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研 究 生：張書豪                 指導教授：蕭子健 
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生 醫 工 程 研 究 所 

 

 

摘要 

 

 

本論文的目的在於建構一種分析法則，是一種以機率為基礎的多變數分析方

法。此新的學習法則稱之貝氏架構下部份最小平方法，綜合了廣泛應用在生物訊

號量測與分析的多變數方法中的部份最小平方法以及正則化的優點，並且導入貝

氏分析的觀點，即使資料在有雜訊的情況下，可避免過度配適的現象，得到較好

的估算結果。 

    在模擬數據分析部份，貝氏架構下部份最小平方法用來分析二種不同的波

形，另外，也提出了一假設，我們考慮資料分佈為高斯分佈與一般分佈是否會造

成整體分析效能的不同，利用正切函數來針對資料進行轉換，並以均方根誤差及

相關係數來做為判定的標準說明貝氏架構下部份最小平方法可得到較好的結

果。得到一具有雜訊消除的分析方法，並於未來將之應用於生醫訊號量測分析上。 
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Abstract 

 

 

The main purpose of this thesis is to develop a method of analyzing. It is the 

probability-based multivariate analysis method, names as Bayesian-based partial least 

squares (Bayesian-based PLS). It combines the advantages of PLS which is widely 

used method in biomedical spectroscopic analysis, regularization technique and the 

Bayesian analysis to provide an efficient procedure to avoid the circumstance of 

overfitting and attain better results when calibrating under noisy data. 

In the simulated experiments, Bayesian-based PLS is applied to analyze two 

different kinds of simulated waves. Besides, we also make an assumption to consider 

data with Gaussian distribution and uniform distribution. We examine these two cases 

to know which is better for analyzed results. The tangent function is used for transfer 

function. According to estimated standard of root mean square error and correlation 

coefficient, proving that Bayesian-based PLS has better analyzed performance. In the 

future, we will apply the proposed method which is able to reduce noise signal to 

Bio-signal measurement and analysis. 
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Chapter 1  

Introduction 
 

1.1 Motivation 
 

In 1998, Hsiao et al. proposed a similar conceptual architecture of Partial Least 

Squares (PLS) and Backpropagation Networks (BPN) [12]. This is a first time to 

compare the training procedure and investigate the physical meaning of BPN from 

PLS. Although PLS can be treated as special solution of BPN and be also used as 

initial weights for BPN in 2003 [1], the adaptive and momentum properties of BPN 

are still unclear from PLS. The over-fitting problem is not solved at BPN training. 

Regularization technique is one kind of methods to deal with over-fitting and 

under-fitting problem. In 2008, Chang et al applied the regularization technique to 

construct the PLS and proposed a novel method, Partial Regularized Least Square 

(PRLS), to noise reduction application [3]. To go a step further, I would like to 

discuss the different regularized methods with different input data distribution. If it’s 

possible, I would also like to make a fundamental proof in mathematics between the 

two different scales of total squared error and vary of weighting coefficients 

respectively. 

In this thesis, the regularization concept by multiply regularized parameterλ

will be adopted to put these two criterion together for finding the appropriate relation. 

The Bayes’ rule is also applied to evaluate the evidence for finding the best choice of 

regularized parameter λ [4]. In order to compare proposed PRLS in 2008, a 

probability-based analysis method by combining PLS is named as Bayesian-based 

PLS. 
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1.2 Literature study 

 

Multivariate analysis methods are successfully applied to signal processing, 

widely used in many fields including spectrum analysis [5], bio-signal process [6], 

image processing [7], and etc. In general, the learning procedure of multivariate 

analysis methods can be separated into three types, i.e. deterministic, iterated, and 

hybrid algorithms. The method with deterministic algorithms is also called regressor 

model. The widely used regressors are Least Squares (LS), Principal Component 

Analysis (PCA) [8] and Partial Least Squares (PLS) [9]. The method with iterated 

algorithms is usually adopted in Artificial Neural Network (ANN). Multi-Layer 

Perceptron (MLP) which is the most practical model in ANN is typically used in 

supervised learning problems [10].The results of multivariate analysis methods obtain 

from regressor model is deterministic, but the results obtain from ANN model is  

iterative to get the optimal solution. 

