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Bayesian-based Partial Least Squares Method

Student : Shu-Hao Chang Advisor : Tzu-Chien Hsiao

Institute of Biomedical Engineering

National Chiao Tung University

Abstract

The main purpose of this thesis-is to develop a method of analyzing. It is the
probability-based multivariate analysis method, names as Bayesian-based partial least
squares (Bayesian-based PLS). It. combines the advantages of PLS which is widely
used method in biomedical spectroscopic analysis, regularization technique and the
Bayesian analysis to provide an efficient procedure to avoid the circumstance of
overfitting and attain better results when calibrating under noisy data.

In the simulated experiments, Bayesian-based PLS is applied to analyze two
different kinds of simulated waves. Besides, we also make an assumption to consider
data with Gaussian distribution and uniform distribution. We examine these two cases
to know which is better for analyzed results. The tangent function is used for transfer
function. According to estimated standard of root mean square error and correlation
coefficient, proving that Bayesian-based PLS has better analyzed performance. In the
future, we will apply the proposed method which is able to reduce noise signal to

Bio-signal measurement and analysis.
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Chapter 1

Introduction

1.1 Motivation

In 1998, Hsiao et al. proposed a similar conceptual architecture of Partial Least
Squares (PLS) and Backpropagation Networks (BPN) [12]. This is a first time to
compare the training procedure and investigate the physical meaning of BPN from
PLS. Although PLS can be treated as special solution of BPN and be also used as
initial weights for BPN in 2003 [1], the adaptive and momentum properties of BPN
are still unclear from PLS. The over-fitting problem is not solved at BPN training.
Regularization technique is “one kind of methods to deal with over-fitting and
under-fitting problem. In 2008, Chang et al applied the regularization technique to
construct the PLS and proposed a novel method, Partial Regularized Least Square
(PRLS), to noise reduction application.[3].-To go a step further, I would like to
discuss the different regularized methods with different input data distribution. If it’s
possible, I would also like to make a fundamental proof in mathematics between the
two different scales of total squared error and vary of weighting coefficients
respectively.

In this thesis, the regularization concept by multiply regularized parameter A
will be adopted to put these two criterion together for finding the appropriate relation.
The Bayes’ rule is also applied to evaluate the evidence for finding the best choice of
regularized parameter A [4]. In order to compare proposed PRLS in 2008, a
probability-based analysis method by combining PLS is named as Bayesian-based

PLS.



1.2 Literature study

Multivariate analysis methods are successfully applied to signal processing,
widely used in many fields including spectrum analysis [5], bio-signal process [6],
image processing [7], and etc. In general, the learning procedure of multivariate
analysis methods can be separated into three types, i.e. deterministic, iterated, and
hybrid algorithms. The method with deterministic algorithms is also called regressor
model. The widely used regressors are Least Squares (LS), Principal Component
Analysis (PCA) [8] and Partial Least Squares (PLS) [9]. The method with iterated
algorithms is usually adopted in Artificial Neural Network (ANN). Multi-Layer
Perceptron (MLP) which is the most practical:model in ANN is typically used in
supervised learning problems [10].The results of multivariate analysis methods obtain
from regressor model is deterministic, but the results. obtain from ANN model is
iterative to get the optimal solution,

However it has a main drawback which PCA’lacks for information about which
principal components are important for desired output and how many components are
needed to compress the input data. Oja [8], [11] proposed PCA to reduce the
dimension of input data by K-L transformation. PLS is a calibrated regression in
common use and it can compress the input data and solve the main drawback of PCA.
But PLS estimation suffers from overfitting is more serious than PCA [8]. Hsiao
proposed a novel concept to combine the advantages of deterministic and iterated
algorithms, i.e. PLS and BPN respectively [12], It’s the first time to treat PLS as a
three-layer ANN structure, prove the PLS as a special solution of general delta rule
(GDR), and investigate the weights meaning Hsiao also adopted the PLS results as
weights initialized method of BPN to get the near global minimum [1]. This novel

hybrid algorithm of multivariate analysis method is PLS-BPN. The results of
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PLS-BPN show that it’s fast converge into a near global minimum than PLS and
BPN. The research tracing diagram will be illustrated in Figure 1.2.

Figure 1.1 illustrates a brief concept of data modeling process. The process is
started by gathering data and creating models to specify the data that we operate. It
includes two levels of inference. The first level is model fitting; we fit each model to
the data. In this level, the task is to infer what the free parameters of each model
might be given the data. The second level is model comparison; we assign preferences
to the alternative models. After these two levels of inference, we can have some

useful information to make decision.

Create models

First level of inference
Model fitting

|

Second level of inference

Model comparison

3 2

Make decision

Figure 1.1 The concept of inductive inference



Chen [13] proposed Orthogonal Least Squares (OLS) based on radial basis
function network (RBFN) also suffered from the same situation. By adopting the
regularization technique, Chen [2] also constructed Regularized Orthogonal Least
Squares (ROLS) to solve the problem of overfitting. Chang [3] regard PLS as three
layer network in order to add regularization term into the structure. Following the
architecture of ROLS method, we modify the PLS by combining the advantages of
regularization to establish a novel calibrated model, names Partial Regularized Least
Squares (PRLS). And we apply PRLS to analyze the data for noise reduction
application. We improve the accuracy better than PLS under influence of noisy
training data.

