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ABSTRACT

In this thesis, we use Classical Trajectory Monte Carlo method to study the atomic
dynamics under short intense pulse and magnetic effect. When an atom is exposed to
an intensity laser pulse, it develops a time-dependent dipole moment and radiates a
series of odd harmonics of incident laser frequency. This phenomenon of harmonic

generation has been observed over, wide “rtanges of laser intensity

(e.g. 10" ~10" V%mz ). However, current Jlaser systems can produce very short

(femtoseconds) and high ‘intensity ‘pulses-Stronger ‘than 10" V%mz. Under such

high-intensity and short time laser, the dynamics of atom and the effect of the

magnetic filed component are important, and not yet well studied.
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Chapter 1

Introduction
In atomic physics, the strong laser is defined when its intensity is in the range of

107 ~10" \%mz’ i.e. the electric field of the laser is approaching the order of

electric field of nucleus exerting on the electron. Atoms driven by an strong laser
pulse can produce a series spectrum at odd multiples of the incident laser frequency.
This process, known as high harmonic generation, has been thoroughly studied over
above laser intensity. Recently developed laser systems can produce very short and

high intensity pulses, for example some as short as a few to tens of femto-seconds

with intensities up to 10" VV J% An atom under such strong laser, the Lorentz force
CH1

on an electron is given by

F=qE+27xB (1)

RIS

It shows that the force on.an electron due fo.the magnetic field B has an effect

reduced by the ratio % compare, to-the electric.field. In such high-intensity laser

fields, the electrons may gain velocities of the order of the velocity of light. In this
regime magnetic field forces is comparable to electric field forces. In this thesis we
study the femto-seconds pulse and the effect of magnetic field in intense pulse on a
hydrogen atom simulated by Classical Trajectory Monte Carlo method.

We will first briefly introduce the background of high harmonic generation
(HHG) in chapter 2, and in chapter 3 we will use Classical Trajectory Monte Carlo
method (CTMC) to approach the high harmonic generation phenomenon of hydrogen
atom, in chapter 4, we use the CTMC to study classical hydrogen atom interact with
femto-seconds pulse, and in chapter 5 we study the effect of magnetic in the

femto-seconds intense pulse, finally we summary the result in chapter 6.
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Chapter 2

High Harmonic Generation

High harmonic generation (HHG) is an intriguing and experimentally
well-confirmed phenomenon which results from the nonlinear response of a
microscopic system to a strong laser field. There are two striking features have been
identified, namely, the occurrence of a “plateau”, i.e., the almost constant intensity of

the harmonics over a wide range of orders N, and sharp “cutoff’ at a certain

maximum order N__ of harmonics.

typical high-harmonic spectrum
perturbative
regime

plateau

1'(£ L lztl) = LETTTE;UMﬁSO 60

harmonic order

0
Fig.2-1 typical high-harmonic'spectrum

The basic generation mechanism for high harmonics can be explained using
semi-classical so-called “Simple-man model” or “Three-step model” by

Corkum(1993) and Kulander(1993) et al.

h‘u=Ip+‘.l"ul

kin

recombination

field/tunnel ionization acceleration in the and photoemission
laser field

Fig.2-2 three-step model



In the strong field of high-intensity laser pulse, bound electrons from atoms or
molecules are field ionized close to maximum of the laser field and set free with zero
initial velocity. There are then accelerated away from their nucleus by the same
electric field and move on classical electron trajectories in a laser field. When the
electric field reverses, electron accelerated back to nucleus, and photon emitted if
electron-ion recombination occur.

The energy of photon is determined by the ionization potential of atom and

kinetic energy of the electron, i.e.,

ho=1,+E,/(9), (2)

where 1 p is the ionization potential jof ‘atom, E,, (@) is kinetic energy of the
electron, and ¢ is the phase of the electrie field at the moment of ionization. The

high frequency cutoff at ascertain maximum- order N of harmonics radiation can

max
be determined by the maximum photon‘energy. i.e.,

E gp=iw  =1,+3.1TU." 3)

where U » 18 the ponderomotive energy, i.e., the average quiver energy of the
electron in the laser field,

22
v, =5 .. )

" dmw

An electron ionized by tunneling at ¢ =17°,197° etc., will arrive at the ion with
maximum kinetic energy (3.17U ) .