However it has a main drawback which PCA lacks for information about which 

principal components are important for desired output and how many components are 

needed to compress the input data. Oja [8], [11] proposed PCA to reduce the 

dimension of input data by K-L transformation. PLS is a calibrated regression in 

common use and it can compress the input data and solve the main drawback of PCA. 

But PLS estimation suffers from overfitting is more serious than PCA [8]. Hsiao 

proposed a novel concept to combine the advantages of deterministic and iterated 

algorithms, i.e. PLS and BPN respectively [12], It’s the first time to treat PLS as a 

three-layer ANN structure, prove the PLS as a special solution of general delta rule 

(GDR), and investigate the weights meaning Hsiao also adopted the PLS results as 

weights initialized method of BPN to get the near global minimum [1]. This novel 

hybrid algorithm of multivariate analysis method is PLS-BPN. The results of 
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PLS-BPN show that it’s fast converge into a near global minimum than PLS and  

BPN. The research tracing diagram will be illustrated in Figure 1.2. 

Figure 1.1 illustrates a brief concept of data modeling process. The process is 

started by gathering data and creating models to specify the data that we operate. It 

includes two levels of inference. The first level is model fitting; we fit each model to 

the data. In this level, the task is to infer what the free parameters of each model 

might be given the data. The second level is model comparison; we assign preferences 

to the alternative models. After these two levels of inference, we can have some 

useful information to make decision. 

 

 

Figure 1.1 The concept of inductive inference 
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Chen [13] proposed Orthogonal Least Squares (OLS) based on radial basis 

function network (RBFN) also suffered from the same situation. By adopting the 

regularization technique, Chen [2] also constructed Regularized Orthogonal Least 

Squares (ROLS) to solve the problem of overfitting. Chang [3] regard PLS as three 

layer network in order to add regularization term into the structure. Following the 

architecture of ROLS method, we modify the PLS by combining the advantages of 

regularization to establish a novel calibrated model, names Partial Regularized Least 

Squares (PRLS). And we apply PRLS to analyze the data for noise reduction 

application. We improve the accuracy better than PLS under influence of noisy 

training data. 

In recently research, we further consider the concept of Bayes’ rule in our study 

[4]. In probability, Bayes’ rule shows how one conditional probability, such as the 

probability of a hypothesis given observed evidence, depends on its inverse; here it 

means the probability of that evidence given the hypothesis. It is common to think of 

Bayes’ rule in terms of updating our belief about a hypothesis A in the light of new 

evidence B. Specially, the posterior probability B)|P(A is calculated by multiplying 

the prior probability P(A) by the likelihood probability A)|P(B that event B will occur 

if event A is true. The formula of Bayes’ rule is shown as below： 

P(B)
P(A)A)|P(BB)|P(A =                      (1-1) 

Here B)|P(A denotes the posterior probability, A)|P(B is likelihood probability,  

P(A) is prior probability and P(B) is the evidence probability. 
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Figure 1.2 Research tracing diagram 
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1.3 Related work 
 

1.3.1 Regularization 
 

 In many fields of mathematics, regularization technique has been used to solve 

ill-posed problem or avoid over-fitting problem [2] [15]. In regularization technique, 

the error function is minimized which depends on the network weights as well as the 

fit error [15]. In the recent study (Orr 1993), it has applied zero-order regularization 

technique to construct RBF networks. The zero-order regularization is equivalent to 

simple weight-decaying in gradient descent method for MLP neural network [16]. A 

theoretical reason for regularization is that it makes an effort to impose Occam’s razor 

on the solution. From a Bayesian point of view, many regularization techniques 

correspond to imposing certain prior distributions on model parameters. 

 However, zero-order regularization, though dominated by better methods, 

demonstrates most of the basic ideas that are used in inverse problem theory. In 

general, let us define 0][ >uA and 0][ >uB be two positive functionals of u, so we  

can try to determine u by either： 

Minimize： ][uA  or ][uB  

The first, A , measures something like the agreement of a model to the data (e.g., χ2), 

denote the agreement between data and solution, or “sharpness” of mapping between 

true and estimated solution. And B measures something like “smoothness” of the 

desired solution, means the smoothness or stability of the solution. 

 In summary, regularization is Lagrange multiplier equation combines with a 

quadratic constraint to minimize the weighted sum ][][ uu BA λ+  and lead to a 

adequate solution for u . Here, λ is the regularized parameter. The constant λ 

adjudicates a delicate compromise between the two subjects. 
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 Figure 1.3 illustrates the trade-off curve between agreement A and smoothness B . 

