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Hypothesis Testing for Equality of Reference Charts

Student : Miao-Ru Zhang Advisor : Dr. Lin-An Chen

Institute of Statistics
National Chiao Tung University

Abstract

Comparisons of reference charts for verifying if two populations of
subjects have the same growth pattern have received some attention in
literature. However, the proposals of comparison are restricted on
equalities of regression parameters or regression functions. For public
health purpose of comparing growth countries, we consider general
theory of equalities of reference charts and establish its relations to
equalities of growth model parameters. This approach allows us to
display these relations for several interesting longitudinal growth models
and these relations show that it is in-appropriate in comparing reference
charts by testing equality of regression parameters or regression functions.
Finally, we propose an exact test for comparisons of reference charts.
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Hypothesis Testing for Equality of Reference Charts

Abstract

Comparisons of reference charts for verifying if two populations of subjects
have the same growth pattern have received some attention in literature.
However, the proposals of comparison are restricted on equalities of re-
gression parameters or regression functions. For public health purpose of
comparing growth patterns of two countries, we consider general theory
of equalities of reference charts and establish its relations to equalities of
growth model parameters. This approach allows us to display these relations
for several interesting longitudinal growth models and these relations hsow
that it is in-appropriate in comaparing reference charts by testing equality of
regression parameters or regression functions. Finally, we propose an exact

test for comparisons of reference charts.

1. Introduction

Growth is a fundamental property of biological systems, occurring at the
level of populations, individual animals and plants, as well as within organ-
isms while the growth of a subject.depends on nutritional, health, and envi-
ronmental conditions. Typically the growth pattern for a treatment group
depicts a family of symmetric quantile curves, called reference charts, as a
function of some covariates (age or time). One difficulty in reference charts
problem is that the measurement variables taken over time are generally not
independent.

Much research has been devoted to modelling growth function and con-
structing growth charts in parametric or nonparametric way. For overview
of parametric methodology, linear or nonlinear growth models, see Cole
and Green (1992) and Laird and Ware (1982). When the measurements
can be formulated as parametric regression model, the reference charts may
be expressed as simple functions of parameters involved in the regression
model so that its estimation may be done through estimations of these pa-
rameters. For example, the reference charts of a regression with normal

errors model are linear functions of the mean and standard deviation. For
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growth characteristics that are approximately normal, proposals are avail-
able for transformations to normal where, among them, the most successful
proposal is the LMS by Cole (1988). However, the Exponential-Normal
distribution method by Wright and Royston (1997) has the advantage of
being parametric with explicit expressions for estimating parameters and

quantiles.

Verifying the similarity of two growth patterns through comparing the
reference charts is an important topic in application. Basically the use of
growth charts tries to summarize individual differences in the growth pat-
tern and it is commonly known that the comparison of reference charts is
done by studying the determinants of these differences. The most common
method of comparison considers parametric growth model that the deter-
minals of growth pattern can be represented by a few model parameters so
that the job can be done by comparison of these parameters. However, the
reference charts comparison considered in literature mainly restrcited on the
comparison of growth regression functions. For example, it is seen that most
parametric comparison methods consider only those parameters involved in
regression function such as testing equality of two or several regression pa-
rameter vectors (see, Hoel (1964); Chi-and Weerahandi (1998) and Pan and
Cole (2004)) or comparing relations_between regression slope parameters
and (or) intercept parameters (see Zucker, Zerbe and Wu (1995)). Instead
of parametric reference charts comparison, there are nonparametric meth-
ods comparing the unknown regression functions (see, for examples, Scheike
and Zhang (1998), Scheike, Zhang and Juul (1999), Richard, et al. (1989)
and Griffiths, Iles et al. (2004)). Hoel (1964) showed that such methods are

less efficient than those to compare values of regression parameters.

