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Importance sampling is a commonly used technique to improve Monte Carlo methods, 

especially in working with rare events. It is designed to increase the probability of sampling 

from rare events and is therefore well-suited for estimating default related items in various 

products given the rarity of default events. It is also simple to implement and versatile in that 

in can be easily extended to estimate different items. But the main challenge is selecting an 

importance sampling scheme that not only increases the probability of rare events but also 

effectively reduces the variance of the estimate. Under the multivariate framework when 

multiple entities are involved, variance reduction becomes even more challenging as there is 

no closed form solution for such optimization problem. In this study, we propose an effective 

importance sampling algorithm that both increases the probability of rare events and reduce 

variance of estimates. We consider the problem of variance reduction under the framework of 

Large Deviation Theory, and establish an efficient importance sampling estimator that can be 

applied to evaluating default events. Then we extend this importance sampling scheme to 

another popular type of default event and incorporate it into a conditional importance 

sampling scheme. Our numerical results confirm that the proposed algorithms for direct 

importance sampling and conditional importance sampling are more efficient in terms of 

variance reduction. Our algorithms are overall more robust under different specified initial 

conditions. 
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Chapter 1

Introduction and Motivation

Effectively estimating default probability in credit derivatives has been an area
of ongoing research. The problem starts with the characterization of default
time. There are two main approaches: structural form and reduced form.
Structural form models the asset and debt value of the company. It treats
them as a first passage time problem and considers default to occur when asset
value of the firm falls below the debt value. Merton [17] (1974) first proposed
this model and later Black and Cox [1] (1976), Geske [9] (1977), Leland
[16] (1994), Longstaff and Schwartz [15] (1995), and Zhou [18] (2001)also
followed this line of thinking. They mainly worked with default of a single
firm. Only Zhou [18] (2001) modeled default of two firms with two corre-
lated brownian motions and derived closed form solution to the joint default
probability of the two firms. His results, however cannot be easily extended
to more firms. Hull and White [11] (2001) shows how multiple firms can
be dealt with using Monte Carlo methods. Typically, evaluating such models
requires computationally intensive numerical procedures.

Reduced form models on the other hand treats default as exogenous. It
bypasses the particular firms captical structure and uses available market in-
formation to model defaults. Schönbucher [19] (2003), Duffie [7] (2003),
and Lando [12] (2003) are a few main proponents of this approach. Up to
now, the industry standard follows the reduced form’s line of thinking. Li
[13] (2000) first developed the copula approach to develop the correlation
structure among default times and Laurent and Gregory [10] (2005) later ex-
tended it and represented the correlation structure in factor form, also known
as factor-copula approach. We will follow the industry standard and adopt
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the factor copula approach in this study.
Once default time is characterized, we can utilize the model to now eval-

uate joint default probability and various credit derivatives. Basket Default
Swaps (BDS) is a common type of multi-name credit derivatives along with
Collaterized Debt Obligations (CDO). Chiang, Yueh, and Hsieh [5] (2007)
proposed an efficient algorithm for valuing BDS (hereafter as CYH). Their
study proposes an efficient algorithm to evaluate kth to default BDS. It adopts
the factor copula approach to modeling default time and mainly works with
Gaussian copula. In this study, we generalize their study and consider joint
default probability along with kth to default BDS under both Gaussian and
Student-T copula. We propose another algorithm that is more efficient and
approach the problem of variance reduction from the perspective of Large
Deviation Theory. Large Deviation Theory is an active area of applied proba-
bility that mainly focuses on behavior of extremal events. We use results from
Large Deviation Theory to solve the problem of variance reduction for our
estimation algorithm.
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Chapter 2

Characterization of Default Time

2.1 Default Time of a Single Firm

We characterize distribution of a firm’s default time τ in terms of its hazard
rate function h(.). Here we briefly review the definition and relationship be-
tween survival function, hazard function and CDF.

Definition 2.1 (survival function). If τ is the default time of a firm with CDF
F , then S(t) = P(τ > t) = 1− F (t) is the survival function of τ .

Definition 2.2 (hazard rate function). Suppose the default time τ has density
function f(t) and survival function S(t), then the hazard rate function h(t) is
defined as

hτ (t) =
fτ (t)

Sτ (t)
.

Hazard rate function is useful for understanding probability of a firm’s
default immediately after time t, given that it has survived up to time t. We
can understand hazard rate function in the following conditional probability.

Given a firm has survived t years, the probability it will default in the
coming time interval ∆t can be written as follows:

P(τ ∈ (t, t + ∆t)|τ > t) =
P(τ ∈ (t, t + ∆t))

P(τ > t)
≈ f(t)∆t

1− F (t)
= h(t)∆t. (2.1)

We can see that this probability can be approximated by the value of hazard
rate function at time t times a small time increment ∆t.

According to definition 2.2, we can write the distribution function in terms
of the hazard rate function:
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F (t) = P(τ ≤ t) = 1− exp

{
−

∫ t

0

h(s)ds

}
(2.2)

Equation (2.2) shows that with effective estimation of hazard rate, we
can model distribution of default time. According to Cherubini, Luciano and
Vecchiato [4] (2004), the hazard rate function can be obtained in several
ways:

• From historical default rates provided by rating agencies.

• By using the Merton approach according to Delianedis and Geske [6]
(1998).

• Extracting default probabilities by using market observable information,
such as asset swap spread, CDS spread or corporate bond prices accord-
ing to Li [14] (1998).

We will not focus on methods of extracting hazard rate function in this
study. A typical assumption is that the hazard rate is a constant λ. In this
case, default time τ follows an exponential distribution with intensity λ. Here
and on, we will use this assumption. This implies:

F (t) = P(τ ≤ t) = 1− exp(−λt) (2.3)

2.2 Brief Introduction to Copula Function

We have characterized default time of a single firm, and now proceed to
combine default time distributions of different firms into a joint distribution
through copula functions. First, we give a brief introduction to copula func-
tions.

Definition 2.3 (copula function). A n-dimensional copula C is a real-value
function with range I = [0, 1] and domain In such that

• C(u) is increasing in every component uk, k = 1, 2 · · ·n, called n-increasing.

• For every u ∈ In, C(u) = 0 if uk = 0 for some k, and C(u) = uk if ui = 1,
i = 1, 2 · · ·n except the k-th component.
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• For all a,b ∈ In with a ≤ b in every component, then the n-box B =

[a1, b1] · [a2, b2] · · · · [an, bn] satisfies Vn(B) ≥ 0, where Vn is the n-volume.

Copula function, C, can be intrinsically understood as a multivariate dis-
tribution function with uniform marginal distributions.

C(u1, ..., un) = P (U1 ≤ u1, · · · , Un ≤ un)

Let F be n-dimensional distribution with F1, ..., Fn as the univariate marginal
distributions. Note that ui = Fi(xi) is uniform on [0, 1] for i = 1, ..., n. The
copula function can combine these uniform marginals u1, ..., un into a multi-
variate distribution function. By probability integral transformation, we can
write,

C(F1(x1), · · · , Fn(xn)) = P(U1 ≤ F1(x1), · · · , Un ≤ Fn(xn))

= P(F−1
1 (U1) ≤ x1, · · · , F−1

n (Un) ≤ xn)

= P(X1 ≤ x1, · · · , Xn ≤ xn)

= F (x1, · · · , xn)

, where Sklar theorem guarantees the converse.

Theorem 2.1 (Sklar 1959). Let F be an n-dimensional multivariate distribution
function with marginal distributions F1(·), · · · , Fn(·). Then there exists an n-
dimensional copula function C such that

F (x1, · · · , xn) = C(F1(x1), · · · , Fn(xn)).

Furthermore, if F1(·), · · · , Fn(·) are continuous, then C is unique.

Therefore, if we know marginal distributions F1, ..., Fn then we can specify
the copula function and joint distribution.

2.3 Joint Default Time Under Gaussian and Student-
T Copula

Now we have characterized default time of a single firm. We will combine
default time distributions of several firms into a joint distribution through

5



copula functions. We will focus on Gaussian and Student T copula functions
and provide algorithms for generating joint default time according to these
two copula functions.

Now suppose there are n firms, and as mentioned before, we assume the
default time τi of each each firm follows an exponential distribution with in-
tensity λi for i = 1, ..., n. Let Fi(.) be the distribution function of default time
τi for firm i, i = 1, ..., n. The main purpose of using copula function here is
to generate a set of correlated uniform variates (U1, ..., Un) according to the
specified copula correlation structure. Next, we use the correlated uniform
variates generated from the copula function to compute default time for each
individual firm through inverse mapping of the firm’s default time distribution
i.e. τi = F−1

i (Ui) for i = 1, ..., n.

General Form of Gaussian Copula

C(u1, u2, · · · , un; Σ) = ΦΣ(Φ−1(u1), Φ
−1(u2), · · · , Φ−1(un))

where ΦΣ(.) is the standardized multivariate normal distribution with
covariance matrix Σ and Φ(.) is CDF of N(0, 1). In this case, given ui =

Fi(τi), where Fi(.) is default time distribution of firm i, we can rewrite
the Gaussian copula function as follows,

C(F1(τ1), · · · , Fn(τn); Σ) = ΦΣ(Φ−1(F1(τ1)), · · · , Φ−1(Fn(τn)))

We can sample joint default time from a Gaussian copula as follows:

Algorithm 2.1 (Joint default time under Gaussian copula).

1. Given Σ, generate correlated uniform variates (U1, ..., Un) from the Gaus-
sian Copula function.

(1) Find the Cholesky decomposition A of Σ such that: Σ = AAT .

(2) Generate n independent random variables Z = (Z1, · · · , Zn)T from
N(0, 1).

(3) Let X = (X1, ..., Xn)T = AZ. Now we know W ∼ ΦΣ(.)

(4) Let Ui = Φ(Xi) for i = 1, ..., n.
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2. Use correlated uniform variates (U1, ..., Un) generated from Gaussian
Copula to compute default time through inverse mapping of the firm’s
default time distribution.

(1) Let (U1, ..., Un)T = (F1(τ1), ..., Fn(τn))T .

(2) Let τi = F−1
i (Ui), i = 1, · · ·n.

General Form of Student-T Copula

C(u1, u2, · · · , un; Σ, ν) = TΣ,ν

(
t−1
ν (u1), t

−1
ν (u2), · · · , t−1

ν (un)
)

where TΣ,ν(.) is the standardized multivariate Student-T distribution
with covariance matrix Σ and degrees of freedom, ν. tv(.) is CDF of
univariate Student-T with ν degrees of freedom. In this case, given
ui = Fi(τi), where Fi(.) is default time distribution of firm i, we can
rewrite the Student-T copula function as follows,

C(F1(τ1), · · · , F1(τn); Σ, ν) = TΣ,ν

(
t−1
ν (F1(τ1)), · · · , t−1

ν (Fn(τn))
)

We can sample joint default time from a Student-T copula as follows:

Algorithm 2.2 (Joint default time under Student-T copula).

1. Given Σ, generate correlated uniform variates (U1, ..., Un) from Student-
T copula function.

(1) Find the Cholesky decomposition A of Σ such that Σ = AAT .

(2) Generate n independent random variables Z = (Z1, · · · , Zn)T from
N(0, 1).

(3) Generate χ2
ν , a Chi-square variable with d.f.=ν.

(4) Let X = AZ. Then X ∼ N(0, Σ).

(5) Let S = (S1, ..., Sn)T = X/
√

χ2
ν/ν. Then S ∼ TΣ,ν(.)

(6) Let Ui = t−1
ν (Si) for i = 1, ..., n.

2. Use correlated uniform variates (U1, ..., Un) generated from Student-T
copula to compute default time through inverse mapping of the firm’s
default time distribution.

(1) Let (U1, ..., Un)T = (F1(τ1), ..., Fn(τn))T .

(2) Let τi = F−1
i (Ui), i = 1, · · · , n.
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2.4 Covariance Matrix under Gaussian Factor Cop-
ula Model

We have shown how to determine joint default time using Gaussian and
Student-T copula functions. But we haven’t discussed the exact structure of
correlation which is mainly determined by the covariance matrix Σ. To deter-
mine Σ, n(n−1)/2 variables need to be estimated, which is extremely difficult
when n is large. Laurent and Gregory [10] (2004) proposes the factor model
which greatly reduces the number of variables by using two types of factors
to intuitively explains firms’ behavior in terms of economic trend and idiosyn-
cratic movements. It reduces complexity from O(n2) to O(n) Therefore, we
adopt the factor model proposed by Laurent and Gregory for determining Σ.
Under this model,

Xi = ρiZ0 +
√

1− ρ2
i Zi, i = 1, 2, · · · , n, (2.4)

where Z0, · · · , Zn are i.i.d. N(0, 1) and ρ1, ..., ρnε[0, 1] Let X = [X1, ..., Xn]T ,
then

X =





X1

X2
...

Xn




=





ρ1

√
1− ρ2

1

ρ2

√
1− ρ2

2
... . . .

ρn

√
1− ρ2

n









Z0

Z1

Z2
...

Zn





The factor loading ρi determines how strongly the ith factor is correlated
to the common factor Z0. Both Z0 and Zi are N(0, 1), and the constraints
posed on on factor loadings ensure that every factor Xi is N(0, 1).

