
Design of algorithm-based fault-tolerant VLSI array 
processor 

C.-M. Liu 
C.-W. Jen 

Indexing terms: Very large scale integration, Array processing, Algorithms 

Abstract: In the paper a systematic design meth- 
odology which maps a matrix arithmetic algo- 
rithm to a fault-tolerant array processor with 
different topologies and dimensions is presented. 
The design issues to be addressed in the method 
are: (a) how to derive a VLSI array with different 
topologies and dimensions from the algorithm; 
(b) how to distribute the data processing to the 
PES so that a faulty PE will result in limited 
erroneous data on which the checking scheme is 
valid. Two examples, matrix multiplication and 
Givens reduction, are used to illustrate this design 
method. 

1 Introduction 

Fast matrix arithmetic is highly demanded in signal pro- 
cessing, image processing and scientific applications. The 
evolution in VLSI technology allows this matrix arith- 
metic to be implemented on VLSI chip using multiple, 
regularly connected processing elements (PES), which 
has been named a systolic array [l]. It exploits the great 
potential concurrency of pipelining and multiprocessing 
so that it is suitable to conquer the intensive computation 
problems. A major difficulty with such a high degree of 
integration is that a single flaw on a chip will often result 
a PE to be erroneous and then render an entire comput- 
ing system useless. It is, therefore, desirable to have a 
system which not only achieves high performance but 
which also can tolerate physical failures in the system, so 
that the correct result is still produced. 

Recently, several researchers [2-141 have presented 
their results on error diagnosis, correction and reconfigu- 
ration in fault-tolerant array processors. For concurrent 
error detection and correction, algorithm-based fault tol- 
erance has been shown to be efficient in matrix arithmetic 
[4-71. The scheme is to encode the input data at the 
system level in the form of error detection or correction 
code (e.g. Weighted Checksum Code, WCC). Erroneous 
data can be detected according to the data redundancy in 
the coding scheme. The finite coding distance dominates 
the number of error to be tolerated. To design a fault- 
tolerant array with the scheme, the major design con- 
sideration is to avoid the error diffusion which will cause 
too many erroneous data to preserve the finite-distance 
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property even by a faulty PE. How to design an array to 
avoid this kind of error diffusion is one of the issues to be 
addressed. 

In the last few years, several systematic design 
methods have been proposed for the systolic array 
[15-191. All these methods are restricted to mapping 
an n-dimensional algorithm representation into an 
(n - 1)-dimensional array processor. How to break the 
restriction of dimension and blend with the centre of the 
WCC is another issue of this paper. 

2 

A dependence graph is the unrolling of an algorithm 
exposing the inherent data dependencies and so the con- 
currency can be easily extracted. The DG can be con- 
structed from a localised, indexed, single assignment form 
called Uniform Recurrence Equations (UREs) [ 18, 20) ; 
in the literature there have been different systematic 
design methods [ 15-19]. However, their common 
restriction of mapping an n-dimensional DG to an 
(n - 1)-dimensional systolic array has limited the design 
flexibility, especially when the hardware cost is an con- 
sidering factor. The methodology presented in this 
Section breaks the restriction of dimensions, and it 
adopts a mathematical form to provide its generality. The 
extension of this method to the design of the fault- 
tolerant array processor will be presented in Section 3. 

Formally, a dependence graph is a finite directed 
graph consisting of nodes and directed arcs. Nodes locate 
at some index points in n-dimensional index space and 
each node corresponds to a computation whose operands 
reside in incoming arcs whereas results reside in outgoing 
arcs, so the directed arcs represent the data flow depen- 
dencies. 

The DG can be expressed as a structure of (P, D) 
where P is the set of triples (j, c , f ) ,  where j is an index 
from a finite integer set 2"; c and f are the computation 
and the set of data stream associated with the index. D is 
the set of couples (d , f ) ,  where d is the dependent vector 
which is a displacement associated with data stream f 
from one node to another. 

