criteria is often SNP

call rate ≤ 95%.

2.4.2 Minor allele frequency (MAF)

The allele frequency is the proportion of the allele over whole sample. SNPs are usually

biallelic. The minor allele is the less frequence allele at a locus that is observed in a specific

population. SNPs would usually be excluded if MAF ≤ 1%.

2.4.3 Hardy-Weinberg equilibrium (HWE)

The Hardy-Weinberg equilibrium indicates that allele frequencies in a population re-

main constant from generation to generation unless specific external force, such as non-

random mating (includes inbreeding, assortative mating, genetic drift), selection, and

mutation. Thus, deviation from HWE would be checked, SNPs will often be excluded

with p-value ≤ 10−5 in HWE testing.

2.4.4 Sample call rate

Low sample call rate occurs when there are too many missing data (probe intensity

value does not pass the detection filter score) on automated SNP calling algorithm. Its

definition is the proportion of non-missing data per sample. The exclusion criteria is

generally sample call rate ≤ 97%.

2.4.5 Heterozygosity

The genotypes AA, aa are homozygous and the genotype Aa is heterozygous for a

biallelic SNP, which has allele A, and a. By definition, heterozygosity per individual is

the proportion of SNPs that are heterozygous within whole typed SNPs. If heterozygosity

≤ 22.5% or ≥ 30%, the individual would be filtered out owing to low heterozygosity can

result in more heterozygote genotypes being no called and excess heterozygosity may

indicate contamination by foreign DNA.

2.4.6 Cryptic relatedness

In many statistical techniques, we usually assume independent property, the approach

we use is no exception. However, real relationship for consanguinity is sometimes unascer-

tainable. The identity-by-state (IBS, sum of the number of identical-by-state alleles at

4



each locus divided by twice the number of loci) is possible to assess the unknown rela-

tionships within sample population and to avoid non-trivial degrees of relatedness, which

may violate the assumption. Average IBS between each pair of individuals can be a mea-

surement to determine the individual is excluded or not. The individual could be suspect

with IBS ≥ 86% or IBS ≥ 99%.
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Chapter 3

Methodology

3.1 Loss of Power

The detection of interaction for complex human diseases is usually important, but the

tremendous computation time is primary problem in the genetic study. Minimizing the

loss of power in hypothesis may be a proper direction by setting a reasonable threshold

on single SNP testing to avoid further testing of interaction of this gene.

3.1.1 Algorithm

Table 3.1: Single SNP Allele

Allele

Group A a Total

Disease N11 N12 nD

Control N21 N22 nC

Total N·1 N·2 n·

Table 3.2: Single SNP Genotype

Genotype

Group A/A A/a a/a Total

Disease N1AA N1Aa N1aa N1

Control N2AA N2Aa N2aa N2

Total N·AA N·Aa N·aa N·

In an additive model, table 3.1 is condensed from table 3.2, and

nD = 2N1, N11 = 2N1AA +N1Aa, N12 = N1Aa + 2N1aa

nC = 2N2, N21 = 2N2AA +N2Aa, N22 = N2Aa + 2N2aa.

6



Table 3.3: Interaction SNP Allele

Allele

Group AB Ab aB ab Total

Disease n11 n12 n13 n14 nD

Control n21 n22 n23 n24 nC

Total n·1 n·2 n·3 n·4 n·

Also table 3.3 is condensed from table 3.4, and

n11 = 2n1ABAB + n1ABAb + n1ABaB + n1ABab

n12 = n1ABAb + 2n1AbAb + n1AbaB + n1Abab

n13 = n1ABaB + n1AbaB + 2n1aBaB + n1aBab

n14 = n1ABab + n1Abab + n1aBab + 2n1abab

n21 = 2n2ABAB + n2ABAb + n2ABaB + n2ABab

n22 = n2ABAb + 2n2AbAb + n2AbaB + n2Abab

n23 = n2ABaB + n2AbaB + 2n2aBaB + n2aBab

n24 = n2ABab + n2Abab + n2aBab + 2n2abab.

Table 3.4: Interaction SNP Genotype

Genotype

Group AB/AB AB/Ab AB/aB AB/ab Ab/Ab Ab/aB Ab/ab aB/aB aB/ab ab/ab Total

Disease n1ABAB n1ABAb n1ABaB n1ABab n1AbAb n1AbaB n1Abab n1aBaB n1aBab n1abab N1

Control n2ABAB n2ABAb n2ABaB n2ABab n2AbAb n2AbaB n2Abab n2aBaB n2aBab n2abab N2

Total n·ABAB n·ABAb n·ABaB n·ABab n·AbAb n·AbaB n·Abab n·aBaB n·aBab n·abab N·

Let the allele frequency for A and B be fA and fB respectively. In addition, it is

assumed that

P (D|g = AB/AB) : P (D|g = AB/∗) : P (D|g = ∗/∗)
= λ2

AB : λAB : 1,

where g means genotype, D means disease, ∗ means not AB, and λAB represents the

relative penetrance rate.

7



Hence, in the disease population,

P (g = AB/AB|D) =
P (D|g = AB/AB)P (g = AB/AB)

P (D)

=

P (D|g = AB/AB)

P (D|g = ∗/∗)
P (g = AB/AB)

P (D)

P (D|g = ∗/∗)

=
λ2

AB × f 2
Af

2
B

P (D)

P (D|g = ∗/∗)

P (g = AB/Ab|D) =
P (D|g = AB/Ab)P (g = AB/Ab)

P (D)

=

P (D|g = AB/Ab)

P (D|g = ∗/∗)
P (g = AB/Ab)

P (D)

P (D|g = ∗/∗)

=
λAB × 2f 2

AfBfb

P (D)

P (D|g = ∗/∗)

P (g = AB/aB|D) =
P (D|g = AB/aB)P (g = AB/aB)

P (D)

=

P (D|g = AB/aB)

P (D|g = ∗/∗)
P (g = AB/aB)

P (D)

P (D|g = ∗/∗)

=
λAB × 2fAfaf

2
B

P (D)

P (D|g = ∗/∗)

P (g = AB/ab|D) =
P (D|g = AB/ab)P (g = AB/ab)

P (D)

=

P (D|g = AB/ab)

P (D|g = ∗/∗)
P (g = AB/ab)

P (D)

P (D|g = ∗/∗)

=
λAB × 2fAfafBfb

P (D)

P (D|g = ∗/∗)

P (g = Ab/Ab|D) =
P (D|g = Ab/Ab)P (g = Ab/Ab)

P (D)

=

P (D|g = Ab/Ab)

P (D|g = ∗/∗)
P (g = Ab/Ab)

P (D)

P (D|g = ∗/∗)

=
f 2

Af
2
b

P (D)

P (D|g = ∗/∗)

P (g = Ab/aB|D) =
P (D|g = Ab/aB)P (g = Ab/aB)

P (D)

=

P (D|g = Ab/aB)

P (D|g = ∗/∗)
P (g = Ab/aB)

P (D)

P (D|g = ∗/∗)

=
2fAfafBfb

P (D)

P (D|g = ∗/∗)

P (g = Ab/ab|D) =
P (D|g = Ab/ab)P (g = Ab/ab)

P (D)

=

P (D|g = Ab/ab)

P (D|g = ∗/∗)
P (g = Ab/ab)

P (D)

P (D|g = ∗/∗)

=
2fAfaf

2
b

P (D)

P (D|g = ∗/∗)
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P (g = aB/aB|D) =
P (D|g = aB/aB)P (g = aB/aB)

P (D)

=

P (D|g = aB/aB)

P (D|g = ∗/∗)
P (g = aB/aB)

P (D)

P (D|g = ∗/∗)

=
f 2

af
2
B

P (D)

P (D|g = ∗/∗)

P (g = aB/ab|D) =
P (D|g = aB/ab)P (g = aB/ab)

P (D)

=

P (D|g = aB/ab)

P (D|g = ∗/∗)
P (g = aB/ab)

P (D)

P (D|g = ∗/∗)

=
2f 2

afBfb

P (D)

P (D|g = ∗/∗)

P (g = ab/ab|D) =
P (D|g = ab/ab)P (g = ab/ab)

P (D)

=

P (D|g = ab/ab)

P (D|g = ∗/∗)
P (g = ab/ab)

P (D)

P (D|g = ∗/∗)

=
f 2

af
2
b

P (D)

P (D|g = ∗/∗)

,

P (D)

P (D|g = ∗/∗)
= sum of the 10 numerators above.