For any comparison exercise, there needs to be clarity its precise objec-
tives. For that assessment of growth pattern by charts is the single tool
for defining health and nutritional status at both individual and population
(country) level, there needs more general study for public health purpose in
verifying if two or several countries display in the same or similar growth

pattern. In light of this, we may ask: Do two populations (countries) have



the same reference charts? This is an objective important to be answered
in public health, espectially, for studying the developing countries. How-
ever, little research has been performed in reference charts comparison tru-
ely investigated in this purpose. It can be seen that comparisons of mean
regression functions or few regression parameters can not achieve this pub-
lic health problem (see Henry (1992)). One exception of a closer study is
that Heckman and Zamar (2000) discussed the concepts of similarity and
grouping in growth pattern based on rank correlation coefficient between
regression functions. However, besides this is an estimation procedure that
it is difficult to extend to hypothesis testing of comparison, regression func-
tion comparison is not enough to interprete the similarity or equality of
growth patterns characterized by the reference charts. We consider the un-
known population reference charts as parameters and study the differnces of
two sets of unknown reference charts for comparison. This generalizes the
comparison problem to a more general growth patterns comparison.

In this paper we develop the analytic relationships between model param-
eters of growth models achieving the fact of‘equality of population reference
charts. This relationships provides exact test for comparison of reference
charts and this observation indicates that testing equalities of regression
parameters or regression mean funetions often provides only a crude approx-
imation to reality so that the conclusions for growth pattern comparison are
very questionable. This approach is heading in a right direction in a general
investigation if two growth models are with the same growth pattern.

In Section 2, we develop parameter relations for equality of reference
charts constructed for two linear growth models that covers most linear
mixed effects models. In Section 3, we select several interesting longitudinal
linear models as examples to display these relations. These results will
show that all existed studies of comparisons of regression parameters even
without assuming known structure of covariance matrix of error variables
are in-appropriate. In Section 4, we propose an exact test for conducting

comparison of reference charts.

2. Characterization of Reference Charts



One reason for fitting models to growth data is that an appropriate curve
will conveniently summarize the information provided by the observations
of a individual subject. Thus the response variable y(t) (height, weight,
circumferences) with age or time t for disease group of subjects may be
formulated (after an appropriate transformation) in a regression model with
a vector z(t) (age) in terms of few parameters. We consider the linear

regression model

y(t) = $(t)/6y + Gy(t)v t€(0,1) (2.1)

where €, (t) is error variable with mean zero. Suppose that for another group
of subjects there is also a response variable z(¢) that follows the same linear

regression model with ossibly different parameters as

z(t) = x(t) B, + e (t) (2.2)

where €,(t) is also error variable independent of €, (¢) with mean zero. Using
the same explanatory variables z(¢) indicates the balanced design that all
the subjects in two groups are measured on_the same set of time points.
This design is for simplicity of discussion for our purpose while the theory
and method developed in this:paper are valid for the unbalance design.
The interest of the comparison of reference/charts is that the two sets of
reference charts, respectively, constructed by these two regression models
are identical. The parametric approaches of reference charts comparison

consider to test equality of regression parameters as

Hg : ﬂy = Bz (23)

The general form of the reference charts is a series of smoothed curves,
selected quantiles of the distribution of the response variable, plotted against
the covariate (age or time). For v € (0,1), the conditional quantile of y
given age ¢ is denoted by Fy'(v|t). The ~yth reference curve is the plot of

the function F, ' (y|t) against # in S, set of ages, that can be reprented as

Cy(y) ={F, (7]t : t € S}
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where S is the set of age. The reference curves of 7 percentages, v =
0.05, ....,0.95, symmetrical above and below the median, are used in North
American and Europe. It is no loss of generality to consider all percentages
in (0,1). Without specifying the quantile percentages v's, we consider the

reference curves for a population of variable y as

{Cy(v) : v € (0, 1)} (2.4)

For response variable z(t), the yth reference chart may be analogously rep-

resented as
Co(y) ={F;'(|t) : t € S}

where F!(v|t) is the yth quantile of z at time ¢ and the reference charts for
the population of variable z is {C,(y) : v € (0,1)}. The general hypothesis

for comparison of reference charts then is

Hy : Cy(v) = Cu(y),7 € (0,1). (2.5)

