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摘摘摘摘  要要要要 

 

因為半導體產業是一種高投資產業，每間公司在製程上所投資的成本都很高，因

此，對每間公司而言，如何使製程穩定便是一個很重要的目標。因為想要使製程穩定，

所以當製程發生問題時，工程師便需要去找到製程發生問題的地方，但由於半導體產業

的製程相當複雜，與製程相關的參數非常的多，因此當製程發生問題時，如何利用這麼

多的製程參數去找到製程發生變動的所在位置，對工程師而言實為一大挑戰。 

在現有文獻中，對於檢驗製程是否發生變異並找出其正確位置，往往都著重在針對

單一參數去找尋製程變動的位置，因此開發多變量偵測製程變異之系統極為重要。在本

篇文章中，將利用數學方式建立模型，提供多變量偵測製程之方式，幫助工程師更有效

率解決製程中有問題的地方。 

本篇論文所提供的方式，主要想法來自於賴政言於 2008年所探討的 SBS (Single 

variable Bayesian Segmentation)，並對其做改良，進而將此方法推廣至多個維度上。由於

半導體產業的製造過程中，常常會出現離群值，而對數學上建立模型產生困擾，因此，

本文中對於離群值之出現，也提供一個方式來解決離群值對建立模型的影響。 
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Multiple Bayesian Segmentation for Process Improvement in 

Semiconductor Manufacturing 

 

Student: Ming-Syun Huang      Advisor: Horng-Shing Lu 

 

ABSTRACT 

Because the semiconductor industry is a high-invest industry, all companies invest a lot 

of money in the process. So, it is an important target to make the process stable for every 

company. Because the target is to make the process stable, when some changes occur to the 

process, engineers need to find the position where a change occurs. Because the 

semiconductor industry’s process is quite complex, there are many different parameters that 

are relating to the process. When there are some changes in the process, how do engineers use 

these parameters’ data to find the position where the change occurs is an enormous challenge 

for engineers. 

In current literature, the most methods are using one parameter’s data to find a position 

where changes occur to the process. Therefore, it is very important to develop a system that 

can use all parameters’ data to find a position where the change of the process occurs. In this 

paper, we will establish a model using mathematics, provide a multivariate method to detect 

the process, and provide engineers a more effective solution to find the position where change 

occurs. 

The main ideal of this paper comes from SBS (Single variable Bayesian Segmentation) 

that was investigated in Zheng-Yan Lai (2008). This paper improves on it and provides a new 

method that can use many parameters’ data to find the position where change occurs. In the 

manufacturing process in the semiconductor industry, outliers often occur and affect the 

model that is established in mathematics. Therefore, this paper also provides a method to 

solve it. 
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Chapter 1. Introduction 

 

In the semiconductor industry, the cost of a 12-inch silicon wafer fab is around 90 billion 

dollars, and the cost of a modern wafer fabrication facility is around 1 billion dollars. Thus, 

the semiconductor industry is a high-investment industry. Semiconductor engineers always try 

to make the process stable and improve the yield of the process. They will use any possible 

methods to help them study and monitor the process and avoid changes in the process. 

Possible methods can be divided into on-line methods and off-line methods. 

 The purpose of on-line methods is to use process parameters to monitor the process. 

Semiconductor engineers also can use on-line methods to find the position where the process 

change occurs in a minute. This is the advantage of on-line methods, and many studies are 

about on-line methods. Popular on-line methods that are used by semiconductor engineers are 

univariate statistical process control (SPC) and multivariate statistical process control 

(MVSPC). 

 Important reasons that off-line methods exist are: (1) some data can’t be retrieved in a 

minute, (2) sometimes on-line SPC can’t be used because the control limit is unreasonable, (3) 

according to all parameters’ historical data, the semiconductor engineers can use off-line 

methods to study and understand the process. In this paper, I will introduce the Single 

Variable Bayesian Segmentation method (SBS) first. SBS is an off-line Bayesian method. It 

was investigated in Zheng-Yan Lai (2008). The purpose of SBS is to segment one parameter’s 

historical data at a time and help semiconductor engineers study the process. Then, I will 

provide a new method, called Multivariate Bayesian Segmentation (MBS). MBS is similar to 

SBS. MBS is also an off-line Bayesian method, and the purpose is to help semiconductor 

engineers understand the process. The difference between MBS and SBS is that MBS can be 

used to segment more than one parameter’s historical data at a time.  
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 The motive of my study is that SBS can only be used to segment one parameter’s 

historical data at a time, but there are many different parameters that are related to the process 

in the semiconductor industry. For example, a wafer’s data from start to finish is around 

10~100 MB. There are many kinds of the parameters, and the amount of the parameter’s 

historical data is huge. It is assumed that semiconductor engineers can only segment a 

parameter’s historical data at a time. If there are S different parameters now, they need to 

segment S times. When there are more kinds of parameters, semiconductor engineers need to 

segment more times. That is not efficient. If there is a method that can be used to segment all 

different parameters’ historical data at a time, it is more efficient when semiconductor 

engineers study the process. Besides, interactions between every parameter are hard to be 

quantified and recorded. If semiconductor engineers segment one parameter’s historical data 

at a time, they can’t consider the effect that comes from interactions between every parameter. 

For example, there are two different parameters’ historical data as shown in Figure 1. The 

correlation is at the level of 0.8. Because the correlation is very large, these two parameters’ 

historical data have similar trends most of time. That is, when one parameter’s historical data 

tend to increase significantly, another parameter’s historical data also tend to increase 

significantly. However, parameter 1’s data increase but parameter 2’s data decrease 

significantly. So position B could be the position where there is a change occurring to the 

process. But if we only use parameter 1’s data to find the position where the change occurs to 

the process, we may consider that position A is the position where the change occurs to the 

process because the value at position A is more similar to the values after position.  
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Figure 1. Mean-shift occurs in position B 

 

In other words, if we segment all parameters’ historical data at a time, we can get better 

information for considering the parameters’ interaction. Besides, because the semiconductor 

process is quite complex, sometimes data must be taken down by people, and some 

unpredictable measurement deviations occur to the measurement apparatus. Therefore, 

outliers could sometimes occur, and they may affect the result that semiconductor engineers 

use MBS to get. In this paper, I will provide a method to detect outliers. This method can be 

used to avoid the outlier influencing the result, and the method can make MBS more robust. 
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Chapter 2. Literature Review 

2.1 Introduction of Single variable Bayesian Segmentation (SBS) 

The purpose of SBS is to segment one parameter’s historical data, and the main idea is to 

find the position where a mean-shift occurs from one parameter’s historical data. A mean-shift 

means that the data is composed of different distributions, and their means are different. For 

example, a parameter’s historical data are shown in Figure 2. From Figure 2, we can find that 

the data before position A and the data after position A come from different distributions, and 

their means are different. So position A is a position where the mean-shift occurs. Because the 

mean-shift only occurs in position A, the data is split into two groups. The first group is the 

part of the data in front of position A, and second group is the part of the data after position A. 