The probability of AB, Ab, aB, ab in table 3.3 disease row are,

pAB|D = P (g = AB/AB|D) + 0.5 [P (g = AB/Ab|D) + P (g = AB/aB|D) + P (g = AB/ab|D)]

pAb|D = P (g = Ab/Ab|D) + 0.5 [P (g = AB/Ab|D) + P (g = Ab/aB|D) + P (g = Ab/ab|D)]

paB|D = P (g = aB/aB|D) + 0.5 [P (g = AB/aB|D) + P (g = Ab/aB|D) + P (g = aB/ab|D)]

pab|D = P (g = ab/ab|D) + 0.5 [P (g = AB/ab|D) + P (g = Ab/ab|D) + P (g = aB/ab|D)] .

Similarly, pAB|C , pAb|C , paB|C , pab|C in table 3.3 control row are computed by the same

formulas with λAB = 1, and we know

(n11, n12, n13, n14) ∼ Multinomial
(
nD; pAB|D, pAb|D, paB|D, pab|D

)
(n21, n22, n23, n24) ∼ Multinomial

(
nC ; pAB|C , pAb|C , paB|C , pab|C

)
,

proposed approach used to simulate the contingency table 3.3 at the moment that given

λAB, fA, fB, nD = 4000, nC = 6000, construct hypothesis testing,

H0 : λAB = λAb = λaB = λab = 1

H1 : λAB > λAb = λaB = λab = 1,

and find out the loss of power what we concern,

P (Q2 > ξ2|H1)− P (Q2 > ξ2 and Q1 > ξ1|H1)

P (Q2 > ξ2|H1)
.

9



Figure 3.1: The Hypothetical Diagram for Loss of Power

where Q1 is the test statistic (Cochran-Armitage trend test [Armitage, 1955], Fisher’s

exact test [Fisher, 1922], or Chi-square test [Pearson, 1900]) from table 3.1 or table

3.2, Q2 is the test statistic (Chi-square test or Fisher’s exact test) from table 3.3, and

ξ1, ξ2 are the thresholds respectively. From figure 3.1, the loss of power defines as
# of sky blue dots

# of sky blue and aquanarine dots
.
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Q1 =



N· [N·(N1Aa + 2N1aa)−N1N·Aa + 2N·aa)]2

N2N1 [N·(N·Aa + 4N·aa)− (N·Aa + 2N·aa)2]
, Cochran-Armitage trend test

Sum of all P-values which are

≤ Pcutoff =
(nD!nC !)(N·1!N·2!)

n·!(N11!N12!N21!N22!)
, Fisher’s exact test

2∑
i=1

(N1i −
nDN·i
n·

)2

nDN·i
n·

+
(N2i −

nCN·i
n·

)2

nCN·i
n·

 , Chi-square test

∼ X 2(1)

Q2 =



4∑
i=1

(n1i −
nDn·i
n·

)2

nDn·i
n·

+
(n2i −

nCn·i
n·

)2

nCn·i
n·

 , Chi-square test

Sum of all P-values which are

≤ Pcutoff =
(nD!nC !)(n·1!n·2!n·3!n·4!)

n·!(n11!n12!n13!n14!n21!n22!n23!n24!)
, Fisher’s exact test

∼ X 2(3)

3.1.2 Simulation

Table 3.5 and table 3.6 below show the simulation results when thresholds are

ξ1 = 2.7 (α = 0.1) or 3.17 (α = 0.075), and ξ2 = 32 (α = 5× 10−7),

we could set a threshold for single association (ξ1) depends on these reference tables, such

that both of reduced computation time and loss of power are tolerable for us.
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Table 3.5: Loss of Power by Simulation when ξ1 = 2.7(α = 0.1), ξ2 = 32(α = 5× 10−7)

λAB fA fB
Original
Power a

Absolute
LOP

Relative
LOP
(%)

1.50

0.1
0.1 0.00000 0.00000 0.0000
0.2 0.00003 0.00001 33.3333
0.3 0.00131 0.00006 4.5802

0.2
0.1 0.00000 0.00000 0.0000
0.2 0.01840 0.00232 12.6087
0.3 0.26578 0.00100 0.3763

0.3
0.1 0.00104 0.00065 62.5000
0.2 0.26421 0.02107 7.9747
0.3 0.85797 0.00070 0.0816

1.75

0.1
0.1 0.00007 0.00003 42.8571
0.2 0.04221 0.00329 7.7944
0.3 0.39722 0.00052 0.1309

0.2
0.1 0.03980 0.02035 51.1307
0.2 0.83047 0.00683 0.8224
0.3 0.99834 0.00000 0.0000

0.3
0.1 0.39718 0.16843 42.4065
0.2 0.99842 0.00101 0.1012
0.3 1.00000 0.00000 0.0000

0.75

0.1
0.1 0.00000 0.00000 0.0000
0.2 0.00000 0.00000 0.0000
0.3 0.00000 0.00000 0.0000

0.2
0.1 0.00000 0.00000 0.0000
0.2 0.00000 0.00000 0.0000
0.3 0.00000 0.00000 0.0000

0.3
0.1 0.00000 0.00000 0.0000
0.2 0.00000 0.00000 0.0000
0.3 0.00039 0.00009 23.0769

0.50

0.1
0.1 0.00000 0.00000 0.0000
0.2 0.00216 0.00076 35.1852
0.3 0.07424 0.00226 3.0442

0.2
0.1 0.00228 0.00165 72.3684
0.2 0.39539 0.03595 9.0923
0.3 0.96237 0.00037 0.0384

0.3
0.1 0.07241 0.04819 66.5516
0.2 0.96015 0.02989 3.1131
0.3 1.00000 0.00000 0.0000

a Calculates by 100000 simulations.