The region where the high—order harmonics have been found in experiments
corresponds to the onset of strong ionization. In other word ionization and high order

harmonics generation are closely linked.



The HHG phenomenon has been studied over wide ranges of laser intensity

(e.g.10" ~ 10" V\Zmz ). In high intensity laser field electrons may gain velocities of the

order of the velocity of light, and in this region magnetic field force becomes

comparable to electric force. When the laser intensity is larger than 1017“7 ,, the
cm

effect of the magnetic filed component is important, and if the intensity is too high,

one may also have to consider relativistic effect, but the true relativistic effects, are

( % )2, and the magnetic effect from Lorentz force

F=e(E+ xB) (5)
c
1S ( % y only. There is, however, an intensity region between non-relativistic and fully

relativistic domains, and the influence of-the-magnetic field is required.
We can use the ratio of the ponderomotive energy, of the electron to its rest

energy, this can help us to:determine the intermediate regime,

U - e’E, # me” (eZEOZ) -’ ( eE, 2 ©
" dmw? 4. mw me’ 4  m,wc
U 1 eE
P 0 2
- (—% 7
m,c’ 4(mewc) D
U, z%mevz (8)

from (7) and (8) we have

% 1 eE
() = (2
c 2 mwce

) €))

The relativistic effect is significant only for the ratio of the ponderomotive energy of

the electron to its rest energy approach unit, and for a laser with a wavelength 800nm,

the magnetic effect can occur at ~10" V%mz , whereas true relativistic effects

become important until ~10" V%mz .



Chapter 3

Classical Trajectory Monte Carlo Method

The magnitude of the electric field of the laser radiation is comparable to the
field binding an electron to an atom, and perturbation theory breaks down.

The high harmonic generation is widely studied by direct solve time dependent
Schrodinger — Equation (TDSE)

Y 1o, 1 _ - . -

la—tl//(r,t)z[—zv —;+r-E(t)sm(wt)jl//(r,t). (10)
But there are many numerical problems.

First of all, the time step for integration is very small because the electron’s
ionization may occur rapidly over a relatively small number of laser cycles. Second
the singular point of Coulomb potential. Usually it i§ approximated by soft core
potential. Third, when solve the partial diffetential equation the numerical method is
limited by the numerical boundary valie! In this.project,"we use Classical Trajectory
Monte Carlo method to study the atomic dynamics under short intense pulse and
magnetic effect.

In this paper, we consider a classical hydrogen atom, with an infinite mass
nucleus fixed at the origin of the coordinates, interacting with a highly intense laser
field that is linearly polarized along z axis, and with the electric field component E(¢).
For multi-electron atoms, one generally has to limit the calculations to that for a
single electron in effective potentials as represent, the influence of the remaining

atomic electrons. This approach is called the single active electron approximation.

CTMC method for a classical hydrogen-atom
The assumption of the classical Monte Carlo method is that the atom can be

represented by an ensemble of electron in a micro-canonical distribution with an
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energy distribution function p(E) given by

P(E)o< 8(E-E,), (11)

where E, denotes the internal energy of the hydrogen atom,

E,=(-0.5/n)’au, (12)
with 77 being the principal quantum number.
The CTMC method consists for three steps:
1. Set up classical electron distribution to quantum distribution of hydrogen atom with
quantum number “n”.
2. The numerical integration of Hamilton’s equations of motion

3. Calculate the mean value of length'dipole approximation

Generation of the initial condition

To describe the quantum system by’ classical meechanics, it is important to
generate a set of electron’s"position and momentum distribution. It is possible to use
Kepler’s equation of planetary /motion to represent classical hydrogen atom initial
conditions. It can be specified by the binding energy of the electron, and five

additional parameters &, &, 6, @¢,7 randomly distributed in the following range:
0<e’°<1,0<0,<2x, -w<n<xm, -w<P<x, -1<cosf<1, (13)
Here € is eccentricity, and &, is a parameter of the orbital proportional to time,

and @, @,n are Euler angles. A random distribution of €  corresponds to equal
probability of the atom having any phase in its periodic motion. The eccentric

angle ¢ is more geometrically useful than @, and is determined by solving Kepler’s

equation 8, =& —é€siné |



The atomic initialization can be completed by following step. (1) for a given
quantum state, |n> is specified by the binding energy E, ; (2) choosing the
eccentricity £ and placing the orbit in some arbitrary orientation; (3) locating the
“electron” at the eccentric angle & on the orbit; the position and momentum of

electron can be fixed by a solution of Kepler’s equation; and (4) performing the
rotation specified by the Euler angles 8, ¢, 7 .