 

 

 

Figure 2. mean-shift occurs in position A. 
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Definition 1. Segmentation point: a position where mean-shift occurs. 

For example, position A is a segmentation point in Figure 2. 

 

Definition 2. Y  is a sequence of observation with length N , ( )1, , NY Y Y= ⋯ ,  

and iY  can be described as the following formula for 1 i N≤ ≤ : 

           ( )2,  1 ,  N 0,  ,
i i i i
Y i N εµ ε ε σ= + ≤ ≤ ∼                        ( )2.1  

    where  is the mean of -th component,i iµ  

          2  is the variance of -th component,iεσ  

           is the sample size.N  

 

Definition 3. R  is a binary sequence with length N , ( )1, , NR R R= ⋯ , iR  is assumed to 

be i.i.d, where 
1 if a mean-shift occurs to the -th position,            

1 ;
0 if a mean-shift doesn't occur to the -th position, 

i

i
R i N

i


= ≤ ≤


 ( )2.2  

and 
the probability of 1 is ,    

 0< <1.
the probability of 0 is 1- ,

i

i

R

R

λ
λ

λ
=


=

 

 

Assume there are 1K −  segmentation points in the data, and their locations are 

1 2 1, , , Kt t t −⋯  with 0 1 11 K Kt t t t N−= < < < < =⋯ . Because there are 1K −  segmentation 

points now, the observation sequence Y  is split into K  groups. We call them 

1 2, , , KG G G⋯  in order, and let their means are 1 2, , , Kθ θ θ⋯  in order. That is, if iY  belongs 

to jG , iµ  is equal to jθ . 

 Because we don’t know the real number of groups and the right locations of 

segmentation points, the number of groups (K ) and the locations of segmentation points are 

unsure. Here, I will apply Bayesian method and SBS to find the most probable segmentation 

points and their locations. In the following, SBS is discussed: 
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We know that   ( ) ( ) ( )
( )

( ) ( )
P | P

P |  P | P ,
P

Y R R
R Y Y R R

Y
= ∝                     ( )2.3  

          

2

2

( )

2

2
1 Group 

P( | ) ,
2

i k

i

y

K

k y k

e
Y R

ε

θ

σ

επσ

−
−

= ∈

=∏ ∏                               ( )2.4  

1 1and P( ) (1 ) .K N KR λ λ− − += −                                ( )2.5  

From ( ) ( ) ( )2.3 , 2.4 , 2.5 , we can get 

            ( ) ( )

2

2

( )

2
1 1

2
1 Group 

P | (1 ) .
2

i k

i

y

K
K N K

k y k

e
R Y

ε

θ

σ

ε

λ λ
πσ

−
−

− − +

= ∈

 
 

= × − 
 
 

∏ ∏                ( )2.6  

 

And the maximum value of the posterior probability is 

{ }

2

2

1 1 1 1 1 1

( )

2
1 1

2, , , , , , , , , , , ,
1 Group 

P( | ) (1 )
2

i k

K k K k
i

y

K
K N K

K t t K t t
k y k

e
Max R Y Max

ε

θ

σ

θ θ θ θ
ε

λ λ
πσ− −

−
−

− − +

= ∈

  
   

= × −  
  
   

∏ ∏
⋯ ⋯ ⋯ ⋯

      ( )2.7  

2

2

1 1 1

( )

2
1 1

2, , , , , ,
1 Group 

log (1 )
2

i k

K k
i

y

K
K N K

K t t
k y k

e
Min

ε

θ

σ

θ θ
ε

λ λ
πσ−

−
−

− − +

= ∈

   
    

∝ − × −   
        

∏ ∏
⋯ ⋯

 

2

2

1 1 1

( ) 1

2

2, , , , , ,
1 Group 

1
log

1 2

i k

K k
i

N
y KK

K t t
k y k

Min e ε

θ

σ

θ θ
ε

λ λ
λ πσ−

− −−

= ∈

   −    = − × ×    −      

∏ ∏
⋯ ⋯

 

1 1 1

2

2
, , , , , ,

1 Group 

( ) 1
log( )

2K k
i

K
i k

K t t
k y k

x
Min K

θ θ
ε

θ λ
σ λ− = ∈

 − − 
∝ + 

  
∑ ∑

⋯ ⋯

 (because  and  are constant)ελ σ  

1 1 1

2 2

, , , , , ,
1 Group 

1
( ) 2 log( ) ,

K k
i

K

i k
K t t

k y k

Min x Kεθ θ

λ
θ σ

λ− = ∈

 − 
∝ − + × 

  
∑ ∑

⋯ ⋯

                   ( )2.8  

where K  is the group number. 
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Here, we let  

             

( )
1 Group 2

ˆ

ˆ ,i

K

i k

k y k

y

s
N K

θ
= ∈

−

=
−

∑ ∑
                                ( )2.9  

where   is the number of data points,N  

              is the group number,K  

             ˆ  is the sample mean of group .k kθ  

Because 2ŝ  is the unbiased estimator of 2

εσ , we use 2ŝ  to estimate 2

εσ . 

 

 Because λ  is the probability of mean-shift, λ  means the probability of unusual 

conditions occurring to the data. Suppose that a semiconductor engineer is interested in a 

certain parameter X  and X  follows ( )2Normal ,
x x

µ σ . There is a 99.73% chance that X  

will be in [ 3x xµ σ− , 3x xµ σ+ ], and there is a 0.27% chance that X  will be outside of 

[ 3x xµ σ− , 3x xµ σ+ ]. So if X  is bigger than 3x xµ σ+  or smaller than 3x xµ σ− , the 

semiconductor engineer may consider that a unusual condition occurs to the process. That is, 

the semiconductor engineer may consider that there is a segmentation point in the process and 

the capability of the process has changed. Here, one possible value of λ  could be  

            ( ) ( )P 3 +P 3 0.0027.x x x xX Xλ µ σ µ σ= > + < − =              ( )2.10  

The other choices of λ  are possible to describe the probability of process change. 
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2.2 The influence of outliers 

In real cases, because the semiconductor process is quite complex, sometimes data must 

be taken down by people, and some unpredictable measurement deviations occur to the 

measurement apparatus. Outliers may occur in the process. Here, there is an outlier detection 

method that can avoid an outlier’s effect. 