λAB fA fB
Original
Power

Absolute
LOP

Relative
LOP
(%)

2.00

0.1
0.1 0.01447 0.00698 48.2377
0.2 0.57907 0.00518 0.8945
0.3 0.97942 0.00001 0.0010

0.2
0.1 0.58140 0.14230 24.4754
0.2 0.99977 0.00004 0.0040
0.3 1.00000 0.00000 0.0000

0.3
0.1 0.97795 0.13650 13.9578
0.2 1.00000 0.00000 0.0000
0.3 1.00000 0.00000 0.0000

3.00

0.1
0.1 0.98602 0.01444 1.4645
0.2 1.00000 0.00000 0.0000
0.3 1.00000 0.00000 0.0000

0.2
0.1 1.00000 0.00000 0.0110
0.2 1.00000 0.00000 0.0000
0.3 1.00000 0.00000 0.0000

0.3
0.1 1.00000 0.00000 0.0010
0.2 1.00000 0.00000 0.0000
0.3 1.00000 0.00000 0.0000

0.25

0.1
0.1 0.02068 0.01481 71.6151
0.2 0.85486 0.03506 4.1013
0.3 0.99974 0.00002 0.0020

0.2
0.1 0.85408 0.37084 43.4198
0.2 1.00000 0.00028 0.0280
0.3 1.00000 0.00000 0.0000

0.3
0.1 0.99965 0.26981 26.9904
0.2 1.00000 0.00001 0.0010
0.3 1.00000 0.00000 0.0000

0.05

0.1
0.1 0.76622 0.38398 50.1135
0.2 1.00000 0.00146 0.1460
0.3 1.00000 0.00000 0.0000

0.2
0.1 1.00000 0.15986 15.9860
0.2 1.00000 0.00000 0.0000
0.3 1.00000 0.00000 0.0000

0.3
0.1 1.00000 0.05470 5.4700
0.2 1.00000 0.00000 0.0000
0.3 1.00000 0.00000 0.0000

12



Table 3.6: Loss of Power by Simulation when ξ1 = 3.17(α = 0.075), ξ2 = 32(α = 5×10−7)

λAB fA fB
Original
Power a

Absolute
LOP

Relative
LOP
(%)

1.50

0.1
0.1 0.00000 0.00000 0.0000
0.2 0.00003 0.00001 33.3333
0.3 0.00131 0.00016 12.1951

0.2
0.1 0.00000 0.00000 0.0000
0.2 0.01840 0.00378 20.5184
0.3 0.26578 0.00209 0.7868

0.3
0.1 0.00104 0.00082 78.9474
0.2 0.26421 0.03404 12.8852
0.3 0.85797 0.00184 0.2149

1.75

0.1
0.1 0.00007 0.00004 61.5385
0.2 0.04221 0.00539 12.7639
0.3 0.39722 0.00094 0.2355

0.2
0.1 0.03980 0.02385 59.9231
0.2 0.83047 0.01405 1.6915
0.3 0.99834 0.00000 0.0000

0.3
0.1 0.39718 0.21232 53.4560
0.2 0.99842 0.00295 0.2955
0.3 1.00000 0.00000 0.0000

0.75

0.1
0.1 0.00000 0.00000 0.0000
0.2 0.00000 0.00000 0.0000
0.3 0.00000 0.00000 0.0000

0.2
0.1 0.00000 0.00000 0.0000
0.2 0.00000 0.00000 0.0000
0.3 0.00000 0.00000 0.0000

0.3
0.1 0.00000 0.00000 0.0000
0.2 0.00000 0.00000 0.0000
0.3 0.00039 0.00010 27.6490

0.50

0.1
0.1 0.00000 0.00000 0.0000
0.2 0.00216 0.00124 57.3333
0.3 0.07424 0.00827 11.1422

0.2
0.1 0.00228 0.00205 89.7561
0.2 0.39539 0.10093 25.5268
0.3 0.96237 0.00394 0.4091

0.3
0.1 0.07241 0.06199 85.6122
0.2 0.96015 0.11882 12.3755
0.3 1.00000 0.00012 0.0120

a Calculates by 100000 simulations.

λAB fA fB
Original
Power

Absolute
LOP

Relative
LOP
(%)

2.00

0.1
0.1 0.01447 0.00815 56.3463
0.2 0.57907 0.00970 1.6747
0.3 0.97942 0.00002 0.0020

0.2
0.1 0.58140 0.19737 33.9466
0.2 0.99977 0.00013 0.0130
0.3 1.00000 0.00000 0.0000

0.3
0.1 0.97795 0.20778 21.2464
0.2 1.00000 0.00000 0.0000
0.3 1.00000 0.00000 0.0000

3.00

0.1
0.1 0.98602 0.02639 2.6762
0.2 1.00000 0.00000 0.0000
0.3 1.00000 0.00000 0.0000

0.2
0.1 1.00000 0.00016 0.0160
0.2 1.00000 0.00000 0.0000
0.3 1.00000 0.00000 0.0000

0.3
0.1 1.00000 0.00010 0.0010
0.2 1.00000 0.00000 0.0000
0.3 1.00000 0.00000 0.0000

0.25

0.1
0.1 0.02068 0.01813 87.6725
0.2 0.85486 0.12434 14.5446
0.3 0.99974 0.00040 0.0400

0.2
0.1 0.85408 0.60546 70.8907
0.2 1.00000 0.00436 0.4360
0.3 1.00000 0.00000 0.0000

0.3
0.1 0.99965 0.53804 53.8228
0.2 1.00000 0.00016 0.0160
0.3 1.00000 0.00000 0.0000

0.05

0.1
0.1 0.76622 0.57763 75.3870
0.2 1.00000 0.01131 1.1310
0.3 1.00000 0.00000 0.0000

0.2
0.1 1.00000 0.38617 38.6170
0.2 1.00000 0.00000 0.0000
0.3 1.00000 0.00000 0.0000

0.3
0.1 1.00000 0.18605 18.6050
0.2 1.00000 0.00000 0.0000
0.3 1.00000 0.00000 0.0000
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Figure 3.2: Genotype: AB/ab Figure 3.3: Genotype: Ab/aB

3.2 Expectation-Conditional Maximization (ECM)

For the approach above, we consider the additive model, nevertheless, there is an

ambiguity for (AB/ab) and (aB/Ab) in real data analysis. The following ECM algorithm

[Meng and Rubin, 1993] not only assigns the frequencies for (AB/ab) and (aB/Ab) but

also estimates λAB, fA, andfB.

Table 3.7: Observed Incomplete Data

Genotype

Group AABB AABb AAbb AaBB AaBb Aabb aaBB aaBb aabb Total

Disease y1D y2D y3D y4D y5D y6D y7D y8D y9D nD

Control y1C y2C y3C y4C y5C y6C y7C y8C y9C nC

Table 3.8: Unobserved complete Data

Genotype

Group AB/AB AB/Ab AB/aB AB/ab Ab/Ab Ab/aB Ab/ab aB/aB aB/ab ab/ab Total

Disease x1D x2D x3D x4D x5D x6D x7D x8D x9D x10D nD

Control x1C x2C x3C x4C x5C x6C x7C x8C x9C x10C nC

Firstly, we have three parameters in ECM,

θ = (λAB, fA, fB) ,

incomplete data Y = (YD,YC) = (Y1D, Y2D, . . . , Y9D, Y1C , Y2C , . . . , Y9C) ,

Y ∼ Multinomial (nD;PY D)×Multinomial (nC ;PY C) , (3.1)
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where

nD = Y1D + Y2D + · · ·+ Y9D, nC = Y1C + Y2C + · · ·+ Y9C ,

PY D = (p1D, p2D, . . . , p9D) , PY C = (p1C , p2C , . . . , p9C) ,

and complete data X = (XD,XC) = (X1D, X2D, . . . , X10D, X1C , X2C , . . . , X10C) ,

X ∼ Multinomial (nD;PXD)×Multinomial (nC ;PXC) , (3.2)

where

nD = X1D +X2D + · · ·+X10D, nC = X1C +X2C + · · ·+X10C ,

PXD = (p1D, p2D, . . . , p10D) , PXC = (p1C , p2C , . . . , p10C) ,

Therefore, by equation (3.1), the likelihood function on incomplete space is,

Lin (θ|y) = g (y|θ)

=
nD!

y1D!× y2D!× · · · × y9D!