In recently research, we further consider the concept of Bayes’ rule in our study
[4]. In probability, Bayes’ rule shows how one conditional probability, such as the
probability of a hypothesis given observed evidence, depends on its inverse; here it
means the probability of that.evidence given the hypothesis. It is common to think of
Bayes’ rule in terms of updating our belief about‘a hypothesis A in the light of new
evidence B. Specially, the posterior probability P(A | B) is calculated by multiplying
the prior probability P(A) by the likelihood probability P(B | A) that event B will occur

if event A is true. The formula of Bayes’ rule is shown as below :

P(B|A)P(A)

P(A[B)= P(B) (1-1)

Here P(A | B) denotes the posterior probability, P(B|A)is likelihood probability,

P(A) s prior probability and P(B)is the evidence probability.
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1.3 Related work

1.3.1 Regularization

In many fields of mathematics, regularization technique has been used to solve
ill-posed problem or avoid over-fitting problem [2] [15]. In regularization technique,
the error function is minimized which depends on the network weights as well as the
fit error [15]. In the recent study (Orr 1993), it has applied zero-order regularization
technique to construct RBF networks. The zero-order regularization is equivalent to
simple weight-decaying in gradient descent method for MLP neural network [16]. A
theoretical reason for regularization is that it makes an effort to impose Occam’s razor
on the solution. From a Bayesian point of view, many regularization techniques
correspond to imposing certain prior distributions on model parameters.

However, zero-order regularization, though dominated by better methods,
demonstrates most of the basic. ideas that are used in inverse problem theory. In
general, let us define A[u]> 0and Bfu]> 0be two positive functionals of u, so we
can try to determine u by either :

Minimize : A4[u] or B[u]
The first, 4, measures something like the agreement of a model to the data (e.g., %),
denote the agreement between data and solution, or “sharpness” of mapping between
true and estimated solution. And B measures something like ‘“smoothness” of the
desired solution, means the smoothness or stability of the solution.

In summary, regularization is Lagrange multiplier equation combines with a
quadratic constraint to minimize the weighted sum Afu]+ A B[u] and lead to a
adequate solution foru. Here, A is the regularized parameter. The constant A

adjudicates a delicate compromise between the two subjects.



Figure 1.3 illustrates the trade-off curve between agreement 4 and smoothness B .
Almost all inverse problem methods involve a trade-off between two optimizations.
So, we want to select an appropriate parameter to control the trade-off curve and find

the best solutions from all achievable solutions have shown as below.

P

h
Best smoothness _
| Select an appropriate parameter to control the
Ll curve

| : *Best smoothness : Under-fitting

: achievable  Bes agreement : Over-fitting

I : *Best golutions  : Mininmzation of the

1\ solutions : o = oot the

| weighted sum (Equation)
|

|

|

<= Better Agreement 4

&
\I\
|
|
|
|
|
|
|
|

SE
&
e, "___ Bestagreement
A

.
L

<« Better Smoothness B

Figure 1.3 Trade-off curve [14]



1.4 Thesis Organization

The structure of the thesis is described as follow. The first chapter gives an
introduction and the motivation for my research. Next section, in chapter 2 we depict
some calibration models, Bayesian analysis, and Bayesian regularization in my study.
In chapter 3, we will make some discussion between Bayesian regularization and PLS.
Later, we propose a novel calibration model, names as Bayesian-based PLS, by
combining PLS with the concept of Bayes’ rule and regularization technique. Chapter
4 shows the simulation experiment results. Then, we will make some discussions in

chapter 5 Conclusions and future works are listed in the final chapter.



Chapter 2
Materials and Methods

2.1 Least Squares (LS)

The least squares (LS) method is used to approximate the parameters and find
the best fitting curve to fit the given data. Classic LS regression has minimum sum of

squared residuals between data set and estimation. Suppose the linear model is given

by f(x,)=a,+ x,a,+x,a,+ - +x,a,,i=1,2,...,n. The LS

m m

method use this model to approximate the given set of data. And the sum of squared

error (SSE) is calculated as below :

2

n 2 n
SSE =" (v, — f(x)== D (i~ (@g + x,8, + X 30, + - + X,,a,)) (2-1)
i=1 i=1
and we get the partial differential equations for-each a; the derivation is :

SSE ¢
a, N 22(% —(ay + X0, + X305 F- 4,4, ) —x;) =0 (2-2)

j i=1
where j=1,2,....m
We also can illustrate LS method to a two-layer ANN architecture shown as

Figure 2.1. And we transform the data set to matrix form. Then matrix X represents

the input data X=[x, x, x; - x,] ; x,=[x, X, X3, - X,], real
output Y=[y, », », - ] and weight coefficient a=[q, a, a, - a,].
The LS procedure in matrix form is defined as :