Almost all inverse problem methods involve a trade-off between two optimizations.  

So, we want to select an appropriate parameter to control the trade-off curve and find  

the best solutions from all achievable solutions have shown as below. 

 

 

 

 
Figure 1.3 Trade-off curve [14] 
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1.4 Thesis Organization 
 

The structure of the thesis is described as follow. The first chapter gives an 

introduction and the motivation for my research. Next section, in chapter 2 we depict 

some calibration models, Bayesian analysis, and Bayesian regularization in my study. 

In chapter 3, we will make some discussion between Bayesian regularization and PLS. 

Later, we propose a novel calibration model, names as Bayesian-based PLS, by 

combining PLS with the concept of Bayes’ rule and regularization technique. Chapter 

4 shows the simulation experiment results. Then, we will make some discussions in  

chapter 5 Conclusions and future works are listed in the final chapter. 
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Chapter 2  

Materials and Methods 
 

2.1 Least Squares (LS) 
 

The least squares (LS) method is used to approximate the parameters and find 

the best fitting curve to fit the given data. Classic LS regression has minimum sum of 

squared residuals between data set and estimation. Suppose the linear model is given 

b y  niaxaxaxaxf mimiii ,,2,1,)( 22110 KL =++++= .  T h e  L S 

method use this model to approximate the given set of data. And the sum of squared  

error (SSE) is calculated as below： 
2

1
22110

2

1

))(())((SSE ∑∑
==

++++−=−=
n

i
mimiii

n

i
ii axaxaxayxfy L      (2-1) 

and we get the partial differential equations for each ja ,the derivation is： 

0)())((2SSE
1

22110 =−++++−=
∂ ∑

=
ij

n

i
mimiii

j

xaxaxaxay
a

L              (2-2) 

where mj ,,2,1 K=  

 We also can illustrate LS method to a two-layer ANN architecture shown as 

Figure 2.1. And we transform the data set to matrix form. Then matrix X represents 

the input data ][ 321 mxxxx L=X  ; ][ 321 nmmmmm xxxxx L= , real 

output TY ][ 321 nyyyy L= and weight coefficient Ta ][ 321 maaaa L= . 

 

The LS procedure in matrix form is defined as： 

                       ε+= XaY   (2-3) 
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We calculate the weighting coefficients due to (2-3). 

XaXYX TT ≈     (2-4) 

Y)(XX)(Xa T1T −≈                        (2-5) 

 

 

 

 
Figure 2.1 Two-layer architecture of LS method 
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2.2 Partial Least Squares (PLS) 

 
 PLS is a method which the most widely used in biomedical spectroscopic 

analysis. It is a popular technique that generalizes and combines features from 

principal component analysis (PCA) and multiple regressions. The purpose of PLS is 

to predict or analyze a set of dependent variables from a set of independent variables 

or predictors. PLS regression is mainly useful when we have to predict a set of 

dependent variables from a large set of independent variables. It is used to find the 

fundamental relations between two matrices (X and Y), i.e. a latent variable approach 

to modeling the covariance structures in these two spaces. A PLS model will try to 

find the multidimensional direction in the X space that explains the maximum  

multidimensional variance direction in the Y space. 

 We will illustrate the general underlying model of multivariate PLS as follow 

and show you the architecture of multivariate system if we treat PLS as a three-layer  

ANN network. 

The independent variable matrix mn×X  decomposed into matrix an×T  with 

corresponding weighting matrix ma×P  and dependent variable matrix 1×nY  can be 

decomposed into matrix an×T  with corresponding weighting matrix 1×aQ . The 

mathematic form is represented as follows： 

 

EXXXX ++++=×
)()2()1( a

mn L  

      Eptptpt ++++= aaL2211  

             EPT += ×× maan              (2-6) 
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FYYYY ++++=×
)()2()1(

1
a

n L  

  Fttt ++++= aaqqq L2211  

                  FQT += ×× 1aan                         (2-7) 

 

 From the formula (2-6) and (2-7) above, we also can illustrate the mathematic 

relation for computing PLS in Figure 2.2. It shows the regression steps how PLS 

decomposed. 

 

 

 
Figure 2.2 The computational procedure of PLS 
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After derivative, we exactly find out the residual matrix mn×E  and 1×nF  are 

minimized through the course of decomposing the matrix X  and Y .When 

computational iteration equation to a ( na ≤ ) or the residual small than a minimum,  

PLS procedure would terminate. 