[
λ2

ABf
2
Af

2
B

P ∗(D)

]y1D
[
λAB × 2f 2

AfB(1− fB)

P ∗(D)

]y2D

[
f 2

A(1− fB)2

P ∗(D)

]y3D
[
λAB × 2fA(1− fA)f 2

B)

P ∗(D)

]y4D

[
λAB × 2fA(1− fA)fB(1− fB) + 2fA(1− fA)fB(1− fB)

P ∗(D)

]y5D

[
2fA(1− fA)(1− fB)2

P ∗(D)

]y6D
[

(1− fA)2f 2
B

P ∗(D)

]y7D

[
2(1− fA)2fB(1− fB)

P ∗(D)

]y8D
[

(1− fA)2(1− fB)2

P ∗(D)

]y9D

nC !

y1C !× y2C !× · · · × y9C !

[
λ2

ABf
2
Af

2
B

P ∗(C)

]y1C
[
λAB × 2f 2

AfB(1− fB)

P ∗(C)

]y2C

[
f 2

A(1− fB)2

P ∗(C)

]y3C
[
λAB × 2fA(1− fA)f 2

B)

P ∗(C)

]y4C

[
λAB × 2fA(1− fA)fB(1− fB) + 2fA(1− fA)fB(1− fB)

P ∗(C)

]y5C

[
2fA(1− fA)(1− fB)2

P ∗(C)

]y6C
[

(1− fA)2f 2
B

P ∗(C)

]y7C

[
2(1− fA)2fB(1− fB)

P ∗(C)

]y8C
[

(1− fA)2(1− fB)2

P ∗(C)

]y9C

. (3.3)

(3.4)

where

P ∗(D) =
P (D)

P (D|g = ∗/∗)

P ∗(C) =
P (C)

P (C|g = ∗/∗)
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By equation (3.2), the likelihood function on complete space is,

Lc (θ|x) = f (x|θ)

=
nD!

x1D!× x2D!× · · · × x10D!

[
λ2

ABf
2
Af

2
B

P ∗(D)

]x1D
[
λAB × 2f 2

AfB(1− fB)

P ∗(D)

]x2D

[
f 2

A(1− fB)2

P ∗(D)

]x3D
[
λAB × 2fA(1− fA)f 2

B)

P ∗(D)

]x4D

[
λAB × 2fA(1− fA)fB(1− fB)

P ∗(D)

]x5D
[

2fA(1− fA)fB(1− fB)

P ∗(D)

]x6D

[
2fA(1− fA)(1− fB)2

P ∗(D)

]x7D
[

(1− fA)2f 2
B

P ∗(D)

]x8D

[
2(1− fA)2fB(1− fB)

P ∗(D)

]x9D
[

(1− fA)2(1− fB)2

P ∗(D)

]x10D

nC !

x1C !× x2C !× · · · × x10C !

[
λ2

ABf
2
Af

2
B

P ∗(C)

]x1C
[
λAB × 2f 2

AfB(1− fB)

P ∗(C)

]x2C

[
f 2

A(1− fB)2

P ∗(C)

]x3C
[
λAB × 2fA(1− fA)f 2

B)

P ∗(C)

]x4C

[
λAB × 2fA(1− fA)fB(1− fB)

P ∗(C)

]x5C
[

2fA(1− fA)fB(1− fB)

P ∗(C)

]x6C

[
2fA(1− fA)(1− fB)2

P ∗(C)

]x7C
[

(1− fA)2f 2
B

P ∗(C)

]x8C

[
2(1− fA)2fB(1− fB)

P ∗(C)

]x9C
[

(1− fA)2(1− fB)2

P ∗(C)

]x10C

.

(3.5)
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Consequently, we can obtain conditional pdf by (3.3) and (3.5),

k (x|y, θ) =
f (x|θ)

g (y|θ)

=
y5D!

x5D!× x6D![
λAB × 2fA(1− fA)fB(1− fB)

λAB × 2fA(1− fA)fB(1− fB) + 2fA(1− fA)fB(1− fB)

]x5D

[
2fA(1− fA)fB(1− fB)

λAB × 2fA(1− fA)fB(1− fB) + 2fA(1− fA)fB(1− fB)

]x5D

y5C !

x5C !× x6C ![
λAB × 2fA(1− fA)fB(1− fB)

λAB × 2fA(1− fA)fB(1− fB) + 2fA(1− fA)fB(1− fB)

]x5C

[
2fA(1− fA)fB(1− fB)

λAB × 2fA(1− fA)fB(1− fB) + 2fA(1− fA)fB(1− fB)

]x6C

=
y5D!

x5D!× x6D!

(
λAB

λAB + 1

)x5D
(

1

λAB + 1

)x6D

y5C !

x5C !× x6C !

(
1

1 + 1

)x5C
(

1

1 + 1

)x6C

=
y5D!

x5D!× x6D!

(
λAB

λAB + 1

)x5D
(

1

λAB + 1

)x6D

y5C !

x5C !× x6C !

(
1

2

)x5C
(

1

2

)x6C

.

·
·
·X5D, X5C |Y, θ ∼ Bin

(
y5D,

λAB

λAB + 1

)
× Bin

(
y5C ,

1

2

)
X6D, X6C |Y, θ ∼ Bin

(
y5D,

1

λAB + 1

)
× Bin

(
y5C ,

1

2

)
.

(3.6)
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3.2.1 Expectation

We can obtain Q
(
θ

′|θ, y
)

by the result from (3.6),

Q
(
θ

′ |θ, y
)

= E
[
lnLc

(
θ

′|x
)
|θ, y

]
= E

{
x1D ln

(
λ

′
AB

2
f

′
A

2
f

′
B

2

P ∗(D)

)
+ x2D ln

(
λ

′
AB × 2f

′
A

2
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where

A = 2y1D + y2D + y4D + y5D
λAB

λAB + 1
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3.2.2 Conditional maximization
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since both of equations above are parabolic,
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3.2.3 Simulation

The simulation follows the following algorithm,

1. Set the initial values, λAB = 1, fA, fB are the method of moment estimate.

2. Update θ = (λAB, fA, fB) by equation (3.8), equation (3.9), and equation (3.10) by

sequence such that likelihood elevate.

• If the estimate is out of reasonable range or not real number root, the old one

remains unchanged.

• If two solutions for fA or fB both are reasonable, choose the one with higher

likelihood function.

3. Repeat step 2 until Lin (θnew|y)− Lin
(
θold|y

)
< 1× 10−30.

The brief simulation result is displayed in table 3.9 below.

Table 3.9: Expectation-Conditional Maximization by Simulation

λAB (λ̂AB) fA (f̂A) fB (f̂B)

1.500(1.455±0.245) 0.100(0.100±0.004) 0.100(0.101±0.004)

1.500(1.483±0.162) 0.100(0.100±0.003) 0.200(0.200±0.005)

1.500(1.502±0.114) 0.100(0.100±0.004) 0.300(0.301±0.005)

1.500(1.503±0.093) 0.100(0.100±0.004) 0.400(0.400±0.006)

1.500(1.494±0.170) 0.200(0.201±0.005) 0.100(0.100±0.004)

1.500(1.489±0.114) 0.200(0.200±0.006) 0.200(0.200±0.005)

1.500(1.511±0.090) 0.200(0.200±0.005) 0.300(0.300±0.006)

1.500(1.487±0.072) 0.200(0.200±0.004) 0.400(0.400±0.007)

1.500(1.508±0.151) 0.300(0.300±0.006) 0.100(0.099±0.004)

1.500(1.502±0.103) 0.300(0.300±0.006) 0.200(0.200±0.005)

1.500(1.495±0.070) 0.300(0.300±0.006) 0.300(0.300±0.005)

1.500(1.506±0.062) 0.300(0.300±0.006) 0.400(0.401±0.006)

1.500(1.510±0.117) 0.400(0.400±0.006) 0.100(0.100±0.004)