 

The outlier detection method includes two steps: 

(1) Choosing the possible outliers first. 

(2) Checking the possible outliers in order. If the possible outlier will affect the result, we 

will consider that the possible outlier is an outlier and delete it. 

 

The usual method of outlier detection is to check any observation lower than 

1Q S IQR− ×  or higher than 
3Q +S IQR× . If there is an observation lower than 

1Q S IQR− ×  

or higher than 3Q +S IQR× , we consider that the observation is an outlier. In step (1), SBS 

lets S=1.5 and uses the same method to find a possible outlier. That is, for each group, if any 

observation that belongs to the same group is lower than 1Q 1.5 IQR− ×  or higher than 

3Q +1.5 IQR× , we will consider that the observation is a possible outlier. 

 If a possible outlier exists, in step (2), we will delete the possible outlier from the data 

and segment the data again. If we can get the same result, we consider that the possible outlier 

is not an outlier. If we can’t get the same result, we consider that the possible outlier is an 

outlier and delete it. 
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2.3 The algorithm 

(1) Let input data = initial data, and initial group number( 0K ) = 1. 

(2) Using input data to estimate 2

εσ  under iK  group. 

(3) Using 2ŝ  to segment each group, and get new group number 1iK + . 

(4) Find a possible outlier from each new group. If a possible outlier exists, go to step (5). 

Else, go to step (6). 

(5) Check “Is the possible outlier an outlier?” If the possible outlier is an outlier, then delete 

the outlier from the input data, let iK = 1, and go to step (3). Else, go to step (6). 

(6) Check “Does 
iK  equal 

1iK + ?” If not equal, then let i = 1i +  and go to step (2).Else, 

break and output the result. 
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                 Figure 3. The process flow of SBS 

 

Figure 4. The process flow of the outlier detection (SBS) 
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Chapter 3. New Method 

3.1 Introduction of Multivariate Bayesian Segmentation (MBS) 

Multivariate Bayesian Segmentation extends from Single variable Bayesian 

Segmentation. The purpose of MBS is to segment many parameters’ historical data at a time. 

In other words, the purpose of MBS is to find segmentation points from many parameters’ 

historical data. 

 Here, a segmentation point is a position where a mean-shift occurs to more than one 

parameter’s data. For example, there are 3 different parameters’ data as shown in Figure 5. In 

Figure 5, we can find: 

(1) In position A, a mean-shift occurs to parameter 1’s data. 

(2) In position B, a mean-shift occurs to parameter 1’s data and parameter 2’s data. 

(3) In position C, a mean-shift occurs to all parameters’ data. 

So there are three segmentation points in the data, and their locations are A, B, and C. 

Because there are three segmentation points in the data, the data is split into four groups. We 

call them  1 2 3 4G ,G ,G ,G  in order. 

 

 

Figure 5. There are 3 segmentation points in the data. 
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Next, I will introduce MBS: 

Assume there are S  different parameters and N  observation vectors (
1, , NY Yɶ ɶ⋯ ).  

 

For 1, ,i N= ⋯ , iY
ɶ  can be shown in the following formula:  

      ( )
1 1 1

;  1, , ;  N 0,  ,

i i i

i i i i S

iS iS iS

y

Y i N

y

µ ε
µ ε ε

µ ε

     
     = = + = + = Σ     
          

ɶɶ ɶ ɶɶ⋮ ⋮ ⋮ ⋯ ∼          ( )3.1  

      where iµɶ  is the mean vector of the i-th observation vector iY
ɶ  

     Σ  is the covariance matrix 

 

Assume there are 1K −  segmentation points in the data, and their locations are 

1 1, , Kt t −⋯  with 1 2 10 Kt t t N−< < < < <⋯ . Because there are  1K −  segmentation points in 

the data, the data ( 1, , NY Yɶ ɶ⋯ ) can be split into K  groups. We call them 1G , ,GK⋯  in order. 

Because there are K  different groups now, there are K  different mean vectors. We call 

them 1, , Kθ θɶ ɶ⋯  in order. That is, if Gi jY ∈ɶ , i jµ θ= ɶɶ . 

 

Let Ei  mean the change situation of the i-th position, 1 i N≤ ≤ . 

For example, if there are 3 different parameters, there are 8 different change situations as 

shown in Figure 6. 
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Figure 6. All probability change situations with 3 parameters 

 

 

Let ip  mean the number of the parameter where the mean-shift occurs. 

 

Assume that 1 2E ,E , ,EN⋯  are independent. 

( ) ( ) ( ) ( )1 1 2P E , ,E =P E P E P E .N N⇒ × × ×⋯ ⋯  

Assume that the probability of mean-shift for all parameters is λ . 

( ) ( )P E 1 .ii
S pp

i λ λ −
⇒ = ⋅ −  

 

Because we don’t know the real number of groups and the right locations of the 

segmentation points and the change situations of the segmentation points, 

1 1 1 1 1
, , , , , , , E , , E , , ,

K N N k
K p p t tθ θ

−
ɶ ɶ⋯ ⋯ ⋯ ⋯  are unknown. Here, I will apply Bayesian 

method and MBS to find the most probable segmentation points and their locations.   
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( ) ( ) ( )
( )

1 1 1

1 1

1

P , , | E , ,E P E , ,E
P E , ,E | , ,

P , ,

N N N

N N

N

y y
y y

y y

⋅
=

ɶ ɶ⋯ ⋯ ⋯
ɶ ɶ⋯ ⋯

ɶ ɶ⋯
 

( ) ( )1 1 1P , , | E , ,E P E , ,EN N Ny y∝ ⋅ɶ ɶ⋯ ⋯ ⋯  

( ) ( ) ( ) ( ) ( )
1

T
122

1 G 1

1
2 exp 1 .

