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Statistical Inference for Cure Models

The Non-Mixture Approach

Student: Ying-jhu Chen Advisor: Dr. Weijing Wang

Institute of Statistics
National Chiao Tung University

Hsinchu;, Taiwan

Abstract

Cure models are survival models which allows for the existence of cure despite of
long-term follow-up. In this thesis; we consider statistic inference for cure models
based on the non-mixture/approach proposed by Tsodikov(1998). This model has some
interesting biological interpretations. Parametric and semi-parametric methods will
be investigated. We propose a model diagnostic tool to verify the form of regression

models.

Key Words: Cure rate; Non-mixture model; Model checking.
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Chapter 1 Introduction

1.1 Background

Let T be the failure time of interest which is subject to right censoring by C'. Denote
S(t) = Pr(T > t), h(t) = lima—o Pr(Te[t’tgA)szt) and H(t) = ['_ h(z)dr as the survival

hazard and cumulative hazard functions respectively. Observed data can be denoted as
{(Xi,0,)(i = 1,...,n)}, where X; = T; A C; and 6; = [(T; < C;) and (T}, C;) are random
replications of (7, C). Let t(1) < t) < --- < t(p) be distinct ordered failure times. Under
the assumption that 7; and C; are independent, S(t) can be estimated by the Kaplan-Meier

estimator

- 11 (-%)

-ty <t

where d, is the number of failures and 7, is the number at risk at #.
Figure depicts the Kaplan-Meier curve of an example in the paper of Tsodikov(2003).
The curve estimates the survival function for patients with Hodgkin’s disease treated by

radiotherapy. The event of interest was defined as death due to the disease. An interesting

1.0

0.4} Events : 3000
GCensored : 8516

o 40 80 120 160 200 240
Time (months)

Figure 1-1: K-M Survival function for patients with Hodgkin’s disease (Tsodikov, 2003)

feature of the plot is that the tail does not descend to zero. One explanation is that the

study period is not long enough to observe large failure points. A different interpretation



is that some patients would never develop the event of interest despite of long-term follow-
up. In other words, these patients can be viewed as ”cured” and hence free from the event
of interest. In many practical applications, such a plateau in the Kaplan-Meier curves is
commonly seen. Estimating the proportion of cure may have important medical implication.

Cure models are survival models that allow for cured individuals (Boag, 1949). Here we

introduce two types of models which include the possibility of cure in survival analysis.

1.2 The Mixture Approach

It is assumed that the population can be divided into two sub-populations, namely the
susceptible group and the cured group. For people in the cured group (with proportion p),
the failure time is set to be oco. Subjects in the susceptible group (with proportion 1 — p)
will ultimately experience the event of interest. Denote the corresponding survival function
as So(t) which is a proper survival function satisfying lim; ..., So(t) = 0. Hence the survival

function of the population can be written as.the following mixture form,

S(t) =p+ (1 — p)So(t). (1)
The corresponding hazard function‘is given by

L=/
h e B, -
L Sit)
where f(t) is the density of 7. This model was developed by Berkson and Gage (1952) and

later studied extensively by a number of statisticians.

1.3 The Non-Mixture Approach

In the thesis, we will focus on the second type of cure fraction model. Yakovlev et al.
(1993) proposed the so-called "non-mixture cure model” or "bounded cumulative hazard”
(BCH) model by defining an asymptote for the cumulative hazard function. Specifically it is

assumed that the cumulative hazard function can be written as



where 0 < F (t) < 1 satisfies properties of a cumulative distribution function. It follows that

lim H(t) =6 < oc.

Jim
Since
S(t) = exp (~H(t)) = exp (~0F (1)) 2)
it follows that
lim S(t) = exp(—6) = p > 0.

t—o0

1.4 Comparison of the Two Models

The survival function in (2)) can be re-expressed as the mathematical form of model ().

Specifically define

b=E¢€
and then X
e OF (B0
SH S Sy 3
o) = 7 3)

Notice, that in , p and «Sp(t) are both functions of @.If the cure fraction p is the only
interest, it makes no difference which. model formulation is chosen under a nonparametric
framework. However, an important feature of the mixture model in is that p and Sy(t)
are modeled separately so that Sy(t) does mot contain information of p. Therefore, the two
approaches become different when additional model assumptions are imposed on the cure

rate and the latency distributions.

1.5 Estimation under Censoring

In practice, censoring happens when subjects are lost to follow-up. Observed data are of
the form, {(X;,8;),i = 1,2,--- ,n}. Our main purpose is to estimate 6 and F(-). It is easy
to see that Pr(d = 0) > exp(—0) and Pr(é = 0) = exp(—0) if C = co. Estimation of 6 will
be affected by both the distribution of C' and F (t). In particular, those outliers are those

with extreme values of T" which are likely to be censored.