With linear model assumption of (2.1),it-is seen that the yth reference

charts may be written as Fy_(tl)mw('y) AR (3 N+ Fezl(q/) = x(t)' By, where

—1

Byy = By + <F6?J (7)> is called the regression quantile (see Koenker and
p—1

Bassett (1978)). The 100v%th reference-chart then is

Cy(v) = {&(t) By : L € S}. (2.6)

As pointed out by Hoel (1964), the estimation of reference charts is reduced
to estimating the regression quantile f3,.
The yth regression quantile for model (2.2) is FZ_(tl) (v) = x(t) B +F 1 (v) =
-1
z(t)' B,y with B,, = B, + (FBZ ) ) Then the v reference chart for re-

p—1
sponse variable z is

C.(7) = {x(t)Bsy : t € SY. (2.7)

and then the reference charts for regression model (2.2) is

{C(v) : v € (0,1)}.



It is agreed, as investigated by Hoel (1864), that comparison of reference
charts is more efficient conducted by comparing model parameters. It is then
desired to verify when equality of reference charts in hypothesis (2.5) can
be re-written into equations in terms of model parameters. The following

theorem guides us a direction for these two problems.

Theorem 2.1. (a) The hypothesis of equal reference charts may be formu-

lated as
Hyep : By = B2, F_M(v) = F'(7), v € (0,1). (2.8)

(b) If we further assume that Fezl(q/) =0, Fy '(v) and FZ1(y) = 0. F,; *(7)
where o, and o, are two unknown constants not dependent of time ¢. Then

the hypothesis reduces to
Hyep: By = B2,0y = 0. (2.9)
Proof. From (2.6) and (2.7), identities of reference charts indicates
z(t) Byy (t) = 2(t) Bay (t), t €3(05 )5 for 0 < v < 1,¢ € (0,1),
equalities holding for all covariates(t) which is equivalent to the follwoings

By~(t) = Boy(t),for t € S and v € (0,1).

that reduces to

By = B, and
{ Fl(y) = FZM (), v€(0,1)
The result of (b) is obvious by the fact that (o, — 0,)Fy ' (v) for v € (0,1)
indicates oy — 0, = 0. [

Result of (b) in Theorem 2.1 tells us that solving a comparison of reference
charts is valid to be treated as a problem of testing hypothesis for equalities
of some model parameters. However, different growth models lead to varying
hypothesis testing problems. It is then interesting to see if the hypothesis in
Theorem 2.1 is exactly done by testing equalities of all model parameters.
For this, we know that each individual practically is repeated measured with

n-observations ¥, ..., ¥y, and 1, ..., x, available from model (2.1). Let us



define vectors y = (y1, .-, Yn)’, X' = (z1, ..., 2n) and €, = (ey(t1), -, €y (tn))-

A matrix form of this regression model for this individual is
Y= X0, +e, (2.10)

where we consider that €,(¢;)’s are not independent with means 0Os and ¢,
has covariance matrix as Y,. The difficulty in reference chart problem of
estimation and hypothesis testing is that the measurement variables taken
over time are not statistically independent. Hence, generally the variables
in {€,(t) : t € S} have a complicated structure including correlation. In this

consideration, we may test equalities of all model parameters as

Hﬁ,z : /By = B, Z]y =X,. (2.11)

3. Formulation of Equal Reference Charts for Some Models

In this section, we consider several interesting repeated measurements
regression models as examples to formulate specification of hypothesis in
(2.5) for verifying if the classical hypothesis (2.3) of equalities of regression
parameters is valid for general hypothesis of equal reference charts.
The random intercept model