Given a localised, indexed and uniform DG [18, 201, a 
VLSI array processor with topologies, dimensions and 
timing schedule can be derived from a linear transform- 
ation. The linear transformation matrix which maps the 
DG to the array processor can be expressed as 
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where Wand S are defined as 

W : J" J' timing schedule function 

S : J" + J"-' space transformation matrix 

S maps a DG with dimension n to the PE space with 
dimension n - k, and W maps the DG to time sequence 
with dimension one. If the value of k is greater than one, 
local memory is required in each PE. The size of the 
memory may be determined by the number of jobs to be 
assigned. This Section deals with the derivation of the 
linear transformation, and will bring together the deriva- 
tion with the concepts of the WCC in next Section. 

The transformation matrix can be determined from the 
following five aspects: 

orthogonalisation : 

2.1 Projection directions 
Given an n-dimensional DG, the dimension of the array 
processor is first decided. If the dimension of the array 
processor is (n - k), there will be k projection directions 
to be selected in the consideration of the geometry 
mapping. Basically, the projection directions of a DG on 
the index space may be arbitrarily chosen. However, to 
achieve fault tolerance some restrictions for the projec- 
tion are necessary, which will be discussed later in 
Section 3. 

Given the projection directions Pd, ,  Pd, , . . . , Pdk , 
these projection directions are orthogonalised so that 
they are represented with mutual independent and 
orthogonal vectors. This process will provide the ease of 
developing the space transformation and timing schedule. 
The orthogonalised projection vectors v, ,  v , ,  ..., V k  
can be constructed according to the Gram-Schmidt 
orthogonalisation [21]. 

V ,  = Pd,  (2) 

(3) 

Furthermore, these projection vectors should be multi- 
plied by some real number to meet the requirements: 
(i) all elements of the vector are integer, and (ii) GCD 
( u i l u i z ,  ..., uin) = 1, for vi = [uiluiz,  ..., uin]'. 

2.2 Space transformation matrix 
The space transformation matrix is a linear transform- 
ation to distribute nodes in the DG to the processor ele- 
ments PES. Once the projection vectors are known, the 
space transformation S, is first derived by the following 
Theorem, and then the final form S should be extracted 
from the row space of S,. This procedure will be illus- 
trated by examples in Section 4. 

Theorem 1:  Given the projection directions, the space 
transformation can be constructed as S, , where 

1 v lv :  v,v; vk 

V',V, v ; v 2  vi ' k  

I - -  - -_ . . ._ -  (5 )  

where vi is the projection vector as defined above. 

Proof: Given a projection direction Pd, a vector P in 
space can be projected to P from the Gram-Schmidt 
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Pd'P 
P d =  P -  P d - = S I P  

Pd'P p = p - -  
Pd'Pd Pd'Pd 

where 

If there are multiple projection directions, S, can then be 
constructed as 

Since projection directions are mutually orthogonal 

Since the rank of the matrix S, is (n - k), the row space 
can be represented by (n - k) independent vectors. The 
selection of representative (n - k) vectors for the row 
space directly relates to the geometry of the array pro- 
cessor, but will not change which set of nodes to be exe- 
cuted with the same PE. 

2.3 Timing schedule W 
The timing schedule W is a linear schedule to assign the 
computation time of the nodes in the DG to the array 
processor with maximum parallelism and concurrency. A 
good linear schedule is then to maximise the global effi- 
ciency of the PE in the array processor. This efficiency 
is inversely proportional to the computation time of an 
algorithm, so our optimal timing schedule is derived from 
this consideration. Furthermore, a representation of 
nodes to be distributed to a PE should be given in deriv- 
ing the timing schedule function. If the orientation of 
these finite node spaces can be globally and closely rep- 
resented by IS, a good timing schedule function can then 
be derived. 

Is = a, + a2 v 2  + ' '  ' + a ,  V k  (6) 
where [a i l  < M i  is the maximum node number along 
vector vi in all these finite spaces. Here 'globally, closely 
represented' is stated because the timing schedule func- 
tion is a linear scheduling. When the shape of node space 
to be distributed to a PE is not rectangular shape or is 
sparse to fill the rectangular bulk as represented by IS, 
they will introduce some null time and the efficiency of 
the PES will be decreased. This is the drawback of a 
linear schedule. This phenomenon can be seen and 
avoided if a process called 'data compaction' is used, 
which will be described in Section 4.2. Here, the linear 
timing schedule can be obtained by the following 
Theorem. 