Hence the initial coordinates and momentums are given by C°=AC,

and P’ = APOO , Where

0
C =|a(l-€)"?siné |, a=2 D (14
2E,
a(cosé& —¢€)
i 0
Poo _ b(l_gz)llz COSf/(l—SCOSé:) : b:(2mE0 (15)
—bsin /(11— Ecos &)

—sin@cosn +cosPcos@cosn. —sin@cosn —cosPcosfsinny cos@sin
A=| cos@sinn+sin@cosfcosn . ecos@gcosip=sinpcosfdsiny  singsinf | (16)

—sinfcosn sin@sinn cos@

In the above, Z is the nuclear charge of the atom, and m is the mass of electron in the
atom.

In practice, we need five random parameters to generate a set of initial condition,
and there are three most important criteria for a good uniform random number
generator we need to know. First, a good generator should have a long period, which
should be close to the range of the integers on the computer. Second, a good generator
should have good randomness. There should be only a very small correlation among

all the numbers generated. One way to illustrate the behavior of the n-data point

correlation is to plot x, and x,,, in an Xx-y plane, a good random number generator



will have a very uniform distribution of the points. Finally, a good generator has to be
very fast. In fact, one may need a lot of random numbers in order to have good

statistical result. At this point, the speed of the generator is very important factor.

The numerical integration of equations of motion

In order to use classical mechanics to describe the evolution of an electron’s
wave packet, we need to solve the set of Hamilton’s equation of motion, and calculate
the expectation value. For simplicity, we shall consider the electric field of laser first,
and check the result in CTMC method. Next consider the magnetic field of laser, and
check HHG result.

After preparing the initial cendition of electron, the motion of the electron under
intense laser field is determined wvia-the Hamiltonian. For classical hydrogen atom
with electric field in z-direction, with dipole approximation,

%) 2
H =2 {eEwwmsmwi+e), (17)
2m r

let f(r)=1 first, and there are six coupled:Hamilton’s equation of motion,

dp, oH dq, OH
dt dq, dt dp,
dp, X dx
—E=-= —=r,
dt r dt
dp, y dy
a a " 19
dp Z ) dz
—~=———FE;sin(wt+9) , —=
dt 7~ Bosin(wr+) a

For each set of initial conditions, the Bulirsch-Stoer method is applied to calculate the
classical trajectories of the electron’s motion. The Bulirsch-Stoer method is applied
here, because it can obtain high-accuracy solutions to ordinary differential equations

with minimal computational. In Bulirsch-Stoer method, a single Bulirsch-Stoer step

8



takes us from ¢ to t+A, where A is supposed to be quite large, not at all
infinitesimal distance. A large interval A is spanned by different sequences of finer
and finer sub-steps. Their results are extrapolated to an answer that is supposed to
correspond to infinitely fine sub-steps, and the integrations are done by the modified

midpoint method.

extrapolation

t st
~ 6 steps 0 7 Steps

|
X x+H

Fig.3-1 Bulirsch-Stoer method: 1..A large interval H is spanned:by different sequence of finer
and finer sub-steps. 2.Integrations .are” done by the modify midpoint method

3.Extrapolation technique is rational“function or polynomial extrapolation.

The mean value of length dipole’approximation
To obtain the harmonic spectra requires the evaluation of the time dependent

dipole moment of the atom .Length dipole,
— 1 &
(W)= 200 =—2 2. @), (20)
k=1

and its power spectrum,

2

1ler . —
I1(w)= ?‘ jo e™ z(1)dt 1)

For a set of trajectories, if the distance of motion from nucleus is greater than 50a.u.
and electron’s energy is greater than zero, then these trajectories are treated as free
electrons under laser field, i.e., the electron is ionized. Only trajectories with

no-ionization are used to calculate the mean value of length dipole.