The random intercept model:for one individual is of the form

y(tj) = ﬁoy + Vy + ﬁ1y$1(tj) = 5y(tj),j = 1, -

where V,, has normal distributions N(0,02,) and d,(;)'s are independent
normal distributions N(0,07). Also, variables V,, and d,(t;) are assumed to
be independent. This is a model of (2.1) with z(t)'8, = Boy + f1yx1(t) and
€y(t) =V, + 6,(t). This random intercept model allows each individual to
have its own intercept term and then the starting level for this individual is
Boy + vy where various subjects may have different observations v?’Js of V.
This random intercept regression model has the form of (2.10) with designed

matrix X and parameter vector 3, as

1 1

1 ) /8
X=1. By = (éz) Sy =0l +07,] (3.1)

1 =z,



with z; = z(t;) and J is n x n matrix of 1’s. In this model, the hypothesis

of equality of all parameters is

Hﬁ,E : /By = /Bzaay = 02,09y = Oyz- (32)

The set of reference charts of (2.4) for this random intercept model is

Cy(y) = {Boy + Bryx1(t) + /02, + 022y 1 L € S} (3.3)

where z, is the yth quantile point for the standard normal distribution.
Since the covariances are identical, this random intercept model is also called
the uniform correlation model.

The equality of reference charts indicates

Boy+B1yw1(t)+y /02, + 022y = Bo+Br.x1(t)+V/ 02, + 022, for all 71(t) and v € (0,1)

which indicates that testing equalities of reference charts is equivalent to

test the following hypothesis
Hycr: By = Ba; 05 + Ugy =/02+02,. (3.4)

When we test the hypothesis Hg, acceptance of 3, = 3, obviously does not

o . : 5. 2 _ /53
indicate equality of reference charts'since’y/o; + o7, = /07 + 0y, may not

be guaranteed. Since o, = o, and \/a?y = /02, indicates that o + 02, =
02 + o2, is true, so, when we test hypothesis H 3,5 and the hypothesis is
accepted then we are sure that the two reference charts are equal. However,
there is a risk that these two reference charts are really equal when we
reject Hp s since (/o2 + 02, = \/m doesn’t indicate that o, = o,
and o,y = 0,, are true.

When we are allowed to assume that o, = o,. The hypotsheis is reduced

to the following

ﬁy:ﬁz,UyZO'z,O'vyZO'Uz (35)

and then testing hypothesis Hg 5, is then appropriate.

The autoregressive model
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The sample autoregressive model is model of (2.1) with error variables of

the form

y(t;) = Boy + Pryzri(t;) +e,(tj), i =1,...,m
ey(tj) = pyey(tj—1) + dy(t;)

where 0, (t;)’s are iid random variables with normal distribution N (0, 05).

The autoregressive model may be re-formulated as is
y(t;) = Boy + Bryw1(t) +€4(t5),5=1,...,n
oo
ey(t;) = ZpZ(Sy(tj_s).
s=0

The measurement vector y is model of (2.10) with the same design of

(3.1) except the covariance matrix as

1 Py .- p;‘_l
-2
1 Py L. py
2 .
Yy = 0,8y, with Q, = = 2 : i i )
pr—1 p;}_z 1

The hypothesis of all parameters is the follwoing
Hﬁ,E : By = (3, Py =Pz, 0y = 0.

Then the set of reference charts is

2

Cy(v) = {Boy + Bryz1(t) + 1 iyp2 zy it €S}
Y

From (2.5), the equality of reference charts indicates

2

| o2 o2
Boy+Biyr1(t) ﬁ% = Boz+Brz1(t)+ 1_7pzzv for all z1(¢) and v € (0,1)
Yy z

which requires to test the following hypothesis

0'2 0'2
Hrer =1 \/1 S \/1 7
Yy z




10

In this model the acceptance of hypothesis Hg does not indicate the equality
of reference charts. However, testing hypothesis Hg 5, has the risk that when
the null hypothesis of equal reference charts is rejected the true fact is that

the reference charts are in fact equal.