We can see that X has multivariate normal distribution N(0, Σ) where

Σ =





1 ρ1ρ2 ρ1ρ3 · · · ρ1ρn

1 ρ2ρ3 · · · ρ2ρn

. . . ...
1 ρn−1ρn

1





Suppose Xi represents firm i, one can intuitively understand Z0 as the
common factor such as certain macroeconomic or industry condition that af-
fects all firms in a similar fashion, and Zi as the firm specific factors that affect
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only the particular firm. Hence we call Z0 the common factor, and each Zi the
marginal factor.
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Chapter 3

Estimating Joint Default
Probability

Now that we have characterized joint default time distribution, we proceed to
formulate the problem of estimating joint default probability. Given time T,
we wish to know the probability of all the firms defaulting sometime before
T. i.e. we wish to evaluate the following,

p = P (τ1 ≤ T, ..., τn ≤ T ) = E
{
I(τ1≤T,...,τn≤T )

}
= E

{
n∏

i=1

I(τi≤T )

}
(3.1)

Direct computation of this probability is equivalent of evaluating the CDF
of default time (τ1, ..., τn) at (T, ..., T )

p = F (T, ..., T )

But this often involves evaluation of a complex multiple integral that has no
closed form solution. One can then resort to numerical methods. But this
integration suffers from curse of dimensionality, causing the accuracy of nu-
merical integration to decrease significantly as dimension n increases. The
integral takes the following forms under Gaussian and Student-T copula. As
mentioned above, here we denote Fi(.) for i = 1, ..., n as default time distri-
bution for firm i.

Under Gaussian Copula
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Recall in Algorithm 2.1, given X = (X1, ..., Xn) ∼ N(0, Σ) and Xi ∼
N(0, 1) for i = 1, ..., n, we can generate default time as τi = F−1

i (Φ(Xi))

for i = 1, ..., n. Then we can also write,

{τi ≤ T} =
{
F−1

i (Φ(Xi)) ≤ T
}

=
{
Xi ≤ Φ−1(Fi(T ))

}

This means joint default probability becomes a problem of calculating
the multivariate normal CDF, ΦΣ(.),

p = ΦΣ(φ−1(F1(T )), ...,φ−1(Fn(T ))) (3.2)

=

∫ φ−1(F1(T ))

−∞
· · ·

∫ φ−1(Fn(T ))

−∞

1

(2π)
n
2 |Σ| 1

2

exp

(
−1

2
xT Σ−1x

)
dx1...dxn

Under Student-T Copula

Recall in Algorithm 2.2, given S = (S1, ..., Sn) ∼ TΣ,ν and Si ∼ tν for i =

1, ..., n, we can generate default time as τi = F−1
i (tν(Si)) for i = 1, ..., n.

Then we can also write,

{τi ≤ T} =
{
F−1

i (tν(Si)) ≤ T
}

=
{
Si ≤ t−1

ν (Fi(T ))
}

This means joint default probability becomes a problem of calculating
the multivariate Student-T CDF, TΣ,ν(.),

p = TΣ,ν(t
−1
ν (F1(T )), ..., t−1

ν (Fn(T ))) (3.3)

=

∫ t−1
ν (F1(T ))

−∞
· · ·

∫ t−1
ν (Fn(T ))

−∞

Γ
(

ν+n
2

)
|Σ| 1

2

Γ
(

ν
2

)
(vπ)

n
2

(
1 +

1

v
xT Σ−1x

)− ν+n
2

dx1...dxn

One can easily observe that evaluation of these two integrals is very dif-
ficult, especially when n is large. For our purpose, n is usually larger than
5, which rules out numerical integration as a practical approach. Therefore,
we approach the problem with Monte Carlo methods. In this study, we focus
on Basic Monte Carlo (Basic MC)and importance sampling methods. In liter-
ature, Genz and Bretz [8] (1999) has proposed Quasi Monte Carlo methods
(Quasi MC), which is widely adopted as the main numerical method when n

is large.
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3.1 Basic Monte Carlo Method

Basic MC method is simple to implement. Based on the law of large numbers,
the joint default probability can be approximated by its sample mean when m

is sufficiently large,

p = E
{

n∏

i=1

I(τi≤T )

}
≈ 1

m

m∑

j=1

n∏

i=1

I(τi,j≤T )

where τ1,j, ..., τn,j for j = 1, ...,m are m samples of τ1, ..., τn. Based on the
above, we just need to generate m samples for τ1, ..., τn according to Algo-
rithm 2.1 for Gaussian copula and Algorithm 2.2 for Student-T copula and
then evaluate the indicator function for our m samples. However, default
event for highly ranked firms is typically very rare, causing default times of
n firms to all be less than or equal to T an extremely rare event. This makes
Basic MC method inaccurate. Therefore we modify the Basic MC method with
importance sampling techniques to improve accuracy of our estimation.

3.2 Brief Review of Importance Sampling

Importance sampling is a commonly used tool for rare event simulation. The
basic idea is to change the original probability measure P to a new probability
measure P̃ that puts more weight on the rare event we want to sample. With
a good choice of P̃, we can increase the simulation efficiency by generating
more desired samples as well as reducing variance.

Suppose we want to estimate

θ = E[h(X)] =

∫

Rn

h(x)f(x)dx (3.4)

where X = [X1, · · · , Xn]T is a random vector in Rn with a joint density f(x) =

f(x1, · · · , xn). Basic Monte Carlo Method gives us the following estimate

θ̂ =
1

m

m∑

i=1

h
(
X(i)

)
, (3.5)

where every X(i) for i = 1, ...,m are i.i.d. samples from probability measure
Pf (.) with density f(.).
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If we find it ineffective to sample from Pf (.), we can sample from another
probability measure, call it Pg(.) with density g(.), which is absolute continu-
ous with respect to f(.). Then we can write the following,

θ =

∫

Rn

h(x)f(x)dx =

∫

Rn

h(x)f(x)

g(x)
g(x)dx = Eg

[
h(Y )f(Y )

g(Y )

]
, (3.6)

where the random vector Y has the density g(·). Now our original estimator
θ̂ is replaced by

θ̂ =
1

m

m∑

i=1

h
(
Y (i)

)
f

(
Y (i)

)

g (Y (i))
, (3.7)

where the random samples are taken from g(·). The weight f(Y (i))
g(Y (i))

is called
the likelihood ratio or Radon-Nikodym derivative evaluated at Y (i). For no-
tational simplicity, here and on, we will denote Radon-Nikodym derivative in
the following fashion dPf

dPg
,

dPf

dPg
(Y ) =

f(Y )

g(Y )

Our goal is twofold: 1)Find an appropriate measure g(.) such that g(Y ) >>

f(Y ) on important regions. This will increase probability of generating rare
samples from those regions we are interested in, 2) Find g(.) that minimizes
variance of importance sampling estimator, V ar(θ̂).

3.3 Importance Sampling Problem Description

Having established the basic notion of importance sampling, we now proceed
to formulate our importance sampling scheme. We will consider importance
sampling under Gaussian copula first and then apply the results to Student T
copula. Under Gaussian copula, we know that for i = 1, ..., n,

{τi ≤ T} =
{
F−1

i (Φ(Xi)) ≤ T
}

=
{
Xi ≤ Φ−1(Fi(T ))

}

Then we can write,

p = E
{

n∏

i=1

I(τi≤T )

}
= E

{
n∏

i=1

I(Xi≤Φ−1(Fi(T ))

}

13



Recall that X = [X1, ..., Xn]T is multivariate normal N(0, Σ). We need to
employ importance sampling when Φ−1(Fi(T )) is very negative, i.e. when T
is very small or when intensity λi of default time distribution for firm i is very
small, which is often the case. We can generalize the problem in the following
way. Given some D = [d1, ..., dn]T where d1, ..., dn ∈ R, we wish to instead
evaluate,

p = E
{

n∏

i=1

I(Xi≤di)

}
= E {I(X ≤ D)}

Here X ≤ D means elements of X are less than elements of D i.e. X1 ≤
d1, ..., Xn ≤ dn. We will use this notation from here and on. Recall that
we can use the Basic MC to approximate p. However, Basic MC simulation
with random variable X ∼ N(0, Σ) under P(.) is inaccurate when D is small.
Therefore, we consider importance sampling with Y ∼ N(u, Σ) under new
measure Pu(.) in approximating p. Our goal is to find u that will minimize
variance of our importance sampling estimator.

Under new measure Pu(.)

p = Eu

{
I(Y≤D)

dP
dPu

}
(3.8)

With Y (j) ∼ N(u, Σ) as i.i.d. samples from Pu, the importance sampling esti-
mator will be

p̂ =
1

m

m∑

j=1

I(Y (j)≤D)

dP
dPu

(3.9)

Note that p̂ is an unbiased estimator because Eu{p̂} = p. Since p̂ is the average
of m i.i.d samples, its variance will be 1

m times the variance of
(
I(Y≤D)

dP
dPu

)
,

V ar(p̂) =
1

m

(
Eu

{(
I(Y≤D)

dP
dPu

)2
}
− p2

)
(3.10)

To minimize V ar(p̂), we just need to optimize with respect to u the second
moment of I(Y≤D)

dP
dPu

.

F (u) := Eu

{(
I(Y≤D)

dP
dPu

)2
}

(3.11)

Such optimization problem is extremely complicated because Y is multivari-
ate, and currently there is no closed form solution for F (u). But we can

14



approach the problem of variance reduction from the framework of Large De-
viation Theory, and find a asymptotic minimizer that can reduce the second
moment, F (u), and hence reduce variance. This will produce efficient impor-
tance sampling asymptotically. We will define this in the next chapter.
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Chapter 4

Importance Sampling in Large
Deviation Theory

4.1 Efficient Importance Sampling

First we need to establish the notion of efficient importance sampling in Large
Deviation Theory . We reformulate the problem by introducing a scaling factor
−
√

L that will later allow us to apply results from Large Deviation Theory.
Let D = −

√
LC = −

√
L[c1, · · · , cn]T , where c1, · · · , cn are positive constants.

Now, we rewrite p and F (u) as pL and FL(u). Under P(.) Let X(i) ∼ N(0, Σ)

for i = 1, ..., L be i.i.d samples from P(.), then we know 1√
L
X and 1

L

∑L
i=1 X(i)

are equal in distribution. Thus,

pL = E
{

I(X ≤ −
√

LC)
}

= E
{

I( 1√
L

X ≤ −C)

}
= E

{
I( 1

L

L∑

i=1

X(i) ≤ −C)

}

(4.1)
Under Pu(.) Let Yi ∼ N(u, Σ) for i = 1, ..., L be i.i.d samples from Pu(.),

FL(u) = Eu

{(
I(Y ≤ −

√
LC)

dP
dPu

)2
}

= Eu

{(
I( 1√

L
Y ≤ −C)

dP
dPu

)2
}

(4.2)
Then based on (3.10) and (3.11) we know,

V ar(p̂L) =
1

k
(FL(u)− p2

L) (4.3)

As mentioned earlier, we do not know how to minimize (4.3) directly with
respect to u, but Large Deviation Theory helps us to understand (4.3) when
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L is very large. More precisely, it has results that allow us to evaluate the
following limits,

H = limL→∞
1
L log pL

R = limL→∞
1
L log FL(u) (4.4)

First, we observe that (4.3) will always be greater or equal to zero for all L.
i.e. FL(u) ≥ p2

L for all L. Now with (4.4), we can conclude

R = lim
L→∞

1

L
log FL(u) ≥ lim

L→∞

1

L
log p2

L = 2 lim
L→∞

1

L
log pL = 2H (4.5)

When R = 2H, we say that our importance sampling estimator is efficient.
This means FL ≈ p2

L or equivalently V ar(p̂L) ≈ 0 when L is sufficiently large.
According to Bucklew [3] (2004), in the framework of Large Deviation Theory
and rare event simulation, if a family of simulation distributions is efficient,
then it is a good choice.

4.2 Applying Results of Large Deviation Theory

Having established the notion of efficient important sampling, we now wish
to show important sampling from some Pu(.) is indeed efficient (i.e. R = 2H.)
We will accomplish this by using the Gartner-Ellis Theorem and Bucklew’s
(1990) calculation in Large Deviation Theory[2].

Theorem 4.1. (special case of Gärtner-Ellis Theorem) Let {SL} be a sequence of
Rn valued random varianbles and let θ, a ∈ Rn. 〈·, ·〉 denotes the usual inner or
dot product between vectors. Let C = [c1, ..., cn]T , where c1, · · · , cn are positive
constants. Define

ϕ(θ) = lim
L→∞

1

L
logE{exp[〈θ, SL〉]}

I(a) = sup
θ

[〈θ, a〉 − ϕ(θ)]

Then,

lim
m→∞

1

L
logP{SL

L
≤ −C} = − inf

a≤−C
I(a) (4.6)
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Now we can use the above result to evaluate H. Here, we use the calcula-
tion provided by Bucklew [2]. Let SL =

∑L
i=1 X(i) where X(i) are i.i.d N(0, Σ)

for i = 1, ..., L. Then,

ϕ(θ) = lim
L→∞

1

L
log E

{
exp

(
θ

L∑

i=1

X(i)

)}

= lim
L→∞

log E{exp(θX(1))} = log E{exp(θX(1))}

The moment generating function Gaussian random vector X(1) is well known
to be E{exp(θX(1))} = exp{〈θ, 0〉+1

2θ
T Σθ}. This implies that I(a) = supθ[〈θ, a〉−

1
2θ

T Σθ] Setting the gradient with respect to θ in 〈θ, a〉 − 1
2θ

T Σθ to zero results
in a− Σθ = 0. This implies that θopt = Σ−1a. Substituting this value of θ back
into the supremum expression yields

I(a) =
1

2
aT Σ−1a (4.7)

Then,
inf

a≤−C
I(a) =

1

2
CT ΣC (4.8)

Based on (4.1), we can use the above theorem to conclude,

H = lim
L→∞

1

L
log pL

= lim
L→∞

1

L
log E

{
1

L

L∑

i=1

X(i) ≤ −C

}

= lim
L→∞

log P
{

SL

L
≤ −C

}

= − inf
a≤−C

I(a)

= −1

2
CT Σ−1C (4.9)

We can see from here that exp
{
−1

2LCT Σ−1C
}

is a good approximate for pL

when L is large, i.e. when −
√

Lc1 · · · −
√

Lcn are very small. This intuitively
suggest the application of Large Deviation Theory in understanding small tail-
end probability, pL, where the default threshold, −

√
LC, is small. But our

main goal is not to use (4.9) to approximate pL because it is accurate only
when L is very large which isn’t necessarily true in actual cases. The main
goal is to ensure our importance sampling estimator’s variance is minimized
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when L is very large. We use this to justify our choice of importance sampling
estimator. Now we will show

Theorem 4.2. Let u = −
√

LC, then importance sampling from Pu(.) is efficient,
i.e.