2

ii

i j

K NS
S pp

i j i j

j y i

y yπ θ θ λ λ
−− −−

= ∈ =

      ∝ ⋅ Σ ⋅ − − Σ − × ⋅ −            
∏∏ ∏

� �
ɶ ɶ  

 

And the maximum of the posterior probability is 

( ){ }
1 1 1 1 1

1 1
, , , , , , ,E , ,E , , ,

max P E , ,E | , ,
K N N k

N N
K p p t t

y y
θ θ −
ɶ ɶ⋯ ⋯ ⋯ ⋯

ɶ ɶ⋯ ⋯                             ( )3.2  

( ) ( ){ }
1 1 1 1 1

1 1 1
, , , , , , ,E , ,E , , ,

max P , , | E , ,E P E , ,E
K N N k

N N N
K p p t t

y y
θ θ −

= ⋅
ɶ ɶ⋯ ⋯ ⋯ ⋯

ɶ ɶ⋯ ⋯ ⋯  

( ) ( ){ }
1 1 1 1 1

1 1 1
, , , , , , ,E , ,E , , ,

min log P , , | E , ,E P E , ,E
K N N k

N N N
K p p t t

y y
θ θ −

= − ⋅  ɶ ɶ⋯ ⋯ ⋯ ⋯

ɶ ɶ⋯ ⋯ ⋯  

( ) ( )
1 1 1 1 1

T
1

, , , , , , ,E , ,E , , ,
1 G 1

1 1
min log

2K N N k
i j

K N

i j i j i
K p p t t

j y i

y y p
θ θ

λ
θ θ

λ−

−

= ∈ =

 −  = − Σ − + ⋅  
   

∑ ∑ ∑ɶ ɶ⋯ ⋯ ⋯ ⋯
ɶ

ɶ ɶɶ ɶ  

( ) ( )
1 1 1 1 1

T
1

, , , , , , ,E , ,E , , ,
1 G 1

1
min 2 log ,

K N N k
i j

K N

i j i j i
K p p t t

j y i

y y p
θ θ

λ
θ θ

λ−

−

= ∈ =

 −  = − Σ − + ⋅ ⋅  
   

∑ ∑ ∑ɶ ɶ⋯ ⋯ ⋯ ⋯
ɶ

ɶ ɶɶ ɶ      ( )3.3  

where K  is the number of groups. 

 

Here, we still need to solve some questions: 

1. How do we estimate the mean vectors? 

2. How do we estimate the covariance matrix? 

3. How do we choose the parameter λ ? 

 

3.1.1 How do we estimate the mean vectors? 

We can use the change situation of the process to estimate the mean vector ( j
θɶ ). For 

example, there are 3 different parameters and N  observation vectors now. And there are 3 
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segmentation points in the data. Their locations are 
1 2 3, ,t t t  with 0 1 2 3 41 t t t t t N= < < < < = . 

(1) In position 1t , a mean-shift occurs to parameter 1’s data. 

(2) In position 
2t , a mean-shift occurs to parameter 1’s data and parameter 2’s data. 

(3) In position 3t , a mean-shift occurs to all parameters’ data. 

And we can show them in Figure 7. 

 

 

Figure 7. There are 3 segmentation points in the data 

 

Because there are 3 segmentation points in the data, the data can be split into 4 groups. 

We call them 1 2 3 4G ,G ,G ,G  in order. That is, If Gi jY ∈ɶ , then ( )3N ,i jY θ Σɶɶ ∼ ; 

(1)

(2)

(3)

j

j j

j

θ
θ θ

θ

 
 

=  
  

ɶ ; 

j =1,2,3,4. 

 For each j
θɶ , the usual method is using the data that belong to G j  to calculate the 



16 

 

sample mean (

( )

( )

( )

1

2

3

Y

Y Y

Y

j

j j

j

 
 

=  
 
  

), and let jθɶ  be equal to Yj ; j =1,2,3,4. For example, if we 

want to estimate ( )1 2
θ  and ( )2 2

θ , we can use parameter 2’s partial data that is in [ 0t , 1t ] to 

calculate its sample mean ( ( )1 2
Y ), and let ( )1 2

Y  be the estimator of ( )1 2
θ . We can use 

parameter 2’s partial data that is in [
1t , 2t ] to calculate its sample mean ( ( )2 2

Y ), and let ( )2 2
Y  

be the estimator of ( )2 2
θ . That is, let ( )1 2

θ̂  be equal to ( )1 2
Y  and ( )2 2

θ̂  be equal to ( )2 2
Y . 

 

 

Figure 8. There are 4 groups in the data 

 

Here, I will consider the change situation of the process to get the better estimator of jθɶ . 

Following the previous example, we want to estimate ( )1 2
θ  and ( )2 2

θ . But in position 1t , we 
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can find that a mean-shift only occurs to parameter 1. A mean-shift doesn’t occur to parameter 

2 in position 1t . ( )1 2
θ  and ( )2 2

θ  should be equal, and we can estimate them together. So we 

can use parameter 2’s partial data that is in [ 0t , 2t ] to calculate its sample mean ( ( )1,2 2
Y ), and 

let ( )1,2 2
Y  be the estimator of ( )1 2

θ  and ( )2 2
θ . That is, let ( )1 2

θ̂ = ( )2 2
θ̂ = ( )1,2 2

Y . 

 

3.1.2 How do we estimate the covariance matrix? 

Definition 4. 

     ( )( )T
1 Group 

1ˆ = -Y -Y ,
-

i

K

i j i j

j y j

Y Y
N K = ∈

Σ ∑ ∑
ɶ

ɶ ɶ                               ( )3.4  

     where N  is the number of observations, 

                 K  is the group number. 