1.500(1.506±0.067) 0.400(0.401±0.007) 0.200(0.200±0.005)

1.500(1.505±0.072) 0.400(0.400±0.006) 0.300(0.299±0.005)

1.500(1.504±0.053) 0.400(0.401±0.006) 0.400(0.401±0.006)

2.000(1.969±0.277) 0.100(0.100±0.004) 0.100(0.100±0.004)

2.000(2.001±0.189) 0.100(0.100±0.003) 0.200(0.200±0.005)

2.000(2.012±0.126) 0.100(0.100±0.004) 0.300(0.301±0.006)

2.000(2.008±0.101) 0.100(0.100±0.004) 0.400(0.400±0.006)

2.000(2.015±0.208) 0.200(0.200±0.005) 0.100(0.100±0.003)

2.000(1.997±0.119) 0.200(0.200±0.005) 0.200(0.200±0.004)
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Table 3.9: Expectation-Conditional Maximization by Simulation

λAB (λ̂AB) fA (f̂A) fB (f̂B)

2.000(2.000±0.109) 0.200(0.200±0.005) 0.300(0.299±0.006)

2.000(1.999±0.082) 0.200(0.200±0.005) 0.400(0.400±0.006)

2.000(2.022±0.170) 0.300(0.299±0.006) 0.100(0.100±0.004)

2.000(2.028±0.113) 0.300(0.299±0.007) 0.200(0.199±0.005)

2.000(2.014±0.086) 0.300(0.300±0.005) 0.300(0.299±0.005)

2.000(2.006±0.072) 0.300(0.300±0.005) 0.400(0.400±0.005)

2.000(2.013±0.140) 0.400(0.400±0.006) 0.100(0.100±0.003)

2.000(1.981±0.094) 0.400(0.400±0.006) 0.200(0.201±0.005)

2.000(2.002±0.067) 0.400(0.401±0.006) 0.300(0.300±0.005)

2.000(1.993±0.064) 0.400(0.399±0.006) 0.400(0.399±0.006)

2.500(2.537±0.281) 0.100(0.100±0.003) 0.100(0.100±0.004)

2.500(2.469±0.177) 0.100(0.100±0.004) 0.200(0.200±0.005)

2.500(2.469±0.143) 0.100(0.100±0.004) 0.300(0.301±0.006)

2.500(2.496±0.113) 0.100(0.100±0.004) 0.400(0.399±0.006)

2.500(2.473±0.214) 0.200(0.200±0.005) 0.100(0.100±0.004)

2.500(2.497±0.157) 0.200(0.199±0.005) 0.200(0.200±0.005)

2.500(2.494±0.112) 0.200(0.200±0.004) 0.300(0.299±0.006)

2.500(2.504±0.100) 0.200(0.200±0.004) 0.400(0.399±0.006)

2.500(2.500±0.156) 0.300(0.301±0.006) 0.100(0.100±0.004)

2.500(2.497±0.129) 0.300(0.300±0.005) 0.200(0.200±0.004)

2.500(2.500±0.096) 0.300(0.301±0.006) 0.300(0.300±0.006)

2.500(2.506±0.091) 0.300(0.301±0.005) 0.400(0.399±0.006)

2.500(2.521±0.143) 0.400(0.400±0.006) 0.100(0.100±0.004)

2.500(2.480±0.094) 0.400(0.401±0.006) 0.200(0.200±0.005)

2.500(2.499±0.084) 0.400(0.401±0.006) 0.300(0.301±0.006)

2.500(2.494±0.070) 0.400(0.400±0.006) 0.400(0.400±0.005)

3.000(3.022±0.338) 0.100(0.100±0.004) 0.100(0.100±0.004)

3.000(2.990±0.224) 0.100(0.100±0.003) 0.200(0.200±0.005)

3.000(2.988±0.161) 0.100(0.101±0.003) 0.300(0.300±0.005)

3.000(2.995±0.143) 0.100(0.100±0.003) 0.400(0.401±0.006)

3.000(2.979±0.231) 0.200(0.200±0.005) 0.100(0.100±0.004)

3.000(3.001±0.160) 0.200(0.200±0.005) 0.200(0.201±0.005)

3.000(3.009±0.130) 0.200(0.200±0.004) 0.300(0.299±0.005)

3.000(3.011±0.104) 0.200(0.201±0.004) 0.400(0.400±0.006)

3.000(2.980±0.205) 0.300(0.299±0.006) 0.100(0.100±0.004)

3.000(3.014±0.147) 0.300(0.301±0.006) 0.200(0.200±0.005)

3.000(2.978±0.115) 0.300(0.301±0.005) 0.300(0.300±0.005)
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Table 3.9: Expectation-Conditional Maximization by Simulation

λAB (λ̂AB) fA (f̂A) fB (f̂B)

3.000(3.008±0.085) 0.300(0.300±0.005) 0.400(0.400±0.005)

3.000(2.995±0.173) 0.400(0.399±0.006) 0.100(0.100±0.004)

3.000(3.013±0.121) 0.400(0.400±0.005) 0.200(0.200±0.005)

3.000(2.998±0.089) 0.400(0.400±0.006) 0.300(0.300±0.005)

3.000(3.011±0.080) 0.400(0.401±0.006) 0.400(0.400±0.005)
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Chapter 4

Analysis of the Data from WTCCC

The Wellcome Trust Case Control Consortium (WTCCC), a research group funded

by the Wellcome Trust in UK and engages to designing and analyzing genome-wide asso-

ciation study (GWAS). In phase one study, the WTCCC identified genetic variants which

affect susceptibility to 7 common complex diseases, bipolar disorder, coronary artery dis-

ease, Crohn’s disease, hypertension, rheumatoid arthritis, type 1 diabetes, and type 2

diabetes by the Affymetrix 500K and Illumina 550K chips, and the results published in

Nature [The Wellcome Trust Case Control Consortium, 2007]. Moreover, additional 5

diseases, ankylosing spondylitis, autoimmune thyroid disease, multiple sclerosis, breast

cancer, and tuberculosis have been studied. In phase two study, the WTCCC will per-

form association studies with other 13 diseases, ankylosing spondylitis, Barrett’s oesoph-

agus and oesophageal adenocarcinoma, glaucoma, ischaemic stroke, multiple sclerosis,

pre-eclampsia, Parkinson’s disease, psychosis endophenotypes, psoriasis, schizophrenia,

ulcerative colitis and visceral leishmaniasis by the Affymetrix v6.0 and Illumina 1M chips.

4.1 Hypertension

4.1.1 Data source

The data for hypertension study comprised 1504 controls from the 1958 British Birth

Cohort (58C), 1500 controls from the UK Blood Service Control Group (NBS), and 2001

cases from the WTCCC Hypertension Group (HT). The data is called by Chiamo which

is developed by the WTCCC instead of the standard algorithm, BRLMM by Affymetrix.

4.1.2 Quality control

The quality control follows the WTCCC’s procedures as the description in literature

review mentions. Furthermore, there is no missing data by Chiamo calling algorithm,
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Figure 4.1: Genome-wide Manhattan Plot for Hypertension on Single SNP-Based by

Cochran-Armitage Trend Test

therefore there is no excluded SNP and individual by excluding SNP and individual if

SNP call rate is ≤ 95% and sample call rate is ≤ 97%, respectively.

For exclusion of SNPs, we filtered out 62701 SNPs by minor allele frequency (MAF)

is < 1%, and the other 31779 SNPs by Hardy-Weinberg equilibrium (HWE).

For exclusion of samples, we sieved out 23 samples by heterozygosity per individual is

< 22.5% or > 30%, and the other 37 samples by cryptic relatedness.