    Ham [17] and Hsiao [12] bring up an idea which regards PLS as one kind of 

artificial neural networks. In the purpose, transformation between independent and 

dependent variables can be represented as three-layer ANN architecture. It is shown 

as Figure 2.3. And the PLS learning procedure will be illustrated in Figure 2.4. 

 

 
Figure 2.3 Three-layer architecture of PLS method 
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Figure 2.4 PLS learning flow chart 
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2.3 Bayesian analysis 
 
 Bayesian refers to methods in probability and statistics named after the Reverend 

Thomas Bayes. Bayesian methods for inductive inference were first developed in 

detail early this century by the Cambridge geophysicist, Sir Harold Jeffreys [18]. 

Bayesian inference is the statistical inference in which evidence or observations are 

used to update or to newly calculate the probability that a hypothesis might be true. 

Bayesian inference uses a numerical estimate of the degree of belief in a hypothesis 

before evidence has been observed and calculates a numerical estimate of the degree 

of belief in the hypothesis after evidence has been observed. The fundamental concept 

of Bayesian analysis is that the plausibilities of alternative hypotheses are represented 

by probabilities, and inference is performed by evaluating those probabilities. 

 In David J.C. Mackay proposed paper [4], the Bayesian approach to 

regularization and model-comparison is clarified by studying the inference problem of 

interpolating noisy data. The concepts and methods described are quite general and  

can be applied to many other data modelling problems. 

In his study, we can examine the posterior probability distribution to set the 

regularized constants. The way in which Bayes infers the values of regularized 

constants and noise levels has an elegant interpretation in terms of the effective  

number of parameters determined by the data set. 

Two levels of inference are involved in the task of data modelling. Figure 2.5 

will show you where Bayesian inference fits into the data modelling process and 

illustrate an abstraction of the part of the scientific process in which data is collected 

and modelled. At the first level of inference, we assume that one of the models we 

created is true, then we fit the model to the data. And the second level of inference is 

the model comparison. The two double-framed boxes denote the two steps which 
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involve inference. However, Bayes’ rule can only be used in these two steps. Bayes’ 

rule may be used to find the most probable parameter values and the error bars on 

these parameters. The second inference task requires a quantitative Occam’s razor to 

penalise overcomplex models. Bayes can assign objective preferences to the 

alternative models in a way that automatically and quantitatively embodies Occam’s 

razor [18][19]. Complex models are automatically self-penalizing under Bayes’ rule. 

 

 

Figure 2.5 Data modeling process [4] 
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 Model comparison is a difficult task because it’s not possible simply to find the 

best model that fits the data set. Occam’s razor is the principle that states that the 

explanation of any phenomenon should make as few assumptions as possible, 

eliminating those that make no difference in the observable predictions of the 

explanatory hypothesis. A problem should be stated in its basic and simplest form. 

 

 

Figure 2.6 Why Bayes embodies Occam’s razor [4] 

 

 The Figure 2.6 shows the intuition for why complex models penalized. Bayes’ 

rule rewards models according to how well they predict actual data. These predictions 

are quatified by a normalized probability distribution on data sets D and this 

probability, )|( iHDP , is known as the evidence for iH . A simple model 1H  makes 

only a limited range of predictions, )|( 1HDP ；a more powerful model 2H that has 

more free parameters than 1H , is able to predict a larger variety of data sets. However, 

this means that 2H can not predict the data sets in region 1C as strongly as 1H . Assume 

that the two models have been assigned the equal prior probabilities. Then if the data 

set falls in region 1C , the less powerful model 1H will be the more probable than to the  

model 2H . 

D 
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Let us write down the Bayes’ rule for the two levels of inference so that we can  

examine explicitly how Bayesian model comparison works. 

 Model fitting：At the first level of inference, we assume that one model iH is true, 

we infer what the model’s parameter w might be given the data D .Using Bayes’ rule,  

the posterior probability of the parameter w is： 

 

     )|(
)|(),|(),|(

i

ii
i HDP

HwPHwDPHDwP =               (2-8) 

 
And we also can rewrite this formula in words：   

 

              Evidence
PriorlikelihoodPosterior ×

=  

 
 Model comparison：At the second level of inference, we infer which model is 

the most sensible give the data. And the posterior probability for each model is  

defined as： 

 

               )()|()|( iii HPHDPDHP ∝                (2-9) 

 
Assuming that we have no reason to assign strongly differing priors )( iHP to the 

alternative models, models iH are ranked by evaluating the evidence. New models are  

compared with previous by evaluating the evidence for them. 