 

It is assumed that data is sufficiently large to estimate covariance matrix. Because Σ̂  is 

an unbiased estimator of Σ , I will use Σ̂  to estimate Σ . Following the previous example, 

there are 3 different parameters and N  observation vectors now. And there are 3 

segmentation points in the data. The data is shown as Figure 7. Because there are 4 groups 

( 1 2 3 4G ,G ,G ,G ), K  is equal to 4. And we can use the method that is introduced in the section 

3.1.1 to estimate the mean vectors ( 1 2 3 4, , ,θ θ θ θɶ ɶ ɶ ɶ ). Let the estimator of 1 2 3 4, , ,θ θ θ θɶ ɶ ɶ ɶ  be 

* * * *

1 2 3 4, , ,θ θ θ θɶ ɶ ɶ ɶ . Finally, we put the information into the formula ( )3.4 , and we can get 

( )( )
4 T

* *

1 G

1ˆ = - - .
N-4

i j

i j i j

j Y

Y Yθ θ
= ∈

Σ ∑ ∑
ɶ

ɶ ɶɶ ɶ  

 

3.1.3 How do we find the parameter lambda? 

 Because λ  is the probability of a mean-shift, λ  means the probability of unusual 

conditions occur to the data. If a semiconductor engineer is interested in a certain parameter 
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X , X  follows ( )2Normal ,
x x

µ σ . There is a 99.73% chance that X  will be in 

[ 3x xµ σ− , 3x xµ σ+ ], and there is a 0.27% chance that X  will be outside of 

[ 3x xµ σ− , 3x xµ σ+ ]. So if X  is bigger than 3x xµ σ+  or smaller than 3x xµ σ− , the 

semiconductor engineer will consider that an unusual condition occurs to the process. That is, 

the semiconductor engineer will consider that there is a segmentation point in the process and 

that the capability of the process has changed. Here, we let 

            ( ) ( )P 3 +P 3 0.0027.x x x xX Xλ µ σ µ σ= > + < − =              ( )3.5  

But the semiconductor engineer can use the property of the product process to determine 

λ . 

 

3.2 How to find the optimal solution quickly 

From the formula ( )3.2  and the formula ( )3.3 , we know that 

( ){ }
1 1 1 1 1

1 1
, , , , , , ,E , ,E , , ,

max P E , ,E | , ,
K N N k

N N
K p p t t

y y
θ θ −
ɶ ɶ⋯ ⋯ ⋯ ⋯

ɶ ɶ⋯ ⋯  

( ) ( )
1 1 1 1 1

T
1

, , , , , , ,E , ,E , , ,
1 G 1

1
min 2 log .

K N N k
i j

K N

i j i j i
K p p t t

j y i

y y p
θ θ

λ
θ θ

λ−

−

= ∈ =

 −  ∝ − Σ − + ⋅ ⋅  
   

∑ ∑ ∑ɶ ɶ⋯ ⋯ ⋯ ⋯
ɶ

ɶ ɶɶ ɶ  

 

So our purpose is to find a change situation that can minimize 

( ) ( )T
1

1 G 1

1
2 log .

i j

K N

i j i j i

j y i

y y p
λ

θ θ
λ

−

= ∈ =

− − Σ − + ⋅ ⋅ 
 

∑ ∑ ∑
ɶ

ɶ ɶɶ ɶ  

 

But if the number of the parameters or the number of observation vectors increase, the 

possible change situation will increase. For example, assume there are 2 different parameters 

and N  observation vectors. For each observation vector, there are 4 different change 

situations. They are 
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(1) No mean-shift 

(2) A mean-shift occurs to the first parameter. 

(3) A mean-shift occurs to the second parameter. 

(4) A mean-shift occurs to the first and the second parameter. 

Then, the number of the possible change situation is 4N . 

Assume there are 3 different parameters and N  observation vectors. For each 

observation vector, there are 8 different change situations. They are 

(1) No mean-shift. 

(2) A mean-shift occurs to the first parameter. 

(3) A mean-shift occurs to the second parameter. 

(4) A mean-shift occurs to the third parameter. 

(5) A mean-shift occurs to the first and the second parameters. 

(6) A mean-shift occurs to the first and the third parameters. 

(7) A mean-shift occurs to the second and the third parameters. 

(8) A mean-shift occurs to all parameters. 

Then, the number of the possible change situation is 8N . 

 

So I will provide a method that can help us to find a change situation that can minimize 

( ) ( )T
1

1 G 1

1
2 log .

i j

K N

i j i j i

j y i

y y p
λ

θ θ
λ

−

= ∈ =

− − Σ − + ⋅ ⋅ 
 

∑ ∑ ∑
ɶ

ɶ ɶɶ ɶ  

 

The method includes 3 steps: 

(1) Decide the order of the segmentation points. 

(2) Decide the change situation of the segmentation points. 

(3) Decide the best solution from all possible change situations. 
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3.2.1 Decide the order of the segmentation points 

My idea is to find a position from all the positions first. Then I want to find a position 

from the positions that remain. By the same way, I can decide the order of segmentation 

points. 

 So we need to know how to choose a position from the possible position. Next, I will 

explain how to choose a position from the possible position with an example. Assume there 

are 3 different parameters and N  observation vectors ( 1, , Ny yɶ ɶ⋯ ), and 

( )

( )

( )

1

2

3

 

i

i i

i

y

y y

y

 
 

=  
 
  

ɶ ；

i =1, ,N⋯ . Assume we have known that there are S  segmentation points in the data, and 

their locations are 1 2, , , St t t⋯ . 

 

Let  

( ) ( ) ( ) ( )

( )

( )

( )

1

1,11
1

1

1,1 1,2 1,3 1,21 2 3 2
1

1,33

F

i
u

S i i i i
i

i

y Y

q y Y y Y y Y y Y

y Y

−
−

=

  −
    = − − − Σ  −      

−    

∑  

( ) ( ) ( )

( )

( )

( )

2

1

2,11
1

1

2,1 2,2 2,3 2,21 2 3 2

2,33

i
u

i i i i
i u

i

y Y

y Y y Y y Y y Y

y Y

−
−

=

  −
    + − − − Σ  −      

−    

∑  

+⋯  

( ) ( ) ( )

( )

( )

( )
1

2,11

1

2,1 2,2 2,3 2,21 2 3 2

2,33

S

Si
N

S S S Si i i i
i u

Si

y Y

y Y y Y y Y y Y

y Y
+

+

−
+ + + +

=

+

  −
    + − − − Σ  −      

−    

∑  

( )1
2 log 3 1 ,S

λ
λ

 −  + ⋅ ⋅ ⋅ +       
 

  where { } { }12, , \ , , ,Sq N t t∈ ⋯ ⋯  

and ( )1 2 1, , , Su u u +⋯ : the order of ( )1 2, , , ,St t t q⋯ , where 1 1.Su u +< <⋯  
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and 1,1 1,2 1,3 2,1 2,2 2,3 2,1 2,2 2,3, , , , , , , , ,S S SY Y Y Y Y Y Y Y Y+ + +⋯ : the sample mean of some 

observation. (show as Figure 9) 

 

 

Figure 9. 