Y = Xa +¢ (2-3)



We calculate the weighting coefficients due to (2-3).
X'Y ~ X' Xa (2-4)

a~X'X)'X'Y) (2-5)

Figure 2.1 Two-layer architecture of LS method
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2.2 Partial Least Squares (PLS)

PLS is a method which the most widely used in biomedical spectroscopic
analysis. It is a popular technique that generalizes and combines features from
principal component analysis (PCA) and multiple regressions. The purpose of PLS is
to predict or analyze a set of dependent variables from a set of independent variables
or predictors. PLS regression is mainly useful when we have to predict a set of
dependent variables from a large set of independent variables. It is used to find the
fundamental relations between two matrices (X and Y), i.e. a latent variable approach
to modeling the covariance structures in these two spaces. A PLS model will try to
find the multidimensional direction 'in the X space that explains the maximum
multidimensional variance direction in the Y space.

We will illustrate the general underlying model of multivariate PLS as follow
and show you the architecture of multivariate system if we treat PLS as a three-layer
ANN network.

The independent variable matrix "X, = decomposed into matrix T, with

corresponding weighting matrix P

axm

and dependent variable matrix Y,, can be

decomposed into matrix T The

nxa

with corresponding weighting matrix Q

axl *

mathematic form is represented as follows :

X =X"+X?+...+ XY +E
=t,p, +t,p, +---+t p, +E
= TnxaP +E (2-6)

axm

11



=YV +Y? +.. 4 Y 4+ F

=t,q,+t,q,+--+t g +F
= Tnxaanl + F (2-7)

Y

nx1

From the formula (2-6) and (2-7) above, we also can illustrate the mathematic
relation for computing PLS in Figure 2.2. It shows the regression steps how PLS

decomposed.

s
1
-
~

1 m 7 N

e’
I

-

e

1 <1 n= 1

Figure 2.2 The computational procedure of PLS



E

nxm

After derivative, we exactly find out the residual matrix | are

and ||an1

minimized through the course of decomposing the matrix X and Y .When
computational iteration equation to a (a <n) or the residual small than a minimum,
PLS procedure would terminate.

Ham [17] and Hsiao [12] bring up an idea which regards PLS as one kind of
artificial neural networks. In the purpose, transformation between independent and
dependent variables can be represented as three-layer ANN architecture. It is shown

as Figure 2.3. And the PLS learning procedure will be illustrated in Figure 2.4.

Figure 2.3 Three-layer architecture of PLS method

13
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Figure 2.4 PLS learning flow chart
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2.3 Bayesian analysis

Bayesian refers to methods in probability and statistics named after the Reverend
Thomas Bayes. Bayesian methods for inductive inference were first developed in
detail early this century by the Cambridge geophysicist, Sir Harold Jeffreys [18].
Bayesian inference is the statistical inference in which evidence or observations are
used to update or to newly calculate the probability that a hypothesis might be true.
Bayesian inference uses a numerical estimate of the degree of belief in a hypothesis
before evidence has been observed and calculates a numerical estimate of the degree
of belief in the hypothesis after evidence has been observed. The fundamental concept
of Bayesian analysis is that the plausibilities of alternative hypotheses are represented
by probabilities, and inference is performed by evaluating those probabilities.

In David J.C. Mackay proposed paper [4], the Bayesian approach to
regularization and model-comparison is clarified by studying the inference problem of
interpolating noisy data. The concepts and methods described are quite general and
can be applied to many other data modelling problems.

In his study, we can examine the posterior probability distribution to set the
regularized constants. The way in which Bayes infers the values of regularized
constants and noise levels has an elegant interpretation in terms of the effective
number of parameters determined by the data set.

Two levels of inference are involved in the task of data modelling. Figure 2.5
will show you where Bayesian inference fits into the data modelling process and
illustrate an abstraction of the part of the scientific process in which data is collected
and modelled. At the first level of inference, we assume that one of the models we
created is true, then we fit the model to the data. And the second level of inference is

the model comparison. The two double-framed boxes denote the two steps which

15



involve inference. However, Bayes’ rule can only be used in these two steps. Bayes’
rule may be used to find the most probable parameter values and the error bars on
these parameters. The second inference task requires a quantitative Occam’s razor to
penalise overcomplex models. Bayes can assign objective preferences to the
alternative models in a way that automatically and quantitatively embodies Occam’s

razor [18][19]. Complex models are automatically self-penalizing under Bayes’ rule.

- Create
Gather alternative
DATA MODELS

Fit each MODEL
to the DATA

Gather Create new

more data @ models

Assign preference to the
alternative MODELS

Choose what ./ \ Decide whether

data to to create new
gather next Choose future models

F

actions

Figure 2.5 Data modeling process [4]
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Model comparison is a difficult task because it’s not possible simply to find the
best model that fits the data set. Occam’s razor is the principle that states that the
explanation of any phenomenon should make as few assumptions as possible,
eliminating those that make no difference in the observable predictions of the

explanatory hypothesis. A problem should be stated in its basic and simplest form.