 Let us explicitly study the evidence to gain insight into how the Bayesian 

Occam’s razor works. The evidence is the normalizing constant for equation (2-8)： 

 

               dwHwPHwDPHDP iii )|(),|()|( ∫=         (2-10) 
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 Figure 2.7 shows the quantities that determine the Occam factor for hypothesis 

iH  having a single parameter w .The dotted line that represented the prior distribution 

for the parameter has width w0Δ . The solid line that represented the posterior 

distribution has a single peak at MPw with characteristic width wΔ . The Occam factor  

is
w
w

0Δ
Δ . 

 

 

Figure 2.7 The Occam factor [4] 

 

Therefore the evidence is evaluated by taking the best fit likelihood and multiplying it 

by the Occam factor. 

 

 

        

factorOccamlikelihoodfitBestEvidence

                                                    
)|(),|()|( MPMP

≅

Δ≅

44344214434421                       
wHwPHwDPHDP iii

       (2-11) 
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The quantity wΔ is the posterior uncertainty in w . Imagine for simplicity that the prior 

)|( iHwP is uniform on some large interval w0Δ , representing the range of values of w  

that iH thought possible before the data arrived. Then
w

HwP i 0MP
1)|(
Δ

= . The log of 

the Occam factor can be interpreted as the amount of information we gain about the 

model when the data arrive. Comparison of evidence, )|( iHDP , provides a purely 

objective way to rank hypotheses. Evaluation of evidence is an extension of 

maximum likelihood model selection：multiply the best fit likelihood by the Occam 

factor. No more computationally difficult than finding the best fit parameters. The 

Occam factor automatically penalizes a model which requires fine tuning of its 

parameters. It promotes models where the required precision of its parameters is  

coarse. 
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2.4 Bayesian regularization 
 

 In this section, we will introduce the Bayesian regularization and examine the 

probability distribution to set the regularized parameterλ. The selection of 

regularized parameterλis the key concept of our method. So we adopt Bayesian 

analysis to infer the optimal value ofλ. To infer from the data what valueλshould  

have, we evaluate some probability distribution. 

 As mentioned earlier, we add the concept of regularized technique to PLS and  

rewrite the new error criterion as： 

               0, ≥+= λλ qqee TT
eE                 (2-12) 

Where eeT means the total sum of squared error and qqT is the weighting vector which 

infers the output directly. However, original PLS calibration reduces the total error as 

far as possible but if there has noisy signal (outlier) in the training data, the prediction 

may fit to the noisy data. So the predicted accuracy will be poor for the unseen data.  

Vary of weighting coefficients qqT controls the covariance for two variables. 

 As shown in section 1.3, Figure 1-2 gives a briefly interpretation for error 

criterion and regularized parameterλ . The regularized parameterλ is added to the 

term to make the calibration curve smooth without oscillating. The Bayesian-based 

PLS keeps the balance between smoothness of curve and accuracy in calibration 

phase. 
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Chapter 3  

Bayesian-based PLS 

 

 In this chapter, we establish a novel analyzed method, Bayesian-based PLS, by 

applying Bayesian approach to PLS method. An elegant approach to the selection of 

the regularization parameter is to adopt Bayesian interpretation and evaluate the 

evidence probability to find the best value of regularization parameter. The evidence  

procedure we adopt is to calculate the probability ),,|( HDP βα . 

 

3.1 Data preprocessing 
 

 In computer science, Data preprocessing describes processing performed on the 

raw data to transform it to another processing procedure. The result after data 

preprocessing is the final training data set. Data preprocessing transforms the data to a 

new type that will be more easily and effectively processed for the purpose of the user. 

There are many different widely used methods and techniques for data preprocessing, 

including sampling, cleaning, normalization, transformation, denoising, feature 

extraction and selection, etc. The sampling is the process of selecting a representive 

subset from a large population of data. The transformation is usually applied so that 

the data appear to more closely meet the assumptions of a statistical inference 

procedure that is to be applied. The denoising is the method that eliminate the noise 

from the source data. The normalization, which organizes data more efficient to 

access and more normal, which typically means conforming to some regularity or rule, 

or returning from some state of abnormality and feature extraction is a process of 

dimensionality recduction. It projects a data set with higher dimensionality onto a 
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smaller number of dimensions. As such it is useful for data visualization, since a 

complex data set can be effectively visualized when it is reduced to smaller  

dimensions. 