R = lim
L→∞

1

L
log FL(−

√
LC) = −CT Σ−1C = 2H (4.10)

Proof. Let u = −
√

LC. We start with the expression of FL(−
√

LC) in (4.2),
and wish to use results from Theorem 4.1 with (4.6) and (4.8) to calculate R

but we cannot directly evaluate 1√
L
Y and ( dP

dPu
)2 in (4.2). Therefore in order

to apply the Theorem 4.1 to calculate R, we change measure and then change
variable in the calculations below. This allows us to rewrite 1√

L
Y in the form

of 1
L

∑L
i=1 X(i) and reduce ( dP

dPu
)2, so that we can have an expression in the

form of (4.6) where we can apply Theorem 4.1 above. Based on (4.2) and
expansion of dP

dPu
, we have the following:

FL(−
√

LC) = Eu

{
I( 1√

L
Y≤−C)(

dP
dPu

)2

}

= Eu





I( 1√

L
Y≤−C)




exp

{
−Y T Σ−1Y

2

}

exp
{
− (Y−u)T Σ−1(Y−u)

2

}





2





= Eu
{

I( 1√
L

Y≤C)exp
{

2
√

LCT Σ−1Y + LCT Σ−1C
}}

= exp
{
LCT Σ−1C

}
Eu

{
I( 1√

L
Y≤−C)exp{2

√
LCT Σ−1Y }

}

Change measure to Y ′ ∼ N(−u, Σ) under P−u. Now FL(−
√

LC) =

= exp
{
LCT Σ−1C

}
E−u

{
I( 1√

L
Y ′≤−C)exp{2

√
LCT Σ−1Y ′} dPu

dP−u

}

= exp
{
LCT Σ−1C

}
E−u




I( 1√
L

Y ′≤−C)exp{2
√

LCT Σ−1Y ′}
exp

{
−(Y ′−u)T Σ−1(Y ′−u)

2

}

exp
{
−(Y ′+u)T Σ−1(Y ′+u)

2

}






= exp
{
LCT Σ−1C

}
E−u

{
I( 1√

L
Y ′≤−C)exp{2

√
LCT Σ−1Y ′}exp{−2

√
LCT Σ−1Y ′}

}

= exp
{
LCT Σ−1C

}
E−u

{
I( 1√

L
Y ′≤−C)

}

Change variable to Y ′′ = Y ′ + u ∼ N(0, Σ), then { 1√
L
Y ′ ≤ −C} = { 1√

L
(Y ′′ −

u) ≤ −C} = { 1√
L
Y ′′ ≤ −2C} Then,

FL(−
√

LC) = exp
{
LCT Σ−1C

}
E(0)

{
I( 1√

L
Y ′′≤−2C)

}
(4.11)
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Note that X and Y ′′ are equal in distribution, so we can rewrite (4.11) as,

FL(−
√

LC) = exp
{
LCT Σ−1C

}
E

{
I( 1√

L
X≤−2C)

}

= exp
{
LCT Σ−1C

}
E

{
I( 1

L

PL
i=1 X(i)≤−2C)

}

Now we can apply the above theorem with (4.6) and (4.8) to calculate R.

R = lim
L→∞

1

L
log FL(−

√
LC)

=
1

L
log exp{LCT Σ−1C} +

1

L
log E

{
I( 1

L

PL
i=1 X(i)≤−2C)

}

= CT Σ−1C +−4

2
CT Σ−1C

= −CT Σ−1C (4.12)

Finally, with (4.9) and (4.12), we can conclude R = 2H, i.e. when L is
very large, var(p̂L),variance of our choice of importance sampling estimator
(sampling from Pu ∼ N(u = −

√
LC, Σ) instead of original measure P ∼

N(0, Σ) is minimized and very close to zero, implying that it is efficient in the
framework of Large Deviation Theory.

4.3 Efficiency under Gaussian Factor Copula

We have only considered efficiency of our important sampling estimator after
changing measure to a another multivariate normal distribution with a new
mean but the same covariance matrix. We formulated the problem using mul-
tivariate normal distribution instead of factors. Now we revisit our original
Gaussian factor copula model and wish to change measure on each factor to
produce the same results. Changing measure on the factors individually is
trickier but will allow us to sample from univariate normal distributions and
examine more closely each company as a factor.

Proof. We start with the same problem. First, let Z0, · · · , Zn be i.i.d. standard
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normal random variables N(0, 1). Let ρ1, ..., ρnε[0, 1] Let

X =





X1

X2
...

Xn




=





ρ1

√
1− ρ2

1

ρ2

√
1− ρ2

2
... . . .

ρn

√
1− ρ2

n









Z0

Z1

Z2
...

Zn





Then X =
[
X1, · · · , Xn

]T

has multivariate normal distribution N(0, Σ) where

Σ =





1 ρ1ρ2 ρ1ρ3 · · · ρ1ρn

1 ρ2ρ3 · · · ρ2ρn

. . . ...
1 ρn−1ρn

1





Our goal is to approximate

p = P(X ≤ D) = E {I(X ≤ D)} (4.13)

But instead of working with X as a multivariate distribution. We can per-
form Monte Carlo method on Z0, ..., Zn as individual factors and rewrite p as
follows,

p = P(X ≤ D) = E
{

n∏

i=0

I(Zi≤bi)

}
(4.14)

for some b0, ..., bn. Solving for bi can be difficult, so we utilize Cholesky de-
composition to simplify the problem and reduce the number of factors. We
proceed as follows. Let W1, ...,Wn be i.i.d standard normal variables. Let
W = [W1, ...,Wn]T . We wish to find A such that AW and X are equal.
We can perform Cholesky decomposition on variance-covarance matrix of
X ∼ N(0, Σ) to get Σ = AAT where A is an lower triangular matrix. This
guarantees that AW and X are equal. Notice that we started with n + 1 fac-
tors Z0, ..., Zn and now only have to work with n factors W1, ...,Wn. Also, we
know that A is invertible. This will simplify our problem later. Thus, here and
on, we work with W1, ...,Wn instead of Z0, ..., Zn. In this formulation, we can
write p as follows,

p = P(X ≤ D) = P(AW ≤ D) = E
{
Πn

i=1I(AW [i]≤di)

}
(4.15)
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where AW [i] is the i-th component of AW .
However, we run into the same issue when d1, ..., dn are very negative. We
turn to importance sampling once again. Because W1, ...,Wn are i.i.d. We
can easily change measure on each factor individually. Suppose we change
to W ′

1, ...,W
′
n, which correspond to new measure Pu1(.), ..., Pun(.) respectively.

Suppose W ′
i ∼ N(ui, 1) for i = 1, ..., n Then we consider variance of this

importance sampling estimator p̂.

p = E(u1,...,un)

{
n∏

i=1

(
I(AW ′[i]≤di)

dP
dPui

)}
(4.16)

p̂ =
1

m

L∑

j=1

(
n∏

i=1

I(AW ′[i](j)≤di)

dP
dPui

)
(4.17)

var(p̂) =
1

m



E(u1,...,un)






(
n∏

i=1

I(AW ′[i](1)≤d′i)

dP
dPui

)2



− p2



 (4.18)

where W ′[i](j) for j = 1, ...,m are i.i.d samples from N(ui, 1)

To minimize variance, we just need to minimize

E(u1,...,un)






(
n∏

i=1

I(AW ′[i](1)≤di)

dP
dPui

)2



 (4.19)

But such optimization is extremely complicated and has no closed-form solu-
tion, so we go back to the Large Deviation Theory framework and try to find
u1, ..., un that makes our importance sampling estimator efficient.
Recall D′ = −

√
LA−1C. Intuitively, D′ = [d′1, ..., d

′
n]T seems like a reason-

able choice for u1, ..., un. Let W ′
1, ...,W

′
n be normal random variables N(u1 =

d′1, 1), ..., N(un = d′n, 1) under new measure respectively. Recall X and X ′ in.
Note that in the multivariate framework,

X = AW ∼ N(0, Σ)

X ′ = AW ′ ∼ N(D = −
√

LC, Σ)

Our goal is confirm that such choice will make our importance sampling esti-
mator efficient. Based on (4.9), we already know that

H = lim
L→∞

1

L
log pL = −1

2
CT Σ−1C
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It remains for us to show that R = limL→∞
1
L logFL(−

√
LC) = 2H in this factor

framework. Recall that,

FL(−
√

LC) = E
{(

I(X≤−
√

LC)

)2
}

After changing measure on individual factors to Pd′1
, ..., Pd′n with W ′

i ∼ N(d′i, 1)

for i = 1, ..., n

FL(−
√

LC) = E(d′1,...,d′n)

{
n∏

i=1

I(AW ′[i]≤di)

(
dP

dPd′i

)2
}

= E(d′1,...,d′n)






n∏

i=1

I(AW ′[i]≤d′i)

(
exp(1

2W
′
i
2)

exp(1
2(W

′
i − d′i)

2

)2





= E(d′1,...,d′n)

{
n∏

i=1

I(AW ′[i]≤d′i)
exp(−2W ′

id
′
i + d′i

2)

}

=

(
n∏

i=1

exp(d′i
2)

)
E(d′1,...,d′n)

{
n∏

i=1

I(AW ′[i]≤d′i)
exp(−2W ′

id
′
i)

}

We change measure again on individual factors to P−d′1
, ..., P−d′n with W ′′

i ∼
N(−d′i, 1) for i = 1, ..., n. Then,

FL(−
√

LC) =

(
n∏

i=1

exp(d′i
2)

)
E(−d′1,...,−d′n)

{
n∏

i=1

I(AW ′′[i]≤di)exp(−2W ′′
i ui)

dPd′i

dP−d′i

}

=

(
n∏

i=1

exp(d′i
2)

)
E(−d′1,...,−d′n)

{
n∏

i=1

I(AW ′′[i]≤di)exp(−2W ′′
i d′i)

exp(−(W ′′
i −d′i)

2

2 )

exp(
−(W ′′

i +d′i)
2

2 )

}

=

(
n∏

i=1

exp(d′i
2)

)
E(−d′1,...,−d′n)

{
n∏

i=1

I(AW ′′[i]≤di)exp(−2W ′′
i d′i)exp(2W ′′

i d′i)

}

=

(
n∏

i=1

exp(d′i
2)

)
E(−d′1,...,−d′n)

{
n∏

i=1

I(AW ′′[i]≤di)

}

We now change variable to W ′′′
i = W ′′

i + d′i ∼ N(0, 1) for i = 1, ..., n. Note that
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Wi and W ′′′
i are equal in distribution for i = 1, ..., n. Then

FL(−
√

LC) =

(
n∏

i=1

exp(d′i
2)

)
E(0,...,0)

{
n∏

i=1

I(AW ′′′[i]−di≤di)

}

=

(
n∏

i=1

exp(d′i
2)

)
E(0,...,0)

{
n∏

i=1

I(AW ′′′[i]≤2di)

}

=

(
n∏

i=1

exp(d′i
2)

)
E

{
n∏

i=1

I(AW [i]≤2di)

}

In multivariate framework, we can rewrite FL(−
√

LC) as follows

FL(−
√

LC) =

(
n∏

i=1

exp(d′i
2)

)
E

{
I(AW≤−2

√
LC)

}

=

(
n∏

i=1

exp(d′i
2)

)
E

{
I(X≤−2

√
LC)

}

Now we can apply results in (4.6) and (4.8) to calculate R. Let X(i) ∼ N(0, Σ)

for i = 1, ..., L be i.i.d random variables. Recall that 1√
L
X and 1

L

∑L
i=1 X(i) are
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equal in distribution. Thus,

R = lim
L→∞

1

L
log FL(−

√
LC)

=
1

L

n∑

i=1

d′i
2 +

1

L
logE

{
I(X≤−2

√
LC)

}

=
1

L

n∑

i=1

d′i
2 +

1

L
logE

{
I( 1√

L
X≤−2C)

}

=
1

L

n∑

i=1

d′i
2 +

1

L
logE

{
I( 1

L

Pn
i=1 X(i)≤−2C)

}

=
1

L
D′T D′ +−4

2
CT Σ−1C

=
1

L

(
−
√

LCT (A−1)t
) (
−
√

LA−1C
)

+−4

2
CT Σ−1C

= CT (A−1)tA−1C +−4

2
CT Σ−1C

= CT (AT )−1A−1C +−4

2
CT Σ−1C

= CT (AAT )−1C +−4

2
CT Σ−1C

= CT Σ−1C +−4

2
CT Σ−1C

= −CT Σ−1C

Now we can conclude R = 2H, i.e. our important sampling estimator under
the factor model is efficient.
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Chapter 5

Application I: Joint Default
Probability

5.1 Under Gaussian Copula

We now apply this importance sampling scheme to evaluating joint default
probability p. We will use the setup and results in Section 4.3 but specify
the conditions, namely, Σ and D′. First we will assume Σ follows the factor
copula model described in Section 2.4 and ρi for i = 1, ..., n are all equal.
Let D = [d1, ..., dn]T = [Φ−1(F1(T )), ..., Φ−1(Fn(T ))]T . Now we proceed to
specify D′. Let X ∼ N(0, Σ). Let A be Cholesky decomposition of Σ such that
Σ = AAT . Then we know X and AW are equal in distribution, where W =

[W1, ...,Wn]T and Wi for i = 1, ..., n are i.i.d N(0, 1). Let D′ = [d′1, ..., d
′
n]T =

A−1[Φ−1(F1(T )), ..., Φ−1(Fn(T ))]T . This implies,

{τi ≤ T} = {Xi ≤ Φ−1(Fi(T ))} = {AW [i] ≤ di}
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p = E
{

n∏

i=1

I(τi≤T )

}

= E
{

n∏

i=1

I(Xi≤Φ−1(Fi(T )))

}

= E
{

n∏

i=1

I(AW [i]≤di)

}

= E(d′1,...,d′n)

{
n∏

i=1

(
I(AW ′[i]≤di)

dP
dPd′i

)}
W ′

i ∼ N(d′i, 1)

= E(d′1,...,d′n)

{
n∏

i=1

(
I(AW ′[i]≤di)exp

(
d′2i
2
−Wid

′
i

))}

Then the importance sampling estimator will be

p̂ =
1

m

m∑

j=1

n∏

i=1

(
I(AW ′[i](j)≤di)

exp

(
d′2i
2
−W ′(j)

i d′i

))

where for each i, W ′(j)
i are i.i.d. samples of W ′

i for j = 1, ...,m

Let

p̂k =
n∏

i=1

(
I(AW ′[i](j)≤di)

exp

(
d′2i
2
−W ′(j)

i d′i

))

Then standard error will be

SE =
√

var(p̂)

Recall in (3.2), calculating joint default probability is equivalent to evaluating
the multivariate normal CDF.

p = ΦΣ(φ−1(F1(T )), ...,φ−1(Fn(T )))

There is no close form solution but Genz and Bretz [8](1999) proposed Quasi
MC to evaluate this CDF when n is large. We will compare our importance
sampling scheme to Quasi MC.