Evidence }

2

P(D[My)

P(DIH>)
e A
) NN

C, Data Set D

F 3
A

Figure 2.6 Why Bayes embodies Occam’s razor [4]

The Figure 2.6 shows the intuition for why complex models penalized. Bayes’
rule rewards models according to how well they predict actual data. These predictions
are quatified by a normalized probability distribution on data sets Dand this
probability, P(D | H,), is known as the evidence for H,. A simple model #, makes
only a limited range of predictions, P(D| H,) ; a more powerful model /, that has
more free parameters than /|, is able to predict a larger variety of data sets. However,
this means that /7, can not predict the data sets in region C, as strongly as H,. Assume
that the two models have been assigned the equal prior probabilities. Then if the data
set falls in region C,, the less powerful model /, will be the more probable than to the
model /.

17



Let us write down the Bayes’ rule for the two levels of inference so that we can
examine explicitly how Bayesian model comparison works.

Model fitting : At the first level of inference, we assume that one model H, is true,
we infer what the model’s parameter w might be given the data D .Using Bayes’ rule,

the posterior probability of the parameter w is :

P(D|W7Hi)P(W|Hi)

P(W|D9Hi): P(D|H,) (2-8)

And we also can rewrite this formula in words :

likelihoodx Prior
Evidence

Posterior=

Model comparison : At the second level of inference, we infer which model is

the most sensible give the data. And the posterior probability for each model is

defined as :
P(Hi|D)OCP(D|Hi)P(Hi) (2-9)

Assuming that we have no reason to assign strongly differing priors P(H,) to the
alternative models, models /, are ranked by evaluating the evidence. New models are
compared with previous by evaluating the evidence for them.

Let us explicitly study the evidence to gain insight into how the Bayesian

Occam’s razor works. The evidence is the normalizing constant for equation (2-8) :

P(D|H,)= [ P(D|w,H)P(w| H,)dw (2-10)

18



Figure 2.7 shows the quantities that determine the Occam factor for hypothesis

H. having a single parameter w . The dotted line that represented the prior distribution

for the parameter has widthA’w. The solid line that represented the posterior
distribution has a single peak atw,,, with characteristic width Aw. The Occam factor

Aw

Aw’

1s

Alw

Figure 2.7 The Occam factor [4]

Therefore the evidence is evaluated by taking the best fit likelihood and multiplying it

by the Occam factor.

P(D|H;))= P(D|wy,H;) Plwy|H)Aw

v v (2-11)

Evidence = Best fit likelihood Occam factor

19



The quantity Awis the posterior uncertainty inw. Imagine for simplicity that the prior

P(w| H.,)is uniform on some large interval A’w , representing the range of values of w

that [, thought possible before the data arrived. Then P(w,,, | H,) =

o The log of
w

the Occam factor can be interpreted as the amount of information we gain about the
model when the data arrive. Comparison of evidence, P(D| H,), provides a purely
objective way to rank hypotheses. Evaluation of evidence is an extension of
maximum likelihood model selection : multiply the best fit likelihood by the Occam
factor. No more computationally difficult than finding the best fit parameters. The
Occam factor automatically penalizes a model which requires fine tuning of its
parameters. It promotes models where the required precision of its parameters is

coarse.

20



2.4 Bayesian regularization

In this section, we will introduce the Bayesian regularization and examine the
probability distribution to set the regularized parameter A. The selection of
regularized parameter A is the key concept of our method. So we adopt Bayesian
analysis to infer the optimal value of A . To infer from the data what value A should
have, we evaluate some probability distribution.

As mentioned earlier, we add the concept of regularized technique to PLS and

rewrite the new error criterion as :

Ee ZCTC-I-iqTq, A>0 (2-12)
Where e"e means the total sum of squared error andq’ q is the weighting vector which
infers the output directly. However, original PLS calibration reduces the total error as
far as possible but if there has noisy signal (outlier) in the training data, the prediction
may fit to the noisy data. So the predicted accuracy will be poor for the unseen data.
Vary of weighting coefficients q " q controls the covariance for two variables.

As shown in section 1.3, Figure 1-2 gives a briefly interpretation for error
criterion and regularized parameter A. The regularized parameter Ais added to the
term to make the calibration curve smooth without oscillating. The Bayesian-based
PLS keeps the balance between smoothness of curve and accuracy in calibration

phase.
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Chapter 3
Bayesian-based PLS

In this chapter, we establish a novel analyzed method, Bayesian-based PLS, by
applying Bayesian approach to PLS method. An elegant approach to the selection of
the regularization parameter is to adopt Bayesian interpretation and evaluate the
evidence probability to find the best value of regularization parameter. The evidence

procedure we adopt is to calculate the probability P(D |, 5, H) .