 

We plug in values from small to large in { } { }12, , \ , , SN t t⋯ ⋯  as q , and we calculate 

the value of ( )FS q . Then we can choose a position whose value of ( )FS q  is the minimum, 

and let the position be the 1S + -th segmentation point. That is, if 

{ } { }12, , \ , , Sh N t t∈ ⋯ ⋯ and ( ) ( ) { } { }{ }1F min  F | 2, , \ , ,  S S Sh q q N t t= ∀ ∈ ⋯ ⋯ , hyɶ  is the 

1S + -th segmentation point. By the same way, we can decide the order of the segmentation 

point. 

 

3.2.2 Decide the change situation of the segmentation points 

In section 3.2.1, we learned how to decide the order of the segmentation points. In this 

section, I will decide the change situation of the segmentation points. First, we used the 

method that was introduced in section 3.2.1 to find the order of the segmentation points. 
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Second, according to different situations, we used the method that was introduced in the 

section 3.1.1 to estimate 
j

θɶ . Finally, we need to choose a situation that can minimize 

( ) ( )T
1

1 G 1

1
2 log .

i j

K N

i j i j i

j y i

y y p
λ

θ θ
λ

−

= ∈ =

− − Σ − + ⋅ ⋅ 
 

∑ ∑ ∑
ɶ

ɶ ɶɶ ɶ            ( )3.6  

 

For example, there are 3 different parameters and 5 observation vectors (
1 5, ,y yɶ ɶ⋯ ). And 

we use the method that was introduced in the section 3.2.1 to get the order of the 

segmentation points: 
3 4 2 5y y y y→ → →ɶ ɶ ɶ ɶ . Because there are only 3 parameters, there are 7 

possible change situations of a segmentation point. 

(1) A mean-shift occurs to the first parameter. 

(2) A mean-shift occurs to the second parameter. 

(3) A mean-shift occurs to the third parameter. 

(4) A mean-shift occurs to the first and the second parameters. 

(5) A mean-shift occurs to the first and the third parameters. 

(6) A mean-shift occurs to the second and the third parameters. 

(7) A mean-shift occurs to all parameters. 

 

First, we assume only 3yɶ  is a segmentation point, and others are not segmentation points. 

1. Let a mean-shift occur to the first parameter in 3yɶ , and use the method that was 

introduced in section 3.1.1 to estimate the mean vector ( j
θɶ ). Then we input them into 

the formula ( )3.6  and get a value (called value_1).  

2. Let a mean-shift occur to the second parameter in 3yɶ . In the same way, we can 

estimate the mean vector ( jθɶ ) and get a value (called value_2). 

3. Let a mean-shift occur to the third parameter in 3yɶ . In the same way, we can estimate 
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the mean vector ( jθɶ ) and get a value (called value_3). 

4. Let a mean-shift occur to the first parameter and the second parameter in 
3yɶ . In the 

same way, we can estimate the mean vector (
j

θɶ ) and get a value (called value_4). 

5. Let a mean-shift occur to the first parameter and the third parameter in 3yɶ . In the 

same way, we can estimate the mean vector ( jθɶ ) and get a value (called value_5). 

6. Let a mean-shift occur to the second parameter and the third parameter in 
3yɶ . In the 

same way, we can estimate the mean vector (
j

θɶ ) and get a value (called value_6). 

7. Let a mean-shift occur to all the parameters in 3yɶ . In the same way, we can estimate 

the mean vector ( jθɶ ) and get a value (called value_7). 

Then we choose a situation whose value is the minimum of (value_1, value_2, value_3, 

value_4, value_5, value_6, value_7), and let the change situation of 3yɶ  be that situation. 

Here, we assume that the change situation of 
3yɶ  is (m), 1 m 7≤ ≤ . 

 

 Second, we assume both 3yɶ  and 4yɶ  are segmentation points and the change situation 

of 3yɶ  is (m). By the same way, we can let  

1. A mean-shift occurs to the first parameter in 4yɶ . 

2. A mean-shift occurs to the second parameter in 4yɶ . 

3. A mean-shift occurs to the third parameter in 4yɶ . 

4. A mean-shift occurs to the first and the second parameters in 4yɶ . 

5. A mean-shift occurs to the first and the third parameters in 4yɶ . 

6. A mean-shift occurs to the second and the third parameters in 4yɶ . 

7. A mean-shift occurs to all the parameters in 4yɶ . 

Then we use the method that was introduced in section 3.1.1 to estimate the mean vector 

( j
θɶ ) in order. And we input them into the formula ( )3.6 . We will get a value for each 
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situation, and we will have 7 values. Finally, we choose a situation whose value is the 

minimum of the 7 values, and let the change situation of 4yɶ  be that situation. In the same 

way, we can decide all the change of the segmentation points. 

 

3.2.3 Decide the best solution from all the possible change situations 

In this section, I will use the formula (3.3) to decide the number of the segmentation 

points. And we can find the best solution of the formula (3.3). If there are N  observation 

vectors now, the possible number of the segmentation points is from 0 to 1N − . Assume that 

the number of the segmentation points is r  and 0 1r N≤ ≤ − . Then we can use the method 

that was introduced in the section 3.2.1 to find the first r  segmentation points. And we can 

use the method that was introduced in section 3.2.2 to decide the change situations of the first 

r  segmentation points. Let r  be from 0 to 1N− . We use the method that was introduced 

in section 3.1.1 to estimate jθɶ  and put them into the formula ( )3.6  for each r . Finally, we 

only want to find a change situation whose value is the minimum. 

 

3.3 The influence of outliers 

In real case, because the semiconductor process is quite complex, sometimes data must 

be taken down by people, or some unpredictable measurement deviations occur to the 

measurement apparatus. Outliers might occur in the process. In the section 2.2, SBS provided 

an outlier detection method to avoid the influence of outliers. In this section, I will use the 

outlier detection method that was introduced in the section 2.2 to avoid the influence of 

outliers.  

The outlier detection method includes two steps: 

(1) Choosing the possible outlier first. 

(2) Checking the possible outliers in order. If the possible outlier will affect the result, we 
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will consider that the possible outlier is a outlier and delete it. 