5.2 Under Student-T Copula

Result in Section 4.3 for efficient important sampling estimator is established
under the Gaussian copula case. We will apply the same result to the Student-
T copula case by performing conditional importance sampling. First let X ∼
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N(0, Σ). Let A be Cholesky decomposition of Σ such that Σ = AAT . Let
χ2

ν be chi-square random variable with ν degrees of freedom. Then S =

[S1, ..., Sn]T = X
√

ν
χ2

ν
∼ TΣ,ν is multivariate Student-T variable. This means Si

are marginally Student-T variables, Si ∼ tν . Here, we will use Si instead of Xi

for i = 1, ..., n to represent the firms. Then for i = 1, ..., n,

{τi ≤ T} = {Si ≤ t−1
ν (Fi(T ))}

We perform conditional importance sampling first by conditioning on χ2
ν .

Then
S
∣∣∣χ2

ν = X

√
ν

χ2
ν

∣∣∣χ2
ν ∼ N

(
0,

ν

χ2
ν

Σ

)

Let A′ =
√

ν
χ2

ν
A. Let Σ′ = ν

χ2
ν
Σ. Note that now, S

∣∣∣χ2
ν = [S ′1, ..., S

′
n] ∼

N(0, Σ′) and A′ is Cholesky decomposition of Σ′ and A′−1 =
√

χ2

ν A−1. Let

W = [W1, ...,Wn]T where W1, ...,Wn are i.i.d. N(0, 1) Then A′W and S
∣∣∣χ2

ν

are equal in distribution. Let D = [d1, ..., dn]T = [t−1
ν (F1(T )), ..., t−1

ν (Fn(T ))]T .
Let D′ = [d′1, ..., d

′
n]T = A′−1[t−1

ν (F1(T )), ..., t−1
ν (Fn(T ))]T Now, we are ready to

formulate our double expectation and conditional importance sampling.

p = E
{

n∏

i=1

I(τi≤T )

}

= E
{

n∏

i=1

I(Si≤t−1
ν (Fi(T )))

}

= E
{

E
{

n∏

i=1

I(Si≤t−1
ν (Fi(T )))

∣∣∣χ2
ν

}}

= E
{

E
{

n∏

i=1

I(AW [i]≤di)

∣∣∣χ2
ν

}}

= E
{

E(d′1,...,d′n)

{
n∏

i=1

I(AW ′[i]≤di)
dP

dPd′i

∣∣∣χ2
ν

}}
W ′

i ∼ N(d′i, 1)

= E
{

E(d′1,...,d′n)

{
n∏

i=1

I(AW ′[i]≤di)exp

(
d′2i
2
−Wid

′
i

) ∣∣∣χ2
ν

}}
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Our importance sampling estimator will be,

p̂ =
1

m2

m2∑

l=1

1

m1

m1∑

j=1

{
n∏

i=1

I
(AW ′[i](j)≤d

(l)
i )

exp

(
d′(l)2i

2
−W (j)

i d′(l)i

)∣∣∣χ2(l)
ν

}

where for each i, W ′(j)
i are i.i.d. samples of W ′

i for j = 1, ...,m1, and d′(l)i for
l = 1, ...,m2 are samples of d′i which is dependent on samples of χ2

ν in the
outer expectation. Let Standard error will be,

SE =
√

var(p̂)

Recall in (3.3), calculating joint default probability is equivalent to evaluating
the multivariate student-T CDF.

p = TΣ,ν(t
−1
ν (F1(T )), ..., t−1

ν (Fn(T )))

There is no close form solution but Genz and Bretz [8] (1999) proposed Quasi
MC to evaluate this CDF when n is large. We will compare our importance
sampling scheme to Quasi MC.

5.3 Numerical Comparison

We compare the performance of Basic MC, Importance Sampling and Quasi
MC under different scenarios for Gaussian copula and Stuent-T copula. First
we take into consideration the rarity of the default event by testing different
threshold D. Recall that D = [d1, ..., dn]T = [Φ−1(F1(T )), ..., Φ−1(Fn(T ))]T . But
for simplicity, we let d1, ..., dn be equal to one constant and call it D. For our
purpose, we just need to test performance as D decreases, causing default to
be more rare so we do not need to construct D from Φ(.) and Fi(.) at the
moment. Then we compare performance of different methods with different
number of firms, n. For constructing covariance matrix Σ we use the factor
copula model and assume ρ1, ..., ρn are all equal and call it ρ.

In the following Tables,

• D = default threshold for each firm.

• ρ = correlation coefficient used to construct Σ under factor copula model

• n = number of firms
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• df = degree of freedom for chi-square variable under Student-T copula

• m = number of iterations in Basic Monte Carlo and Importance Sam-
pling method for Gaussian copula.

• m1 = number of iterations in evaluating inner expectation under Condi-
tional Importance Sampling for Student-T copula.

• m2 = number of iterations in evaluating outer expectation under Condi-
tional Importance Sampling for Student-T copula.

Under both Gaussian and Student-T copula, we can see importance sam-
pling and Quasi MC both performed significantly better than Basic MC method.
As D gets smaller, Basic MC method is no longer capable of sampling from
such rare events. Importance sampling and Quasi MC are comparable in
terms of performance when D gets very small and when n increases. Quasi
MC seems more accurate overall, but importance sampling is a simpler, eas-
ily modifiable and versatile approach. Given that the importance sampling
method performs reasonably well under both Gaussian and Student-T copula,
we take advantage of it’s simplicity and later apply it to more complex prob-
lems such as calculating tail probability for some order statistics of default
time, where Quasi MC method is not easily applicable.
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Table 5.1: Estimating Joint Default Probability with Different Default Thresh-
old under Gaussian Copula

parameters n ρ m

5 0.5 25000

Basic MC Importance Sampling Quasi MC
D p SE p SE p Error
0.0 9.00E-02 1.81E-03 8.90E-02 1.80E-03 9.07E-02 6.91E-05
-0.5 2.30E-02 9.47E-04 2.13E-02 4.61E-04 2.10E-02 5.61E-05
-1.0 2.84E-03 3.37E-04 3.07E-03 8.25E-05 3.05E-03 1.36E-05
-1.5 2.00E-04 8.94E-05 2.60E-04 9.01E-06 2.68E-04 1.76E-06
-2.0 0.00E+00 0.00E+00 1.34E-05 5.53E-07 1.40E-05 1.05E-07
-2.5 0.00E+00 0.00E+00 4.61E-07 2.65E-08 4.24E-07 4.51E-09
-3.0 0.00E+00 0.00E+00 7.73E-09 5.39E-10 7.39E-09 2.37E-10
-3.5 0.00E+00 0.00E+00 7.27E-11 6.26E-12 7.17E-11 9.68E-13
-4.0 0.00E+00 0.00E+00 3.75E-13 4.05E-14 3.96E-13 5.64E-15
-4.5 0.00E+00 0.00E+00 1.33E-15 1.46E-16 1.21E-15 1.41E-17
-5.0 0.00E+00 0.00E+00 2.26E-18 3.86E-19 2.11E-18 4.19E-20
-5.5 0.00E+00 0.00E+00 3.20E-21 6.69E-22 1.97E-21 5.82E-23
-6.0 0.00E+00 0.00E+00 1.03E-24 1.85E-25 1.04E-24 4.29E-26
-6.5 0.00E+00 0.00E+00 2.66E-28 4.20E-29 2.89E-28 1.09E-29
-7.0 0.00E+00 0.00E+00 5.44E-32 1.28E-32 4.58E-32 1.48E-33
-7.5 0.00E+00 0.00E+00 6.50E-36 2.29E-36 3.83E-36 1.52E-37
-8.0 0.00E+00 0.00E+00 1.64E-40 5.34E-41 1.42E-40 1.35E-42
-8.5 0.00E+00 0.00E+00 4.06E-45 9.79E-46 6.29E-46 8.76E-48
-9.0 0.00E+00 0.00E+00 1.24E-49 7.58E-50 7.49E-52 9.33E-54
-9.5 0.00E+00 0.00E+00 3.29E-55 9.99E-56 3.56E-58 1.89E-60
-10.0 0.00E+00 0.00E+00 6.45E-61 2.46E-61 4.60E-65 2.34E-67
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Table 5.2: Estimating Joint Default Probability with Different Number of Firms
under Gaussian Copula

parameters D ρ m

-2 0.5 25000

Basic MC Importance Sampling Quasi MC
n p SE p SE p Error
5 4.00E-05 4.00E-05 1.35E-05 5.46E-07 1.40E-05 1.31E-07
6 0.00E+00 0.00E+00 4.74E-06 2.69E-07 4.77E-06 1.14E-07
7 0.00E+00 0.00E+00 1.78E-06 1.03E-07 1.85E-06 3.93E-08
8 0.00E+00 0.00E+00 7.50E-07 5.57E-08 8.12E-07 2.39E-08
9 0.00E+00 0.00E+00 3.96E-07 2.94E-08 3.81E-07 3.49E-08
10 0.00E+00 0.00E+00 2.13E-07 1.71E-08 2.01E-07 1.62E-08
11 0.00E+00 0.00E+00 1.02E-07 1.10E-08 1.07E-07 8.07E-09
12 0.00E+00 0.00E+00 8.55E-08 9.43E-09 6.30E-08 4.77E-09
13 0.00E+00 0.00E+00 3.43E-08 4.36E-09 3.65E-08 2.83E-09
14 0.00E+00 0.00E+00 2.09E-08 2.32E-09 2.24E-08 1.71E-09
15 0.00E+00 0.00E+00 1.67E-08 2.46E-09 1.52E-08 2.30E-09
16 0.00E+00 0.00E+00 8.83E-09 1.73E-09 9.77E-09 1.73E-09
17 0.00E+00 0.00E+00 6.17E-09 8.85E-10 7.61E-09 2.59E-09
18 0.00E+00 0.00E+00 4.41E-09 5.78E-10 4.61E-09 1.08E-09
19 0.00E+00 0.00E+00 2.94E-09 5.34E-10 3.80E-09 2.15E-09
20 0.00E+00 0.00E+00 2.54E-09 4.02E-10 2.56E-09 7.42E-10
21 0.00E+00 0.00E+00 1.47E-09 3.62E-10 1.64E-09 3.34E-10
22 0.00E+00 0.00E+00 1.45E-09 2.89E-10 1.35E-09 3.99E-10
23 0.00E+00 0.00E+00 1.28E-09 2.18E-10 1.07E-09 4.47E-10
24 0.00E+00 0.00E+00 1.05E-09 1.89E-10 6.23E-10 1.67E-10
25 0.00E+00 0.00E+00 4.42E-10 1.10E-10 7.26E-10 3.44E-10
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Table 5.3: Estimating Joint Default Probability with Different Default Thresh-
old under Student-T Copula

parameters n ρ df m m1 m2

5 0.5 10 25000 10 2500

Basic MC Importance Sampling Quasi MC
D p SE p SE p Error
0.0 8.99E-02 1.81E-03 9.09E-02 1.80E-03 9.07E-02 6.43E-05
-0.5 2.39E-02 9.66E-04 2.27E-02 5.38E-04 2.31E-02 9.38E-05
-1.0 4.68E-03 4.32E-04 4.62E-03 1.70E-04 4.82E-03 8.65E-05
-1.5 9.60E-04 1.96E-04 8.27E-04 4.67E-05 9.52E-04 4.39E-05
-2.0 2.80E-04 1.06E-04 2.11E-04 2.27E-05 1.92E-04 1.19E-05
-2.5 4.00E-05 4.00E-05 3.79E-05 7.12E-06 4.39E-05 6.97E-06
-3.0 4.00E-05 4.00E-05 1.36E-05 3.25E-06 1.22E-05 3.72E-06
-3.5 0.00E+00 0.00E+00 3.85E-06 1.23E-06 3.72E-06 2.51E-06
-4.0 0.00E+00 0.00E+00 1.94E-06 1.13E-06 1.46E-06 1.06E-06
-4.5 0.00E+00 0.00E+00 2.03E-07 6.64E-08 5.81E-07 5.18E-07
-5.0 0.00E+00 0.00E+00 2.24E-08 1.79E-08 1.24E-07 1.76E-07
-5.5 0.00E+00 0.00E+00 8.40E-08 8.02E-08 9.17E-09 9.45E-09
-6.0 0.00E+00 0.00E+00 6.82E-09 6.36E-09 8.38E-08 2.49E-07
-6.5 0.00E+00 0.00E+00 5.64E-09 5.04E-09 5.08E-09 8.56E-09
-7.0 0.00E+00 0.00E+00 3.33E-11 3.05E-11 6.34E-10 8.39E-10
-7.5 0.00E+00 0.00E+00 1.39E-11 1.33E-11 7.08E-09 2.45E-08
-8.0 0.00E+00 0.00E+00 7.75E-09 7.75E-09 1.80E-11 2.68E-11
-8.5 0.00E+00 0.00E+00 7.47E-14 7.45E-14 1.17E-10 3.65E-10
-9.0 0.00E+00 0.00E+00 7.10E-15 5.42E-15 1.45E-11 2.58E-11
-9.5 0.00E+00 0.00E+00 9.25E-13 9.25E-13 3.44E-12 8.76E-12
-10.0 0.00E+00 0.00E+00 3.82E-13 3.80E-13 3.44E-10 1.18E-09
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Table 5.4: Estimating Joint Default Probability with Different Number of Firms
under Student-T Copula