1.6 Outline of the Thesis

The thesis considers statistical inference for the non-mixture model in . In Chapter
2, we provide more discussions on this model which include useful biological interpretations.
Parametric and non-parametric inference methods are studied in Chapter 3 and Chapter 4
respectively. Regression analysis that models the effect of covariates on p and F is discussed
in Chapter 5. We also propose diagnostic plots to verify the proportional hazard (PH) and

accelerated failure time (AFT) assumptions. Concluding remarks are given in Chapter 6.



Chapter 2 Model Properties

In this chapter, we will examine properties of the non-mixture model:

Su):emp(—ﬂﬁxw).

In Section 2.1, we introduce a model with interesting biological interpretations which would
yield the above representation. More detailed mathematical properties are examined in

Section 2.2.

2.1 Biological Interpretation

Consider the following biological mechanism about tumor development. Assume that an
individual in the population has N tumor cellsswhere N = 0,1,2---. Each tumor cell will
develop the event of the metastasis with the failure time 7. Let T] be the random time for the
J#n, tumor cell to produce the detectable metastatic disease. Cancer occurs under a competing
risk framework such that the time to develop cancer is defined as 1" = min{fj, 1<j< N}
if N > 1. If a person has no tumor cell with N = 0, he/she is called "immune” or ”cured”.
We will set Pr(Ty = oo) = 1.

Assume that N follows a Peisson distribution with mean 6. Also assume that, Given N,
the random variables Tj (j = 1,...,N) are independent and identically distributed with a
common distribution function F(t) = Pr(T; < t) that does not depend on N. Tt follows that

S(t), the survival function for T = min{T},0 < j < N}, can be written as

S(t) = Pr(no metastatic cancer by time t)

= Pr(N—O)+iPr(T>t,N—k)

k=1

= Pr(N=0)+ iPr(T > t)Pr(N = k)

~ exp(—0)0F
(810 P

— exp(—0+05(t))

— exp (—0F (1)),

NE

= exp(—0) +

ol
tl



which is exactly the model considered here. There are two distinct characteristics of tumor
growth; namely the initial number of tumor cells and the rate of their progression. Thus
parameters in the model have a clear biological meaning. Such a model is reasonable to
describe cancer relapse, time to inflection and so forth.

Notice that tlg(r)lo S(t) = Pr(N = 0) = exp(—6). As § — oo, the cure rate tends to
zero; as 8 — 0, the cure rate reduces to one. Usually we have 0 < p = exp(—0) < 1.
Since H(t) = 0F(t), the survival function is S(t) = e F® and the hazard function becomes

h(t) = 0f(t), where that f is the density of T}.

2.2 Mathematical Properties

Based on the biological framework, we discuss how the shape of S(t) is affected by N
and F(t). Notice that the cure rate equals Pr(N = 0) = exp(—6) = p which measures the
heaviness of the tail of S(¢). The failure time I is:determined by both N and the distribution
of Tj for j =1,..., N. Larger value of N (i.e. more tumor cells) tends to be associated with
smaller value of T = min{T},1 < j < N} (i.e. early onset of the event). In other words, if a

person has more tumor cells, the time of cancer relapse tends to happen earlier.

N~Poisson( 2.3 ) N~Poisson( 1.2)

Pr(N=n)

00 02 04 06 08 1.0
Pr(N=n)

00 02 04 06 08 10

o o
- N~Poisson( 0.69 ) - N~Poisson( 0.36 )
o ®
S S
- 9 - ©
i © [
£ £
3 & 3
o~ o
=} o
o o
= o T T
0 1 2 3 4 5 0 1 2 3 4
N N

Figure 2-1: The Number of Recurrence tumor

Figure plots the probability function of N for selected values of . The shaded region
corresponds to the cure rate, Pr(N = 0). Figure contains several boxplots of T|N

6



for N = 0,1,2,--- where T] follows the Gamma, Weibull and Log-normal distributions
respectively. As expected, the median of T'|N shows a decreasing pattern as a function of N.

The pattern of outliers in each plot deserves special attention. Outliers of 7" happen more
frequently for those with N = 1. Especially in Figure 2-2] there are has a lot of outliers
for T|N = 1 with T; ~ Weibull(1,3). If the follow-up period is not very long, large outliers
are more likely to be censored. It becomes more difficult to estimate p = exp(—#0) if T" has
a long tail. We will investigate this conjecture via simulations. Among the three Weibull
distributions, Var(T|N) for N > 1 is largest for Weibull(4,15). We will also examine how
this characteristic affects parametric inference.

In Figure of the Appendix, we plot the survival function of 7', and the density and

the hazard functions of T} for selected parametric distributions.
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Chapter 3 Parametric Inference

Parametric analysis can provide more clear description of the data if the model assumption
is correct. In Section 3.1, we derive the likelihood and score functions under a parametric
framework. Specific examples are given in Section 3.2. Section 3.3 presents numerical analysis
that compares the bias and standard deviation of the maximum likelihood estimates under

several parametric settings.