 In our study, we make the assumption for considering data preprocessing 

procedure into our method. Transformation is adopted to make the training data set to 

another form. Here the tangent sigmoid function is selected and shown in Figure 3.1. 

 

 
Figure 3.1 Tangent sigmoid function 

 

 For constructing our three-layer architecture of Bayesian-based PLS, the data 

preprocessing procedure had been added between input and hidden layer and the flow 

chart has shown in Figure 3.2. In Figure 3.2, the original data X was generated with 

uniform distribution. After tangent function transferring, we obtain new form of 

data 'X . The probability density function (PDF) of 'X  is Gaussian distribution or  

normal distribution.  
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Figure 3.2 The flow chart of data preprocessing 



 25

3.2 Bayesian-based PLS algorithm 
 

 The assumption we made is to consider different kinds of probability density 

function and try to find out the relation between maximum covariance and minimum 

sum of squared error for them. In original PLS three-layer ANN architecture, it 

searches the maximum variance between input and hidden layer and finds the 

minimum sum of total squared error between hidden and output layer. Here we define  

the total data misfit function as： 

                  WD EEM βα +=                            (3-1) 

DE is the residual squared error function and WE is commonly refered to as a 

regularizing fucntion. In order to find the optimal value forλ, the regularized 

parameter, we apply Bayesian interpretation and calculate the best value forλby 

using the evidence procedure, an approximate Bayesian scheme reviewed in Mackay 

[4]. Using Bayes’ rule, we get the posterior probability of the parameter w is the 

fomula (2-8). Now that we want to evaluate the evidence find the value ofλ. We  

define the probability of the data given the parameter w is： 
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and a prior probabilily on the parameter w is： 
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And if α andβ are known, then the posterior probability of the parameter w is： 
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From above formulas and given some hypotheses, we evaluate the evidence for βα , . 

We have the formula (3-5) as： 

            )()(
),(),,|()|(
βα

βαβα
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M
ii ZZ

ZHDPHDP ==               (3-5) 

Thus we can write the log evidence forα andβ as： 
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Then we differentiate the log evidence, from (3-6), with respect toα and β so as to 

find the condition that is satisfied at the maximum. We can obtain derivation for  

differentiating with respect toα andβ from formula (3-6). 
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First, we differentiate the log evidence with respect toα and get, setting the derivation 

to zero： 

           γαα −=−= − nTracenE D )(2 BA 1
         (3-7) 

And then, we differentiate with respect toβ . 
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We obtain the following condition for the most probable value ofβ ： 
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According to (3-7) and (3-8), we rewrite the new error criterion as： 

                 qqee ΤΤ λβα +≈+= WD EEM                (3-9) 
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Following that, we can find the correct value to use forλby given an initial value of

λ(λ 0≥ ) in the following iterative procedure. The value ofλis updated by the  

formula as follows： 
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Chapter 4 

Experiments and Results 

 

 In this chapter, we will demonstrate the simulation experiment results including 

sigmoid function, Gaussian-based spectrum and data preprocessing. In our simulation 

data experiments, the results shows the analyzed performance are nearly between 

Bayesian-based PLS and PRLS and they all have better performance than original  

PLS. 

 

4.1 Illustration 
 
4.1.1 Synthesized simulation data 
 
 In simulation data calculation, we use synthesize testing data with noise to 

examine the efficiency of our method. We add the noise generated by Gaussian 

probability density function with zero mean and set the value of standard deviation, so 

as to vary the level of noise. The noise to signal (N/S) ratio is also used to set up a 

standard of the variation. Given a signal data set isignal  and Gaussian noise data set 

inoise  with zero mean, ni ≤≤1 .  

The mean of signal and noise data set are： 
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The variance of the signal and noise data set are： 
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The noise to signal (N/S) ratio is 

                    
)(
)(

ratio  
signalVar
noiseVar

S
N =                       (4-3) 

 
4.1.2 Criterion of estimation 
 

 Here we use two familiar estimators to verify the performance of our method. 