parameters D ρ df m m1 m2

-2 0.5 10 25000 10 2500

Basic MC Importance Sampling Quasi MC
n p SE p SE p Error
5 3.20E-04 1.13E-04 2.01E-04 1.78E-05 2.00E-04 1.54E-05
6 0.00E+00 0.00E+00 9.36E-05 1.19E-05 1.00E-04 1.06E-05
7 0.00E+00 0.00E+00 5.30E-05 1.09E-05 5.64E-05 1.26E-05
8 0.00E+00 0.00E+00 3.46E-05 5.09E-06 2.91E-05 5.83E-06
9 0.00E+00 0.00E+00 1.72E-05 3.77E-06 2.11E-05 7.28E-06
10 0.00E+00 0.00E+00 1.74E-05 3.19E-06 1.17E-05 2.38E-06
11 0.00E+00 0.00E+00 1.08E-05 3.39E-06 8.91E-06 2.22E-06
12 0.00E+00 0.00E+00 8.29E-06 2.17E-06 6.01E-06 2.12E-06
13 0.00E+00 0.00E+00 3.79E-06 1.14E-06 4.56E-06 1.69E-06
14 0.00E+00 0.00E+00 1.96E-06 4.34E-07 3.37E-06 1.06E-06
15 0.00E+00 0.00E+00 2.42E-06 1.06E-06 2.21E-06 8.64E-07
16 0.00E+00 0.00E+00 9.02E-07 3.35E-07 3.41E-06 3.05E-06
17 0.00E+00 0.00E+00 1.14E-06 3.25E-07 1.58E-06 1.25E-06
18 0.00E+00 0.00E+00 1.82E-06 9.91E-07 1.09E-06 8.00E-07
19 0.00E+00 0.00E+00 9.04E-07 2.96E-07 6.47E-07 2.79E-07
20 0.00E+00 0.00E+00 6.33E-07 2.46E-07 6.01E-07 3.48E-07
21 0.00E+00 0.00E+00 4.14E-07 2.92E-07 5.63E-07 3.37E-07
22 0.00E+00 0.00E+00 3.53E-07 1.88E-07 5.44E-07 5.20E-07
23 0.00E+00 0.00E+00 5.44E-07 3.36E-07 3.54E-07 1.96E-07
24 0.00E+00 0.00E+00 2.51E-07 1.68E-07 2.62E-07 1.76E-07
25 0.00E+00 0.00E+00 4.75E-08 3.07E-08 3.58E-07 2.50E-07
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Chapter 6

Application II: Basket Default
Swap

6.1 Introduction to Basket Default Swaps

We now wish to apply our importance sampling scheme in evaluating joint de-
fault probability to evaluating multi-name credit derivatives. This is motivated
by CYH’s study [5] on BDS. CYH mainly employed conditional importance
sampling under the Gaussian copula factor model. We will first correct his ap-
proach which seems to only consider the outer expectation. Then we suggest
a different conditional importance sampling scheme which improves accuracy
under specified conditions. In this case, we perform change of measure as
suggest by results in Section 4.3. Finally, we introduce direct importance sam-
pling based on the method used in evaluating joint default probability. Lastly,
we will compare performance of these methods under Gaussian copula model.
As an extension, we apply similar method to evaluating BDS under Student-T
copula and compare it with Basic MC.

The mechanism of a credit default swap (CDS) is similar to that of an insur-
ance. The protection buyer makes periodical premium payments (protection
leg or PL) until some credit events happen. Then swap issuer compensates
for the non-recovered part of the reference entities’ notional amounts (de-
fault leg or DL). CDS provides credit protection only for a single underlying.
Multi-name credit derivatives, such as BDS and CDO have gained increasing
popularity in recent years because they extend credit protection to a pool of
underlying. We focus on BDS in this study which provides protection to a
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pool of underlying until default of one underlying. A kth-to-default BDS offers
protection only against the event of the kth default on a pool of n underlying.

Pricing BDS is equivalent to determining the fair premium a BDS buyer
needs to pay. Under risk-neutral measure, the fair premium is determined by
equating protection leg or PL to default leg or DL. Here we introduce some
notations and assumptions of our pricing model.

• n: Number of names in one basket, usually 5 or 6.

• T : Terminal time of a BDS contract.

• R: Recovery rate.

• M : Notional amount.

• *j−1, j, j = 1, 2, · · · , N : The time increment tj − tj−1.

• τi: Default time of the ith company.

• τ : kth default time.

• B(0, τ): exp
(
−

∫ τ

o r(u)du
)
, the discount factor, (or price of zero coupon

bond) where r(·) denotes risk free interest rate.

• prem: Fair premium for protection buyer.

The default leg when kth default takes place is

DL = E
{
(1−R) · M · B(0, τ) · I(τ≤T )

}
(6.1)

where E is the expectation under risk neutral measure. When kth default does
not take place, then protection leg is

PL = E
{

N∑

j=1

*j−1,j · M · prem · B(0, tj) · I(τ≥tj)

}
(6.2)

We equate DL (6.1) and PL (6.2) to derive premium:

prem =
E {(1−R) · B(0, τ) · I(τ ≤ T )}

E
{∑N

j=1*j−1,j · B(0, tj) · I(τ > tj)
} . (6.3)
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To be more precise, we take accrued interests into considerations, modify-
ing (6.2) by:

PLacc = E
{

N∑

j=1

(
τ − tj−1

tj − tj−1
*j−1, j

)
· M · prem · B(0, τ) · I(tj−1 ≤ τ ≤ tj)

}
,

(6.4)
when defaults happen between two payment dates.

To derive fair premium (or spread), we need to evaluate both PL and DL.
As suggested by CYH, we will mainly focus on evaluation of DL, which is what
mainly affects accurate evaluation of fair premium because default events are
extremely rare.

6.2 Algorithms under Gaussian Copula

6.2.1 Basic Monte Carlo Method

Here we quickly present the Basic MC to evaluate DL. This method utilizes
Cholesky decomposition on Σ to decompose X ∼ N(0, Σ) into W = [W1, ...,Wn]T

where W1, ...,Wn are i.i.d. N(0, 1). Let D = [d1, ..., dn]T = [Φ−1(F1(T )), ..., Φ−1(Fn(T ))]T .
We know X ∼ N(0, Σ). Let A be Cholesky decomposition of Σ such that
Σ = AAT . Then we know X and AW are equal in distribution, where
W = [W1, ...,Wn]T and Wi for i = 1, ..., n are i.i.d N(0, 1).

Then we transform Wi into default time τi and find τ as the kth order
statistics on {τ1, ..., τn}. Since, τ is dependent on W1, ...,Wn in that it is the
kth order statistics of τ1, ..., τn and τi = F−1

i Φ(AW [i]), where AW [i] is the i-th
element of AW for i = 1, ..., n. We denote τ as τ(W ) below. We can write DL
as,

DL = E
{
(1−R)B(0, τ(W ))I(τ(W )≤T )

}

(6.5)

Now, we are ready to propose our Basic MC algorithm.

Algorithm 6.1 (Basic Monte Carlo Method).

1. Perform Cholesky decomposition on Σ to find A such that Σ = AAT .

2. Find A−1
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3. Let D′ = A−1D. let d′i be the i-th element of D′ for i = 1, ..., n.

4. For j = 1 to m,

(1) Generate W (j)
i from N(0, 1).

(2) Let U (j)
i = Φ(AW [i](j)) for i = 1, ..., n.

(3) Let τ (j)
i = F−1

i (U (j)
i ) for i = 1, ..., n.

(4) Let τ (j) be the k-th order statistic of
{

τ (j)
1 , ..., τ (j)

n

}
.

5. Approximate expectation

D̂L = (1−R)
1

m

m∑

j=1

(
e−

R τ(j)

0 r(t)dt

)
I
(
τ (j) ≤ T

)

6. Calculate SE,

SE =

√
V ar(D̂L)

6.2.2 Conditioning on All Marginal Factors

Recall under factor model, we used common factor Z0, and marginal factors
Z1, ..., Zn, which are all i.i.d N(0, 1), to construct covariance matrix Σ. In this
section, we first propose the corrected CYH algorithm, which is conditional on
all marginal factors, and then suggest another approach which is conditional
on common factor. Recall the marginal default time of firm i can be written as
τi = F−1

i (Φ(Xi)). That is, conditional on {Z1 = z1, · · · , Zn = zn}, the default
event is simply characterized by Z0:

{τi ≤ T} =
{
F−1

i (Φ(Xi)) ≤ T
}

= {Φ(Xi) ≤ Fi(T )}
=

{
Xi ≤ Φ−1(Fi(T ))

}

=

{
ρiZ0 +

√
1− ρ2

i zi ≤ Φ−1(Fi(T ))

}

=

{
Z0 ≤

Φ−1(Fi(T ))−
√

1− ρ2
i zi

ρi

}
, (6.6)

and we define

bi ! Φ−1(Fi(T ))−
√

1− ρ2
i zi

ρi
.
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Consider the time of the kth default event {τ ≤ T},

I(τ≤T ) = 1 ⇔
n∑

i=1

I(τi≤T ) ≥ k ⇔
n∑

i=1

I(Z0≤bi) ≥ k.

Let b be the (n− k + 1)th order statistics of {b1, · · · , bn}. Then,

I(τ ≤ T ) = 1 ⇔ I(Z0 ≤ b) = 1,

Now, DL can be written as,

DL = E {(1−R)B(0, τ)I(τ ≤ T )}

= E
{

E
{

(1−R)B(0, τ)I(τ ≤ T )
∣∣∣Z1 = z1, · · · , Zn = zn

}}

= E
{

E
{

(1−R)B(0, τ)I(Z0 ≤ b)
∣∣∣Z1 = z1, · · · , Zn = zn

}}

In evaluating DL, the rare default event is in essence {τ ≤ T}, or {Z0 ≤ b}.
CYH proposed an effective importance sampling scheme that reduces vari-
ance, namely changing measure on Z0. We will quickly establish a lemma
that guarantees variance reduction under specified conditions, and apply it to
our importance sampling scheme.

Lemma 6.1. If a random variable X has density function f(x) and distribution
function F (x). Suppose we are interested in estimating p = E{ψ(X)I(X≤a)}, let
V = ψ(X)I(X≤a) and we define likelihood ratio

Q(x) =

{
f(x)
f∗(x) if x ≤ a,

0 elsewhere.

where f ∗(.) is defined as

f ∗(x) =

{
f(x)
F (a) if x ≤ a,

0 otherwise.

Then V ∗ = ψ(X)I(X ≤ a)Q(X) is an unbiased estimator of p under E∗(·) and
Var∗(V ∗) ≤ Var(V ).

Proof. By the definition of Q(x) and f ∗(x), we have

E∗{ψ(X)I(X ≤ a)Q(X)} =

∫ a

−∞
ψ(X)F (a)f ∗(x)dx

= F (a)

∫ a

−∞
ψ(X)f ∗(x)dx

= E{ψ(X)I(X ≤ a)},
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where E∗ is the expectation operator under f ∗(·). This shows that V ∗ is an
unbiased estimator of V .

Its variance under the new measure, denoted by Var∗(·), is

Var∗(V ∗) = E∗
{
ψ2(X)I2(X ≤ a)Q2(X)

}
− (E∗ {ψ(X)I(X ≤ a)Q(X)})2

=

∫ a

−∞
ψ2(X)F 2(a)f ∗(x)dx−

(∫ a

−∞
ψ(X)F (a)f ∗(x)dx

)2

=

∫ a

−∞
ψ2(X)F 2(a)

f(x)

F (a)
dx−

(∫ a

−∞
ψ(X)F (a)

f(x)

F (a)
dx

)2

=

∫ a

−∞
ψ2(X)F (a)f(x)dx−

(∫ a

−∞
ψ(X)f(x)dx

)2

= F (a)E
{
ψ2(X)I(X≤a)

}
−

(
E

{
ψ(X)I(X≤a)

})2

≤ F (a)E
{
ψ2(X)I(X≤a)

}
− F (a)

(
E

{
ψ(X)I(X≤a)

})2

= F (a)V ar(V ) ≤ V ar(V )

The last inequalities hold because F (a) ≤ 1. When F (a) ≤ 1, then the last
inequalities would all be strictly less than.

By this lemma, an effective measure change of Z0 would be:

φ∗(z) =

{
φ(z)
Φ(z) , if z ≤ b,

0 otherwise.

This means the likelihood ratio Q(z) is

Q(z) =

{
φ(z)
φ∗(z) = Φ(b), if z ≤ b,

0 otherwise.