3.1 Likelihood Function

Recall that T denotes the failure time with the survival function S(¢) = Pr(T > t).
The censoring variable is denoted by C' with the survival function G(t) = Pr(C > t) and
the density function g(¢). Assume that 7 and C are independent. In presence of right
censoring, the observed variables are (X,¢), where X = T A C and 6 = I(T < C). The
sample contains independently and identically distributed observations of (X, ¢), denoted as
(X;,0,) (1 =1,2,--- n).

The likelihood function:has the form

n

[T )G’ s (Sg@) =2 oc T [ ()™ S (2:)'~%).

i=1 i=1
Under the non-mixture model, S(¢) can be express as

5(t) = exp(=0F (1)), (4)

and the density function can be expressed as

950 _ gty exp(—0F (1)), (5)

finy ===

where f(t) = F'(t). Accordingly the parametric log-likelihood function can be written as
> _{alog(8) +log f(w:)] — 6F ()} (6)
i=1

Suppose that F(-) is modeled as a parametric function £,(-) so that the log-likelihood is
a function of (6,7), say ¢(6,n). The maximum likelihood estimator of (6,7) can be obtained
by solving the equations Z:((6,n) = 0 and 5L(0,m) =0.

9



3.2 Two Examples

First suppose that f (+) follows an exponential distribution with parameter «. The log-

likelihood function in @ becomes

000, a) x Z{(SZ log(Oae™ ") — (1 — e~ %) }.

i=1
The score functions are

(9 _ Z?:l di

T SL (e =)

Z?:1{5i(é - l’z) - Qxie_axi} =0.

The solution & and 6 can be obtained by numerical methods.

In the second example, we assume that f (+) follows a Weibull distribution with the param-
eters k and A\, where k is the shape parameter and ) is the scale parameter. The decreasing
rate of hazard is controlled by k. If £ >+1, the hazard he hazard has a peak in the \; if
k <1, it is decreasing. Note that the shape of hazard function has right tail when coefficient
of skewness is larger than zero. The log-likelihood function in @ becomes

n

3 {51- [log¢9+1ogk+ (k — Dlogz = (=) log A — (%)k] 9 (1 —e(i")k)}.

i=1
The score functions are

iz 1_5(T
S {8 [+ tom i —Tog A — (5)1og (51)] + 6 (5)F10g (5)e(3) ] =0,
S {6 [+ kAt — a3 <o

The maximum likelihood estimates, /%, A and é, can be obtained by numerical methods.

3.3 Generation of a Parametric Distribution

To generate data from a parametric model of the form S(t) = exp(—6#F(t)), we propose
two algorithms. One is based on mathematical properties of the random variables and the

other utilizes properties of the biological model as discussed earlier.

10



3.3.1 Algorithm I

This algorithm is constructed based on the biological model of tumor development.

Step 1: Generate the number of tumor cell N from a Poisson distribution with mean ¢

such that 6§ = —log(p) , where p is the cure fraction.

Step 2: If N =0, set T to be a large number;
if N > 0, generate T] from F(-) independently for j =1,..., N.

Step 3: Set T' = min{T}, T, -- , T }.

Step 4: Generate C' from Unif (0, K).

Step 5: Set X = min{7,C} and 6 = [(T < C).

3.3.2 Algorithm II

Without the biological setting, we has to handel the challenge that 7' is not a proper
random variable since positive mass is put-on 7' = co. The second algorithm uses the idea
of mixture models to generate random variables. Specifically under the mixture model, we

have
S(t) = (1L =p)S(t) + p,
where Sy(t) is the survival function of a proper random variable, say Ty. It follows that
So(Ty) ~ U(0,1) so that Ty = Sy '(U) where U ~ U(0,1). Hence we can set T = Ty with
probability 1 — p and T" as a very large number with probability p.
The relationship between Ty and (F(-),6) is given in equation . Thus we have
—0F(Tp) _ ,—0

e
1—e?

So(Tp) = &

Suppose that the parametric form of F (+) is specified. It follows that

~ —log{U(1 - e ) +e %
— 7 )

F(Tp)
The second algorithm is described below.
e Step 1: Generate U ~ U(0,1).

11



Step 2: Set

T _ -l < log(U{1 — e~} + 6_9>
0= — .
0

Step 3: Generate V ~ U(0, 1).
If V> p=-exp(—0), set T = T;

if V< p, set T equal to a very large number.

Step 4: Generate C from a uniform distribution.

Step 5: Set X =T AC and § = (T < C).

3.4 Simulation Results

In the simulations, we evaluate the.MLE .performance for selected parametric distribu-
tions. One set if simulations did not include censoring by setting C' = co with p = 0.3. The
other setting was designed such that p = 0.3 and Pr(o'= 0) = 0.4. This means that 10%
subjects who are censored but actually susceptible. Since €' follows a U(0,k), we need to find
the value of k such that Pr(7° < ') can achieve the target goal. Table 77 lists the value of
k which yields the target value Pr(d-= 0)-fordifferent parametric distributions.