Finally, the raw data we used reduced to 406088 (500568 - 94480) SNPs and 4945

samples after data quality control above.

4.1.3 Test of association

Single SNP association

First of all, for the processed data above, we adopt Fisher’s exact test and Cochran-

Armitage trend test for the genotypic test and the allele test respectively. Subjects are

SNPs whose p-value is less than 5 × 10−7 (the strongest association, see table 4.1 and

4.2) or greater than 5× 10−7 and less than 1× 10−5 (moderate association, see table 4.3

and 4.4) for either the genotypic test or the allele test. Even though we found that the

genetic variants evaluated the strongest and moderate associated with hypertension risk,

some associated SNPs do not identify known genes or the relevance to hypertension.
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Figure 4.2: Genome-wide Manhattan Plot for Hypertension on Single SNP-Based by

Fisher’s Exact Test

CHRM2 (cholinergic receptor, muscarinic 2) belongs to a larger family of G protein-

coupled receptors. The muscarinic cholinergic receptor 2 is involved in mediation of

bradycardia and a decrease in cardiac contractility [Hautala et al., 2009]; [Zhang et al.,

2008]. Carriers of the variant G of CHRM2 (rs7800093) has a significantly lower or higher

risk of hypertension compared with individuals with the common homozygote genotype:

odds ratio [95% CI] for heterozygotes 0.02 [0.00-0.11] and for homozygotes 53.00 [12.98-

216.38].

KCNB2 (potassium voltage-gated channel, Shab-related subfamily, member 2), the

diverse functions of the protein include regulating neurotransmitter release, heart rate,

insulin secretion, neuronal excitability, epithelial electrolyte transport, smooth muscle

contraction, and cell volume. KCNB2 (rs11782342) has a significant increase in risk

among homozygote variants: odds ratio [95% CI] = 1.98[1.56-2.53]. The association

between KCNB2 and cardiovascular disease risk has been found in the previous study

[Vasan et al., 2007].

HTR3B (5-hydroxytryptamine (serotonin) receptor 3B) encodes subunit B of the type

3 receptor for 5-hydroxytryptamine (serotonin), a biogenic hormone that functions as a

neurotransmitter, a hormone, and a mitogen. It is a known gene affecting the heart rate

[Silva et al., 2007]. The variant allele G in HTR3B (rs17116117) shows significantly in-

crease risk compared with common homozygote genotype, especially among heterozygote

variants: odds ratio [95% CI] = 3.76[3.13-4.52].
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Table 4.1: Genes of the Genome Showing the Strongest Association

Gene Chromosome dbSNP ID Function
Trend

P-value
Genotypic

P-value

1 rs10494787 4.69E-02 3.65E-22
1 rs825148 3.25E-10 2.50E-101
2 rs1870340 3.30E-08 4.79E-36
3 rs804980 1.43E-03 5.64E-10
4 rs16837871 3.27E-26 1.80E-41
4 rs1553460 1.22E-13 1.29E-62

LOC100129858 4 rs6840033 Intron 1.64E-12 8.94E-23
5 rs4867173 2.28E-08 1.72E-08
5 SNP A-2171701 2.67E-02 4.46E-08
6 rs4131463 6.25E-14 4.90E-89
6 rs10499044 3.01E-15 5.47E-24
7 rs193837 2.97E-04 4.09E-27

RPL18P4 7 rs1528356 Intron 5.81E-12 2.96E-133
CHRM2* 7 rs7800093 Intron 1.59E-06 6.25E-44
KCNB2* 8 rs11782342 Intron 9.20E-04 6.59E-08

9 rs7864098 9.20E-01 5.12E-10
9 rs17797701 1.07E-03 2.48E-52
9 rs488101 4.50E-07 2.19E-09
10 rs11005510 2.36E-10 3.65E-23

OTOG 11 rs11024327 Intron 6.61E-07 4.36E-08
HTR3B* 11 rs17116117 Intron 5.07E-49 2.70E-48

12 rs10843660 1.90E-32 1.04E-69
CHST11 12 rs11112069 Intron 4.54E-03 6.70E-11

12 rs4765066 8.52E-10 2.18E-10
13 rs17667894 5.41E-21 3.70E-40

SIP1 14 rs8011855 Intron 3.35E-03 1.23E-13
RHOJ 14 rs1957779 nearGene-5 2.34E-05 5.39E-12

14 rs6574988 2.00E-07 1.03E-06
15 rs2865199 8.24E-10 3.68E-12
16 rs16955238 3.88E-06 3.61E-41
17 SNP A-1948953 6.31E-06 1.81E-13
17 rs7217721 3.80E-04 2.47E-09

* Denotes the gene or SNP has been found in published document.

The variant in rs2820037 is significantly associated with hypertension as the previous

study described [The Wellcome Trust Case Control Consortium, 2007], [Ehret et al., 2008].

The SNP rs11782342 has a significant increase in risk among heterozygote variants: odds

ratio [95% CI] = 1.41[1.24-1.60].

GAB1 (GRB2-associated binding protein 1) encodes the protein which is a member

of the IRS1-like multisubstrate docking protein family. The protein is an important me-

diator of branching tubulogenesis and plays a central role in cellular growth response,
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Table 4.2: Detection of SNPs with the Strongest Association

dbSNP ID
Minor
allele

Heterozygote
odds ratio

Homozygote
odds ratio

Control
MAF

Case
MAF

rs10494787 G 0.69[0.57-0.83] 14.09[6.45-30.78] 0.068 0.079
rs825148 C 0.05[0.02-0.10] Inf[NaN-Inf] 0.041 0.078
rs1870340 G 0.31[0.20-0.49] 114.32[15.88-822.97] 0.021 0.044
rs804980 A 0.91[0.80-1.03] 2.02[1.60-2.54] 0.217 0.246
rs16837871 A 0.36[0.31-0.42] 0.79[0.58-1.08] 0.183 0.101
rs1553460 T 0.61[0.53-0.69] 2.82[2.37-3.34] 0.291 0.369
rs6840033 T 0.52[0.45-0.59] 0.88[0.69-1.12] 0.236 0.174
rs4867173 T 1.48[1.30-1.68] 1.22[0.75-1.98] 0.132 0.171
SNP A-2171701 T 0.93[0.80-1.07] 3.18[2.09-4.84] 0.117 0.132
rs4131463 C 0.09[0.05-0.16] 116.72[28.89-471.54] 0.037 0.081
rs10499044 C 0.44[0.37-0.51] 0.97[0.67-1.42] 0.134 0.081
rs193837 C 0.74[0.62-0.88] 10.38[5.90-18.24] 0.084 0.107
rs1528356 G 0.00[0.00-0.03] 27.77[15.09-51.08] 0.057 0.104
rs7800093 G 0.02[0.00-0.11] 53.00[12.98-216.38] 0.017 0.036
rs11782342 A 0.97[0.86-1.10] 1.98[1.56-2.53] 0.226 0.255
rs7864098 A 0.75[0.64-0.88] 3.62[2.20-5.97] 0.090 0.091
rs17797701 G 0.01[0.00-0.08] 28.04[10.24-76.79] 0.024 0.038
rs488101 C 0.68[0.60-0.77] 0.74[0.62-0.88] 0.384 0.334
rs11005510 A 0.01[0.00-0.10] Inf[NaN-Inf] 0.017 0.003
rs11024327 A 1.44[1.27-1.63] 1.14[0.81-1.59] 0.172 0.212
rs17116117 G 3.76[3.13-4.52] 1.77[0.11-28.34] 0.032 0.101
rs10843660 T 0.31[0.27-0.35] 0.53[0.45-0.62] 0.430 0.303
rs11112069 A 0.88[0.77-1.00] 2.21[1.71-2.85] 0.183 0.207
rs4765066 A 1.55[1.36-1.76] 1.22[0.78-1.92] 0.129 0.173
rs17667894 G 0.02[0.01-0.07] 1.62[0.58-4.46] 0.035 0.005
rs8011855 A 0.88[0.74-1.05] 8.53[4.34-16.77] 0.069 0.086
rs1957779 A 1.69[1.46-1.96] 1.44[1.21-1.72] 0.474 0.515
rs6574988 T 1.45[1.26-1.67] 1.63[0.83-3.20] 0.090 0.122
rs2865199 C 0.21[0.12-0.35] Inf[NaN-Inf] 0.019 0.005
rs16955238 C 0.22[0.13-0.35] Inf[NaN-Inf] 0.022 0.042
SNP A-1948953 A 0.99[0.88-1.12] 0.35[0.26-0.48] 0.302 0.262
rs7217721 C 1.05[0.84-1.30] 15.88[4.85-52.01] 0.037 0.053