Theorem 2:  Given a DG, the orientation of these finite 
node spaces can be globally and closely represented by 

Is= alvl + a 2 V Z  + " '  + akvk 

where lail < M i  is the maximum node number along 
vector vi in all these finite spaces. The timing schedule 
function W = [w ,w, ,  . . . , w,] should obey the following 
two constraints 

(a) W d  2 1 whered E D (7) 

(b) for a selected j (8) I Wvj I 2 (E I M i  Wvi I ) + 1 
i 
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where i = ((1, 2, ..., k)  - (j)} andjE (1,  2, ..., k }  and the 
optimal solution is found to minimise the following cost 
function : 

Computation time = max [ W(j2 - j , ) ]  + 1 

for every index jl,j2 E J" (9) 

Proof: (i) Since the dependent vector di is a directed arc 
from j ,  to J,  in the DG, j ,  should be executed after jl, 
so Wj, > Wj, and W(j, - j , )  > O ;  then Wdi > 0 or 
Wd, 2 1. (ii) Since every node in the space spanned by 
the projection directions is projected to the same PE, 
the node space spanned by the projection vectors is re- 
presented by 

ZS=alv,  + a 2 v 2  + ..' + an-kvn-k 
where I ai I < M i .  These nodes should not be executed at 
the same time in the same PE. This means that WZS # 0, 
i.e. I WZS I > 0, or I WZSI 2 1. 

These inequalities combined with the former Wdi 2 1 
constitute a space called the feasible set [21]. To say it 
more directly, a feasible set is composed of the solutions 
of a family of linear inequalities. Because the cost func- 
tion is a linear function of W, the optimum solution 
occurs at corners of the feasible set. Since the minimum 
grid of the DG in each Cartesian co-ordinate is 1, the 
corners of the feasible set can be found from further deri- 
vation of the linear inequalities. 

There will be k inequalities to be constructed from k pro- 
jections. Under the constraints of (i) and (ii), we can find 
corners of the feasible set to minimise the computation 
time. 

2.4 Relation between timing schedule and space 
transformation matrix 

For performance considerations, the choice of projection 
directions is a decisive factor for the number of PES in an 
array processor, and the timing schedule is a decisive 
factor for the computation time of an algorithm. In deriv- 
ing the timing schedule and space transformation matrix, 
the projection directions are determined first, and this 
restricts the feasible solution of timing schedule vector as 
shown in Theorem 2. If the timing schedule is derived 
without considerations of projection direction, a truly 
optimum one can be obtained. A designer can check if 
there is any conflict between these two schedulings. If this 
conflict does happen, a trade-off between the computa- 
tion time and the number of PES should be made. 

2.5 Transformation 
Once the W and S are determined, the transformation 
matrix is completed and then the PE index and link are 
easily obtained by: 

(a) Node transformation: An index j E J" (index in the 
DG) is mapped by 

- 

q = [WS]Y = [t(j)i(j)]' (10) 
This means the index j in DG is executed in index i of the 
corresponding J"-' in array the processor at time t + k ;  
k = min Wj, for every j E J". 

(b) Link transformation: A dependent vector d in the 
DG is mapped by 

Td = [ Wq'd  = [De(f)lJ' (1 1) 
IEE PROCEEDINGS, Vol. 136, Pt .  E, No .  6 ,  NOVEMBER 1989 

1 is a physical directed communication link in the array 
processor and De(0 is the delay number associated with 
the link. 

Through this transformation, an array processor with 
execution time is successfully designed without the need 
for retiming [22]. By choosing a different projection with 
multiplicities, all the various array designs for a specific 
algorithm are explored. 

3 

In this Section, the constraints for projection are given so 
that computation tasks in the DG can be appropriately 
distributed to PES which accomplish the concurrent error 
detection or correction. 

Design of fault-tolerant array processor 

3.1 Weighted checksum code 
The weighted checksum code (WCC) [6] has been 
adopted in matrix arithmetic operations for algorithm- 
based fault tolerance. By the encoding scheme and the 
preserving property of the matrix arithmetic, the result- 
ant erroneous data produced by the faulty PE can be 
detected or corrected. In this Subsection, the WCC and 
the fault model is outlined briefly. The reader can refer to 
Reference 6 for a detailed description. 