Random slope model

A simple random slope effects model is

y(t;) = Boy + (Bry + By (t;) + ay(t;),j =1,...,n

where By is a random variable with mean zero and variance agy and a,(t)’s
are iid random variables with mean zero and variance 05. This model allows
the slope (1, + By being varied in individuals. This is a model of (2.1) with
&y(t) = Bya (1) + ay (1),

This is a model of (2.1) with z(t)'8, = Loy + Biyz1(t) and €,(t) =

Byx1(t) + ay(t) and the measurement vector y has covariance matrix as

of,x(t1)? + oy oFa(ti)r(ta) ... oFa(t)z(ts)
B agyx(tz)x(tl) O'(%yl'(tz)z ¢, - agyx(tz)x(tn)

y = : ]
o3, w(tn)r(t) oy altaalts) .. o3,x(tn)?+ o,

The hypothesis of equal parameters is

Hgs : By = 0B;,05y = 05,0y = 0. (3.6)

The the set of reference charts is

Cy(v) = {Boy + Bryz1(t) + \/Ugy:c1(t)2 +02z,:t € S}

Then, the equality of reference charts indicates

Bgy+ﬁ1y:c1(t)+\/0§y:c1(t)2 + 022y = 602+ﬁ1za:1(t)+\/agzx1(t)2 + 02z, for all z1(t) an d v € (0,
which requires to test the following hypothesis

Hycr: By =Bs,05y = 055,09y =0,. [
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Two comments may be drawn from the results developed in the above ex-
ample.

(a) For being able in detection of differences of reference charts, tests for
equalities of regression parameters is not sufficient to achieve this aim. The
approaches in comparisons of reference charts for the public health purpose
mainly considered in verifying if main effects (regression parameters in para-
metric study and regression function in nonparametric study (see Scheike,
Zhang and Juul (1999))) in regression models for two population groups are
equal. This, from our investigation, generally does not fit the purpose of
verifying the equality of reference charts that are accepted to represent the
pattern of human growth.

(b) If we test hypothesis of equalities of all parameters such as random
intercept or AR(1) errors models, then rejection of null hypothesis is not

appropriate to conclude that the two reference chartes sets are identical.

Random intercept and random slope model

We consider a random effects model as

y(t;) = Boy + Vy + (Brg 4 By)ai(ty) F ay(t;),5 =1,...,n

where we further assume that V4, and By-are independent normal random
variables with distributions, respectively,-as N (0,012)21) and N (0,a§y). We
also assume that a,(t;),7 = 1,...,n are iid random variables with distribu-
tion N (0,07). This is a model of (2.1) with e, (t) = V + Bxz1(t) 4+ a(t). The
covariance matrix of error vector is X, = (0y;k)j k=1, n With

ayj; = Var(ey(t;)) = o5, + 05,z1(t)* + o

Oyjk = COU(Gy(tj)a Ey(tk)) = 0121y + Cr(%y'rl(t)z'

The equality of all parameters hypothesis is

H,B,E : ﬁy = /Bz,o-vy = Oyzy 06y = 062,00y = O3.

The reference charts is the following set

Cy(7) = {Boy + Bryw1(t) + /o2, + 05, 21(t)2 + 0lzy 1 t € S}
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The equality of reference charts gives the hypothesis

Hyep: By = Bzy/02, + 02 =02, + 02,05 = 052 (3.7)

Our interest for the rest of this paper is introducing statistical methods
to deal with exact test of reference charts comparison while Wright and
Roysten (1997) indicated that this is a topic received little attention in the

literature.

4. Comparison of Two Unknown Reference Charts

When the reference chart is used for public health purposes, it is to
compare general health and nutrition of two or more populations (developed
and developing world). In this situation, exact test for reference charts
comparison for populations is desired to be proposed and evaluated.