Data were generated using the algorithm derived from model. Two sample size with
n = 100 and n = 300 were considered. For each estimator, the average bias and standard
deviation of parameter estimates are reported base on 500 replications.

Table ~ summarize the result of MLE under C' = oo when T follows Gamma,
Weibulll and log-normal distributions respectively. Note that p = exp(—6) = 0.3. Table
~ contain the results with same p = 0.3 but Pr(6 = 0) = 0.4. That is 10% subjects
who have at least one tumors but are censored due to limited observation period. The
estimate of p is poor for Weibull(1,3) which has more outliers than the other two Weibull
distributions. The estimator of X is poor for Weibull(1,3) and Weibull(4,15). Parameter A
controls the spread of the distribution which involves the tail behavior. Weibull(4,15) has

large tail values which are likely to be censored.

12



Chapter 4 Nonparametric Inference

In this chapter, we discuss estimation of 8 and F(-) when the distribution of the latter is
not specified. The paper of Tsodikov (2001) considered this setting but did not provide the
details. Here we give detailed derivations. The likelihood function and score functions are

discussed first. Two algorithms for solving the score equations are proposed.

4.1 Likelihood Function

Based on the original data notations, the nonparametric likelihood function can be written

as
n

[T{Pe(T = 2.0 > ) [Pr(C = 2. T > )]}
After taking logarithm and assuming that 7; and. C; are independent, the log-likelihood

function can be written as
> {0plog[Pr(T = ;)] + (1= ;) Jog[Pr(T > )]} .

In order to estimate F () nonparametrically,.we assume that is takes jumps only in observed
failure points. Now, we express the log-likelthood function in terms of ordered observations.
Let t(1) < t2) < ... < t(p) be observed failure points. Set ¢y = 0 and #(p4;) = co. Denote
mj = > I(X; = t(j,0; = 1) which measures the number of failure points at time ¢:;, and
and n; =Y - I(t;) < X; < t(j+1),0; = 0) which measures the number of censored points in

the interval [¢(;),t(+1)). Under the model assumption, it follows that

NgE

log L(6, F) oc > {m;log[S(t—)) — S(tw)] + nilog[S(te)]}

{ml [ GZAFk + log [1 — exp (—QAZ:})} —Qi:AFk }
k=1
i1

_ GiZm AF, + Zmllog [1 —exp (—QAE)] _ eiimmﬁg

=2 k=1 i=1 i=1 k=1

1

%

I
NE

+ n;

1

-.
Il

where AF, = F(t(l-)) —F(t(i_l)) subject to the restriction that Zi’il AF; = 1. Now we discuss

how to maximize log L(6, F) with respect to 6 under the constraint AFj (j=1,...,D).

13



4.2 Score Functions

In this section, we present two ways to solve the score functions. In Section 4.2.1, since we
want to maximize log-likelihood function subject to some constraints, the lagrange multiplier
method is natural choice. The other way to solve the variables is presented in Section 4.2.2.
We change the form of variables in the log-likelihood function and use the condition to solve

the variables.

4.2.1 An algorithm based on the method of Lagrange Multiplier

Applying the Lagrange multiplier method, we can handle the constraint of the parameters
in the maximization procedure. Adding the Lagrange multiplier A, we consider the function
~ ~ D ~
W0, F,\) = log (0, F) + M1 - ) AF).
i=1

Taking the derivatives with respect to theunknown parameters, the score equations can be

written as
h(8, F, )\ log L(8, F —OAF
8(,~, ):OéA:aOg (~7 ):mDeeXp< ~D)_0nD (8)
OAFp OAFp 1 —exp(—0AFp)
and "
M:o, 1<45<D—1.
OAF;
It follows that for each 7 =1,2,--- , D —1, we have
D D ~
0 —O0AF;
—GZmz—GZnZ—l—mJ eXp( ~])—/\:0. (9)
et P 1 — exp(—0AFj)
By taking B
oh(O, F,\) 0
00 -
we obtain
D - B : B D AFexp (—QA ~Z»)
DY AR =D mAFe+ Y my 2 =0 (10)
=2 k=1 i=1 k=1 =1 1—exp <—9A z)
and also

The algorithm is summarized below.

14



e Step 1: Take summation @XAE from 7 =1 to D-1

D-1 D _ mj;fexp (—GA ~j> D-1
—OZZmz—HZZnH—ZAF A
J=1i=j+1 j=1 i=j j=1 1—exp<—9A j> =1

Then multiply equation((L0)) by 6

D i1 D AFexp (—m -

—HZZmZAFk—HZanAFk—FGZmZ

i=2 k=1 i=1 k=1 i=1 1—€Xp<—9A'

and subtract from . We obtain

9 —YN3 D-1
AFp e ( ~D> —OnpAFp + Y AFA=0.
1 —exp (—QAFD> =

and equation . Accordingly we have

mpb exp(fﬁAFD)
1—exp(—0AFp)