Fault model: A module-level fault [4] is assumed in 
algorithm-based fault tolerance. A module, i.e. the PE 
here, is allowed to produce any arbitrary logical errors 
under physical failures mechanisms. This is quite general 
since it does not assume any technology-dependent fault 
model. Without loss of generality, a single module error 
is assumed in this paper. Also, the transmitted links 
between connected PES are assumed to be fault-free. 

Encoding scheme: A WCC vector with distance three can 
be expressed as 

A T =  [a1 a, ... a, WCSl WCS2] (12) 
where a, is a data element in a vector, the superscript T 
stands for transpose, and WCSl and WCS2 can be 
chosen as : 

WCSl = [a, U, ... a,J . [l 1 ... 11 (13) 

w c s 2  = [ a ,  a ,  * . .  a,J . [20 2, . '  2"-'3 

(14) 
where . denotes the dot product operation. 

It has been proved that the checksum property can be 
preserved through some basic matrix operation [6]. 
Based on the basic encoding vector, a matrix can be 
encoded as either row encoded matrix, column encoded 
matrix or full encoded matrix according to different 
matrix arithmetic algorithms. 

The WCC check matrix 

is used to get the syndromes and then the detection or 
correction procedure can be completed. 

3.2 Projection for fault tolerance 
Owing to the fixed code distance constraint of three as 
shown in eqn. 12, there is only one erroneous datum 
allowed in a WCC vector so that the correction can be 
accomplished successfully. For appropriately distributing 
computation tasks (i.e. nodes) to the PES in the foregoing 
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systematic design, the projection directions, which assign 
tasks to PES so that a single fault in the PES affects only 
one datum in a WCC vector, have to be limited. Before 
proceeding to find the suitable projection directions, the 
following terms have to be defined first. 

Definition 1 : Transmission arc 
A dependent arc of the DG on which a data stream is 
just transmitted, not changed iteratively by nodes in the 
DG. 

Definition 2:  Iterated arc 
A dependent arc of the DG on which data is changed 
iteratively. 

Definition 3:  INS (Iterative Node Set) 
A set of nodes which is connected by iterated arcs in the 
DG. 

DeJinition 4 :  IPES (Iterative PE Set) 
A set of PES which is connected by iterated physical links 
in an array processor. 

Definition 5 :  Check space 
A space consisting of index nodes and their associated 
data stream f on the arcs, so that f can be checked by 
same WCC vector, is called a check space. 

The check space orientation can be represented by two 
linear independent vectors. One of the vectors can be 
chosen as an iterative arc k of the INSs, the other vector 
(called the check vector) can be chosen from the connec- 
tion vector of any two nodes of the space. In the example 
of matrix-matrix multiplication described in a later 
Section, the check vector can be selected as [ i j  kIT = [l 0 
01'. The iterated arc is k = [0 0 1IT .  The check space is 
shown shaded in Fig. 1 .  

check space 
spanned by 
(0 0 1)' and 
(1  00)'  

\ 

K 

t 
iterated arc 

Fig. 1 Check space of matrix-matrix multiplication 

Given the terminologies above, the theorems to 
restrict projection directions are then developed. These 
theorems are developed in the situations that input data 
of an algorithm are coded in WCC and the property of 
WCC would be retained in the computation in the fault- 
free condition. 
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Lemma 1: Given a DG and a VLSI array derived from 
projection Pd, the single fault in the PES affects only one 
datum in a WCC vector if the mapping of INS in the DG 
to the IPES in array processor is one-to-one. 

Proof: From the definition of the INS (or IPES), there is 
no iterated arc between the INS (or IPES). Our fault 
model has assumed that the transmission arc is fault-free. 
Any error in an INS can be detected or corrected by the 
data redundancy of another INS in the same WCC 
vector. If the distribution of the INS into the IPES is in a 
one-to-one manner, any fault in a PE can affect only one 
INES in a WCC vector. 

Lemma 2:  Given a DG and a VLSI array derived from 
projection Pd, a single fault in the PES affects only one 
datum in a WCC vector if nodes in a different check 
space can be assigned to the same PE. 