intensity

Note that if one follows an ionization trajectory over the large number of laser
cycle, the corresponding spectrum is dominated by the continuous background which
ultimately washed out the harmonics. This observation supports the view that
harmonics generation is more efficient for bounded trajectories or, more precisely,
when the electronic motion is close to the nucleus that is sufficient acceleration to
generate the harmonics. For classical hydrogen atom with electric field in z-direction,
over 30-cycle laser pulse withw=0.057a.u. E, =0.15a.u.,

2 2

H=L"_% 1 eE0 22)

2m r

In Fig.4 and Fig.5, there are three harmonics spectrum feature. The spectrum can be
divided into three parts: the perturbative. regime at low orders, the plateau for
intermediate order, and the cut-off at the high orders. In this result, we can use CTMC

method to approach HHG phenomenon very, well:

4 2
2 T ok B
o 4
2r -
21 — =
g . |
Ak J €
A t
£
el 4 |r b
-10 L L L L L L 10 1 I 1 I 1 1
0 5 10 15 20 25 30 38 i} 5 10 15 20 25 an 35
harmaonic arder harmanic arder
Fig.3-2 high harmonic generation spectrum Fig.3-3 HHG spectrum
E(t) = E, sin(wt + @) E(t) = E, (sin(—2—))? sin(wt + @)
E,=0.15au. w=0.043a.u.t =307, laser

E,=0.15au. w=0.043a.u. t =307,

aser
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Chapter 4

Short pulse

Here, in order to use Classical Trajectory Monte Carlo method to study the
atomic dynamics under intense pulse, the laser intensity will be very high, and this
can let electrons have very strong ionizations, and the HHG spectrums are washed out
by strong ionizations. To avoid the total electron ionizations, we focus our attention
on the short intense pulse.

For the laser with w=0.057au.E,=0.15a.u. interacts with a ground state
hydrogen atom over 4-cycle laser pulses. From Fig.4-1, Fig.4-2, and Fig.4-3, for short
intense pulses, the high harmonic_geheration’s' spectrum resolution is not very well,
and the periodicity is gone for high ordesradiations,.and the intensity is lower than

30-cycles. From Fig. 4-4, we also find ‘that for short. pulses the high harmonic
generation spectrums depend on laser.phase @ strongly. For same conditions but

with different phase, the spectrums can be totally unlike:

For short pulses, the high-harmonic spectrums are generated by a single electron
trajectory close to the peak, so that the periodicity of the high harmonic generation
process is completely suppressed, and for short pulses the different phase corresponds
to different laser forms. In this result, if the electron wants tunnel the potential, i.e.,
ionization, it must fit it’s the max velocity and position on the laser field maximum,
then it may be free and driven by field to generate HHG radiation, but for long pulse,
the field action time is long enough that the phase doesn’t pay a role on the duration.
The low harmonic spectrums are generated by a single electron close to nuclear, i.e.,
the electron’s motions are strongly controlled by the nucleus, and periodicity of the
high harmonic generation is still kept. From above results, we find for short pulse

such as few-cycle laser, the high harmonic generation is governed directly by the

11



intense pulse evolution.

2 1
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Fig.4-1 HHG spectrum Fig.4-2 HHG spectrum for short pulse
E(t) = E, (sin(—2—))? sin(wt + 9)2 B = B, (sin(—2—))? sin(wr + 9)2
laser : laser
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Here, we also change the ionization criterion to study the spectrum. We have try
different criterion, for instance, the electron’s energy is positive and the distance to the
nucleus r >50au. , r >100au. , and r>200au. in Fig.4-5. We find that the
high-harmonic generation spectrum is depend on ionization criterion, this result

supports that only for the electronic motion is close to the nucleus that is sufficient

acceleration to generate the harmonics.

r=50 electric fields 0,18

intensity
intensity

] I 1 1
u] 10 20 30 40 a0 B0

L
10

1‘5 2ID 2é Sh 3é 40
harmonic order harrnonic order
Fig.4-5 HHG spectrum with. different Fig.4-6 HHG spectrum with
ionization criterions w=0.057au. E, =0.18a.u.

over 4-cycle

Now for the intense laser withw=0.057a.u. E, =0.18a.u.over 4-cycles, In Fig.4-6,
high harmonic generation’s spectrum resolution is still not very well. The low order
spectrums are still controlled by the nucleus, but for high-order harmonic, the high
intense pulses can let electrons velocities become very high, and ionizations are very
strong. i.e., electrons radius are far from the core and the coulomb potential effect is
small for these electrons. Under such conditions, the magnetic effect can be important

in high-order harmonic, i.e., plateau regime.
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Chapter 5