 

The usual method of outlier detection is to check that is any observation lower than 

1Q S IQR− ×  or higher than 3Q +S IQR× . If there is an observation lower than 1Q S IQR− ×  

or higher than 
3Q +S IQR× , we consider that the observation is an outlier. In step (1), SBS 

lets S=1.5, so I also let S=1.5 here. And we use the same method to find a possible outlier. 

That is, for each group, If any observation that belongs to the same group is lower than 

1Q 1.5 IQR− ×  or higher than 3Q +1.5 IQR× , we will consider that the observation is a 

possible outlier. 

If a possible outlier exists, in step (2), we will delete the possible outlier from the data and 

segment the data again. If we can get the same result, we consider that the possible outlier is 

not an outlier. If we can’t get the same result, we consider that the possible outlier is an outlier 

and delete it. When the remaining data is too few, we may not consider outlier detection. 

 

3.4 The algorithm 

(1) Let input data = initial data, and initial group number( 0K ) = 1. 

(2) Use the input data to estimate Σ  under iK  group. 

(3) Use Σ̂  to segment each group, and get new group number 1iK + . 

(4) Find a possible outlier from each new group. If a possible outlier exists, go to step (5). 

Else, go to step (6). 

(5) Check “Is the possible outlier an outlier?” If the possible outlier is an outlier, then delete 

the outlier from the input data, let iK = 1, and go to step (3). Else, go to step (6). 

(6) Check “Does iK  equal 1iK + ?” If not equal, then let i = 1i +  and go to step (2). Else, 

break and output the result. 
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Figure 10. The process flow of MBS 

 

 

Figure 11. The process flow of the outlier detection (MBS) 
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Chapter 4. Experiment 

 In this chapter, we will discuss many cases of three dimensional simulation results. We 

can use these cases to compare Multivariate Bayesian Segmentation with Single Variable 

Bayesian Segmentation. In each case, the data are simulated by joint distribution of several 

distributions ( 1 2E ,E ,⋯), where kE  is a multivariate normal distribution. 1 2E ,E ,⋯  with the 

same covariance matrix(Σ ) but different mean vectors. That is, 

( )k kE Multinormal , ;  k=1,2, ,µ Σɶ∼ ⋯  

          where 

( )

( )

( )

k 1

k kk 2

k 3

=  is the mean vector of E ,

µ

µ µ

µ

 
 
 
 
  

ɶ  

                

11 12 13

21 22 23 k

31 32 33

 is the covariance matrix of E .

σ σ σ
σ σ σ
σ σ σ

 
 Σ =  
  

 

 

Here, I assume that the correlation matrix is a AR1-matrix, and mσ  is the standard 

deviation of the -thm  parameter, 1, 2,3m = . 

2

11 12 13 1 1 1 2 1 3

21 22 23 1 2 2 2 2 3

2

31 32 33 1 3 2 3 3 3

.

σ σ σ σ σ ρ σ σ ρ σ σ
σ σ σ ρ σ σ σ σ ρ σ σ
σ σ σ ρ σ σ ρ σ σ σ σ

 × × × × × 
  ⇒ Σ = = × × × × ×  
   × × × × ×   

 

 

The main cases we want to discuss following below: 

(1) No shift. 

(2) Shift three times and balanced. 

(3) Shift three times and unbalanced. 
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Here, no shift means that there are no segmentation points in the data, and shift three 

times means there are three segmentation points in the data. Balanced means that every 

group’s number is the same, and the levels of the shifts are the same. Unbalanced means that 

every group’s number is different, and the levels of the shifts are different. 

 For each main case, we will discuss the levels of the correlation coefficient (ρ ), so we 

will let ρ  equal 0, 0.4, 0.8. We will discuss the effect of the standard deviations ( 1 2 3, ,σ σ σ ), 

so we will let them be the same or be different. We will discuss the effect of an outlier, so we 

will replace two outliers from the data whose values are 5 and 6 times IQR higher than the 

third quartile. In each case, we will simulate 500 times to the simulated classification rate. 

 

4.1 No Shift Case 

Table 1 Result1 of no shift 

 No Adding 

outlier 

Adding outlier 

case mean size ( )1 2 3, ,σ σ σ  ρ  SBS MBS SBS MBS 

1 0

0

0

 
 
 
 
 
 

 

50 (1,1,1) 0 97.6% 98.2% 98.2% 98.2% 

2 50 (1,1,1) 0.4 97.4% 97.8% 98.2% 98.8% 

3 50 (1,1,1) 0.8 97.8% 98.4% 99% 99.6% 

4 0

0

0

 
 
 
 
 
 

 

50 (1,2,3) 0 96.8% 97.2% 98.4% 98.4% 

5 50 (1,2,3) 0.4 97.8% 98.6% 98.8% 99% 

6 50 (1,2,3) 0.8 97.6% 98.6% 99.2% 99.8% 
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Table 2 Result2 of no shift 

 No Adding 

outlier 

Adding outlier 

case mean size ( )1 2 3, ,σ σ σ  ρ  SBS MBS SBS MBS 

7 0

0

0

 
 
 
 
 
 

 

100 (1,1,1) 0 97.2% 98% 98.4% 98.6% 

8 100 (1,1,1) 0.4 95.8% 97.4% 98.6% 99.2% 

9 100 (1,1,1) 0.8 98.4% 98.6% 98.8% 99.8% 

10 0

0

0

 
 
 
 
 
 

 

100 (1,2,3) 0 96.2% 97.6% 98.6% 98.4% 

11 100 (1,2,3) 0.4 97.6% 98.4% 98.8% 98.8% 

12 100 (1,2,3) 0.8 97.8% 98.6% 99.4% 99.8% 

 

From Table 1 and Table 2, we can find that the results of MBS are all better than the 

results of SBS for any situation. 