3 WG

QTLDAFD B AFD

A=

e Step 2: Comparing and , we can get

mDOexp(—BAFD) 5
1—exp(—9Al*:'D> =, mDQ exp(—@AFD)

1-— AFD " 1-— exp(—@Aﬁ’D)

HTLDAFD — AFD

It follows that ~
mpl exp(—0AFp)

1 — exp(—0AFEp)

—HTLD =0.

e Step 3: Using the estimation of AFp in @, we obtain

mpb exp(—OAFp) _ myb exp(—
1 —exp(—0AFp) 1 —exp(—

ﬁl '“«qz

i=j+1

which is used to solve Aﬁj forj=1,2,---,D —1.

e Step 4: Finally, obtain the estimate of 6 based on equation :

—_

i D AF, exp (—HAF,)

D D %

=2 k=1 i=1 k=1 i=1 1 —exp (—QAE’)

i

15
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The above procedure is summarized below.

e Step 1: Obtain AF, from

mpl exp(—0AFp)
1 — exp(—0AFp)

—QTLDZO

e Step 2: Solve GAFj for j=1,2,---,D — 1 based on

d D D

1 — exp(—0AFj) , —

e Step 3: Since 3.7 AF; =1, then set .7 §AF; = and AF; = MFZ ,1<i<D-1

4.2.2 An algorithm based on change of variables

Denote 6, = AF, for k =1,2,--- ,D. The log-likelihood function as a function of 6

can be expressed as the following simpler.form:

D i—1 D i
log L(6, F ZZm,9k+Zmzlog 1 —exp(— ZZnZQk
=2 k=1 i=1 k=1

Taking the derivatives with respect to @; for D first and then j = 1,..., D — 1, we obtain

the following score equations:

OL(, F) _ g D exp(—0p)

= P b =0
00p 1 —exp(—fp) o ’
and for1<j7<D-—1
OL(6, F) m; exp(—6,) & &
09j 1-— exp(—ej) i:jZ—H ;
Notice that 6; does not depend on other 6; for i # j.
Now we summarize the numerical algorithm.
e Step 1: Solve the equation
mpexp(—bp) e = 0
T—exp(—p) 7

to obtain the estimator of 0p.

16



e Step 2: For 1 < j < D — 1, the estimator of 6; solves

m; exp(—0;)
—_— m; — n; =0,
ey 2%

e Step 3: Under the constraint, Zi’il AF, =1, we get

0140+ 40p=0AF, +0AFy + -+ 0AFp =6

and AR =% for k=1,2,---,D.

17



4.3 Simulation Results

Here we evaluate the non-parametric approach. Two sample sizes with n = 100 and
n = 300 are evaluated. The censoring variable C' by simulations was generated from a
uniform distribution in the the interval [0, k|, where k is determined based on Table ??. For
0 and p, the average bias and standard deviation are reported based on 500 replications. The
result are summarized in Tables [A=10 to [A=T5

The estimated survival functions using the parametric and non-parametric methods are
shown in Figure to Figure with n = 100 when the parametric assumption is
correctly specified. We see that the parametric estimator is closer to the true function and
both parametric and non-parametric estimator are poorer with the increasing of curing rate.

In Figure below shows the result when the parametric form F (t) is mis-specified. The
NPMLE approach is still accuratewhile the parametric approach fails.

1.0

0.8

S(t)

0.4
L

0.2

0.0
I

0.1 0.2 0.3 0.4

Time

Figure 4-1: Estimated survival funtions under model mis-specification
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Chapter 5 Regression Analysis

In practice, data also contain covariate information. Let Z be the covariate so that
observed data can be written as {(X;,d;,Z;)(i = 1,--- ,n)}. The non-mixture cured model

in presence of covariate can be written as

S(t12) = exp(~6(Z) F(t]2)). (14)

5.1 Classification of Covariate Effects

In , covariate Z affects both 6 and F(t). Here we consider some special cases which
are simplified conditions of the general situation. The long-term effect stands for its influence
on the tail exp(—6(Z)) = p(Z). The short-term effect is often associated with the timing of
tumor occurrence for those with &> 1. Hence thé model in combines both effects.

FExample 1: Short-term effect without long-term effect

Here we assume 0(7) is.independent of Z. For example, if two treatment groups have the
same long-term survival rates, and one of them is- characterized by more rapidly developing
tumors, we could see a significant ‘short-term effeet, as shown in Figure 5-1f(a). In different
groups, the cure rate @ is the same but F(¢|Z) depends on Z. Equation can be simplified
as

S(t|Z) = exp(—0F(t|2)).

Survival curves for the two groups would diverge initially, and converge again as time passes

by.

Example 2: Long-term effect without short-term effect
In contrast, we assume that Z affects the cure rate but not F (t), equation can be
rewritten as

S(117) = exp(=0(2) F(t)).