One of them is root mean square error (RMSE). RMSE is one of many ways to 

quantify the amount by which an estimator differs from the true value of the quantity 

being estimated like as a loss function. The other one is correlation coefficient which 

indicates the strength and direction of a linear relationship between two variables. The 

correlation coefficient is a value between 0 and 1. It is a measure of how well trends 

in the predicted values follow trends in past actual values. Following, we illustrate the  

concept of correlation coefficient in Figure 4.1. 

 

 

Figure 4.1 A sketch map of correlation coefficient 
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Given a set of observations ),(,),,(),,( 2211 nn yxyxyx K , the formula for computing the 

correlation coefficient is given by： 

                  ∑ −−
−

= ))((
1

1

Yx

YYXX
SSn

r                (4-4) 

 

 

Figure 4.2 Root mean square error 

 

Figure 4.2 shows that the main concept of RMSE is to calculate the average of the 

distance between prediction and desired output data. To acquire accurate prediction,  

we hope that RMSE minimizes as far as possible. 
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4.1.3 Conditional training 
 

 Here we also calibrate the training data in different conditions ： (1) 

self-calibration and self-prediction (SCSP) and (2) cross validation (CV). In order to 

understand easily what is difference between SCSP and CV. We use diagrams to 

illustrate. Figure 4.3 shows the principle of SCSP and Figure 4.4 shows CV. 

    SCSP is a traditional training mode and the training data set is also prediction 

data set. Usually the result of SCSP is ideal if there is no noise hidden in the source 

data. However data usually goes along with noise and SCSP would be influenced by 

hidden information so that results may not necessarily meet to desire.  

CV is also called leave one out method because we select a validation data from 

original training data set and repeat until each observation in the set is used as 

validation data. The method also has the property of avoiding overfitting but costs 

heavy computation. Next, we will compare regularization technique and CV in 

simulation and real data experiments. 
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    Figure 4.3 Self-calibration and self-prediction (SCSP) 
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Figure 4.4 Cross validation (CV) 
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4.2 Simulation data 
 

 In this section, we will generate sigmoid function, Gaussian-based spectrum data 

and preprocessing procedure under SCSP and CV condition. We calibrate these 

different kinds of data set. After predicting, we apply the criterion of estimation to 

examine which one is better among PLS, PRLS and Bayesian-based PLS methods. 

 

4.2.1 Sigmoid function 
 

 In this simulation, we use hybrid of sine and cosine function to examine. 

              π20),cos()sin()( ≤≤+= xxbxaxf iiiii               (4-5) 

The training data were generated from iixf ε+)( , where ix has take from the uniform 

distribution in (0,2π) and the noise iε had a Gaussian distribution with zero mean. The 

training data and the sigmoid function )( ixf are plotted in Figure 4.5. The training 

data is highly ill-conditioned. 

 

 

Figure 4.5 Noisy data (points) and sigmoid function (curve) 
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Figure 4.6 RMSE as a function of N/S ratio under SCSP (PRLS) 

 

Figure 4.7 RMSE as a function of N/S ratio under SCSP (Bayesian-based PLS) 
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Figure 4.8 RMSE as a function of N/S ratio under SCSP (PLS) 

 

Figure 4.9 Correlation coefficient as a function of N/S ratio under SCSP (PRLS) 
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Figure 4.10 Correlation coefficient as a function of N/S ratio under SCSP (Bayesian-based PLS) 

 

Figure 4.11 Correlation coefficient as a function of N/S ratio under SCSP (PLS) 
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Figure 4.12 Prediction error sum of squares (PRESS) under CV 
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4.2.2 Gaussian-based spectrum 
 
 We would like to generate two Gaussian functions )(xg with mean = 510 and the 

standard deviation =15, )(xh with mean = 540 and the standard deviation = 10. )(xf  

is the linear combination of )(xg and )(xh plotted in Figure 4.13. 

 

 

 

Figure 4.13 The linear combination of two Gaussian functions with different mean  

                and standard deviation. 

 

 

The training data set ε+iX can be generated by linear combination of g(x) and h(x) 

with Gaussian noiseε . The training data set will be represented in Figure 4.14. 
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Figure 4.14 The training data set of Gaussian-base spectrum 

 

Next, we will show the experiment results of calibration as follows. We can compare 

the analyzed performance with these three methods. 