Magnetic field effect

In atomic physics, electromagnetic fields of optical frequencies are usually quite

adequately described in terms of the dipole approximation, base on the inequality

“% <1, (23)

where d, is the Bohr radius, and A s the wavelength of the radiation. This means

that the phase of a traveling plane wave can be approximated aswt —k -7 = wt . In

order to study the magnetic effect, an atom is subjected to a sufficiently intense fields,
the dipole approximation may not wvalid, because_ the full relativity effect the spatial
dependence is strong. To study the regime-in which the effect of the magnetic field
should be account for, but where the full relativity 'is.not required. We need an
electromagnetic gauge inswhich both eléctric and 'magnetic fields are present, and

where both are retained only.within the dipole approximation.

Electric and Magnetic fields in dipole approximation

In classical electrodynamics the scalar potential can be written as
O=—7-E(p), p=wt—k-F, 24)

in addition, there is a vector potential of very similar appearance, given by

A=—k[F-Ep), k== (25)
wc

That is,k is a unit vector in the direction of propagation. These potential describe

completely the electric and magnetic field with full wr—k -7 phase dependence,

E:—Vcb—la—A, B=VxA (26)
c ot

The vector potential A above contains spatial dependence in the

14



7 - E(p) combination as well as in the phase @=wr—k -7 . This means that even in the

dipole approximation limit ¢ — wt, the vector potential retains important spatial

dependence. Now we take the dipole limit of the above potentials,
®=—7-E(wt), A=—k|F-E(wr) 27)

we obtain

- 1 0A(wt) = _| _ dE(wr)
. —_Vdp_— = . 28
E d Py E(wt)+k[r d(wt)} (28)

The extra term is seen to drop out in the dipole approximation, since

dE(wt)
d(wt)

=0(E

),

K|-[F|= 0(2;:"70) <«<1 (29)
the magnetic field follows directly from the curl of vector potential,

B(wt) =k x E(wt) ' (30)
These potential provide both electric and magnetic fields of a plane wave in the

correct phase, amplitude, and vector relationships, but within the dipole

approximation.

Interaction Hamiltonian
The Hamiltonian for a hydrogen atom in a plane-wave field is now,

A 2 2
H:L{‘—Ee?-ﬁ(wt)} ~ & eF E(wr). (31)
2m c r

Here, we consider ground state hydrogen under electric field in z-direction and

magnetic field in x-direction, over 4-cycle laser pulse with w=0.057a.u. E, =0.17a.u.

V8

E(t) = E,(sin( ))? sin(wt + @)Z

E laser (32)
B(t) = 22 (sin(—Z—))* sin(wr + §)3
C

laser

The blue line is the electric field only, and the red line is electric and magnetic fields

15
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Fig.5-1 CTMC trajectories = 10000
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Fig.5-3 HHG spectrum with
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Fig.5-2 CTMC trajectories = 10000
ionization =r > 50 and energy > 0
E, =0.18a.u.
w=0.057a.u.
¢=4T,,,
?=0
(1) Electric field
1onization = 8713
(2) Electric and Magnetic fields

1onization = 8684

electric & magnetic fields 0.18

intensity
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. . . .
20 25 a0 35
harmanic order

1IU 1‘5 40
Fig.5-4 HHG spectrum with magnetic effect

E,=0.18au. w=0.057au. t=471,,, ¢=0



We can see from these figures, when the magnetic effects have to take into account,
harmonics in the high radiation spectrum are changed strongly, but small for low
order harmonic frequency. The intensities of plateau are lower than spectrum for
electric field only, there are some peak intensity gone, the number of ionization is

reduced by magnetic field, and the total spectrums also depend on laser phase.

Magnetic effect

In order to study the magnetic effects of atomic dynamics under intense laser
pulse, we note that a free electron moving in a plane wave field follows a figure-8
motion caused by the combined action of the electron and magnetic field.