3.1 Data preprocessing

In computer science, Data preprocessing describes processing performed on the
raw data to transform it to. another processing procedure. The result after data
preprocessing is the final training data set. Data preprocessing transforms the data to a
new type that will be more easily and effectively processed for the purpose of the user.
There are many different widely used methods and techniques for data preprocessing,
including sampling, cleaning, normalization, transformation, denoising, feature
extraction and selection, etc. The sampling is the process of selecting a representive
subset from a large population of data. The transformation is usually applied so that
the data appear to more closely meet the assumptions of a statistical inference
procedure that is to be applied. The denoising is the method that eliminate the noise
from the source data. The normalization, which organizes data more efficient to
access and more normal, which typically means conforming to some regularity or rule,
or returning from some state of abnormality and feature extraction is a process of

dimensionality recduction. It projects a data set with higher dimensionality onto a
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smaller number of dimensions. As such it is useful for data visualization, since a
complex data set can be effectively visualized when it is reduced to smaller
dimensions.

In our study, we make the assumption for considering data preprocessing
procedure into our method. Transformation is adopted to make the training data set to

another form. Here the tangent sigmoid function is selected and shown in Figure 3.1.

f(x) =tan(x)

2|5

Figure 3.1 Tangent sigmoid function

For constructing our three-layer architecture of Bayesian-based PLS, the data
preprocessing procedure had been added between input and hidden layer and the flow
chart has shown in Figure 3.2. In Figure 3.2, the original data X was generated with
uniform distribution. After tangent function transferring, we obtain new form of
dataX'. The probability density function (PDF) of X' is Gaussian distribution or

normal distribution.
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Figure 3.2 The flow chart of data preprocessing
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3.2 Bayesian-based PLS algorithm

The assumption we made is to consider different kinds of probability density
function and try to find out the relation between maximum covariance and minimum
sum of squared error for them. In original PLS three-layer ANN architecture, it
searches the maximum variance between input and hidden layer and finds the
minimum sum of total squared error between hidden and output layer. Here we define

the total data misfit function as :

MZQ’ED+,BEW (3-1)
E, is the residual squared error function and £, is commonly refered to as a
regularizing fucntion. In order to find the optimal value for A, the regularized

parameter, we apply Bayesian interpretation and calculate the best value for A by
using the evidence procedure, an approximate Bayesian scheme reviewed in Mackay
[4]. Using Bayes’ rule, we get the posterior probability of the parameterw is the
fomula (2-8). Now that we want to evaluate the evidence find the value of A. We

define the probability of the data given the parameterw is :

exp(— 1 Ye)
-1

exp(—akE,) o, 4
P(D|w,H,)= Ps= T (3-2)
ZD (a) (27Z-ae )
and a prior probabilily on the parameter w is :
exp(— ! Zk:wz)
P H _ exp(_ﬂEW) _ O-W2 J=1 l
(w|H))= = 2\k/2 (3-3)
Zy () (270,”)
And if « and g are known, then the posterior probability of the parameter w is :
exp(—M (w exp(—ak, — PE
P(W | D,Hl.) — p( ( )) _ p( D ﬂ W) (3_4)

Zy(@a,B)  Zy(e)Z,(B)P(D|H,)
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From above formulas and given some hypotheses, we evaluate the evidence fora, 3 .

We have the formula (3-5) as :

P(D|H,)=P(D|a, B.H,) = zZEZ ()";’ﬂ()ﬂ) 35)

Thus we can write the log evidence fora and S as -
MP upy 1 k N N
logP(D|ea,p,H,)=—(aE," +PBE,") —Elogdet(A) + Eloga + ?logﬂ —?log?_/r (3-6)

Then we differentiate the log evidence, from (3-6), with respect toa and £ so as to
find the condition that is satisfied at the maximum. We can obtain derivation for
differentiating with respect toa and £ from formula (3-6).

da
do

1 1
logP(D|a, B,H,)=~E4" —ETrace(A_lB) + g— =0
a

First, we differentiate the log evidence with respect to @-and get, setting the derivation

to zero :

-1
2aF , = n—~alrace (A" B)=n—-y (3-7)
And then, we differentiate with respect to /.

ilogP(D \a,B,H,)=-E)" — lece(A—‘) + k1_ 0

dp 2 2 B

We obtain the following condition for the most probable value of §# :

. I
2ﬂEV’I‘fP =k — fTrace (A 1)=Zﬁ=7 (3-8)

J=1

According to (3-7) and (3-8), we rewrite the new error criterion as :

M =aE,+ BE, ~e'e+1q'q (3-9)
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Following that, we can find the correct value to use for A by given an initial value of
A(A20) in the following iterative procedure. The value of A is updated by the

formula as follows :

P 7. e'e
k+1 3-10
’ n—=17Y qTq (3-10)
where
k t "t
J J
Vi = )
¢ ,Z:lththr/ij (-11)
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Chapter 4

Experiments and Results

In this chapter, we will demonstrate the simulation experiment results including
sigmoid function, Gaussian-based spectrum and data preprocessing. In our simulation
data experiments, the results shows the analyzed performance are nearly between
Bayesian-based PLS and PRLS and they all have better performance than original

PLS.