Condition on Z1 = z1, ..., Zn = zn, τ is dependent on Z0, z1, ..., zn in that τ is
the kth order statistics of {τ1, ..., τn}, and for i = 1, ..., n

τi = F−1
i (Φ(ρZ0 +

√
1− ρ2zi))

. Thus we denote τ as τ(Z0, z1, ..., zn) below. Now we can write DL as

DL = E
{

E
{

(1−R)B(0, τ(Z0, z1, ..., zn))I(Z0≤b)

∣∣∣Z1 = z1, · · · , Zn = zn

}}

= E
{

E∗
{

(1−R)B(0, τ(Z0, z1, ..., zn)Φ(b)
∣∣∣Z1 = z1, · · · , Zn = zn

}}
(6.7)

40



Note that first Z1, ..., Zn are i.i.d N(0, 1) samples. Then condition on Z1 =

z1, ..., Zn = zn, Z0 is randomly sampled from φ∗(·). We can now estimate DL
by conditional importance sampling estimator D̂L,

1

m2

m2∑

l=1

1

m1

m1∑

j=1

{
(1−R)B(0, τ(Z(j,l)

0 , Z(l)
1 , ..., Z(l)

n )Φ
(
b(l)

) ∣∣∣Z(l)
1 , · · · , Z(l)

n

}
,

We now propose our importance sampling algorithm that is conditional on all
marginal factors.

Algorithm 6.2 (corrected CYH algorithm).

1. Calculate Fi(T ). Recall that Fi(.) is CDF of the i-th firm’s default time,
which is assumed to follow exponential distribution with intensity λi.

2. For l = 1 to m2,

(1) Generate Z(l)
i from N(0, 1), i = 1, · · · , n.

(2) Set

b(l)
i =

Φ−1(Fi(T ))−
√

1− ρ2
i Z

(l)
i

ρi

(3) Set b(l) as the (n− k + 1)th order statistics of
{

b(l)
1 , · · · , b(l)

n

}
.

(4) Set Q(l) = Φ
(
b(l)

)
. Φ(.) is CDF of N(0, 1).

(5) For j = 1 to m1,

[1] Generate U (j) from U(0, 1).
[2] Let Z(j,l)

0 = Φ−1
(
Q(l)U (j)

)
.

[3] Let W (j,l)
i = ρiZ

(j,l)
0 +

√
1− ρiZ

(l)
i , for i = 1, · · · , n.

[4] Let τ (j,l)
i = F−1

i

(
Φ

(
W (j,l)

i

))
, for i = 1, · · · , n.

[5] Let τ (j,l) as the kth order statistics of
{

τ (j,l)
1 , · · · , τ (j,l)

n

}
.

(6) Approximate inner expectation

D̂L
(l)

= (1−R)Q(l) 1

m1

m1∑

j=1

(
e−

R τ(j,l)

0 r(t)dt

)
.

3. Approximate outer expectation D̂L = 1
m2

∑m2

l=1 D̂L
(l)

.

4. Calculate

SE =

√
V ar

(
D̂L

)
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6.2.3 Conditioning on the Common Factor

Now we propose an alternative conditional importance sampling scheme to
evaluating DL. We first condition on common factor Z0 = z0, and then change
the probability measure of all marginal factors in the inner expectation. The
default event of each underlying can be written as,

{τi ≤ T} =
{
F−1

i (Φ(Xi)) ≤ T
}

=
{
Xi ≤ Φ−1(Fi(T ))

}

=

{
ρiz0 +

√
1− ρ2

i Zi ≤ Φ−1(Fi(T ))

}

=

{
Zi ≤

Φ−1(Fi(T ))− ρiz0√
1− ρ2

i

}
.

Under factor model formulation, default events occur if

τi = F−1
i (Φ(Xi)) ≤ T ⇔ Xi ≤ Φ−1(Fi(T ))

)
= di.

If di is very small, we shift mean of each Xi to di as suggested by Section 4.3.
Condition on Z0 = z0, X1, ..., Xn are independent, and thus we can change
measure on each Zi separately. Condition on Z0 = z0, Xi ∼ N(ρz0, 1 − ρ2).
Under new measure, condition on Z0 = z0, X ′

i ∼ N(di, 1 − ρ2
i ) and Z ′i ∼

N(ρiz0 − di, 1). For each Z ′i likelihood ratio would be

Qi(Z
′
i) =

dP
dPdi

exp
{
(ρiz0 − di)Z

′
i + (di − ρiz0)

2/2
}

.

Because X ′
i for i = 1, ..., n are independent, we can take the product of the

individual likelihood ratio.

Q(Z) =
n∏

i=1

dP
dPdi

=
n∏

i=1

Qi(Z
′
i).

Note that τ is dependent on z0, Z1, ..., ZN in that it is the kth order statistics of
{τ1, ..., τn} and for i = 1, ..., n,

τi = F−1
i (Φ(ρz0 +

√
1− ρ2Zi))

Thus we denote τ as τ(z0, Z1, ..., Zn) below. Now we can rewrite DL as,

E
{

E
{

(1−R)B(0, τ(z0, Z1, ..., Zn))I(τ(z0,Z1,...,Zn)≤T )

∣∣∣Z0 = z0

}}

=E
{

Ẽ
{

(1−R)B(0, τ(z0, Z1, ..., Zn))I(τ(z0,Z1,...,Zn)≤T )Q(Z)
∣∣∣Z0 = z0

}}
(6.8)
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Now to estimate DL, the conditional importance sampling estimator D̂L

would be,

1

m2

m2∑

l=1

1

m1

m1∑

j=1

{
(1−R)B

(
0, τ(Z(l)

0 , Z(j,l)
1 , ..., Z(j,l)

n )
)

Q(Z)I“
τ(Z

(l)
0 ,Z

(j,l)
1 ,...,Z

(j,l)
n )≤T

”
∣∣∣Z(l)

0

}

Here Q(Z) = Q(Z(l)
0 , Z(j,l)

1 , ..., Z(j,l)
n ).

Algorithm 6.3 (conditional on the common factor).

1. Set di = Φ−1(Fi(T )), for i = 1, 2, · · · , n.

2. For l = 1 to m2

(1) Sample Z(l)
0 from N(0, 1).

(2) For j = 1 to m1

[1] Sample Z(j,l)
i from N(ci − ρiZ

(l)
0 , 1), for i = 1, 2, ..., n.

[2] Let

Q(j,l)
i = exp

{(
ρiZ

(l)
0 − ci

)
Z(j,l)

i +
(
ci − ρiZ

(l)
0

)2 /
2

}
, andQ(j,l) =

n∏

i=1

Q(j,l)
i .

[3] Let X(j,l)
i = ρiZ

(l)
0 +

√
1− ρiZ

(j,l)
i , for i = 1, ..., n.

[4] Let τ (j,l)
i = F−1

i

(
Φ

(
W (j,l)

i

))
, for i = 1, 2, ..., n.

[5] Let τ (j,l) as the kth order statistics of
{

τ (j,l)
i , ..., τ (j,l)

n

}
.

(3) Evaluate

D̂L
(l)

= (1−R)
1

m1

m1∑

j=1

(
e−

R τ(j,l)

0 r(t)dt

)
I
(
τ (j,l) ≤ T

)
Q(j,l).

3. Evaluate D̂L = 1
m2

∑m2

l=1 D̂L
(l)

.

4. Calculate

SE =

√
V ar

(
D̂L

)
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6.2.4 Direct Importance Sampling

Here we propose an algorithm for direct importance sampling to evaluate DL.
This method utilizes Cholesky decomposition on Σ to decompose X ∼ N(0, D)

into W = [W1, ...,Wn]T where W1, ...,Wn are i.i.d. N(0, 1). Then we perform
change of measure as suggested by result in Section 4.3.

Let D = [d1, ..., dn]T = [Φ−1(F1(T )), ..., Φ−1(Fn(T ))]T . We know X ∼
N(0, Σ). Let A be Cholesky decomposition of Σ such that Σ = AAT . Then we
know X and AW are equal in distribution, where W = [W1, ...,Wn]T and Wi

for i = 1, ..., n are i.i.d N(0, 1). Let D′ = [d′1, ..., d
′
n]T = A−1[Φ−1(F1(T )), ..., Φ−1(Fn(T ))]T .

This implies,

{τi ≤ T} = {Xi ≤ Φ−1(Fi(T ))} = {AW [i] ≤ di}

We know {τi ≤ T}, or {AW [i] ≤ di} is rare and therefore very hard to sample
under original measure when di is very negative. Thus we perform change of
measure for i = 1, ..., n and sample from W ′

i ∼ N(d′i, 1) instead. For each W ′
i ,

likelihood ratio

Qi =
dP

dPdi

=
exp

(
−1

2W
′2
i

)

exp
(
−1

2(W
′
i − d′i)

2
)

Since W1, ...,Wn are independent. We can take the product of the individual
likelihood ratios.

Q(W ′) =
n∏

i=1

dP
dPdi

=
n∏

i=1

exp
(
−1

2W
′2
i

)

exp
(
−1

2(W
′
i − d′i)

2
)

Then we transform W ′
i into default time τi and find τ as the kth order statistics

on {τ1, ..., τn}. Since, τ is dependent on W ′
1, ...,W

′
n in that it is the kth order

statistics of τ1, ..., τn and τi = F−1
i Φ(AW ′[i]), where AW’[i] refers to the i-th

element of AW’ for i = 1, ..., n. We denote τ as τ(W ′
1, ...,W

′
n) below. We can

write DL as,

DL = E
{
(1−R)B(0, τ(W1, ...,Wn))I(τ(W1,...,Wn)≤T )

}

= E(d1,...,dn)
{

(1−R)B(0, τ(W ′
1, ...,W

′
n))I(τ(W ′

1,...,W ′
n)≤T)Q(W )

}

Now, we are ready to propose our direct change of measure algorithm.

Algorithm 6.4 (Direct Change of Measure).

1. Perform Cholesky decomposition on Σ to find A such that Σ = AAT .
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2. Find A−1

3. Let D′ = A−1D. let d′i be the i-th element of D′ for i = 1, ..., n.

4. For j = 1 to m,

(1) Generate W ′(j)
i from N(d′i, 1).

(2) Let

Q(j) =
n∏

i=1

exp
(
−1

2W
′(j)2
i

)

exp
(
−1

2(W
′(j)
i − d′i)

2
)

(3) Let τ (j)
i = F−1

i (Φ(W ′(j)
i )) for i = 1, ..., n.

(4) Let τ (j) be the k-th order statistic of
{

τ (j)
1 , ..., τ (j)

n

}
.

5. Approximate expectation

D̂L = (1−R)
1

m

m∑

j=1

(
e−

R τ(j)

0 r(t)dt

)
I
(
τ (j) ≤ T

)
Q(j)

Calculate SE,

SE =

√
V ar(D̂L)

6.2.5 Numerical Comparison

Here we present our main numerical result. We compare the DL estimates
using the four different algorithms proposed in this study. We mainly consider
the standard error (SE) of each estimate and calculate ratio by dividing it
into the SE of estimates under Basic MC. The goal is to use Basic MC’s SE as
benchmark and examine each method’s SE reduction ratio. First we compare
performance with different correlation strengths ρ (Table 6.1), and then with
different default intensity(Table 6.2). We limit each algorithm to the same
number of total iterations, namely, 1,000,000. For conditional importance
sampling, we take 10 iterations for the inner expectation and 100,000 for the
outer expectation. Below are our results,
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Table 6.1: Estimating DL under Different Correlation Strengths
parameters n k T λ−1 r R m m1 m2

5 3 2 100 0.05 0.4 1000000 10 100000

Basic MC Condition on Marginal Factors Condition on Common Factor Direct Change of Measure
ρ DL SE DL SE Ratio DL SE Ratio DL SE Ratio

0.05 4.18E-05 4.83E-06 3.94E-05 1.36E-05 0.35 4.25E-05 1.59E-06 3.04 4.65E-05 5.95E-06 0.81
0.10 5.23E-05 5.40E-06 3.58E-05 1.03E-05 0.53 4.94E-05 3.53E-06 1.53 4.96E-05 2.40E-06 2.25
0.15 6.64E-05 6.09E-06 5.36E-05 1.08E-05 0.56 5.78E-05 2.13E-06 2.85 6.16E-05 2.52E-06 2.42
0.20 7.70E-05 6.56E-06 8.16E-05 1.18E-05 0.56 7.29E-05 2.10E-06 3.12 7.42E-05 1.39E-06 4.71
0.25 1.03E-04 7.56E-06 1.28E-04 1.43E-05 0.53 1.08E-04 4.50E-06 1.68 1.06E-04 2.67E-06 2.83
0.30 1.51E-04 9.19E-06 1.55E-04 1.24E-05 0.74 1.50E-04 4.88E-06 1.88 1.56E-04 2.71E-06 3.39
0.35 2.26E-04 1.13E-05 2.31E-04 1.33E-05 0.85 2.31E-04 7.29E-06 1.54 2.29E-04 2.92E-06 3.85
0.40 3.34E-04 1.37E-05 3.53E-04 1.45E-05 0.95 3.31E-04 1.00E-05 1.37 3.38E-04 3.20E-06 4.27
0.45 4.98E-04 1.67E-05 5.13E-04 1.39E-05 1.20 5.04E-04 1.42E-05 1.18 4.98E-04 2.96E-06 5.64
0.50 7.22E-04 2.01E-05 7.27E-04 1.44E-05 1.40 7.47E-04 2.23E-05 0.90 7.26E-04 3.40E-06 5.92
0.55 1.07E-03 2.45E-05 1.06E-03 1.61E-05 1.52 1.06E-03 2.96E-05 0.83 1.05E-03 4.08E-06 6.02
0.60 1.54E-03 2.94E-05 1.51E-03 1.67E-05 1.76 1.51E-03 4.13E-05 0.71 1.50E-03 4.67E-06 6.29
0.65 2.07E-03 3.41E-05 2.06E-03 1.73E-05 1.97 1.99E-03 5.60E-05 0.61 2.07E-03 5.57E-06 6.13
0.70 2.76E-03 3.94E-05 2.81E-03 1.83E-05 2.15 2.80E-03 7.59E-05 0.52 2.80E-03 6.65E-06 5.93
0.75 3.67E-03 4.55E-05 3.69E-03 1.84E-05 2.46 3.66E-03 9.53E-05 0.48 3.71E-03 7.78E-06 5.84
0.80 4.89E-03 5.25E-05 4.84E-03 1.93E-05 2.72 4.72E-03 1.21E-04 0.43 4.81E-03 9.26E-06 5.66
0.85 6.15E-03 5.88E-05 6.11E-03 1.83E-05 3.21 6.25E-03 1.65E-04 0.36 6.13E-03 1.10E-05 5.37
0.90 7.73E-03 6.59E-05 7.65E-03 1.70E-05 3.88 7.42E-03 1.86E-04 0.35 7.64E-03 1.29E-05 5.13
0.95 9.29E-03 7.22E-05 9.30E-03 1.32E-05 5.45 1.00E-02 5.31E-04 0.14 9.40E-03 1.49E-05 4.84