The free electron in plane wave

) R TR

By = Eo g e
G
the Lorentz force is
F=gE+lyxB (34)
C

For v << ¢ we can use the perturbation theory, and the motion is in the y-z plane,

1.€.
VxB=v By—v B2 (35)
p v, 0 0
m— vy |= 0 +4| - v, E '™ (36)
t v _eEOei(W[+¢)) ¢ v vE'Oei(wt+¢)
zero order,

d 0) dV(,O)
L T g (37)
dt i
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0
dv'” e

z — __E ei(wt+¢)
d m 0
0 e . 1 5 62E2 (38)
VO (1) =i B, 4y (0) = U, == m{v?) =<0
P k4 2
mw 2 4mw
first order,
@ (0) 22
dVy :_&ei(Wt+¢) —_ e EO ei2(wt+¢)
dt mc 2m’we
e’E; (39)
V;l) (f) — _2—()2 elZ(wH—(/)) + vy (O)
dm-w*c

We are interested in the excursion only, we let v_(0) = v, (0)=0, and use atomic unit

to simplify the problem, then we gain the trajectories,

EZ
H=[v.di== 0 ,i20vEn)
y() I) P

—y (40)
(1) = e ==L et
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Fig.5-5 free electron’s trajectory under Fig.5-6 the 8-motion for
intense laser driven by electric and w=0.057au.E, =0.25a.u.
magnetic field with andw = 0.057 a.u. E, = 0.3a.u.

w=0.057au. E, =0.25a.u. over 4-cycle
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The 8-motion induced by the coupling of the electric and magnetic fields in a
plane wave. The amplitude ¢ is in the direction of the electric field, and S, isin

the direction of the propagation vector k¢ perpendicular to the electric and magnetic
fields.

(41)

Fig.5-7 the 8-motion

The magnetic component of the Lorentz force is perpendicular to the direction of
motionV , it can do no work on the electron. That is the magnetic field of laser does
not insert field energy into the electron, it.couples to the electric field in such fashion

as to distort the linear oscillatory motion.

Fig.5-8 The spectrum of free electron under electric field (blue line) and the free

electron under both magnetic and electric fields (red line)

The spectrum of electric field and both electric and magnetic fields are identicalness.
That is there is no another frequency added by magnetic fields such as cyclotron

frequency. From another point, the interaction Hamiltonian

~ 2 2
H :L{* _Eef.E(wt):| —e——eF-E(wt) , 42)
2m c r
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it can be rewrite into

12 2 oA - 5
H=P 2 e By -2 o By ¢ T EO) Ewt)” 43)
2m r mc 2mc
The equation can be divided into three parts:
_2 5
Hat()m = ﬂ - e_
2m r
Helectric = _e? ' E(Wt) (44)
bk o o= er - E(wt))? -k _ =
Hmagnetic :_p—erE(Wt)+( ( ) )) z_p erE(Wt)
mc 2mc mc

The first one is the Hamiltonian of hydrogen atom, second one is the Hamiltonian due

to the electric field of laser, and third one is the Hamiltonian from the magnetic field

of laser, in third one the second’term’s magnitude ‘is. about (%)2, where should be

dropped. The magnetic Hamiltonian;-it reles as'a % addition to electric field effect

and coupling into the propagation direction k of the laser. This coupling underlies

8-motion.

The number of ionization is:reduced by magnetic field, this is because the
magnetic force changes the electron’s direction of motion and electrons are trapped by
the magnetic effect. Even thought the number of trapped electron increase, some
HHG plateau spectrum still gone. This can be treat as the consequence, that the
magnetic force prevent the electron goes back to or near to their parent core, i.e., there
is less interaction with the nucleus, the spectrum occurs only when the electronic
motion is close to the nucleus that is sufficient acceleration to generate the harmonics.
In other hand, for lower harmonic orders there are no huge changes, because the
electrons with lower velocity the magnetic effects are small, also the motions are
strongly controlled by the nucleus, This results seen that the magnetic field serves

reduce the high harmonic generation phenomenon. For the intensity drop in plateau
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regime, the electrons with high velocity have strong magnetic force on them, and
magnetic force change the direction of motion, it let electron’s motion more close to
the nucleus than the electric force does, i.e., the dipole moment is decreased by

magnetic force. After Fourier transform the intensity drop in plateau regime.
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Chapter 6