 

4.2 Shift three times and Balanced Case 

Table 3 Result1 of shift three times and balanced 

 No Adding 

outlier 

Adding 

outlier 

case mean size ( )1 2 3, ,σ σ σ  ρ  SBS MBS SBS MBS 

13 

0 3 3 3

0 0 3 3

0 0 0 3

        
        
        
                

 

(30,30,30,30) (1,1,1) 0 
57.4 

% 

51.8

% 

60.8 

% 

56.3 

% 

14 (30,30,30,30) (1,1,1) 0.4 
60.8

% 

63.2

% 

61.6 

% 

61.2 

% 

15 (30,30,30,30) (1,1,1) 0.8 
61 

% 

88.4

% 

61 

% 

84 

% 
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Table 4 Result2 of shift three times and balanced 

 No Adding 

outlier 

Adding 

outlier 

case mean size ( )1 2 3, ,σ σ σ  ρ  SBS MBS SBS MBS 

16 

0 3 3 3

0 0 4.2 4.2

0 0 0 5.2

        
        
        
                

 

(30,30,30,30) (1,2,3) 0 
61 

% 

55.2 

% 

63.4 

% 

51.6 

% 

17 (30,30,30,30) (1,2,3) 0.4 
58 

% 

60.2 

% 

58.6 

% 

58.4 

% 

18 (30,30,30,30) (1,2,3) 0.8 
60.4 

% 

89.4 

% 

61.4 

% 

81.4 

% 

19 

0 3 3 3

0 0 3 3

0 0 0 3

        
        
        
                

 

(50,50,50,50) (1,1,1) 0 
57.8 

% 

53.2 

% 

59.6 

% 

55.4 

% 

20 (50,50,50,50) (1,1,1) 0.4 
61 

% 

62.8 

% 

61.4 

% 

61.4 

% 

21 (50,50,50,50) (1,1,1) 0.8 
61.2 

% 

88.8 

% 

60.8 

% 

84.8 

% 

22 

0 3 3 3

0 0 4.2 4.2

0 0 0 5.2

        
        
        
                

 

(50,50,50,50) (1,2,3) 0 
60.8 

% 

53.8 

% 

61.2 

% 

52.8 

% 

23 (50,50,50,50) (1,2,3) 0.4 
57.8 

% 

61 

% 

58 

% 

58.2 

% 

24 (50,50,50,50) (1,2,3) 0.8 
61.2 

% 

89.8 

% 

60.6 

% 

80.6 

% 

 

 

From Table 3 and Table 4, we can find that if the correlation coefficient (ρ ) is 0 and that 

the results of MBS are worse than the results of SBS. If the correlation coefficient (ρ ) is 

bigger than 0.4, the results of MBS are better than the results of SBS. And if we add outliers 

into the data, we still can find the same results. 
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4.3 Shift three times and Unbalanced Case 

Table 5 Result of shift three times and unbalanced 

 No Adding 

outlier 

Adding 

outlier 

case mean size ( )1 2 3, ,σ σ σ  ρ  SBS MBS SBS MBS 

25 

0 2 2 2

0 0 7 7

0 0 0 10

        
        
        
                

 

(10,25,50,35) (1,1,1) 0 
58 

% 

56.4 

% 

54 

% 

52.8 

% 

26 (10,25,50,35) (1,1,1) 0.4 
54 

% 

60.2 

% 

54.6 

% 

55.8 

% 

27 (10,25,50,35) (1,1,1) 0.8 
59.2 

% 

70.4 

% 

60 

% 

73.6 

% 

28 

0 2 2 2

0 0 9.9 9.9

0 0 0 17

        
        
        
                

 

(10,25,50,35) (1,2,3) 0 
60.8 

% 

58 

% 

56.8 

% 

52 

% 

29 (10,25,50,35) (1,2,3) 0.4 
62.8 

% 

65.4 

% 

56 

% 

57 

% 

30 (10,25,50,35) (1,2,3) 0.8 
63.2 

% 

71.4 

% 

56.2 

% 

78.6 

% 

31 

0 2 2 2

0 0 7 7

0 0 0 10

        
        
        
                

 

(15,35,70,30) (1,1,1) 0 
57.2 

% 

56.2 

% 

53.8 

% 

52.6 

% 

32 (15,35,70,30) (1,1,1) 0.4 
54.4 

% 

61.2 

% 

54.8 

% 

55.2 

% 

33 (15,35,70,30) (1,1,1) 0.8 
58.4 

% 

71.2 

% 

60.2 

% 

74.4 

% 

34 

0 2 2 2

0 0 9.9 9.9

0 0 0 17

        
        
        
                

 

(15,35,70,30) (1,2,3) 0 
61.4 

% 

58 

% 

58.2 

% 

54.2 

% 

35 (15,35,70,30) (1,2,3) 0.4 
62.2 

% 

64.8 

% 

56.8 

% 

57.6 

% 

36 (15,35,70,30) (1,2,3) 0.8 
64 

% 

72.8 

% 

54.8 

% 

76.4 

% 

 

 

From Table 5, we can find that if the correlation coefficient (ρ ) is 0 and the results of 

MBS are worse than the results of SBS. If the correlation coefficient (ρ ) is bigger than 0.4, 
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the results of MBS are better than the results of SBS. And if we add outliers into the data, we 

still can find the same results. 
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Chapter 5. Conclusion 

 

In this paper, MBS is used to segment many parameters’ historical data at a time and find 

the position where the change occurs to the process. In Chapter 4, we used many differences 

to compare MBS with SBS. From the comparison process and the result, we can find: 

(1) If there are many different parameters, SBS must be run several times, but MBS only 

need to run one time. so MBS is more efficient than SBS. 

(2) Under the no shift case, the results of MBS are always better than the results of SBS. 

(3) Under shift three times and balanced case, if the degree of the correlation coefficient is 

bigger, the result of MBS is better. 

(4) Under shift three times and unbalanced case, if the degree of the correlation 

coefficient is bigger, the result of MBS is also better. 

 

So, if there are many parameters in the data, and the correlation coefficient is not small, it 

is suitable to use MBS to operate the data. MBS may be applied in the semiconductor industry, 

because there are many different parameters relating to the process. If an engineer uses MBS 

to find the segmentation point, we only need to run it one time. The engineer will work more 

efficiently. And we can use MBS to get a right segmentation point with consider the effect of 

the parameters’ interaction. SBS can’t be used to do that. 

 

 

In future work: 

(1) When correlation coefficient is small, SBS is better than MBS. When correlation 

coefficient is large, MBS is better than SBS. So we can investigate a method that can 

determine whether MBS or SBS shall be used. 
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(2) In this paper, our condition is laid in multivariate normal distribution with unchanged 

covariance matrix. Therefore, we could discuss the classification of random 

assignment material with the changes of covariance matrix in the future. If the 

covariance matrix has changed, we need to discuss how to detect the position where 

the covariance matrix has changed. 
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