transformation and apoptosis. Carriers of the variant T of GAB1 (rs300916) has a signifi-

cantly lower risk of hypertension compared with individuals with the common homozygote

genotype: odds ratio [95% CI] for heterozygotes 0.81 [0.72-0.92] and for homozygotes 0.67

[0.56-0.80]. Nakaoka has proved that the relationship between GAB1 and hypertrophic

cardiomyopathy [Nakaoka et al., 2003], and hypertension can result in hypertrophic car-

diomyopathy.

BCAT1 (branched chain aminotransferase 1, cytosolic) encodes the cytosolic form of

the enzyme branched-chain amino acid transaminase. This enzyme catalyzes the reversible

transamination of branched-chain alpha-keto acids to branched-chain L-amino acids es-
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Table 4.3: Genes of the Genome Showing Moderate Association

Gene Chromosome dbSNP ID Function
Trend

P-value
Genotypic

P-value

NEGR1 1 rs10889923 Intron 1.13E-01 2.03E-06
1 rs1896250 3.84E-04 5.08E-07
1 rs12729977 6.25E-01 9.05E-06
1 rs2820026 6.70E-05 3.96E-06
1 rs9428826 1.21E-04 1.95E-06
1 rs2790622 7.96E-05 8.58E-07
1 rs2820037* 8.10E-05 7.78E-07
1 rs2820038 7.25E-05 9.26E-07
1 rs2820046 8.35E-05 1.12E-06

CREG2 2 rs4850969 Intron 1.50E-01 2.00E-06
PRKCI 3 rs2140825 Intron 4.93E-02 5.01E-06
GAB1* 4 rs300916 Intron 2.49E-06 1.45E-05
LOC100128588 6 rs1935683 Intron 9.33E-05 7.29E-06
CNBD1 8 rs7825717 Intron 9.36E-01 9.28E-07
ZHX2 8 rs10095188 Intron 1.27E-02 9.48E-06

8 rs4242382 8.96E-06 3.86E-05
8 rs11166882 9.58E-06 5.03E-05

BCAT1* 12 rs7961152 Intron 2.86E-06 1.41E-05
MYBPC1* 12 rs11110912 Intron 8.12E-06 1.84E-05

15 rs921535 1.63E-05 5.47E-06
LOC100132798* 15 rs2398162 Intron 2.13E-06 1.44E-06
YWHAE 17 rs16945811 Intron 5.54E-07 2.24E-06

17 rs17201619 3.58E-06 4.69E-06
ZNF236 18 rs4890866 Intron 2.04E-02 5.34E-06
SEC23B 20 rs1022684 nearGene-5 2.36E-06 4.19E-06
* Denotes the gene or SNP has been found in published document.

sential for cell growth. Hypertension can cause atherosclerosis, furthermore, BCAT has

been implicated in the pathogenesis of atherosclerosis [Coles et al., 2009]. Carriers of

the variant A of BCAT1 (rs7961152) has a significantly higher risk of hypertension com-

pared with individuals with the common homozygote genotype: odds ratio [95% CI] for

heterozygotes 1.17 [1.03-1.34] and for homozygotes 1.49 [1.26-1.76] [The Wellcome Trust

Case Control Consortium, 2007].

MYBPC1 (rs11110912). Carriers of the variant G of MYBPC1 (rs11110912) has a

significantly higher risk of hypertension compared with individuals with the common

homozygote genotype: odds ratio [95% CI] for heterozygotes 1.33 [1.18-1.51] and for

homozygotes 1.34 [0.97-1.86] [The Wellcome Trust Case Control Consortium, 2007]. In

the previous study, MYBPC1 is also related to hypertrophic cardiomyopathy [Konno

et al., 2003].

LOC100132798 is similar to hCG1774772. Carriers of the variant G of LOC100132798

(rs2398162) has a significantly higher or lower risk of hypertension compared with individ-
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uals with the common homozygote genotype: odds ratio [95% CI] for heterozygotes 24.33

[3.22-183.63] and for homozygotes 0.75 [0.59-0.95] [The Wellcome Trust Case Control

Consortium, 2007].

SEC23B (Sec23 homolog B (S. cerevisiae)) encodes the protein which is a member of

the SEC23 subfamily of the SEC23/SEC24 family. The encoded protein has similarity

to yeast Sec23p component of COPII. COPII is the coat protein complex responsible for

vesicle budding from the ER. The function of this gene product has been implicated in

cargo selection and concentration. Subjects with the variant T of SEC23B (rs1022684)

shows significantly reduced risk compared with common homozygote genotype: odds ratio

[95% CI] for heterozygotes 0.70 [0.58-0.83] and for homozygotes 0.21 [0.06-0.69].

Table 4.4: Detection of SNPs with Moderate Association

dbSNP ID
Minor
allele

Heterozygote
odds ratio

Homozygote
odds ratio

Control
MAF

Case
MAF

rs10889923 C 1.18[1.04-1.34] 0.77[0.64-0.92] 0.410 0.394
rs1896250 A 1.41[1.24-1.60] 1.21[1.01-1.45] 0.379 0.414
rs12729977 C 1.22[1.08-1.39] 0.83[0.69-1.00] 0.402 0.397
rs2820026 T 1.39[1.22-1.58] 0.97[0.65-1.44] 0.138 0.167
rs9428826 T 1.40[1.23-1.59] 0.93[0.64-1.35] 0.140 0.168
rs2790622 C 1.41[1.24-1.60] 0.90[0.61-1.33] 0.141 0.170
rs2820037 T 1.41[1.24-1.60] 0.89[0.60-1.32] 0.141 0.170
rs2820038 T 1.41[1.24-1.60] 0.90[0.61-1.34] 0.141 0.170
rs2820046 A 1.40[1.23-1.60] 0.90[0.61-1.33] 0.141 0.170
rs4850969 T 1.02[0.89-1.18] 0.08[0.02-0.32] 0.113 0.104
rs2140825 C 1.12[0.99-1.27] 0.71[0.59-0.87] 0.399 0.381
rs300916 T 0.81[0.72-0.92] 0.67[0.56-0.80] 0.406 0.359
rs1935683 C 0.73[0.65-0.83] 0.95[0.69-1.31] 0.198 0.167
rs7825717 C 1.14[0.97-1.33] 0.00[0.00-NaN] 0.082 0.081
rs10095188 C 1.02[0.90-1.16] 0.45[0.31-0.63] 0.185 0.165
rs4242382 A 0.73[0.63-0.84] 0.64[0.35-1.18] 0.125 0.097
rs11166882 T 0.64[0.35-1.18] 0.68[0.54-0.85] 0.285 0.244
rs7961152 A 1.17[1.03-1.34] 1.49[1.26-1.76] 0.413 0.461
rs11110912 G 1.33[1.18-1.51] 1.34[0.97-1.86] 0.165 0.200
rs921535 C 1.38[1.21-1.57] 1.07[0.70-1.63] 0.141 0.173
rs2398162 G 24.33[3.22-183.63] 0.75[0.59-0.95] 0.260 0.218
rs16945811 A 1.48[1.27-1.72] 1.50[0.70-3.19] 0.074 0.102
rs17201619 A 0.71[0.60-0.85] 0.19[0.06-0.63] 0.079 0.055
rs4890866 G 1.07[0.95-1.20] 0.61[0.49-0.77] 0.322 0.300
rs1022684 T 0.70[0.58-0.83] 0.21[0.06-0.69] 0.078 0.054
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Figure 4.3: Genome-wide Manhattan Plot for Hypertension on Multiple SNPs-Based by