Conclusion

In this thesis we use intense pulse on a classical hydrogen atom, and simulated it
by Classical Trajectory Monte Carlo method to study atomic dynamic under intense
short pulse and the magnetic effect. We find that for short pulse the total spectrum is
phase dependence is strong, and the periodicity of the high harmonic generation
process is completely suppressed, but kept for low order harmonic. From the above
results, we find that for short pulse such as few-cycle laser, the high harmonic
generation is governed directly by the intense pulse evolution. The magnetic part in
laser field can trap the electrons ingthe region'near to their parent core, and in high
harmonic generation plateauxegime, i.essthe-high frequency, there are some intensity
peaks were gone, also the intensity of plateau'are lower than spectrums that caused by
electric field only. Magnetic force can let electron miss, their core and trap electron’s
motion close to their core. Forlow.order harmonic specttum, i.e., perturbative regime,
the spectrums are dominated by;Coulomb potential, and the magnetic effect is small
so that the spectrums don’t change too much. The magnetic effect serves to change

high harmonic generation in plateau.
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Appendix A

Simple man model

In this model, the electron first tunnels from the ground state of atom through the

barrier formed by the Coulomb potential and the laser field. Its subsequent motion can

be treated classically, electron with initial conditions of velocity and position equal

zero at the time of tunneling and primarily consists of oscillatory motion in phase with

the laser field in dipole approximation.

In order to see the photon energy maximum is

W, =1, +3.170,

let we consider linear polarization'electric field
E(t)=E, coswnz

in this case, the motion is given by the well. known equations

E ke | E E. .
Z(t) __ q 02 COS(WZ‘)—QISIH(WZ")'F q ()2 COS(Wt’)+ q 0 t-Sln(Wt’)
mw mw mw 3
E, . .
dz _ u[sm(wt)—sln(Wf')]
dt  mw

where we assume initial conditions are

2(t)=0

dz
2y =0
(dt)’:’

(45)

(46)

(47)

(48)

i.e., the velocity and position after tunneling is zero, and ¢ is the tunneling moment.

From this solution we can find the energy distribution for the electron that does come

back.(z(1)=0, fort>t)
R
7 Amw?
E, =2U ,[sin(a+x)—sin(a)]’
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Fig. A-1 the graph of ionization phase from O to % (x-axis) with electron energy divided

by U, (y-axis), the maximum energy occurs at 18" with E, =3.1731U »

The energy distribution over WE" form 0 to % , and energy divided by U

b
Hence, the cut-off formula

By = W =d, +3.17U | (50)

It is very successful.
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Appendix B

Atomic units

Atomic units are used for convenience, as by setting the fundamental constants
h=m=e’=1,00= ez/hc =1/137.037, to simplify the calculations.
(1) 1 atomic charge unit = e = charge of the electron = 1.602x107"°C

(2) 1 atomic mass unit = m = mass of electron = 9.109X10_31kg

(3) 1 atomic length unit = a = radius of the first Bohr orbit =

h?[me* =5.2917x10"" m
(4) 1 atomic velocity unit =V, = electron velocity in the first Bohr orbit =

e’/h* =2.1877x10°m/ s

(5) 1 atomic momentum unit = P = electron momentum.in the first Bohr orbit =

me* [h* =1.9926x1072 kg m/ s
(6) 1 atomic energy unit = twice the ionization potential of hydrogen =

e’ la=me* [n* = polm=4.359%x10"J
(7) 1 atomic time unit = a/vo =h’/me* =2.4189x107" s
(8) 1 atomic frequency unit= v,/ a= me4/h3 =4.1341x10" s~

(9) 1 atomic unit of electric potential = e/a = me’ / h*=27.210V
(10) 1 atomic unit of electric field strength =

ela’ =m?e’ [h* =5.142x10" V /m
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Appendix C
Fourier Transform
In discrete Fourier Transform

F(w) = j ft)e™dt

the integral can be write into Riemann sum
At & _iwt;
F(w,)=—=p ft)e ™
H 27[ ; J

with

t,=a+jAr, j=01234..... N-1

Af = b—a
N

f(¢;)1s periodic in (NAt)
and

-7
w, =A—t+,qu, 1=0,1,234...N-1
Aw =2—7[

NAt

The discrete Fourier Transform can be rewrite into,

2

F(w,) =%e_m“2(—l)"‘f(tj)e N

. T
with 8, = ——.
), = HAwa Ar

27

(S1)

(52)

(53)

(54)

(55)
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