The fact in statistical inferences is that we have m individuals and there
are n observations for each individual. For jth individual, there are y; and

¢; follow model of (2.1) as y; = X3 +¢; for j = 1,...,m. By setting vertical

joinings y with y" = (y1,y3, .-, Um) and €, with e, = (€, ..., €,,,,), vector y
has linear regression model of matrix form- as
y= (1, ®X)By + €y, E(6y) = L, & 05 c0v(ey) = I, @ Xy (4.1)

where ® represents the Kronecker' product, 1,, is m-vector of values 1’s
and I, is m x m identity matrix. Models of this type is interesting since
the covariance matrices for various subjects are identical. Suppose that for
reference group of k subjects that response variable z(t) following regres-
sion model (2.2) we also have n-observations z;;,z;,j =1,...,n,5=1,...,k
available from model (2.2). Let vectors z; and €,; satisfies z, = (21, .., Zin)
and €, = (€i1,..-,€2in)- A matrix form of this regression model for ith
individual is
2zi = X0, +e,i=1,...,k

where €/ s are iid with mean 0,, and common covariance matrix ¥,. By set-
ting vertical joinings z with 2’ = (2], 25, ..., z;,) and € with €, = (€}, ..., €,;),

vector z has linear regression model

z2= 1@ X)B, + €, E(€;) = 11, ® Oy, cov(e,) = I, @ X, (4.2)
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With this setting, the advanced joining (‘Z) has the following model

(1) = [l 0m] (o)

€ . . I, ®X% 0
where GZ has mean 0y, 4 1), and covariance matrix m 0 y Los, ) .
We now further consider the random intercept regression model, we have
the likelihood function as
—1/2
Iy ® (02, + 021,) 0 /

L(By.Bey Oy, Ovys 0y Onz) = (2W)_(m+k)n/2 0 I @ (62,J + 021,)

e:vp{—l/?((i!) - [((azgg))gj])/
e )

he problem of comparison of reference charts is to verify based on these

two sample regression models if the patterns of these two regression mod-
els are the same. Let us assume that g7 =02 so that the hypothesis of
equal reference charts is equivalent.to test-the following hypothesis of equal
parameters

HH,E : By = ﬂzao-y =02,0yy — Oyz

and the likelihood function under H, s is
L(B,0.00) = (27r)_(m+k)n/2|fm+k ® (03 + UzIn)|_1/26$p{_1/2(<Z> — (Imtx © X))
(T ® (037 +01) (1) = (1 @ X)8)) (4.4

The generalized likelihood ratio is defined as

supg,e,o, L(/Ba g, 0-11)

A=
Supﬁy:ﬁz:f"yaavyygz;avzL(ﬁ@h /827 O-yv O-’va Oz, O-UZ)

A test based on this generalized likelihood ratio is:

rejecting Hy if A < ¢ (4.5)
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where ¢ satisfies & = Py, {A < q}.

Let us denote the followings:

_ 2?21 Yij _ D ey Yig j = D i 2?21 Yij _ _ 27 12

Yi. = Y5 — Y. = y T
n m nm n
n
Sy = D (55— 9.)(zj — ) ZZ  — )
J=1 J=1
n
Sex (23 - 2--)(33] — )
7=1

The maximum likelihood estimates involved in likelihood function of (4.3)

are
N A Syr o iy iy (Wi — (0. + Bulzy — 7)))?
ﬁOy =Y. - Blyxvﬂly = y y Z - =1 ;n(n _ 1)
1 m Ui — Y 2
6-121y — _(nZ’L:1(y . 3/) o 5’;),

n m

k " (2 — (2. + B (zi —7)))2
Boy =z — PioT, fry = Sew .o 2uim12.j=1(%ij — (2. + Prz(z; — 7))

Son’ 0% k(n—1)
koo
52 — l("zz'ﬂ(zi- -2.)° s
vz n k zZ

By letting u;; = Yig A\ ST we further denote the

y * Ziemy i =mtlegm+k’
followings
T =TI ST e L

1. T n s g T m+ l{} 9 (m+ k ’ —

The maximum likelihood estimates involved in likelihood function of (4.4)
are

e Sup o LS (uiy — (@ + Bur(wy — 7))
Bo=1u. — T, pL= g : (m+ k) n—1)