Proof: Although a fault in a PE affects data in a different 
WCC vector, it affects only one datum in the same WCC 
vector. So, a single fault in the PES affects only one 
datum in a WCC vector. 

Theorem 3:  Given a DG with one iterated arc k and 
check vectors c,, e , ,  ..., if the projection is chosen as 
either k or any vector independent to check space [k, c , ]  
and check space [k, c2E and so on, a single fault in the 
PES affects only one datum in a WCC vector. 

Proof: (a)  If the projection direction is chosen as k ,  it 
must be a one-to-one mapping between the INS and the 
IPES as described in Lemma 1 .  (b) If the projection 
vector is independent to check space [k ,  c , ] ,  [k, c2] and 
so on, the nodes of a different check space should be pro- 
jected to a PE as described in Lemma 2. 

Theorem 4 :  Given a DG with iterated arcs k,,  k , ,  k,  , . . . , 
if the projection is chosen as Pd = uk, + bk, + ck,  
+ . . . , or vector independent with column space [k , ,  c ] ,  
[ k 2 ,  c ] ,  [ k 3 ,  c ] ,  ..., then a single fault in the PES affects 
only one data in a WCC, where a, b and c are real. 

Proof: With such a projection direction, the mapping 
between the INS in the DG and the IPES is one-to-one, 
as described in Lemma 1. 

Theorem 5 :  The array structure should be at least one- 
dimensional. 

Proof: If the dimension of array processor is less than 
one, there will be multiple data error in a WCC vector 
under one PE fault. Such an error cannot be detected or 
corrected. 
Based on the preceding theorems, the appropriate projec- 
tion direction for fault tolerance can be determined. With 
the same procedure to find S and W presented in Section 
2, an algorithm-based, fault-tolerant array processor can 
be successfully designed. So, the concepts of the WCC 
have been blended into the derivation of a linear trans- 
formation to form a systematic design method for the 
fault-tolerant array processor. Based on the method, all 
various structures of algorithm-specific fault-tolerant 
array processors can be explored. 

4 Design examples 

Any algorithm may be implemented by an array struc- 
ture. The choice of the topology and dimensions of the 
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array depends on not only the computation time and the 
number of PES, but also on factors such as the applica- 
tion environment, the pin number, the pipeline period, 
and so on. The design methodology is therefore not to 
provide just one optimal topology of some factors, but to 
provide different topoIogies for choice. The methodology 
presented in this paper is examined in the following 
examples: matrix-matrix multiplication, and Givens 
reduction. The DG and array processor are represented 
with geometry graph to help the illustration of our design 
methodology. Although, these two algorithm have also 
been considered in other papers [4, 61, their design struc- 
ture is just one special case. Here, different topologies 
and dimensions of the array processor can be derived 
according to different projection directions. Also, other 
matrix arithmetic algorithm such as matrix-vector multi- 
plication, LU decomposition, Cholesky decomposition 
and banded-matrix multiplication can be derived simi- 
larly with this methodology [23]. 

4.1 Matrixaatrix multiplication 
For matrix-matrix multiplication 

A m x r B r x n  = C m x n  (16) 
Its WCC form of coding distance 3 may be developed 
following three distinct forms : 

A(,+ 2) x r B r  x n = C ( m + 2 )  x n (17) 

A m x r B r x ( n + 2 )  = C m x ( n + 2 )  (18) 

A ( m  + 1) x r 4 x (n + 1 )  = C ( m +  1) x (n + 1) (19) 

or 

or 

Eqn. 17 is chosen as our design example. The algorithm 
is represented in detail as: 

INPUT: For i = 1,2, . . . , m + 2 

F o r j  = 1, 2, ..., n 

a:, t a: (20) 

b: + b: (21) 
c & c o  (22) 
Next j 

Next i 

COMPU: 

For i = 1, 2, ..., m + 2 
F o r j =  1,2, ..., n 

For k = 1, 2, ..., r 

c ~ ~ ~ c ~ ~ '  + ~ ~ ~ - , b , - , ~  (23) 
a:j 4- Ufj- 1 (24) 
b$ + bf- (25) 

Next k 

Next j 
Next i 

OUTPUT: 