Chi-square Test

Multiple SNPs association

According to the interactions of SNPs within the strongest and moderate association,

side effects are also siginificant if main effects are associated with disease. Consequently,

we do not focus on known and obvious interactions, we are interested in SNPs that

are usually ignored, namely, we focus on the interactions of SNPs without single SNP

associations we found before. In addition to this, we can apply filterable method as

mentioned in chapter 3, setting λAB = 1.75, fA = 0.2, fB = 0.2 by conservative rule due to

the estimate λ̂AB in interactions of SNPs within the strongest and moderate association

are pretty high (even λ̂AB = 6). Thus we can reduce computation time about (1 -
C26108

2

C406088
2

) = 99.59% by p-value is higher than 1 × 10−1 in single association, i.e. we set

ξ1 = 2.7 (α = 0.1) due to our tolerable loss of power is under 1%. Of course, adjusting

the threshold ξ1 repeatedly for the methodology as mentioned in chapter 3 can find the

threshold ξ1 as exact as possible. Consequently, the computation time would be improved

as possible.

In the beginning, we narrowed down the target SNPs for less computation time by

p-value between 1 × 10−4 and 1 × 10−5 in single association. By figure 4.3, we listed

interactions within chromosome at table 4.5 with 1× 10−110 ≤ p-value ≤ 1× 10−125, and

figure 4.4 shows the relation of p-value between single SNP and paired SNPs association.

The SNPs rs2091244, rs2177686, rs17073046 all locate on the gene MAGI1. MAGI1
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Figure 4.4: The Relation of P-value Between Single SNP & Paired SNPs Association for

Hypertension

(membrane associated guanylate kinase, WW and PDZ domain containing 1) encodes

the protein which is a member of the membrane-associated guanylate kinase homologue

(MAGUK) family.The product of this gene may play a role as scaffolding protein at cell-

cell junctions. To date, we just know that MAGI1 is important for vascular endothelial-

cadherin-dependent Rap1 activation upon cell-cell contact [Sakurai et al., 2006], however,

we cannot connect it with hypertension.

GAB1 and BCAT1 not only have been found in the single SNP association we men-

tioned before but also have been proved by previous study. However, some interactions on

genes C10orf72, C10orf128, LOC728883 or not identify genes have not yet been proposed

and proven from the biological aspect.

31



Table 4.5: Detection of Multiple SNPs-Based Association

Chromosome
dbSNP ID 1

(Gene 1)
dbSNP ID 2

(Gene 2)
Trend

P-value
Trend

P-value 1
Trend

P-value 2

Relative
Penetrance

Rate

3
rs2091244
(MAGI1*)

rs2177686
(MAGI1*)

1.47E-115 9.80E-05 1.77E-04 6.55

3
rs2091244
(MAGI1*)

rs17073046
(MAGI1*)

3.11E-117 9.80E-05 1.22E-04 6.58

4
rs300915
(GAB1*)

rs300913
(GAB1*)

4.00E-112 5.06E-05 4.71E-05 6.44

5 rs1490800 rs1490796 3.09E-114 9.94E-05 7.55E-05 5.95
5 rs1490800 rs1490795 9.17E-115 9.94E-05 7.75E-05 5.95
5 rs1490796 rs1490795 1.06E-114 7.55E-05 7.75E-05 5.96

10
rs12269023
(C10orf72)

rs7097933
(C10orf72)

1.54E-112 3.72E-05 3.46E-05 6.77

10
rs2725181
(C10orf128)

rs2725190
(LOC728883)

5.47E-111 7.86E-05 1.58E-04 8.67

12
rs11613673
(BCAT1*)

rs12424348
(BCAT1*)

4.83E-120 6.95E-05 1.49E-04 10.28

12 rs7300456 rs1452237 3.97E-113 1.65E-05 1.91E-05 6.92
12 rs4761100 rs4761102 5.44E-116 2.97E-05 2.33E-05 7.66

20 rs2424430 rs431904 2.53E-111 1.18E-05 3.65E-05 8.15
* Denotes the gene or SNP has been found in published document.
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Chapter 5

Conclusion

According to the results in table 3.5, table 3.6, and the real data, the loss of power

is reasonable and tolerable when λAB is large enough or the allele frequency is not too

small. Each pair of SNPs association has an unknown λAB originally, but estimate all

λAB is unusable because our major work is to find out a reasonable threshold by only

one λAB and other parameters. We found that λ̂AB within the strongest or moderate

associations are quite large, such as 6.0 or 7.6, but we cannot promise that λAB for all

existing associations are large, too. That is the reason why we use more conservative and

robust rule as λAB = 1.75 in this study. We can reduce computation time about

• 99.04% = (1− C39762
2

C406088
2

), loss of power = 0.2612%, when ξ1 = 2.07 (α = 0.15)

• 99.59% = (1− C26108
2

C406088
2

), loss of power = 0.8224%, when ξ1 = 2.7 (α = 0.1)

• 99.77% = (1− C19424
2

C406088
2

), loss of power = 1.6915%, when ξ1 = 3.17 (α = 0.075)

Analyzing the data with this approach, which imitates WTCCC of hypertension, we

have detected parts of known genes or SNPs, such as CHRM2 (rs7800093), KCNB2

(rs11782342), HTR3B (rs17116117), rs2820037, GAB1 (rs300916, rs300915, rs300913),

BCAT1 (rs7961152, rs11613673, rs12424348), MYBPC1 (rs11110912), LOC100132798

(rs2398162), MAGI1 (rs2091244, rs2177686, rs17073046). Nevertheless, those other un-

knowns, such as rs825148, rs1553460, LOC100129858 (rs6840033), rs4131463, RPL18P4

(rs1528356), rs17797701, OTOG (rs11024327), rs10843660, CHST11 (rs11112069), SIP1

(rs8011855), RHOJ (rs1957779) are worthy of digging for statistical replication and bio-

logical explanation in the future. Furthermore, the associations of higher order are also

our ultimate goal for finding the susceptibility for complex human diseases, for instance,

hypertension and type 2 diabetes.

Originally, for convenience and custom, the approach for loss of power and ECM

algorithm both are based on additive model. However, compare figure 4.1 with figure 4.2,
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some SNPs’ associations are clearly quite different in these two figures. Thus the extension

for no model assumption may be more accurate and informative (single association test

uses genotypic test instead of trend test).

We have not considered the dominant or recessive model in the method and analysis.

In general, the models for most of SNPs are still unknown, integrate information (consider

the dominant or recessive model additionally) from every models and revise our method

is a part of future work. Using this method to calculate the loss of power and use ECM

algorithm to find suitable parameters may provide a good guidance to threshold selection.
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