In Table 6.1 and Figure 6.1, we can observe that under different corre-
lation strengths, ρ the conditional methods performed quite differently. The
conditional on marginal factors method performs well when ρ is high and the
conditional on common factor method performs better when ρ is low. This
makes intuitive sense as well. For the condition on marginal factors method,
when ρ is high, more weight is placed on the common factor, which means the
common factor plays a more significant role in determining default. There-
fore, performing importance sampling on the common factor after condition-
ing on the marginal factors produces good error reduction results. On the
other hand, when ρ is low, more weight is placed on the marginal factors.
Therefore, we perform importance sampling on them after conditioning on
the common factor. Also we can see that direct importance sampling pro-
duced overall more accurate estimates and smaller SE. This method does not
treat common and marginal factors separately, but performs importance sam-
pling directly. Therefore, we can observe that it is not affected by changes in
correlation. Table 6.1 shows that direct importance sampling is overall more
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Figure 6.1: SE Reduction Ratio under Different ρ
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accurate and reliable while the other two conditional importance sampling
methods perform well under more extreme conditions. Therefore, one can
apply direct importance sampling in typical cases and reserve the conditional
methods for more extreme cases in terms of correlation.
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Table 6.2: Estimating DL under Different Default Intensity
parameters n k T ρ r R m m1 m2

5 3 2 0.5 0.05 0.4 1000000 10 100000

Basic MC Condition on Marginal Factors Condition on Common Factor Direct Change of Measure
λ−1 DL SE DL SE Ratio DL SE Ratio DL SE Ratio

20.00 1.54E-02 9.20E-05 1.55E-02 1.13E-04 0.81 1.53E-02 1.41E-04 0.65 1.54E-02 3.50E-05 2.63
40.00 4.27E-03 4.88E-05 4.35E-03 4.99E-05 0.98 4.17E-03 6.26E-05 0.78 4.26E-03 1.30E-05 3.75
60.00 2.03E-03 3.37E-05 1.99E-03 2.81E-05 1.20 2.04E-03 4.17E-05 0.81 1.97E-03 7.74E-06 4.36
80.00 1.13E-03 2.52E-05 1.12E-03 1.91E-05 1.32 1.15E-03 2.80E-05 0.90 1.13E-03 4.90E-06 5.14

100.00 7.24E-04 2.01E-05 7.42E-04 1.53E-05 1.32 7.06E-04 1.96E-05 1.03 7.27E-04 3.31E-06 6.10
120.00 5.09E-04 1.69E-05 5.08E-04 1.14E-05 1.48 4.93E-04 1.67E-05 1.01 5.10E-04 2.64E-06 6.39
140.00 3.69E-04 1.44E-05 3.86E-04 9.40E-06 1.53 3.83E-04 1.46E-05 0.99 3.77E-04 2.07E-06 6.95
160.00 3.11E-04 1.32E-05 2.97E-04 9.10E-06 1.45 2.91E-04 1.17E-05 1.13 2.88E-04 1.83E-06 7.23
180.00 2.32E-04 1.14E-05 2.31E-04 6.33E-06 1.80 2.25E-04 1.02E-05 1.12 2.27E-04 1.47E-06 7.75
200.00 1.88E-04 1.03E-05 1.83E-04 5.59E-06 1.84 1.77E-04 8.06E-06 1.27 1.87E-04 1.24E-06 8.27
220.00 1.56E-04 9.37E-06 1.50E-04 4.54E-06 2.07 1.40E-04 7.04E-06 1.33 1.53E-04 1.07E-06 8.78
240.00 1.30E-04 8.53E-06 1.31E-04 4.51E-06 1.89 1.35E-04 7.05E-06 1.21 1.30E-04 8.79E-07 9.71
260.00 1.24E-04 8.36E-06 1.07E-04 3.57E-06 2.34 1.28E-04 1.48E-05 0.57 1.10E-04 8.28E-07 10.09
280.00 9.17E-05 7.18E-06 9.31E-05 3.89E-06 1.85 1.07E-04 6.74E-06 1.07 9.55E-05 1.08E-06 6.67
300.00 8.86E-05 7.05E-06 8.82E-05 3.53E-06 2.00 8.38E-05 5.30E-06 1.33 8.17E-05 6.03E-07 11.69
320.00 8.31E-05 6.83E-06 6.96E-05 2.38E-06 2.87 6.99E-05 5.06E-06 1.35 7.22E-05 5.74E-07 11.90
340.00 7.29E-05 6.39E-06 6.41E-05 2.71E-06 2.36 7.92E-05 8.11E-06 0.79 6.47E-05 5.27E-07 12.14
360.00 5.65E-05 5.63E-06 5.46E-05 2.13E-06 2.65 5.49E-05 4.59E-06 1.23 5.70E-05 4.91E-07 11.45
380.00 5.57E-05 5.59E-06 5.62E-05 2.93E-06 1.91 4.82E-05 3.76E-06 1.49 5.12E-05 4.53E-07 12.34
400.00 4.37E-05 4.95E-06 4.61E-05 2.01E-06 2.46 4.35E-05 3.62E-06 1.37 4.62E-05 3.92E-07 12.63
420.00 4.31E-05 4.92E-06 4.12E-05 1.97E-06 2.50 5.05E-05 4.24E-06 1.16 4.16E-05 3.65E-07 13.46
440.00 3.54E-05 4.46E-06 3.78E-05 1.90E-06 2.34 3.89E-05 3.09E-06 1.44 3.84E-05 5.21E-07 8.56
460.00 2.52E-05 3.76E-06 3.20E-05 1.34E-06 2.80 3.62E-05 2.86E-06 1.32 3.53E-05 4.03E-07 9.35
480.00 3.44E-05 4.41E-06 3.16E-05 1.68E-06 2.63 3.29E-05 3.28E-06 1.35 3.20E-05 2.79E-07 15.81
500.00 3.13E-05 4.19E-06 2.94E-05 1.78E-06 2.35 3.00E-05 2.89E-06 1.45 2.95E-05 2.66E-07 15.72
520.00 2.52E-05 3.76E-06 2.72E-05 1.46E-06 2.57 2.55E-05 2.43E-06 1.54 2.78E-05 2.55E-07 14.70
540.00 2.35E-05 3.63E-06 2.73E-05 1.83E-06 1.98 2.22E-05 2.14E-06 1.70 2.58E-05 4.39E-07 8.27
560.00 2.30E-05 3.59E-06 2.42E-05 1.28E-06 2.80 2.25E-05 1.91E-06 1.88 2.41E-05 2.58E-07 13.88
580.00 2.13E-05 3.46E-06 2.44E-05 1.95E-06 1.78 2.19E-05 2.55E-06 1.36 2.22E-05 2.45E-07 14.14
600.00 1.69E-05 3.08E-06 1.84E-05 8.91E-07 3.46 2.40E-05 2.99E-06 1.03 2.07E-05 2.41E-07 12.79
620.00 1.68E-05 3.07E-06 1.93E-05 1.05E-06 2.92 1.64E-05 1.46E-06 2.10 1.98E-05 2.84E-07 10.81
640.00 1.81E-05 3.20E-06 1.72E-05 1.01E-06 3.16 1.52E-05 1.32E-06 2.42 1.86E-05 4.07E-07 7.85
660.00 1.90E-05 3.26E-06 1.74E-05 8.43E-07 3.87 1.76E-05 2.34E-06 1.39 1.69E-05 1.75E-07 18.59
680.00 1.13E-05 2.52E-06 1.78E-05 1.34E-06 1.89 1.47E-05 1.62E-06 1.56 1.66E-05 2.55E-07 9.90
700.00 1.95E-05 3.30E-06 1.53E-05 9.86E-07 3.35 1.96E-05 2.56E-06 1.29 1.52E-05 2.26E-07 14.61
720.00 8.96E-06 2.24E-06 1.54E-05 1.21E-06 1.85 1.26E-05 1.27E-06 1.77 1.42E-05 1.76E-07 12.74
740.00 1.52E-05 2.92E-06 1.41E-05 9.66E-07 3.03 1.38E-05 1.93E-06 1.52 1.34E-05 1.46E-07 19.96
760.00 1.29E-05 2.68E-06 1.26E-05 6.38E-07 4.20 1.57E-05 3.07E-06 0.87 1.29E-05 1.74E-07 15.37
780.00 1.07E-05 2.46E-06 1.28E-05 1.09E-06 2.24 1.28E-05 1.56E-06 1.57 1.22E-05 1.44E-07 17.05
800.00 8.99E-06 2.25E-06 1.01E-05 6.04E-07 3.72 1.25E-05 1.60E-06 1.41 1.18E-05 1.61E-07 13.95
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Figure 6.2: SE Reduction Ratio under Different λ−1

In Table 6.2 and Figure 6.2, we can observe that direct importance sam-
pling’s SE reduction ratio increases as λ−1 increases. First, λ−1 increases
means that default threshold, D will be decrease. This is consistent with
our proof in Section 4.3 which showed that as default threshold D decreases,
variance of our importance sampling estimator will approach zero, and thus
making SE smaller.
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6.3 Algorithms under Student-T Copula

6.3.1 Basic Monte Carlo Method

For pricing BDS, we worked under Gaussian copula. But one needs to take
into consideration the fat-tail behavior of each firm which is modeled by
X ∼ N(0, Σ) in the Gaussian case. To further model fat-tail behavior, one
would naturally extend Gaussian copula to Student-T copula. According to
Cherubini, Luciano, and Vecchiato [4] (2004), this is common practice in in-
dustry. We will extend our direct change of measure algorithm to incorporate
evaluating BDS under Student-T copula by performing conditional importance
sampling. Let A be Cholesky decomposition of Σ such that Σ = AAT . Let χ2

ν

be chi-square random variable with ν degrees of freedom.
Then S = [S1, ..., Sn]T = X

√
ν
χ2

ν
∼ TΣ,ν is multivariate Student-T variable.

This means Si are marginally Student-T variables, Si ∼ tν . Σ still has the
same structure as before. Here, we will use Si instead of Xi for i = 1, ..., n

to represent the firms. This allows us to apply our algorithm under Gaussian
copula. Note that now for i = 1, ..., n,

{τi ≤ T} = {Si ≤ t−1
ν (Fi(T ))}

Here we quickly present the Basic MC to evaluate DL. This method uti-
lizes Cholesky decomposition on Σ to decompose X ∼ N(0, Σ) into W =

[W1, ...,Wn]T where W1, ...,Wn are i.i.d. N(0, 1). Let D = [d1, ..., dn]T =

[t−1
v (F1(T )), ..., t−1

v (Fn(T ))]T . We know X ∼ N(0, Σ). Let A be Cholesky de-
composition of Σ such that Σ = AAT . Then we know X and AW are equal in
distribution, where W = [W1, ...,Wn]T and Wi for i = 1, ..., n are i.i.d N(0, 1).

Then we transform Wi into default time τi and find τ as the kth order
statistics on {τ1, ..., τn}. Since, τ is dependent on W1, ...,Wn in that it is the
kth order statistics of τ1, ..., τn and τi = F−1

i (tv(Si), where S ∼ AW
√

ν
χ2

ν
We

denote τ as τ(W ) below. We can write DL as,

DL = E
{
(1−R)B(0, τ(W ))I(τ(W )≤T )

}

(6.9)

Now, we are ready to propose our basic Monte Carlo algorithm.

Algorithm 6.5 (Basic Monte Carlo Method).
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1. Perform Cholesky decomposition on Σ to find A such that Σ = AAT .

2. Find A−1

3. Let D′ = A−1D. let d′i be the i-th element of D′ for i = 1, ..., n.

4. For j = 1 to m,

(1) Generate W (j)
i from N(0, 1).

(2) Generate Chi-Square variable with ν degrees of freedom, χ(j)2
ν

(3) Let S(j) = [S(j)
1 , ..., S(j)

n ]T = AW
√

ν

χ
(j)2
ν

(4) Let U (j)
i = tv(S

(j)
i ) for i = 1, ..., n.

(5) Let τ (j)
i = F−1

i (U (j)
i ) for i = 1, ..., n.

(6) Let τ (j) be the k-th order statistic of
{

τ (j)
1 , ..., τ (j)

n

}
.