4.1 Illustration

4.1.1 Synthesized simulation data

In simulation data calculation, we use synthesize testing data with noise to
examine the efficiency of our method. We add the noise generated by Gaussian
probability density function with zero mean and set the value of standard deviation, so
as to vary the level of noise. The noise to signal (N/S) ratio is also used to set up a
standard of the variation. Given a signal data set signal, and Gaussian noise data set
noise, with zero mean, 1<i<n.

The mean of signal and noise data set are :

Hg =
n
Znoise
Hy = —— (4-1)
n
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The variance of the signal and noise data set are :

z (signal;, — ug )?
=

Var(signal) =-

n

n

D (noise, — )’
Var(noise) = = (4-2)
n

The noise to signal (N/S) ratio is

N L \Var(noise) 43
/9 ratio \Var(signal) (+3)

4.1.2 Criterion of estimation

Here we use two familiar estimators to verify the performance of our method.
One of them is root mean square error (RMSE)."RMSE is one of many ways to
quantify the amount by which an estimator differs from the true value of the quantity
being estimated like as a loss function. The other one is.correlation coefficient which
indicates the strength and direction of a linear relationship between two variables. The
correlation coefficient is a value between 0 and 1. It is a measure of how well trends
in the predicted values follow trends in past actual values. Following, we illustrate the

concept of correlation coefficient in Figure 4.1.

+1 0 -1
l | |
I | I

Positive relation No relation Negative relation

Figure 4.1 A sketch map of correlation coefficient
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Given a set of observations (x,,y,), (x,,¥,),...,(x,,»,), the formula for computing the

correlation coefficient is given by :

1 Z(X_X Y-Y

r= X ) 4-4
n-1 s S, (4-4)
Y . — Desired output
R e Prediction
}? R e ] T -
X . - A \2
V.—7 > i=7)
oo A0 RMSE = |/
Y, ! n
E To acquire accurate prediction
, we hope that RMSE value
f 5 minimize as far as possible.
X

Figure 4.2 Root mean square error

Figure 4.2 shows that the main concept of RMSE is to calculate the average of the

distance between prediction and desired output data. To acquire accurate prediction,

we hope that RMSE minimizes as far as possible.
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4.1.3 Conditional training

Here we also calibrate the training data in different conditions : (1)
self-calibration and self-prediction (SCSP) and (2) cross validation (CV). In order to
understand easily what is difference between SCSP and CV. We use diagrams to
illustrate. Figure 4.3 shows the principle of SCSP and Figure 4.4 shows CV.

SCSP is a traditional training mode and the training data set is also prediction
data set. Usually the result of SCSP is ideal if there is no noise hidden in the source
data. However data usually goes along with noise and SCSP would be influenced by
hidden information so that results may not necessarily meet to desire.

CV is also called leave one out method because we select a validation data from
original training data set and_tepeat until each observation in the set is used as
validation data. The method also has the property of avoiding overfitting but costs
heavy computation. Next, we will compare regularization technique and CV in

simulation and real data experiments.
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Figure 4.3 Self-calibration and self-prediction (SCSP)
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Calibrating

R
Algorithm
I

Predicting

Returned

Figure 4.4 Cross validation (CV)
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4.2 Simulation data

In this section, we will generate sigmoid function, Gaussian-based spectrum data
and preprocessing procedure under SCSP and CV condition. We calibrate these
different kinds of data set. After predicting, we apply the criterion of estimation to

examine which one is better among PLS, PRLS and Bayesian-based PLS methods.

4.2.1 Sigmoid function

In this simulation, we use hybrid of sine and cosine function to examine.
f(x,)=a,sin(x;)+b, cos(x;), 0<x<2rx (4-5)

The training data were generated from f'(x,)+ &,, where x, has take from the uniform
distribution in (0,27) and the noise & had a Gaussian distribution with zero mean. The
training data and the sigmoid function f(x;)are plotted in Figure 4.5. The training

data is highly ill-conditioned.

J(x)

1 21 41 61 31 101 121

input data x,

Figure 4.5 Noisy data (points) and sigmoid function (curve)
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Figure 4.6 RMSE as a function of N/S ratio under SCSP (PRLS)

Bayesian-based PLS
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Figure 4.7 RMSE as a function of N/S ratio under SCSP (Bayesian-based PLS)
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Figure 4.8 RMSE as a function of N/S ratio under SCSP (PLS)
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Figure 4.9 Correlation coefficient as a function of N/S ratio under SCSP (PRLS)

35



Bayesian-based PLS
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Figure 4.10 Correlation coefficient as a function of N/S ratio under SCSP (Bayesian-based PLS)
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Figure 4.11 Correlation coefficient as a function of N/S ratio under SCSP (PLS)
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Figure 4.12 Prediction error sum of squares (PRESS) under CV
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4.2.2 Gaussian-based spectrum

We would like to generate two Gaussian functions g(x) with mean = 510 and the
standard deviation =15, A(x)with mean = 540 and the standard deviation = 10. f(x)

is the linear combination of g(x) and 4(x) plotted in Figure 4.13.