Cij t C i j  (26) 
i = 1,2, ..., m + 2; j = 1, 2, ..., n 

On this representation, the dependent vectors associated 
with the data flow stream are easily obtained from eqns. 
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23,24 and 25 respectively, 

d ,  = [0 1 0IT 

d ,  = [l 0 OIT 
d, = [O  0 13T 

The DG can easily be plotted as shown in Fig. la. On 
this DG the iterated arc is 

k = [i, j, kIT = [0 0 1IT 
The transmission arcs are 

ml = [l 0 O]T 

m2 = [o 1 0IT 

The check vector can be chosen: 

C =  [1 0 01' or [1 0 l IT or ... 
The check space is then constructed, for example 

CS= [k, C] = 0 0 [: :I 
Projection direction can be selected as iterated arc k = 
[0 0 1IT or vector independent with column space CS 
such as 

Pd= [0 1 0IT, [l 1 0IT, [l 1 1IT, ... 
(a) First, selecting Pd = v1 = [0 1 0IT, the space trans- 

formation matrix is 

0 0 0  
= 0 1 0  0 1 0  [a :HO 0 o: 

=[: ; 3 
S can then be extracted from the first and third rows as 

s=[' 0 0 1  O "1 
The timing schedule W =  [wl w2 w3] can be chosen 
based on the following constraints of Theorem 2: 

(i) Wd > 1 implies w1 > 1; w2 2 1; w j  2 1 
(ii) I WvjI 2 (xi 1 Mi Wv,I) + 1 implies I w2 I 2 1 

For these two inequalities, the only corner of the feasible 
set is W = [l 1 11. Combining W and S, then transform- 
ation matrix is 

.-[a i] 
According to the transformation method in Section 2, the 
array processor is then derived and shown as in Fig. 2b. 

(b) If the linear array structure is a necessary consider- 
ation, double projection has to be adopted. Suppose that 
the following two independent projection directions are 
chosen : 

Pdl = [0 1 O]'= V ,  

Pd2 = [0 0 1IT = v2  
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The space transformation can then be derived. 

0 0 0  0 0 0  
= 0 1 0 - 0 1 0 - 0 0 0  [: 1 J [o 0 J [o 0 J 
=[i ; ;] 

t 14 

C' 

6 ~ :  a ' c a  

a 
b' c b 
c' c c+ab 

b 

C 

Fig. 2 
with projection along [0 IO]' 

S can then be extracted as 

(a)  DG of matrix-matrix multiplication and (b) array processor 

s =  [l 0 01 

Timing schedule: M1 = M2 = n - 1 (defined in Theorem 
2) : 

(i) W d >  l a w l  > 1; w, > 1; w3 > 1 
(ii) I WvjI 2 (xi I M ~  W V , I )  + 1 * I  w,1 2 1 

l w ~ l > ( n - 1 ) l w 3 1 + 1  o r l w 3 1 > ( n - l ) ~ w , ~ + l  

that is 

and minimise the cost function. 

Computation time = max [ W( j, - jl)] + 1 

= (n - l )W1 + (n - l)w, 

+ (n - l)w, + 1 

The corners of the feasible set are W = [l n 11 or [l 1 n]. 
Both of these two selections have introduced equal com- 
putation time. If we arbitrarily choose W as [l 1 n], Fig. 
3 can be obtained. Comparing this to the array processor 
of matrix-vector multiplication of Hwang [4], his design 
is just like Fig. 3. However there B is a vector instead of a 
matrix. 

(c) If another projection pair 

Pd, = [0 0 1IT Pd, =[1 p 01' O < p < n  

is chosen, a linear structure called 'p-diagonalisation' 
[24] can be derived. 
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4.2 Given reduction 
The givens reduction is an important matrix arithmetic 
algorithm in the least-squares solution, the eigenvalue 

- - - - 
: C l l m m  t=4 - - - 

= t=5 

= t:6 

= t=? 