Figure p-1b) depicts the situation for Z = 0, 1.
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Figure 5-1: The effects of covariate

15

5.2 Short-term Effect: Proportional Hazards Model

2.0

25

3.0

We now illustrate two forms of F(¢|Z) which are the most popular choices of regression

models in survival analysis: We will also-propese-model checking procedures to verify the

validity of the model assumption. To simplify the presentation, we focus on the two-sample

case with Z =0, 1.

Assume the survival function S(t) follows the form of a PH model such that

where k is a pre-determined constant. Notice that

Thus we have

It follows that

log S(t|Z =1)

S(t|Z =1) = S(t|Z = 0)F,

S(t|Z) = exp (—0(z)F(t]Z)> = exp (6’(2) (S(ﬂZ) - 1)) .

o(1)

log S(t|Z)

+1=5(t2Z=1)

20

+1=25(t2).

(tZ =0

{30z -0} - {logse(o)

)+1}k,

(15)

(16)

(17)



Accordingly

log <log S(;(|IZ) ) + 1) = klog (log S(@t(\OZ) =0 + 1> . (18)

Notice that equation now involves only estimable quantities. The function S(t|z)
can be estimated by the Kaplan-Meier estimator

S Z?:ll(Xi:Ua5i:1,Zi:Z)
S(t|Z =z2) = H {1— ST (X, > 0 Z, = 2) .
O<u<t =1 1 Wy £y

Denote (z) be the nonparametric estimate of (z). Define

X — log <log8g(i|12)’ =1, 1)

and X
1 AT
Y; = log OgS(At 2 O)—l—l ,
0(0)
where t; < ty < --- < tp are ordered failure points. If the PH assumption holds, equation

indicates that Y follow a linear relationship passing, through the origin. We present
some plots of S(t|Z) for z= 0,1 and the corresponding diagnostic plot of X; versus Y; for
1=1,2,---, D based on 1000 simulated observations.

The diagnostic plots in Figure reveal clear linear pattern for most points. Figure
presents the plots when the PH assumption is violated. There is a curved relationship
between X; and Y;.
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5.3 Short Term Effect: Accelerated Failure Time Model
Under the AFT model, the survival function S(t|z) for z = 0,1 follows the relationship
S(t|Z =1) = S(kt|Z = 0)
for k being a prespecified constant. It follows that
Stz =1) = exp {9(1) [S(ﬂz —1) - 1] } — exp {9(1) [S(kﬂz —0) - 1] } .

Accordingly we have

log S(t|1Z =1)
0(1)

128012 =1) = S(kt|Z = 0) = 08 Sf&’f =04 (19)

We want to find a clear relationship from the above equation.
Define p; < -+ < pys as some’eonstants locating in (0, 1). Then we solve X; satisfying

logiSia| 2 =1
6(1)

— P,

1=1,2,---, M. Thus, for each p; we have
X e Sgll {exp (pﬁ(l))} :

Similar steps can be derived based on the right-hand side of equation . Set
Yi = 851 {exp (pif(0)) }

for i = 1,2,--- M. When the AFT model holds, (X;, V;) (i = 1,2,---, M) will follow a
straight line through the origin. Plots following the AF'T model are presented in Figure [5-4}
in which n=1000.

The diagnostic plots in Figure reveal clear linear pattern for most points. Figure
presents the plots when the AFT assumption is violated. There is a curved relationship
between X; and Y;.
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Chapter 6 Conclusion

In the thesis, we study the non-mixture approach for analyzing survival data in presence
of cure. This formulation has an interesting biologial interpretation. In parametric analysis,
we find that outliers in T which often occur when N = 1 will affect estimation of the cure
rate. For nonparametric inference, we propose two algorithms to solve the score funcions of
nonparametric MLE. One is the classical Lagrange multiplier method and the other is by
change of variables. Two regression models are considered under the simplified two-sample
setting. One is the proportional hazard model and the other is the accelerated failure time

model. We propose diagnostic plots which can verify the form of regression effect.
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Appendix: Additional Figures
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Figure A-1: Survival density and hazard functions for selected parametric distributions.
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Figure A-2: Estimated survival functions when F is correctly specified as Gamma(1,1)
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Figure A-3: Estimated survival functions when F is correctly specified as Gamma(4,1.5)
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Figure A-4: Estimated survival functions when F is correctly specified as Gamma(6,2)
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Figure A-5: Estimated survival functions when F is correctly specified as Weibull(1,3)
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Figure A-6: Estimated survival functions when F is correctly specified as Weibull(2,10)
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Figure A-7: Estimated survival functions when F is correctly specified as Weibull(4,15)
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Figure A-8: Estimated survival functions when F is correctly specified as log-normal(1,1)
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Figure A-9: Estimated survival functions when F is correctly specified as log-normal(2,0.4)
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Figure A-10: Estimated survival functions when F is correctly specified as
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Appendix: Simulation Results

Table A-1: Relationship between C~Unif[0,k] and Pr(é = 0) for Gamma Distributions