+k _
6'2 1 (nzm ( . u~~)2 - 6'2 )
v n m -+ k ul/*

We consider the random intercept model for simulating the performance

of the likelihood ratio test. How to get appropriate cutoff point ¢ for rule
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(4.5)7 The classical theory for likelihood ratio test suggests the test statistic
—2InA using the chi-squares distribution. For evaluation, let us restrict
k =m = 2 and setting B1y = B1, = Boy = Bo» = 05 =02 = agy =02, =1
In this design, it is x?_,(4) that they are 9.488,11.143 and 13.277 when we
consider a = 0.01,0.025 and 0.05. We perform a simulation under sample
sizes n1 = no = 30 for evaluation of this theoretical results of the type I
error probabilities. With replications 100, 000, the simulated results of type

I error probabilities are, respectively,
0.00409, 0.01061, 0.02371. (4.6)

They are too far below the theoretical values, 0.01,0.025,0.05. Hence, ap-
plying the chi-squares approximation for likelihood ratio statistic A in this
reference charts comparison problem is too conservative so that this cutoff
point is not appropriate.

We proprose, for this problem, the simulation method. With designing all
parameters being values 1, sample sizes n; = ny = 30 and setting the level
a = 0.05, we generate the observationssand compute the likelihood ratio
A. With replication 100 thousands, we order the values of the computed
likelihood ratios, the cutoff point.is chosed:as the lower 5% order statistic

which is 0.019214. We then apply ‘the-following rule
rejecting Hy if A < 0.019214. (4.7)

Is this test robust in determination of cutoff point? We let 81, = 31, =
27 ﬁOy - ﬁOz =2

Case 1: 05 =ol=1
Case 2: cri =02 =2
Case 3: a; =02=5
Case 4: 05 =02=10

Table 1. Type I error probabilities comparison



ol=o0up=c Case 1 Case 2 Case 3 Case 4
c=2 0.0499 0.0515 0.0588 0.0795
c=25 0.0511 0.0471 0.0447 0.0578
c=10 0.0477 0.0474 0.0456 0.0522

Comparing the above results with the ones in (4.6), this simulation method

seems to be quite robust and we will study this test by evaluating its power

performance. We let

ny =n, = 30,8, =

(1,1), (o5y, 0y) =

(1,1)

We design 8, = (Boz,B12), (02,,02) for power study. If parameters for

model of z are not specified, they are identical to the corresponding ones of

Y.

Table 2. Power performance presentation

Parameters Power Parameters Power
B, =1.2 1 < o2 )= |12 0.604
Bz _ (1.2 Bo:\ _ (1.5
Bo-)  \ 1.2 ! o2 )\ 15 0.680
/Blz o 1.2 /802 o 1.5
= {13 1 2 )= 0.772
/Blz o 1.2 /802 . 1.5
< 1.2 1 o2 )]\ 25 0.842
502 =1.5 0.479 02 =12 0.541
<5°Z = (}g) 0.575 o2=1.5 0.650
B‘]Z _ (L 0.905 o2 =2 0.755
1.5
502 = 155 0.998 02 =25 0.833
ﬁoZ =20 0.985
02, =15 0.742
o2 =2 0.997

We have several comments on the results in Table 2
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(1). This test is very sensitive for a change in slope parameter ; since the
powers all cases involve a change in this parameter is as high as values 1.
(2) This test is also satisfactory for a change in location parameter 3y as it
is showing the cases with 3§ = 1.5.

How much price should we pay to use test (4.7) when 02 = o2 is not true

Yy z
when the reference charts are actually equal? We design some alternative
cases to verify the probabilities of type I error for test (4.7) when 05 +012)y =

2 2
o, +o,,.

Table 3. Performance of type I error probabilities

Parameters Power Parameters Power
o, =12,00, =12 0.5739 o, =15,00, =2 0.9958
o, =12,02, =15 0.7527 o, =202, =12 0.1949
ol=15,02, =12 0.1941 o, =2,0,,=15 0.7489
a% =15,02,=15 0.7337 o, =2,0,,=2 0.9976
ol =12,00, = 0.9967 o, =3,00,=3 1

Table 3 give the results showing that this test is not appropriate to test

when the assumption that o? and o2,are;assumed to be equal.
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