5. Approximate expectation

D̂L = (1−R)
1

m

m∑

j=1

(
e−

R τ(j)

0 r(t)dt

)
I
(
τ (j) ≤ T

)

6. Let D̂L
(j)

= (1−R)

(
e−

R τ(j)

0 r(t)dt

)
I
(
τ (j) ≤ T

)
. Calculate SE,

SE =

√
V ar(D̂L)

6.3.2 Conditional Importance Sampling

Basic MC method is inaccurate when default is very rare, so we resort to
importance sampling. We do not know how to perform change of measure
efficiently with multivariate Student-T variables., but we can first condition
on χ2

ν , which then makes S Gaussian. Then we can apply our results from
the Gaussian case as before. This means we perform conditional importance
sampling first by conditioning on χ2

ν . Then

S
∣∣∣χ2

ν = X

√
ν

χ2
ν

∣∣∣χ2
ν ∼ N

(
0,

ν

χ2
ν

Σ

)
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Let A′ =
√

ν
χ2

ν
A. Let Σ′ = ν

χ2
ν
Σ. Note that now, S

∣∣∣χ2
ν = [S ′1, ..., S

′
n] ∼

N(0, Σ′) and A′ is Cholesky decomposition of Σ′ and A′−1 =
√

χ2

ν A−1. Let

W = [W1, ...,Wn]T where W1, ...,Wn are i.i.d. N(0, 1) Then A′W and S
∣∣∣χ2

ν are
equal in distribution. Let D = [d1, ..., dn]T = [t−1

ν (F1(T )), ..., t−1
ν (Fn(T ))]T . Let

D′ = [d′1, ..., d
′
n]T = A′−1[t−1

ν (F1(T )), ..., t−1
ν (Fn(T ))]T Now, we are ready to for-

mulate our double expectation and conditional importance sampling. We can
write DL as,

Condition on χ2
ν = χ, τ is dependent on W in that it is the kth order statis-

tics of {τ1, ..., τn} and τi = F−1
i Φ(A′W [i]), where A′W [i] is the i-th element of

A′W for i = 1, ..., n

DL = E
{
(1−R)B(0, τ)I(τ≤T )

}

= E
{

E
{

(1−R)B(0, τ(W ))I(τ(W )≤T )

∣∣∣χ2
ν = χ

}}

= E
{

E(d′1,...,d′n)
{

(1−R)B(0, τ(W ′))I(τ(W ′)≤T )Q(W ′)
∣∣∣χ2

ν = χ
}}

(6.10)

Here, the likelihood ratio for change of measure is,

Q(W ′) =
n∏

i=1

exp
(
−1

2W
′2
i

)

exp
(
−1

2(W
′
i − d′i)

2
)

Now we are ready to present our conditional importance sampling algorithm,

Algorithm 6.6 (conditional Student-T).

1. Perform Cholesky decomposition on Σ to find A such that Σ = AAT .

2. Find A−1

3. For l = 1 to m2

(1) Generate χ2(l)
ν

(2) Let A′(l) =
√

ν

χ
2(l)
ν

A. Let A′(l)−1 =
√

χ
2(l)
ν

ν A−1.

(3) Let D′(l) = A′(l)−1D Let d′(l)i be the i-th element of D′(l) for i =

1, ..., n.
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(4) For j = 1 to m1

[1] Generate W ′(j,l)
i from N(d′(l)i , 1).

[2] Let

Q(j,l) =
n∏

i=1

exp
(
−1

2W
′(j,l)2
i

)

exp
(
−1

2(W
′(j,l)
i − d′(j)i )2

)

[3] Let τ (j)
i = F−1

i (Φ(W ′(j,l)
i )) for i = 1, ..., n.

[4] Let τ (j) be the k-th order statistic of
{

τ (j)
1 , ..., τ (j)

n

}
.

(5) Approximate expectation

D̂L
(l)

= (1−R)
1

m

m∑

j=1

(
e−

R τ(j)

0 r(t)dt

)
I
(
τ (j) ≤ T

)
Q(j)

4. Let D̂L = 1
m2

∑m
l=1 D̂L

(l)

5. Calculate SE,

SE =

√
V ar(D̂L)

6.3.3 Numerical Comparison

We compare Basic MC and conditional importance sampling under Student-
T copula. First we compare SE of DL estimates under different correlation
strengths, ρ, then under different default intensity λ−1. We calculate SE re-
duction ratio in the same way as before.

We can observe that conditional importance sampling is able to consis-
tently reduce SE in Table 6.3 and Table 6.4. We also discovered that SE

reduction ratio increases as degrees of freedom increased in Table 6.5. This
implies that with very low degrees of freedom, it is better to use Basic MC
while with higher degrees of freedom, it is better to use conditional impor-
tance sampling. However, in most cases, it is still better to use conditional
importance sampling as SE reduction ratio is greater than 1 for degrees of
freedom greater than 3.
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Table 6.3: Evaluating DL with Different Correlation Strengths

parameters df n k T λ−1 r R m m1 m2

10 5 3 2 100 0.05 0.4 100000 10 10000

Basic MC Conditional Importance Sampling
ρ DL SE DL SE Ratio

0.00 3.73E-04 4.59E-05 3.73E-04 3.01E-05 1.53
0.05 3.45E-04 4.41E-05 3.77E-04 3.65E-05 1.21
0.10 4.79E-04 5.20E-05 4.64E-04 3.51E-05 1.48
0.15 4.73E-04 5.16E-05 4.28E-04 3.64E-05 1.42
0.20 4.85E-04 5.23E-05 5.03E-04 3.67E-05 1.43
0.25 7.01E-04 6.29E-05 5.85E-04 3.39E-05 1.85
0.30 6.48E-04 6.05E-05 7.79E-04 5.00E-05 1.21
0.35 8.94E-04 7.11E-05 8.66E-04 4.05E-05 1.75
0.40 1.06E-03 7.75E-05 9.94E-04 3.96E-05 1.96
0.45 1.39E-03 8.86E-05 1.30E-03 4.76E-05 1.86
0.50 1.74E-03 9.91E-05 1.75E-03 5.90E-05 1.68
0.55 2.14E-03 1.10E-04 2.09E-03 5.84E-05 1.88
0.60 2.62E-03 1.21E-04 2.61E-03 6.82E-05 1.78
0.65 3.17E-03 1.34E-04 3.26E-03 7.78E-05 1.72
0.70 4.07E-03 1.52E-04 3.88E-03 8.45E-05 1.79
0.75 4.91E-03 1.66E-04 4.96E-03 1.02E-04 1.63
0.80 5.91E-03 1.83E-04 5.96E-03 1.10E-04 1.67
0.85 7.01E-03 1.99E-04 6.95E-03 1.18E-04 1.68
0.90 7.89E-03 2.11E-04 8.39E-03 1.37E-04 1.54
0.95 9.83E-03 2.35E-04 9.89E-03 1.56E-04 1.51
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Table 6.4: Evaluating DL with Different Default Intensity
parameters df n k T ρ r R m m1 m2

10 5 3 2 0.5 0.05 0.4 100000 10 10000

Basic MC Conditional Importance Sampling
λ−1 DL SE DL SE Ratio

20.00 1.86E-02 3.19E-04 1.90E-02 2.31E-04 1.38
40.00 6.67E-03 1.93E-04 6.66E-03 1.27E-04 1.52
60.00 3.55E-03 1.41E-04 3.59E-03 9.20E-05 1.54
80.00 2.45E-03 1.18E-04 2.40E-03 7.12E-05 1.65
100.00 1.76E-03 9.98E-05 1.71E-03 5.65E-05 1.77
120.00 1.33E-03 8.69E-05 1.39E-03 5.30E-05 1.64
140.00 1.24E-03 8.40E-05 1.08E-03 4.17E-05 2.01
160.00 9.58E-04 7.37E-05 8.61E-04 3.44E-05 2.14
180.00 8.61E-04 6.98E-05 8.43E-04 4.06E-05 1.72
200.00 6.45E-04 6.04E-05 6.25E-04 2.99E-05 2.02
220.00 6.67E-04 6.14E-05 5.94E-04 2.97E-05 2.07
240.00 4.77E-04 5.21E-05 4.99E-04 2.73E-05 1.91
260.00 4.14E-04 4.85E-05 4.92E-04 2.86E-05 1.70
280.00 4.06E-04 4.78E-05 3.82E-04 2.16E-05 2.21
300.00 3.40E-04 4.39E-05 3.73E-04 2.60E-05 1.69
320.00 4.06E-04 4.79E-05 3.39E-04 2.28E-05 2.10
340.00 3.30E-04 4.33E-05 3.36E-04 2.38E-05 1.82
360.00 3.33E-04 4.34E-05 2.75E-04 1.90E-05 2.29
380.00 2.85E-04 4.04E-05 2.96E-04 2.04E-05 1.98
400.00 2.90E-04 4.06E-05 2.52E-04 1.70E-05 2.39
420.00 2.67E-04 3.90E-05 2.40E-04 1.84E-05 2.12
440.00 2.32E-04 3.63E-05 2.41E-04 1.92E-05 1.89
460.00 2.26E-04 3.58E-05 2.28E-04 1.56E-05 2.30
480.00 1.92E-04 3.30E-05 1.95E-04 1.51E-05 2.19
500.00 2.27E-04 3.59E-05 1.76E-04 1.20E-05 2.99
520.00 1.43E-04 2.87E-05 2.32E-04 2.36E-05 1.22
540.00 1.59E-04 3.00E-05 1.78E-04 1.55E-05 1.93
560.00 1.31E-04 2.74E-05 1.68E-04 1.48E-05 1.84
580.00 1.18E-04 2.58E-05 1.39E-04 1.23E-05 2.10
600.00 1.52E-04 2.93E-05 1.56E-04 1.32E-05 2.23
620.00 1.20E-04 2.63E-05 1.42E-04 1.67E-05 1.57
640.00 1.37E-04 2.80E-05 1.41E-04 1.22E-05 2.30
660.00 1.02E-04 2.41E-05 1.22E-04 9.85E-06 2.45
680.00 1.20E-04 2.62E-05 1.11E-04 1.17E-05 2.25
700.00 1.41E-04 2.83E-05 1.17E-04 1.17E-05 2.43
720.00 1.13E-04 2.52E-05 1.14E-04 9.82E-06 2.57
740.00 9.09E-05 2.27E-05 1.27E-04 1.32E-05 1.72
760.00 1.26E-04 2.69E-05 1.38E-04 1.23E-05 2.19
780.00 1.03E-04 2.43E-05 9.93E-05 9.34E-06 2.61
800.00 6.24E-05 1.88E-05 1.13E-04 1.18E-05 1.59
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Table 6.5: Evaluating DL with Different Degrees of Freedom

parameters n k T ρ λ−1 r R m m1 m2

5 3 2 0.5 400 0.05 0.4 100000 10 10000

Basic MC Conditional Importance Sampling
df DL SE DL SE Ratio
1 2.02E-03 1.07E-04 2.33E-03 2.26E-04 0.47
2 1.34E-03 8.76E-05 1.45E-03 1.26E-04 0.69
3 9.53E-04 7.37E-05 9.81E-04 8.84E-05 0.83
4 7.79E-04 6.65E-05 6.87E-04 6.38E-05 1.04
5 5.98E-04 5.84E-05 5.19E-04 4.18E-05 1.40
6 4.62E-04 5.14E-05 4.54E-04 3.67E-05 1.40
7 3.42E-04 4.41E-05 3.76E-04 2.88E-05 1.53
8 3.34E-04 4.35E-05 3.70E-04 2.90E-05 1.50
9 3.06E-04 4.16E-05 2.90E-04 2.22E-05 1.87

10 2.26E-04 3.57E-05 2.23E-04 1.44E-05 2.48
11 2.28E-04 3.61E-05 2.01E-04 1.14E-05 3.18
12 1.86E-04 3.25E-05 2.33E-04 1.69E-05 1.92
13 2.28E-04 3.60E-05 2.06E-04 1.33E-05 2.70
14 1.83E-04 3.23E-05 1.86E-04 1.25E-05 2.58
15 1.19E-04 2.60E-05 1.74E-04 1.35E-05 1.93
16 1.98E-04 3.34E-05 1.68E-04 9.67E-06 3.45
17 2.25E-04 3.55E-05 1.58E-04 8.57E-06 4.14
18 9.57E-05 2.32E-05 1.58E-04 1.03E-05 2.25
19 1.64E-04 3.05E-05 1.38E-04 7.61E-06 4.01
20 1.63E-04 3.03E-05 1.36E-04 7.79E-06 3.88
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Chapter 7

Conclusion

In our study, we have confirmed the effectiveness of direct importance sam-
pling under Gaussian copula and conditional importance sampling under Student-
T copula for evaluating DL in BDS. We use the idea of efficient importance
sampling under Large Deviation Theory in estimating joint default probabil-
ity and pricing basket default swaps. We first extend CYH’s conditional on
marginal factors approach to the conditional on common factor approach.
Then we formulate our own direct importance sampling scheme. Under Gaus-
sian copula, we test these different algorithms with different correlation strengths
and default intensity. We discover that direct change of measure is a stable
approach. It is more accurate except in extreme cases when correlation is very
high or low. Also, we discover that consistent with large deviation theory, as
reciprocal of default intensity λ−1 increases, SE reduction ratio increases as
well. This allows us to effectively use the direct importance sampling algo-
rithm when default is extremely rare, causing default threshold to be very
small.

Also, we prefer importance sampling because of its versatility. The impor-
tance sampling algorithm we used for estimating joint default probability is
easily extendable to more complicated problems such as working with order
statistics and evaluating BDS. Though Quasi MC is more effective in evalu-
ating multivariate normal and Student-T CDF, it is not easily extendable to
evaluating BDS. We compared importance sampling with Quasi MC method
and discover that though importance sampling is less accurate, it nonetheless
performs reasonably well. Therefore, we adopt importance sampling as the
main method in this study.
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Another advantage of the direct importance sampling scheme is that it only
involves one expectation instead of double expectation. Monte Carlo methods
become less stable and more inaccurate when working with multiple layers of
expectations. Direct importance sampling removes one layer of expectation.
We take advantage of this feature and apply it to Student-T copula. Under
Student-T copula, our importance sampling scheme under Gaussian Copula
cannot be applied directly, so we first condition on the χ2 variable. Then we
are back to working with multivariate normal variable. Now we can apply
our importance sampling scheme. We do not apply the condition on common
or marginal factors scheme because that would require three layers of ex-
pectations. We discovered that our conditional importance sampling scheme
consistently reduced SE under different correlation strengths and default in-
tensity. We also discovered that SE reduction ratio increases as degrees of
freedom increased. This implies that with very low degrees of freedom, it is
better to use Basic MC while with higher degrees of freedom, it is better to
use conditional importance sampling. However, in most cases, it is still better
to use conditional importance sampling.

Here, we conclude this study by recommending direct importance sam-
pling under Gaussian copula and conditional importance sampling under Student-
T copula for pricing BDS.
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