Gamma(1,1) k& Gamma(4,1.5) k Gamma(6,2) k&

p=0.3 Pr(6=0)=0.3 x  Pr(6=0)=0.3 x Pr(6=0)=0.3 x

(

(

(
p=0.5 Pr(6=0

(

(

Table A-2: Relationship between C~Unif[0,k] and Pr(é = 0) for Weibull Distributions

Weibull(1,3) k&  Weibull(2,10) &k Weibull(4,15) &

p=03 Pr(6=0)=0.3 x — Pr(d=0)=0.3 x " Pr(6=0)=0.3 x
Pr(6=0)=0.4 10~ Pr(6=0)=0.4 33 Pr(6=0)=0.4 58
Pr(6=0)=0.5 6 <Pr(0=0)=05 22 Pr(6=0)=0.5 36

p=0.5 Pr(6=0)=0.5 x Pr(0=0)=0.5 x Pr(é=0)=0.5 x
Pr(6=0)=0.6 8 Pr(6=0)=0.6 18 = Pr(6=0)=0.6 45
Pr(§=0)=0.7 4 Pr(6=0)=0.7 17 Pr(6=0)=0.7 26

Table A-3: Relationship between C~Unif[0,k] and Pr(é = 0) for Log-normal Distributions

log-normal(1,1) k& log-normal(2,0.4) % log-normal(2.5,0.25) k&

p=0.3 Pr(6=0)=0.3 x Pr(6=0)=0.3 x Pr(6=0)=0.3 x
Pr(6=0)=0.4 14 Pr(6=0)=0.4 33 Pr(6=0)=0.4 54
Pr(6=0)=0.5 8 Pr(6=0)=0.5 19 Pr(6=0)=0.5 33

p=05  Pr(6=0)=05 x Pr(6=0)=0.5 x Pr(6=0)=0.5 x
Pr(6=0)=0.6 12 Pr(6=0)=0.6 25 Pr(6=0)=0.6 40
Pr(5=0)=0.7 8 Pr(5=0)=0.7 15 Pr(6=0)=0.7 25




Table A-4: Maximized likelihood estimators for Gamma distributions

with p = 0.3 and Pr(d =0) = 0.3

Gamma(1,1) Gamma(4,1.5) Gamma(6,2)
bias sd bias sd bias sd

n=100 o 0.032 0.159 0.129 0.706 0.252 0.086

g 0.069 0.285 0.079 0.345 0.082 0.344
6 0.014 0.147 0.003 0.165 0.030 0.163
p 0.001 0.044 0.005 0.049 0.005 0.048
n=300 « 0.001 0.074 0.042 0.359 0.061 0.512
g 0014 0.134 0.022 0.175 0.021 0.206
6 0.003 0.091 0.004 0.093 0.012 0.102
p 0.002+.0.027 0:003-+ 0.028 +0.005 0.031

Table A-5: Maximized likelihood estimators for Weibull distributions
with p = 0.3 and Pr(0 = 0)=10.3

Weibull(1,3)  Weibull(2,10) = “Weibull(4,15)
bias sd bias sd bias sd

n=100 £ 0.008 0.107 0.028 0.197 0.079 0.461
A 0.028 0483 0.061 0.746 0.068  0.683
6 0.013 0.141 0.012 0.154 0.034 0.190

p 0.007 0.043 0.007 0.046 0.005 0.053
n=300 £ 0.001 0.057 0.024 0.102 0.049 0.240
A 0.016 0.287 0.039 0.503 0.048 0.383
6 0.007 0.095 0.021 0.101 0.008 0.096
p 0.001 0.028 0.005 0.030 0.001 0.028
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Table A-6: Maximized likelihood estimators for Log-normal distributions

with p = 0.3 and Pr(d =0) = 0.3

log-normal(1,1) log-normal(2,0.4) log-normal(2.5,0.25)

bias sd bias sd bias sd
n=100 x 0.007 0.110 0.005 0.058 0.001 0.037
o 0.014 0.094 0.010 0.031 0.001 0.021
6 0.010 0.166 0.039 0.173 0.028 0.178
p 0.001 0.048 0.007 0.050 0.004 0.005
n=300 x 0.008 0.091 0.001 0.033 0.001 0.023
o 0.005 0.057  0.005 0.020 0.001 0.015
6 0.035 0101 0.007 0.094 0.001 0.091
p 0.009 +0.029 0:001 0.023 0.001 0.027
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Table A-7: Maximized likelihood estimators for Gamma distributions

with p = 0.3 and Pr(6 =0) = 0.4

Gamma(1,1) Gamma(4,1.5) Gamma(6,2)
bias sd bias sd bias sd

n=100 o 0.036 0.175 0.154 0.768 0.221 1.183

g 0.095 0423 0.071 0.384 0.090 0.480
6 0.041 0.260 0.035 0.201 0.018 0.194
p 0.003 0.067 0.005 0.057 <0.001 0.055
n=300 « 0.001 0.091 0.093 0.426 0.117 0.677
g 0.022 0.237 0.046 0.215 0.051 0.275
6 0.016 0139 0.005 0107 0.005 0.112
p 0.002+.0.039 <0:00% 0.032 + 0.003 0.021