005

0045 |
gx)
004 ¥

y i — hx)
0035 t Y Y —oeo- f(x)
003 | y

f(\) 0025 1
002 t
0015 F

0ol r

ooos
0

'0.005 NN N N NN NN NN NI NN NN

430 440 300 310 320 330 340 330 360 370 580

wavelength
Figure 4.13 The linear combination of two Gaussian functions with different mean

and standard deviation.

The training data set X, + & can be generated by linear combination of g(x) and h(x)

with Gaussian noise ¢ . The training data set will be represented in Figure 4.14.
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Figure 4.14 The training data set of Gaussian-base spectrum

Next, we will show the experiment results of calibration as follows. We can compare

the analyzed performance with these three methods.
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Figure 4.15 RMSE as a function of N/S ratio under SCSP (PRLS)
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Bayesian-based PLS
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Figure 4.16 RMSE as a function of N/S ratio under SCSP (Bayesian-based PLS)

PLS
0E000—
(05000 —~
004000
o
E 003000 —
151 17T
002000 =l I
0.01000 = i | **
T L Y (e I :
T T T T T T T T T T T T T T T T T T 1
000 052 1M 15T 208 261 312 364 417 477 514 560 604 672 722 TST 851 916 937 580
N/S ratio

Figure 4.17 RMSE as a function of N/S ratio under SCSP (PLS)
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Figure 4.18 Correlation coefficient as a function of N/S ratio under SCSP (PRLS)
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Figure 4.19 Correlation coefficient as a function of N/S ratio under SCSP (Bayesian-based PLS)
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Figure 4.20 Correlation coefficient as a function of N/S ratio under SCSP (PLS)
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Figure 4.21 Prediction error sum of squares (PRESS) under CV
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From our experiment results, we can find out both Bayesian-based PLS and
PRLS have better performance than PLS, and the analyzed result of Bayesian-based
PLS is nearly to PRLS whether the prediction is under SCSP condition. The Figure
4.12 shows the CV result, we can realize that Bayesian-based PLS is not better than
PRLS. We think that the result might be influenced by the selection of prior and the

data we simulate.

4.2.3 Preprocessing

In this part, we generate original training data'set taken from the uniform
distribution in (-1, 1). Then we use tangent sigmoid as a function to transfer the
original training data set to”a new ‘one which is’ Gaussian-based. We make an
assumption about whether the training data setis center distribution or more uniform
will make better analyzed performance. They will give some illustration in following
figures.

Figure 4.22 and 4.23 represent the original training data set X and the new

training data set X'which is transferred by tangent function respectively.
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Figure 4.23 The new training data set X'

44



0.012

001 ¢

0.008

EMISE 005

0.004
—o—Bayesian FLS
0.002
——PRLS 08
——PLE
O ! ! 1 1 ! ! ! ! !
{ Q.02 Q.04 Q.04 (.08 0.1 0.12 0.14 0.14 0.18
FWHM
Figure 4.24 RMSE as-a function of FWHM under SCSP
1
099
093
097 r
096
Correlation .
095
coefficient
094
09z r
09z r —0—Bavesnn FLS
091 r ——PRLE 08
—0—FL=
0.9 1 1 1 1 1 1 1 1 1
0 0.0z 0,04 006 0.0z ol 0.12 014 0,16 01z

FWHM
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Chapter 5

Discussion

For regularization concept, almost all inverse problem methods involve a
trade-off between two optimizations : agreement between data and solution, and
smoothness of the solution. We define that the unconstrained minimum of agreement
and the unconstrained minimum of smoothness is the best solution. Figure 5.1 will
give you a brief thought about that. Here, we have a question for how to define or find
out the location of the best solution between “Best smoothness” line and “Best

agreement” line.

3
Best smoothness
(under-fitting) Ve
° e
e
. 7 | Best solution? |
e L
.
® ‘."'
L ] \ ..“.
[ ] :l‘.‘.' —: — S -
® et = -
'__‘f'é' — o
oo 5% b Best agreement
Lo R ® g
.' - -
I AR (over-fitting)
be® = “e °
.
e

Figure 5.1 Where is the best solution

The estimated criterion RMSE and correlation coefficient would involve a
trade-off relationship. In our data experiment results, we hope the RMSE is low and

correlation coefficient is high to verify our proposed method. So, we need some
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verification to explain this problem. We make a assumption that our proposed method
and PLS may have different curves as shown in Figure 5.2. In further study, we will

have a fundamental proof for this issue.

eTe Bayesian-based PLS

PLS

achievable
solutions

Total error

|
1
[
|
I
P
L

4===

[
o

Vary of weights qiq

Figure 5.2 Trade-off curyes of Bayesian-based PLS and PLS

The preprocessing result, we transfer the original data set to Gaussian form to
examine whether the performance is better or not. We make different widths for
FWHM to verify our proposed method. But we could obviously find out the
hypothesis for data preprocessing doesn’t accomplish to our expectation. The results
after preprocessing might be influenced by the limitation of tangent function. The data
after tangent function transferring may be divergent so that the analyzed results would
be affected for this reason.