- - . -c  -2 1 7 - c21- 
- - 

- - - 

- : -:41- 
- 

= C  = W~Y:-:-~-C~~- t=a 

43 

Fig. 3 Array processor of matrix multiplication after double projection 

calculation and singular-value decomposition, which are 
quite useful in applications such as beamformer, target 
tracking and Kalman filter. Its WCC form of the algo- 
rithm is 

A m  x ( n  + 1) + Rn x (n + 1) (27) 

INPUT: U$ = aij (28) 

and can be represented as follows : 

i =  1,2 ,..., r n ; j =  1,2 ,..., n +  1 

COMPU. : 
Fork  = 1, 2, ..., rn 

For i = k, k + 1, ..., rn 
F o r j  = k, k + 1, ..., n + 1 

a!. t j  = a!.- t j  'ck. 11-1 - 1!-1js!j-1 

I f j  = u;;lc;j-l + l;-ljc;j-l 

(29) 

(30) 

I;- 1 j / [ ( l ; -  1 j ) z  + (U;; 1)2] 1'2 

a;; 1/[(l;- 1 j ) z  + (U;; 1)2] 

i f j  = k (31) 
c"-, otherwise 

[$j-l otherwise 
i f j  = k (32) 

Ck. = 

sk. = 

Next j 

Next i 

Next k 

OUTPUT: rkj = I",. (33) 
j =  1,2 ,..., n +  l ; k =  1,2 ,..., rn 
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In this representation, the dependent vectors associated 
with the data flow stream can be obtained. 

Since W = [l 1 13 

T=[% a] d, = [O 0 13' 

d,  = [l 0 O-JT 

d, = ds = [0 1 01' The array processor can then be obtained, as shown in 
Fig. 5. DG is plotted in Fig. 4. In the DG, the iterated arcs are 

k l  = [O 0 11' k 2 =  [l 0 01' 

a d b 

a' - -a  a' <-- ac + ds a' <-- ac + bs 

d'+-  dc-  as 
c' <-- c 
5' <-- s 

c a-- a/(a2*b2)'/' 
s < -- b/( a% b')"' 

Fig. 4 DG of Givens reduction 

and the transmission arcs are 

m = [0 1 OIT c = [O 1 01' 

Check spaces are 

cs, = [k ,  c] = 0 1 [: J 
cs, =[; 81 

Projection direction can be selected as an iterated arc 
k l  = [O 0 1IT or k2 = [l 0 01' or vector independent 
with column space CS, and CS, such as [l 1 l]', . . . . 

(a) First selecting v1 as [l 0 O]', the space transform- 
ation matrix and the timing schedule function can be 
derived by the same method as matrix-matrix multiplica- 
tion. 

r - 

Q P  

Fig. 5 Array processor of Givens reduction 

(b) Now, double projection is used in the example. 
Two projection directions are chosen: 

v, = [l 0 01' 

v, = [O 0 13T 

s= [O 1 01' 

The space transformation Scan then be obtained as 

and the structure of array processor is shown in Fig. 6. 
By Theorem 2, M, = m - 1 and M, = m - 1 
(i) WD 2 1 implies w1 2 1; w, 2 1; w3 2 1 
(4 

That is 

I Wv, I 2 (m - 1) I Wv, I + 1 or 1 Wv, I 2 (m 
- 1)I Wv,I 

IW112(m- l)lw,I + 1 or lwz l  l)lw,l + 1 
Two corners of the feasible set are W =  [ m  1 13 and 
[l 1 m]. To minimise the cost function, computation 
time = max [W( j2  - j , ) ]  + 1 = (m - l)wl + (n)wz + (m 
- l)w, + 1, W = [l 1 n] is chosen. 
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Then the transformation matrix is obtained. form instead of a rectangular form. The linear time 
schedule will introduce some null computation in the 
array processor as described in Section 2 which is shown 
in Fig. 6. Data compaction can be applied to increase the 
PE efficiency as shown in Fig. 7. 

(c) If another pair of projection direction 

Pd, = [l 0 OIT Pdz = [l 1 1IT 
is chosen, the linear array structure as presented by Jou 
[6]  can then be derived. 

6 Conclusion 

In this paper we have presented a systematical design 
methodology for a fault-tolerant array processor. By the 
methodology, an algorithm of matrix computation can 
be transformed to a fault-tolerant array processor with 
different dimensions and topologies. We hope the method 
with its high flexibility for network topology, high feasi- 
bility for CAD and low overhead in hardware and time 
can promote the design of the fault-tolerant array pro- 
cessor to a system level. 
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