Table A-8: Maximized likelihood estimators for Weibull distributions
with p=0.3 and Pr(6 =0) =04

Weibull(1,3) Weibull(2,10)  Weibull(4,15)
bias sd bias sd bias sd

n=100 k£ 0.016 0.131 0.049 0.232 2.979 0.134
A 51.455 1111.197  0.060 1.314 85.573 2163.867
6 0.535 7.980 0.030 0.226 0.375 6.338

p 0.016 0.085 0.002  0.058 0.008 0.081
n=300 £ 0.001 0.076 0.003 0.127  0.032 0.243
A 0.112 0.698 0.001  0.623 0.053 0.377
6 0.024 0.169 0.007  0.113  0.002 0.110
p 0.003 0.047  <0.001 0.033 0.001 0.033
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Table A-9: Maximized likelihood estimators for Log-normal distributions

with p = 0.3 and Pr(6 =0) = 0.4

log-normal(1,1) log-normal(2,0.4) log-normal(2.5,0.25)

bias sd bias sd bias sd
n=100 p 0.035 0.289 0.003 0.063 0.002 0.038
o 0.001  0.149 0.007 0.041 0.003 0.026
6 0.067 0.354 0.022 0.182 0.007 0.179
p 0.007  0.073 0.002 0.052 0.003 0.053
n=300 p 0.010 0.152 <0.001 0.037 <0.001 0.023
o 0.004 0.085 0.002 0.025 0.001 0.014
6 0.013 0144 0.001 0.101 0.001 0.114
p 0.001 +.0.042 0.002 0.030 0.001 0.032
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Table A-10: NPMLE of 6 and p for Gamma distributions with p = 0.3
and Pr(6d =0) = 0.3.

Gamma(1,1) Gamma(4,1.5) Gamma(6,2)
bias sd bias sd bias sd

n=100 # 0.158 0.172 0.131 0.143 0.131 0.139
p 0.040 0.043 0.034 0.036 0.034 0.036
n=300 6 0.130 0.142 0.125 0.138 0.12 0.129
p 0.034 0.036 0.033 0.031 0.032 0.033

Table A-11: NPMLE of 6 and p for Weibull distributions with p = 0.3
and Pr(6 =0) =0.3.

Weibull(1,3)  Weibull(2,10) ~Weibull(4,15)
bias sd bias sd bias sd

n=100 ¢ 0.130 0.1420 0.048 0.249 0.026 0.266
p 0.034 0.036 .0.004 0.083 0.004 0.090
n=300 ¢ 0.124 0.134  0.039 0.250 +0.033  0.258
p 0.033 0.034 = 0.001" “0.085 0.001  0.087

Table A-12: NPMLE of 0 and p for Log-normal distributions with p = 0.3
and Pr(6 =0) =0.3.

log-normal(1,1) log-normal(2,0.4) log-normal(2.5,0.25)

bias sd bias sd bias sd
n=100 ¢ 0.137 0.309 0.141 0.289 0.056 0.246
p 0.035 0.037  0.036 0.037 0.007 0.082
n=300 ¢ 0.136 0.297 0.139 0.279 0.059 0.239
p 0.035 0.037 0.035 0.037 0.008 0.080
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Table A-13: NPMLE of 6 and p for Gamma distributions with p = 0.3
and Pr(6d =0) = 0.4.

Gamma(1,1) Gamma(4,1.5) Gamma(6,2)
bias sd bias sd bias sd

n=100 ¢ 0.090 0.337 0.148 0.389 0.096 0.327
p 0.017 0.073 0.036 0.041 0.019 0.071
n=300 ¢ 0.092 0.331 0.147 0.381 0.097 0.321
p 0.018 0.072 0.036 0.040 0.020 0.070

Table A-14: NPMLE of 6 and p for Weibull distributions with p = 0.3
and Pr(6 =0) = 0.4.

Weibull(1,3)  Weibull(2,10) ~Weibull(4,15)
bias sd bias sd bias sd

n=100 ¢ 0.143 0.375 0.079 0.231 0.146 0.405
p 0.035 0.040 ,0.015- 0.075 0.036 0.041
n=300 ¢ 0.144 0.413  0.082 0.227 ~0.145 0.396
p 0.035 0.040 ~ 0.016" "0.073 0.036  0.040

Table A-15: NPMLE of 0 and p for Log-normal distributions with p = 0.3
and Pr(6 =0) = 0.4.

log-normal(1,1) log-normal(2,0.4) log-normal(2.5,0.25)

bias sd bias sd bias sd
n=100 & 0.140 0.264 0.142 0.274 0.066 0.239
p 0.036 0.039 0.036 0.038 0.010 0.079
n=300 6 0.138 0.259 0.141 0.267 0.069 0.234
p 0.035 0.039 0.036 0.037 0.012 0.077
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