The local and global minimum problem is another issue we concern. We would

like to find the best solution to approximate nearly global minimum.
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Chapter 6

Conclusions and Future works

6.1 Conclusions

We have established a probability based analyzed method which combines the
advantages of regularization and the properties of PLS for a novel calibration model.
The proposed method, Bayesian-based PLS, is able to reduce the noise signal hidden
in the training data. And it has better analyzed results than original PLS method when
training data accompanying noise signal during calibration phase. So we can apply

our method to on-line analyzed system for further application.

6.2 Future works

In data preprocessing issue, we might to make tries for other kinds of transfer
function (e.g., arcsine function) to make sure the data divergent problem and improve
the limitation of transformation accuracy to obtain better performance for further
study. The track of best solution between the agreement and smoothness is our next
objective to achieve. Then, we also consider to make the results approximated to the
global minimum so that we can apply the proposed method for weights initialization
of backpropogation network. There still have another issue we have to take into
account. The selection of appropriate prior would probably affect the analyzed result.
So we need to make a study about the prior probability to make sure that we don’t

have a bad or wrong one.

48



References

[1]

[2]

Hsiao TC, Lin CW, Chiang HH, “Partial least squares algorithm for
weights initialization of the back-propagation network”, Neurocomputing, vol.
50, pp. 237-247, 2003.

Chen S, Chng ES, Alkadhimi K, “Regularized orthogonal least squares
algorithm for constructing radial basis function networks”, International Journal

of Control, vol. 64, pp. 829-837, 1996.

[3] Chang SH, Chiou YJ, Yu C, Lin CW, Hsiao TC, “4 Novel Multivariate

[4]

[3]

[6]

[7]

[8]

[9]

Analysis Method with Noise Reduction”, 4™ European Congress for Medical
and Biomedical Engineering, 2008.

MacKay DJC, “Bayesian interpolation”, Neural Computation, vol. 4, pp.
415-447,1992.

Bhandare P, Mendelson"Y, Peura RA, Janatsch G, Kruse-Jarres JD, Marbach R,
Heise HM, “Multivariate determination. of glucose in whole blood using
partial least-squares and artificial neural networks based on mid-infrared
spectroscopy”, Applied Spectroscopy, vol. 47, pp. 1214-1221, 1993.
Mocks J, Verleger R, “Multivariate methods in biosignal analysis: application
of principal component analysis to event-related”, Techniques in the behavioral
and neural sciences, vol. 5, pp. 399-458, 1991.

Castellanos G, Delgado E, Daza G, Sanchez LG, Suarez JF, “Feature Selection
in Pathology Detection using Hybrid Multidimensional Analysis”,
Proceedings of International Conference of EMBS, pp. 5950-5953, 2006.

Oja E, “4 simplified neuron model as a principal component analyzer”, Journal
of Mathematics and Biology, vol. 15, pp. 267-273, 1982.

Harald M, Tormod N, “Multivariate Calibration”, ond Edition, John Wiley &

Sons, Great Britain, 1996.

49



[10] Huang KY, “Neural Networks and Pattern Recognition”, 2" Edition, &4 K%
3 2@, 2003.

[11] Oja E, Karhunen J, “Recursive construction of Karhunen-Loeve expansions for
pattern recognition purposes”, Proceedings of 5™ Int. Conf. on Pattern
Recognition, pp. 1215-1218, 1980.

[12] Hsiao TC, Lin CW, Zeng MT, Chiang Kenny HH, “The Implementation of
Partial Lease Squares with Artificial Neural Network Architecture”, 20™ Annual
International Conference of the IEEE Engineering in Medicine Biology Society,
vol. 3, pp. 1341-1343, 1998.

[13] Chen S, Cowan CFN, Grant PM, “Orthogonal least squares learning
algorithm for radial basis function networks”, IEEE Transactions on Neural
Networks, vol. 2, pp. 302-309, 1991

[14] Press HW, Vetterling WT, Teukolsky SA; Flannery BP, “Numerical Recipes in
C: the art of scientific-computing”,- 2™ BEdition, Cambridge University Press,
1993.

[15] Orr MJL, “Regularization. in. the selection of radial basis function centers”,
Neural Computation, vol. 7, pp: 606-623.,-1995.

[16] Hertz J, Krough A, Palmer R, “Introduction to the Theory of Neural
Computation”, Redwood city, California, USA, Addison-Wesley, 1991.

[17] Ham FM, Kostanic I, “4 Neural Network Architecture for Partial Least
Squares Regression with Supervised Adaptive Modular Hebbian Learning”,
Neural, Parallel, Scientific Computation, vol. 6, pp. 35-72, 1998.

[18] Jeffreys H, “Theory of Probability”, Oxford University Press, 1939.

[19] Gull SF, “Bayesian inductive inference and maximum entropy”, Maximum
Entropy and Bayesian Methods in Science and Engineering, vol. 1, pp. 53-74,
1988.

50



	封面.pdf
	摘要、目錄
	內文