 

Figure 4.15 RMSE as a function of N/S ratio under SCSP (PRLS) 
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Figure 4.16 RMSE as a function of N/S ratio under SCSP (Bayesian-based PLS) 

 

Figure 4.17 RMSE as a function of N/S ratio under SCSP (PLS) 
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Figure 4.18 Correlation coefficient as a function of N/S ratio under SCSP (PRLS) 

 

Figure 4.19 Correlation coefficient as a function of N/S ratio under SCSP (Bayesian-based PLS) 
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Figure 4.20 Correlation coefficient as a function of N/S ratio under SCSP (PLS) 

 

 

Figure 4.21 Prediction error sum of squares (PRESS) under CV 
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 From our experiment results, we can find out both Bayesian-based PLS and 

PRLS have better performance than PLS, and the analyzed result of Bayesian-based 

PLS is nearly to PRLS whether the prediction is under SCSP condition. The Figure 

4.12 shows the CV result, we can realize that Bayesian-based PLS is not better than 

PRLS. We think that the result might be influenced by the selection of prior and the 

data we simulate. 

 

 

 

 

4.2.3 Preprocessing 
 

 In this part, we generate original training data set taken from the uniform 

distribution in (-1, 1). Then we use tangent sigmoid as a function to transfer the 

original training data set to a new one which is Gaussian-based. We make an 

assumption about whether the training data set is center distribution or more uniform 

will make better analyzed performance. They will give some illustration in following  

figures. 

 Figure 4.22 and 4.23 represent the original training data set X and the new 

training data set 'X which is transferred by tangent function respectively. 
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Figure 4.22 The original training data set X  

    

Figure 4.23 The new training data set 'X  
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Figure 4.24 RMSE as a function of FWHM under SCSP 

 

 

Figure 4.25 Correlation coefficient as a function of FWHM under SCSP 
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Chapter 5 

Discussion 
 

 For regularization concept, almost all inverse problem methods involve a 

trade-off between two optimizations：agreement between data and solution, and 

smoothness of the solution. We define that the unconstrained minimum of agreement 

and the unconstrained minimum of smoothness is the best solution. Figure 5.1 will 

give you a brief thought about that. Here, we have a question for how to define or find 

out the location of the best solution between “Best smoothness” line and “Best  

agreement” line. 

 

 

Figure 5.1 Where is the best solution 

 

 The estimated criterion RMSE and correlation coefficient would involve a 

trade-off relationship. In our data experiment results, we hope the RMSE is low and 

correlation coefficient is high to verify our proposed method. So, we need some 
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verification to explain this problem. We make a assumption that our proposed method 

and PLS may have different curves as shown in Figure 5.2. In further study, we will  

have a fundamental proof for this issue.  

 

 

Figure 5.2 Trade-off curves of Bayesian-based PLS and PLS 

 

 The preprocessing result, we transfer the original data set to Gaussian form to 

examine whether the performance is better or not. We make different widths for 

FWHM to verify our proposed method. But we could obviously find out the 

hypothesis for data preprocessing doesn’t accomplish to our expectation. The results 

after preprocessing might be influenced by the limitation of tangent function. The data 

after tangent function transferring may be divergent so that the analyzed results would  

be affected for this reason. 

 The local and global minimum problem is another issue we concern. We would  

like to find the best solution to approximate nearly global minimum.  



 48

Chapter 6 

Conclusions and Future works 
 

6.1 Conclusions 
 

 We have established a probability based analyzed method which combines the 

advantages of regularization and the properties of PLS for a novel calibration model. 

The proposed method, Bayesian-based PLS, is able to reduce the noise signal hidden 

in the training data. And it has better analyzed results than original PLS method when 

training data accompanying noise signal during calibration phase. So we can apply  

our method to on-line analyzed system for further application. 

 

6.2 Future works 
 

 In data preprocessing issue, we might to make tries for other kinds of transfer 

function (e.g., arcsine function) to make sure the data divergent problem and improve 

the limitation of transformation accuracy to obtain better performance for further 

study. The track of best solution between the agreement and smoothness is our next 

objective to achieve. Then, we also consider to make the results approximated to the 

global minimum so that we can apply the proposed method for weights initialization  

of backpropogation network. There still have another issue we have to take into 

account. The selection of appropriate prior would probably affect the analyzed result. 

So we need to make a study about the prior probability to make sure that we don’t  

have a bad or wrong one.  
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